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Abstract
In this thesis, research was done in the area of interacting particle systems. Especially, the sym-
metric exclusion process with local perturbations was investigated. These perturbations, were
in the form of sinks and sources, which add or take away particles at certain rates. Moreover,
simulations were done for the asymmetric exclusion process. This process took place on a ring,
with the addition of a source. For the symmetric exclusion process with sinks and sources, cer-
tain expressions were proven for the expected occupancy of a site. For the simulations, the main
goal was to find out how the jumping rates and starting density, influenced the time to get to
the fully occupied state, at different source rates. The first proof was for a source at an arbitrary
site. From this expression, one could see that if the rates were recurrent, the system converged
to the fully occupied state. If, however, the rates were transient, the system had a limiting
density. Thereafter, it was shown that if a sink and source are placed in the same arbitrary site,
the system always converged to a density, which under the Bernoulli measure, was not equal to
the fully occupied state. The fact that the sink and source were in the same site, was an indis-
pensable condition. Subsequently, the case of countably many sources was investigated. For
which it was also shown that recurrent rates always yield a fully occupied state, as time tends to
infinity. Whereas transient rates, once again, caused a limiting density. Moreover, the special
case of a simple random walk in three dimensions or higher was investigated. If, for distances
far away from the origin, the source rates could be bounded above by a certain function, then
the system would not converge to the fully occupied state. Also, another proof showed that a
recurrent set of source sites would always let the process converge to a fully occupied state.
Lastly, similar conditions for one time dependent source at the origin were proven. Namely, it
was shown for recurrent rates, that if the source dies out quick enough, as t tends to infinity, the
system did not converge to the fully occupied state. For the simulation, we saw that ⟨Tf⟩ had
the identity b + k

λ
. The initial density had a linear effect on both the parameters b and k. The

least squares error fit was applied to the found data with function a, b = aρ0 + c. This yielded
the following values: a = −417.8 ± 85.6 and c = 911.2 ± 54.94 for b. And, we found that
a = −214.6 ± 187.4 and c = 413.6 ± 121.7 for k. The same approach was used for finding
the influence of p − q on ⟨Tf⟩. Except the results were not that conclusive here. The same
fit method with function k, b = (p − q)a + c, yielded the values: a = −35.01 ± 94.56 and
c = 529.59 ± 59.68 for k. And, in this case: a = 10.73 ± 102.3 and c = 332.9 ± 64.3 for b.
Because of the large errors and small values found, it was concluded that the relation was not
linear. Finally, some concluding remarks were made on both aspects of the thesis, along with
some recommendations for future projects related to this topic.
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1. Introduction
In 1970 Frank Spitzer introduced the world to the phenomena of interacting Markov processes
[10]. As it turns out, he laid the foundation for something nowadays known as interacting par-
ticle systems. Especially Thomas M. Ligget has contributed a lot to this field. Including, but
not limited to, the description of certain models and their properties. Such as the voter model,
the contact process and the exclusion process, to which he devoted an entire book[7]. These
models are great examples of interacting particle systems. The voter model, for example, de-
scribes how voters, denoted by a site on a connected graph, influence each other. On the other
hand: the contact process is a model that can describe the spread or dying out of an infection.
In this report, the exclusion process plays a dominating role. In this case we look at particles
performing a random walk on a graph where only one particle per site is allowed. In his first
book, Ligget covered pretty much everything there was to know about this topic in 1985. Since
then, the field has blown up to an extent where it would be impossible to cover it all in one
book, which makes it an important area in probability theory.

Interacting particle systems can be used to model a lot of phenomena which have a prob-
abilistic nature. For example, one could model traffic flow using the asymmetric simple ex-
clusion process [3]. The subject has close links with the field of partial differential equations.
These can be related via so-called hydrodynamic limits. Concretely, this means that the tools
provided by interacting particle systems, is a great way to relate ’micro’ to ’macro’[9], which
can be used to obtain conservation laws (amongst other things). For example, it can be shown
that the empirical density field of the symmetric exclusion process converges to the heat equa-
tion in the hydrodynamic limit [12]. These hydrodynamic limits are not really treated in this
project, but it was mentioned to show the reader that these interacting particle systems can be
extended to more than just a mathematical entity, which makes the number of applications un-
bounded.

As mentioned before, this project focuses on the symmetric exclusion process. We can de-
fine this process via unique Markov generators and semigroups. For this process, the conserved
property is the number of particles. Subsequently, local perturbations in the form of sources
and sinks will be added to these systems, which will cause the process to lose its conserved
property. As it turns out, these local perturbations can have global effects on the system. Be-
sides this, we consider the asymmetric simple exclusion process on a ring. If a source is added
to this system, then it will always converge to the fully occupied state. Simulations will show
how this time, to get to this fully occupied state, relates to the several parameters of the system.
To get a good grasp of the concepts touched upon in this project, a preliminary knowledge of
probability theory like [4] is assumed.

In chapter 2 we will treat the preliminary theory needed to work with these interacting parti-
cle systems. After the necessary preliminary theory, we will treat the processes used in Chapter
3. For these processes, we will prove the identities of the generators which describe them. We
will lastly define what it means for a system to have sinks and sources in terms of the generator.
In chapter 4 we will try to find the expected occupancy for a site in different scenarios. Besides
that, we will also treat the results of simulations. Finally, in Chapter 5 a conclusion is given
along with some remarks. This thesis was written as part of the double bachelor’s degree in
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Applied Mathematics and Applied Physics at the Delft University of Technology.
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2. Preliminary theory
To completely understand the interacting particle systems used in this report, we start off with
some preliminary theory.

2.1. Markov Processes
A stochastic process is Markov if the distribution of the stochastic process, only depends on
the current state. In other words, if, conditional on its present and past states, its future value
is independent of its past states. Let X = {Xt, t ≥ 0} be the process to take values in a state
space Ω. In this report, we will always work with processes that have right continuous with left
limits trajectories (Càdlàg). Then a formal definition, equivalent to the one given in [9], for the
Markov property is the following.

Definition 2.1 (The Markov property). Let Ω denote a state space which is a measurable space
(Ω,A). Moreover, let {Xt, t ≥ 0} denote the stochastic process which takes values in Ω.
Denote Ft = σ({Xr, 0 ≤ r ≤ t}), i.e. the σ-algebra generated by the random variable Xr.
Now if for all f : Ω → R bounded and measurable and 0 ≤ s ≤ t we have that.

E[f(Xt)|Fs] = E[f(Xt)|Xs] (2.1)

Then the process is Markov.

In practice, the definition above states that the expectation, given some points in the past,
only the last one is retained. In this report, we will deal with continuous time Markov jump
processes. This means a random process in a certain state has a probabilistic waiting time
before it jumps to the next state. The reader could wonder how these jumps are distributed. If
the process continuously ’forgets’ its past, this brings to mind the ’memory less’ property of
the exponential distribution [4]. This intuition turns out to be right, as the waiting times before
jumping to a new site x ∈ Ω are exponentially distributed.

Proposition 2.2. In order to ensure the Markov property of a process, the waiting times Tx for
a site x ∈ Ω have to be exponentially distributed.

Proof. Let the process be as described in definition 2.1, starting from X0 = x. Then call Tx the
time spent at x before jumping. Now, let t ≥ 0, s ≥ 0 be arbitrary such that 0 ≤ s ≤ t, then we
have the following.

P(Tx > t|Tx > s) = P(Tx > t|Xs = x)

= P(Tx > t− s|X0 = x)

(2.2)

Where in the first equality we used the Markov property. Thus, we end up with the equality
P(Tx > t|Tx > s) = Px(Tx > s)Px(Tx > t − s), where the subscript the denotes that both
processes are starting from X0 = x. Then, using the definition of conditional probability, one
immediately gets the following.

Px(Tx > t) = Px(Tx > t)Px(Tx > t− s) (2.3)

This is only possible if Tx ∼ exp(λ) for some λ > 0

3



So the previous proposition shows that starting from a site x ∈ Ω, its waiting times are
exp(λx) distributed. After this, a new site y ∈ Ω must be chosen to jump to with probability
p(x, y). This process of waiting and jumping can be concealed in the parameter called rates,
which are denoted by c(x, y). Intuitively, this means the ’probability per unit of time’. Now for
every x ∈ Ω, the process waits exponentially with parameter λx =

∑
y c(x, y) > 0, 1 then it

jumps to y with a probability p(x, y) = c(x,y)
λx

.

2.2. Markov semigroups and generators on a finite state space Ω

For a Markov process {Xt, t ≥ 0} on a state space Ω, consider the following operator, called
the semigroup.

Stf(x) = E[f(X0)|X0 = x] = Ex[f(Xt)] (2.4)

To intuitively make the concepts of semigroups clear, it makes sense to start off with a state
space Ω which is finite. Then later in the more abstract theory, it will be extended to a compact
metric space. For now, the finite (or countable) state space Ω is a good start. Semigroups can
be seen as an operator which ’push’ forward a function from x, a time step t > 0 further to
Xt. This concept can be compared to the flow of a differential equation. But now, since the
process is not deterministic, we still have to take the expectation to retrieve a value. Let C(Ω)
denote the space of continuous functions f : Ω → R. Note that for now, every f is continuous
on Ω, since this state space is finite [1]. For the semigroup working on f ∈ C(Ω), one has the
following properties.

Proposition 2.3 (Semigroup properties on a finite state space). Let {Xt, t ≥ 0} be a Markov
process taking place on a finite state space Ω. For all f : Ω → R, the family of operators
St : C(Ω) → C(Ω) has the following properties.

1. S0 = I (Where I is the identity)

2. Right-continuity: the map t→ Stf is right continuous, ∀t ≥ 0

3. Semigroup property: St+s = StSt, ∀t, s ≥ 0

4. Positivity: If f ≥ 0 then Stf ≥ 0, ∀t ≥ 0

5. Normalization: St1 = 1, ∀t ≥ 0

6. Contraction: supx∈Ω |Stf(x)| ≤ supx∈Ω |f(x)|, ∀t ≥ 0

Proof. Let {Xt, t ≥ 0} be a Markov process and let St be as in equation 2.4. Then for all
f ∈ C(Ω) one has.

1. S0f = E[f(X0)|X0 = x] = f(x)

2. Consider Stf(x) − f(x) = Ex[f(Xt) − f(X0)]. f(Xt) − f(X0) is zero if no jump
happened. Since the process takes place on the finite space it lasts a certain exponential
time before the process makes a jump, and therefore Xt → X0 as t→ 0

1One should note that this is always defined for a finite state space. For the more general (compact) case, one
needs extra conditions on the rates.
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3. For the semigroup property consider the following

St+s = Ex[f(Xt+s)]

= Ex[Ex[f(Xt+s)|Fs]]

= Ex[EXs(f(Xt)]

= Ex[Stf(Xs)] = (Ss(Stf(x)))

(2.5)

Where from the first to the second line the law of total expectation is used [13]. And from
the second to the third line, the Markov property is used. One can therefore conclude that
the Markov property is responsible for the semigroup property.

4. Positivity: Let f ≥ 0, then, Stf(x) = Ex[f(Xt)] ≥ 0 as the expectation of a positive
value remains positive.

5. St1 = Ex[1] = 1

6. |Stf |(x) = |Ex[f(Xt)]| ≤ Ex[|f(Xt)|] ≤ supx∈Ω |f(x)|, taking the supremum yields the
desired result.

Note that for these properties, the state space being finite was only used for property (2).
These properties summarize what a Markov semigroup is. As will be seen later, when the
semigroup will be extended to the case where Ω is compact, it turns out that the converse
reasoning is also true. So, consider a family of operators on C(Ω) that satisfy (1)—(6), then
this is called a Markov semigroup and corresponds to a Markov process on Ω via Stf(x) =
Exf(Xt). So one can go from a process to a semigroup and vice versa. These semigroups are
linked to a generator. Property (3) suggests, namely, that there exists an operator A such that.

Stf = etAf (2.6)

This is defined as the generator. Since Ω is finite, A is a bounded operator and can therefore be
defined by its Taylor series.

St = etA =
∞∑
n=0

tnAn

n!
= I + tA+O(t2) (2.7)

From equation 2.7 it becomes clear how to find this generator.

Af = lim
t→0

Stf − f

t
(2.8)

On the domain.

D(A) =
{
A : lim

t→0

Stf − f

t
converges

}
(2.9)

This is a logical way to find A. Because if we look at equation (2.7), all the terms of t2 and
higher will vanish if t goes to zero. As mentioned before, all the above holds for a finite state
space Ω. But for the general case where Ω is a compact state space, the semigroup is not equal
to the Taylor series, as the generator typically becomes an unbounded operator. Therefore, we
need a more formal theory on these subjects.
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2.3. Semigroups and generators on a compact state space Ω

In this section, the more general case of a compact metric space Ω will be treated. The propo-
sitions and theorems will be given without proof, as they are beyond the scope of this project
and do not contribute to the intuition significantly. The interested reader can find these in [6].
This section serves for the purpose of giving an intuition of how one would generate a semi-
group from an unbounded operator. For this, we first have to consider the definition of a Feller
process.

Definition 2.4 (Feller processes). A Markov process {Xt, t ≥ 0} on Ω is said to be a Feller
process if Stf ∈ C(Ω) for every t ≥ 0 and f ∈ C(Ω)

So this basically means that if one has a Feller process, it still fulfils all the properties of
proposition 2.3, except the right continuity now becomes an assumption. In other words, it will
always be assumed that St maps from C(Ω) to itself. In this report, we will only consider Feller
semigroups. Before finding an actual generator L, the definition of the pregenerator is given.

Definition 2.5 (Pregenerator). An operator2 L on the domain D(L) is called a Markov pregen-
erator if it fulfils the following properties.

1. D(L) is dense in C(Ω)

2. 1 ∈ D(L), L1 =0

3. if f ∈ D(L), λ ≥ 0 and f − λLf = g, then.

min
η∈Ω

f(η) ≥ min
η∈Ω

g(η) (2.10)

Especially property (3) is very important to require, as the resolvent (I − λL)−1 is used
to define the exponential of the operator. So it is essential to need some control over this
resolvent. This is so significant because eventually one wants information on systems which
may have infinite volume. At this infinite volume, the operators are in general unbounded. This
means another way is needed to find the exponential of an operator. An equivalent definition
on (iii) is the following, which is the maximum principle.

Proposition 2.6. Assume L satisfies (1) and (2) from 2.5 and additionally if η0 is such that
f(η0) = minη{f(η)} implies that Lf(η0) ≥ 0. Then L also satisfies (3) from definition 2.5.

From this pregenerator the closure is desired, as this is the key to finding the regular Markov
generator. This is defined as follows.

Definition 2.7. A linear operator L : D(L) → C(Ω) is closed if its graph
G(L) = {(f, Lf), f ∈ D(L)} is a closed subset of C(Ω)×C(Ω) with measure, || · ||∞×|| · ||∞

Unbounded operators are in general not closed. Which means some kind of extension is
needed to achieve this. This is exactly what being closable means.

Definition 2.8. L : D(L) → C(Ω) is closable if ∀fn ∈ D(L) such that fn → 0 and Lfn → h,
then h = 0.

2In this report we will always mean a linear operator
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The intuition behind definition 2.8 is that in order to have a well-defined closure L̄, we need
that if some fn converges to a limit f , then so does L̄fn. In other words, if one has that f (1)

n → f

and f (2)
n → f . Then if L̄f (1)

n → h and L̄f (2)
n → g, we need g = h. And this is essentially

the same as saying L̄(f (1)
n − f

(2)
n ) → 0. This is logical because it is desired that approaching a

limit via different sequences, the operator should not yield different limits (as this would make
it multivalued). For a closable operator, its closure is then defined as: L̄ : D(L̄) → C(Ω) where
D(L̄) = {f ∈ C(Ω),∃fn ∈ D(L), fn → f, ∃g ∈ C(Ω) : Lfn → g}. It is not always the case
that an operator has a closure. Fortunately, one could prove the following proposition, which
does make life a bit easier.

Proposition 2.9. Suppose L is a Markov pregenerator. Then it is closable, and its closure L̄ is
again a Markov pregenerator.

Moreover, it can be proved that.

Proposition 2.10. Suppose L is a closed Markov pregenerator. Then the range of I − λL is a
closed subset of C(Ω) for λ > 0.

Now it is time to bring out the definition for a Markov generator.

Definition 2.11. A Markov Generator is a closed Markov pregenerator L which satisfies.

R(I − λL) = C(Ω) (2.11)

For a sufficiently small λ > 0.

So, this definition is stated in such a way that we can use the resolvent to define an operator
as an exponential. Which brings us to the following proposition.

Proposition 2.12. 1. A bounded Markov pregenerator is a Markov generator.

2. A Markov generator satisfies R(I − λL) = C(Ω) ∀λ > 0.

This result describes perfectly that in order to construct a (possibly unbounded) generator,
one needs to have a bounded pregenerator. Which then finally allows us to write the one-to-one
correspondence of Markov generators and semigroups on C(Ω), which is what we desired.

Theorem 2.13 (Hille-Yosida). There is a one-to-one correspondence between Markov genera-
tors and semigroups on C(Ω). This correspondence is as follows.

1. D(L) =
{
f ∈ C(Ω) : limt↓0

Stf−f
t

exists
}

and L is then given by.

Lf = lim
t↓0

Stf − f

t
(2.12)

Where f ∈ D(L).

2. Stf = limn→∞(I − t
n
L)−nf for f ∈ C(Ω) and t ≥ 0.

3. If f ∈ D(L), then d
dt
Stf = LStf = StLf .

4. for g ∈ C(Ω) and λ > 0, the solution of f − λLf = g is given by.

f =

∫ ∞

0

e−tSλt(g)dt (2.13)

This gives us all the information we need to work with generators and semigroups on a
compact state space Ω. Especially Hille-Yosida will (implicitly) be used quite frequently in
this report.
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2.4. Invariant and reversible measures
Let Ω be a compact state space and let X = {ηt, t ≥ 0} be a Markov process on Ω with
semigroup St. Now define the set P(Ω) = {µ : µ a probability measure on X} which has a
natural weak topology, defined by.

µn → µ⇐⇒
∫
fdµn →

∫
fdµ (2.14)

For all f ∈ C(Ω), where C(Ω) denotes all the continuous functions f : Ω → R. Then this
set P(Ω), equipped with this topology, forms a compact metric space. The process X is called
invariant if a distribution µ is the same as now and a time step t > 0 further. Formally put in a
definition, this yields.

Definition 2.14 (Invariant measures). A probability measure µ ∈ P(Ω) is called invariant if.∫
Stfdµ =

∫
fdµ (2.15)

for all t ≥ 0, f ∈ C(Ω). We denote the set of all invariant measures by I .

Remark. One could show that the set I is non-empty by a ’Bogolioubov-Krylov’ argument.
For this, we want to show that every accumulation point of the averages is an invariant measure
itself. For this, consider that if.

1

Tn

∫ Tn

0

µStdt→ µ∗ (2.16)

As Tn ↑ ∞, then µ∗ is invariant. Thus, if T → ∞ along this subsequence, and this subsequence
is convergent, we have that µ∗ is an invariant measure. Now since Ω is compact, there exists
such a converging subsequence. Letting s ≥ 0 we have that.

1

T

∫ T

0

µSt+sdt =
1

T

∫ T+s

s

µStdt =
1

T

∫ T

0

µStdt−
1

T

∫ s

0

µStdt+
1

T

∫ T+s

T

µStdt (2.17)

Now note that the last two terms converge to zero as T → ∞ along this subsequence. We can
then conclude that.

lim
T→∞

1

T

∫ T

0

µSt+sdt = lim
T→∞

1

T

∫ T

0

µStdt (2.18)

which is exactly what we wanted to show.
A stronger property than invariance is reversibility. This means that a distribution also

remains the same under time-reversal. In other words, the process starting from η0 has the
same distribution as {ηT−t : 0 ≤ t ≤ T} under the measure µ.

Definition 2.15 (reversible measures). A measure µ is called reversible if for all f,g in C(Ω).∫
(Stf)gdµ =

∫
f(Stg)dµ (2.19)

It turns out that reversibility implies invariance.

Proposition 2.16. A reversible measure is invariant.

Proof. Let µ be reversible. This means ∀f, g one has.∫
(Stf)gdµ =

∫
f(Stg)dµ (2.20)

Letting g = 1 yields the desired result.
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2.5. Feynman-Kac Formula
The Feynman-Kac formula is a powerful tool that links two seemingly unrelated subjects,
namely the solution of a partial differential equation to the expectation value of a random
variable. In this specific case [5] it means that, even with a perturbation (which can be non-
Markov) to a Markov process, the expectation can still be computed. For this, imagine the
following situation: let St be a Markov semigroup with corresponding generator L. Then by
Hille-Yosida, we have that.

d

dt
Stf(x) = LStf(x) (2.21)

Now let S ′
t be a non-Markov semigroup with corresponding generator L + V , with V being

the perturbation. Due to the perturbation, this equality does no longer hold. Keeping this in
mind, we would still like a solution to d

dt
S ′
tf(x) = (L + V )S ′

tf(x). So let u(x, t) = (S ′
tf(x)),

then the following theorem gives the solution to a partial differential equation in terms of an
expectation operator.

Theorem 2.17. Consider a bounded function V : R+ × Ω → R and a bounded function
F0 : Ω → R. Fix T > 0, then consider the following partial differential equation with Markov
generator L : D(L) → C(Ω).

∂

∂t
u(t, x) = (Lu)(t, x) + V (T − t, x)u(t, x) (2.22)

With initial condition u(x, 0) = F0(x). Then the solution of this partial differential equation is
given by.

u(x, t) = Ex[e
∫ t
0 V (s,Xs)dsF0(Xt)] (2.23)

The proof of this formula is beyond the scope of this project, but can be found in [5]. In
practice, this will be used in the following way. Say there is a system of which the generator
is known, like the symmetric exclusion process (as we will see in the next chapter). Now to
this system a disturbance is added, say a sink/source at a certain location in Zd. Then, if the
generator can be written as the sum of a known system and the disturbances, the Feynman-Kac
formula can be used.

2.6. Duality
In the next chapter, certain interacting particle systems will be defined. It turns out that duality
can be used to connect two processes via a duality function. As will be seen in chapter 3, this
allows us, for example, to reduce a many-particle (possibly uncountable) problem to a single
particle problem. This is due to the processes having the same generator and essentially solving
the same differential equation. For duality, we use the definition as stated in [6].

Definition 2.18. Suppose {ηt, t ≥ 0} and {Xt, t ≥ 0} are Markov processes with state spaces
Ωη and ΩX respectively. And let D(η,X) be a bounded measurable function on Ωη ×ΩX . The
processes are said to be dual to one and the other with respect to D if

Eη[D(ηt, X)] = Ex[D(η,Xt)] (2.24)

for all η ∈ Ωη and X ∈ ΩX .
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Notice that the expectation operator on the left-hand side is working on the {ηt, t ≥ 0}
process. Whereas it’s working on {Xt, t ≥ 0} in the right-hand side, where Xt is a simpler
process. This is exactly why duality is so powerful.
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3. Processes for particles on Zd

3.1. Poisson process
A Poisson process is a specific Markov process used to describe the probability of a number
of observations at a time t. Knowing this, yields the following distribution (as can be found,
included with the proof, in [4]):

Theorem 3.1 (The Poisson distribution). for each t > 0, the random variable Nt has the
Poisson distribution with parameter λt. that is, for t > 0,

IP(Nt = k) =
1

k!
(λt)ke−λt for k = 0, 1, 2, 3,... (3.1)

3.2. Continuous time Markov chains (random walks on Zd)

For this report, stochastic processes are considered that take place on a compact state space Ω.

Definition 3.2 (Continuous time Markov chains). Let {Xt, t > 0} be a Markov process on the
state space Zd. This process waits for each site x ∈ Zd an exponential time with parameter
λx =

∑
y c(x, y), and then jumps from x to y with probability p(x, y) = c(x,y)

λx
. We call this

process symmetric if c(x, y) = c(y, x).

Note that the definition above is equivalent to a particle performing a random walk on Zd,
and is often how it will be called in this report. It can also be stated differently. Namely, as
independent Poisson processes on the edge ⟨x, y⟩, with the number of jumps from x to y in a
time t. In this way, we can create a path over the edges which will make the particle end up in a
certain position. Since t ∈ R+, this process is also well-defined. As two Poisson clocks cannot
ring simultaneously in continuous time. Intuitively, it is easy to understand that this process is
Markov. Since at every x ∈ Zd, the transition probabilities only depend on the current site and
not the past states. A special case of definition 3.2 is nearest neighbour walk, where p(x, y) > 0
if |x − y| = 1, and 0 otherwise. In chapter 4 this case will be considered for the asymmetric
exclusion process.
A random walk of a particle on Zd is either transient or recurrent. It is recurrent if the particle
eventually returns to its starting point with probability 1. Whereas, the walk is said to be
transient if it visits its starting point with a probability smaller than one. For a simple random
walk on Zd, we have Pólya’s recurrence theorem, which states that a random walk is always
recurrent in d = 1, 2 but transient whenever d ≥ 3[8].

3.2.1. Generator of a symmetric random walk on Zd

With the use of the definition, the generator of this specific process will be calculated. As we
will see later, this process has a few dual processes on Zd.

Lemma 3.3. Let {Xt, t ≥ 0} be the process as described in 3.2 with rates c(x, y) such that
supx

∑
y c(x, y) <∞ and c(x, y) = c(y, x). Then, for a function f(x) : Zd → R, the generator

is given by.
Lf(x) =

∑
y

c(x, y)(f(y)− f(x)) (3.2)

11



Proof. Let {Xt, t ≥ 0} be a continuous time Markov chain on Zd with rates c(x, y) starting in
X0 = x. We define λx =

∑
y c(x, y) as the inverse waiting time and p(x, y) = c(x,y)

λx
as the

transition probability from site x to y. In order to find the generator, we first have to calculate.

Stf(x)− f(x) = Ex[f(Xt)]− f(x) (3.3)

In order to do this, we start by defining Nt = #jumps in a time t > 0 where P(Nt = n) =
(λt)n

n!
e−λt. Since the process has to make somewhere between 0 and ∞ jumps in this time, this

makes a good partition of the event space. Using the partition theorem then yields.

Ex[f(Xt)] =
∞∑

(n=0)

Ex[f(Xt) ∩Nt = n] (3.4)

We then realise that, since we will be dividing by t and taking t to zero, in order to calculate the
generator, all the terms above t2 will vanish. This yields.

Stf(x)− f(x) = Ex[f(Xt) ∩Nt = 0] + Ex[f(Xt) ∩Nt = 1] +O(t2)− f(x)

= e−λxtf(x) + λxte
−λxt

∑
y

p(x, y)f(y) +O(t2)− f(x)

= e−λxtf(x) + te−λxt
∑
y

c(x, y)

p(x, y)
p(x, y)f(y) +O(t2)− f(x)

(3.5)

Where we used the fact that λx =
∑

y c(x, y) =
c(x,y)
p(x,y)

. Dividing by t and letting t → 0, yields
the following.

lim
t→∞

(
Stf − f

t

)
= lim

t→∞
e−λxt − 1

t
f(x) +

∑
y

c(x, y)f(y) (3.6)

Finally, using l’Hôpital on the left term of the right-hand side, yields the desired result.

3.3. The symmetric exclusion process on Zd

This model is essentially a collection of random walkers (X
(1)
t , X

(2)
t , X

(3)
t ...) which are all

collected in a configuration random variable ηt ∈ {0, 1}Zd . Moreover, only one random walker
is allowed to be at a site x ∈ Zd. This means that the particles are now interacting with each
other. In a formal definition from [6], this yields.

Definition 3.4. Let Ω = {0, 1}Zd
be a state space and let η ∈ Ω be a configuration. Then a

particle i ∈ η moves on Zd according to the following rules:

(a) There is always at most one particle per site.

(b) A particle at xwaits exp(λx) with λx =
∑

y c(x, y), and then chooses a y with probability
p(x, y) = c(x,y)

λx
.

(c) If η(y) = 0, then the particle moves to y. If, however η(y) = 1, then the particle will stay
at the site x.

12



Moreover, for cylinder functions (a function depending on finitely many coordinates), we
can define the generator of this process as follows[7].

Lf(η) =
∑
x,y

c(x, y, η)[f(ηx,y)− f(η)] (3.7)

Where ηx,y denotes the particle moving from x to y. It can be seen that the rates c(x, y, η)
depend on the process as well.

3.3.1. Generator of the exclusion process

In a moment, definition 3.7 will be used to calculate the generator of the exclusion process for
the specific function η(x). It will be seen that the generator, working on this function for this
process, is the same as the generator for a single particle performing a random walk. This is
of course remarkable, since this gives the ability to reduce a many-particle problem, to a single
particle problem.

Lemma 3.5. Let {ηt, t ≥ 0} be the exclusion process on Zd as described in definition 3.4 with
symmetric, non-zero rates for all ⟨xy⟩ such that supx

∑
y c(x, y) < ∞. Then the generator L̃

working on η(x) : Zd → {0, 1} is given by.

L̃η(x) =
∑
y

c(x, y)[η(y)− η(x)] (3.8)

Proof. Let {ηt, t ≥ 0} be the exclusion process as described in definition 3.4. Let f(η) = η(x),
which is a local function and thus allows us to use the generator as posed in equation 3.7. ηx,y

denotes switching the occupations of positions x and y.

ηx,y(z) =


η(y) if z = x

η(x) if z = y

η(z) else
(3.9)

Note that with this definition for ηx,y, the transition rates remain irreducible, since they are still
greater than zero. And in this case η → ηx,y with rate c(x, y, η) = c(x, y)η(x)(1 − η(y)) to
ensure the exclusion principle. Note that for ηx,y(z)− η(z), we have the following.

ηx,y(z)− η(z) =


−1 if z = x

1 if z = y

0 else
(3.10)

Plugging these identities in our expression for the generator yields.

L̃η(z) =
∑
x,y

c(x, y)η(x)(1− η(y))[ηx,y(z)− η(z)]

=
∑
x

c(x, z)η(x)(1− η(z))−
∑
y

c(z, y)η(z)(1− η(y))

=
∑
x

c(x, z)η(x)(1− η(z))−
∑
x

c(z, x)η(z)(1− η(x))

=
∑
x

c(x, y)[η(x)− η(z)]

(3.11)
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Where in the last step we used symmetry. This concludes the proof.

Now we can show the duality to a single random walker.

Theorem 3.6. Let {ηt, t ≥ 0} be the exclusion process on Zd. Moreover, let {Xt, t ≥} denote
a random walk starting from X0 = x. Then if c(x, y) = c(y, x)∀x, y ∈ Zd with the duality
function D(η, x) = η(x), we have that.

Eη[D(·, x)(ηt)] = ExD[(η, ·)(Xt)] (3.12)

Proof. Let L be the generator from lemma 3.3 for a random walk {Xt, t ≥ 0} starting from
X0 = x. Let L̃ be the generator of the exclusion process from lemma 3.5 working on the
process {ηt, t ≥ 0}. Then taking D(η, x) = η(x) one sees.

L̃D(·, x)(η) = LD(η, ·)(x) (3.13)

Then because of Hille-Yosida, the duality follows for the semigroups as well

3.4. Addition of sinks and sources
To the process defined in the previous section, one last modification is made. Namely, the
addition of sources and sinks. A source at a location x adds particles to the system with a rate
λ if there is no particle at that site. A sink does exactly the opposite, it takes away a particle
with a rate µ if the site is occupied. Since these sinks and sources only have a local effect on
{0, 1}Zd , and the fact that this is a continuous time process: the generator just consists of the
sum of the exclusion process and that of sinks and sources. This yields the following definition.

Definition 3.7. Let {ηt, t ≥ 0} be the exclusion process on Zd. Let λ(x) and µ(x) denote
functions such that λ : Zd → R and µ : Zd → R. Then the generator of this process is given
by.

Lf(η) =L̃f(η) +
∑
x

λ(x)(1− η(x))(f(ηx)− f(η))−
∑
x

µ(x)η(xj)(f(η
x)− f(η))

(3.14)

Where ηx denotes the flipping of the occupation on a certain site and L̃ is the generator of the
exclusion process.

This equation implies that Eη[f(η)] can only be found using the Feynman-Kac formula,
since the generator is not Markov anymore. We are curious if the process converges to a certain
steady state or that the system will ’fill up’. This will be shown in the next chapter.
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4. Results

In this section, the main goal is to find an expression for Eη[1 − ηt(x)] or Eη[ηt(x)] under
different circumstances.

4.1. One source at an arbitrary site

Let {ηt, t ≥ 0} be the exclusion process taking place on Zd. One source at an arbitrary site
xi ∈ Zd implies that λ(x) = λδx,xi

. Then, using definition 3.7, the following generator will be
used in order to prove the theorem.

Lf(η) =
∑
x,y

c(x, y)[f(ηx,y)− f(η)]− λδx,xi
(1− η(x))(f(ηx)− f(η)) (4.1)

One would like to know E[ηt(x)] at a time t > 0, since this is the expected occupation at a
location x ∈ Zd. However, plugging this function into the generator yields the following.

Lη(x) =
∑
y

c(x, y)[η(y)− η(x)] + λδx,y(1− η(x))

= ARWη(x) + λδx,xi
− λδx,xi

η(x)

(4.2)

Due to the inhomogeneity λδx,xi
, one cannot use Feynman-Kac directly and would have to use

the variation of constants method. Which is possible, but using 1 − η(x) instead does sim-
plify the task. Moreover, the start configuration η0 will be distributed according to a Bernoulli
measure νρ. So, at t = 0, each site has a probability ρ to be occupied by a particle. This
measure will prove useful to determine the expected fraction of the sites that is filled. The
expectation of an exclusion process starting from η0 distributed according to νρ, can be denoted
by Eνρ [f(ηt)] =

∫
Eη[f(ηt)]νρ(dη). Where for this specific case f(η) = 1 − η(x). This gives

enough notation for the first theorem, accompanied by its proof.

Theorem 4.1 (Expectation of the exclusion process with a source at an arbitrary site). Let
{ηt, t ≥ 0} be the symmetric exclusion process taking place on Zd starting from η0 ∈ {0, 1}Zd

,
which is νρ distributed. Moreover, let xi be the site of a source with constant rate λ. Then the
interacting particle system has an expectation of the following form.

Eη[1− ηt(x)] = ERW
x [e−λ

∫ t
0 δXs,xids(1− η0(Xt))] (4.3)

Which under the measure νρ leads to an expectation.

Eνρ [1− η(x)] = (1− ρ)ERW
x [e−λ

∫ t
0 δXs,xi

ds] (4.4)

Proof. Let {ηt, t > 0} be the exclusion process starting from η0 which is νρ distributed. Let
us start by using generator 4.1 with the function f(η) = 1 − η(x), for the reasons mentioned
before. Then, plugging this in the equation yields.

L[1− η(x)] =
∑
y

c(x, y)[(1− η(y))− (1− η(x))]− δx,xi
λ(1− η(x)) (4.5)
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Note that the minus sign before δx,xi
λ(1 − η(x)) makes sense because a source for a particle,

is equivalent to a sink for a vacant site. Now let D(x, η) = 1 − η(x), then one can write the
following.

LD(x, ·)(η) =
∑
y

c(x, y)[D(y, ·)(η)−D(x, ·)(η)]− λδx,xi
D(x, ·)(η) (4.6)

Where the · denotes that the operator is explicitly working on the η-variable. Next, consider
a random walker {Xt, t ≥ 0} starting from X0 = x, with a source at xi and symmetric rates
c(x, y). Then for a function f : Zd → R one has the following generator.

Af(x) =
∑
y

c(x, y)[f(y)− f(x)]− δx,xi
λf(x) (4.7)

Note that this generator is the sum of a random walk plus a potential −δx,xi
λf(x). Since this

differential equation is homogeneous, one can use the Feynman-Kac formula, which yields the
following.

etAf(x) = ERW
x [e−λ

∫ t
0 δXs,xi

dsf(X0)] (4.8)

Now notice the duality AD(·, η)(x) = LD(x, ·)(η) to conclude that.

etL[1− η(x)] = Eη[1− ηt(x)] = ERW
x [e−λ

∫ t
0 δXs,xi

ds(1− η0(Xt))] (4.9)

Finally, we integrate over the Bernoulli measure, such that.

Eνρ [1− η(x)] = (1− ρ)ERW
x [e−λ

∫ t
0 δXs,xi

ds] (4.10)

Which proves the result.

Note that the term
∫ t

0
δx,xids is exactly the time spent of a random walker in this point xi.

Thus, if t → ∞, the configuration will fill up if the particle spends infinite time in this point,
which is the case with recurrent rates. On the other hand, it will establish a constant density if
the time spent in this point is finite, which is the case when the rates are transient.

4.2. One sink and source at an arbitrary site
Calculating the expected density of the exclusion process with one sink and source at an arbi-
trary site, will be done similarly to the case with one sink. Except, we now have no other option
than to use variation of constants. So consider the generator with functions λ(x) = λδx,xi

and
µ(x) = µδx,xi

.

Lf(η) =
∑
x,y

c(x, y)[f(ηx,y)− f(η))]− δx,xi
µη(x)(f(ηx)− f(η))

+ δx,xi
λ(1− η(x))(f(ηx)− f(η))

(4.11)

In the following theorem, an expression for the expected density is found.
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Theorem 4.2 (Expected occupancy of symmetric exclusion with a sink and source at an arbi-
trary site). Let {ηt, t ≥ 0} be the symmetric exclusion process taking place on Zd starting from
η0 ∈ {0, 1}Zd

, which is νρ distributed. Moreover, let xi be the site of a source and a sink with
corresponding rates λ, µ. Then the interacting particle system has an expected density of the
following form.

Eη[ηt(x)] = ERW
x [e−(λ+µ)

∫ t
0 δXs,xi

dsη0(Xt)] +
λ

λ+ µ
(1− ERW

x [e−(λ+µ)
∫ t
0 δXs,xi

ds]) (4.12)

Which, under the measure νρ, yields the following.

Eνρ [ηt(x)] =
λ

λ+ µ
+ (ρ− λ

λ+ µ
)ERW

x [e−(λ+µ)
∫ t
0 δXs,xi

ds]) (4.13)

Proof. Let {ηt, t > 0} be the exclusion process starting from η0, which is νρ distributed, with
a sink and source at an arbitrary site xi. Moreover, let ψ(x, t) denote Eη[ηt(x)]. By using
generator 4.11 with the function f(η) = η(x), we find the following equation.

Lη(x) =
∑
y

c(x, y)[η(y)− η(x)]− δx,xi
µη(x)− δx,xi

λη(x) + δx,xi
λ (4.14)

As said before, due to the inhomogeneous nature of this equation, we cannot use Feynman-Kac
directly. Instead, we have to solve using variation of constants. For this, consider a random
walker {Xt, t ≥ 0}, with a sink and source at the same location xi. Then, for a generator B
and a function ϕ(x, t), we have the following.

Bϕ(x, t) =
d

dt
ϕ(x, t) = Aϕ(x, t) + λδx,xi

(4.15)

Where A = ARW − λδx,xi
− µδx,xi

and ARW denotes the generator of a single random walker.
Then the homogeneous solution is given by the Feynman-Kac formula once again.

ϕh(x, t) = ERW
x [e−(λ+µ)

∫ t
0 δXs,xi

dsη0(Xt)] = etAϕ(x, 0) (4.16)

The last thing we have to do is find a particular solution. For this, return to equation 4.14 and
try the Ansatz ϕ(x, t) = C(t)etA, where C(t) is an unknown function depending on t. Plugging
this back into the differential equation yields.

etA
d

dt
C(t) = λδx,xi

−→ C(t) = λ

∫ t

0

e−sAδx,xi
ds+ ϕh(x, t) (4.17)

Where we have used the chain rule for differentiation. Then the final solution yields.

ϕ(x, t) = λ

∫ t

0

e(t−s)Aδx,xi
ds+ etAϕ(x, 0) (4.18)

Now let D(x, η(x)) = η(x) be a duality function. Then it can be concluded that LD(x, ·)(η) =
BD(·, η)(x). Thus, letting etb work on the x variable of η(x) yields.

Eη[ηt(x)] = etLD(x, ·)(η) = etBD(·, η)(x)

= etAη0(x) + λ

∫ t

0

e(t−s)Aδx,xi
ds

= ERW
x [e−(λ+µ)

∫ t
0 δXs,xi

dsη0(Xt)] + λ

∫ t

0

esAδx,xi
ds

(4.19)
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Where in the last line the substitution u = t− s was used. Now consider the following.

Stf(x) = etAf(x) (4.20)

Then for the derivative working on f(x) = 1, one has using Hille-Yosida, that.

d

dt
(St1) = −(λ+ µ)δx,xi

(St1) (4.21)

Where we used that the ARW1 = 0, since it is a Markov generator. Plugging this back in 4.19,
using the fundamental theorem of calculus, yields.

E[ηt(x)] = ERW
x [e−(λ+µ)

∫ t
0 δXs,xi

dsη0(Xt)]−
λ

λ+ µ

∫ t

0

d

ds
(Ss1)dt

= ERW
x [e−(λ+µ)

∫ t
0 δXs,xi

dsη0(Xt)] +
λ

λ+ µ
(1− Ex[e

−(λ+µ)
∫ t
0 δXs,xi

ds])

(4.22)

Integrating over the measure yields.

Eνρ [ηt(x)] =
λ

λ+ µ
+

(
ρ− λ

λ+ µ

)
ERW

x [e−(λ+µ)
∫ t
0 δXs,xi

ds]) (4.23)

Remark. Note that if the source and sink are not in the same site, this causes trouble. Because if
the source site was xi and the sink site xj , with xi ̸= xj , the solution would not be that elegant.

E[ηt(x)] = ERW
x [e−λ

∫ t
0 δXs,xi

dse−µ
∫ t
0 δXs,xj

dsη0(Xt)]

− λ

∫ t

0

ERW
x [e−λ

∫ s
0 δXr,xi

dr−µ
∫ s
0 δXr,xj

drδXs,xi
]ds

(4.24)

Which does not have an analytical solution due to the fact that we cannot use the same ’semi-
group’ trick as we did in theorem 4.2 in equation 4.21.

4.3. A countable set of sources
In this section, a more general case will be considered. Namely, the case where we have a
set of countable sources. So in this case, λ(x) is just a general function that maps from Zd to
[0,∞). Meaning that every site has its own rate, but the true sources will have λ(x) > 0. In
this section, the following generator will be used.

Lf(η) =
∑
y

c(x, y)[f(ηx,y)− f(η)] +
∑
x

λ(x)(1− η(x))(f(ηx)− f(η)) (4.25)

We will again be looking for an expression for the expected occupancy. This yields the follow-
ing theorem.
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Theorem 4.3. Let {ηt, t ≥ 0} be the symmetric exclusion process on Zd starting from η0 ∈
{0, 1}Zd

, which is νρ distributed. Moreover, let λ(x) be a function that assigns every site x ∈ Zd

a rate. Then the expected occupation is as follows.

Eη[1− ηt(x)] = ERW
x [e−

∫ t
0

∑
x λ(Xs)ds(1− η0(Xt))] (4.26)

Which under the measure νρ yields.

Eνρ [1− ηt(x)] = (1− ρ)ERW
x [e−

∫ t
0

∑
x λ(Xs)ds] (4.27)

Proof. Let {ηt, t > 0} be the exclusion process starting from η0, which is νρ distributed, with
sources at arbitrary sites with rate λ(x) > 0. Moreover, let ψ(x, t) denote Eη[1 − ηt(x)]. By
using generator 4.25 with the function f(η) = 1− η(x), we have that.

L[1− η(x)] =
∑
y

c(x, y)[(1− η(y))− (1− η(x))]−
∑
x

λ(x)(1− η(x)) (4.28)

Consider a random walker {Xt, t ≥ 0} with sources at the same sites. Then for a generator H
and function ϕ(x, t) we have.

d

dt
ϕ(x, t) = Hϕ(x, t) (4.29)

Where H = HRW −∑
x λ(x)(1− η(xi)). Thus, solving with the Feynman-Kac formula.

ϕ(x, t) = ERW
x [e

∫ t
0

∑
x λ(Xs)ds(1− ϕ(x, 0))] (4.30)

With the duality function D(x, η) = 1− η(x), one immediately concludes that LD(x, ·)(η) =
HD(·, η)(x). Which we can exploit to find ψ(x, t).

Eη[1− ηt(x)] = etLD(x, ·)(η) = etHD(·, η)(x)
= ERW

x [e−λ
∫ t
0

∑
x δXs,xi

ds(1− η0(Xt))]

(4.31)

Integrating over the Bernoulli measure yields the result.

In the theorem above, it can be seen that for certain conditions, the system will ’fill up’ to a
configuration in which every site is occupied. This can be seen in the next corollary.

Corollary 4.4. Let {ηt, t ≥ 0} be the process as described in theorem 4.3. Then depending on
the rates we have the following.

1. If c(x, y) is recurrent then νρ(t) → δ1 as t → ∞, where δ1 denotes the fully occupied
state.

2. If c(x, y) is transient and the number of sources is finite, then the limiting density is as
follows.

lim
t→∞

Eνρ [1− ηt(x)] = (1− ρ)ERW
x [e−

∫∞
0 λ(Xs)ds] (4.32)
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Proof. This result follows immediately when we look at the term
∫∞
0

∑
x λ(Xs)ds, which is

an expression for the time that a random walker spends in the source sites. Thus, if the rates
are recurrent, the time spent will diverge if t→ ∞, which results in Eνρ [1− ηt(x)] converging
to zero. In the transient case, this integral converges, which yields 0 < Eνρ [1− ηt(x)] < 1− ρ.
This concludes the proof.

From this we can conclude that the expected occupancy converges to 1 if the random walk
spends an infinite time in the source sites as t goes to infinity. The reader might wonder if
in the transient case, there are certain conditions on the source function λ(x), such that the
configuration still converges to δ1 or not. The next theorems explore lower and upper bounds
for Eνρ [1 − ηt(x)]. Theorem 4.5 gives a condition for not filling up in the case where each
particle performs a nearest neighbour random walk. Whereas theorem 4.7 gives the condition
for convergence to δ1 with transient rates.

Theorem 4.5 (Condition for not filling up). Let {ηt, t ≥ 0} be the exclusion process on Zd

with d ≥ 3. Where we assume that c(x, y) is transient nearest neighbour. Let G be a countable
set which contains the source sites, each site with its own rate λy, which is equal to zero
whenever y /∈ G. We assume that these rates are bounded above by a function h(|y|) such
that 0 ≤ λy ≤ h(|y|). Let r denote the distance from the origin to a point y ∈ Zd. Moreover,
assume that the sources are far away and thus r → ∞, then the configuration will not fill up if
λr has the following long distance behaviour.∫ ∞

1

C(d)rλr <∞ (4.33)

Where C(d) is a constant depending on the dimension in which the process takes place.

Proof. Let {ηt, t ≥ 0} be the exclusion process as described above. We wish to find a lower
bound such that Eνρ [1 − ηt(x)] does not converge to zero, which implies that νρ(t) does not
converge to δ1. To get an expression for this lower bound, we use Jensen’s inequality [4].

ERW
x [e−

∫ t
0 λ(Xs)ds] ≥ e−

∫ t
0 ERW

x [λ(Xs)] (4.34)

Then the integral can be written as.∫ t

0

ERW
x [λ(Xs)] =

∑
y∈G

λy

∫ t

0

ERW
x [δXs,y]ds→

∑
y∈G

λyG(x, y) (4.35)

As t → ∞, where G(x, y) is Green’s function: for every random walker starting from x ∈ Zd,
this denotes the expected time spent in y. According to [11], for a nearest neighbour random
walk in d ≥ 3, we have that for |x− y| → ∞.

G(x, y) ≃ C(d)

|x− y|d−2
(4.36)

If the sum in equation 4.35 converges, we will have a sufficient condition for the configuration
not filling up. Since x is fixed, it suffices to show that the sum converges in x = 0.∑

y∈G
λyG(0, y) converges =⇒

∑
y∈G

λyG(x, y) converges (4.37)
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Furthermore, we assumed that 0 ≤ λy ≤ h(|y|), which yields the following implication.∑
y∈G

h(|y|)G(0, y) converges =⇒
∑
y∈G

λyG(0, y) converges (4.38)

Finally, since h(|y|) is a positive function, we can state the final implication.∫ ∞

1

C(d)h(|y|)
|y|d−2

dy =⇒
∑
y∈G

h(|y|)G(0, y) converges (4.39)

Then, if we switch to polar coordinates, we arrive at the following expression.∫ ∞

1

C(d)λrr
d−1

rd−2
dr =

∫ ∞

1

C(d)rλrdr (4.40)

Thus, equation 4.35 will converge if λr behaves as follows at large r.∫ ∞

1

C(d)rλr <∞ (4.41)

Which finishes the proof.

The previous theorem is quite powerful. For example, if λr = ke−cr for some k, c > 0
when r → ∞, we will have that the system does not fill up as the improper integral does not
diverge in this case. More generally, every function λr that is smaller than 1/r2 will be small
enough to let the configuration not converge to δ1.
Conversely, it would be interesting to find a condition for which the configuration does converge
to δ1, even though the rates are transient. For this, we first need a definition from [11].

Definition 4.6 (A recurrent subset). Define the hitting probability for a point y ∈ Zd as
H(x, y) = Px(Xt = y;T < ∞) for x ∈ Zd. In other words, if a random walker starts
from some x ∈ Zd, then H(x, y) gives the probability to be at y for some T ≥ 0. Also define
HA(x) =

∑
y∈AH(x, y) as the entrance probability of A. We say that this set A is recurrent if

HA(x) = 1, ∀x ∈ Zd. The set is transient if it is not recurrent.

Armed with this definition, we are able to formulate and prove the following theorem.

Theorem 4.7 (Condition for filling up). Let {ηt, t ≥ 0} be the exclusion process on Zd. More-
over, let G ⊂ Zd be a countable set which contains the source sites, each with its own rate λy
such that supy∈G λy < ∞ and λy = 0 whenever y /∈ G. Moreover, assume that ∃δ > 0 such
that miny∈G λy = δ. Then the system will fill up iff the set G is recurrent.

Proof. Let {ηt, t ≥ 0} be the process as described above, with G again a countable set contain-
ing the source sites. Then the solution is of the form.

Eη[1− ηt(x)] = ERW
x [e−

∫ t
0 λ(Xs)ds] = ERW

x [e−
∑

y∈G λylt(x,y)] (4.42)

where lt(x, y) =
∫ t

0
I(Xs = y)ds denotes the time spent in y of a random walker which started

from x. As t→ ∞ this converges to the following in the transient case.

lim
t→∞

Eη[1− ηt(x)] = ERW
x [e−

∑
y∈G l∞(x,y)λy ] (4.43)
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The condition for filling up is when
∑

y∈G l∞(x, y)λy = ∞ almost sure. Since we assumed
that supy∈G λy <∞ and the fact that l∞(x, y) <∞ in the transient case, it must depend on the
set G. Which yields the conclusion that the configuration will converge to δ1 if and only if G is
recurrent.

This theorem also has some nice applications. If for example, the complete xy-plane is
filled with sources in the three-dimensional case, which are all greater equal than δ > 0. Then
this is a recurrent set, which yields the conclusion that this system must fill up.

4.4. Time dependent sources
In the Feynman-Kac formula, we see that the disturbance V (x, t) can also have a time depen-
dence. So this suggests that we can add particles to the system where λ has a time dependence.
So consider the exclusion process {ηt, t ≥ 0} with time dependent source at x = 0. This yields
the following generator working on the function [1− η(x)].

L[1− η(x)] =
∑
x

c(x, y)[[1− η(0)]− [1− η(x)]]− λ(t)δx,0(1− η(x)) (4.44)

Where λ(t) can have various identities. The Feynman-Kac formula then yields the following
solution.

Eη[1− ηt(x)] = ERW
x [e−

∫ t
0 λt−sδXs,0ds(1− η0(Xt))] (4.45)

−
∫ t

0
λt−sδXs,0ds is not an integral that has an analytical solution. That is why we will try to

find a proper inequality to get a condition for converging to δ1 or not. The next theorem gives
a condition for not filling up with recurrent rates.

Theorem 4.8 (Condition for recurrent rates not filling up). Let {ηt, t ≥ 0} be the exclusion
process on Zd where c(x, y) = c(y, x) is recurrent. We place a source at the origin with time
dependent rate λt, which converges to zero as t → ∞. Now let q > max {2/d, 1} and choose
p ∈ (1,∞) such that 1

q
+ 1

p
= 1. Then the configuration does not fill up if λt ∈ Lp(R+) (i.e.∫∞

0
λpsds <∞).

Proof. Let the process be as described above. The expected value of 1− η(x) is as in equation
4.45. We wish to find a lower bound of this expectation such that we can show that it does not
converge to the fully occupied state. For this, consider Jensen’s inequality.

ERW
x [e−

∫ T
0 λT−sδXs,0ds] ≥ e−

∫ T
0 λT−sEx[δXs,0]ds = e−

∫ T
0 λT−sps(x,0)ds (4.46)

Where in the last step we used the definition of the expectation. We want the integral to be
finite. We use the fact that 0 ≤ ps(x, 0) ≤ ps(0, 0) [11] to find the following inequality.∫ T

0

λT−sps(x, 0)ds ≤
∫ T

0

λT−sps(0, 0)ds (4.47)

We also have the local central limit theorem, which implies that ps(0, 0) ≤ C(d)

(s+1)d/2
[11]. If we

use this, we arrive at the following inequality.∫ T

0

λT−sps(0, 0)ds ≤
∫ T

0

λT−s
C(d)

(1 + s)d/2
ds (4.48)
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Now let p, q ∈ (1,∞) be such that 1
p
+ 1

q
= 1. Then Hölder’s inequality yields the following.∫ T

0

λT−s
C(d)

(1 + s)d/2
ds ≤

(∫ T

0

λpsds

)1/p(∫ T

0

(
C(d)

(1 + s)d/2

)q

ds

)1/q

(4.49)

Where for
∫ T

0
λpsds, we used the substitution rule. Thus, the expected occupancy has an

upper bound if for T → ∞ both integrals are finite. The right integral converges since
q > max {2/d, 1}. Now because λs ∈ Lp(R+), we have that both terms converge as T → ∞.
This finishes the proof.

Remark. The transient case, where λt → ∞ as t → ∞, does not necessarily imply that the
configuration converges to δ1. Because for this we would need to have that (looking again at
the solution provided in 4.45). ∫ T

0

λT−sδXs,0ds→ ∞ a.s. (4.50)

To show this we could start off by taking ϵ > 0 arbitrarily small, then since the rate is positive
and continuous. ∫ T

0

λT−sδXs,0ds ≥
∫ T

T−ϵ

λT−sδXs,0ds ≃ λT

∫ T

T−ϵ

δXs,0ds (4.51)

For this to diverge, we would need to know how fast
∫ T

T−ϵ
δXs,0ds converges to zero as t→ ∞,

which we do not know for the moment. Only then a statement about filling up or not can be
made.

4.5. The one dimensional exclusion process with asymmetric rates

Until this point, only the symmetric exclusion process on Zd was considered. But what if this
is not the case? In other words: what would happen if c(x, y) ̸= c(y, x). Moreover, what would
happen if a source is added to this asymmetric case. We will analyse these cases on a lattice,
which is a ring consisting of N sites. We will assume that every particle performs a simple
(but asymmetric) walk. The rules of the exclusion process are still the same as in definition
3.4. So consider a configuration on a one-dimensional lattice which has a length of N sites. If
a particle moves to the right when i = N , it ends up at i = 0 again. The source will be left out
for the moment. Imagine the particles moving with a rate p to the right and q to the left such
that p > q.We denote the occupation at the site i ∈ [0, N ] by ηi. Then the generator of this
process on ηi looks as follows.

Lηi = p[ηi−1(1− ηi)− ηi(1− ηi+1)] + q[ηi+1(1− ηi)− ηi(1− ηi−1)] (4.52)

As can be seen immediately, duality with a single random walker does not work anymore. What
does work is seeing [ηi−1(1−ηi)−ηi(1−ηi+1)] and [ηi+1(1−ηi)−ηi(1−ηi−1)]as left and right
discrete derivatives of ρ(x, t), respectively, which is the mass density. This yields the Burgers
equation3 [2].

∂

∂t
ρ = −p∂ρ(1− ρ)

∂x
+ q

∂ρ(1− ρ)

∂x
= (q − p)

∂ρ(1− ρ)

∂x
(4.53)

3An equation named after the Dutch Physicist Johannes Martinus Burgers
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This is a well known equation also used for gas dynamics, traffic flow problems and liquid
dynamics. This equation has a property that due to the discontinuities it can create, it could
create a so-called shock wave. In this context, that also intuitively makes sense: it may seem
like there is a sort of ’drift’ speed moving the particle density to the right. Now, adding a source
term at i = 0 with rate λ changes the generator to.

Lηi = p[ηi−1(1− ηi)− ηi(1− ηi+1)] + q[ηi+1(1− ηi)− ηi(1− ηi−1)] + λ(1− ηi)δi,0 (4.54)

Which then yields the following.

∂

∂t
ρ = (q − p)

∂ρ(1− ρ)

∂x
+ λ(1− ρ)δi,0 (4.55)

With the model we have just defined, the Bernoulli’s measure νρ(t) will always converge
to δ1, since the process takes place on a closed ring. We denote this time to get to δ1 by Tf .
Since Tf itself is a random variable, we will try to approximate E[Tf ], which depends on the
initial density ρ0, jumping rates p, q, lattice lengthN and source rate λ. by a sample mean ⟨Tf⟩,
which is an average of the observations at λ, we try to approximate this expectation. Our goals
this section is to see what effect the following parameters have when we plot ⟨Tf⟩ against λ.

1. The initial density ρ0: In both the symmetric and asymmetric case, this parameter allows
for ⟨Tf⟩ to become smaller at every λ. However, does this effect decrease at larger λ.

2. The jumping rates p, q: in the simulation, we will always have that p + q = 1 for
convenience. This should alter ⟨Tf⟩ compared to the symmetric case. Because one would
expect, that in the symmetric case, the particles ’pile up’ around i=0. Whereas for the
asymmetric case, the difference between p, q allows the particles to ’escape’ from the
source site. This should allow new particles to join the ring more often.
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4.5.1. The influence of ρ0 on ⟨Tf⟩
For this, we take the source rates λ to be ranging from 0.1 to 5(p + q) with increments of 0.1.
Per value of λ, the simulation is repeated ten times. The average ⟨Tf⟩ over these experiments
is taken as we try to approximate E[Tf ]. We repeat this same process for several ρ0. This yields
the plots in figure 1.

Figure 1: ⟨Tf⟩ plotted against λ for different ρ0

Looking at this figure, one immediately concludes that for every ρ0, the function ⟨TF ⟩(λ)
has the identity b + k

λ
. It seems that in this identity, k has quite some influence from ρ0, as it

seems to get larger as ρ0 gets smaller. Another observation is that b seems to be less influenced
by ρ0. Since at large λ, the plots seem to be very close. A last preliminary observation is
that between λ = 0.5 and λ = 1.0, the plots have a lot of noise, which could imply phase-
transitions. To verify these observations, a least squares curve fit is applied to every ρ0, in
which an uncertainty σ =

⟨Tf ⟩√
10

is applied, since we repeated the simulation ten times. The
results of these curve fits can be seen in table 1.
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ρ0 b[-] u(b) k[-] u(k)
0.1 117.7 32.24 826.1 82.68
0.2 111.9 31.23 796.2 79.93
0.3 102.2 30.80 801.1 79.68
0.4 92.68 28.52 758.1 74.39
0.5 98.78 28.37 739.0 73.46
0.6 76.35 27.02 674.4 68.78
0.7 68.90 24.96 679.0 66.08
0.8 77.55 21.38 560.9 55.37
0.9 49.47 18.77 505.9 49.61

Table 1: The different coefficients relating to the function ⟨TF ⟩(λ) = b + k
λ

, accompanied by
their fitting errors for different ρ0.

One can see that the fitting errors for the b coefficient are quite large relative to the actual
values for b. For k this same error is smaller, but still around ten percent of the actual value.
These values b and k are now plotted against ρ0 to see the influence of this parameter on these
coefficients. The influence of ρ0 against the coefficient k can be seen in figure 2.

Figure 2: The values of k plotted against ρ0 accompanied by its curve fit aρ0 + c

It is clear that the relation between k and ρ0 is a linear one: aρ0 + c. The fit for the data
goes through all the points of the error bar, which implies a proper fit. The values found for
a and c are: a = −214.6 ± 187.4 and c = 413.6 ± 121.7. The uncertainty is most likely this
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large because of the uncertainty for the values of k. The most important takeaway is that the
influence from ρ0 on k is linear. This also gives an idea of how ρ0 influences Tf .

The same analysis will now be done for the coefficient b. The results are shown in figure 3.

Figure 3: The values of b plotted against ρ0 accompanied by its curve fit aρ0 + c
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The first remark that can be made is that one of the initial observations, which were made
based on figure 1, is contradicted in the figure above. Namely, in figure 1 it seemed that all
the plots had the same horizontal asymptote. This would have to yield a constant value b. But
instead a clear linear relation is found. The following values were found from the least squares
fit: a = −417.8 ± 85.6 and b = 911.2 ± 54.94. So the biggest takeaway is that, even at large
source rates, ⟨Tf⟩ is still influenced a great deal by ρ0.

4.5.2. The influence of p, q on ⟨Tf⟩
The setup of retrieving simulation data is essentially the same as done with ρ0. So, λ is taken
ranging from 0.1 to 2(p + q) with increments of 0.1. This is range is smaller than before. But
one can also see from figure 1 that the plot for λ > 2(p + q) is not that interesting anymore.
Repeating the simulation ten times per λ yields the plots given in figure 4.

Figure 4: ⟨Tf⟩ plotted against λ for different p, q
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Some observations can be made when looking at the plots. The trend seems to be that as the
rates become more asymmetric, ⟨Tf⟩ becomes smaller at small λ. One outlier is the case where
p = 1.0 and q = 0. Or in other the words: the case where the rates are totally asymmetric. As
the plot for < Tf > seems to be just below the plot for the p = 0.55, q = 0.45 case at these low
rates. Maybe the physics of the system changes that drastically when the option to move to the
left, is taken away. At larger λ, the plots again seem to be converging to the same horizontal
asymptote. However, as seen before with the initial observations for different ρ0, we cannot
state this yet until the coefficients for the functions are calculated. For this, a curve fit of the
function b+ k

λ
is applied to the data. The results can be found in table 2.

p− q b[-] u(b) k[-] u(k)
0 392.3 112,0 510.0 100.8
0.1 315.2 104.5 539.4 98.53
0.2 289.6 101.7 550.5 97.53
0.4 330.7 99.12 500.2 91.52
0.6 340.8 99.65 510.2 92.44
0.8 375.5 99.32 484.8 89.86
0.9 338.7 93.91 332.9 86.04
1 331.3 103.5 529.7 96.78

Table 2: The different coefficients relating to the function ⟨TF ⟩(λ) = b + k
λ

, accompanied by
their fitting errors for different p− q.

Again, the errors resulting from the least squares fit are relatively larger for b. For the found
values of k, these fitting errors lie around 20 percent. We again apply a least squares error fit to
the coefficients found with the fit function b = a(p− q) + c. This yields the result in figure 5.
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Figure 5: The values of b plotted against p− q accompanied by its curve fit a(p− q) + b

This plot shows what we were expecting: not that much influence of p− q for high source
rates λ. This results in all p− q having the same asymptotic behaviour. From the least squares
curve fit, we retrieved the following values: a = 10.73± 102.3 and c = 332.9± 64.3. We now
use the same method to find the relation with respect to k. The result can be seen in figure 6.
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Figure 6: The values of k plotted against p− q accompanied by its curve fit a(p− q) + b

From this we can see a slight downward trend, but it is not that convincing as figure 4
implied. The values retrieved from the least squares curve fit are as follows: a = −35.01 ±
94.56 and b = 529.59± 59.68.
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5. Concluding remarks and acknowledgements

5.1. Concluding remarks with respect to the proofs
In this report, we proved several properties of the symmetric exclusion process with sinks and
sources. We were interested in the solution of Eη[ηt(x)] or Eη[1− ηt(x)]. We will briefly touch
upon the most important results of the proofs and give some recommendations for further re-
search. For all the proofs, the existence of a dual process and the Feynman-Kac formula were
essential.

Firstly, we proved that one source at an arbitrary site, leads to a fully occupied state as
t→ ∞, if the rates were recurrent. Whereas for the transient case, the expected occupancy was
determined by the expected time, that a random walker spent in the source site. Moreover, the
initial Bernoulli measure of the system would influence the value of Eη[1− ηt(x)] in this case.
Thus, for the transient case the system would not ’fill up’ as it were.

After this, we looked at the case of one source and sink, which were at the same arbitrary
site. The proof was essentially the same as for one source. Except we had to use variation
of parameters and a neat semigroup trick. The neat semigroup trick did not work, if the site
of the sink and source were not the same. Further research could focus on the latter, because
this might be interesting. Intuitively, one might think that you get some sort of ’flow’ from the
source to the sink site. But then again: this is just guessing for the moment.

Moreover, we looked at the more general case of countable sources. This proof did not
differ much from the one source case. After this, we proceeded to prove conditions on whether
the configuration would converge to δ1 . As it turns out, for the nearest neighbour random walk
in three dimensions or higher, we could find a condition for not filling up. We could show that,
if the source had a certain long-distance behaviour, Eη[1 − ηt(x)] would converge to a value
greater than zero. We did this by using Jensen’s inequality as a lower bound and exploiting
the long distance behaviour of Green’s function. Furthermore, it was shown that even with
transient rates, the system would fill up as long as the set of source sites were recurrent.

Finally, we returned to the case of one source, placed at the origin. Except this time, the
source had a time dependence. Here we proved that even if the rates were recurrent, the system
would not converge to the fully occupied state as long as the source went to zero quick enough
over time. There also was an attempt to show that with transient rates and a source rate that
would ’blow up’, the system would converge to δ1. But for this, we would have to know how
fast the term

∫ T

T−ϵ
δXs,0ds goes to zero. This is also something that could be investigated in the

future.

5.2. Conclusion with respect to the simulations
The behaviour of ⟨Tf⟩ was investigated with respect to ρ0 and p− q, in an attempt to estimate
E[Tf ]. ⟨Tf⟩ had a relation equal to: b+ k

λ
. The parameter ρ0 had a linear effect on both b and k.

Thus b, k = aρ0 + c. The least squares error curve fit returned the values: a = −417.8± 85.6
and c = 911.2 ± 54.94 for b. Whereas a = −214.6 ± 187.4 and c = 413.6 ± 121.7 for k. We
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also did the same analysis for p− q. The curve fit showed a weak linear relation with respect to
k. The least squares error fit yielded the values: a = −35.01± 94.56 and c = 529.59± 59.68.
The same method showed that p− q had an even less convincing linear effect on b. In this case:
a = 10.73± 102.3 and c = 332.9± 64.3. Due to the large error, we cannot conclude with full
certainty that p− q has a linear effect on these coefficients. More about this in the next.

5.3. Remarks with respect to the simulations
The simulations clearly gave a relation between ⟨Tf⟩ and the parameter ρ0. The exact values
of a, c from the curve fit are not that important. The main point is that, for all the values within
the range of the errors, it showed a clear linear relation. And this goes for the influence of ρ0
on both b, k. However, the different plots from figure 1 show a lot of noise in between λ = 0.5
and λ = 1. Of course, due to the probabilistic nature of the process, this could be just that:
noise. However, it could be that these discontinuities for the plots of different ρ0, are caused
by phase transitions. To confirm these suspicions, one could start by repeating this experiment,
but then with smaller increments of λ and more simulations per rate. If discontinuities are now
observed more clearly, one could formulate a hypothesis of a connection between ρ0, λ and
p, q with respect to, these phase transitions. The code in the appendix should then be altered,
such that one could more clearly observe the behaviour of the occupancy around the source site
during a simulation. Around these phase transitions, drastic change of this behaviour should be
observed. This could be the topic of further research.

The simulations did not give a clear influence of p− q on ⟨Tf⟩. This did not coincide with
what we expected, before the experiment. The relation found was not that convincing, to con-
clude a linear relation with the coefficients b, k. However, figure 4 raised the suggestion, that at
small λ, there was a distinction between symmetric and asymmetric. We might have obtained
these conflicting results because λ was not taken small enough. So in future projects, one could
repeat the simulations, but make the smallest value of λ even closer to zero. Then, using again
smaller increments with respect to λ, this could show this distinction between symmetric and
asymmetric, more clearly. Moreover: maybe the effect of p − q was not linear to begin with.
Different functions for fitting to the data can be considered in the future. Also, the value for
⟨Tf⟩ was a bit different from expected when the process was totally asymmetric. Maybe this
also is some sort of phase transition, when the system converges from ASEP to TASEP. Lastly,
the same arguments as the last paragraph can be made with respect to phase transitions in gen-
eral.

A more general recommendation is the addition of a sink to the code provided in the ap-
pendix. This is interesting because this could lead to finding an invariant measure. One could
then investigate the behaviour of this invariant measure with respect to the distance between
the sink and source. With such an invariant measure, one could calculate a correlation function
to investigate relations between sites.
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Appendix

Inequalities used
In the proofs, we used the following inequalities without stating them completely. The theorems
and definitions are from [1] and [4].

Theorem 5.1 (Jensen’s inequality). Let X be a random variable taking values in the (possibly
infinite) interval (a, b) such that E(x) exists, and let g : (a, b) → R be a convex function such
that E[g(X)] <∞. Then

E[g(X)] ≥ g[E[X] (5.1)

For the next inequality, first consider the following definition.

Definition 5.2. For p ∈ [1,∞) let (S,A, µ) be a measure space. Let

Lp(S) =

{
f : S → R : f is measurable and

∫
S

|f |pdµ <∞
}

(5.2)

For f ∈ LP (S) let

||f ||p =
(∫

S

|f |pdµ
) 1

p

(5.3)

Then we are able to give Hölder’s inequality.

Theorem 5.3 (Hölder’s inequality). Let p, q ∈ (1,∞) satisfy 1
q
+ 1

p
= 1. If f ∈ Lp(S) and

g ∈ Lq(S), then fg ∈ L1(S) and

||fg|| ≤ ||f ||p||g||q (5.4)

Code of the simulation
On the next page, the code is provided that was used to run the simulations. It also explains
how we limit the error due to discretion of time.
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ASEP1D_new (2)

February 19, 2023

[ ]: import numpy as np
import matplotlib.pyplot as plt
import math
import pandas as pd
from scipy.optimize import curve_fit

As we have seen the number of jumps N in a time dt is poisson distributed.

P (Ndt = n) =
(λxdt)

n

n!
e−λxdt (1)

Per time step dt we however assume that a particle only makes one jump.

P (i+ 1|i) = P (Ndt ≥ 1) ∗ pi+1 = (1− P (Ndt = 0)) ∗ pi+1 (2)

P (i− 1|i) = P (Ndt ≥ 1) ∗ pi−1 = (1− P (Ndt = 0)) ∗ pi1 (3)

P (i|i) = P (Ndt = 0) (4)

Which means the error comes from the fact that in reality one would want to make more then one
jump. From this we retrieve the rest term (or error term).

R(dt) = P (Ndt = 2) =
(λxdt)

2

2
= 0.01 (5)

We have the same reasoning for the source rate λr.

[ ]: #eta: an array of 0,1 which represents the occupancy of each site of the lattice
#pos: an array which represents the locations of the particles
#N: The length of the lattice (which is a circle)
#cr, cl: rate to the right and left respectively
#rso: the rate of the source

def ASEP_1D(eta, pos, N, cr, cl, rso, xso, dt):
lambda_x = cr + cl #waiting time per site
pr = cr/lambda_x
pl = cl/lambda_x
p = [(1-np.exp(-lambda_x*dt))*pl, (1-np.exp(-lambda_x*dt))*pr, np.

↪→exp(-lambda_x*dt)] #assumption is max 1 jump per dt
dpos = np.random.choice([-1,1,0],len(pos), p)
pos_new =(pos + dpos)%((len(pos))*[N])

1
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eta_new = np.zeros(len(eta))
rows = np.arange(0, smallestrows(len(pos)))
jump = len(rows)
for j in rows:

pos_new[j::jump] = np.where(np.isin(pos_new[j::jump],␣
↪→list(set(pos)-set(pos[j::jump]))), pos[j::jump], pos_new[j::jump])

pos[j::jump] = pos_new[j::jump]
eta_new[pos] = 1
if not(np.isin(xso,pos)) and np.random.exponential(1/rso)<dt:

eta_new[xso] = 1
pos.append(xso)

pos.sort()
return eta_new, pos

def smallestrows(n): #find minimal number of rows with minimal of 3
if n<4:

return 3
elif n%3==0 or n%3==2:

return 3
else:

i = 4
res = n%i
while not(res == 0 or res > 1):

i+=1
res = n%i

return i

def execute2(N, cr, cl, rso, xso, dt, rho):
eta = np.random.choice([0, 1], N, p=[1-rho, rho])#fill up according to␣

↪→bernoulli measure
eta_lst = [eta]
pos = [j for j, e in enumerate(eta) if e == 1]
i=0
while len(pos) < N:

eta, pos = ASEP_1D(eta, pos, N, cr, cl, rso, xso, dt)
#print(list(map(int, eta)))
eta_lst.append(eta)
i+=1

endtime = dt*i
now = time.time()
return endtime

The function in the following cell is used to determine ⟨Tf ⟩ for different λ. This allows us to find
the relation between ⟨Tf ⟩ and λ for different p− q and ρ0

[ ]: def phase_trans_rso(N, cr, cl, xso, rho):
tries=100

2
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dt= np.sqrt(0.005)/(cr+cl)
rso = np.arange(0.1, 2*(cr+cl),0.01)
res = np.zeros((len(rso),tries))

for i in range(len(rso)):
for j in range(tries):

dt= min(np.sqrt(0.005)/(cr+cl), np.sqrt(0.005)/(rso[i]))
fullt = execute2(N,cr,cl,rso[i],xso,dt,rho)
res[i][j] = fullt

print(res)
res_avg=np.mean(res, axis=1)

plt.figure()
plt.xlim(0,rso[-1])
plt.ylim(0,max(res_avg))
plt.plot(rso,res_avg)
plt.show()
return res_avg

#result = phase_trans(10000, 1, 0.5, 0, 0.6)

The following program gives an idea of how the coefficients k and b were obtained. The case below
is for obtaining the coefficients at different ρ0. When the coefficients were found for ρ0 ranging
from 0.1 to 0.9, another curvefit is applied. This time a linear one to find out how ρ0 influences
these coefficients. The case for p− q is equivalent to the one below in terms of code. Filenames like
ptr100_06_04_0_01.csv are local files saved from the simulations.

[ ]: p01 = (pd.read_csv("ptr100_06_04_0_01.csv", usecols = [1]).values).tolist()
p02 = pd.read_csv('ptr100_06_04_0_02.csv', usecols = [1]).values
p03 = pd.read_csv('ptr100_06_04_0_03.csv', usecols = [1]).values
p04 = pd.read_csv('ptr100_06_04_0_04.csv', usecols = [1]).values
p05 = pd.read_csv('ptr100_06_04_0_05.csv', usecols = [1]).values
p06 = pd.read_csv('ptr100_06_04_0_06.csv', usecols = [1]).values
p07 = pd.read_csv('ptr100_06_04_0_07.csv', usecols = [1]).values
p08 = pd.read_csv('ptr100_06_04_0_08.csv', usecols = [1]).values
p09 = pd.read_csv('ptr100_06_04_0_09.csv', usecols = [1]).values
p01_new = []
p02_new = []
p03_new = []
p04_new = []
p05_new = []
p06_new = []
p07_new = []
p08_new = []
p09_new = []
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for i in range(len(p01)):
p01_new.append(p01[i][0])

for i in range(len(p02)):
p02_new.append(p02[i][0])

for i in range(len(p03)):
p03_new.append(p03[i][0])

for i in range(len(p04)):
p04_new.append(p04[i][0])

for i in range(len(p05)):
p05_new.append(p05[i][0])

for i in range(len(p05)):
p06_new.append(p07[i][0])

for i in range(len(p05)):
p07_new.append(p07[i][0])

for i in range(len(p08)):
p08_new.append(p08[i][0])

for i in range(len(p09)):
p09_new.append(p09[i][0])

rso= (np.arange(0.1,5,0.1)).tolist()
plt.figure()
plt.title(r'$T_f$ plotted against $\lambda$ at different $\rho_0$ with $p = 0.
↪→6$, $q=0.4$ and N=100')

plt.xlabel(r'$\lambda$')
plt.ylabel(r'$<T_f>$')
plt.plot(rso,p01, label=r'$\rho_0 = 0.1$')
plt.plot(rso,p02, label=r'$\rho_0 = 0.2$')
plt.plot(rso,p03, label=r'$\rho_0 = 0.3$')
plt.plot(rso,p04, label=r'$\rho_0 = 0.4$')
plt.plot(rso,p05, label=r'$\rho_0 = 0.5$')
plt.plot(rso,p06, label=r'$\rho_0 = 0.6$')
plt.plot(rso,p07, label=r'$\rho_0 = 0.7$')
plt.plot(rso,p08, label=r'$\rho_0 = 0.8$')
plt.plot(rso,p09, label=r'$\rho_0 = 0.9$')
def func(x,b,k):

return b+ k/x
sig1=np.zeros(len(p01))
for i in range(len(p01)):

sig1[i]=(p01[i]/(np.sqrt(10)))
popt01, pcov01 = curve_fit(func,list(rso), np.array(p01_new), sigma = sig1,␣
↪→absolute_sigma=True, maxfev=10000)

perr1 = np.sqrt(np.diag(pcov01))

sig2=np.zeros(len(p02))
for i in range(len(p02)):

sig2[i]=(p02[i]/(np.sqrt(10)))
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popt02, pcov02 = curve_fit(func,list(rso), np.array(p02_new), sigma = sig2,␣
↪→absolute_sigma=True, maxfev=10000)

perr2 = np.sqrt(np.diag(pcov02))

sig3=np.zeros(len(p03))
for i in range(len(p03)):

sig3[i]=(p03[i]/(np.sqrt(10)))
popt03, pcov03 = curve_fit(func,list(rso), np.array(p03_new), sigma = sig3,␣
↪→absolute_sigma=True, maxfev=10000)

perr3 = np.sqrt(np.diag(pcov03))

sig4=np.zeros(len(p04))
for i in range(len(p04)):

sig4[i]=(p04[i]/(np.sqrt(10)))
popt04, pcov04 = curve_fit(func,list(rso), np.array(p04_new), sigma = sig4,␣
↪→absolute_sigma=True,maxfev=10000)

perr4 = np.sqrt(np.diag(pcov04))

sig5=np.zeros(len(p05))
for i in range(len(p05)):

sig5[i]=(p05[i]/(np.sqrt(10)))
popt05, pcov05 = curve_fit(func,list(rso), np.array(p05_new), sigma = sig5,␣
↪→absolute_sigma=True, maxfev=10000)

perr5 = np.sqrt(np.diag(pcov05))

sig6=np.zeros(len(p06))
for i in range(len(p06)):

sig6[i]=(p06[i]/(np.sqrt(10)))
popt06, pcov06 = curve_fit(func,list(rso), np.array(p06_new), sigma = sig6,␣
↪→absolute_sigma=True, maxfev=10000)

perr6 = np.sqrt(np.diag(pcov06))

sig7=np.zeros(len(p07))
for i in range(len(p07)):

sig7[i]=(p07[i]/(np.sqrt(10)))
popt07, pcov07 = curve_fit(func,list(rso), np.array(p07_new), sigma = sig7,␣
↪→absolute_sigma=True, maxfev=10000)

perr7 = np.sqrt(np.diag(pcov07))

sig8=np.zeros(len(p08))
for i in range(len(p08)):

sig8[i]=(p08[i]/(np.sqrt(10)))
popt08, pcov08 = curve_fit(func,list(rso), np.array(p08_new), sigma = sig8,␣
↪→absolute_sigma=True, maxfev=10000)

perr8 = np.sqrt(np.diag(pcov08))
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sig9=np.zeros(len(p09))
for i in range(len(p09)):

sig9[i]=(p09[i]/(np.sqrt(10)))
popt09, pcov09 = curve_fit(func,list(rso), np.array(p09_new), sigma = sig9,␣
↪→absolute_sigma=True, maxfev=10000)

perr9 = np.sqrt(np.diag(pcov09))

def func2(x,a,b):
return a*x+b

plt.legend()
plt.show()

plt.figure()
plt.xlabel(r'$\rho_0$')
plt.ylabel(r'$k$')
plt.title(r'Coefficient $k$ plotted against $\rho_0$')
k = [popt01[0], popt02[0], popt03[0], popt04[0], popt05[0], popt06[0],␣
↪→popt07[0], popt08[0], popt09[0]]

uk = [perr1[0], perr2[0], perr3[0], perr4[0], perr5[0], perr6[0], perr7[0],␣
↪→perr8[0], perr9[0]]

rho = np.arange(0.1,1,0.1)
plt.errorbar(rho,k,yerr=uk, label='errorbar fits')

poptk, pcovk = curve_fit(func2,rho, k, sigma = uk, absolute_sigma=True)
perrk = np.sqrt(np.diag(pcovk))
f = func2(rho,poptk[0],poptk[1])
plt.plot(rho,f, label='fit: ax+c')

plt.figure()
plt.xlabel(r'$\rho_0$')
plt.ylabel(r'$b$')
plt.title(r'Coefficient $b$ plotted against $\rho_b$')
b = [popt01[1], popt02[1], popt03[1], popt04[1], popt05[1], popt06[1],␣
↪→popt07[1], popt08[1], popt09[1]]

ub = [perr1[1], perr2[1], perr3[1], perr4[1], perr5[1], perr6[1], perr7[1],␣
↪→perr8[1], perr9[1]]

rho = np.arange(0.1,1,0.1)
plt.errorbar(rho,b,yerr=ub, label='errorbar fits')

poptb, pcovb = curve_fit(func2,rho, b, sigma = ub, absolute_sigma=True)
perrb = np.sqrt(np.diag(pcovb))
f = func2(rho,poptb[0],poptb[1])
plt.plot(rho,f, label='fit: ax+c')

plt.show()
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