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Stochastic Generalized Nash
Equilibrium-Seeking in Merely Monotone Games

Barbara Franci

Abstracti—We solve the stochastic generalized Nash
equilibrium (SGNE) problem in merely monotone games
with expected value cost functions. Specifically, we present
the first distributed SGNE-seeking algorithm for monotone
games that require one proximal computation (e.g., one
projection step) and one pseudogradient evaluation per
iteration. Our main contribution is to extend the relaxed
forward-backward operator splitting by the Malitsky (Math-
ematical Programming, 2019) to the stochastic case and in
turn to show almost sure convergence to an SGNE when
the expected value of the pseudogradient is approximated
by the average over a number of random samples.

Index Terms—Stochastic generalized Nash equilibrium
problems, stochastic variational inequalities.

[. INTRODUCTION

N a generalized Nash equilibrium problem (GNEP), some
I agents interact with the aim of minimizing their individual
cost functions under some joint feasibility constraints. Due to
the presence of the shared constraints, computing a GNE is
usually hard. Despite this challenge, GNEPs have been studied
extensively within the system and control community, for their
wide applicability, e.g., in energy markets [1]-[5].

Unfortunately, the stochastic counterpart of GNEP is not
studied as much [6]-[9]. A stochastic GNEP (SGNEP) is a
constrained equilibrium problem where the cost functions are
expected value functions. Such problems arise when there is
some uncertainty expressed through a random variable with an
unknown distribution. For instance, networked Cournot games
with market capacity constraints and uncertainty in the demand
can be modeled as SGNEPs [10], [11]. Other examples arise in
transportation systems [12] and in electricity markets [13].

If the random variable is known, the expected value formula-
tion can be solved with a standard technique for the deterministic
counterpart. In fact, one possible approach for SGNEPs is to
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recast the problem as a stochastic variational inequality (SVI)
through the use of the Karush—Kuhn—Tucker (KKT) conditions.
Then, the problem can be written as a monotone inclusion and
solved via operator-splitting techniques. To find a zero of the
resulting operator, we propose a stochastic relaxed forward—
backward (SRFB) algorithm. Our iterations are the stochas-
tic counterpart of the golden ratio algorithm [14] for deter-
ministic variational inequalities, which reduces to a stochastic
relaxation of a forward—backward algorithm when applied to
non-GNEPs.

Besides the shared constraints, the additional difficulty in
SGNEPs is that the pseudogradient mapping is usually not
directly accessible, for instance, because the expected value is
hard to compute. For this reason, often the search for a solution
of a SVI relies on samples of the random variable. Depending
on the number of samples, there are two main methodologies
available: stochastic approximation (SA) and sample average
approximation (SAA). In the SA scheme [15], each agent sam-
ples one or a finite number of realizations of the random vari-
able. While it can be computationally light, it may also require
stronger assumptions on the mappings and on the parameters
involved [7], [16], [17]. To weaken the assumptions, it is often
used in combination with the so-called variance reduction [18],
[19], taking the average over an increasing number of samples.
This approach, although it may be computationally costly, is
used, for instance, in machine learning problems, where there
is a huge number of data available. If the average is taken
over an infinite number of samples instead, we have the SAA
scheme [20].

Independently of the approximation scheme, it is desirable
to obtain distributed iterations, where each agent knows only
its cost function and constraints [1], [21]. In a full-decision
information setting, the agents have access to the decisions of
the other agents that affect their cost functions [1], while in
a partial-decision information setting, the shared information
is even more limited [3]. In both cases, the key aspect is that
the agents can communicate without the need for a central
coordinator. Alternatively, a payoff-based information setup has
been considered in [22], [23], where the agents have access to
the values of their own cost functions.

Besides being distributed, an algorithm for SGNEPs should
converge under mild monotonicity assumptions and it should be
relatively fast. For SVIs, there exist several methods that may be
used for SGNEPs. Among others, one can consider the stochas-
tic preconditioned forward-backward algorithm (SpFB) [21],
[24] for its convergence speed and low computational cost.

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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TABLE |
ALGORITHMS FOR SGNEPS THAT CONVERGE UNDER ONLY MONOTONICITY
(MoN.) ARE MARKED WITH /. # PROX AND # F INDICATE THE NUMBER OF
PROXIMAL STEPS AND THE NUMBER OF COMPUTATIONS OF THE
STOCHASTICALLY APPROXIMATED PSEUDOGRADIENT PER ITERATION,
RESPECTIVELY. ALL THESE ALGORITHMS USE THE VARIANCE REDUCTION
AND A FIXED STEP SIzE

SFBF SEG SSE SPRG SpFB SRFB
[18] [19]  [29] [29] [24]
MON. v v v X X v
# prox 1 2 1 1 1 1
#F 2 2 2 1 1 1

The downside of this algorithm is that the pseudogradient map-
ping must be, monotone and, cocoercive [24], [25], strongly
monotone [21], [26], or satisfy the variational stability [27].
Similarly, one can consider the stochastic projected reflected gra-
dient (SPRG) scheme [28], [29] that is fast but requires the weak
sharpness property (implied by cocoercivity) which is, however,
hard to check on the problem data. Nonetheless, weakening
the assumption on the pseudogradient to mere monotonicity
translates into having computationally expensive algorithms. In
this case, one could apply the extragradient (EG) scheme [19],
[30] with two projection steps per iteration or the forward—
backward—forward (FBF) algorithm [18] that has one projection
but two evaluations of the pseudogradient for each iteration. Re-
cently, the stochastic subgradient EG (SSE) algorithm has been
considered, that use one proximal step but still two computations
of the approximated pseudogradient [29]. These considerations
are summarized in Table I, where we consider variance-reduced
schemes with fixed step sizes for SGNEPs in comparison with
our proposed SRFB algorithm.

Essentially, for merely monotone games, our SRFB algorithm
is the only one to perform one proximal step and one stochastic
approximation of the pseudogradient mapping with fixed step
size.

Another option that uses one projection and one computa-
tion of the pseudogradient is the iterative Tikhonov regular-
ization [7], which, however, is not proven to converge with
variance reduction in SGNEPs and uses vanishing step sizes
and vanishing regularization coefficients. Other algorithms have
been proposed for saddle points problems (without coupling
constraints) [31], convergent in the stochastic case if the map-
ping is strongly monotone [32], [33].

In light of the above considerations, our main contributions
in this article are summarized as follows.

¢ In the context of, non-strictly/strongly monotone and
noncocoercive, monotone SGNEPs, we propose the first
distributed algorithm with a single proximal computation
(e.g., projection) and a single stochastic approximation of
the pseudogradient per iteration (Section IV).

® We show that our algorithm converges almost surely (a.s.)
to a stochastic generalized Nash equilibrium under mono-
tonicity of the pseudogradient with the SA scheme and the
variance reduction (Section IV-B).

¢ For the stochastic non-GNEP, we show convergence with
and without the variance reduction and under several
variants of monotonicity (Section VI).

We emphasize that, unlike [7], [8], [24], we do not assume
that the pseudogradient mapping is strictly/strongly monotone
nor cocoercive or similar.

1. NOTATION AND PRELIMINARIES
A. Notation

Let R indicate the set of real numbers and let R = R U
{+00}. {-,) : R™ x R™ — R denotes the standard inner prod-
uct, and || - || represents the associated Euclidean norm. We
indicate that a matrix A is positive definite, i.e., xT Az > 0,
with A > 0. Given a symmetric ¢ > 0, denote the ®-induced
inner product as (z,y)s = (Pz,y). The associated P-induced
norm, || - ||¢, is defined as ||z]|¢ = \/(®Pz, x). A ® B indicates
the Kronecker product between matrices A and B. 0,,, indicates
the vector with m entries all equal to 0. Given N vectors
T1,...,ony € R", & :=col(zy,...,zn) = [2],...,2}] .

Jr = (Id+F)~! is the resolvent of the operator F' : R —
R™ and Id indicates the identity operator. The set of fixed
points of the operator F'is fix F = {x € R" : = F(z)}. For
a closed set C' C R™, the mapping proj. : R® — C denotes
the projection onto C, i.e., projo(x) = argmin, ¢ [y — z||.
The residual mapping is, in general, defined as res(z*) =
|z* — projo(x* — F(2*))|. Let g be a proper, lower semi-
continuous, convex function. We denote the subdifferential
as the maximal monotone operator dg(z) ={u € Q| (Vy €
Q)(y — x,u) + g(x) < g(y)}. The proximal operator is defined
as prox, (v) = argminco{g(u) + 3lu— v]2} = Joy(v). 1c
is the indicator function of the set C, thatis, .c(x) = lifz € C
and 1 () = 0 otherwise. The set-valued mapping N : R™ —
R™ denotes the normal cone operator for the the set C, i.e.,
Ne(z) =@ifz ¢ C,{v € R"|sup,ccv' (2 — ) < 0} other-
wise. Given two sets A and B, with a slight abuse of notation,
we indicate with col(A, B) or [ 4] the Cartesian product A x B.
This notation is common in (S)GNEPs [1].

B. Operator Theory

Let us collect some notions on properties of operators. The
definitions are taken from [34]. First, we recall that F' is /-
Lipschitz continuous if, for £ > 0, ||F(z) — F(y)|| < {||z —
y||, forall z,y € dom(F).

Definition 1 (Monotone Operators): Given a mapping F':
dom(F) C R™ — R", we say that F' is (strictly) mono-
tone if for all z,y € dom(F)(x # y)(F(z) — F(y),z — y)
(>)>0; F is (strictly) pseudomonotone if for all z,y €
dom(F) (z # y)(F(y),x —y) > 0= (F(z),z —y)(>) = 0;
B-cocoercive with 5 > 0, if for all x,y € dom(F)(F(z) —
F(y),z —y) > B||F(x) — F(y)||*; and F is firmly nonexpan-
sive if for all z,y € dom(F) |F(z) — F(y)||> < ||z — y|? —
1(Id = F)(x) = (1d = F)(y)]]*.

An example of firmly nonexpansive operator is the pro-
jection operator over a nonempty, compact, and convex set
[35, Proposition 4.16]. We note that a firmly nonexpansive
operator is also nonexpansive and firmly quasinonexpansive [35,
Definition 4.1]. We note that if a mapping is S-cocoercive it is
also 1//-Lipschitz continuous [35, Remark 4.15].

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:28:51 UTC from IEEE Xplore. Restrictions apply.
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I1l. STOCHASTIC GENERALIZED NASH EQUILIBRIUM
PROBLEMS

We consider a set of noncooperative agents Z = {1,..., N},
each of them choosing its strategy x; € R™¢ with the aim of
minimizing its local cost function within its feasible strategy
set. The local decision set of each agent is indicated with €,
ie., forall i € Z, z; € Q; C R". Besides the local set, each
agent is subject to some joint feasibility constraints, g(z) < 0.
Letus setn = Zf\; n; and = Hf\il Q;, then, the collective
feasible set can be written as

X=Qn{yeR"|g(y) <0,} (1)

where g : R™N — R™ [5]. Let us also indicate with X; (x_;) the
piece of coupling constraints corresponding to agent ¢, which is
affected by the decision variables of the other agents =_; =
col((x;) ).

Assumption 1 (Constraint Qualification): Foreacht € T, the
set €); is nonempty, closed, and convex. The set X satisfies
Slater’s constraint qualification. |

Assumption 2 (Separable Convex Coupling Constraints):
The mapping ¢ in (1) has a separable form, g(x) := Zf\;
gi(x?), for some convex differentiable functions g; : R"™ —
R™,1 € 7 and it is {4-Lipschitz continuous. Its gradient Vg
is bounded, i.e., sup ey [|Vg(2)| < Byg.

The local cost function of agent 7 is defined as

Ji(wi, 2 i) = Ee[Ji(wi, i, §(@))] + fi(w:) ()

for some measurable function J; : R” x R% — R. The cost
function J; of agent ¢ € Z depends on the local variable z;,
the decisions of the other players «_;, and the random variable
¢ :Z — R? that expresses the uncertainty. E¢ represents the
mathematical expectation with respect to the distribution of the
random variable £(w)! in the probability space (2, F,P). We
assume that E[J;(x, £)] is well defined for all feasible x € X
[6]. Moreover, the cost function presents the typical splitting in
a smooth part and a nonsmooth part. The latter is indicated with
fi : R™ — R and itcan represent alocal cost or local constraints
via the indicator function, i.e., f;(z;) = tq, (2;).

Assumption 3 (Cost Function Convexity): For each ¢ € Z,
the function f; in (2) is lower semicontinuous and convex and
dom(f;) = ;. For each i € Z and «_; € X_;, the function
Ji(-,x_;) is convex and continuously differentiable. [ |

Given the decision variables of the other agents x_;, each
agent ¢ aims at choosing a strategy x; that solves its local
optimization problem, i.e.,

ming,cq, Ji (zs, ;)

S.t. g(xi,ac_i) <0. )

Viel: {
From a game-theoretic perspective, the solution concept that we
are seeking is that of stochastic generalized Nash equilibrium
(SGNE).
Definition 2: A stochastic generalized Nash equilibrium is a
collective strategy * € X, such that foralli € 7

L, t,) < inf{Ji(y,@") |y € K@)},

"From now on, we use ¢ instead of &(cw) and E instead of |E ¢

In other words, an SGNE is a set of strategies, where no agent
can decrease its objective function by unilaterally deviating from
its decision. To guarantee that an SGNE exists, we make further
assumptions on the cost functions [6].

Assumption 4 (Convexity and Measurability): Foreachi € 7
and for each ¢ € =, the function J; (-, x_;, &) is convex, Lips-
chitz continuous, and continuously differentiable. The function
Ji(zi,x_;,-) is measurable and for each x_;, the Lipschitz
constant ¢;(x_;, ) is integrable in &. [ |

Existence of an SGNE of the game in (3) is guaranteed, under
Assumptions 14, by [6, Section 3.1], while uniqueness does
not hold in general [6, Section 3.2]. Within all the possible
Nash equilibria, we focus on those that corresponds to the
solution set of an appropriate SVI. To this aim, let us denote
the pseudogradient mapping as

F(x) = col (E[Vy, Ji(x1,2-1)],.. ., E[Van In(zn, z_N)])

“)
and let Of(x) = col(9f1(x1),...,0fn(zn)). The possibility
to exchange the expected value and the pseudogradient I in (4)
is guaranteed by Assumption 4. Then, the associated SVI reads
as

(F(z"),x —a*)+ Y _{filz:;) = fi(z})} >0, forallz € X

ieT

(5)
where X is the intersection of the local and coupling con-
straints as in (1). When Assumptions 1-4 hold, any solution
of SVI(X,F) in (5) is an SGNE of the game in (3) while vice
versa does not hold in general. This is because a game may have
a Nash equilibrium while the corresponding VI may have no
solution [36, Proposition 12.7].

Assumption 5 (Existence of a Variational Equilibrium): The
SVIin (5) has at least one solution, i.e., SOL(X,F) # &. W

Remark 1: Assumption 5 is satisfied if the sets 2; and i € 7
are compact [34, Corollary 2.2.5]. |

We call variational equilibria (v-SGNE) the SGNE that are
also solution of the associated SVI, namely, the solution of the
SVI(X,F) in (5) with F in (4) and X in (1).

In the remaining part of this section, we recast the SGNEP
as a monotone inclusion, i.e., the problem of finding a zero of
a set-valued monotone operator. To this aim, we characterize
the SGNE of the game in terms of the KKT conditions of
the coupled optimization problems in (3). Let us define the
Lagrangian function, for each ¢+ € Z, with

Li(x,h) =i (@i, i) + fi () + 4] g(a}, ;)

where 1; € RY}, is the Lagrangian dual variable associated with
the coupling constraints. Then, a set of strategies =* is an SGNE
if and only if the KKT conditions are satisfied [37, Theorem 4.6].

Moreover, according to [38, Theorem 3.1] and [39, Theo-
rem 3.1], the v-SGNE are those equilibria such that the shared
constraints have the same dual variable for all the agents, i.e.,
A; = A forall i € Z, and solve the SVI(X,F) in (5). Thus, *
is a v-SGNE if the following KKT inclusions, for all « € Z, are

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:28:51 UTC from IEEE Xplore. Restrictions apply.
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Algorithm 1. Stochastic Relaxed Forward-Backward
(SRFB).

Initialization: 20 € Q;,1? € R7, and 20 € R™.

Iteration k: Agent @

(1) Updates the variables

=1 - 0)ak + ozt

K3

ZF = (1-08)zF +0ozF!

3

Tk k 3 k—
M= =8k okt )

(2) Receives z¥ for all j € N}/ and 25, 1 for j € N}, then
updates

it = proxg [B — a(Fiaf, @b, €F) + Vgi(ei) TA5)]

7 7
AT =2 = Y wi (M =)
JEN?
2t = projre {AF + Tigi(a})
— 7Y wi[(2F —2F) — (F = b))}
JEN}
(8)

satisfied for some A € RZj

0 € E[V,, Ji(z}, %, 8)] + dfi (2]) + Vg(x,2,) A
0 —g(@") + Nrz, (1).
(6)

[V. DISTRIBUTED STOCHASTIC RELAXED
FORWARD—BACKWARD ALGORITHM

In this section, we describe the details that lead to the dis-
tributed iterations in Algorithm 1 which include an averaging
step (7) and a proximal step (8). The averaging step induces
some inertia but it allows us to prove convergence under mild
monotonicity assumptions. Moreover, for the decision variable
x;, the proximal update guarantees that the local constraints
are always satisfied while the coupling constraints are enforced
asymptotically through the dual variable A;, which should be
nonnegative. The variable z; is an auxiliary variable to force
consensus on the dual variables. We note that to update the primal
variable, we use an approximation F of the pseudogradient
mapping [F, characterized in Section I'V-A.

We suppose that each player 7 knows its local data (2; and their
part X;(x_;). We also suppose that the agents have access to a
pool of samples of the random variable and are able to compute,
given the actions of the other players x_;, the pseudogradient
IF of their own cost functions (or an approximation F'). The set
of agents j, whose decisions affect the cost function of agent
i, are denoted by N;/. Specifically, j € N/ if the function
Ji(x;, x_;) explicitly depends on z;. Under these premises,
Algorithm 1 is distributed in the sense that each agent knows
its own problem data and variables and communicates with

the other agents only to access the information to compute [
(full-decision information setup [1]).

Let us also introduce the graph G* = (Z, £*) through which
a local copy of the dual variable is shared. According to [38,
Theorem 3.1] and [39, Theorem 3.1], we seek for a v-SGNE
with the consensus of the dual variables. Therefore, along with
the dual variable, agents share through G* a copy of an auxiliary
variable z; € R™ whose role is to force consensus. A deeper
insight on this variable is given later in this section. The set
of edges £* of the multiplier graph G* is given by (i, j) € £*
if player j shares its {1, z; } with player 4. For all i € Z, the
neighboring agents in G* form the set N = {j € Z: (i,j) €
E*}. In this way, each agent controls its own decision variable
and a local copy of the dual variable A; and of the auxiliary
variable z; and, through the graphs, it obtains the other agents
variables.

Assumption 6 (Graph Connectivity): The multiplier graph G*
is undirected and connected. |

The weighted adjacency matrix associated to G* is denoted
with W € RV*N _ Then, letting D = diag{dy, ..., dn}, where
d; = Zj\;l wj j is the degree of agent 7, the associated Laplacian
is givenby L = D — W € RV*/ It follows from Assumption
6that L = L.

Let us now rewrite the KKT conditions in (6) in compact form
as

(€))

0eT(ea) = []F(:c) +0f(x) + Vg(ac)TX]

Ngm () —g()
T: X xRZy = R™ x R™ is a set-valued mapping and it fol-
lows that the v-SGNE of the game in (3) correspond to the zeros
of the mapping 7 which can be split as a summation of two
operators, 7 = A + B, where,

][]

A 0 —g(x)

of (x) } . (10)

5: (5]~ [N th

To force consensus on the dual variables, Yi and Pavel [1]
proposed the Laplacian constraint LA = 0. This is why, to
preserve monotonicity, we expand the two operators A and 15 in
(10) and introduce the auxiliary variable z = col(z1,...,2x) €
RN™ Let us first define L = L ® Id,,, € RV™*Nm where L
is the Laplacian of G* and A = col(Ay, ..., Ax) € RN™, Then,
the two operators A and B in (10) can be rewritten as

[z ] [ (x) Vg(z)'r
A: |z | — 0 + Lz
A | LA —g(x) — Lz
[z] [ 9f(x)
B:|lz|~ 0 (11)
A | Nz (2)

From now on, we indicate the state variable as w =
col(zx, z,1). The properties of the operators in (11) depends
on the properties of [F and are described in the next section. We
here show that the zeros of A + B are the same as the zeros of

T in (9).

Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:28:51 UTC from IEEE Xplore. Restrictions apply.
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Lemma 1: Let Assumptions 1-6 hold and consider the oper-
ators A and B in (10), and the operators A and B in (11). Then,
the following statements hold.

(i) Given any w* € zer(A + B), =* is a v-SGNE of game
in (3), i.e., «* solves the SVI(X,F) in (5). Moreover,
A =1y ® A" and (x*, 1*) satisfy the KKT condition
in (6), i.e., col(x*, A*) € zer(A + B).

(i) zer(A + B) # () and zer(A + B) # 0.

Proof: See Appendix I. |

Since the distribution of the random variable is unknown, the
expected value mapping can be hard to compute. Therefore, we
take an approximation of the pseudogradient mapping, properly
defined in Section IV-A. Therefore, in what follows, we replace
A with

@9 F(z,¢) Vg(x)'x
Al 2z | =] o |+ Lz (12)
Py LA —g(x) — Lz

where F is an approximation of the expected value mapping [F
in (4), given some realizations of the random vector &.
Then, Algorithm 1 can be written in compact form as [14]

oF = (1 - 6wk + dwk!

W = ([d 407 1B) Y@k — o TA(WY)  (13)
where ® > 0 contains the inverse of step size sequences
® = diag(a ', vt 07t (14)

1

and o, vt o1 are diagonal matrices.

A. Approximation Scheme

We now enter the details of the approximation introduced
in Algorithm 1. We use an SA scheme with variance reduction;
hence, we suppose that, at each iteration k, the agents have access
to a pool of samples of the random variable and are able to
compute an approximation of I (x) of the form

F(CL‘,E) = COI(Fi(w>£))

Sk Sk
1 1
—col (Sh D Ve ) vaNJN(w,éé)))
t=1 t=1

(15)
where &€ =col(&,...,¢y), for all i€Z, &=
col(fi(l),...,fi(s’“)) and £ is an independent identically

distributed (i.i.d.) sequence of random variables drawn from
P. Approximations of the form (15) are very common in
Monte—Carlo simulation approaches and machine learning [18];
they are easy to obtain in case we are able to sample from the
measure PP. Typical assumptions when using an approximation
as in (15) are related to the choice of a proper batch size
sequence Sy [18], [19].

Assumption 7 (Increasing Batch Size): The batch size se-
quence (Sj),>1 is such that, for some ¢, ko, a > 0,

Sk > c(k + ko)t

|

Form Assumption 7, it follows that 1/Sj is summable,

which is a standard assumption when used in combination with

the forthcoming variance reduction assumption to control the

stochastic error [18], [19]. For & > 0, the approximation error
is defined as

er = F(xF, %) —F(zF).

Remark 2: Since there is no uncertainty in the constraints,
we indicate with €5, = col(e, 0,0) the error on the extended
operator, i.e., A(w*, ¥) — A(w*) = . A is the operator in
(12) with approximation Fin (15). |

In the stochastic framework, there are usually assumptions
on the expected value and variance of the stochastic error ey,
[71, [19], [30]. Let us define the filtration F = {F}}, that
is, a family of o-algebras such that o = 0(Xp) and Fj, =
o(Xo0,&1,82,...,&) Vk>1, such that Fj, C Fpyq for all
k € N. In other words, Fj contains the information up to
time k.

Assumption 8 (Zero mean error): The stochastic error is such
that, for all k € N, a.s., E[e¥|F] = 0. ]

Assumption 9 (Variance control): There existp > 2, g9 > 0
and a measurable locally bounded function o : SOL(X,F) —
R such that for all (z, z*) € X x SOL(X,F) [ |

E[| F(@,&) —F(@)["]V? < o (z") + oo |lz — 2] .

Remark 3: When the feasible set is compact (as in Remark
1) a uniform bounded variance, i.e., for some o > 0

supzex E[| F(2,€) — F(2)[*] < o

can be considered instead of Assumption 9. |

B. Convergence Analysis

Now, we study the convergence of the algorithm. First, to
ensure that A and B have the properties that we use for the
analysis, we make the following assumption.

Assumption 10 (Monotonicity): F in (4) is monotone and /-
Lipschitz continuous for some fp > 0. |

Lemma 2: Let Assumptions 6 and 10 hold and let ¢ > 0.
Then, the operators A and 3 in (11) have the following proper-
ties.

1) A is monotone and £ z-Lipschitz continuous.

2) The operator 3 is maximally monotone.

3) ! A is monotone and ¢g-Lipschitz continuous.
4) &' is maximally monotone.

Proof: See Appendix I. |

Finally, we indicate how to choose the parameters of the
algorithm. This is fundamental for the convergence analysis and,
in practice, for the convergence speed.

Assumption 11 (Averaging Parameter): The averaging pa-
rameter ¢ in (13) is such that

1os<a
¥
1+V5

where ¢ = 5 is the golden ratio. ]
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Assumption 12 (Step Size Bound): The steps size is such that

0 < 17 < s5r7my
where / 7 is the Lipschitz constant of A as in Lemma 2. |

We are now ready to state our convergence result.

Theorem 1: Let Assumptions 1-12 hold. Then, the sequence
(x*)ren generated by Algorithm 1 with F asin (15) converges
a.s. to a v-SGNE of the game in (3).

Proof: See Appendix III. [ |

In the following, let us consider the case where the local
nonsmooth cost is determined by the local constraints, i.e.,
fi(z;) = 1q,(z;). Then, the problem is slightly different and
we can show that the algorithm converges under a weaker
assumption than monotonicity.

The first difference is that the operator B is now given by

K Na(x)
B:lz| = 0
A NR% (A)

hence, we have a projection instead of the proximal operator
oF = (1 - §)wk + skt

Wkt = projz [@F — @71 A(wh)] (16)

where Z' = Q x R™Y x RZV. We also call Z =X x
R™N x RZN and Z* the set of v-SGNE, i.e., Z* = zer(A +
BB). To show convergence, let the mapping A satisfy the follow-
ing assumption.

Assumption 13 (Almost Restricted Pseudomonotonicity):
The operator A in (11) is such that for all (w,w*) € Z x
Z", |

(Alw),w — w*) > 0.

Remark 4: The property in Assumption 13 is implied by both
monotonicity and pseudomonotonicity, but it does not necessar-
ily hold for A if we assume it directly on IF. It corresponds to
the concept of weak solution of a VI, compared to that of strong
solution as in (5) [40]. This assumption is also used in [18]
and [41]; an example of a mapping that satisfies (13) is in [40,
Equation (2.4)]. [ |

We can now state the corresponding convergence result.

Corollary 1: Let Assumptions 1-9 and 11-13 hold. Then, the
sequence generated by Algorithm 1 in (16) with A as in Remark
2 converges a.s. to a v-SGNE of the game in (3).

Proof: See Appendix III. [ |

V. CONVERGENCE UNDER COCOERCIVITY

Having a mild monotonicity condition on the pseudogradient
implies taking a small, although constant, step size sequence.
However, if the pseudogradient mapping satisfies a stronger
monotonicity assumption, a larger step size can be chosen. One
possibility is that the pseudogradient satisfies the cut property
(described in detail in Remark 6), which is hard to check on the
problem data but it follows directly from cocoercivity.

Assumption 14 (Cocoercivity): F in (4) is S-cocoercive for
some 3 > 0. ]

Algorithm 2: Stochastic Relaxed Preconditioned Forward—
Backward (SRpFB).

Initialization: ) € Q;,1? € RZ,, and 20 € R™. Iteration k:
Agent ¢
1) Updates the variables

=1 - 0)ak yozh?

2= (1—0)2F +6zF!

A= (1=0)F + ot
2) Receives 2 forall j € N7, A for j € N}, then updates
2 = proj, [} — ai(Fi(f, b, €F) — ATAD)]

(2
A =2 - v Y wi (M -
JEN}
3) Receives zj 41 forall j € J\/}, then updates
Af“ = projRT P»f + oy (Ai(2xf+1 — ) - bi)

+oi Y wiy (20— 2 = (2 - )
JEN}

— 0; Z w,J()Lf: — A,‘I;)jl

JEN

For instance, every symmetric, affine, and monotone mapping
is cocoercive (see also [34, Example 2.9.25]).

The operator splitting that we used in Section IV is not
cocoercive, even when the mapping F is. For this reason, here
we have to consider a different splitting. Moreover, to obtain
distributed iterations, we consider affine coupling constraints.

Assumption 15 (Affine Coupling Constraints): g(x) = Ax —
b, where A = [A,..., Axy] € R™*™and b € R™. |

[38, Theorem 3.1] and [39, Theorem 3.1] hold also in this
case. To obtain the extended operator as in (11), let A =
diag{Ay,..., Ay} € RN™X" where A; represents the individ-
ual coupling constraints and let b € RY™*"_Then, the operator
T in (9) can be split as

x [ F(x)
C:lz|w— 0
A LA +b
o _ (17)
x Na(x) 0 0 AT] [z
D:|z|— 0 +1 0 0 L z
A [ Nes () ~A-L 0 | &

where C is the first part of the operator A in (11) and the second
partis in D, including the linear constraints. Lemma 1 guarantees
that a zero of C 4+ D exists. Moreover, C and D in (17) have the
following properties.

Lemma 3: Let Assumption 14 hold and let ® > 0. The oper-
ators C and D in (17) have the following properties.
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(i) C is f-cocoercive, where 0 < 6 < min{ 57, 3} and d*
is the maximum weighted degree of G*.
(i) The operator D is maximally monotone.
(iii) ®~'C is #y-cocoercive, where v = 1,1‘.

|P
(iv) ®'D is maximally monotone.
Proof: See Appendix L. |
Also in this case, we use an approximation to compute the
expected value, therefore, similarly to (12),

(2,¢) F(z,€)
C: z — 0 (18)
A LA +b
In this case, the SRFB algorithm is given by
oF = (1 - 6wk + dwk!
W = (Id4+071D) Y (@F — T1C(wh)) (19)
where the preconditioning matrix ¥ is defined as
al 0 —-AT
v=| 0 v! -L (20)
~A -L ¢!

with o™, v~ 1, 7! defined as in (14) and A and L are, respec-
tively, the extended constraints and Laplacian matrix. We note
that this type of preconditioning cannot be used for nonlinear
coupling constraints g(a) < 0 as in (1).

The distributed SRFB iterations read as in Algorithm 2. We
note that Algorithm 2 differs from Algorithm 1 in the computa-
tion of the dual variable A**! which, in this case, depends also
on the variables 1 and zF*1.

A. Convergence Analysis

Since the matrix W must be positive definite [42], we postulate
the following assumption.

Assumption 16 (Step Size Sequence): The step size sequence
is such that, given v > 0, for every agent¢ € 7

(w max ZHAM)

0<a; < )
je{lr‘wni}kzl

0<v; <(y+2d)7"

S [Ailm)_l

where [A] ], indicates the entry (7, k) of the matrix A, . More-
over,

0<o; < (’y—i—Zdi—l— max
je{1,....m}

1
U< —
H = 0(20; —1)
where ¢ is the averaging parameter and (¢ is the Lipschitz
constant of C. |

We are now ready to state the convergence result.

Theorem 2: Let Assumptions 1-11, 14 and 16 hold. Then,
the sequence (@ )ren generated by Algorithm 2 with F asin
(15) converges a.s. to a v-SGNE of the game in (3).

Proof: See Appendix IV. |

Algorithm 3: Stochastic Relaxed Forward—Backward.

Initialization: 2¥ € Q;
Iteration k: Agent i receives :z:éC for all j € N/, then updates

8 = (1—8)al + ozt

g;i?""l = proni [i‘f — Oéiﬁi(xk xljia dc)]

7

VI. STOCHASTIC NASH EQUILIBRIUM PROBLEMS

In this section, we consider a nongeneralized SNEP, namely,
an SGNEP without shared constraints; see [9], [26] for recently
proposed algorithms. We consider that the local cost function of
agent ¢ is defined as in (2) with f;(z;) = 1, (x;). Assumptions
1-5 hold also in this case.

The aim of each agent ¢, given the decision variables of the
other agents x_,, is to choose a strategy x; that solves its local
optimization problem, i.e.,

Viel: 2n

min JL (.I‘i, 513_,‘) .
Ti€ll;

As a solution, we aim to compute a stochastic Nash equilibrium
(SNE), that is, a collective strategy * € €2 such that for all
1€X,

Ji(ag, &) <inf{Ji(y, 2;) | y € L)}

We note that, compared to Definition 2, here we consider only
local constraints. Also in this case, we study the associated SVI
given by

(F(x*),x —x*) > Oforall x € Q (22)

where [ is the pseudogradient mapping as in (4). The stochastic
variational equilibria (v-SNE) of the game in (21) are defined as
the solutions of the SVI(€2, ) in (22).

Remark 5: A collective strategy * € X is a Nash equilib-
rium of the game in (21) if and only if «* is a solution of the
SVIin (22) [34, Proposition 1.4.2], [6, Lemma 3.3]. [ |

The SRFB iterations for SNEPs are shown in Algorithm 3.

A. Convergence Analysis

In the SNEP case, we can consider sampling only one real-
ization of the random variable, i.e., S, = 1

F(z* €") = col(Fy(z", €"))

= col(V,, Ji (2", &F), ..., Vo In(xF, €5)
(23)
where £ = col(¢F, ..., &%) € RV is a collection of i.i.d. ran-
dom variables drawn from P. Taking fewer samples is less
computationally expensive, but we have to make some further
assumptions on the pseudogradient mapping.
Assumption 17 (Cut Property): T in (4) is such that

z* € SOL(F, Q)

e C i}
;;w — & SOL(F,Q). (24)

<1F(i")7j - 1"*> =0
|
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Remark 6: The cut property means that, given a solution x*,
it can be verified if another point & is also a solution by looking
only at & and =* instead of comparing x with all the points in
X. A very intuitive example is the search for a minimum of a
single-valued function [43].

The class of mappings that satisfy this assumption is that
of paramonotone (or monotone™) operators. A paramonotone
operator is a monotone operator such that for all z,y € X

(F(z) —F(y).z —y) =0=F(z) =F(y).

This property does not hold in general for monotone operators.
It holds for strongly and strictly monotone operators, because,
in these cases, there is only one solution [34, Theorem 2.3.3],
and for cocoercive operators. In fact, strict monotonicity implies
paramonotonicity that in turn implies monotonicity [43, Def-
inition 2.1]. The same holds for cocoercive operators that are
also paramonotone and consequently monotone [34, Definition
2.3.9]. We refer to [43], [44] for a deeper insight on this class of
operators. |

Assumption 18 (Bounded Pseudogradient): T is bounded,
i.e., there exists B > 0 such that forall x € X |F(z)||*> < Br.

Even if this assumption is quite strong, it is reasonable in our
game theoretic framework. On the other hand, we do not require
[ to be Lipschitz continuous, which is practical since computing
the Lipschitz constant is difficult in general.

With a little abuse of notation, we denote the approximation
error again with ¢, = F(z*, &) — F(xF).

Concerning the assumptions on the stochastic error, we still
suppose that it has zero expected value (Assumption 8) but we
do not need an explicit bound on the variance.

Assumption 19 (Parameter and Step Sizes): The averag-
ing parameter is such that 6 € (0,1). The step size is square
summable and such that

00 0 o0
> =00, Y7} <ocoand Y RE [llex]*|Fi] < oc.
k=0 k=0 k=0 "

It follows from Assumption 19 that we can take a larger
bound on the averaging parameter 6. Since  is no longer
related to the golden ratio, the algorithm reduces to a relaxed
FB iteration. Moreover, we note that in this case, we must
take a vanishing step size sequence to control the stochastic
error.

We now state the main convergence result of this section.

Theorem 3: Let Assumptions 1-6, 8, 13, and 17-19 hold.
Then, the sequence () ey generated by Algorithm 3 with F°
as in (23) converges to a solution of the game in (21).

Proof: See Appendix V. |

Remark 7: We note that Theorem 3 holds also in the deter-
ministic case, under the same assumptions with the exception of
those on the stochastic error (that is not present).

Formally, under Assumptions 1-6 and 17-19, Algorithm 3
converges to a v-NE of the game in (21). Equivalently, one can
use [14, Algorithm 1] to find a deterministic NE. [ |

B. Discussion on Further Monotonicity Assumptions

In this section, we discuss some consequences of Theorems
I and 3. In particular, we discuss different monotonicity notions
that can be used to find an SNE in relation with the two possible
approximation schemes.

First of all, Algorithm 1 with the approximation as in (15) can
be used also for SNEPs.

Corollary 2: If Assumptions 1-5 and 10-12 hold, then, the
sequence (z¥),cn generated by Algorithm 1 with F' as in (15)
converges to a v-SNE of the game in (21).

Proof: Set g = 0 and apply Theorem 1. ]
Remark 8: In Corollary 2 as well, the condition presented in
Remark 4 can be used instead of monotonicity. |

The same result holds in the case of cocoercive mappings, but
in this case, Assumption 14 can be reduced to the cut property
for the pseudogradient (Assumption 17).

Corollary 3: Let Assumptions 1-5, 7-11, 14, and 16 hold.
Then, the sequence (), generated by Algorithm 2 with F
as in (15) converges a.s. to a v-SNE for the game in (21).

Proof: Set A =0 and b = 0 and apply Theorem 2. |

Besides the cut property, there are other assumptions that can
be considered.

Assumption 20 (Weak Sharpness): T satisfies the weak sharp-
ness property, i.e.,foralle € X, x* € SOL(F, 2), and for some
c>0,

min

F(x* — ) >
(F (), $>_Cm*esoum‘,ﬂ

x—x.
)II |

Remark 9: Assumption 20 is stronger than that in Remark
4 and it is often used in addition to monotonicity [29], [30]. It
is sometimes considered a property of the solution set and it is
implied by paramonotonicity [45, Th. 4.1]. ]

Corollary 4: Let Assumptions 1-5, 8, 19, and 20 hold. Then,
the sequence (2;),en generated by Algorithm 3 with £ as in
(23) converges to a v-SNE of the game in (21).

Proof: See Appendix VI. |

Remark 10: As a technical assumption in addition to mono-
tonicity, we can also consider the acute angle relation, i.e.,
(F(x),x —x*) > 0forallz € X and x* € SOL(F,Q), ¢ #
x*, also known as variational stability [27]. It is implied by
strict pseudomonotonicity, which in turn is implied by strict
monotonicity [30, Definition 2] and [27, Corollary 2.4]. It is
stronger than the assumption in Remark 4, since the condition
is satisfied with the strict inequality.

Formally, if Assumptions 1-5, 8, 19, and the acute angle rela-
tion hold, then, the sequence (xy)ren generated by Algorithm
3 with F as in (23) converges a.s. to a v-SNE of the game in
(21). We propose a proof in Appendix VI. The same result for
6 = 0 is established in [27, Theorem 4.7].

VIl. NUMERICAL SIMULATIONS

Let us now propose some numerical simulations to corrobo-
rate the theoretical analysis. We compare our algorithm with the
SpFB [24], stochastic forward—backward—forward (SFBF) [18],
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Fig. 1. Distance of the primal variable from the solution.

[46], stochastic extragradient (SEG) [19], and SPRG [28], [29]
algorithms, using variance reduction.

We present two sets of simulations: a Cournot game and an
academic example. While the first is a realistic application to an
electricity market with market capacity constraints, the second
is built to show the advantages of the SRFB algorithm.

All the simulations are performed on Matlab R2019a with a
2.3 GHz Intel Core i5 and 8 GB LPDDR3 RAM.

A. lllustrative Example

We start with the built up example, that is, a monotone (non-
cocoercive) SNE problem with two players with strategies x1
and x5, respectively, and pseudogradient mapping F (z1,x5) =
(R1(&)z2, —R2(&)z1) "

The mapping is monotone and the random variables are
sampled from a normal distribution with mean 1 and finite
variance. The problem is unconstrained and the optimal solution
is (0,0). The step sizes are taken to be the highest possible. As
one can see from Fig. 1, the SpFB does not converge in this case,
because stronger monotonicity properties on the mapping should
be taken. Moreover, we note that the SPRG is not guaranteed
to converge under mere monotonicity. From Fig. 2 instead, we
note that the SRFB algorithm is less computationally expensive
than the EG.

B. Case Study: Network Cournot Game

We consider the network Cournot game proposed in [14] with
the addition of markets capacity constraints [1], [8], which may
model the electricity market, the gas market, or the transportation
system [12], [13]. Let us consider a set of N companies that sell
a commodity in a set of /m markets. Each company decides the
quantity x; of product to be delivered in the n; markets it is
connected with. Each company has a local cost function ¢;(x;)
related to the production of the commodity. We assume that,
the cost function is not uncertain as the companies should know
their own cost of production.

Since the markets have a bounded capacity b = [by, . .., by,
the collective constraints are given by Ax < b, where A =

— SFBF

21 — SpFB |]
10 SEG
—SRFB
——SPRG
% 100 :
|
-
=
102} 3
107 : :

10° 10’ 10 108
# Computations of F'

Fig. 2. Distance of the primal variable from the solution versus number
of evaluations of F'in (15).

[A1,..., An]. Each A; indicates in which markets each com-
pany participates. The prices are collected in a mapping P :
R™ x = — R that denotes the inverse demand curve. The ran-
dom variable £ € = represents the demand uncertainty. The cost
function of each agent is therefore given by

Ji(wi, 23, €) = ci(x;) — E[P(x, &) me]

i€l

(25)

As a numerical setting, we consider a set of 20 companies
and 7 markets, connected as in [1, Fig. 1]. Following [1], we
suppose that the dual variables graph is a cycle graph with the
addition of the edges (2,15) and (6,13). Each company ¢ has local
constraints of the form 0 < z; < 6;, where each component of
¢; is randomly drawn from [1, 1.5]. The maximal capacity b,
of a market j is randomly drawn from [0.5, 1]. The local cost
function of company ¢ is

Bi+1
i

ST S (i)
j=1

ci(xi) = q;%‘ + B +1
where [z;]; indicates the j component of z;. m; is randomly
drawn from [0.5,5], and each component of g; is randomly
drawn from [1,100]. Similarly to [14], we assume that the inverse
demand function is of the form

P(x,&) = A€ (> a) 7
i€l
wherey = 1.1 and A(¢) is drawn following a normal distribution
with mean 5000 and finite variance. We note that the mapping
in (25) is monotone but it may be not Lipschitz continuous
depending on (3 and .

We simulate the SpFB, SFBF, SEG, and SRFB to make a
comparison using the SA scheme with variance reduction. Since
the mapping is not Lipschitz continuous, we tune the step sizes
to be half of the minimum step that causes instability. The plots
in Fig. 3 and 4 show, respectively, the residual of @y, (res(xy))
that measures the distance from x; being a solution and the
number of computations of the approximations Fin (15) of the
pseudogradient needed to reach a solution. As one can see, our
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Fig. 4. Residual distance of the primal variable from the solution ver-

sus number of evaluations of F in (15).

algorithm is slower than the SpFB, as ours involves the averaging
step, but it is faster than the EG scheme. Remarkably, the fact
that the mapping is only monotone and not Lipschitz continuous
prevents the SFBF from converging but it does not affect the
other algorithms.

VIII. CONCLUSION

The SRFB algorithm is applicable to stochastic (generalized)
Nash equilibrium seeking in merely monotone games. To ap-
proximate the expected valued pseudogradient, the stochastic
approximation scheme (with or without variance reduction) can
be used to guarantee almost sure convergence to an equilibrium.

Our SRFB algorithm is the first distributed algorithm with sin-
gle proximal computation and single approximated pseudogra-
dient computation per iteration for merely monotone stochastic
games.

It remains an open question whether for monotone SGNEPs
the stochastic approximation with only one random sample per
iteration can guarantee almost sure convergence to an equi-
librium, instead of the variance reduced approach. We also
leave for future work a comprehensive comparison between

the SRFB algorithm and the most popular fixed-step algorithms
for SVIs and SGNEPs, especially, SEG and SFBF, in terms of
computational complexity and convergence speed.

APPENDIX |
PROPERTIES OF THE EXTENDED OPERATORS

Proof of Lemma 1: The proof of (i) can be obtained similarly
to [1, Theorem 2]. Concerning (ii), given Assumptions 1-5,
the game in (3) has at least one solution x*; therefore, there
exists a A" € RY}), such that the KKT conditions in (6) are
satisfied [39, Th. 3.1]. It follows that zer(A + B) # (). The
existence of z* such that col(z*, z*,1*) € zer(A + B) follows
using some properties of the normal cone and of the Laplacian
matrix as a consequence of Assumption 6 [1, Theorem 2].

Proof of Lemma 2: A = A; + A, is given by a sum; there-
fore, it is monotone if both the addends are [35, Proposition
20.10]. A5 is monotone because of [47, Theorem 1] and mono-
tonicity of \A; follows from

(Ar(w1) — A1 (w2), w1 —w2) = (F(z1) — F(z2), 21 — x2)
+ <L)\.1 — Lo, Ay — 12> >0

since Assumption 10 holds and L is cocoercive by the Baillon—
Haddard theorem and, therefore, monotone [35, Example 20.5].
To show that A is Lipschitz continuous, we use the fact that [F
is £p-Lipschitz and L is ¢ -Lipschitz continuous

[ A1 (w1) — Ay (w2)]| < [[F(21) — F(2)]| + |LA1 — Lz
< (lr +Lr)(|x1 — @2l + [[A1 — A2]).

Similarly, we can prove that the skew symmetric part is £4, =
Ly + {4 + Byg-Lipschitz continuous (with constant that de-
pends on A and L) from which it follows that A is (5 =
L4, + ¢ 4,-Lipschitz continuous.

B is maximally monotone by [35, Proposition 20.23] because
0f is maximally monotone by Assumption 3 and Moreau the-
orem [35, Theorem 20.25] and the normal cone is maximally
monotone [35, Example 20.26].

The fact that ®'A is monotone follows from the
fact that A is monotone: (®1(A(w;) — ® 1 A(ws),w; —
wade = (A(w1) — A(ws),w; — wy) > 0. Similarly, it holds
that @' A is Lipschitz continuous and that ®~! 3 is maximally
monotone. |

Proof of Lemma 3: First, we notice that || L|| > 2d* and that
by the Baillon-Haddard theorem the Laplacian operator is ﬁ—
cocoercive. Then, Statement 1) follows the below computation

<C_(w1) —C_(w2),w1 — wa)
= <]F(2131) — F(mg),xl — l‘2> + <L)\.1 — LA.Q,A.l — A.2>

1
2d*

> BIIF (1) = F(@2)t]|* + 5 [LA1 — Lkat||?

1
2d*

> 0][Clw1) = Clwa)t]*.

> win { 3,51z | (IF (20)~F ()P4 — Lot

The operator D is given by a sum; therefore, it is maximally
monotone if both the addends are [35, Proposition 20.23].
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The first part is maximally monotone because the normal cone
is maximally monotone and the second part is a skew symmetric
matrix [35, Corollary 20.28]. Statement 3) follows from State-
ment 1), and 4) follows from 2) [1, Lemma 7]. |

APPENDIX Il
USEFUL LEMMAS

We here recall some known facts about norms and sequence of
random variables. Moreover, we include two preliminary results
that are useful for the forthcoming convergence proofs.

a) Norm Properties: Now we recall some properties of the
norms that we will use in the proofs. We use the cosine rule (or
Pythagorean identity)

0.9) =5 (@) + o)~ e —yl?) @6

and the following two properties of the norm [35, Corollary
2.15], Va,b € X,Va € R:

loa+ (1 — a)b]|* = allal® + (1 — o) [[b]*
—a(l—a)la— bl

lla +0]1* < 2[|al|* + 21[b]|*.

27)
(28)

b) Property of the Projection and Proximal Operator: By [35,
Proposition 12.26], the projection operator and the proximity
operators satisfy, respectively, the following inequalities. Let C
be a nonempty closed-convex set and let g be a proper lower
semicontinuous function, then, for all z,y € C

Z =projo(z) & (T —z,y—2) >0 (29)

T =proxs(z) & (z —z,y —z) > f(2) — fy). (30)
Moreover, by [35, Proposition 16.44], it holds that

prox; = (Id+9f)~". (31)

¢) Sequence of Random Variables: We now recall some results
concerning sequences of random variables, given the probability
space (£, F, P). The Robbins—Siegmund lemma is widely used
in the literature to prove a.s. convergence of sequences of random
variables. It first appeared in [48].

Lemma 4 (Robbins—Siegmund Lemma, [48]): Let F =
(Fk)ken be afiltration. Let {cv }ren, {0k }rens {Mk }ren, and
{Xxr}ren be nonnegative sequences, such that ), 7, < oo,
>k Xk < 00, and let

Vk e N, Elags1|Fr] + 60 < (14 xp)ar +nr a.s.

Then, ) ;. 0, < oo and {oy, } kN converges a.s. to anonnegative
random variable.

We also need this result for L, norms, known as Burkholder—
Davis—Gundy inequality [49].

Lemma 5 (Burkholder-Davis—Gundy inequality): Let {F}}
be a filtration and {U, }ren a vector-valued martingale relative
to this filtration. Then, for all p € [1, 00), there exists a universal

constant ¢, > 0 such that for every k > 1

P N
E ~ U, < c,E U; — U4 |2
(G o) T <2 | (310

When combined with Minkowski inequality, we obtain for all
p > 2 aconstant C}, > 0, such that for every k£ > 1,

1
pq L
2| P

p % N 2
| (s 101) |7 < 6| SR (U - el
0<i<N 1

d) Preliminary Results. Given Lemma 5, we prove a prelimi-
nary result on the variance of the stochastic error.
Proposition 1: Forall k € N, if Assumption 9 holds, we have
Clo(x*)? + opll® — 't|?)

E [||€k||2|]:k] < S, a.s.

Proof: We first prove that, forp > 2and 1 < g < p,

cq(o(®") + oollz — 2*))
VSk

Let us define the process { M (x)}5_, as My(z) = 0 and for
1<i< S

E [[le |9 Fx] 7 <

1,
M (z) = g Z Fmazximallymonotone(x, ;) — F(x).
j=1
Let]-",- = 0'(51, “ee
starting at 0. Let

AM? (x) = M (x) - M7, (@)

,&). Then, { M7 (x), F;}5_, is a martingale

= F(z,&) - F(x)
Then, by (9), we have
1Tz g
=SB |I1F(@.&) - F@)’]

o(x) + opl|lx — =

S

E [JAME  (z)[]"

IN

By applying Lemma 5, we have

< ¢y ZIE

1
q

E [||M5 (x)]7]

| o S E I, )~ F@)lle]’

IN

¢q(o(x) + oollz — 7))
< 75 .

We note that Mg}j (%) = €, hence,

1 cqlo(x) + oollx — ||
E [||ex]|?|Fe]s < = .
[llew 1?1 F] N
Then, the claim follows by noting that E[||e]|24|F]7 =
E[e]|4|Fx] % and C = 2¢2. m
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Remark 11: If Proposition 1 holds, then it follows that [ |

Clle (o (=) + aglle — =*t]*)
Sk
In the next Lemma, we collect some inequalities that follow
from the definition of the algorithm in (13).
Lemma 6: Let (wy,wy)ren be generated by Algorithm 1

defined as in (13). Then, the following equations hold:
() wh—wk 1= %(wk — G)k);

E [|® exll3 | Fx] <

@) @H1 " = @k ) - ()
(iii) (1—65)2 [P+ — w2 = fjwh ! — Wk
Proof: Tt follows immediately from (13). [
APPENDIX IlI

PROOFS OF SECTION IV-B

The proof uses the ®-induced norm and inner product and
finds its inspiration in [14], [18], [19].

Proof of Theorem 1: First, let us define H(x,A) =
Sier fi(wi) + Ry (A;) and note that @ 'B=ad[} .,
fi(x;) + gy (M) = a0H. By (31, (Id+&'B)~!'=
(Id +adH) ! = prox, ;. Therefore, by using the property of
proximal operators in (30), we have that

<wk+1 _ (;Jk + (I)_l.AA(wk,gk),w* _ wk+1> >

> a(H (W) — H(w")) (32)
<wk _ okt + q)flA(wkfl’gkfl),warl _ wk> >
> a(H(w") — H(w" ). 33)
By using Lemma 6(i), (33) becomes
<§(wk _ (Dk) + @—1A(wk—17§k—1)?wk+l _ wk) >
> a(H(w*) — H(w" ™). (34)

Then, by adding (32) and (34), we obtain

(WFH — ok 4 7 A(wF, €F), w — wh )+

+ <%(wk _ (Dk) + q)flA(wkfl7£kfl)’wk+1 _ wk> >

> a(H(w") - H(w")). (35)
Now, we use the cosine rule in (26)
<wk+1 o (Dk Wt — wk+1> _
1
_ 5 (||wlc+1 o a’k”2 + ”warl o OJ*||2 _ ”w* _‘DkHz)
1
(5(wh — @), Wt — W) =
1 ) X
— o (Il = @2 + ook — T — [t — @ 2)

and we note that
<<I>*1fl(wk,§k)7w* o wk+1>
— (@ AWh), WF — W) + (0" — W)+

+ (L A(WP), wh — W) 4 ek wh — Wk,

Then, by reordering and substituting in (35), we obtain

e e e e A A

1 1
Sl — R 4 St — b

—2(d L A(Wh), W — w*) + 2(d 1R Wt — WhY

+2(0 7 (A(wF) — A(wF ), wF — w4

+2(d7 (P — P WP — WP > a(H (W) — H(w?)).
(36)

Lok -k
— Sl — @2 -

Since A is monotone, it holds that
(@ T A(WF), Wk - w') + a(H(W") - H(w")) >
> (L A(wY),w” — w*) + a(H (W) — H(w)) > 0. (37)

k41 _

Now we apply Lemma 6(ii) and Lemma 6(iii) to ||w w*||

* 1 —.
—w H2 — m‘lwk-‘rl

+ 5”wk+1 o wk”Q.

et - WP et - W

(38)

By substituting in (36), grouping and reordering, we have

1
(:Jk+1 _ w*”Z + =

|

wk o wk+1||2 S

—
|

) 1
< (25 +1) o = @HP — Jllt - P+

2007 (A(w") = AW ), w" — ")
< k . 5’“*1),(»’“ _ wk+1>

(39)

where we used Assumption 11. Moreover, by using Lipschitz
continuity of IF and Cauchy—Schwartz and Young’s inequality,
we obtain that

(@71 (A(w") — <

AwF 1)), wh — wh ) <
< 4,&“271” (Jo” — w2 + fl® — P 1e)?).
Similarly, we can bound the term with the stochastic errors
UD L (h — b 1), Wk — Wkt
< 2@ [fle" — e llw® — WY
< [le Il — * e+ et lflw® — w2,
Substituting in (39), it yields

1 1
7”0—)1@—%1 _ w*H2 =+ 5||wk o wk+1||2 <

1 1 ,
< ﬁ\\w* — oM|® - gHwk — o+

+ 04107 (loo® — w7 H]1? 4 flw® — W) +
@M1 = PP 4 (|27 [lw” — WP
_ w’c)

+2(d ek W (40)
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Now consider the residual function of w*

res(w®)? = ||wp — (Id+@71B) N wy, — &L A(wy )t
< 2||wk — wk+1t||2 + QHQk — Wi + @71€kt|‘2
< 2”(.01.C — wk+1t||2 + 4”(.7);.c — wktHQ + ||(I)_1€ktH2

where we added and subtracted w*+! = proj(@y, — ® L A(wy)
in the first inequality and used the firmly nonexpansiveness of
the projection and (28). It follows that

_ 1 1 _
@1t J res(wh)? — Ll —wH T He]” — 48 eyt
Substituting in (40)

1 1 1
fg”J’kH - w*||2+g||wk—wk+1||2 < ﬁ“w*—@kﬂz
1

1 1
3 (4reS(wk)Q_2||‘-'-’k_wk+1t||2_||(I)_15kt“2) ’

+ 0|7 (o — P 4 [t - W) +
2 lle” — e + 07 lw® — w2+
+ 2(d7 1R wr — Wk,

By taking the expected value, grouping and using Proposition 1
and Assumptions 8 and 12, we have

1 *
| pllett - P +

=[(a-

o, B
< 75l = P+ el flw”
1 1
6Sk

k)2

et - o ) o w’““n?fk} <
wk—1||2+

2
+@ Y ( +

(o(x

_ 1”“,
0

)? + oplle — I*tH )

k_oF? - o res(w

To use Lemma 4, let
1

E—1)2
T3 W

ap = loo™ = @|1* + L] @7 |||

1
Or = gHwk — oM+ n res(w”)?

> 11
Sk—1 0 Sk
)

)+ oglle — 2t

2
= [|p !
m=lle-le (&

(o(x

By applying the Robbins Siegmund lemma, we conclude that,
ay, converges and that i Ok is summable. This implies that the
sequence (@")cn is bounded and that ||w® — &*|| — 0 (othe-
wise Y 1 [lwk — @F||? = 00). Therefore, (w"),en has at least
one cluster point @. Moreover, since Y 65, < 0o, res(w®)? — 0
and res(@")? = 0. |

Proof of Corollary 1: The proof is similar to Theorem 1 but
we do not use monotonicity. Hence, the steps are the same,

except for (37). Indeed, the terms in H are not present since
the projection satisfies (29) and (A(w"),w* — w*) >0 by As-
sumption 13. The conclusion follows as in Theorem 1. |

APPENDIX IV
PROOF OF THEOREM 2

Proof of Theorem 2: The first part of the proof is the same as
Theorem 1 since the resolvent is firmly nonexpansive but we do
not use the residual or monotonicity. Then, taking the expected
value and grouping in (40), we have

1 —k+1 %12
B | 5let - oA +

e K}s — Lot - <I>1) lw" — " 12| F

< %_(Sllw* — "2+ lef| o7 [l|lw® — WP
—2(d71C(wh), W — w*) — %Hwk — o2+
. <2I<I)Sk1|0 . 2||§k11||0>(0(m*)2 + o2 — ot |?).

where the inequality follows by Proposition 1 and Assumptions
8 and 16. To use Lemma 4, let

1

o — @2 + e ot — w

k71||2

1 _
B = 2wt — @2 + 227 1C(wH), Wt — W)

_ 1 1 . *
me= 2007 (g + g ) (o) + ol = a7t
Sk Sk-1
Then, «j converges and 6 is summable. This implies
that {@w"},cn is bounded and that ||w* — @”|| — 0. There-
fore, {w*} en has at least one cluster point &. Moreover,

(@~ 1C(w"),w* —w*) = 0 and (C(@),® — w*) = 0. Since C

is cocoercive, it also satisfies the cut property; therefore, w is a

solution. [ |
APPENDIX V

PROOF OF THEOREM 3

Proof of Theorem 3: We start by using the fact that the
projection is firmly quasinonexpansive.

”warl —:It*tHz S

<zt —aF 2 F (b, )P — || @b —a B (b, €F) — 22

< lw—aht|? - |@F —2F e 24 2k (P, €F), 27— 2F )+
+ 20 (F(xF, &), &% — ahTT)

= [lz* —z"t]]”— | &" — ¥t )2 420, (F (2 ,f) £t -zt
+ 20 (F(ah, &%), " — a¥) + 20 (F(a*, &F), ¥ — &)
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In view of Lemmas 6.2 and 6.3 as in (38), we can rewrite the
inequality as

1

1
k1 #1112 —k g2
—||Z* — 2t < —— || — 2P+

+ 20 (F(xP, €8, " — xF) 4 20, (F (2, 7)), 2¥ — 2F)+

+ 20 (P, €8), @" — ) — (5 + 1)l — &M,

(41)
By applying the Young’s inequality to the inner products, we
obtain

2h (F (", €%), xF — a%) <AZ|| F(xF, &)t
+ Ha:k — 37:'“7f||2
20 (F (2, €F), 2 — 2FHhy <AaZ||F(xF, €9)t ||

+ [|&k — k2
Then, (41) becomes
Lt — ) < —— 2t — o't
1-6 1-6
+ 20 (F ("), 2% — ") + 204 (", 2" — ")+
+ARE|F (@F)]|? + 40Z (| )|* — (6 + 1)[Jat ! — &F¢) 2+

+ [|a® — ZFt)|? + ||z — 2R 1e)2 (42)

By using Lemma 6.1 and Assumption 8, reordering and taking
the expected value, we have
1

— 6||:Ek+1 _ .’B*t||2|fk +E [5”mk+1 _ -'ikt||2|-7:k] <

1
< mu:z’“ —x*t]|? + 0% ||xb — 212+

+ 20, (F (%), &* — 2F) + 422 ||F (")t ||?

+ 4AZE [||€"¢]1%|F] - (43)

Thanks to Lemma 4, we conclude that (Z"),cn and (z")en
are bounded sequence and that they have a cluster point, that is,
zF — 7 and ¥ — . Since ¥ = (1 — §)x* + 62", taking
the limit, we obtain that # = x. Moreover, since (F (z*), z* —
x¥) < 0,again by Lemma 4, we obtain that (F (x),x — z*) = 0
which, for the cut property, implies that @ is a solution. |

APPENDIX VI
PROOFS OF SECTION VI-B

Proof of Corollary 4: We use the weak sharpness property in
(43) to obtain

1
m”:ik“ —z't|}| Fr| +E [5||:::’“Jrl — :i:kt|\2|}'k] <

1
< 1fIIJi"“—5'3"tH2+52H9«"’“ — 2P+ 4AZE (|| )2 Fr)
—2x i — || + A2 ||F (2)t]|2.

e, i e =2+ GFF )

Applying Lemma 4, (Z¥),cn and (x¥)pen are bounded
sequences and they have a cluster point Z. Moreover,
ming-csor(r,0) [|[€ — || — 0 and || — x*|| = 0, that is, =
is a solution. ]

Proof of the Statement in Remark 10: We apply Lemma 4 to
(43). Therefore, (2*)cn and (%) ,en are bounded sequences
and that they have a cluster point Z. Moreover, (F(x*), z* —
z¥) — 0and (F(z),x — =*) = 0 but this contradicts the acute
angle property. Therefore, & must be a solution. |
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