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Structural Knowledge Distillation for Object Detection

Abstract

Knowledge Distillation (KD) is a well-known training paradigm in deep neural
networks where knowledge acquired by a large teacher model is transferred to a
small student. KD has proven to be an effective technique to significantly improve
the student’s performance for various tasks including object detection. As such,
KD techniques mostly rely on guidance at the intermediate feature level, which is
typically implemented by minimizing an ℓp-norm distance between teacher and
student activations during training. In this paper, we propose a replacement for the
pixel-wise independent ℓp-norm based on structural similarity (SSIM) [30]. By
taking into account additional contrast and structural cues, more knowledge within
intermediate feature maps can be preserved. Extensive experiments on MSCOCO
[17] demonstrate the effectiveness of our method across different training schemes
and architectures. Our method adds only little computational overhead, is straight-
forward to implement and at the same time it significantly outperforms the standard
ℓp-norms. Moreover, more complex state-of-the-art KD methods [14, 35] using
attention-based sampling mechanisms are outperformed, including a +3.5 AP gain
using a Faster R-CNN R-50 [23] compared to a vanilla model.

1 Introduction

Over the last decade, Deep Neural Networks (DNNs) have shown to be a very effective tool in
solving fundamental computer vision tasks [15]. One major application of DNNs includes real-time
perception systems found in e.g. autonomous vehicles, where object detection is often a task of
major importance. Deployment of DNNs into real-time applications, however, introduces strict
limitations on memory and latency. On the other hand, increased performance of state-of-the-art
detectors typically comes with an increase in memory requirements and inference time [13]. Thus,
the choice of network model and it’s according detection performance is strictly limited. Several
techniques have been proposed to tackle this problem, e.g. pruning [9], weight quantization [10],
parameter prediction [6] and Knowledge Distillation (KD) [12]. In this work, we are particularly
interested in the latter, as it provides an intuitive way of performance improvement without the need
for architectural modifications to existing networks.

With KD, the knowledge acquired by a computationally expensive teacher model is transferred
to a smaller student model during training. KD has proven to be very effective in tasks such as
classification [12], segmentation [20], and in particular has seen considerable progress in object
detection very recently [5, 8, 14, 35, 37]. Due to the complexity of the output space of a typical
detection model, it is necessary to apply KD at the intermediate feature level, as solely relying on
output-based KD has proven ineffective [3, 5, 8, 14, 16, 26, 35, 37]. In feature-based KD, a training
objective is introduced in addition to existing objectives, which minimizes the error between teacher
and student activations and is de-facto standard defined by the ℓp-norm distance [5, 8, 14, 26, 35, 37].
The ℓp-norm however ignores three important pieces of information present in the feature maps: (i)
spatial relationships between features, (ii) the correlation between the teacher and student features and
(iii) importance of individual features. We notice recent work has (implicitly) focused on bypassing
the latter point through mechanisms that sample features by assuming that object regions are more
"knowledge-dense" [5, 14, 26, 37]. However, as shown by [8], even distilling only background
can improve performance, therefore it cannot be assumed that only the object regions contain



(a) Previous methods [26, 35, 37,
8, 5]. After sampling features
an ℓp-norm is applied between
feature maps.

(b) Our proposed method. We distill relational knowledge in the
form of local mean µ, variance σ2 and furthermore cross-correlation
σST between feature spaces.

Figure 1: Feature-based Knowledge Distillation.

useful knowledge. These sampling mechanisms furthermore introduce additional drawbacks which
may limit their broader implementation into real-world applications, e.g. the need for labeled data
[8, 14, 26].

In this work, we propose "Structural Knowledge Distillation", which aims to improve the downsides
associated with the ℓp-norm as a central driver for KD methods, rather than designing an ever more
sophisticated sampling mechanism. Our key insight is that similar to images, the feature space can
be locally decomposed into luminance, contrast and structure components, a strategy that has seen
successful application in the image domain in the form of structural similarity SSIM [30]. The
new training objective becomes to minimize local difference in mean and variance, and maximize
local zero-normalized cross-correlation between the teacher and student activations. We find that
particularly the latter has great influence on distillation performance, as the underlying structure of
relevant objects and background regions is propagated from the image throughout the CNN. Overall
our contribution is as follows:

• We propose structural distillation which takes into account additional contrast and structure
information in feature-based KD, based on SSIM [30].

• We illustrate through an analysis of the feature space that our method focuses on different
areas than ℓp-norms and that solely sampling from foreground regions is sub-optimal as the
entire feature space contains useful knowledge.

• We demonstrate the effectiveness of our method by performing extensive experiments using
various detection architectures and training schemes. ℓssim performs on par or outperforms
carefully tuned state-of-the-art object sampling mechanisms [14, 35], fundamentally by
replacing one line of code:

from kornia.losses import ssim_loss
def kd_loss(student_feats, teacher_feats):

### inputs have shape [B, C, H, W] ###
# kd_feat_loss = torch.mse_loss(student_feats,teacher_feats) Changed!
kd_feat_loss = ssim_loss(student_feats, teacher_feats, window_size=11)
return kd_feat_loss
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2 Related Work

Knowledge Distillation KD aims to transfer knowledge acquired by a cumbersome teacher model
to a smaller student model. Bucilǎ et al. [1] (2006) demonstrate that the knowledge acquired by a
large ensemble of models can be transferred to a single small model. Hinton et al. [12] (2015) provide
a more general solution applied in a DNN in which they raise the temperature of the final softmax
until the large model produces a suitably soft set of targets. Most KD research in the computer vision
domain focuses on the classification task [25]. However, as our main interest lies in the real-time
domain we focus on the more relevant object detection task.

Object Detection Object detection is one of the fundamental computer vision tasks, where speed
and accuracy are often two key requirements. Object detectors can be classified into one-stage and
two-stage methods, in this work we investigate our approach for both variations. The main meta-
architecture within the one-stage domain is RetinaNet [18], with extensions including anchor-free
modules and Reppoints [39, 34]. In the two-stage domain Faster R-CNN [23] is regarded as the
most widely used meta-architecture, where a widely used iteration includes Cascade R-CNN [2].
Furthermore, regardless of architecture, ResNet [11] backbones are often used to extract features,
which are furthermore fused at multiple scales using e.g. a FPN [18].

Knowledge Distillation for Object Detection Several methods have been proposed that use KD
for object detectors, where it has been found that typically guidance at the intermediate feature
level rather than the output is critical due to the complex nature of the output space in detection
models [3, 5, 8, 14, 16, 26, 35, 37]. As the detection task requires the identification of multiple
objects at different locations, a major complexity introduced is the imbalance between foreground
and background, which manifests itself in the intermediate features. Typically, the assumption is
made that object regions are "knowledge-dense", and background regions less so. As a result, recent
work has implicitly focused on designing mechanisms which sample object-relevant features to distill
knowledge from [5, 14, 16, 26, 37].

Li et al. [16] (2017) mimic the features sampled from the region proposals in a two-stage detector.
Wang et al. [26] (2019) propose imitation masks which locate knowledge dense feature locations
based on the annotated boxes. Dai et al. [5] (2021) propose a module which distills based on distance
between classification scores. Similarly, Zhixing et al. [37] (2021) use output class probability to
determine feature object probability. Recently Kang et al. [14] (2021) proposed a method in which
they encode instance annotations in an attention mechanism [24] to locate "knowledge-dense" regions.
Contrary to aforementioned methods, Zhang and Ma [35] (2021) propose a purely feature-based
method in which they aim to both mimic the attention maps [38] as a sampling mechanism, and
furthermore distill through non-local modules [27]. Regardless of the sampling technique, it has been
demonstrated by Guo et al. [8] (2021) that it is not necessarily the case that background features are
less important for distillation.

Objective Functions The objective in feature-based KD is to minimize the error between teacher
and student feature spaces during training, typically in addition to existing objectives. The most
widely used objective function in feature-based KD is the ℓp-norm with p = 2 [3, 5, 8, 16, 26, 35, 37],
and less commonly p = 1 [3]. The ℓp-norm however, ignores the spatial relationships between
features, the correlation between teacher and student and the importance of individual features, of
which the latter has been the main focus of previous work. To take into account spatial dependencies,
we need to furthermore compare features locally rather than pointwise. SSIM provides an elegant
way to take into account spatial dependencies by making local comparisons of intensity and contrast,
rather than just pointwise. It is further able to take into account the relationship between the teacher
and the student by integrating zero-normalized cross-correlation. Contrary to alternative image signal
quality metrics such as VIF [28], GMSD [28] and FSIM [33], SSIM is less complex to formulate
mathematically and is differentiable, making it suitable as an objective function.
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3 Method

3.1 Overview

We start off by defining the general form of feature-based distillation loss. For the purposes of this
work, we divide a detector into three components: (i) the backbone, used for extracting features,
(ii) the neck, for fusing features at different scales, and (iii) the head, for generating regression and
classification scores. For feature-based KD, we select intermediate representations T ∈ RC,H,W and
S ∈ RC,H,W from the teacher and student respectively at the output of the neck. The feature-based
distillation loss between T and S can subsequently be formulated as:

Lfeat =

R∑
r=1

1

Nr

H∑
h=1

W∑
w=1

C∑
c=1

Lε (ν (ϕ (Sr,h,w,c)) , ν (Tr,h,w,c)) (1)

where H,W,C,R are the height, width, number of channels and number of neck outputs respectively,
Nr = HWC the total number of elements for the r-th layer. Additionally we define ν(·) as a
normalization function which maps the values of T and S to [0, 1], and ϕ(·) as an optional adaptation
layer [3] which matches the dimensionality of T and S , in our case a 1× 1 convolutional layer. We
introduce the shortened notation Lε which represents the choice of difference measurement function
at a single feature position r, h, w, c on normalized features and including the adaptation layer, i.e.
Lε = Lε (ν (ϕ (Sr,h,w,c)) , ν (Tr,h,w,c)). Accordingly, we use S and T to denote normalized and
adapted student and normalized teacher activations respectively, e.g. S = ν (ϕ (Sr,h,w,c)).

3.2 Measuring Difference

As ascertained, the de-facto standard choice for Lε is the ℓp norm. p = 2 penalizes large errors, but
is more tolerable to smaller errors. On the other hand, p = 1 does not over-penalize large errors, but
smaller errors are penalized more harshly. The ℓp norm in its general form is given by:

ℓp : Lε = (|S − T |p)1/p (2)

Clearly such a function is not able to capture spatial relationships between features. In order to capture
second-order information we need to involve at least two feature positions, we therefore change the
problem statement from a point-wise comparison to a local patch-wise comparison. For each such
patch, we extract three fundamental properties: the mean µ, the variance σ2, and the cross-correlation
σST which captures the relationship between S and T . We follow [30] and compute these quantities
using a Gaussian-weighted patch FσF

of size 11× 11 and σF = 1.5. The proposed SSIM framework
[30] compares each of the properties, and is therefore composed of three components: luminance l,
contrast c and structure s, which are defined as follows:

l =
2µSµT + C1

µ2
S + µ2

T + C1
(3a) c =

2σSσT + C2

σ2
S + σ2

T + C2
(3b) s =

σST + C3

σSσT + C3
(3c)

where µS , µT refer to the mean, σS , σT refer to the variance and σST refers to the covariance within
the patch. Furthermore, to prevent instability C1 = (K1L)

2, C2 = (K2L)
2, C3 = C2/2, where L is

the dynamic range of the feature map and K1 = 0.01, K2 = 0.03. An important property of SSIM
is that it assigns more importance to relative changes in l and c due to the quadratic terms in the
denominator. Furthermore, s is a direct measurement of the zero-normalized correlation coefficient
between S and T , and hence is formulated as the ratio between their covariance and product of
standard deviations. As the range of SSIM is [−1, 1], combining these three components results in
the following objective:

ℓSSIM : Lε = (1− SSIM)/2 = (1−
(
lα · cβ · sγ

)
)/2 , (4)

where the prevalence of each function can be tuned, with α = β = γ = 1.0 as a default. As our
method is purely feature-based and therefore independent of the type of head or bounding box labels,
we simply add Lfeat to the existing detection objective function Ldet (typically Lcls and Lreg) using
weighting factor λ, which results in the following overall training objective:

L = λLfeat + Ldet (5)
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4 Experiments

4.1 Experiment Settings

Following literature [8, 14, 26, 35, 37], we assess the performance of ℓSSIM on the MSCOCO [17]
validation dataset. We report mean Average Precision (AP) as the main evaluation metric, and
additionally report AP at specified IoU thresholds AP50, AP75 and object sizes APS , APM , APL.
Our central points of comparison are the two most widely used one- and two-stage meta-architectures,
RetinaNet [19] and Faster-RCNN [23]. We respectively use ResNet/ResNeXt-101 backbones [11, 32]
for the teachers and R-50 [11] backbones for all students, with λ = 4, 2. We conduct our experiments
in Pytorch [22] using the MMDetection2 [4] framework on a Nvidia RTX8000 GPU with 48GB of
memory. Each model is trained using SGD optimization with momentum 0.9, weight decay 1e-4
and batch size 8. The learning rate is set at 0.01 for RetinaNet [19] and 0.02 for Faster R-CNN
[23], and decreased tenfold at step 8 and 11 for a total of 12 epochs. We additionally implement
batch normalization layers after each convolutional layer, and use focal loss [19] with γfl = 2.0 and
αfl = 0.25. The input images are resized to minimum spatial dimensions of 800 while retaining
the original ratios, and we add padding to both fulfill the stride requirements and retain equal
dimensionality across each batch. Finally, the images are randomly flipped with p = 0.5 and
normalized.

4.2 Comparison with ℓp-norms

In this first set of experiments we compare the performance of ℓp-norms to ℓSSIM. Table 1 shows the
results of the main experiments comparing the best performance of each Lε. It can be observed that:
(i) ℓSSIM outperforms ℓp-norms by a significant margin, boosting performance with up to +3.7AP. (ii)
Adopting any form of feature-based distillation results in an improvement over the vanilla network,
except in Faster R-CNN [23]. (iii) Even though previous work uses ℓ2, ℓ1 outperforms ℓ2 with AP
improvements of 2.3 vs. 0.4 and 1.2 vs. 0.0 respectively.

Table 1: Comparison of objective functions on MSCOCO [17].
Backbone Lε AP AP50 AP75 APS APM APL

RetinaNet [19]

Teacher R101 41.0 60.3 44.0 24.1 45.3 53.8
Vanilla R50 - 36.4 55.6 38.7 21.1 40.3 46.6
R50 ℓ2 36.8 (+0.4) 55.7 39.1 20.6 40.5 47.3
R50 ℓ1 38.7 (+2.3) 57.6 41.6 22.7 42.7 50.5
R50 ℓSSIM 40.1 (+3.7) 59.2 43.1 23.1 44.6 53.2

Faster R-CNN [23]

Teacher X-101 45.6 64.1 49.7 26.2 49.6 60.0
Vanilla R50 37.4 58.1 40.4 21.2 41.0 48.1
R50 ℓ2 37.4 (+0.0) 57.6 40.9 21.2 41.3 48.1
R50 ℓ1 38.6 (+1.2) 58.8 42.1 21.8 42.1 49.9
R-50 ℓSSIM 40.9 (+3.5) 61.0 44.9 23.7 44.5 53.5

To further expand on what this improvement in performance can be attributed to, we analyze the
distribution of the training stimulus in the feature space. Figure 2 illustrates the comparison between
ℓssim and ℓ2 for the magnitude of the loss, averaged over all channels and 12 training epochs in neck
r = 1. This tells us something about which regions in the feature space are focused on more. It can
be observed that with ℓ2, high loss is assigned to object regions in particular, and furthermore regions
with high brightness, such as the sky in fig. 2a or the window in fig. 2b. ℓssim however assigns the
loss differently, where not only object regions are focused, but additionally more diverse background
regions are targeted, while little importance is given to low-contrast background regions.

One of the issues highlighted by [8] is that losses are higher in object regions than in background
regions. As can be seen in fig. 2, the loss applied by ℓssim is much more distributed over the feature
space than ℓ2, which as a direct result causes a more distributed application of the gradient in the
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(a) (b)

(c) (d)

Figure 2: Distribution of the magnitude of the loss in the feature space r = 1 for various images,
averaged over all channels and 12 epochs of training on MSCOCO [17]. From left to right: Image,
student trained with ℓ2, student trained with ℓssim. A darker color indicates a higher loss, object
regions have been highlighted with bounding boxes, and feature maps have been normalized.

feature space. As a result, it can be observed that the feature map of a ℓssim distilled model is much
more similar to the teacher than an ℓp distilled model, as shown in fig. 3, which directly translates to
the increase in performance.

(a) Vanilla (b) Teacher (c) ℓ2 (d) ℓssim

Figure 3: Qualitative comparison of channel sampled randomly from RetinaNet [19] intermediate
neck features r = 1. Lighter colors indicate higher activations.

4.3 Influence of Luminance, Contrast and Structure

(a) Luminance (α) (b) Contrast (β) (c) Structure (γ) (d) ssim (α, β, γ)

Figure 4: Distribution of the channel averaged magnitude of the loss for each individual component
luminance, contrast and stucture, averaged over 12 epochs of training on MSCOCO [17].

Next we compare the influence of the luminance, contrast and structure components by tuning α, β
and γ respectively (refer to eq.(4)), for this experiment we use the RetinaNet [19] teacher-student pair.
The results are shown in table 2. The main observation that can be made here is that the influence of
structure (γ) is more substantial than the other components, and even on its own provides an increase
of +3.2 AP. Furthermore, the comparisons of luminance α and contrast β alone result in performance
comparable or better than ℓp-norms (compare to table 1). In fig. 4 we furthermore compare the
average magnitude of the loss during training. The luminance provides a similar training stimulus to
the ℓp-norm (ref. to fig. 2c), but is more "smooth" due to the Gaussian kernel. Contrarily, contrast
mostly targets background areas, as it is more sensitive to lower feature intensities. Finally, it can
be noticed that structure has the most influence over the total loss, both in magnitude and spatial
distribution.
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Table 2: Comparison of objective functions for RetinaNet [19] on MSCOCO [17]. α tunes luminance,
β tunes contrast and γ tunes structure.

Backbone α β γ AP AP50 AP75 APS APM APL

Teacher ResNet-101 41.0 60.3 44.0 24.1 45.3 53.8
Vanilla ResNet-50 36.4 55.6 38.7 21.1 40.3 46.6

ResNet-50 1 0 0 38.7 (+2.3) 57.9 41.6 21.8 42.8 50.8
ResNet-50 0 1 0 38.9 (+2.5) 57.7 41.6 21.7 42.6 51.3
ResNet-50 0 0 1 39.6 (+3.2) 58.6 42.7 22.5 44.0 52.5
ResNet-50 0 1 1 40.0 (+3.6) 59.0 42.8 22.4 44.4 53.3
ResNet-50 1 1 1 40.1 (+3.7) 59.2 43.1 23.1 44.6 53.2

Additionally, in fig. 5 we illustrate the differences between student and teacher activations for the
differently trained models. It can be observed that the structure objective results in a feature space
that is converged to a very similar local optimum as the teacher, with few noisy or large differences.
Luminance contains more noisy differences, especially in the final layer. Although the contrast
objective performs relatively well on its own, it appears to provide different activations as the teacher,
particularly in the object area, as it converged to a different local minimum.

(a) r = 1 (b) r = 2 (c) r = 3 (d) r = 4 (e) r = 5

Figure 5: Top row: Channel averaged activations in the RetinaNet R101 [19] Teacher. Subsequent
rows illustrate channel averaged differences in activations between teacher and students, distilled
with: 2nd row: luminance (α). 3rd row: contrast (β). 4th row: structure (γ). Differences have been
normalized, where darker color indicates a higher value.

4.4 Comparison to State-of-the-Art

Next, we compare to recent work, for which the following methods serve as baselines: (i) Zhang
and Ma [35] (2021), a purely feature-based approach leveraging attention masks [38] and non-local
modules [27], and (ii) Kang et al. [14] (2021), who encode labeled instance annotations in an attention
mechanism [24] and report state-of-the-art for distillation methods for RetinaNet [19] and Faster
R-CNN [23] on MSCOCO [17] at the time of writing. To further demonstrate the simplicity and
versatility of our method, we use the original code and teachers as the authors to compare to our
proposed method in the same experimental setup. [35] use the same MMDetection2 [4] framework,
while [14] use Detectron2 [31]. For the comparison with [14] we furthermore adopt inheritance,
a practice proposed by the authors in which the FPN [18] and head of the student are initialized
with teacher parameters. This leads to faster training convergence, but may not be applicable when
architectures differ between teacher and student. As the pre-trained teacher weights and exact
configurations slightly vary between the two methods, we split up the comparison into two parts, as
shown in table 3.
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Table 3: Comparison to state-of-the-art methods on MSCOCO [17]. † denotes inheritance.

Method RetinaNet [19] Faster R-CNN [23]
AP APS APM APL AP APS APM APL

Teacher 41.0 24.1 45.3 53.8 45.6 26.2 49.6 60.0
Vanilla 36.4 21.1 40.3 46.6 37.4 21.2 41.0 48.1
Zhang and Ma [35] 38.5 (+2.1) 21.7 42.6 51.5 38.9 (+1.5) 21.9 42.1 51.5
Ours 40.1 (+3.7) 23.1 44.6 53.2 40.9 (+3.5) 23.7 44.5 53.5
Teacher 40.4 24.0 44.3 52.2 42.0 25.2 45.6 54.6
Vanilla 37.4 23.1 41.6 48.3 37.9 22.4 41.1 49.1
Kang et al. [14] † 40.7 (+3.3) 24.6 44.9 52.4 40.9 (+3.0) 24.5 44.2 53.3
Ours † 40.7 (+3.3) 24.0 45.0 53.1 41.0 (+3.1) 23.8 44.5 53.7

It can be observed that: (i) the adoption of SSIM as the distillation function results in an improvement
of +3.7 AP, and outperforms [35] for all box sizes and IoU thresholds. (ii) Both SSIM and [14] result
in an improvement of +3.3 AP over the vanilla network. In particular, our method scores high for
APL, while [14] mainly show better performance in the small object APS category. Additionally it
can be observed that the student is able to outperform the teacher with RetinaNet [19].

4.5 Qualitative Results

In order to verify the effectiveness of our method we analyze qualitative results in the form of several
examples of detections, where we compare three models: (i) a vanilla RetinaNet-50 [19] trained
without distillation which we refer to as baseline, (ii) a RetinaNet-50 [19]trained with our SSIM
distillation method, which we refer to as distilled, and (iii) additionally we include the results produced
by a teacher RetinaNet-101 [19], which we simply refer to as teacher. Throughout this section,
yellow boxes denote correct predictions, red boxes denote incorrect predictions or localizations with
false class predictions, and white boxes are ground truth bounding boxes.

First of all in fig. 6 we provide an example of a straightforward detection scenario, in order to obtain
an indication of the overall performance. As can be expected, both the classification and localization
across the board are very good. However, in this case the confidence with which our method predicts
the classes is substantially higher than the baseline.

(a) Baseline (b) Distilled (c) Teacher

Figure 6: Straightforward detection scenario

Next, we provide some examples in order to verify the quantitative results which indicate that our
method particularly excels in the APL category, which is a reflection of the performance on large
objects. Figure 7a - 7c presents an example of a relatively complex scene containing multiple large
objects. It can be observed that our method is able to detect additional large objects not detected by
the baseline. The detections are still not as plentiful as the teacher, but the model does also not make
a false positive detection. This phenomenon can also be observed in fig. 7d - 7f, where a detection is
made on a close-up of a single object. The distilled model is able to detect the object, and furthermore
does not make the false positive prediction made by the teacher.
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(a) Baseline (b) Distilled (c) Teacher

(d) Baseline (e) Distilled (f) Teacher

Figure 7: Detection scenarios with large objects

Next, we look at an example in which our method improves performance on detection of small
objects. Although not as substantial as in large objects, the AP improvement over the baseline is
still 2-3 AP across various evaluation settings, refer to fig. 11. Figure 8 illustrates an example of the
distilled model’s ability to detect objects that are tiny because of their large distance. Note that the
ground truth annotations are not always perfectly accurate, in this case some clearly correct detections
of persons in a distance are reported as incorrect.

(a) Baseline (b) Distilled (c) Teacher

Figure 8: Detection scenario containing many small objects

Finally, we analyze examples in which the qualitative results indicate that knowledge transferred from
the teacher had impact. Figure 9a - 9c illustrate an example of incorrect predictions by each model.
In contrast to the baseline, the distilled model mimics the teacher in making the same (incorrect) class
prediction and an additional incorrect localization prediction. Furthermore in fig. 9d - 9f the distilled
model produces improved localization compared to the baseline, where it can be observed that the
teacher is mimicked.
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(a) Baseline (b) Distilled (c) Teacher

(d) Baseline (e) Distilled (f) Teacher

Figure 9: Detection scenarios with information transfer. a-c example of classification transfer. e-f
example of localization transfer.

Overall we have demonstrated several examples where the quantitative results are supported by
the qualitative results. Particularly the detection of large objects is significantly improved, and in
cases even surpasses the performance of the teacher. Additionally, both in confusing detection cases
and more straightforward cases the knowledge transfer from teacher to student is manifested, both
positively and negatively.

4.6 Error Type Analysis

Next, in order to gain insight in the overall strengths and weaknesses of our distillation method, we
conduct an investigation of the types of errors made on the MSCOCO [17] validation dataset. We
compare a vanilla RetinaNet-50 [19] trained without distillation which we refer to as the baseline in
this analysis to our SSIM distillation method.

Figure 10 shows a curve averaged over all class categories for different types of errors for the baseline
and for our method. Each plot consists of a series of precision-recall curves with each curve denoting
a slightly more permissive evaluation setting. Overall AP75 is .431, 11.4% better than the baseline,
and for a more permissive AP50 we obtain .591, a 6.3% improvement. If we furthermore assume
perfect localization, the AP increases from .633 to .665, a 5.1% improvement. It can be observed that
as we increase the permissiveness of the localization of our detector, the performance improvement is
relatively less. Therefore we can conclude that our method is mainly effective in improving detection
scenarios that require more precise localization.

If we furthermore move on to loosening the classification requirements, we can see that when
equalizing similar categories the AP reaches 0.697, 3.9% better than the baseline. Removing all class
confusions pushes AP to 0.776, 2.6% better than vanilla detection, and removing background FPs
results in .878 AP, 1.3% better. Overall it can be observed that the types of errors made are quite
diverse, but lean slightly to class confusions of other classes and background confusions.
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Figure 10: Distribution of error types on MSCOCO [17]. Area under Curve is provided in brackets
in the legend: C75 - at box IoU .75 (AP75); C50 - at at box IoU .50 (AP50); Loc - at IoU .10
(localization ignored, no duplicates); Sim - after removal of supercategory false positives (FP’s);
Oth - after removal of all class confusions; BG - after removal of all background FP’s; FN - False
Negative predictions (AP = 1.00).

Furthermore, in fig. 11 we illustrate the types of error sorted by box size, where the comparison is split
up in evaluation settings with increasing permissiveness. It can be noticed that the most substantial
improvement in distillation performance is achieved in the large detection category. Furthermore,
the most substantial improvements particularly in the medium and large category are achieved in the
stricter evaluation settings (C75, C50), and decrease as permissiveness is increased.

Figure 11: AP score for varying box sizes. Hatched areas represent the vanilla RetinaNet R-50 [19],
solid areas represent the performance increase obtained through ℓssim distillation.

Overall, it can be observed that the types of error that our distilled detector makes are relatively similar
to that of a vanilla model. The similar pattern is that the types of errors made are fairly well distributed,
with slightly more class and background confusions. Our method is furthermore particularly effective
in improving performance in more strict localization metrics, and in the detection of large objects.
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4.7 Ablation Studies

Generalizability to Detection Architectures and Schedules We perform additional studies on
several different detection architectures to demonstrate the generalizability of our method. We
evaluate our distillation method on the smaller ResNet-18 backbone, a ResNet-50 backbone with a
2x training schedule and two alternative one-stage architectures, Fsaf-RetinaNet [39], which extends
RetinaNet [19] with an anchor-free module, and Reppoints [34], which replaces the regular bounding
box representation of objects by a set of sample points. The results of our experiments are shown in
Table 4. It can be observed that: (i) For each detection architecture our method significantly improves
performance, with +3.5 AP for the ResNet18 backbone, +3.2 AP for the longer training schedule,
+2.3 AP for Fsaf-RetinaNet [39], +3.3 AP for Reppoints [34]. (ii) In general, our method is modular
and can significantly improve performance regardless of the detection backbone or model used.

Table 4: Investigation of several popular detection architectures on MSCOCO [17].
Model AP AP50 AP75 APS APM APL

RetinaNet-R101 [19] (Teacher) 41.0 60.3 44.0 24.1 45.3 53.8
RetinaNet-R18 [19] (Vanilla) 32.6 50.6 34.6 17.8 35.2 43.5
RetinaNet-R18 [19] (Ours) 36.1 (+3.5) 54.3 38.6 18.9 39.7 49.2
RetinaNet-R101 [19] (Teacher) 41.0 60.3 44.0 24.1 45.3 53.8
RetinaNet-R50 [19] (Vanilla, 2x) 37.4 56.7 39.6 20.0 40.7 49.7
RetinaNet-R50 [19] (Ours, 2x) 40.6 (+3.2) 59.7 43.7 23.6 44.8 53.9
Fsaf-RetinaNeXt-X101 [39] (Teacher) 42.4 62.5 45.5 24.6 46.1 55.5
Fsaf-RetinaNet-R50 [39] (Vanilla) 37.4 56.8 39.8 20.4 41.1 48.8
Fsaf-RetinaNet-R50 [39] (Ours) 39.7 (+2.3) 59.3 42.4 22.0 43.3 52.0
Reppoints X-101[34] (Teacher) 44.2 65.5 47.8 26.2 48.4 58.5
Reppoints-R50 [34] (Vanilla) 37.0 56.7 39.7 20.4 41.0 49.0
Reppoints-R50 [34] (Ours) 40.3 (+3.3) 60.3 43.5 22.6 44.4 53.9

Effects of an Adaptation Layer Adaptation layers can be implemented when channel or spatial
dimensions between teacher and student do not match, and have shown to generally improve perfor-
mance previous methods [3, 26, 35]. We adopt the commonly used 1× 1 convolution to investigate
the influence on performance with our method. We adopt the RetinaNet R101-50 [19] teacher-student
pair and the Cascade R-CNN X101 [2] - Faster R-CNN R50 [23] teacher-student pair. The results are
shown in table 5. We notice that in table 5a there is no additional benefit of adopting an adaptation
layer, while in table 5b the difference is significant, and implementing the adaptation layer is critical.
Our method can therefore be used both with and without adaptation. However, when architectures
and backbones differ between teacher and student, the adaptation layer should be implemented.

Table 5: Investigation of the effect of adaptation layers

(a) RetinaNet R101 - R50 [19]

Adap. layer AP APS APM APL

none 40.1 23.1 44.6 53.2
1× 1 40.1 23.1 44.4 53.4

(b) Cascade R-CNN X101 [2] - FRCNN R50 [23]

Adap. layer AP APS APM APL

none 39.8 22.6 43.4 52.1
1× 1 40.9 23.7 44.5 53.5
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Varying patch size F and loss prevalence λ We additionally investigate the two main hyperpa-
rameters introduced in this work, for which we use the RetinaNet R101-50 [19] teacher-student pair.
The influence of the prevalence of Lfeat tuned by λ is shown in fig. 12a, where it can be noticed that
the choice of λ can cause a difference of up to +0.5 AP, with λ = 2, 4 providing the best performance.
Additionally the influence of the local patch size F over which we calculate each component of
ℓssim is investigated, the results are shown in fig. 12b. It can be noticed that the choice of kernel size
does not have significant influence on overall AP score. In table 6 it can however be observed that a
smaller kernel size of F = 5 substantially outperforms other sizes in eh APS category, while a kernel
size of F = 9 seems to be the optimal size for the best APL performance.

(a) Feature KD loss weight λ. (b) Window size F .

Figure 12: Influence of Varying Hyperparameters λ and F .

Table 6: Comparison of varying window sizes F for RetinaNet [19] on MSCOCO [17].
Backbone F AP AP50 AP75 APS APM APL

Teacher ResNet-101 41.0 60.3 44.0 24.1 45.3 53.8
Vanilla ResNet-50 36.4 55.6 38.7 21.1 40.3 46.6

ResNet-50 5 40.0 (+3.6) 59.0 42.9 23.8 44.5 53.1
ResNet-50 7 40.0 (+3.6) 59.1 43.1 22.8 44.3 53.8
ResNet-50 9 40.0 (+3.6) 59.2 42.8 22.5 44.4 54.0
ResNet-50 11 40.1 (+3.7) 59.2 43.1 23.1 44.4 53.2
ResNet-50 13 40.1 (+3.7) 58.9 43.1 22.5 44.4 53.5

Comparison of Multiscale SSIM Loss Functions Multiscale SSIM (MS-SSIM) [29] is an adap-
tation of SSIM in which SSIM is calculated using varying window sizes F on the same feture
map. MS-SSIM and combinations of MS-SSIM with ℓ1 have proven successful in deep learning
applications [36] in the image quality assessment domain. In this set of experiments we evaluate the
performance of these various loss functions. Following [36], we test out smooth-ℓ1, ℓMS-SSIM, and a
combination of 0.15 · ℓ1 + 0.85 · ℓMS-SSIM. The results are presented in table 7. It can be observed
that: (i) smooth ℓ1 boosts performance by 1.8 on its own. (ii) Adopting SSIM and the variations
MS-SSIM and ℓℓ1+MS−SSIM result in AP improvements of 3.5, 3.6, very similar to ℓSSIM . This
demonstrates that adopting any form of SSIM is more beneficial than the pointwise ℓp norms.

Backbone Lε AP AP50 AP75 APS APM APL

Teacher ResNet-101 41.0 60.3 44.0 24.1 45.3 53.8

Vanilla ResNet-50 - 36.4 55.6 38.7 21.1 40.3 46.6
ResNet-50 ℓ1,smooth 38.2 (+1.8) 57.2 40.7 21.5 41.9 49.9
ResNet-50 ℓMS-SSIM 39.9 (+3.5) 59.1 42.7 22.6 44.0 53.7
ResNet-50 ℓ1 + ℓMS-SSIM 40.0 (+3.6) 59.2 43.2 22.6 44.0 53.0
ResNet-50 ℓSSIM 40.1 (+3.7) 59.2 43.1 23.1 44.6 53.2

Table 7: Comparison of distillation functions using RetinaNet [19] on MSCOCO [17]
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Training Resources We are additionally interested in the resources required to train a model, as
this may be a critical factor in industrial applications. We compare our method to the ℓ2 based on
the required training time and memory in table 8. It can be observed that: (i) when training with
distillation, the training time is significantly higher, as the forward pass through the teacher needs
to be performed each iteration. (ii) The increase in memory requirement when using distillation is
not as significant, as teacher weights do not need to be stored. (iii) Compared to ℓ2 distillation, our
method takes 0.14s more per iteration, and requires 1.9 GB more memory. Compared to the baseline,
this difference is only 17% for both statistics respectively, and is attributed to the fact that we need to
save each component of SSIM in memory during distillation.

tavg(s) ↓ Batch Size Memory (GB) ↓
Vanilla 0.87 ± 0.007 8 11.8
ℓ2 1.33 ± 0.012 (+52%) 8 12.7 (+8%)
ℓSSIM 1.47 ± 0.011 (+69%) 8 14.8 (+25%)

Table 8: RetinaNet R-50 [19] training statistics on MSCOCO [17]. tavg indicates one for
ward/backward training iteration.
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5 Discussion

In this section we delve into a deeper analysis of the proposed method. We start off with providing
interpretations for the obtained results. Next, we discuss how our findings are related to previous
work. Subsequently, we discuss how the proposed method could be used in real-world applications,
and provide specific examples. We additionally discuss potential future improvements, and finish off
with the broader implications of this work.

5.1 Obtained Results

Among other considerations, we provide interpretations for where the majority of performance
improvement comes from, what the student learns from the teacher, and how influential the choice of
hyperparameters is.

What is the main reason for performance improvement? Throughout the experiments, the
overall observation we make is that ℓSSIM is able to outperform pointwise metrics in any scenario we
ran experiments on. We hypothesize that one of the main reasons for the performance improvement
is that ℓSSIM calculates similarity measures in a local region, are thereby is able to take into account
additional knowledge contained in spatial relationships between features. This is contrary to pointwise
metrics which, as can be observed in eq. (2), only compare the values of a single feature.

To substantiate this hypothesis, we demonstrate the presence of relational information in the feature
space. With images, one can intuitively reason that pixels are not independent of each other; images
are typically smooth, i.e. pixels that are spatially proximate will often have similar intensities. We
can quantify this intuition by comparing an original image (fig. 13a) to an image containing random
uniformly sampled pixels (fig. 13b). Subsequently, we plot the intensity of neighbouring pixels
against each other for an entire image, as shown in fig. 13c, 13d. In fact, calculating the correlation
coefficient results in ±0.93 for the original image, and 0.0 for the random uniformly sampled image,
confirming that indeed the pixels are spatially related in images.

(a) Original Image. (b) Random Uniformly Sampled Pixels.

(c) Original Image. (d) Random Uniformly Sampled Pixels.

Figure 13: Top: example images. Bottom: scatter-plot containing intensities of neighbouring pixel i
on the x-axis and pixel j on the y-axis.

A similar pattern can be observed in feature maps, which we demonstrate by highlighting some
characteristics of the feature maps generated by a Convolutional Neural Network (CNN). Specifically,
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one key property of a CNN is that, due to its kernel-based nature, the connectivity of a feature is local
in the spatial dimension RH,W , and global along the depth dimension RC . As a result, dependency
between features is retained along the spatial dimension, but not along the depth dimension. We
can again quantify this dependency retainment by calculating the correlation coefficients between
neighbouring features in RH,W throughout T and S, the results of which are shown in table 9 for
the original image. As can be observed, as we go deeper into the network and the receptive field
increases, features become more abstract and spatial correlation decreases but remains strongly
positive. We can therefore conclude that the features are not independent, and there is inherent
knowledge present in the relationships between the features. Capturing these relationships in the
distillation process subsequentely results in improved performance. The retainment of the spatial
relationships is additionally qualitatively visible in fig. 3.

r 1 2 3 4 5

Teacher RetinaNet-R101 [19] 0.88 0.85 0.81 0.68 0.43
Ours RetinaNet-R50 [19] 0.87 0.85 0.81 0.69 0.44

Table 9: Average correlation coefficients between neighbouring features throughout the feature space,
at each different feature map scale r.

What does the student learn from the teacher? It is difficult to exactly map out what the student
learns from the teacher. What we can do however to gain some insight into this question is to evaluate
the performance and analyze which metric has the most relative improvement compared to a vanilla
network, and which types of errors are mainly reduced. Clearly we have seen in fig. 11 that the
APL category has seen the most improvement. These detections are mostly influenced by the latter
stages of the feature space (r = 4, 5), indicating that the proposed combination of kernel size and are
particularly suited for these latter layers. This can also be qualitatively observed in fig. 5. Furthermore,
the nature of the types of errors made by the distilled model are not significantly different than the
vanilla model, as can be observed in fig. 10. We can therefore reason that distillation helps to reduce
errors of all types, and is not limited to specific metrics.

One limitation of KD that has to be kept in mind that there is exists no "perfect teacher". Therefore
finding the perfect distillation method as an objective function will not directly allow for perfect
students. Furthermore, KD remains a mechanism for regularization, as initially shown by [12]. As
such, the upside is that it allows the student to even outperform the teacher, as can be observed in
table 3. This can be mainly attributed to the boost the student receives at the beginning of the training
compared to a vanilla model, as illustrated in fig. 14. The training stimulus received early on from
the cues of the teacher allow for faster convergence, and combined with the continual ground truth
training stimulus it enables the student to fine-tune and outperform the teacher in the latter stages of
the training.

Figure 14: Progression of RetinaNet-R50 [19] AP score throughout training 12 epochs on MSCOCO
[17].
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How Influential are the Hyperparameters? Of interest are furthermore to what degree the
hyperparameter choice in our method is of influence. Recall the hyperparameters λ, which measures
the weight of the KD loss, and F , which determines the size of the window over which the SSIM
is calculated. As we have observed in fig. 12a, λ has an influence of up to 0.5 AP, which is in the
same order of magnitude as the influence of hyperparameters in previous methods [14, 35]. As
the distillation loss drives ±10% of the overall performance, the choice of λ on distillation is quite
substantial, and should be thoroughly evaluated when implemented in a custom system.

Contrary to intuition, as can be observed in fig. 12b the window size only impacts performance by
0.1 AP, which is not a significant difference. Interestingly, there are major performance differences
to be found in the AP categories for the different box sizes, as illustrated in table 6. The smallest
window size of 5 improves performance most on the APS category. We hypothesize due to the
smaller window size, the gaussian weighting retains more detail in the feature space, which plays
a particularly important role in the spatially larger earlier layers r = 1, 2 which are responsible
for detecting smaller objects. Furthermore, not the largest window size 13, but 9 provides the
most improvement in the APL category. As the latter feature maps are in the order of H,W = 11
(depending on the input size), this seems to be the sweet spot for the transfer of knowledge at these
latter layers. Overall AP still remains most improved with the default window size of 11, which
seems to strike a good balance for good performance across all metrics.

Finally, using multiple window sizes though MS-SSIM does also not provide additional benefits,
as can be observed in table 7. In the image restoration domain this particular function provided
improved performance through its ability to capture relationships in images at different scales [36].
As the feature maps inherently provide features at different scales, the effect of using MS-SSIM is
therefore negated.

5.2 Relation to Other Work

Compatibility with sampling mechanisms In our proposed method we take into account each
feature where we replace the ℓp-norms with ℓssim, and as demonstrated in table 3 we even are able
to outperform sophisticated state-of-the-art sampling mechanisms [14, 35]. As previous work has
mainly focused on sampling object regions, we furthermore are interested if ℓssim can be combined
with existing sampling mechanisms that focus on these object regions. To that end we provide an
initial implementation where we adopt the spatial attention maps proposed by [35], and replace he ℓs
with ℓssim, the results of which are shown in table 10.

Backbone AP AP50 AP75 APS APM APL

Spatial-SSIM 39.4 (+3.0) 58.3 42.2 21.8 43.6 52.4
SSIM 40.1 (+3.7) 59.2 43.1 23.1 44.6 53.2

Table 10: Comparison of Spatial Attention + SSIM to only SSIM, applied using RetinaNet [19] on
MSCOCO [17]

These results indicate that combining existing sampling mechanisms might be counterproductive,
and generally all features need to be accounted for when using ℓssim as a distillation mechanism, as
we have seen in section 4.2. It is also not possible to directly replace ℓ2 in methods such as [14], as
the features used for distillation are projected to a subspace where spatial relationships between the
features are not present.

Can the transfer of relational knowledge be made learnable? An earlier attempt to capture
relational knowledge in the feature-based KD domain has been made by Zhang and Ma [35] (2021),
who propose non-local modules [27] as a learnable way to capture relational information between
features. Non-local modules are learnable blocks that compute the response at a position as a weighted
sum of the features at all positions. Compared to our method we identify two major disadvantages.
First: as we can observe in table 3, performance is not as strong as with our method. Second: From
an explainability standpoint it remains unclear what the relationship is between the non-local regions
and KD relevant features.
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5.3 Real World Applications

As our main research interest lies in improving real-time perception systems that operate in complex
and changing environments, we discuss two scenarios of direct relevance to our method: training
networks with unlabeled data and ensuring the method provides robust performance.

Unlabeled Data Throughout this work we compare our method to existing literature using ground
truth annotations. A major hardship of annotated data is that is typically very expensive and
labor intensive to obtain. Therefore, in order to simulate a scenario in which data annotations
are not available, we furthermore investigate performance on MSCOCO [17] without ground truth
annotations. This is achieved through hard output distillation, i.e. we use the outputs of the teacher
model with confidence p > 0.3 as labels for the student. The results are shown in Table 11. Our
ℓssim method achieves a +1.9 AP improvement over the vanilla model, compared to +1.1 AP when
using ℓ2. This furthermore demonstrates the advantage ℓssim distillation can bring when dealing with
a scenario in which annotations are not available.

Backbone Lε AP AP50 AP75 APS APM APL

Teacher ResNet-101 41.0 60.3 44.0 24.1 45.3 53.8

Vanilla ResNet-50 34.6 53.8 36.7 20.3 38.4 43.7
ResNet-50 ℓ2 35.7 (+1.1) 54.9 38.1 20.5 39.5 44.8
ResNet-50 ℓSSIM 36.5 (+1.9) 55.8 38.9 21.6 40.4 46.1

Table 11: RetinaNet [19] experiments on MSCOCO [17] w/o annotations.

Robustness For use cases such as autonomous driving, it is of major importance that the detector
functions regardless of image distortions or weather conditions. The Robust Detection Benchmark
[21] introduces a way to evaluate detectors in which the performance of the algorithm is tested over
15 different types of distortions such as blur, noise, snow and fog conditions. Additionally, five
different severity levels are introduced for each distortion, for a total of 75 different scenarios. Two
metrics are introduced: mPC (mean Performance under Corruption) measures the average AP over
each of the distortions, while rPC (relative Performance under Corruption) measures the performance
on distortions relative to clean data. It can be observed in table 12 that our distillation method not
only is more robust (+2.1 mPC), but also improves the relative robustness (+0.7 rPC). Our distillation
method therefore not only demonstrates an absolute increase in performance, but also has improved
generalization ability to scenarios in which the visual conditions are not as optimal as in a prepared
dataset.

Backbone Lε AP mPC rPC

Vanilla ResNet-50 36.5 18.0 49.4
ResNet-50 ℓssim 40.1 (+3.6) 20.1 (+2.1) 50.1 (+0.7)
Table 12: RetinaNet [19] robustness experiments on MSCOCO [17]

5.4 Future Improvements

Kernel Size One aspect that can be improved is the difference in performance on different object
sizes. As can be noticed in e.g. table 3 and table 6, when using the "balanced" kernel size of 11 there
is still a clear gap in performance compared to Kang et al. [14] (2021) and smaller kernel sizes in the
APS category. One potential solution would be to investigate using the sizes of teacher prediction
boxes in order to determine the kernel size which should be applied.

Extension to other Tasks This work has focused around object detection, as a major aspect is the
distillation of structural components of the feature space, which directly are associated with objects.
It is of interest to further investigate the effectiveness of our method on additional object-centric tasks,
and furthermore on multi-task systems that combine object-centric and dense prediction.
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5.5 Implications

As ℓssim is very straightforward to implement and does not require any labeled data we believe that it
can be easily integrated into industry applications, some of which have already been demonstrated
in this work. Furthermore, up to this point the research space has mainly focused on creating
sampling mechanisms that focus on the object regions in the feature space. In this work we provided
a contrasting approach that is in line with the findings of [8] in that not just object regions are
important, but also the background regions. With our method, particular importance is additionally
found in background regions that contain more structure, but do not directly contain objects for
detection. Through its ability to outperform methods that have refined sampling mechanisms it has
shown potential for future use. We believe that ℓssim can serve as a good basis to build future KD
mechanisms on, and provides an alternative direction for the research space, other than creating ever
more sophisticated sampling mechanisms.

6 Conclusion

This work proposed ℓssim, a replacement for the conventional ℓp-norm as a building block for
feature-based KD in object detection. By taking into account additional contrast and structural cues,
feature importance, correlation and spatial dependence are considered in the loss formulation. ℓssim
outperforms ℓp-norm by a great margin and is able to reach performance on par or even surpass
state-of-the-art without the need for carefully designed and complex sampling mechanisms. Our
method is simple and can be implemented by replacing one line of code. Future work consists of
using ℓssim as a building block for future KD methods, which includes applying it to other tasks.
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Appendix

A Reproducibility Statement

All our experiments are based on publicly available frameworks [4, 31] and datasets [17]. An example
implementation of KD loss between teacher and student features is shown below. Omitting the import
and using a library such as Kornia [7], a change from ℓ2 to ℓSSIM only requires a change in one line
of code.

l2 implementation
from torch.nn.functional import mse_loss
def kd_loss(student_feats, teacher_feats):

# inputs have shape [B, C, H, W]
kd_feat_loss = mse_loss(student_feats, teacher_feats)
return kd_feat_loss

ssim implementation
from kornia.losses import ssim_loss
def kd_loss(student_feats, teacher_feats):

# inputs have shape [B, C, H, W]
kd_feat_loss = ssim_loss(student_feats, teacher_feats, window_size=11)
return kd_feat_loss
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B Derivations

In this section we demonstrate how to calculate each statistical property used in our KD method.

(a) Student (b) Teacher

Figure 15: Geometric illustration of intermediate feature maps. u and v are the location of the top left
feature of patches F . The patches are subsequentely defined as follows: FS = VS([u, u+ 1, ..., u+
P ], [v, v+1, ..., v+Q]) and FT = VT ([u, u+1, ..., u+P ], [v, v+1, ..., v+Q]) with central feature
f̃ . Finally P and Q indicate the size of the patch.
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Covariance
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