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ABSTRACT We consider the problem of recovering complex-valued block sparse signals with unknown
borders. Such signals arise naturally in numerous applications. Several algorithms have been developed to
solve the problem of unknown block partitions. In pattern-coupled sparse Bayesian learning (PCSBL), each
coefficient involves its own hyperparameter and those of its immediate neighbors to exploit the block sparsity.
Extended block sparse Bayesian learning (EBSBL) assumes the block sparse signal consists of correlated
and overlapping blocks to enforce block correlations. We propose a simpler alternative to EBSBL and reveal
the underlying relationship between the proposed method and a particular case of EBSBL. The proposed
algorithm uses the fact that immediate neighboring sparse coefficients are correlated. The proposed model
is similar to classical sparse Bayesian learning (SBL). However, unlike the diagonal correlation matrix in
conventional SBL, the unknown correlation matrix has a tridiagonal structure to capture the correlation
with neighbors. Due to the entanglement of the elements in the inverse tridiagonal matrix, instead of a
direct closed-form solution, an approximate solution is proposed. The alternative algorithm avoids the high
dictionary coherence in EBSBL, reduces the unknowns of EBSBL, and is computationally more efficient.
The sparse reconstruction performance of the algorithm is evaluated with both correlated and uncorrelated
block sparse coefficients. Simulation results demonstrate that the proposed algorithm outperforms PCSBL
and correlation-based methods such as EBSBL in terms of reconstruction quality. The numerical results also
show that the proposed correlated SBL algorithm can deal with isolated zeros and nonzeros as well as block
sparse patterns.

INDEX TERMS Block sparse signals, correlated sparse Bayesian learning, expectation-maximization (EM)
method, compressive sensing.

I. INTRODUCTION
Block sparsity has been observed for signals in a wide range
of applications, such as the cluster structure of scatterers
in radar images [1], [2], [3], fetal ECG [4], ultrasound sig-
nals [5] and so on. The structured sparse model can be
naturally exploited by including further the dependencies
among sparse coefficients, such as the correlations between
coefficients or dependence of the sparsity patterns. Under
noisy environments or with very compressive measurements,
algorithms properly leveraging such an underlying structure

could achieve a robust recovery compared to their counter-
parts which merely exploit the sparsity.

A number of algorithms have been proposed for block
sparse signal recovery when the block partition is known a
priori, including greedy pursuit algorithms like Model-based
Compressive Sampling Matching Pursuit (CoSaMp) [6],
Block Orthogonal Matching Pursuit (Block OMP) [7], and
regularized convex optimizations, such as group Lasso [8],
group basis pursuit [9], mixed �1/�2 programming [10] and
block sparse Bayesian learning (BSBL) [11], [12]. These
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algorithms require knowledge of the cluster pattern (block
partition) a priori. However, prior knowledge of the block
partition of sparse coefficients is practically unavailable. To
address this problem, a particular structure is imposed on the
support of sparse coefficients in the first category of algo-
rithms [13], [14]. For instance, the Clustered Sparse Solver
(Cluss) algorithm in [13] employs a hierarchical Bayesian
“spike-and-slab” prior model to encourage the sparseness and
promote the cluster patterns simultaneously. However, since
the resulting posterior distribution of the Bayesian cluster
sparse model cannot be analytically derived, Markov chain
Monte Carlo (MCMC) sampling [15] has to be employed
for Bayesian inference. Similarly, the Boltzmann machine
is employed on the support of sparse coefficients in [14] to
model the dependencies and an approximate model of the
maximum a posterior (MAP) estimator is used to estimate
hidden variables with exhaustive search.

In another category of algorithms, different block spar-
sity priors are imposed directly on the sparse coefficients.
Algorithms such as extended block sparse Bayesian learn-
ing (EBSBL) [12], pattern-coupled sparse Bayesian learning
(PCSBL) [16], cluster structured sparse Bayesian learning
(CSBL) [17] and total variation regularized sparse Bayesian
learning (TVSBL) [18] are evaluated under this category.
EBSBL is an extension of the block sparse Bayesian learn-
ing algorithm which is designed for known block partitions.
In EBSBL, it is assumed that the nonzero blocks are arbi-
trarily located and their size is unknown. Then the signal
is partitioned into a number of overlapping and fully cor-
related blocks with user-defined block size. By expanding
the overlapping blocks to a non-overlapping block structure,
an extended set of fully correlated blocks is introduced for
the unknown sparse coefficients. Based on this block struc-
ture, an expanded sensing matrix is constructed by adding
redundant columns to the original sensing matrix. Simi-
larly, the unknown coefficient vectors introduced for each
block are concatenated as an augmented vector. Thereafter,
the measurements are expressed as a linear combination of
the expanded measurement matrix and concatenation of the
block vectors. Then, the problem can be effectively solved
by the traditional BSBL algorithm to find the augmented
block vector. Finally, the unknown sparse coefficients can be
computed by using the relation between the original sparse
coefficients and the blocks. PCSBL, on the other hand, in-
troduces a pattern-coupled hierarchical Gaussian prior for
each coefficient involving its own hyperparameter and those
of its immediate neighbors to exploit interactions between
neighboring coefficients. A suboptimal solution is attained
for the hyperparameters; however, the performance of PCSBL
heavily depends on a proper selection of the hyperparameters.
Extensions of PCSBL to two-dimensional cases are further
addressed in [19], [20]. CSBL takes on a similar formula as
the pattern-coupled prior used in PCSBL without relying on
the hierarchical distribution over the hyperparameters. As a re-
sult, no proper hyperparameter selection is required in contrast

to PCSBL. For both the PCSBL and CSBL, the expectation-
maximization (EM) is developed to learn the hidden variables
and the unknown parameters. Lastly, in TVSBL, a block SBL
method has been developed inspired by total variation (TV)
denoising [18].

In the mentioned category, algorithms such as EBSBL,
PCSBL, CSBL, and TVSBL exploit the EM algorithm in
update rules. Instead of EM, the variational Bayesian in-
ference can be exploited. As an alternative to PCSBL with
EM, [21] develops an algorithm using variational Bayesian
inference, and it has a noticeable performance for the MIMO
channel estimation problem. Ref. [22] introduces a method
that exploits variational Bayesian inference instead of EM,
which can be considered an alternative version of EBSBL
(BSBL). Although it performs similarly to BSBL, it is faster
than BSBL as it is a covariance-free algorithm. Ref. [23] also
presents both EM and variational Bayesian inference meth-
ods for Kalman smoothing, reporting that they have similar
performance, but the variational Bayesian method is slower
due to the high number of iterations required for convergence.
Although there is no clear consensus on which family of
methods is faster or has better performance, we prefer EM-
based update rules for a fair comparison with the existing
methods. However, the variational Bayesian method can also
be exploited as future work.

In the second category, where different group-structured
priors are imposed on the sparse coefficients, only a few
existing algorithms consider intra-block correlation, i.e., the
correlation among the elements within each block. In practical
applications intra-block correlation widely exists in signals,
such as physiological signals [4] and images [5]. In this
work, we review several algorithms that explore and exploit
intra-block correlation to improve performance. These algo-
rithms are based on block sparse Bayesian learning (BSBL)
and extended block sparse Bayesian learning (EBSBL) [12].
However, BSBL requires knowledge of the block partition and
EBSBL suffers from several key drawbacks leading to high
computational complexity and coherence, and a larger dictio-
nary matrix. Note that high number of unknowns deteriorates
the performance of EBSBL.

In this work, a new algorithm dealing with the problem of
an unknown block partition of the correlated signal is pro-
posed to alleviate the challenges of recently reported methods.
This work is motivated by the disadvantages of EBSBL, where
the interactions among neighboring coefficients are implicitly
modeled by a linear transformation of the artificially con-
structed augmented vector. A new structured sparse prior can
be derived based on the underlying relationship between the
correlation matrices in the augmented EBSBL model and the
original signal model. The proposed algorithm uses the fact
that immediate neighboring sparse coefficients are correlated.
It is also inspired by PCSBL [16] and CSBL [17] in the
sense that it considers the relation between neighboring sparse
coefficients. However, it is different than PCSBL and CSBL
since they do not leverage the existing correlations among
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the data. We naturally exploit these correlations instead of
relating the hyperparameters. In this work, we only focus
on the correlations between immediate neighbors. Hence, the
unknown correlation matrix has a tridiagonal structure, which
is different than the diagonal correlation matrix used in con-
ventional SBL algorithms [24], [25]. The proposed algorithm
with a tridiagonal correlation matrix is a simple extension of
the classical sparse Bayesian learning algorithm which has a
diagonal correlation matrix. On the other hand, our algorithm
improves the group sparsity performance as it does not ignore
the correlation with the neighbors.

While classical SBL assumes the sources are uncorrelated,
EBSBL assumes the different blocks share a common cor-
relation structure [12]. In this work, we claim that if there
is an intra-block correlation in the data, modeling an inter-
element correlation can already trigger a grouping effect. In
other words, without building a new block-based data model,
assuming inter-element correlation in the classical SBL model
already promotes group sparsity. It is also shown that there
is a grouping effect even when the true data does not have
intra-block correlations but only contains the block structure
without correlations.

There are three contributions of this paper, which can
concisely be summarized as follows. First, a new structured
sparse recovery algorithm is proposed, which can be consid-
ered a better alternative to EBSBL. The algorithm avoids the
high dictionary coherence in EBSBL and also reduces the
unknowns of EBSBL, making it computationally more effi-
cient. Second, we provide an analysis of the relation between
our algorithm and a particular case of EBSBL. The intuitions
given here can be used to enhance the approximate update rule
for the proposed algorithm with a tridiagonal structure. The
third contribution of our paper is the ability of the proposed
algorithm to tackle irregular sparsity patterns where the sparse
vector contains both block sparse and isolated coefficients.
Once there are isolated zeros and nonzeros in the data, the
group sparsity algorithms might not perform well as their
assumptions enforce only the grouping effect. However, the
proposed algorithm is also able to deal with isolated zeros and
isolated nonzeros as well as block sparse patterns.

The rest of the paper is organized as follows. Section II
provides a review of classical sparse Bayesian learning and
extended block SBL algorithms. A tridiagonal correlation
based prior on the sparse coefficients is derived from the clas-
sical SBL algorithm in Section III. Section IV discusses the
relationship of the proposed method to EBSBL. Comparisons
of the proposed method with the state-of-the-art are shown in
Section V. Conclusions are drawn in Section VI.

A. NOTATION
Throughout the paper, bold symbols in small and capital
fonts are used for vectors and matrices, respectively. ||x||22
denotes the l2-norm of vector x. xi denotes the i-th block of
x. And the i-th element of x is either denoted by x(i), (x)i

or xi. Furthermore, (A)i j and Ai j represent the element in
ith row and jth column of an A matrix. For matrix A, AH

and A−1 denote the Hermitian and the inverse of the matrix,
respectively. tr(A) is the trace of a matrix A. Notation diag(A)
denotes a column vector composed of the diagonal elements
of a matrix A. rank(A) denotes the rank of matrix A. |A| is the
determinant of the matrix A. CN(.) denotes the multivariate
complex Gaussian distribution.

II. REVIEW OF SBL ALGORITHMS
Sparse signal recovery problems attempt to recover the un-
known sparse coefficient vector s ∈ C

n from noisy and dis-
torted measurements z ∈ C

m. More specifically, we consider
the model

z = As + n (1)

where n ∈ C
m is the additive white noise and A ∈ C

m×n is
the measurement matrix with m � n. A block structure in s
is commonly observed in practice, where elements of s tend
to be nonzero in multiple groups with unknown block sizes
and arbitrary locations. Let us first give a detailed review of
the considered structure in classical SBL. Such a detailed
review is given to show the relation between our method to
the classical SBL. Then we provide a brief review on the
EBSBL [12].

A. CLASSICAL SBL
Using Bayesian inference to solve the linear problem in (1)
involves determining the posterior distribution of the complex
amplitudes s from the likelihood and prior distribution. The
conditional probability density function (PDF) for z given the
sources s is complex Gaussian with noise variance σ 2:

p(z|s; σ 2) = exp (− 1
σ 2 ||z − As||22)

(πσ 2)m
. (2)

The unknown coefficients sl are assumed to be independent
across different coefficients l and to follow a zero-mean com-
plex Gaussian distribution:

pl (sl ; γl ) = 1

πγl
e−|sl |2/γl . (3)

Then the variances of the elements of s can be stacked into
γ = [γ1, . . . , γn]T and we get

p(s; γ ) =
n∏

l=1

pl (sl ; γl ) = CN(0,�) (4)

with � = diag(γ ). When the variance γl = 0, then sl = 0 with
probability 1. Hence the sparsity of the model is controlled by
the hyper-parameters γ . It has been shown that such a model
enforces sparsity.

By using the likelihood in (2) and the prior in (4), the pos-
terior PDF of s can be found using the Bayes rule conditioned
on γ and σ 2 and neglecting the denominator

p(s|z; γ, σ 2) = p(z|s; σ 2)p(z; γ )

p(z; γ, σ 2)
∝ p(z|s; σ 2)p(s; γ )
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∝ e−tr((s−μs )H �−1
s (s−μs ))

πmdet(�s)
= CN(μs,�s). (5)

Since both p(z|s; σ 2) in (2) and p(s; γ ) in (4) are Gaussians,
their product (5) is Gaussian with posterior mean μs and
covariance �s given by

μs = E [s|z;�, σ 2] = �AH�−1
z z

= σ−2(σ−2AH A + �−1)−1AH z (6)

and

�s = E [(s − μs)(s − μs)H |z;�, σ 2]

=
(

1

σ 2
AH A + �−1

)−1

= � − �AH�−1
z A� (7)

where the covariance matrix of the measurements �z is given
by

�z = σ 2Im + A�AH . (8)

Here, to estimate the � and σ 2, we perform expectation-
maximization (EM) to maximize p(z;�, σ 2). The actual EM
formulation proceeds by treating the s as a hidden variable and
then by maximizing

Q(�, σ 2) = Es|z;�,σ 2 [log p(z, s;�, σ 2)] (9)

with respect to the hyperparameters � and σ 2 to find their
estimates, where Es|z;�,σ 2 [.] denotes an expectation with re-
spect to the posterior distribution of s. By substituting the
joint distribution p(z, s;�, σ 2) = p(z|s; σ 2)p(s;�) into (9)
we obtain

Es|z;�,σ 2 [log p(z, s;�, σ 2)] = Es|z;σ 2 [log p(z|s; σ 2)]

+ Es|z;�[log p(s;�)]. (10)

Ignoring the terms independent from �, we can estimate the �

by maximizing Es|z,�[log p(s;�)]. Starting from

log p(s;�) = −1

2
log(|�|) − 1

2
sH�−1s (11)

and using the fact that sH�−1s = tr(�−1ssH ) and E [ssH ] =
�s + μsμ

H
s we attain the following expression:

Es|z;�[log p(s;�)] = −1

2
log(|�|) − 1

2
tr(�−1(�s + μsμ

H
s )).

(12)

This function is also called as Q function. Since we have
a diagonal �, we can maximize this function only for the
diagonal elements in �. Hence, we can take the derivative as
follows:

∂Es|z;�[p(s;�)]

∂γl
= (�s + μsμ

H
s )ll

γ 2
l

− 1

γl
= 0. (13)

Then, the closed-form solution for γl is given by

γl = (�s)ll + (μs)l (μ
H
s )l . (14)

Note that in classical SBL, the sources are assumed uncorre-
lated.

B. EXTENDED BLOCK SBL (EBSBL)
The BSBL method is proposed to solve the group sparsity
problem with a known block partition [12] in which both
the block size and the border locations of the blocks are
known. Group sparsity is enforced by considering a separate
covariance matrix per block, with a common structure over
the different blocks and potentially a specific structure within
every block (e.g., Toeplitz). The extension of this method, the
extended BSBL (EBSBL) deals with unknown block parti-
tions. EBSBL considers an extended set of hidden blocks xi

with hidden block size h for i = 1 . . . g (g = n − h + 1 is the
number of blocks). More specifically, the unknown signal s is
represented as

s =
g∑

i=1

Eixi (15)

where Ei ∈ R
m×h contains an identity matrix from the ith row

to the (i + h − 1)th row and zeros for the other entries. This
idea allows for blocks of size h with unknown border locations
but it can also handle blocks that might have a size different
from h as discussed in [12]. Under (15), the model in (1) can
be written as follows:

z =
g∑

i=1

AEixi + n = �x + n (16)

where x = [xT
1 . . . xT

g ]T and � = [�1 . . . �g] with �i =
AEi. The problem in (16) becomes a block sparsity problem
with a known block partition and is solvable by BSBL. Specif-
ically, x is assumed to follow the given distribution:

p(x; {βi, B}g
i=1) = CN(0,�0), (17)

where �0 = diag(β1B, . . . , βgB) and where each block sat-
isfies the parameterized multivariate Gaussian distribution of
p(xi;βi, B) = CN(0, βiB) with βi determining the degree of
block sparsity. Then we can find the MAP estimate of x using
the given formulas in (6), (7) as follows:

μx = E [x|z;�0, σ
2] = �0�

H (σ 2Im + ��0�
H )−1z (18)

�x = E [(x − μx )(x − μx )H |z;�0, σ
2]

=
(

1

σ 2
�H� + �−1

0

)−1

. (19)

After iteratively finding the hyperparameters, finally, the
estimate of the unknown signal s is given by

ŝ =
g∑

i=1

Eiμxi
. (20)

EBSBL is designed to cope with block-sparse recovery under
the assumption of an unknown block partition. However, it
suffers from several disadvantages. First, it leads to a higher
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computational complexity, as the augmented vector x is of
size h × (n − h + 1), which is almost h times the size of
the original signal s. More importantly, since the expanded
measurement matrix � is constructed by adding redundant
columns to the original measurement matrix A, dictionary �

will be of high coherence. It affects the efficiency of the sparse
coefficient estimation in SBL [17].

III. CORRELATED SPARSE BAYESIAN LEARNING
ALGORITHM
As we mentioned before, classical SBL assumes the sources
are uncorrelated, whereas EBSBL assumes the different
blocks share a common correlation structure, which includes
intra-block correlation or not. Related to the latter, it has been
shown that if the data contains an intra-block correlation,
the performance of EBSBL improves if it is taken into ac-
count. On the other hand, the performance of EBSBL ignoring
intra-block correlation does not change with the amount of
intra-block correlation in the data. The claim we make in this
work is that if there is an intra-block correlation in the data,
just modeling an inter-element correlation can already trigger
a grouping effect. In other words, assuming inter-element cor-
relation in the classical SBL model already promotes group
sparsity without the need for building a new block-based data
model first. Experimental results (shown later on) show that
this grouping effect is even there when the true data has no
intra-block correlations.

In this section, we, therefore, discuss how the classical SBL
can be extended for correlated sources, where we assume for
simplicity that only neighboring elements are correlated.

A. PRIORS ON THE SOURCES
In this section, the complex coefficients sl , which were as-
sumed to be independent and uncorrelated in the classical
SBL, are assumed to be correlated with their immediate neigh-
bors. In other words, s has the following distribution:

p(s;�) = CN(0,�) (21)

with the following tri-diagonal structure for �:

� = E [ssH ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

�11 �12 0 . . . 0

�21 �22 �23 . . . 0

0 �32 �33 . . . 0
...

...
...

. . .
...

0 . . . . . . . . . �nn

⎤
⎥⎥⎥⎥⎥⎥⎦

. (22)

Hence, we assume to have nonzero elements in the tridiag-
onal elements of �, �ll ′ where l ′ = l, l ′ = l + 1, l ′ = l − 1,
by ignoring the other elements of �. Note that �’s diagonal
elements represent the power of the coefficients and �ll ≥ 0.
When the variance �ll = 0, then sl = 0. Hence, the sparsity
of the model is controlled by the diagonal elements of �. For
that problem, the likelihood is given by

p(s|z;�, σ 2) = CN(μs,�s), (23)

which is similar to the formulation in (21). Based on the
likelihood in (23) and the prior of s in (21), it is easy to show
that the posterior of s is a Gaussian with mean and covariance

ŝ = μs = �AH (
σ 2Im + A�AH )−1

z, (24)

�s =
(

1

σ 2
AH A + �−1

)−1

, (25)

where � is a tridiagonal matrix but the inverse �−1 does not
have a simple structure as in the diagonal case. However, a fast
inverse of this tridiagonal matrix is available with recursive
methods [26].

B. DISCUSSION
Once we insert (22) into (24), while attaining μs or ŝ, we
can see how the structure of � affects the relation with the
neighboring elements. For the computation of μs, we can see
that in each row there are contributions from the sub-diagonals
(the correlations with the neighbors) in the multiplication of
the � and AH (σ 2Im + A�AH )−1z. Here, in addition to �ll ,
both �l (l−1) and �l (l+1) contribute to (μs)l .

For the correlated block sparse data, the correlations with
the neighboring elements (correlations in the sub-diagonals)
become nonzero inside the group, and they become zero out-
side the group or for the corner elements of the group. The
nonzero elements on the sub-diagonals enforce the neighbor-
ing elements to be nonzero in the group. Likewise, the corners
of the groups can be clearly separated as the diagonals for
the corner elements are nonzero, but the correlation with the
neighboring zero element which is in the sub-diagonal is zero.
If we focus on a single nonzero element surrounded by zeros
(isolated nonzero element), its autocorrelation is nonzero, but
the elements in the sub-diagonal are zero. Similarly, for a
zero element inside a nonzero group (isolated zero elements),
the correlations in the sub-diagonal become zero and are not
affected by the neighboring nonzeros.

Once these elements of the � are used in (24), it can be seen
that the contributions are only between consecutive nonzero
elements. If there is a zero neighbor, then it does not have any
contribution. Furthermore, if the nonzero element is a corner
element or an isolated nonzero element, it also does not have a
contribution to the zero neighbors. Only the nonzero elements
in the group contribute to each other as given in (24) and
provide a grouping effect. As a result, the proposed algorithm
does not have any exponential decay around the corners of
the groups or isolated zero and nonzero coefficients. Hence,
unlike pattern coupling approaches [16], [17], the proposed
algorithm tackles both isolated nonzero and zero elements in
addition to the block sparse patterns.

C. ESTIMATION OF �

By following the derivations from (9)–(12) to derive the EM-
based update rule for �, we attain the minimization function
for �. Since we assume a structure over �, we can minimize
the function in (12) only for the tridiagonal elements in (22).
Note that we have complex-valued data and � is Hermitian
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symmetric but not symmetric, and thus each entry in the
matrix is considered as a unique entry. Hence, we can take
the derivative of all tridiagonal entries and set them to zero,
leading to

∂Es|z;�[p(s;�)]

∂�ll ′
= [�−1(�s + μsμ

H
s )�−1 − �−1]ll ′ = 0

for l = l ′, l = l ′ + 1 and l = l ′ − 1. (26)

Note that while � has a particular tridiagonal structure, �−1

does not have a simple particular structure, unlike the diagonal
version of �. Hence, finding a closed-form solution to this
problem is tricky as the �ll ′ terms are entangled. Alternatively,
we can use iterative algorithms to maximize (12), such as
gradient-ascent [27] or fixed-point iterations [28]. However,
they might be time-consuming as we need to take the inverse
of � several times during the update steps of the iterative algo-
rithms. Instead of solving the problem with iterative methods,
we propose an approximation for the solution of �.

To propose an approximation for the tridiagonal �, we first
consider the update rule for � without any structure, and then
try to relate this to the solution for the tridiagonal �. If we
consider all the correlations in � without any structure, the
derivative of (12) with respect to � is expressed as follows:

∂Es|z,�[p(s;�)]

∂�
= �−1(�s + μsμ

H
s )�−1 − �−1. (27)

Setting this derivative to zero, we obtain the following closed-
form solution

�̄ = �s + μsμ
H
s . (28)

Here �̄ notation is used for the full �. However, using all
the correlations does not lead to a sparse solution. In classi-
cal SBL, the sparse coefficients are generally assumed to be
uncorrelated and result in a diagonal �. Note that the � esti-
mated in (14) corresponds to the diagonal of �̄ and is also the
closed-form solution to the problem in (13). Likewise, in the
tridiagonal case, although it is not a closed-form solution to
the problem in (26), we can use the following approximation

�ll ′ ≈ (�s)ll ′ + (μs)l (μ
H
s )l ′

for l = l ′, l = l ′ + 1 and l = l ′ − 1 (29)

as a solution for the tridiagonal elements. Note that this
solution contains the elements in the diagonal and main sub-
diagonals of �̄. The intuition behind such an update rule is
using the neighboring correlations that come from the full
correlation matrix �̄. Since extracting a tridiagonal submatrix
from the correlation matrix �̄ preserves the relation between
neighboring elements, we embrace this approach. However,
the convergence of such an update rule cannot be guaranteed
as the proposed � matrix is not guaranteed to be positive
definite anymore. Then, log(|�|) might be undefined, and it
might become complex valued at certain points, and it cannot
guarantee the increment of the Q function in (12) during EM
steps.

To guarantee the positive definiteness of � and obtain a
generalized update rule for �, we multiply the sub-diagonals
by a parameter β to reduce their values:

�ll ′ ≈ (�s)ll ′ + (μs)l (μ
H
s )l ′ for l = l ′

�ll ′ ≈ β((�s)ll ′ + (μs)l (μ
H
s )l ′ )

for l = l ′ + 1 and l = l ′ − 1. (30)

Still, the correlation between neighboring elements is pre-
served which causes the group sparsity thanks to the relation
between neighboring zeros and nonzeros. For values of β ∈
[0, 0.5], we empirically observe that � stays positive definite
and the Q function (12) does not result in complex values.
Here, the most efficient β is observed to be 0.5. Although
the update rule proposed for the sub-diagonal elements is
intuitive, it provides a significant performance improvement
for block sparse and isolated elements.

To provide theoretical bounds of β for the positive definite-
ness of �, we use the following proposition from [29]:

Proposition 1: Let �t =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 . . . 0

b∗
1 a2 b2 . . . 0

0 b∗
2 a3 . . . 0

...
...

...
. . .

...

0 . . . . . . . . . an

⎤
⎥⎥⎥⎥⎥⎥⎦

be a

Hermitian symmetric tridiagonal matrix with diagonal entries
positive and real. If

bib
∗
i <

1

4
aiai+1

1

cos2( π
n+1 )

(31)

then �t is positive definite. Using this proposition, we can
introduce the following theorem.

Theorem 1: For β2 < 1
4

1
cos2( π

n+1 )
, � in (30) is positive defi-

nite.
Proof: First, we prove this for the second part of (30) which

includes μsμ
H
s . Assuming that μs = c, we have the following

tridiag(μsμ
H
s ) = tridiag(ccH )

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c1c∗
1 βc1c∗

2 0 . . . 0

βc2c∗
1 c2c∗

2 βc2c∗
3 . . . 0

0 βc3c∗
2 c3c∗

3 . . . 0
...

...
...

. . .
...

0 0 0 . . . cnc∗
n

⎤
⎥⎥⎥⎥⎥⎥⎦
(32)

where tridiag(.) is defined as the extraction of the tridiagonal
part of a given matrix and multiplication of the subdiagonals
by β. For β2 < 1

4
1

cos2( π
n+1 )

, we can write β2cic∗
i+1ci+1c∗

i <

1
4 cic∗

i ci+1c∗
i+1

1
cos2( π

n+1 )
using the Proposition 1. Therefore, for

the values of β2 < 1
4

1
cos2( π

n+1 )
, we can conclude that tridiag(.)

results in a positive definite matrix from rank-one matrices
and tridiag(μsμ

H
s ) is positive definite.
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Now, we generalize this approach for any positive definite
matrix. Note that all positive definite matrices can be written
as CCH = ∑m

i=1 cicH
i which is a summation of multiple rank-

one matrices. Here, ci is the ith column of C. As tridiag(.) is
a linear operator, it can be written as follows:

tridiag(CCH ) =
m∑

i=1

tridiag(cicH
i ). (33)

Since tridiag(.) results in a positive definite matrix for each
cicH

i , and the summation of positive definite matrices is also a
positive definite, tridiag(CCH ) is positive definite.

Note that �s is positive definite for a positive definite �.
Therefore, tridiag(�s) is positive definite. As a final step, it
can be concluded that,

� = tridiag(�s) + tridiag(μsμ
H
s ) (34)

is positive definite since it is a summation of positive definite
matrices. �

Remark 1: From Theorem 1, − 1
2 cos( π

n+1 ) < β < 1
2 cos( π

n+1 )

guarantees the positive definiteness of �. To choose a safe
boundary for β, we keep it in the range [0,0.5] for values of
n > 50. Note that we keep β positive so as not to change the
sign of the correlation between the neighboring elements.

Remark 2: Note that it is important to show the proposed
update rule increases the Q function (12) in every iteration.
Because then we can draw from the generalized EM the-
ory [30]: any hyperparameter update rule that ensures that the
Q function is non-decreasing in each EM iteration will ensure
convergence of the EM iterations to a local maximum or
saddle point. Once we consider the case β ∈ [0.0.5] for (30),
we empirically observe that the Q function in (12) increases
in each iteration, and it has a higher increase in each EM
iteration compared to the one in (14). Although the theoretical
convergence proof is unavailable, we have never encountered
a case where the algorithm’s convergence is not satisfied with
a high number of trials of simulations and various problem
models.

Remark 3: The choice of β seems slightly important for
the recovery performance, as demonstrated by our simula-
tion results. Although our simulations suggest that choosing a
non-zero β mostly improves the performance compared to the
setting with β = 0, the best choice of β appears to be around
0.5. However, for cases where the signal structure is unknown,
the β parameter might be adjusted for the structure of the data
by setting it to another value in the range β ∈ [0, 0.5].

D. ESTIMATION OF THE NOISE PARAMETER σ2

To estimate σ 2, we maximize Es|z;�,σ 2 [p(z, s;�, σ 2)] with
respect to σ 2 [16]. Now, we only focus on the σ 2 related terms
on the right-hand side of (10) as follows:

Es|z;σ 2 [log p(z|s; σ 2)]

∝ −m log σ 2 − Es|z;σ 2 [||z − As||22]

σ 2

Algorithm 1: Correlated SBL.

Initialize σ 2 = 1, diag(�) = 1, εmin = 0.001,
Jmax = 100

while j < Jmax and εmin < ε do
j = j + 1, μold

s = μnew
s , �old

ll ′ = �new
ll ′ ,

� = tridiag(�new
ll ′ )

compute �s = ( 1
σ 2 AH A + �−1)−1

compute μnew
s = �AH�−1

z z
update �new

ll ′ with (30)
update (σ 2)new with (37)
ε = ||μnew

s − μold
s ||2

end while
ŝ = μnew

s

= −m log σ 2 − ||z − Aμs||22 + tr(�sAH A)

σ 2
. (35)

The second equality can be derived as follows:

Es|z;σ 2 [||z − As||22]

= zH z − 2E [sH AH z] + E [sH AH As]

= zH z − 2μH
s AH z + μH

s AH Aμs + tr(�sAH A)

= ||z − Aμs||22 + tr(�sAH A). (36)

Then, we set the derivative of (35) with respect to σ 2 to 0 and
we obtain the update for σ 2 as

σ̂ 2 = ||z − Aμs||22 + tr(�sAH A)

m
. (37)

The estimate of s is finally given by μs in (6) by iteratively
calculating the �ll ′ ’s in (29) and σ 2 in (37) till convergence.
The iterative steps of the proposed algorithm are given in
Algorithm 1. For the convergence, we use the stopping cri-
terion that the maximum absolute error of two successive
estimates of s is smaller than a threshold, or the number of
iterations exceeds the maximum number of iterations.

E. COMPUTATIONAL COMPLEXITY
The computational complexity of the proposed algorithm is
similar to the classical SBL, PCSBL, and CSBL. Here, the
main computational task at each iteration is to calculate the
covariance matrix �s as it requires computing the inverse of
an n × n matrix. By using the matrix inversion lemma [31],
this matrix inversion can be converted to an m × m matrix
inversion. Hence the computational complexity is of order
O(m3). However, for the computation of the tridiagonal �,
there is a slight increase in the computational cost, but its
effect on the overall computational complexity is negligible.

IV. RELATION TO EBSBL
To show the relation between our method and EBSBL, we
consider EBSBL with h = 2 and hence g = n − 1. In such
case, si = xi−1(2) + xi(1), where (.) shows the entry indice
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in xi. Different than EBSBL, where there is a single B for
each block, we use different Bis for each block. We then
have E [xixH

j ] = δi, jβiBi (δi, j = 1 if i = j; otherwise δi, j =
0). Note that, to avoid ambiguities, we also take βi = 1. In our
approach, we assume each si is correlated to the neighboring
elements si−1 and si+1 and ignore the other correlations. By
interpreting the E [ssH ] in (22) in terms of the Bi matrices our
entries in the tridiagonal � matrix are given as follows:

�ii = E [sis
H
i ]

= E [(xi−1(2) + xi(1))(xi−1(2)∗ + xi(1)∗)]

= E [xi(1)xi(1)∗ + xi−1(2)xi−1(2)∗]

= B(11)
i + B(22)

i−1

�i(i+1) = E [sis
H
i+1]

= E [(xi−1(2) + xi(1))(xi(2)∗ + xi+1(1)∗)]

= E [xi(1)xi(2)∗] = B(12)
i

�(i+1)i = �∗
i(i+1) for n > i > 1, (38)

where B(.)
i corresponds to the (.)th entry of the Bi

matrix. Here, the intermediate terms in E [sisH
i ] and

E [sisH
i+1] are E [(xi−1(2)xi(1)∗ + xi(1)xi−1(2)∗] = 0 and

E [(xi−1(2)xi(2)∗ + xi(1)xi+1(1)∗ + xi−1(2)xi+1(1)∗] = 0,
respectively as E [xixH

j ] = 0 for i 	= j).
The equations in (38) can also be written as follows:

E [si:i+1sH
i:i+1] =

⎡
⎣B(11)

i + B(22)
i−1 B(12)

i

B(21)
i B(11)

i+1 + B(22)
i

⎤
⎦ (39)

where si: j represents the elements of s from i to j. Therefore,
our model can be interpreted as an alternative to the EBSBL
for h = 2 when there are separate correlation matrices Bi for
each group.

To show the equivalence between the MAP estimates of ŝ in
EBSBL and in the proposed method, we give an examination
of the updating rule of ŝ in (20) that comes from (18), and the
updating rule of ŝ in (24), respectively. Rewriting the first part
of (18) and (24) as

�AH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(11)
1 aH

1 + B(12)
1 aH

2

B(21)
1 aH

1 + (B(22)
1 + B(11)

2 )aH
2 + B(12)

2 aH
3

...

B(21)
n−2aH

n−2 + (B(22)
n−2 + B(11)

n−1)aH
n−1 + B(12)

n−1aH
n

B(21)
n−1aH

n−1 + B(22)
n−1aH

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(40)

�0�
H =

⎡
⎢⎢⎢⎢⎢⎢⎣

B(11)
1 aH

1 + B(12)
1 aH

2

B(21)
1 aH

1 + B(22)
1 aH

2
...

B(11)
n−1aH

1 + B(12)
n−1aH

n

B(21)
n−1aH

1 + B(22)
n−1aH

n

⎤
⎥⎥⎥⎥⎥⎥⎦

. (41)

where ai represents the ith column of the A matrix. It is
straightforward to see that �AH = ∑n−1

i=1 Ei�0�
H . Now, we

need to show the equivalence of the second part of (18) and
(24), which is given by (σ 2IN + ��0�

H )−1Z and (σ 2IN +
A�AH )−1Z. Using the simple diagonal structure of �0 we
attain the following:

��0�
H =

n−1∑
i=1

(aiB
(11)
i aH

i + ai+1B(21)
i aH

i

+ aiB
(12)
i aH

i+1 + ai+1B(22)
i aH

i+1), (42)

and using the tridiagonal structure of � we obtain

A�AH = a1B(11)
1 aH

1 + a2B(21)
1 aH

1

+
n−2∑
i=1

(aiB
(12)
i aH

i+1 + ai+1(B(22)
i + B(11)

i+1 )aH
i+1

+ ai+2B(21)
i aH

i+1) + an−1B(12)
n−1aH

n + anB(22)
n−1aH

n .

(43)

It is easy to see the equivalence of the expressions in (42) and
(43). Therefore, the MAP estimates of ŝ are the same for both
algorithms.

The difference between the algorithms can be seen in the
update rules for Bi in EBSBL and the proposed algorithm.
The update rules for EBSBL in [12] are given as follows:

βi = tr[B−1
i (�xi + μxi

μH
xi

)], (44)

B = 1

g

g∑
i=1

�xi + μxi
μH

xi

βi
. (45)

Normally, in EBSBL, βi is also learned during the iterations
but once we assume βi = 1 we cancel that step and only have
the iterations for Bi and σ 2. Our update rule can be considered
a counterpart of the case without averaging the Bis in EBSBL
as follows:

Bi = �xi + μxi
μH

xi
, (46)

where �xi ∈ C
2×2 corresponds to the ith diagonal block in �x

in (19) and μxi
∈ C

2 is the ith block of μx in (18). We already

showed that μs = ∑n−1
i=1 Eiμx. However, now we cannot ob-

tain the tridiagonal part of μsμ
H
s , which is included in our

update rule in (29), by the overlapping block diagonal sum
of blocks in μxμ

H
x in the way that we obtained (39). Another

difference between our algorithm and EBSBL is in the update
of �x in (19) and �s in (25) due to the inversion terms. While
�0 in (19) is a block diagonal matrix, � in (25) is a tridiago-
nal matrix, and relating their inverses is not straightforward.
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Besides, the outmost inverse term entangles the relationship
between �x and �s.

Note that the number of unknown variables in EBSBL
when h = 2 is almost two times the one required in the
proposed algorithm. The reduced number of unknowns en-
hances the performance of the proposed algorithm. Lastly,
the proposed method has around O(h3) = O(23) times lower
computational complexity than EBSBL.

V. NUMERICAL RESULTS
In this section, we conduct numerical experiments to evaluate
the performance of the proposed algorithm in comparison
with the existing literature. The performance of the algorithms
is examined for both synthetic and real data. The bench-
mark algorithms include SBL [24], BSBL [12], EBSBL [12],
CSBL [17], PCSBL [16], and the proposed method. For EB-
SBL, we use EBSBL-BO: the bound-optimization presented
in [12], as it is used as a reference method for comparison and
it is stated that it has a similar performance to EBSBL-EM:
the expectation-maximization method.

A. SYNTHETIC DATA AND SYNTHETIC SYSTEM MATRIX
The measurement matrix A is randomly generated with each
entry independently drawn from a normal distribution, and
the columns are normalized to unit norm. Likewise, the
nonzero coefficients of s are drawn from a complex normal
distribution. Complex Gaussian white noise is added with a
signal-to-noise ratio of SNR(dB) = 20 log 10(||As||2/||n||2).

We use the success rate and the support recovery rate under
the noiseless case for performance evaluation. On the other
hand, the normalized mean squared error (NMSE) is used
under noisy cases. The NMSE is calculated by averaging the
normalized squared errors ||s − ŝ||22/||s||22. The success rate
is defined as the percentage of successful trials in a total of
T independent runs. A successful trial is defined as one with
NMSE being less than 10−3. A total number of T = 100 in-
dependent trials are conducted. Besides, for the identification
of the true support of sparse signals, we consider the “pattern
recovery success rate”. Similar to the regular success rate, it is
the ratio of the number of successful trials to the total number
of independent runs. However, each trial is considered suc-
cessful if the support of the block-sparse signal is recovered.
A coefficient whose magnitude is less than 10−2 is assumed
as a zero coefficient for the calculation of the pattern recovery
success rates (but not for the regular success rate).

For the proposed method, ε = 0.001 and Jmax = 100 in
Algorithm 1 are used in our experiments. Similarly, for
PCSBL and CSBL, we used the same values. On the other
hand, the probability distribution relies on hierarchical param-
eters a and b in p(�|a, b) in PCSBL. It should be noted that the
choice of the hyperparameter a of PCSBL affects dramatically
the algorithm’s performance [17]. The parameter a is always
set to 0.5 to achieve its best performance in the following
experiments. Also, the parameter b = 10−10. To make a fair
comparison, the block size h is first set to be 2 for both BSBL

and EBSBL. However, we also consider h = 4 for BSBL and
EBSBL, as it is used for comparison in the literature [12],
[16]. Note that the algorithms are modified to handle the
complex data.

For the proposed algorithm, we use the update rule in (30)
with β = 0.5. For this, we observe the behavior of the Q
function in (12) during EM iterations both for SBL and the
proposed method with different β values. For a sample re-
alization, the objective function increase during EM iterations
for all of them is shown in Fig. 1(b), and the reconstructed data
for different methods are shown in 1(a) with a noiseless case.
Note that the proposed method further increases the value of
the objective function compared to classical SBL for values
of β ∈ [0, 0.5]. Since the highest increment is observed with
β = 0.5 among several realizations, we select β = 0.5 to test
our algorithm.

In the numerical simulations, sparse signals with dimen-
sionality of n = 100 and K = 25 nonzero coefficients are
partitioned into L = 5 arbitrary blocks with random sizes and
arbitrary locations. For these arbitrary groups, we generate
them in the same way with [16]. Here, the group sizes are
likely to be higher than two and the nonzero groups are apart
from each other. Hence, in this setting, the chance of there
being isolated zeros and nonzeros among the groups is very
small. The sources are chosen to be both uncorrelated and cor-
related which matches our tridiagonal correlation assumption.
The correlated sources are created as s = R1/2w where w is
complex random noise with unit variance. We choose

R =

⎡
⎢⎢⎢⎢⎣

1 c . . . 0

c 1 . . . 0
...

...
. . .

...

0 . . . . . . 1

⎤
⎥⎥⎥⎥⎦ (47)

where c = 0.3. R is chosen to be a tridiagonal correlation ma-
trix; hence, only the neighboring correlations are considered.
As a second setting, the sources are chosen to be uncorrelated
to see the robustness of the algorithms with such a setting and
c = 0.

1) PERFORMANCE IN NOISELESS ENVIRONMENTS
The success rates of the exact recovery of different algorithms
the noiseless case (SNR = 100 dB) are provided from the
viewpoint of the size of the measurements m for the purpose
of comparison. Fig. 2 gives the success rates of different algo-
rithms against the size of the measurements m and the sparsity
level K for both correlated and uncorrelated data, respectively.
Simulation results with correlated complex-valued data in
Figs. 2(a) and (b) show that the proposed method outperforms
all other methods in terms of success rate. Note that the main
counterpart of our method is EBSBL (h = 2) and there is a
significant difference between EBSBL and the proposed one
in terms of success rate. Furthermore, our method has lower
computational complexity. Surprisingly, CSBL’s success rate
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FIGURE 1. (a) Magnitudes of reconstructed group sparse data with K = 25, m = 35 and n = 100 for SBL and the proposed method with noiseless data
and (b) the value of the Q function for SBL and the proposed one.

FIGURE 2. Success rate performance comparison of the sparse Bayesian learning algorithms with correlated (a) and uncorrelated (c) noiseless data for
different sizes of the measurements m; with correlated (b) and uncorrelated (d) noiseless data for different sparsity levels K.

is lower than other algorithms. It has been reported that CSBL
performs similarly to PCSBL [17]. It still has good perfor-
mance in terms of NMSE, but since the preselected threshold
is set at 10−3, its success rate is low. If we select it as 10−1,
the success rate of CSBL would be higher. However, for the
noiseless case, 10−3 seems to be a good choice to evaluate
the performances of the algorithms. On the other hand, BSBL
might not be a suitable algorithm to test the performances of
the data with varying block sizes and varying block partition
locations. While BSBL performs well with the data that might
fit into the considered block partition assumption, it does not
perform well with the other data.

With uncorrelated data, again the proposed method has
a higher success rate than the existing literature. Compared
to the correlated case in Fig. 2, the EBSBL method has
lower performance with uncorrelated data. This is expected
as it directly uses the correlations. However, surprisingly our
method’s and PCSBL’s performances did not change signifi-
cantly. While we exploit the correlations of the neighboring
elements, PCSBL assumes them uncorrelated and enforces
the statistical dependence between sparsity patterns. Although
these two methods utilize different motivations for correlated
neighboring coefficients, they seem not to be affected by the
level of the correlation.

In the support recovery rate graphs in Fig. 3, the per-
formances of the algorithms are similar to the success rate
performances given in Fig. 2. Although we observe small
variations over the methods, again the proposed method out-
performs the existing literature.

2) PERFORMANCE IN NOISY ENVIRONMENTS
The performances of different algorithms in terms of the
NMSE against m and the sparsity level K are given in Fig. 4.
Under noisy environments, the NMSEs of all algorithms con-
sistently decrease as the size of the measurements m increases
and the sparsity degree K decreases as shown in Fig. 4,
where PCSBL with a = 0.5 achieves the lowest NMSE and
proposed method achieves lower performance than the best
performance of PCSBL. Note that the tested data consists of
sparse groups and the chance of isolated zeros and nonzero
elements in the data is very small. Different from the noise-
less case, CSBL is better at dealing with noise than other
correlation-based methods. However, in noiseless cases, it
does not provide a perfect estimation of s while other methods
can produce a very low reconstruction error and high success
rate.

Illustrative examples of sparse coefficient recovery of dif-
ferent algorithms with the size of the measurements m being
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FIGURE 3. Support recovery rate performance comparison of the sparse Bayesian learning algorithms with correlated (a) and uncorrelated (c) noiseless
data for different sizes of the measurements m; With correlated (b) and uncorrelated (d) noiseless data for different sparsity levels K.

FIGURE 4. NMSE performance comparison of the sparse Bayesian learning algorithms with correlated (a) and uncorrelated (c) noisy data (20 dB SNR) for
different sizes of the measurements m; with correlated (b) and uncorrelated (d) noisy data (20 dB SNR) for different sparsity levels K.

FIGURE 5. Magnitudes of the reconstructions of SBL algorithms with group sparse noisy data (20 dB SNR).

40 are given in Fig. 5, respectively. PCSBL and our proposed
method provide the most accurate estimates of the original
sparse coefficients with fewer measurements, especially for
those significant elements inside blocks. By closely looking at
CSBL and PCSBL, we observe smooth decay around the cor-
ners of the groups. This effect is stronger in CSBL due to the
modeling difference between CSBL and PCSBL. On the other
hand, although the proposed method is able to reconstruct
sharp edges, the proposed one and other correlation-based
methods suffer from reconstructing some off-group elements.

This is possibly arising from the effect of the noise correla-
tion. In CSBL and PCSBL, we observe smooth edges and the
boundaries of the groups are indistinct but we do not observe
reconstructed elements that are not close to the groups.

In addition to testing with group sparse data, we test
our algorithm for a new setting where each group has an
isolated zero element inside the group. For such a sce-
nario, the proposed method achieves the best performance
in terms of NMSE with 20 dB SNR as shown in Figs. 6(a)
and (b) for varying numbers of m and K respectively. The
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FIGURE 6. NMSE performance comparison of the SBL algorithms with the data that has isolated zeros for different (a) size of the measurements m;
(b) Sparsity level K and NMSE performance comparison of the data with mixed groups, isolated zeros, and isolated nonzeros for different (c) size of the
measurements m; (d) Sparsity levels K under 20 dB SNR.

FIGURE 7. Magnitudes of the reconstructions of SBL algorithms with (a) noisy data (20 dB SNR) which has isolated zeros in each group (b) the data with
mixed groups, isolated zeros, and isolated nonzeros.
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FIGURE 8. Magnitudes of the reconstructions of SBL algorithms with noisy group sparse data (20 dB SNR) for DOA and amplitude estimation.

FIGURE 9. NMSE performance comparison of the SBL algorithms with correlated (a) and uncorrelated (c) noisy data (20 dB SNR) for different sizes of the
measurements m; with correlated (b) and uncorrelated (d) noisy data (20 dB SNR) for different sparsity levels K for a single snapshot problem.

FIGURE 10. NMSE performance comparison of the SBL algorithms with correlated (a) and uncorrelated (c) noisy data (10 dB SNR) for different sizes of
the measurements m; with correlated (b) and uncorrelated (d) noisy data (10 dB SNR) for different sparsity levels K for a single snapshot problem.

reconstructions are shown in Fig. 7(a) for a single realization.
As CSBL and PCSBL algorithms consider contributions from
the neighboring elements, the isolated zero element is affected
by the surrounding nonzeros. On the other hand, the pro-
posed algorithm considers the correlation with the neighbors
in a multiplication form. When the sub-diagonal elements
become zero they do not negatively affect the reconstruction
of the isolated zero elements. Note that with such data, the
classical SBL algorithm is also performing better than most
of the other group sparsity-based algorithms. For BSBL and
EBSBL, the performance varies significantly depending on
different Monte Carlo realizations. Again it possibly arises
from the block partition assumption of the algorithms.

We also tested these algorithms with a mixed scenario
which consists of two isolated zero elements, two full group

elements, and one group with an isolated nonzero element. As
shown in Figs. 6(c) and (d), we attain the best performance
with the proposed method as it tackles the isolated nonzeros
and isolated zeros more successfully compared to the ex-
isting literature. As the groups do not have a specific size,
other correlation-based algorithms such as BSBL and EBSBL
might fail to reconstruct the groups. We again demonstrate the
reconstructions in Fig. 7(b) and observe a similar effect.

B. DOA AND AMPLITUDE ESTIMATION WITH SYNTHETIC
DATA
Now, the proposed algorithm is tested on a DOA and ampli-
tude estimation problem with block sparse sources. It should
be noted that most analysis in the literature has been done with
randomly designed sensing matrices [12], [16]. However, such
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a random design is not realistic to evaluate the performance
of these algorithms. Hence, we tested and compared their
performance for a simple DOA and amplitude estimation
problem. Here, we consider an array with various numbers
of elements. The DOAs are on an angular grid [−90 : 0.5 :
90]◦, and m = 361. The noise is modeled as i.i.d. complex
Gaussian. Here, we examine a scenario with K = 25 ran-
dom sources in L = 5 random groups. DOA groups collect
sl values having random complex amplitudes. The sources are
chosen to be correlated and c = 0.5.

The performances of different algorithms in terms of the
NMSE against the size of the measurements m and the sparsity
level K are given in Figs. 9 and 10 for 20 dB SNR and 10 dB
SNR, respectively. With such a realistic setting where the
system model A is a realistic matrix, the best performance is
attained by the proposed algorithm, especially for the 20 dB
SNR case. The performance of the proposed algorithm is still
comparable to or better than the state-of-the-art under the
10 dB SNR case. Note that the DOA matrix A has a higher
coherence compared to a randomly generated A matrix. Illus-
trative examples of the sparse coefficient recovery of different
algorithms with the size of the measurements m being 40
are given in Fig. 8. Here, the proposed method provides the
most accurate estimates of the original sparse coefficients.
By closely looking at CSBL and PCSBL, we again observe
a smooth decay around the corners of the groups. On the
other hand, the proposed method is able to reconstruct sharp
edges.

VI. CONCLUSION AND DISCUSSION
In this paper, we have proposed a correlated sparse Bayesian
learning algorithm for block sparse signals with arbitrary
block sizes and locations under the Bayesian framework. This
is a simpler alternative to EBSBL and we explain the underly-
ing relationship between the proposed method and a particular
case of EBSBL. The proposed algorithm uses the fact that im-
mediate neighboring sparse coefficients are correlated. Unlike
the diagonal correlation matrix in conventional SBL, the un-
known correlation matrix has a tridiagonal structure to capture
the correlation with neighbors. Due to the entanglement of the
elements in the inverse tridiagonal matrix, instead of a direct
closed-form solution, an approximate solution is proposed.
The sparse reconstruction performance of the algorithm is
evaluated with both correlated and uncorrelated block sparse
coefficients. Results of comprehensive simulations demon-
strate that the proposed algorithm outperforms CSBL and
PCSBL and other correlation-based methods such as EBSBL
in terms of reconstruction quality. The numerical results also
show that the proposed correlated SBL algorithm is capable
of recovering signals with both block patterns and isolated
coefficients.

REFERENCES
[1] L. Wang, L. Zhao, G. Bi, C. Wan, and L. Yang, “Enhanced ISAR

imaging by exploiting the continuity of the target scene,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 9, pp. 5736–5750, Sep. 2014.

[2] L. Wang, L. Zhao, G. Bi, and C. Wan, “Sparse representation-based
ISAR imaging using Markov random fields,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 8, no. 8, pp. 3941–3953, Aug. 2015.

[3] L. Zhao, L. Wang, L. Yang, A. M. Zoubir, and G. Bi, “The race to
improve radar imagery: An overview of recent progress in statistical
sparsity-based techniques,” IEEE Signal Process. Mag., vol. 33, no. 6,
pp. 85–102, Nov. 2016.

[4] Z. Zhang, T.-P. Jung, S. Makeig, and B. D. Rao, “Compressed sensing
for energy-efficient wireless telemonitoring of noninvasive fetal ECG
via block sparse Bayesian learning,” IEEE Trans. Biomed. Eng., vol. 60,
no. 2, pp. 300–309, Feb. 2013.

[5] O. Lorintiu, H. Liebgott, and D. Friboulet, “Compressed sens-
ing doppler ultrasound reconstruction using block sparse Bayesian
learning,” IEEE Trans. Med. Imag., vol. 35, no. 4, pp. 978–987,
Apr. 2016.

[6] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-
based compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1982–2001, Apr. 2010.

[7] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Un-
certainty relations and efficient recovery,” IEEE Trans. Signal Process.,
vol. 58, no. 6, pp. 3042–3054, Jun. 2010.

[8] X. Lv, G. Bi, and C. Wan, “The group lasso for stable recovery of block-
sparse signal representations,” IEEE Trans. Signal Process., vol. 59,
no. 4, pp. 1371–1382, Apr. 2011.

[9] E. v. d. Berg and M. P. Friedlander, “Probing the pareto frontier for basis
pursuit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2, pp. 890–912,
2009.

[10] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a struc-
tured union of subspaces,” IEEE Trans. Inf. Theory, vol. 55, no. 11,
pp. 5302–5316, Nov. 2009.

[11] Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally
correlated source vectors using sparse Bayesian learning,” IEEE J. Sel.
Topics Signal Process., vol. 5, no. 5, pp. 912–926, Sep. 2011.

[12] Z. Zhang and B. D. Rao, “Extension of SBL algorithms for the recovery
of block sparse signals with intra-block correlation,” IEEE Trans. Signal
Process., vol. 61, no. 8, pp. 2009–2015, Apr. 2013.

[13] L. Yu, H. Sun, J. P. Barbot, and G. Zheng, “Bayesian compressive
sensing for clustered sparse signals,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2011, pp. 3948–3951.

[14] A. Dremeau, C. Herzet, and L. Daudet, “Boltzmann machine and mean-
field approximation for structured sparse decompositions,” IEEE Trans.
Signal Process., vol. 60, no. 7, pp. 3425–3438, Jul. 2012.

[15] C. Andrieu, N. d. Freitas, A. Doucet, and M. I. Jordan, “An introduc-
tion to MCMC for machine learning,” Mach. Learn., vol. 50, no. 1/2,
pp. 5–43, 2003.

[16] J. Fang, Y. Shen, H. Li, and P. Wang, “Pattern-coupled sparse Bayesian
learning for recovery of block-sparse signals,” IEEE Trans. Signal Pro-
cess., vol. 63, no. 2, pp. 360–372, Jan. 2015.

[17] L. Wang, L. Zhao, S. Rahardja, and G. Bi, “Alternative to extended
block sparse Bayesian learning and its relation to pattern-coupled sparse
Bayesian learning,” IEEE Trans. Signal Process., vol. 66, no. 10,
pp. 2759–2771, May 2018.

[18] A. Sant, M. Leinonen, and B. D. Rao, “Block-sparse signal recovery
via general total variation regularized sparse Bayesian learning,” IEEE
Trans. Signal Process., vol. 70, pp. 1056–1071, 2022.

[19] H. Duan, L. Zhang, J. Fang, L. Huang, and H. Li, “Pattern-coupled
sparse Bayesian learning for inverse synthetic aperture radar imaging,”
IEEE Signal Process. Lett., vol. 22, no. 11, pp. 1995–1999, Nov.
2015.

[20] J. Fang, L. Zhang, and H. Li, “Two-dimensional pattern-coupled
sparse Bayesian learning via generalized approximate message pass-
ing,” IEEE Trans. Image Process., vol. 25, no. 6, pp. 2920–2930, Jun.
2016.

[21] J. Dai, A. Liu, and H. C. So, “Non-uniform burst-sparsity learning
for massive MIMO channel estimation,” IEEE Trans. Signal Process.,
vol. 67, no. 4, pp. 1075–1087, Feb. 2019.

[22] A. Rajoriya, A. Kumar, and R. Budhiraja, “Covariance-free variational
Bayesian learning for correlated block sparse signals,” IEEE Commun.
Lett., vol. 27, no. 3, pp. 966–970, Mar. 2023.

[23] R. K. Chakraborty, G. Joseph, and C. R. Murthy, “Joint state and input
estimation for linear dynamical systems with sparse control,” 2023,
arXiv:2312.02082.

[24] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, 2001.

434 VOLUME 5, 2024



[25] P. Gerstoft, C. F. Mecklenbräuker, A. Xenaki, and S. Nannuru, “Mul-
tisnapshot sparse Bayesian learning for DOA,” IEEE Signal Process.
Lett., vol. 23, no. 10, pp. 1469–1473, Oct. 2016.

[26] G. Meurant, “A review on the inverse of symmetric tridiagonal and
block tridiagonal matrices,” SIAM J. Matrix Anal. Appl., vol. 13, no. 3,
pp. 707–728, 1992.

[27] S. i. Amari, “Backpropagation and stochastic gradient descent method,”
Neurocomputing, vol. 5, no. 4, pp. 185–196, 1993.

[28] H. F. Walker and P. Ni, “Anderson acceleration for fixed-point itera-
tions,” SIAM J. Numer. Anal., vol. 49, no. 4, pp. 1715–1735, 2011.
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