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Abstract

This study investigates the relationships between urban form elements (UFEs), Ur-
ban Heat Island (UHI) effects, and building energy consumption in Heukseok-dong, 
Seoul, South Korea. Using 10 years of satellite imagery, air temperature measure-
ments, and energy consumption data, the research examines how six UFEs (NDVI, 
building ratio, building height, building volume, FSI, and GSI) influence air tempera-
tures and building energy consumption across multiple spatial scales and seasons.

A Multi-Layer Perceptron (MLP) neural network was developed to convert satel-
lite-derived Land Surface Temperature (LST) to air temperature, achieving an R2 of 
0.9684 and tested with independent S-DoT sensors. The independent testing was 
conducted in two phases: for May-August 2020, the mean temperature difference 
was 1.84°C, remarkably close to the known systematic temperature difference of 
1.8°C between S-DoT sensors and AWS. When extended to 2020-2024, the mean 
difference was 0.98°C with an R2 of 0.807, confirming the model successfully pre-
dicts actual air temperatures rather than sensor-specific values.

The Genizi method and partial correlation analysis were combined to address mul-
ticollinearity while revealing both relative importance and directional effects of 
UFEs. This complementary approach provides more comprehensive insights than 
traditional regression methods alone. Key findings reveal that NDVI dominates 
temperature variance in spring (79.3%), fall (64.7%), and winter (71.6%), but build-
ing characteristics become more important in summer, with building ratio contrib-
uting 71.8% at pixel scale. Scale-dependent patterns emerged, with energy con-
sumption best captured at 100m scale (R2 up to 0.378) while temperature variations 
appeared more clearly at 300m scale (R2 up to 0.328). The cascade relationship 
from UFE through air temperature to energy consumption showed air temperature 
driving 54.3% of electricity variance in summer, while building volume consistently 
influenced both electricity and gas consumption despite EUI normalization.

A decade-long analysis of District 3’s transformation from 478 low-rise buildings 
to 28 high-rise apartments confirmed the statistical findings. Despite a 2,112.6% 
increase in building volume and 168% improvement in NDVI, temperature trends 
showed 0.10-0.16°C/year increases, which are approximately half of Heuk-
seok-dong’s 0.17-0.32°C/year rates, demonstrating that urban design can partially 
mitigate but not eliminate warming effects.

The moderate R2 values (0.067-0.378) indicate that urban form elements explain 
only a portion of variance, partly reflecting the temporal limitation of correlat-
ing single hourly satellite observations with monthly energy totals. The research 
provides evidence-based recommendations for urban planning policies, including 
maintaining GSI below 0.55, achieving NDVI above 0.15, and implementing season-
al strategies for temperature mitigation and energy management.
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Land surface temperature

Air temperature

Multi layer perceptron

Normalized vegetation 
difference index

Genizi method

Floor space index

Energy use intensity

Ground space index

Urban heat island effect

Partial correlation

Measure of how hot or cold the air is in a specific location, 
typically measured with a thermometer a 1.5-2 meters above 
the ground.

Measurement that shows the total floor area of buildings com-
pared to the land area they sit on. Higher FSI means more 
densely built areas with taller or larger buildings.

A measurement of a building’s energy efficiency calculated by 
dividing total energy consumption by the building’s gross floor 
area, typically expressed in kWh/m2 per month or year. 

Ratio of building footprint area to the total land area. It shows 
how much of the ground is covered by buildings, with higher 
values indicating more densely built areas.

Temperature of the Earth’s surface as measured from above 
(often by satellites), reflecting how hot the actual ground or 
roof surfaces are rather than the surrounding air.

Basic type of artificial neural network with multiple layers of 
connected nodes that can learn to recognize patterns in data 
and make predictions.

Measurement that uses satellite imagery to determine the 
amount and health of vegetation in an area. Higher values in-
dicate more vegetation.

A statistical technique that decomposes R2 values to deter-
mine the relative importance of correlated predictor variables 
by properly allocating shared variance among them.

Phenomenon where urban areas are significantly warmer than 
surrounding rural areas due to human activities, buildings, 
roads, and reduced vegetation, creating “islands” of higher 
temperatures.

 A statistical measure that determines the strength and direc-
tion of the relationship between two variables while controlling 
for the effects of other variables.
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Air temperature

Normalized difference vegetation index

Urban heat island
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Floor space index
Energy use intensity
Digital elevation model

Ground space index

Automatic weather station

Urban form element
Solar zenith angle

LST

AT
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UHI
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Figure 1.1 Annual global mean surface temperature (NASA, 2020)
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Introduction

1.1	 Problem statement

01

In recent years, rapid urbanization and industrialization have intensified the challenges posed by 
global warming. As number of population in cities increases, urban areas have become significant 
contributors to greenhouse gas emissions while simultaneously experiencing the adverse effects of 
climate change. Among these effects, the Urban Heat Island (UHI) phenomenon becomes a critical 
concern for urban planners, policymakers, and researchers. The UHI effect, defined as “a phenom-
enon involving increased air temperature of a city compared to the surrounding rural area” (Oh et 
al., 2020), which exacerbates global warming by amplifying energy demands and deteriorating air 
quality.

The implications of the UHI effect extend beyond simple temperature increases. As urban tempera-
tures increase, buildings require significantly more energy for cooling during summer months, lead-
ing to increased electricity consumption. Moreover, the interaction between urban form elements 
(UFEs) and the UHI effect is complex. While green spaces can mitigate heat through shading and 
evaporative cooling, the density and configuration of buildings, road networks, and other impervi-
ous surfaces contribute to heat accumulation and reduced ventilation.

Understanding these relationships becomes even more critical as big cities face pressure to accom-
modate growing populations. United Nations (UN) expected the world’s population lives in urban ar-
eas is expected to increase by 68% by 2050, making it essential to develop evidence-based strategies 
that balance development needs with environmental sustainability. However, existing  approaches to 
analyze and mitigate the UHI effect face several limitations. Most studies examined these phenom-
ena over short time periods, failing to capture long-term urban transformations. Research typically 
investigated temperature-energy or urban form-energy relationships in isolation, missing the cas-
cading effects among all three elements. Additionally, the statistical challenges posed by correlated 
urban variables often led to oversimplified or misleading conclusions about which factors truly drive 
urban temperatures and energy consumption.

Seoul, South Korea, presents an ideal case study for investigating these complex relationships. As 
one of the world’s most densely populated cities, Seoul has experienced rapid urban development 
over several decades while facing increasing urban temperatures. The city’s diverse urban morphol-
ogy, ranging from traditional low-rise neighborhoods to modern high-rise apartments, provides a 
good example for examining how different UFEs influence temperature and energy patterns. Fur-
thermore, Seoul’s comprehensive data infrastructure, including weather stations, energy consump-
tion history, and satellite coverage, enables detailed analysis of urban environmental conditions.
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1.2	 Research Context and Gaps
While many studies have examined the UHI effect and building energy consumption, there are some 
significant gaps remain in current approaches. Most research including Liao et al. (2021) analyzes 
these phenomena over short periods, missing long-term urban transformations and their cumulative 
impacts. While Raj and Yun (2024) analyzed UHI effect in Seoul over 20 years, it only analyzed how 
the temperature changed but did not include energy consumption relationships and only focused on 
city-wide patterns. This temporal limitation is particularly problematic in rapidly developing cities 
where urban form can change dramatically within a decade. Studies typically examine either tem-
perature-energy or urban form-energy relationships separately such as S. Peng et al. (2011) and Su 
et al. (2021)’s works, failing to capture the cascade effects among all three elements. The complex 
interactions between urban morphology, local climate, and energy demand remain poorly under-
stood due to this fragmented approach.

The multicollinearity between UFEs, such as the negative correlation between vegetation coverage 
and building density is often inadequately addressed or simply ignored. Traditional regression ap-
proaches struggle with these correlated predictors, leading to potentially misleading results about 
which factors actually drive temperature and energy patterns. Many studies report simple correla-
tions without considering the relative importance of different variables when they interact, making 
it difficult to prioritize urban planning interventions. Furthermore, there are limited validations with 
independent datasets, relying solely on the same data used for model development, which limits 
confidence in the generalizability of findings.

Methodological limitations extend to data collection and analysis approaches. Satellite-based stud-
ies, including this research, face temporal resolution constraints, capturing only single daily ob-
servations that miss diurnal temperature variations. While this limitation affects all satellite-based 
approaches, many existing studies failed to acknowledge or address this constraint in their analysis. 
This research explicitly recognizes this temporal limitation and addresses it by focusing on correla-
tions at the specific satellite overpass time (11:12 AM) rather than attempting to generalize to full 
diurnal patterns. 

Additionally, the testing with dense Seoul Data of Things (S-DoT) sensor networks and the de-
cade-long analysis partially compensates for the temporal resolution constraints by providing spa-
tial density and long-term trends that snapshot studies miss. Ground-based studies, while offering 
better temporal resolution, often suffer from sparse spatial coverage that cannot capture urban 
microclimate variations. The scale at which analysis is conducted varies widely across studies, with 
little understanding of how relationships between urban form, temperature, and energy might differ 
across spatial scales. Additionally, most research focused on modern buildings with comprehensive 
HVAC systems, overlooking the significant portion of urban building stock consisting of older resi-
dential structures that may have different building characteristics.

This research focuses on one of the districts in Seoul, Heukseok-dong, which underwent  significant 
transformation from low-rise residential areas to high-rise developments. By analyzing the rela-
tionships between UFEs, the UHI effect, and building energy consumption over a decade, this study 
aims to provide quantitative evidence for sustainable urban development strategies. The research 
aims to address critical questions about how physical characteristics of the urban environment in-
fluence local climate conditions and energy use patterns.



This research examines the complicated nonlinear relationships between the urban form elements 
(UFEs), urban heat island (UHI) effects, and building energy consumption in one of the areas in 
Seoul, South Korea. The research aims to understand how changes in urban form elements affect lo-
cal microclimate and influence energy consumption patterns. Through analysis of satellite imagery, 
air temperature measurements, and energy consumption data over 10 years, this research would 
answer the following main research question and sub-questions.

12

1.3	 Research Questions

These limitations highlight the need for an integrated, long-term approach that can handle complex 
statistical relationships while providing practical insights for urban planning. A comprehensive un-
derstanding requires analyzing the cascade effects from urban form through temperature to energy 
consumption, employing methods that can properly account for multicollinearity while revealing 
both the importance and direction of relationships. Long-term analysis capturing actual urban trans-
formations, rather than static snapshots, is essential for understanding how development patterns 
influence environmental outcomes. This research addresses these gaps by examining a decade of 
data from Heukseok-dong, employing complementary statistical methods, and validating findings 
through both independent sensor networks and real-world urban redevelopment outcomes.



The main research question examines the complex non-linear relationships between physical urban 
characteristics, local air temperature patterns, and energy consumption, providing insights for sus-
tainable urban development for urbanized cities like Seoul.

The 1st sub-question addresses the methodological challenge of using satellite data for urban tem-
perature monitoring. By developing and testing a conversion of LST to air temperature, the research 
enables UHI analysis in cities with limited ground-based monitoring infrastructure.

The sub-question 2 examines the temporal analysis on UFE and effects on air temperature. By 
analyzing a decade of data, the research captures how actual urban transformations influence air 
temperature patterns over time.

This sub-question investigates the cascade effects from UFEs through air temperature to energy 
consumption. By examining both electricity and gas consumption separately across seasons and 
multiple spatial scales, the research reveals how these relationships vary temporally and spatially, 
providing potential guidance for energy management strategies.

“How do urban form elements influence the 
Urban Heat Island (UHI) effect and building energy performance 

in a selected area of Seoul, South Korea?”

“How can land surface temperature (LST) from satellite imagery 
be converted to air temperature for urban climate analysis?”

“How have urban form elements (UFEs) changed 
over the past decade, and what impact have these 

changes had on the UHI effect?”

“How do urban form elements affect air temperature, 
and how does this relationship influence energy consumption 

across different seasons and spatial scales?”

Main Research Question

Sub-question 1

Sub-question 2

Sub-question 3

The last sub-question addresses the statistical challenge of multicollinearity in urban studies. By 
employing complementary analytical methods, this research separates relative importance from 
directional effects, providing more accurate insights than traditional regression approaches alone.

By answering these main research question and sub-questions, the research would provide a com-
prehensive understanding of urban heat island effects in Heukseok-dong, which can guide more 
climate responsive and energy efficient during urban development in dense urban environments.

“How does combining the Genizi method with Partial 
correlation improve understanding of relationships between 

UFEs, air temperature, and energy consumption?”
Sub-question 4

13
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Literature Review

2.1	 Introduction

2.2	 Urban Heat Island (UHI) Effect

2.1.1	Literature Search

2.2.1	Definition and Fundamental Concepts

2.1.2	Quality of Literature

02

Multiple electronic research databases such as Scopus and TU Delft Research Portal were used 
to conduct a comprehensive literature search. Some main keywords were used for searching the 
literature such as “Urban heat island”, “Building”, “Urban element” and “Energy demand”. These 
keywords were combined for advanced search in Scopus and TU Delft Research Portal along with a 
few synonyms for each keyword using appropriate Boolean operators (e.g., OR, AND).

The Urban Heat Island (UHI) effect is one of the most studied phenomena in urban climatology, de-
fined as “a phenomenon involving increased air temperature of a city compared to the surrounding 
rural area” (Oh et al., 2020). UHI is fundamentally a heat accumulation phenomenon within urban 
areas resulting from urban construction and human activities, and the conversion of pervious sur-
faces to impervious surfaces significantly modifies local energy balance in urban areas and contrib-
utes to urban heat island formation, mainly in densely developed cities (Vujovic et al., 2021).

To ensure the quality and validity of the literature, some modifications to the query were added and 
the search plan has been filtered. Urban heat island phenomenon has been actively researching from 
the last several decades ago. The quality of the literature was ensured with the number of reviews 
(peer-review) and citation numbers. Literature was excluded if they were review papers, editorials, 
or conference proceedings and only limited to final articles (publication stage), which were legally 
published by trustworthy sources.

Figure 2.1 Urban heat island effect by Jamei and Tapper (2018)
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2.2.2	UHI Measurement and Assessment Methods
Measuring the UHI effect requires two main approaches: Ground-based methods that measure air 
temperature and Satellite methods that measure surface temperature. Each method has its own 
strengths and limitations for understanding how cities become warmer than their surroundings.

The most direct way to measure UHI is through weather stations that record air temperature at stan-
dard heights. According to the EPA guidelines, air temperatures important for assessing heat islands 
are those found within the urban canopy, from ground level to the tops of trees and buildings (Mea-
suring Heat Islands | US EPA, 2025). These types of measurements represent the best that people 
actually experience. Traditional weather stations measure temperature at 1.5-2 meters height using 
shielded sensors, following World Meteorological Organization standards. However, weather sta-
tions have limited spatial coverage, which may miss important temperature variations across urban 
areas.

To address this limitation, researchers use mobile measurement where vehicles equipped with sen-
sors traverse urban areas, recording temperatures. Stewart et al. (2021) reviewed various mobile 
traverse studies and found they effectively capture spatial temperature patterns, though they are 
limited to specific time periods. Another solution is adding low-cost weather sensors. Schatz and 
Kucharik (2015) installed 150 temperature and humidity sensors at 3.5 meters height on streetlights 
and utility poles in Madison to capture fine-scale temperature variations.

Muller et al. (2013) reviewed urban meteorological networks and found that highlighted the need 
for standardized approaches and better documentation of network characteristics. The selection of 
appropriate weather stations is critical to ensure temperature differences reflect urbanization effects 
rather than geographic factors.

Ground-Based Air Temperature Measurement

Multiple factors influence UHI intensity and characteristics. City size and morphology play crucial 
roles, with UHI being a major anthropogenic alteration on Earth’s environments, and its geospatial 
pattern remains poorly understood over large areas (Zhou et al., 2014). The physical mechanisms 
underlying UHI formation were comprehensively explained by Oke (1982). The UHI phenomenon 
results from various interacting mechanisms, including modified surface properties where imper-
vious surfaces replace natural surfaces, reduced evapotranspiration due to decreased vegetation 
coverage, anthropogenic heat emissions from vehicles and buildings, and urban geometry effects 
that trap heat radiation and reduce wind flow. The UHI index varies across cities due to different 
development levels and climatic conditions. A summary of studies on UHI in different cities in China 
is given in a review paper by Tian et al. (2021), which demonstrates the complexity of factors influ-
encing the UHI phenomenon.

The global significance of UHI continues to grow with accelerating urbanization. Santamouris (2015) 
analyzed UHI effect in 101 Asian and Australian cities, indicating widespread prevalence across dif-
ferent climates. Of particular concern are synergies between UHI and climate change, and UHI and 
global warming increase significantly the ambient temperature (Santamouris et al., 2014). Higher 
temperatures have a serious impact on electricity consumption of the building sector, which increas-
es considerably the peak and the total electricity demand.

This fundamental understanding of UHI mechanisms and characteristics provides the essential foun-
dation for examining its relationships with urban form elements and building energy consumption, 
particularly in the context of one of the most urbanized cities, like Seoul.
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Satellites provide a very high spatial coverage of urban temperatures by measuring thermal radi-
ation from surfaces compared to weather stations. Voogt and Oke (2003) confirmed that thermal 
remote sensing has been used for a few decades to assess the UHI, to perform land cover classifica-
tions, and as input for models of urban surface atmosphere exchange.

Different satellites offer various advantages for UHI studies. Landsat provides 30-100m thermal 
resolution every 16 days, suitable for detailed spatial analysis, while MODIS offers daily coverage at 
1km resolution, which is better for temporal studies. As reported by Zhou et al. (2014), MODIS data 
effectively analyzed surface urban heat island (SUHI) across major Chinese cities.

Processing satellite thermal data requires several corrections. Atmospheric effects must be removed 
using radiative transfer models. Surface emissivity varies with material type, and without proper 
corrections, temperature error can exceed  2-3°C (Sobrino et al., 2004).

Both methods face important challenges. For ground weather stations, main issues include ensur-
ing spatial coverage across the areas, avoiding microclimate effects from nearby heat sources or 
shading, and maintaining consistent measurement protocols. On the other hand, satellite measure-
ments face different challenges. Urban surfaces create complex 3D structures that affect thermal 
observations. As Voogt and Oke (2003) noted, viewing geometry significantly affects observed tem-
peratures. Satellites primarily observe horizontal surfaces from above, missing vertical surfaces like 
walls that contribute to the complete urban thermal environment.

Stewart et al. (2021) highlighted that the diurnal cycles of atmospheric UHI are well known based 
on years of continuous measurements in cities, but it cannot be measured continuously or in situ. 
This fundamental difference between surface and atmospheric measurements creates challenges 
for integrated UHI assessment.

Despite these challenges, combining ground and satellite measurements provides the most com-
prehensive UHI assessment. Ground weather stations offer accurate point measurements, while 
satellites reveal spatial patterns across entire cities. This relationship between surface and air tem-
peratures measured by different methods varies with surface properties, weather conditions, and 
time of the day, and combining these 2 methods would provide a comprehensive UHI assessment.

Satellite-Based Land Surface Temperature Measurement

Key Measurement Challenges
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Land surface temperature (LST) is the radiative skin temperature of the uppermost layer Earth’s 
surface (Li et al., 2013). LST represents how hot the surface of the Earth would feel to touch in 
a particular location, which is usually measured remotely by satellites detecting thermal infrared 
radiation emitted by surfaces. Air temperature, in contrast, is the temperature of air at a specific 
height above the surface. Meteorological standards specify measurement at 1.5-2 meters height 
using thermometers sheltered from direct radiation. Most global temperature analyses are based on 
station air temperatures, which represent the atmospheric conditions humans directly experience 
(Mildrexler et al., 2011).

The fundamental distinction between LST and air temperature lies in their physical nature and be-
havior. The analysis of 17 years of satellite data notes that the relationship between satellite LST and 
ground-based observations of 2m air temperature (T2m) is characterized in space and time (Good 
et al., 2017). The study found that LST and air temperatures can differ by 10-20°C during daytime, 
particularly over dry surfaces.

Recent research by Naserikia et al. (2023) found that LST and air temperature have distinct spa-
tiotemporal characteristics, and their relationship differs by season, ecological infrastructure, and 
building morphology. They mentioned that greater seasonal variability in LST compared to air tem-
perature, along with more pronounced intra-urban spatial variability in LST. 

Definitions and Measurements

2.3	 Land Surface Temperature (LST) vs Air Temperature

2.3.1	Fundamental Differences

2.3.2	Importance for Building Energy Analysis
While LST serves specific purposes in environmental monitoring by providing critical information on 
evapotranspiration (Li et al., 2013), air temperature, however, remains the standard for assessing 
human exposure and comfort. 

Air temperature represents the fundamental driver of building energy consumption, particularly 
for heating and cooling demands. Building HVAC systems operate based on air temperature mea-
surements. Thermostats monitor indoor air temperature and modulate heating or cooling output to 
maintain setpoint temperatures. The control logic responds to the temperature differential between 
indoor and outdoor air, not LST, as mentioned that “the indoor-outdoor temperature difference de-
termines the load demands” by Xiong et al. (2023). 

The empirical evidence by Su et al. (2021) strongly supports the primacy of air temperature in energy 
consumption. The paper confirmed that “outdoor air temperature shows strong positive correlations 
with cooling energy consumption”.  This correlation reflects the direct physical relationship where 
higher outdoor air temperatures increase cooling loads through conductive heat gain, increased 
ventilation loads, and greater infiltration heat gains. Similarly, lower air temperatures drive heating 
energy consumption through these same mechanisms operating in reverse.

Human comfort is highly related to building energy consumption. All standard thermal comfort in-
dices, including Predicted Mean Vote (PMV) and Physiological Equivalent Temperature (PET), rely 
on air temperature measurements rather than surface temperature (Peng & Huang, 2022). Another 
work by Schultz and Svendsen (1998) also concluded that the thermal comfort assessment requires 
air temperature as a primary input parameter. 
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2.3.3	LST to Air Temperature Conversion Methods
Converting satellite-derived LST to air temperature has become a critical methodology in urban 
climate research due to fundamental differences in spatial data availability. Ground-based weather 
stations, while providing accurate point measurements, typically offer sparse spatial coverage in ur-
ban areas, often one station per several square kilometers. This spatial limitation makes it challeng-
ing to capture the fine-scale temperature variations essential for understanding urban heat island 
effects and their relationships with UFEs at the building or neighborhood scale.

Satellite thermal imagery offers complete spatial coverage at resolutions of 30-100m, providing 
temperature information for every pixel across entire cities. However, satellites measure surface 
temperature rather than air temperature, necessitating conversion methods to obtain the air tem-
perature values required for building energy analysis and human comfort assessment. This conver-
sion enables researchers to leverage the spatial completeness of satellite data while maintaining 
relevance to energy consumption patterns and urban planning applications.

The following review examines various LST to air temperature conversion methods that have been 
developed to bridge this gap between spatial coverage and measurement type, evaluating their per-
formance and suitability for urban climate applications.

The most fundamental approach involves simple linear regression between LST and air tempera-
ture. Meyer et al. (2016) compared simple linear regression with machine learning algorithms for air 
temperature prediction in Antarctica using MODIS LST satellite data. Their linear regression model 
achieved an average R2 of 0.78 and RMSE of 5.83°C, which demonstrates that simple approaches 
can also provide high R2 values. 

Multiple linear regression (MLR) incorporates additional predictor variables beyond LST to improve 
accuracy. Noi et al. (2017) employed MLR with MODIS LST data along with elevation and Julian day 
as auxiliary variables in mountainous regions of Northwest Vietnam. The results showed very high 
accuracy with R2 values exceeding 0.93 for maximum temperature, 0.80 for minimum temperature, 
and 0.89 for mean temperature, with RMSE values around 1.5-2.0°C. This suggests that when aux-
iliary data was included, especially in distinctive areas, the improvements were substantial.

Chen et al. (2016) developed an enhanced empirical regression method that incorporated multiple 
predictors, including nighttime light data, LST, normalized difference vegetation index (NDVI), im-
pervious surface area, albedo, elevation, and daylight duration. Their approach achieved satisfac-
tory results with 98% of stations showing errors within ±2.5K, demonstrating the value of including 
diverse environmental variables.

Linear and Statistical Methods
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Regression Kriging (RK) combines regression analysis with spatial interpolation. It applies regression 
to establish relationships between temperature and axuilary variables, which kriging to spatially 
interpolate based on their spatial structure. Ding et al. (2023) used regression kriging to analyze ur-
ban air temperature in Guangzhou city, China based on the weather stations. The final temperature 
map combines the regression-based trend surface with kriged residual surface, leveraging both the 
explanatory power of environmental covariates and the spatial dependence of temperature fields. 
Although the result show high R2 of 0.95 with RMSE 0.92°C, the author mentioned that RK assumes 
linear relationships in trend, while temperature analysis have beyond non-lienar complicated rela-
tionships, which not be feasible to analyze the detail relationships.

Muli-Layer Perceptron (MLP) neural networks have shown superior performance for air temperature 
estimation, particularly in challenging conditions. The Temperature Estimation with ML and Land 
Input (TEMLI) framework by Salih et al. (2025) mentioned that “Among the models tested within 
the TEMLI framework, the Multilayer Perceptron (MLP) demonstrated superior performance”, by 
achieving R2 of 0.91 and RMSE of 1.5°C. Apart from MLP, Choi et al. (2021) used Artificial Neural 
Networks (ANN) and achieved high accuracy with R2 of 0.98 and RMSE of 2.19°C. However, they 
noted that model performance is highly dependent on input variables and network architecture.

The advantages of MLP for air temperature estimation are particularly relevant for complex ur-
ban environments. Unlike linear methods that assume constant relationships, MLP can capture the 
non-linear relationships between LST and air temperature that vary with surface types, time of day, 
and weather conditions. The ability to integrate multiple input variables simultaneously is another 
key strength. As Noi et al. (2017) demonstrated, MLP can effectively combine LST with auxiliary 
variables like NDVI, elevation, and solar angles to create comprehensive air temperature maps. 
Combining with multiple variables is crucial as air temperature in urban areas is highly influenced by 
numerous factors beyond surface temperature.

MLP also excels in maintaining spatial continuity, which is essential for urban climate applications. 
While Random Forest methods can achieve high point accuracy, they often create artificial spatial 
patterns or boundaries in temperature maps due to their tree-based structure. In contrast, MLP 
learns the underlying physical relationships between variables and produces smooth, continuous 
temperature surfaces that better represent the gradual transitions observed in real urban thermal 
environments. This spatial continuity is particularly important for building energy analysis, where 
temperature gradients between neighborhoods affect heating and cooling demands.

Geostatistical Methods

Neural Network Methods

Random Forest (RF) has emerged as a powerful method for air temperature estimation, which is one 
of the most common methods to convert LST to air temperature in recent studies. Tang et al. (2021) 
used RF to create temperature maps by building multiple decision trees using predictors (LST, NDVI, 
elevation) and aggregating their result. It achieved R2 values between 0.96-0.98 with RMSE of 1.48-
2.55°C. 

Although the RF algorithm has a great ability to handle non-linear relationships and multiple vari-
ables, making it particularly suitable for complex urban environments, the paper noted an import-
ant limitation. RF can create artificial spatial patterns due to its tree-based structure, which may be 
problematic for continuous temperature mapping. Also, RF significantly understimates temperature 
extremes and struggles to recover finer scale spatial resolution. The author suggests that standard 
RF implementations miss important spatial context necessary for realistic temperature mapping, 
making it less suitable than other nethods like neural neworks.

Tree-based Approaches
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The application context significantly influences the suitability of each LST to air temperature con-
version method. Studies focused on general climate monitoring or agricultural applications (Meyer 
et al., 2016; Noi et al., 2017) may tolerate different error patterns than those specifically targeting 
urban energy analysis. For instance, methods optimized for capturing spatial temperature patterns 
for agricultural planning may not adequately represent the peaked midday temperatures critical for 
cooling energy demand estimation.

Among the reviewed methods, the MLP approach (Salih et al., 2025) demonstrates particular ad-
vantages for urban applications despite being developed for country-wide climate monitoring in 
Morocco. The TEMLI framework’s MLP architecture showed superior performance in handling ex-
treme temperature conditions and complex terrain, which are analogous to the heterogeneous ur-
ban environment with varying building heights, materials, and land cover types found in Seoul. Im-
portantly, MLP’s ability to capture non-linear relationships between multiple input variables (LST, 
NDVI, elevation, solar angle) makes it well-suited for urban areas where temperature is influenced 
by numerous interacting factors. While Salih et al. (2025) applied this method across diverse Moroc-
can landscapes, the model’s proven capability in areas with built environments and its high accuracy 
(R2= 0.91) suggest strong transferability to dense urban contexts like Heukseok-dong.

Only Ding et al. (2023) specifically addressed urban applications, though their focus was on climate 
adaptation rather than energy consumption. This highlights a gap in the literature where most LST 
to air temperature conversion studies have not been specifically validated for building energy appli-
cations, which require accurate representation of temperature conditions during peak cooling and 
heating hours. The selection of MLP for this research addresses this gap by applying a method with 
proven non-linear modeling capabilities to the specific challenge of urban energy analysis.

Comparative Performance

Category

Statistical method

Geostatistical 
method

Tree-based methods

Neural Network

Method

Linear Regression Meyer et al. (2016) 0.78 5.83 Simple 
interpretable

Cannot handle nonlinear 
relationships

Antarctic climate monitoring
  - General temperature distribution mapping for climate science, not urban or energy-specific applications

Multiple Linear 
Regression Noi et al. (2017) 0.93/0.80/0.89 1.5/2.0/1.6 Good baseline 

performance
Limited in spatial vari-

ations

Agricultural and environmental monitoring in Vietnam
  - Temperature mapping for vegetation phenology and agricultural planning, not urban heat island or energy analysis

Regression Kriging Ding et al. (2023) 0.95 0.92 Smooth air 
temperature variation

Assumes linear relation-
ships in trend

Urban climate adaptation
  - Specifically for urban heat mitigation strategies and climate-responsive urban planning in Guangzhou

Random Forest Tang et al. (2021) 0.96-0.98 1.48-2.55 Handles multiple 
variables

Creates artificial spatial 
patterns

General temperature downscaling
  - Improving spatial resolution of temperature data for various applications, tested on mixed land cover types

MLP (TEMLI) Salih et al. (2025) 0.91 1.5 Superior in 
extreme conditions

Requires substantial 
training data

Climate monitoring across Morocco
  - Country-wide temperature estimation for climate assessment, including but not limited to urban areas

Artificial Neural 
Network (ANN) Choi et al. (2021) 0.98 2.19 Capture complex 

relationships
Highly dependent on 

input variables

Korean Peninsula weather forecasting
  - Operational weather prediction and monitoring, general purpose temperature retrieval

Study R2 RMSE (°C & K) Key Advantage Limitations

Application Purpose

Table 2.1 Comparative performance of methodologies to obtain air temperature

Table 2.2 Air Temperature application purpose

Meyer et al. (2016)

Noi et al. (2017)

Ding et al. (2023)

Tang et al. (2021)

Salih et al. (2025)

Choi et al. (2021)

Study
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The choice of conversion method depends critically on the specific application, available resources, 
and the trade-offs researchers are willing to accept. For building energy studies, ideally the method 
would capture temperature variations at both temporal and spatial scales. However, current data 
sources force a fundamental trade-off: ground-based stations provide excellent temporal resolution 
(hourly or sub-hourly) but sparse spatial coverage, while satellite data offers complete spatial cov-
erage but is limited to snapshot observations at fixed overpass times.

Researchers using satellite-based methods, including this study, must acknowledge that they pri-
oritize spatial completeness over temporal resolution. This means capturing temperature patterns 
across entire urban areas at building-level detail, but only at specific moments in time (11:12 AM 
for Landsat in Seoul). This temporal limitation is significant for energy analysis since building energy 
consumption varies throughout the day following occupancy patterns and diurnal temperature cy-
cles. However, for studies examining spatial relationships between urban form and environmental 
conditions, or requiring temperature data for every building in a district, the spatial completeness 
of satellite data becomes essential despite its temporal constraints.

While simple regression might suffice when only LST data exists, the inclusion of auxiliary variables 
like vegetation indices, solar zenith angle, and elevation data significantly improves accuracy regard-
less of method choice. Computational resources also matter, particularly for operational systems 
that need to process daily satellite imagery across entire cities. The method must handle data gaps 
from cloud coverage while maintaining spatial and temporal consistency.

For urban heat island studies focusing on building energy impacts, MLP neural networks offer the 
optimal balance of accuracy, computational efficiency, and physical realism. The method’s ability 
to learn complex non-linear relationships while producing spatially continuous temperature fields 
makes it particularly suitable for heterogeneous urban environments like Seoul. The seasonal vari-
ations and diverse urban forms in Seoul can create challenging conditions where temperature re-
lationships vary significantly across space and time. Conditions where MLP’s adaptive learning ca-
pabilities provide clear advantages over traditional statistical methods. This superiority in handling 
urban complexity, combined with proven performance metrics from recent studies, provides strong 
justification for adopting neural network approaches for converting satellite LST to air temperature 
in urban energy analysis applications, despite the inherent temporal limitations of satellite-based 
data.

Temperature Conversion Method Selection Considerations
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No. of Papers

Spatial Resolution

No. of Papers

Spectral Bands

%

Temporal Resolution

%

Years of Operation

Landsat

Landsat

317

30m

396

11 bands (2 thermal)

54.75

16 days

68.39

2013 - present

MODIS

MODIS

103

1000m

185

36 bands (16 thermal)

17.79

Daily

31.95

1999 - present

ASTER

ASTER

15

90m

36

14 bands (5 thermal)

2.59

16 days

6.22

1999 - present

NOAA/AVHRR

Sentinel-3

1

1000m

7

11 bands (3 thermal)

0.17

2 days

1.21

2016 - present

METEOSAT

ECOSTRESS

-

70m

3

6 bands (5 thermal)

-

5 days

0.52

2018 - present

Satellite

Satellite

Exclusive Use Combination

Table 2.3	 Most used satellites/sensors to obtain LST data (De Almeida et al., 2021)

2.3.4	Satellite Data for Temperature Estimation
Multiple satellite platforms provide thermal data for LST acquisition, each offering different trade-
offs between spatial resolution, temporal frequency, and data availability. The selection of appropri-
ate satellite data is crucial for UHI studies and temperature mapping. 

De Almeida et al. (2021) reviewed the different platforms of remote sensing techniques (satellites) 
and summarized the use of each satellite platform. Landsat remains the most widely used platform 
for LST studies, with 54.75% of papers exclusively using Landsat data, while MODIS accounts for 
17.79% of exclusive use. The combination of multiple sensors is less common, with only 7% of stud-
ies using Landsat with AVHRR and 3% using METEOSAT. 

Table 2.4 shows a comprehensive overview of commonly used satellite platforms with spatial/tem-
poral resolution, spectral bands, and years of operations. Landsat has provided the longest contin-
uous record of thermal observation (Landsat 4), and since 2013, Landsat 8 accessories the Thermal 
Infrared Sensor (TIRS) with 2 thermal bands. The thermal resolution is resampled to 30m, which 
provides sufficient detail for UHI studies. The 30m optical bands enable precise land cover classi-
fication to support emissivity estimation and urban form analysis. The 16-day revisit cycle, while 
limiting for some applications, provides consistent seasonal coverage. MODIS has been providing 
satellite imagery since 1999, which was designed for global environmental monitoring. It provides a 
very high temporal resolution with daily coverage and extensive spectral information with 36 bands. 
However, its 1000m spatial coverage limits its application in urban environments where temperature 
can vary significantly over short distances, especially in urban areas. AESTER was also launched in 
1999, with 5 thermal bands at 90m resolution. It can provide detailed thermal information than most 
sensors through 14 total spectral bands. However, similar to Landsat, the 16-day revisit cycle has a 
limited acquisition schedule, making it challenging to obtain consistent time series data. Sentinel-3 

Table 2.4	 Satellites’ spatial, temporal resolution, spectral bands and years of operation 
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and ECOSTRESS were launched in recent years, with higher temporal resolution of 2-day revisit and 
5-day revisit. However, Sentinel provides 1000m spatial resolution, which is insufficient for detailed 
urban analysis where the areas of the building level variations are important. Although ECOSTRESS 
provides 70m of spatial resolution and high temporal resolution, there are limitations for historical 
archives for long-term studies.

For this research investigating Seoul’s urban heat island effects on building energy consumption over 
a 10-year period, careful consideration of available platforms led to selecting Landsat as the pri-
mary data source. The 30m resolution effectively captures Seoul’s urban morphology, distinguishing 
between high-rise residential complexes, commercial districts, and green spaces that influence local 
temperature patterns. The complete temporal coverage from 2013-2024 enables robust analysis of 
urban development impacts. Established processing methods, particularly the mono-window algo-
rithm, validated for East Asian urban environments, ensure reliable LST retrieval. Most importantly, 
the extensive scientific validation of Landsat for urban heat island studies provides confidence in the 
results and enables comparison with the broader literature.

2.3.5	Limitations of Using Satellite Data
A fundamental limitation of using Landsat is its temporal resolution as it captures only 1-2 images 
per month at a fixed time of day, which can not represent the full diurnal temperature cycle. Li et al. 
(2022) acknowledged that single daily observations miss critical temperature extremes and diurnal 
variations essential for energy analysis. To address this limitation, some studies combined multiple 
satellite platforms. Weng et al. (2014) used MODIS’s four daily observations to model diurnal tem-
perature cycles and applied patterns to enhance Landsat’s temporal resolution.

Zhou et al. (2014) noted in their analysis of Surface Urban Heat Island (SUHI) in Chinese cities that 
Landsat’s temporal sampling ‘represents a snapshot rather than a comprehensive thermal char-
acterization,’ but proceeded with analysis using only available images because their focus was on 
spatial patterns of SUHI intensity across cities. Similarly, Imhoff et al. (2009) acknowledged that 
MODIS captured only four moments in the diurnal cycle, potentially missing peak temperatures, yet 
concluded this was acceptable for their comparative UHI mapping objectives.

However, many studies have simply acknowledged these temporal limitations without attempting 
to overcome them. This research similarly accepts the temporal constraints of satellite data while 
focusing on spatial relationships between urban form, temperature, and energy consumption at the 
satellite overpass time. Rather than attempting to model full diurnal cycles, this study examines how 
urban form elements correlate with both temperature and energy consumption patterns specifically 
at 11:12 AM, acknowledging that this represents only one point in the daily energy consumption 
cycle.
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2.4	 Urban Form Elements (UFE) and Measurement

2.4.1	Urban Form Elements
Urban form elements (UFE) quantify the physical characteristics of cities that influence thermal be-
havior and energy consumption. One of the commonly mentioned UFEs in city studies is are Ground 
Space Index (GSI) and the Floor Space Index (FSI). GSI represents the ratio of building footprint to 
total land area, while FSI, also known as Floor Area Ratio (FAR), measures the total floor area rel-
ative to plot area, and these indicators provide essential metrics for understanding urban density 
patterns (Pont & Haupt, 2023). Building height and building footprints represent the 3-dimensional 
urban structure, while building volume provides a comprehensive measure of built mass that affects 
heat storage and shadow patterns.

Vegetation indicators play a crucial role in UHI studies. The Normalized Difference Vegetation Index 
(NDVI) is one of the most widely used metrics, which is calculated from red and near-infrared satel-
lite bands to quantify vegetation abundance with values ranging from -1 to 1, with higher values in-
dicating denser vegetation. S. Peng et al. (2011) evaluated that NDVI shows strong negative correla-
tions with surface temperature, with correlation typically running from -0.4 to -0.7 in urban areas.

Liao et al. (2021) examined the spatial heterogeneity in London and Seoul with 10 UFEs, including 
canyon H/W ratio, building height, building ratio, street width, green space ratio, and analyzed the 
relative importance of variables on LST using Partial Correlation and Genizi Method. While their 
methodological approach was comprehensive, their analysis was limited to only four days of data, 
specifically two summer and two winter days, and focused solely on LST rather than air temperature.

This research builds upon Liao et al.’s methodological framework while addressing several of their 
limitations. Rather than analyzing isolated days, this study examines multiple satellite images across 
a full decade from 2015 to 2024, enabling the detection of long-term trends and actual urban trans-
formations. The analysis converts LST to air temperature, providing more direct relevance to build-
ing energy consumption patterns. Additionally, this research investigates relationships across mul-
tiple spatial scales including pixel level, 100m buffers, and 300m buffers to understand how urban 
form effects vary with scale. The seasonal analysis incorporates multiple images per season across 
ten years rather than single representative days, providing more robust seasonal patterns. Most im-
portantly, this study extends beyond temperature analysis alone to examine the complete cascade 
relationship from urban form through temperature to actual building energy consumption data, of-
fering practical insights for urban planning and energy management strategies.
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2.4.2	Scale of Analysis
Diverse spatial scales are used for understanding the relationship between UFE and temperature 
patterns in UHI studies. Buffer analysis is generally useful to study the influence area of spatial en-
tities on their surroundings (Na et al., 2024). Many papers have employed various buffer distances 
to capture the temperature effects of urban green spaces and other UFEs. Dong et al. (2020) ex-
amined 100 m buffer zones to evaluate cooling effects from the green roof installation in Xiamen 
Island, which effectively captured immediate surroundings and local microclimate effects. The 100 
m is also called as “characteristic cooling buffer zone”, making it particularly valuable for analyzing 
building-level energy consumption patterns.

At larger scales, different buffer ranges affect the LST-distance fitting results of urban parks, and 
Cai et al. (2023) confirmed that a 300 m buffer zone is the optimal fitting interval for understanding 
neighborhood-level thermal dynamics. The cooling radiation range of urban green space (UGS) on 
the UHI effect is 300 m, and the cooling effect is most effective from 0 to 200 m (Na et al., 2024; 
Bhattarai et al., 2025). These findings support the use of both 100m and 300m buffer zones as they 
can capture different scales of urban thermal dynamics, where the 100m buffer can reveal immedi-
ate building-environment relationships for energy analysis, while the 300m buffer reveals neighbor-
hood effects for understanding broader temperature patterns.
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2.5	 Building Energy Consumption

2.5.1	Energy Consumption Patterns

2.5.2	Factors Affecting Building Energy Consumption

Residential energy consumption shows distinct seasonal patterns, which are driven by space con-
ditioning and ambient temperature. M. Li et al. (2018) found that the household daily electrical 
consumption varies significantly between months, with mean electrical load, peak load, load factor, 
and timing of peak load all exhibiting significant monthly variations. In the summer season, average 
electricity consumption increases by around 5-7% for each degree Celsius increase in ambient tem-
perature, while winter shows a similar magnitude of increase in gas consumption for each degree 
decrease in temperature (Fikru & Gautier, 2015). The temperature sensitivity varies significantly 
based on building uses, with energy-efficient buildings showing 40-50% less sensitivity to weather 
variations compared to conventional buildings.

Wang et al. (2023) found that for each 1°C of temperature increase, energy use intensity (EUI) ex-
periences an average increase of approximately 14% for cooling and a decrease of 10% for heating. 
The electricity demand patterns show both peaks in summer and winter due to mixed use of elec-
tricity for both cooling and heating systems, while natural gas consumption for heating can range 
from more than 30 billion cubic feet per day in winter months, which is around ten times larger than 
in the summer season (Su et al., 2021).

Building energy demand is influenced by a combination of the interplay of climate variables, build-
ing characteristics, occupant behavior, and urban context effects. Among many factors, there are 
six primary factors that affect building energy consumption: climate, building envelope, building 
equipment, operation and maintenance, indoor environmental conditions, and occupant behaviors 
(Yoshino et al., 2017).

Building characteristics play a crucial role in determining energy demand patterns, such as build-
ing size, envelope properties, and system efficiency. Building typology and floor area show strong 
correlations with energy demand, as larger buildings and those with poor thermal insulation require 
substantially more energy for space conditioning (Led, 2023). Led (2023) also found that building 
orientation, window-to-wall (WTW) ratio, and thermal mass characteristics can influence annual 
energy consumption by 15-40%, with these effects varying significantly across climate zones and 
building types.

Occupant behavior is one of the most influential factors, which can cause up to 300% variation be-
tween predicted and actual building energy consumption (Delzendeh et al., 2017). According to the 
World Business Council for Sustainable Development (WBCSD), wasteful behavior can add one-
third to a building’s designed energy performance, while conservation behavior can save a third 
(Bäcklund et al., 2023).
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2.6.2	Urban Form Elements Impact on UHI
UFEs significantly influence the intensity and spatial distribution of UHI through their effects on 
energy balance, surface properties, and atmospheric dynamics. The NDVI demonstrates the stron-
gest cooling effect among UFEs. Liao et al. (2021) found that the green space ratio was among the 
most influential factors affecting LST in London and Seoul, with NDVI showing negative correlations 
ranging from -0.415 to -0.688 with air temperature, depending on the season. Ziter et al. (2019) 
explained that tree canopy cover above 40% provides substantial cooling benefits, with scale-de-
pendent interactions showing that cooling effects are most pronounced within 60-90m of vegetated 
areas.

Building density and morphology can influence temperature variations through radiation trapping, 
wind flow, and heat storage. Y. Li et al. (2020) showed that UHI intensity is directly related to a lin-
ear combination of city area and gross building volume, capturing the amplifying effects of building 
density on temperature. Horizontal density metrics such as GSI and building coverage ratio show a 
stronger correlation with LST than vertical metrics like building height. 

The 3-dimensional configuration of UFEs introduces scale-dependent thermal impacts through a 
complex interplay between building morphology and atmospheric processes. 3D metrics performed 
better in predicting air temperature than 2D metrics at the 500m scale, while the influence of 2D fea-
tures was stronger at the 1000m scale, with 3D features showing stronger correlations with average 
daily, daytime, and nighttime air temperatures, regardless of spatial scale (C. Yang et al., 2022). Fan 
et al. (2023) proposed that the correlation between building coverage ratio, FAR, and LST is largest 
at a 300m scale, while building height and sky view factor show the strongest correlations at a 400m 
scale. These scale-dependent relationships show that urban morphology shows stronger correla-
tions with LST differences within built-up areas compared to entire cities, which indicates the critical 
importance of ventilation and solar radiation for urban thermal environments (Gao et al., 2020).

2.6	 Relationships between UHI, UFE, and Energy

2.6.1	UHI Effect on Energy Consumption
The UHI effect significantly influences building energy consumption by elevating urban tempera-
tures, which directly increases cooling demands in summer and reduces heating demands in winter. 
Li et al. (2019) examined a comprehensive review on UHI and building energy consumption, and 
found that UHI effects result in a median increase of 19.0% in cooling energy consumption and a 
median decrease of 18.7% in heating energy consumption, though with substantial spatial variations 
ranging from 10-120% increase in cooling and 3-45% decrease in heating across different cities. 
Yang et al. (2019) examined Local Climate Zone (LCZ) in Nanjing and concluded that heat islands in 
urban neighborhoods increased cooling demand by 12-24% for residential buildings, while reducing 
heating demand by 3-20%, resulting in a net annual energy increase of 2-6% for residential buildings. 

The magnitude of UHI impacts on energy consumption varies significantly based on building type, 
urban morphology, and climate zones. Santamouris (2019) reported that the global energy penalty 
induced by UHI at the city scale averages 0.74 kWh/m2/°C, translating to approximately 237 kWh 
per person annually, with peak electricity demand increasing by 21 W per degree of temperature 
rise. Another research by Su et al. (2021) provided empirical evidence showing that changes in av-
erage UHI intensity of 0.5K result in monthly cooling energy consumption increases from 0.17-1.84 
kWh/m2, with nocturnal UHI intensity correlating more strongly with energy consumption than day-
time values. These effects are accelerated during heat wave events when regional climate extremes 
and local UHI can more than double the cooling energy penalty, which creates critical stress on ur-
ban electricity infrastructure and raises serious concerns during peak demand periods. 
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2.6.3	Urban Form Elements Impact on Energy
UFEs influence building energy consumption through both direct physical mechanisms and indirect 
microclimate variations, with impacts varying significantly across different climate and spatial vari-
ations. Vegetation shows consistent cooling effects through evapotranspiration, which can reduce 
energy consumption, particularly for summer cooling demands. Mostafavi et al. (2021) analyzed 
12,700 buildings and found complex relationships between urban form factors and energy use. 
Surprisingly, their statistical analysis showed a 1 m2 increase in tree-cover area associated with a 
0.04% increase in EUI, though this minimal effect (less than 0.1%) may reflect correlation rather than 
causation, for instance, older neighborhoods with mature trees may also have less efficient build-
ings. More intuitively, they found that a one-unit increase in building count per hectare was associ-
ated with a 0.52% reduction in EUI, likely due to shared walls reducing heat loss and the efficiency 
benefits of compact development. The study emphasized that “form, through the layout and  orien-
tation of urban blocks, vegetation and high albedo materials, and the shading effect of surrounding 
blocks, changes the microclimate within building networks,” with impacts varying between cities 
based on local climate and urban density patterns.

Building density and 3D morphology of buildings create complex energy impacts through natural 
ventilation and thermal mass. D. Wang et al. (2021) demonstrated that urban 3D form has a greater 
influence than 2D form when investigating building energy consumption, as higher 3D compactness 
may cause lower sky view factors, resulting in reduced air ventilation and hot air trapped between 
buildings, significantly increasing cooling energy demand. Song et al. (2020) analyzed 5 urban mor-
phological parameters in China and found that higher aspect ratio (AR) and building height (BH) 
were associated with lower heating EUI, likely due to reduced surface area-to-volume ratios in tall-
er buildings. However, they found that increasing building density (BD), floor area ratio (FAR), and 
shape factor (SF) led to increased heating EUI. This partially contradicts Mostafavi et al. (2021), who 
found building density reduced overall EUI. This discrepancy may reflect different climate contexts 
or different definitions of density metrics. In cold climates, the negative effects of reduced solar 
access in dense developments may outweigh the benefits of shared walls, while in mixed climates, 
the year-round benefits of compact development may dominate. A similar study conducted in China 
revealed that building density affects natural lighting and passive solar gains, causing energy use 
variations up to 30% in offices and 19% in residential areas (Cui et al., 2024). 
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2.7	 Analytical Methods for Complex Urban Systems

2.7.1	Handling Multicollinearity
When analyzing UFEs in UHI studies, multicollinearity in UFEs can be found, which poses significant 
challenges. Traditional regression methods struggle with such correlated predictors because they 
cannot properly partition the shared variance among variables, such as high NDVI areas typically 
correspond with low building ratios, and building height strongly correlates with FSI, creating con-
founding effects that obscure the true contribution of each variable.

To address these multicollinearity challenges, specialized variance decomposition methods have 
been developed to quantify the effects of highly correlated spatial variables. Liao et al. (2021) ap-
plied the Genizi method in their study, which decomposes the total R2 among predictors while ac-
counting for shared variance between correlated variables, producing percentage contributions that 
sum to the total explained variance. The study mentioned that the Genizi method is particularly valu-
able when predictors show high correlations. While the Genizi method reveals relative importance 
percentages, it must be complemented with other correlation methods to determine the direction 
of relationships, as the variance decomposition does not show whether correlations are positive or 
negative. By complementing with other methods, it can make a comprehensive understanding of 
UFE impacts.

2.7.2	Feature Importance Methods
There are limitations to evaluating the feature importance of UFE with the Genizi method alone, as 
it does not show whether it increases or decreases the target variable. One of the common methods 
to complement the Genizi method is a Partial correlation. Partial correlation analysis complements 
the Genizi method by revealing the directional effects of each variable while controlling for all oth-
er variables in the system. The combination of these methods has proven particularly effective for 
urban climate study by Liao et al. (2021), which allows researchers to understand both the relative 
importance percentages from the Genizi method and the directional relationships from the Partial 
correlation coefficients.

Not only Partial correlation, but there are other comparative methods to show the directional anal-
ysis used in other UHI studies. Tong et al. (2017) used the Pearson correlation coefficient to analyze 
simple bivariate relationships between variables, but they failed to account for the confounding 
effects of other variables in the system, which restricts the predictors when they are correlated. The 
article by Song et al. (2020) used Multiple linear regression (MLR) coefficients to show directional 
effects, but the result became unstable and difficult to interpret when there is multicollinearity in 
variables. Spearman rank correlation also offers improvement by assessing monotonic relationships 
rather than strictly linear ones. However, it still only captures bivariate associations without con-
trolling for other variables, which does not properly show linear relationships between environmen-
tal factors (Chaudhary et al., 2022).
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Began in the 1960s due to rapid 
urbanization and industrialization

High-rise to Low-rise buildings across 
the districts and several major urban 

parks

More than 10 years worth of data for 
Weather (AWS) and Energy Demand 

(Electricity & Gas)
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Research Area

3.1	 Why Seoul as a Research Area

03

There are mainly three reasons why Seoul is chosen for the research area. Firstly, Seoul experienced 
rapid urbanization, and the city has been experiencing a significant UHI effect as a consequence 
(Hong et al., 2019). Secondly, which is also the main reason for choosing Seoul, is the exceptional 
data availability from both the Korean government and the Seoul municipality. Thirdly, Seoul has 
very diverse urban form elements from high-rise to low-rise buildings across the districts and sever-
al major urban parks and mountains, which will be interesting to analyze in relation to the UHI effect 
and energy consumption.

Regarding the data availability, the Korean government has been providing precise weather data 
through automatic weather stations (AWS) since 1997, with 554 AWSs throughout Korea. Among 
them, 39 AWSs are located within the Seoul boundary. These AWSs are well distributed across the 
districts and provide comprehensive meteorological data, including air temperature, humidity, wind 
speed, and air pressure (Hong et al., 2019). This extensive weather history from AWSs can facilitate 
accurate and precise modelling and validation for the UHI effect. The accessibility of the data helps 
to enhance the precision and reliability of the research methodology.

Moreover, the Seoul municipality has been providing a well-structured database for energy con-
sumption. It provides a very precise and detailed energy consumption database of electricity and 
gas for buildings in Seoul. The energy demand has been recorded for more than a decade, which 
enables analysis of the correlation with urban heat patterns in Seoul (Korea Architecture Hub, 2024).
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3.2	 City Characteristic
The capital city of South Korea, Seoul, is one of the most urbanized and populated cities in the
world, with a population of around 10 million in 2023. The total area of Seoul is approximately 605 
km2, with very dense urban infrastructure, high-rise buildings, and a very complex transportation 
system. Within Seoul, there are 25 Gu (boroughs) and 426 Dong (smaller units of boroughs). Each 
Gu has different characteristics, and Seoul is mainly divided into Northern and Southern Seoul, with 
the Han River running in the middle of the city.

As one of the most urbanized and complex cities in the world, Seoul has a very diverse range of 
urban forms, from high-density business districts such as Gangnam to suburban residential areas. 
Due to a high number of residents, the city is characterized by extensive impervious surfaces, high 
buildings, and limited green spaces, which provide a rich context for studying how urban morphol-
ogy influences UHI effect and energy consumption.

In addition, Seoul has implemented green roofs and developed urban parks to mitigate the effects of 
urbanization on the environment. The Seoul Metropolitan Government has introduced the concept 
of green infrastructure to solve urban problems such as the urban heat island phenomenon, fine 
dust, and localized heavy rains, with specific projects including support for roof greening and the 
creation of ecological trails (J. Choi & Kim, 2022).

Figure 3.1 4 major city characteristics in Seoul
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3.3	 Heukseok-dong
Seoul consists of 25 boroughs, where 14 boroughs are located on the north side and the other 11 
boroughs are located on the south side of the Han River. Indeed, analyzing every single borough 
would require a significant amount of time and numerous datasets. To reduce the timeframe of the 
research, this paper focuses on one of the regions in Seoul. Since the research is aiming to find the 
correlation of UHI, energy demand, and urban form elements in the last decade, it is ideal to choose 
the region that has many changes in urban form elements in the last 10 years to analyze how the 
change in urban form affects the other parameters.

Figure 3.2 Diverse urban form elements in Heukseok-dong
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One of the regions that fulfills these requirements is Heukseok-dong. Heukseok-dong is one of the 
districts in Dongjak-gu. Heukseok-dong covers an area of ​​1.67 km2 and is a multi-generational area 
due to old buildings and a university campus. There are multiple reasons why Heukseok-dong is a 
good area to be researched. The area has very diverse urban form elements from the Chung-Ang 
University campus, a large park (Dalma park), and thousands of buildings, from old to new residen-
tial and multifunctional buildings. This would help to find how the different urban form elements are 
related to air temperature distribution.

Despite ongoing redevelopment, Heukseok-dong in 2024 remains characterized by a huge number 
of low-rise residential structures. While certain districts have undergone transformation into high-
rise apartment districts, the predominant building type continues to be low-rise residential building, 
which is almost 81% of the total buildings in Heukseok-dong. These buildings are densely packed 
with short distances between buildings, contrasting with other building types that have compara-
tively more open areas. This dense, compact arrangement of low-rise buildings represents a typical 
urban pattern throughout Seoul and it should be an important consideration for this research.

Low-rise Residential Buildings

High-rise Apartments

Commerical Buildings

University Buildings

Building Types in Heukseok-dong (2024)

Figure 3.3 Different building types in Heukseok-dong in 2024
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Figure 3.4 Heukseok-dong redevelopment project timline between 2015 and 2025

There is also an ongoing redevelopment promotion project, which is called ‘Heukseok New Town 
Project’. Heuksoek-dong is one of the places where many refugees gathered together during and 
after the Korean War in 1950s. As a result, there are still many very old residential buildings, and the 
Seoul municipality started a redevelopment project in the early 2000s, which is still ongoing these 
days. This project has continuously changed the number and characteristics of buildings over the 
years in Heukseok-dong. The Seoul municipality classified 11 districts in Heukseok-dong, which are 
in need of redevelopment. 

Heukseok-dong comprises 11 districts at various stages of urban transformation, with some al-
ready redeveloped and others awaiting renewal. Districts 3, 4, 5, 6, 7, and 8 have been transformed 
into high-rise residential complexes, replacing the original compact low-rise buildings. The primary 
purpose of this redevelopment is to transition from densely packed low-rise structures to modern 
high-rise apartments with increased open spaces, which would enhance residents’ quality of life and 
improve environmental conditions.

3.3.1	Heukseok New Town Project
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Clear Future Scenario

Establishing various residential management plans 
that take into account regional characteristics

Creation of leisure space and establishment of 
green network along the Han River

Change in Building Geometry Change in Greening Element (NDVI)

7

Figure 3.5 2030 SeoulPlan cover page

The Seoul municipality has published a com-
prehensive vision for Heukseok-dong’s future 
through its “2030 SeoulPlan” report, which con-
tains four main goals and ten strategic approach-
es for transforming the area. Goal 3 addresses 
residential area management and establishment, 
and Goal 4 focuses on expanding leisure spaces 
and developing green infrastructure networks. 
The report plans a mixed-use development ap-
proach, promoting single and double-household 
apartments alongside multifunctional complexes 
near Heukseok subway station. Additionally, the 
Seoul municipality aims to create an inner-city 
green space and establish connectivity between 
Dalma Park and the Han River through an inte-
grated green network. This plan will significantly 
change the key urban form elements, especially 
vegetation coverage and building density ratios, 
which have direct implications for UHI effects in 
the area.



Data Collection
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Table 4.1 Landsat band information by B. Markham (July 2013)
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Data Collection

4.1	 Satellite Imgery

04
Data collection is a fundamental component of this research, providing the foundation for analyzing 
the relationship between UHI effects, energy consumption and UFE. This chapter shows the five 
primary data sources. Each data source contributes unique spatial and temporal information nec-
essary for understanding the complex interactions between Heukseok-dong’s urban morphology, 
microclimate effects, and energy consumption patterns.

4.1.1	Landsat 8
One of the most widely used methods for obtaining precise temperature data in UHI studies is using 
satellite imagery. Although there are hundreds of satellites that capture the LST (land surface tem-
perature) of the Earth, this research uses Landsat 8 due to its extensive temporal coverage of over 
10 years and high spatial resolution of 30 by 30 meters. From Landsat 8, the digital elevation model 
(DEM) and solar zenith angle (SZA) can be acquired, while LST and normalized difference vegetation 
index (NDVI) can be calculated using 3 spectral bands.

To calculate LST and NDVI of the research area, 3 bands are required: Band 4 (RED), Band 5 (NIR), 
and Band 10 (TIR-1).

Band 4 (RED) - OLI Band
•	 It captures red light in the visible spectrum of 0.64-0.67 μm, which is the portion of light that 

human eyes perceive as red. This band is often used to assess vegetation health analysis, distin-
guishing vegetation from non-vegetated surfaces and urban area identification (Landsat NASA, 
2023).



Figure 4.1 Flowchart of calculating NDVI and LST from Landsat 8 by Sahani (2021)
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Band 5 (NIR) - OLI Band
•	 Band 5 captures near-infrared radiation (NIR), which is invisible to human eyes, that is wave-

lengths between 0.85-0.88 μm. Vegetations reflect strongly in NIR, as when there are healthi-
er plants, the more complex the internal structure, the higher the reflectance can be captured 
(Landsat NASA, 2023).

Band 10 (Thermal Infrared) - TIRS Band
•	 This band captures thermal infrared radiation, which is also known as heat, by measuring emit-

ted radiation (Landsat NASA, 2023). 

These bands can be obtained from the various websites, but this research uses Google Earth Engine 
(GEE) as it can calculate the research area by itself and download all the required bands at once.

To calculate the LST and NDVI of the research area, a method, the ‘Mono-window Algorithm’ or 
“Single-channel Algorithm” should be used. This method is commonly used with Landsat data for 
LST and NDVI retrieval, which uses a systematic flowchart that includes calculating Top of Atmo-
sphere (TOA) radiance, Proportion of Vegetation (PV), Brightness temperature (BT), and finally LST. 
This report follows the methodology that Sahani (2021) proposed in the published paper.

L. Wang et al. (2019) compared 3 algorithms for the retrieval of land surface temperature from the 
Landsat 8 images, and their report is well summarized for each step for calculating NDVI and LST. 
According to their research, it requires 6 steps to calculate NDVI and LST, which are interrelated.

Step 1 - Retrieval of TOA spectral radiance

•	 The first step is to convert Digital Number (DN) values from the Landsat 8 TIRS Band 101 to spec-
tral radiance using the equation.

Rλ = ML × Qcal + AL

4.1.2	Calculating LST and NDVI
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•	 Rλ is spectral radiance, ML is the radiance multiplicative scaling factor, Qcal is the DN value, and 
AL is the radiance additive scaling factor. These parameters can be found in the metadata (MTL) 
file that comes with Landsat imagery when downloading.

Step 2 - Transmission of spectral radiance to at-sensor brightness temperature

Step 3 - Calculation of NDVI

Step 4 - Calculation of Proportion of Vegetation (Pv)

Step 5 - Calculation of Land Surface Emissivity (LSE)

Step 6 - Calculation of Land Surface Temperature (LST)

•	 Once the spectral radiance is calculated, it has to be converted to brightness temperature using 
Planck’s function.

TB = K2 / ln(K1/Rλ + 1) - 273l.15

•	 TB is brightness temperature in Kelvin, K1 and K2 are calibration or thermal constants specific 
to Landsat 8 Band 10, where K1 = 774.8853 and K2 = 1321.0789. It is important to substitute 
273.15 to convert Kelvin to degrees Celsius.

•	 NDVI (Normalized Vegetation Index) is one of the most widely used urban factors to examine 
environmental impacts, which can be calculated using the equation.

NDVI = (NIR - RED) / (NIR + RED)

•	 NIR is the value from Band 5, and RED can be derived from Band 4. NDVI values range from -1 
to 1, with water typically below 0, soil between 0-0.2, and vegetation above 0.2.

•	 The proportion of vegetation represents the fractional vegetation cover within a pixel. It can be 
calculated by using the fractions from NDVI values.

Pv = [(NDVI - NDVImin) / (NDVImax - NDVImin)]2

•	 NDVImin is the minimum value of the NDVI, which is usually for bare soil (typically 0.2), and NDVI-
max is the NDVI for full vegetation. The range for Pv is from 0 (no vegetation) to 1 (full vegetation).

•	 Land surface emissivity is the efficiency with which a surface emits thermal radiation compared 
to a perfect blackbody. It has to be determined to calculate the final LST using the proportion of 
vegetation (Suresh. S et al., 2016).

LSE = 0.004 × Pv + 0.986

•	 LST can be finally calculated using all the factors that are obtained. 

LST = TB / [1 + (λ × TB / p) *  ln(LSE)]

•	 λ represents the wavelength of emitted radiance, which can be used as 10.8, while p represents 
the radiation constants used in Planck’s law. It consists of Planck’s constant, speed of light, and 
Boltzmann constant, but it can be easily used as 14388 when calculating LST.
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Figure 4.2 Quality of satellite imagery (Landsat)
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Satellite imagery can be obtained using the mono-window algorithm introduced in Chapter 4.1.2. 
However, when using the Google Earth Engine, it is much easier to obtain satellite imagery as it is 
published to anyone for free, and it can reduce time to calculate the NDVI and LST, as they can be 
calculated using the java script, which does not require manual work. However, not all satellite im-
ageries are useful from the Landsat. Seoul is in continental climate, where the summers being long, 
warm, muggy, and wet, while winters are short, freezing, but mostly clear. Moreover, the summer 
season in Seoul is very humid due to sporadic monsoon rains, so most of the days are covered by 
heavy clouds. Satellite imagery is very vulnerable to cloud cover, as they can cover most of the land 
areas. As a result, the quality of the satellite imagery should be manually monitored.

The quality of the satellite imagery can be divided into good and bad imagery. Good imagery is 
when the satellite imagery has clear sky, so that the land of the research area is visible, and it fully 
covers the whole research area. On the other hand, bad imagery detects too many clouds so that 
the land is not clearly visible, also some of the imagery does not capture the whole research area, 
but only partially covers it. As a result, to proceed with calculating LST and NDVI, only good images 
are selected to determine a more precise and accurate correlation with urban form elements and 
air temperature distribution.

4.1.3 Data Quality



Figure 4.3 Available Land surface temperature (LST) from 2013 with cloud covers
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LST and NDVI are derived from Landsat imagery for Seoul. The selection of satellite images involved 
a quality control process based on cloud coverage thresholds. Initially, a maximum cloud coverage 
of 30% was set as the selection criterion to ensure high-quality imagery. However, when no suitable 
images were available within this threshold for specific time periods, the cloud coverage limit was 
incrementally increased until acceptable quality images could be obtained. This adaptive approach 
ensured continuous temporal coverage while maintaining the best possible image quality for each 
month. The resulting dataset is summarized in a table showing the number of images acquired for 
each month and year, with cell colors indicating the cloud coverage percentage of the selected im-
ages, providing a visual representation of data quality across the temporal range.

Satellite imagries from the Landsat8 are available from March 2013. Although the research is look-
ing at the temporal analysis of 10 years from 2015 to 2024, some satellite images in the years 2013 
and 2014 are obtained as well to increase the number of samples to find the correlation with the 
automatic weather station later. It is possible to modify the cloud coverage of the satellite imagery, 
and Figure 4.3 shows what percentage of cloud coverage was used to get images from the Landsat. 
Ideally, the number of images from the Landsat should be 118 from the year 2013 to 2024 (excluding 
January and February in 2013), but not every single month is available. Especially satellite images 
in summer seasons are not obtained as many as in other seasons due to cloud coverage. This is due 
to the unique climate conditions in Seoul in the summer season, as mentioned earlier.

Moreover, Landsat 8 orbits the Earth every 16 days, which means that the satellite only captures 
the area 1 or 2 times in a month (USGS, 2025). According to the Metadata from the Landsat, the 
research area is captured at around 11:12 in the morning, which is normally considered as the peak 
temperature in a  day. Although it has a very high spatial resolution of around 30 by 30 meters (23.81 
by 29.91 meters), it has a very limited temporal resolution as it only captures the LST and NDVI at 
11:12 AM and on a biweekly basis . This temporal limitation means that the model outputs consist of 
single monthly values derived from these satellite observations at their specific capture times, rather 
than continuous temporal data. The AWS data, introduced in the next sub-chapter, serves a differ-
ent purpose in the analysis rather than addressing the satellite’s temporal resolution limitations.
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The Korean Meteorological Administration (KMA) first installed automatic weather stations (AWSs) 
throughout the country in 1997. The AWSs record air temperatures within a range of -40°C to 60°C 
with a ± 0.3°C accuracy using a metallic system equipped with thin film sensors, as well as wind 
speed, pressure, and other climatic factors, which are measured in minutes, hourly, and monthly, 
based on AWSs (Korea Meteorological Administration, n.d.). There are 554 AWSs in Korea, and 28 
AWSs are installed in Seoul. The KMA provides detailed information on each AWS, including its ex-
act location (longitude, latitude, and height) in the WGS84 coordinate system. However, some of the 
AWSs have been moved ot other locations, so some information is not available. Although the spatial 
resolution of the AWS is relatively low (28 AWSs in Sdoul - 605.25 km2), it has a very high temporal 
resolution. Although there are 28 AWSs within the Seoul boundary, this research also considers 9 
more AWSs that are located near the Seoul border to increase spatial resolution.

Figure 4.5 Picture of AWS in Gangnam (Code 400)

Table 4.4 Infomation of AWS in Gangnam (Code 400)

AWS Information

400 GangnamCode Name

37.4892Longitude 127.08162Latitude

12.66Height (m)

MinuteMeasuring unit

Tancheon Water Recycling Center, 580 Ilwon-dong, 
Gangnam-gu, Seoul

Monitor disaster prevention

Address

Purpose

Figure 4.4 Location of AWS in Seoul and nearby

4.2	 Automatic Weather Station (AWS)

Automatic Weather Station (AWS) Locations



45

The Korean government installed weather sensors in 2020 as part of an initiative called Seoul Data 
of Things (S-DoT). S-DoT is a city data sensor that collects various urban phenomena data, such 
as fine dust level, temperature, relative humidity, and noise, illumination level, ultraviolet, and oth-
er parameters (Park & Baek, 2023). The sensors are installed in major mountains, riversides, and 
downtowns to analyze how different Seoul’s living environment is in each area’s characteristics (Seoul 
City Hall, 2023). Sensors were first installed in 2020, and after the COVID-19 pandemic, more sen-
sors were installed all around Seoul as environmental consciousness rose suddenly. The sensors 
are authorized by the government, and 1159 sensors are installed in 2024 (Smart Seoul Data of 
Things(S-DOT), 2024). Depending on the sensors, they usually provide high temporal resolution, as 
they mostly measure hourly. The location of the weather sensors is also provided by the Seoul mu-
nicipality, which contains the exact longitude, latitude, and height of the sensors that are installed.

S-DoT sensors were already used in many published papers to explore the living environment char-
acteristics in Seoul. Kim et al. (2023) used sensors installed in Seoul to collect living environment 
data such as particulate matter and noise at an hourly rate, which they then aggregated to daily, 
monthly, seasonal, and annual averages for analysis. Their report created detailed spatial and tem-
poral models of environmental quality across Seoul, which could be correlated with various urban 
planning factors. Another research study was conducted by Park and Baek (2023), which analyzed 
temperature patterns during heatwaves and coldwaves throughout Seoul with sensors installed in 
different urban environments. The study demonstrated how sensors can provide highly granular en-
vironmental information that captures the urban heat island effect and other microclimate variations 
that standard weather stations miss using the newly developed QMS-SDM system.

The Seoul municipality has been distributing the results of measurement data on 10 environmental 
factors, including fine dust, temperature, ultraviolet rays, and noise, since 2020. According to the 
result they analyzed, the temperature was about 1.8°C higher than that of the AWS (Analysis of 
Temperature Distribution in Seoul Using Urban Data Sensors, n.d.). Even within the same city, Seoul 
has a rather large temperature difference between regions, and differences of up to 4°C were ob-
served on the same day.

Figure 4.6 Weather sensors installed in Seoul (Seoul City Hall, 2023) Figure 4.7 Location of installed weather sensors in Seoul

4.3	 S-DoT Sensors
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There are thousands of urban form elements (UFEs) that contribute to air temperature and energy 
consumption of the buildings and cities, but this research considers 6 UFEs: Normalized Difference 
Vegetation Index (NDVI), Building ratio, Weighted height, Building volume, Floor space index (FSI), 
and Ground space index (GSI). These 6 UFEs are base parameters in UHI studies, which were al-
ready used in other papers (Y. Su et al., 2012; Ngarambe et al., 2021; J. Park et al., 2016). Moreover, 
due to the limited accessibility of the data, not every single UFE can be obtained, but only these 6 
UFEs are selected, which can be calculated from the shapefiles and satellite images.

One of the first UFEs is normalized difference vegetation index (NDVI), which represents how much 
green the area has. NDVI is a very critical UFE in the UHI study as it is considered one of the dom-
inant drivers for temperature variation due to evapotranspiration and heat absorption (Liao et al., 
2021). Another UFE, the building ratio, represents the compactness of the buildings, which is calcu-
lated as the ratio of the total building spaces in a grid cell from the Landsat 8. Analyzing the building 
ratio would provide a comprehensive analysis of how the compactness of the buildings affects the 
air temperature variations and building energy consumption. Instead of using the average or the sum 
of the building heights in each grid cell, the weighted height is selected as another UFE. Weighted 
building height shows several significant advantages over the simple average building height for 
analyzing UHI effects and energy consumption. By accounting for building size and footprint, this 
parameter better captures the actual thermal mass and shading effects within areas, which directly 
influence local air temperatures. Building volume is another UFE in this research, as D. Wang et al. 
(2021) mentioned the importance of the 3D morphology of the buildings when analyzing energy con-
sumption and temperature variation due to wind flow. Building volume can be calculated by multi-
plying the building footprint by height. Floor space index (FSI), which is also called Floor Area Ratio, 
shows the ratio of a building’s total built-up floor area to the total area of the land plot it stands on, 
while ground space index (GSI) shows the ratio of the building’s ground floor footprint area to the 
total site or land area. FSI and GSI show the schematic morphology and layout of the buildings in 
the area, which are related to temperature variations. All the urban form elements are calculated 
based on each grid cell. The grid is created from the LST and NDVI from the satellite, which is 23.81 
meters by 29.9 meters.

No.

1

2

3

4

5

6

Urban form element

NDVI

Building ratio

Weighted height

Building volume

FSI

GSI

Description

Normalized difference vegetation index

The ratio of building in a grid cell

Height of buildings account for size and 
footprint of buildings

The volume of a building

Table 4.5 6 Urban form elements

Floor space index of a building

Ground space index of a building

Measure

Derived from the Landsat

The ratio of total building space in a grid cell

Weights each building’s height by its footprint area 
within the grid cell

Building height x Building footprint

Gross floor area / Site area

Building footprint / Site area

4.4	 Urban Form Element (UFE)
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To calculate these 6 UFEs, a basic building shapefile should be prepared, which is made by merging 
3 shapefiles that are produced by the Seoul municipality and the Korean government.

These 3 shapefiles are produced for different purposes, so that the attributes and information that 
each shapefile contains are different. AL_D010 is GIS building integrated information, F_FAC is for 
building integrated floor plans, and Z_KAIS is to present buildings with new road names. AL_D010 
shapefiles are used as base shapefiles and merged information from the F_FAC and AL_D010, as 
only AL_D010 shapefiles have at least 1 shapefile for each year from 2015 to 2024. Each shape-
file extracts the buildings that are in the research area first to reduce the size of the files, and other 
buildings in other areas are not considered in this research.

When merging AL_D010 with other shapefiles, some requirements are made. Although each shape-
file has almost the same number and shape of buildings, some of the buildings are not located in 
the same coordinates. To make sure each of the buildings is the same, make sure all the shapefiles 
are using the same CRS coordinate systems and set the minimum percentage of overlap. In addition 
to that, each building has a unique ID or a GIS building identification number, and these are used to 
identify if the buildings from different shapefiles are the same buildings or not.

However, to calculate 6 UFEs, some of the building attributes and building information are missing. 
To make every single building UFE attributes, especially building height, building volume, FSI, and 
GSI, some architectural assumptions are used.

1.	 If GFA (Gross floor area) is missing, it can be calculated as “Building footprint” x “Number of 
floors”

2.	 If the height of the building is missing but the number of floors is available, assume that each 
floor is 3 meters high

3.	 If the building footprint is missing, estimate using the “area” function in the Python package 
GeoPandas for building geometry

When all the urban form elements are ready for each year in the AL_D010 shapefiles, buildings in 
the research area are selected using the “clip” function in GeoPandas. When clipping shapefiles into 
the research area, only cells that are at least 30% within the research area are selected, and the other 
grid cells are excluded. In the end, the research area is covered with 3436 grid cells.

However, although AL_D010 shapefiles have one shape file for each year, they are not up to date, 
and some buildings and areas should have been modified. Buildings in Heukseok-dong have been 
continuously changed in the last 10 years due to a redevelopment project, but these are not well 
included in the shapefiles.

Figure 4.8 Shape file blue (AL_D010), green (F_FAC), red (Z_KAIS)
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Figure 4.9 Satellite Imagery (1st), Initial building geometry (2nd), Buildings to be removed (3rd), and the Final building geometry (4th) in 2024

2

4

In 2017, a redevelopment project in District 7 was started in Heukseok-dong, which demolished 
old residential buildings and built new residential apartments and low-rise multifamily residential 
buildings. But the AL_D010 shapefiles do not include such redevelopment projects, but remain the 
old residential buildings. As a result, areas with new redevelopment projects are manually adjusted 
by removing all the buildings that are in the redevelopment project zones and adding updated new 
buildings. When adding updated new buildings to the AL_D010 shapefile, shapefile F_FAC is used, 
as it is the most updated shapefile (2023). Not only the year 2017, but also the years from the years 
2017 to 2024 are checked for the redevelopment project zones, and new buildings are manually 
added. Information for the new buildings could be estimated using Google Street View, and building 
heights, building volume, FSI, and GSI are separately calculated using the building information on 
the internet.

Most of the added buildings are apartments, which have more than 15 floors. To ensure the final 
shapefiles of each year, the height distribution is checked, which can be easily detected and com-
pared with the Google Street View. In the final step, buildings with less than 1m2 are considered 
errors and removed.

Buildings Removed within Exclusion Polygons (2024) Final Building Layout (2024)

Initial Building Layout (2024)Satellite View Building Layout (2024)1

3
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Building Heights by Category - 2024

Year

2015

2019

2017

2021

2023

2016

2020

2018

2022

2024

Before After Change

3400

2948

2945

2915

2821

3399 - 1

2387 - 561

2862 - 83

2356 - 559

2371 - 450

3400

2933

2947

2820

3398

3399 - 1

2372 - 561

2865 - 82

2370 - 450

2433 - 965

Table 4.6 Number of buildings before and after processing the shapefile

Figure 4.10 Building heights by category in 2024

Low-rise (0 - 10m)

Mid-rise (10 - 25m)

High-rise (25 - 50m)

Skyscraper (50 - 100m)
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Energy consumption data of the buildings is provided by the Korean Architecture HUB (Korean Ar-
chitecture Hub - Building Energy, 2025). It provides the electricity and gas consumption of the build-
ings per month, along with the building addresses. Electricity and gas consumption of the buildings 
that are in the research area are manually downloaded.

Energy demand data should be merged with the buildings in the final shapefiles of each year. To 
match energy data with buildings, site location from the energy demand data, and building address 
from the shapefiles are used. The format of the site location and building address are different, but 
they used the same numbering, and considers the site location and building address are matched 
when they shared the same numbering.

Figure 4.11 and Figure 4.12 show the buildings that are matched with electricity and gas consump-
tion data in August 2020. Not all buildings have energy consumption data, however, a significant data 
limitation arose from the address-level aggregation of energy consumption data. In the study area, 
254 addresses correspond to multiple buildings, including the 23 buildings on Chung-Ang University 
campus and various apartment complexes. Since the energy consumption data is reported at the 
address level rather than for individual buildings, it is impossible to determine the actual energy 
demand of each building when multiple structures share the same address. 

Table 4.7 2020-August electricity consumption in Heukseok-dong (Korean Architecture Hub, 2025)

Figure 4.11 Buildings with electricity data in August 2020 Figure 4.12 Buildings with electricity data in August 2020

No.

1

5

3

2

6

4

Site location District code Neighborhood code Y/M of use New address road code Amount used (kWh)

서울특별시 동작구 흑석동 1-3

서울특별시 동작구 흑석동 7-1

서울특별시 동작구 흑석동 6-5

11590 10500 202008 115903119009 765

11590 10500 202008 115903119009 1876

11590 10500 202008 115903119009 18643

서울특별시 동작구 흑석동 4

서울특별시 동작구 흑석동 8-30

서울특별시 동작구 흑석동 6-21

11590 10500 202008 115903119009 9225

11590 10500 202008 115903119009 5424

11590 10500 202008 115904157413 4379

4.5	 Energy Consumption

All Buildings with Electricity Data - August 2020 All Buildings with Gas Data - August 2020

Buildings with electricity data

Buildings without electricity data

Buildings with gas data

Buildings without gas data
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While Energy Use Intensity (EUI) could be calculated by dividing total energy consumption by Gross 
Floor Area (GFA) at each address, which is a straightforward but powerful measure of how efficient-
ly building uses energy. This would unrealistically assume that all buildings at the same address, 
regardless of their size, function, or occupancy patterns have identical EUI for the buildings that 
share the addresses. Given this limitation and the need for building-specific energy analysis, this 
research excluded all addresses corresponding to multiple buildings and focused only on addresses 
that match single buildings, ensuring more accurate representation of individual building energy 
consumption patterns.

Jan Mar May Jul Sep NovFeb Apr Jun Aug Oct Dec

2015 426425 427 432 392425419 427 428 430 383 381

2019 232229 240 239 239229229 237 237 238 243 242

2017 223351 222 214 248224351 224 222 213 245 242

2021 225277 224 225 227227225 225 225 228 228 228

2023 206212 0 0 0208218 204 0 0 0 0

2016 364375 359 351 359369378 362 347 362 359 358

2020 228227 225 224 223227227 227 225 223 225 225

2018 241242 234 238 240244242 236 234 241 239 236

2022 228228 228 232 232228229 228 231 232 225 232

2024 188188 189 191 192187187 188 190 191 190 190

Table 4.8 Buildings with unique address with electricity data in August 2020

Buildings with Electricity Data by Address Type - August 2020

Figure 4.13 Buildings with electricity data by address type in August 2020

Unique address with electricity data

Shared address with electricity data

No electricity data
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Jan Mar May Jul Sep NovFeb Apr Jun Aug Oct Dec

2015 426425 427 432 307425419 427 428 430 308 309

2019 198198 202 200 201200199 205 202 200 210 91

2017 196259 189 202 206197258 209 186 205 211 210

2021 193194 185 185 191193197 193 184 183 196 198

2023 165170 0 0 0166173 160 0 0 0 0

2016 297305 290 242 244303306 292 244 241 252 253

2020 195200 186 185 185197199 193 183 178 195 195

2018 203209 196 190 197207209 198 193 192 200 200

2022 199199 195 189 190199200 199 188 188 187 183

2024 147150 142 142 141150150 146 142 142 145 147

Note that energy consumption data for June through December 2023 was not available from the 
Korean Architecture Hub database, resulting in zero values for these months in Table 4.8 and Table 
4.9. Ultimately, electricity EUI data was obtained for 29,501 building-month records, and gas EUI 
data for 24,737 building-month records. These represent cumulative counts across all months from 
2015 to 2024, not the number of unique buildings. The actual number of unique buildings with en-
ergy data varies by month, ranging from approximately 180 to 430 for electricity and 140 to 310 for 
gas consumption.

Buildings with Gas Data by Address Type - August 2020

Figure 4.14 Buildings with gas data by address type in August 2020

Table 4.9 Buildings with unique address with electricity data in August 2020

Unique address with gas data

Shared address with gas data

No gas data
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Although there are various methodologies to convert LST to air temperature, this research employs 
Multi Layer Perceptron (MLP). The relationship between LST and air temperature is non-linear and 
complex, which are affected by various factors like solar radiation, greening elements and elevation. 
MLP’s advanced capability to model these relationships makes it more suitable than other conven-
tional methodologies like linear regression or regression kriging. As demonstrated in Chapter 2.3.3, 
comparative studies confirmed that MLP performed the best in LST to air temperature conversion.

Methodology05
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The Multi Layer Perceptron (MLP) is a basic type of neural network commonly used in industrial
settings and data analysis applications (Kotsiopoulos et al., 2021). An MLP consists of at least three 
layers: an input layer where data enters the system, one or more hidden layers that process this 
information, and an output layer that delivers the final results. Each layer contains computing units 
called neurons that are connected to neurons in the neighboring layers, with each connection having 
a numerical value called a weight (Gardner & Dorling, 1998).

5.1	 Multi Layer Perceptron (MLP)

In an MLP, data moves forward through the network in one direction only. Each neuron receives val-
ues from all neurons in the previous layer, multiplies each incoming value by its connection weight, 
adds these products together, and then applies a mathematical function to produce its output value 
(Chan et al., 2023). This function, called an activation function, is important because it allows the 
network to learn complex relationships in the data.

MLPs improve their performance through a learning process called backpropagation. During train-
ing, the network compares its predicted output with the correct answer and calculates the differ-
ence. This error measurement is then used to adjust the connection weights throughout the network 
to improve future predictions (Gardner & Dorling, 1998). The network repeats this process many 
times with different examples until it performs well (Kotsiopoulos et al., 2021).

These networks are effective for both classification tasks (sorting data into categories) and regres-
sion tasks (predicting numerical values), making them useful for industrial applications such as pre-
dicting equipment failures or identifying product defects (Gardner & Dorling, 1998; Chan et al., 
2023). While training an MLP requires significant computing resources and careful selection of set-
tings, their ability to discover patterns in data makes them valuable analytical tools. Unlike more 
specialized neural networks, MLPs work well with standard table-formatted data and do not need 
special data structures to perform effectively (Kotsiopoulos et al., 2021).

Figure 5.1 Architecture of Multi layer perceptron



57

The methodology employs a two-stage approach to ensure both model accuracy and generalizabil-
ity. Figure 5.2 shows the complete workflow, demonstrating how satellite-derived inputs and AWS 
data are processed through the MLP architecture to generate spatially continuous air temperature 
maps at 30 by 30 meter resolution.

Stage 1 focuses on training the MLP using 39 AWSs data as ground truth. AWSs provide accurate 
air temperature measurements at 11:12 AM from 2013 to 2024, which are precisely matched with 
the Landsat 8 overpass time. The MLP model learns the complex non-linear relationships between 
4 input variables: Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), 
Digital Elevation Model (DEM), and Solar Zenith Angle (SZA), and the measured air temperature 
from AWSs. This stage employs a 70-15-15 split for training, validation and testing.

Stage 2 tests the trained model using independent data from over 1,100 S-DoT sensors across 
Seoul since 2021. This independent testing confirms the model’s performance on a spatially dense 
network not used during training. According to a report published by the Seoul municipality, S-DoT 
sensors measure temperatures that are on average 1.8°C higher than AWS measurements during 
May-August 2020. This systematic difference likely reflects the urban heat island effect, as S-DoT 
sensors are placed within the urban environment while AWS stations are typically located in more 
open areas. 

Figure 5.2 Methodology of MLP

Stage 1: Model Development with Automatic Weather Stations (AWSs)

Stage 2: Independent Testing with S-DoT sensors

5.2	 Methodology Overview
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Land Surface Temperature (LST)

Normalized Difference Vegetation Index (NDVI)

Digital Eleveation Model (DEM)

Solar Zenith Angle (SZA)

LST serves as the primary input, providing ther-
mal information measured by Landsat 8 bands at 
11:12 AM. Its relationship with air temperature 
is complex and nonlinear, influenced by atmo-
spheric conditions. The LST values extracted at 
each AWS location creates the basis for learning 
this relationship.

NDVI represents vegetation greenness, which 
significantly affects the LST and air temperature 
relationship through the evapotranspiration pro-
cess. Areas with dense vegetation typically show 
smaller differences between LST and air tem-
perature due to cooling effects, while built-up 
areas show larger temperature differences. NDVI 
values range from -1 to 1, with higher values in-
dicating denser vegetation.

DEM represents terrain elevation, affecting air 
temperature through the environmental lapse 
rate where temperature decreases approximate-
ly 6.5°C per 1000m elevation gain. In Seoul’s ur-
ban context, elevation influences wind exposure 
and cold air pooling, making it an essential pre-
dictor for temperature estimation.

SZA represents the angle between the sun and 
the vertical direction, which determines the in-
tensity of solar radiation. It influences the amount 
of solar radiation reaching the surface, affecting 
both LST and air temperature. The SZA is ob-
tained based on the Landsat acquisition time and 
geographic coordinates.

5.3	 Stage 1: Model Development with Automatic Weather Stations

5.3.1 Input Features
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5.3.2 MLP Architecture
The MLP employs a four hidden layer architecture with an input layer of 4 features and an output 
layer that progressively reduces the number of neurons from input features to air temperature pre-
diction. This funnel-shaped design enables hierarchical feature learning while maintaining compu-
tational efficiency. 

Input Layer 4 Input features (LST, NDVI, DEM, SZA)

Layer 3 32 neurons with ReLU activation

Layer 1 128 neurons with ReLU activation & 20% dropout

Layer 4 16 neurons with ReLU activation

Layer 2 64 neurons with ReLU activation & 20% dropout

Output Layer 1 neuron for air temperature prediction

Figure 5.3 MLP of five-layer dense architecture with dropouts
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5.3.3 Training Process
The MLP model follows a 70-15-15 split for training, validation, and testing sets respectively. The 
70-15-15 split represents an optimal balance for air temperature prediction. Hastie et al. (2009) 
mentioned that having at least 50% of data for training in nonlinear models is recommended to en-
sure learning capacity, with 70% providing additional robustness for capturing complex nonlinear 
relationships. The 15% validation provides stable estimates for early stopping and hyperparameter 
selection in neural networks. The 15% for testing set aligns with best atmospheric science applica-
tions. Rasp et al. (2018) used the same proportions in their neural network of atmospheric research 
and mentioned that climate prediction models require substantial test sets to evaluate performance 
across diverse conditions. The 15% test ensures statistical reliability or performance, while maxi-
mizing available training data.

The choice of 128 neurons in the first hidden layer follows established practices in neural network 
design for regression tasks with limited input features. With only 4 input features (LST, NDVI, DEM, 
SZA), starting with 128 neurons provides sufficient capacity to capture non-linear interactions with-
out excessive parameterization. This follows the common heuristic of having the first hidden layer 
size as a power of 2 between 2-5 times the number of inputs (Heaton, 2008). The 32:1 ratio (128 
neurons to 4 inputs) allows the network to learn complex feature combinations while the subsequent 
layers progressively compress these representations. This architecture size has proven effective in 
similar atmospheric and environmental prediction tasks where the relationship between inputs and 
outputs involves multiple non-linear interactions (Rasp et al., 2018).

20% dropout is applied to the first 2 hidden layers. Dropout is one of the most popular regulariza-
tion methods for preventing neural network models from overfitting in the training phase (Salehin & 
Kang, 2023). The dropout technique deactivates 20% of neurons during training, which allows the 
model to learn redundant representations and prevent overlapping features. 

The Rectified Linear Unit (ReLU) activation function is used throughout the hidden layers. ReLU pro-
vides computational efficiency and addresses the vanishing gradient problem that affects traditional 
activation functions in deep networks (Glorot et al., 2011). ReLU enables the model to learn non-
linear mappings while maintaining gradient flow during backpropagation. The output layer employs 
linear activation, appropriate for continuous temperature prediction.
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Training Set (70%)

Validation Set (15%)

Test Set (15%)

The training serves as the primary source for model training. During the training phase, it under-
goes complete forward and backward propagation cycles. In forward propagation, input features 
go through all hidden layers, with each neuron computing weighted sums and applying activation 
functions to generate predictions. The Mean Squared Error (MSE) loss is calculated by comparing 
predicted temperatures with AWS measurements. Backpropagation computes gradients, propagat-
ing error signals backwards through the neurons to update weights. The 70% ensures sufficient data 
diversity to capture temperature variations and patterns while maintaining adequate data for vali-
dation and testing.

Validation is important in the model, which does not participate in the learning process. After each 
training epoch, the validation data undergoes forward propagation only, without weight updates or 
backpropagation. It provides an unbiased estimation of model performance during training. The 
validation loss serves as the primary metric for early stopping, with training ending if no improve-
ment is made for 20 consecutive epochs. This mechanism prevents overfitting by halting training at 
the point of optimal generalization rather than continuing until the model memorizes training data 
(Prechelt, 2012).

The 15% test set remains isolated throughout the training and validation process, which only pro-
vides a final assessment of the model’s performance. There is only forward propagation after all 
training is complete. The test set evaluation indicates the final performance metrics, including R2, 
root mean squared error (RMSE), mean absolute error (MAE), and coefficient of variation of the root 
mean squared error (CVRMSE).

Figure 5.4 Training set, validation set, and test set in MLP
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Implementation Details

Stage 2 of the methodology tests the trained MLP model using an independent dataset from over 
1,100 S-DoT sensors throughout Seoul. This stage serves a distinct purpose from the validation set 
used during training, as it tests the model’s performance on a completely different measurement 
system with known systematic temperature differences.

The independent testing begins after the MLP model has completed training using the AWS data. 
The trained model generates air temperature predictions at each S-DoT sensor location by extract-
ing the corresponding LST, NDVI, DEM, and SZA. These predictions are then directly compared with 
the actual air temperature measurements from the S-DoT sensors at 11:00 AM, which is the closest 
available time to the 11:12 AM Landsat overpass time.

This independent testing differs from the validation set in the training process. While the training 
validation set consisted of AWS data, the S-DoT sensor testing uses data from an entirely differ-
ent sensor network. The S-DoT sensors are more densely distributed across Seoul, which provides 
a spatial testing that the sparse AWS can not provide. The dense network captures microclimate 
variations within the urban environment, testing the model’s ability to predict air temperatures at 
locations far from any training stations.

The model employs several key parameters that control how the learning process unfolds. Each 
parameter serves a specific purpose in ensuring efficient and stable training.

The Adam optimizer guides how the model updates its weights during training. It adapts the learning 
rate for each weight individually, which keeps track of the average gradients and their squared val-
ues over time. This approach helps the model learn more efficiently, and parameters with consistent 
gradients receive larger updates, while those with fluctuating gradients receive smaller ones. Adam 
also incorporates momentum, which helps the optimization process continue moving in productive 
directions and avoid getting stuck in local minima (Kingma & Ba, 2014).

The learning rate 0.001 is used in weight updates. When the learning rate is too large, it might cause 
the model to overshoot optimal values, while one that is too small would make training extremely 
slow. The value of 0.001 is a widely tested starting point that provides stable convergence for neural 
networks across various applications (Bengio, 2012).

The model uses a batch size of 32, which processes 32 training examples before updating its weights. 
Instead of updating after every single batch or waiting until all batches are processed, training with 
32 batches makes a balance. Processing 32 batches provides a more stable estimate of gradient 
direction while keeping computational requirements. 32 batch size provides a sufficient gradient 
averaging to smooth out the randomness inherent in individual samples (Masters & Luschi, 2018).

The model trains for a maximum of 200 epochs, where each epoch represents one complete pass 
through the entire training dataset. However, due to early stopping, training rarely continues for 
all 200 epochs. Early stopping patience with 20 epochs is used in this model, which monitors the 
validation loss after each epoch. If the validation loss does not improve for 20 consecutive epochs, 
training is automatically stopped. It prevents the model from overfitting, which prevents the model 
from memorizing training data. The patience of 20 epochs allows for natural variations in the learn-
ing process, as validation loss might slightly increase before improving again.

5.4	 Stage 2: Independent Testing with S-DoT Sensors

5.4.1 Independent Testing Methodology
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5.4.3 Spatial and Temporal Considerations

Stage 2 independent testing incorporates both spatial and temporal dimensions to evaluate the 
model performance. It examines how prediction accuracy varies across Seoul, and the high density 
of S-DoT sensors allows assessment of the model’s spatial interpolation, especially in areas distant 
from AWS stations. The testing utilizes S-DoT data from 2020 to 2024, overlapping with AWS data 
throughout this period.

Figure 5.5 Temporal differences between AWS and S-DoT sensors

The S-DoT sensors show a known systematic temperature difference compared to AWS measure-
ments. According to the Seoul Research Data Service documentation, S-DoT measurements were 
found to be approximately 1.8°C higher than AWS measurements during May-August 2020. This 
temperature difference reflects the distinct environments where these sensors are placed. S-DoT 
sensors are installed within the urban canopy among buildings and streets where heat accumulates, 
while AWS are positioned in relatively open areas following meteorological standards. This place-
ment difference captures the urban heat island effect, with S-DoT sensors experiencing the elevated 
temperatures created by surrounding buildings, reduced ventilation, and heat-absorbing surfaces.

The testing process examines whether the MLP model, trained on AWS data, maintains predictions 
closer to AWS temperatures when applied to S-DoT sensor locations. While the 1.8°C difference 
was specifically measured during summer 2020, it provides a reference point for understanding 
the systematic temperature difference between the two sensor networks. The average difference 
between model predictions and S-DoT measurements helps evaluate the model’s consistency and 
its ability to predict air temperatures rather than sensor-specific readings, acknowledging that this 
systematic difference may vary seasonally and annually.

5.4.2 Systematic Temperature Difference Approach
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5.5	 Final Application: Air Temperature Map Generation
After the 2-stage development and testing stages, the trained MLP model is applied to generate the 
final predicted air temperature maps for all Landsat 8 images. The final application deploys insights 
from both stages to create reliable air temperature predictions across Seoul.

In Stage 1, the model developed using AWS as a ground truth data provides the fundamental air tem-
perature prediction capability, which learns the complex nonlinear relationship between LST, NDVI, 
DEM, SZA, and air temperature. The Stage 2 independent testing with S-DoT sensors confirms the 
model’s spatial generalization ability, which demonstrates consistent performance even in areas 
without AWSs. These 2-stage approaches ensure reliability in applying the model across all pixels. 
During operational application, each 30 by 30 meters (23.81 by 29.91 meters) pixel in the Landsat 
pictures undergoes forward propagation through the trained model. The absence of dropout during 
inference ensures that decision outputs will involve all neurons contributing to the final prediction. 
This process generates continuous temperature surfaces that capture microclimate-scale tempera-
ture variations.

The Stage 2 independent testing results inform the interpretation and application of these predic-
tions. The dense S-DoT network confirms the model’s ability to interpolate between sparse training 
locations, supporting its application to all pixels regardless of AWS vicinity. While S-DoT sensors 
show systematic temperature differences compared to AWS data, the model maintains alignment 
with AWS temperature patterns, ensuring scientific consistency of the output air temperature maps.

The final predicted air temperature maps at 30-meter resolution between 2013 and 2024 provide 
high-resolution spatial thermal data that are important and necessary for analyzing relationships 
between urban form elements and building energy consumption. However, these maps are not suf-
ficient for comprehensive energy analysis due to their temporal limitations. With only 1-2 snapshots 
per month at 11:12 AM, the data cannot capture diurnal temperature variations that drive daily 
energy consumption cycles, nor can they represent peak cooling or heating conditions that typically 
occur at different times of day. This research therefore focuses on spatial relationships at the specific 
satellite overpass time, acknowledging that the correlations found represent only a partial view of 
the complex temporal dynamics between temperature and energy consumption. The analysis exam-
ines how urban form relates to both temperature and monthly energy consumption at this specific 
time, rather than attempting to model full diurnal or sub-daily energy patterns.

The analysis examines the mean difference between predicted air temperature from the MLP model 
and S-DoT sensor measurements. While the systematic temperature difference of 1.8°C between 
S-DoT and AWS was specifically documented for May-August 2020, this value provides a refer-
ence point for understanding the expected difference between the two sensor networks. The testing 
evaluates whether model predictions maintain consistency with AWS temperature patterns when 
applied across the entire S-DoT network from 2020-2024, acknowledging that the systematic tem-
perature difference may vary seasonally and annually. Unlike the MLP training phase, this reflects 
the model’s performance on a truly independent dataset with different measurement characteris-
tics. The successful testing against S-DoT sensors, despite the systematic temperature difference 
between sensor types, demonstrates the model’s robustness and applicability for generating air 
temperature maps across Seoul.
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5.6	 Urban Form Elements Importance

Figure 5.6 Methodology of urban form elements importance

Analyzing the relative importance and directional relationships between UFEs, air temperature, and 
building energy consumption provides a comprehensive outline for urban planners and policymak-
ers to design urban layouts to make cities more sustainable. The analysis employs 2 complementary 
statistical methods to address the challenge of highly correlated urban form elements in dense ur-
ban environments.

The analysis examines 6 UFEs: NDVI, building ratio, weighted height, FSI, GSI, and building volume. 
These elements often show strong intercorrelations in urban areas, where areas with high vegetation 
typically have a lower building ratio, while building height is highly correlated with FSI. Traditional 
statistical methods struggle with such multicollinearity, which would produce unreliable and mis-
leading results. Therefore, this research uses the Genizi method to quantify relative importance and 
Partial correlation to determine directional relationships.

The analysis consists of 2 parts: Temperature analysis and Energy analysis, with multiple spatial 
scales to capture both immediate and neighborhood effects. Temperature analysis examines pix-
el-level and averages within 100m and 300m buffers from the centroids of each pixel, while energy 
analysis focuses on 100m and 300m buffers around building centroids. This multi-scale approach 
determines thermal and energy consumption patterns differently for urban form at various spatial 
extents.
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Figure 5.7 Sptial scales in temperature analysis

Figure 5.8 Spatial scales in energy consumption analysis
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The Genizi method works by decomposing the total R2 from a multiple regression model to deter-
mine how much each predictor contributes to the explained variance. The method takes as inputs 
the correlation matrix between all predictor variables and the dependent variable, along with the 
regression coefficients from the full model.

The calculation process involves several steps. First, it computes the direct contribution of each 
variable. Second, it calculates the shared contributions between pairs and groups of variables that 
arise from their correlations. Third, and most importantly, it allocates these shared contributions 
back to individual variables based on their relative strengths in the model. For example, if NDVI and 
building ratio are negatively correlated and the combination explains 30% of temperature variance, 
the Genizi method determines how much of that 30% should be attributed to each variable based 
on their regression coefficients and individual correlations with temperature.

The outputs are percentage contributions for each predictor that sum to the total R2 of the model. 
Unlike other standardized regression coefficients, which can be misleading when predictors are cor-
related, the Genizi method represents the true relative importance of each variable after accounting 
for multicollinearity. A variable showing 25% importance genuinely contributes one-quarter of the 
model’s explanatory power, regardless of its correlations with other predictors. This makes the Ge-
nizi method particularly valuable for urban studies where factors like vegetation and building densi-
ty are highly correlated, it allows researchers to understand which urban form elements truly drive 
temperature and energy patterns.

5.6.1 Genizi Method

Genizi Method Principle
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The temperature analysis uses the Genizi method at three spatial scales: At the pixel level, each 30 
by 30 meters (23.81 by 29.91 meters) cell’s air temperature, derived from MLP, serves as the depen-
dent variable, with the 6 UFEs at the exact location as predictors. This fine-scale analysis captures 
immediate temperature variations in relation to local urban form. UFE values are averaged within 
100m and 300m buffers centered on each pixel. The 100m buffer represents the immediate thermal 
environment, which captures nearby effects, while the 300m buffer extends to the neighborhood 
scale, incorporating broader urban morphology patterns that influence local climate.

The implementation enables seasonal variation. The method uses 4 seasons: Spring (March, April, 
May), Summer (June, July, August), Fall (September, October, November), and Winter (December, 
January, February). NDVI in summer is typically higher than in winter, and if the approach does not 
consider seasonal effects, the results would not be reliable and trustworthy. The Genizi method 
quantifies these seasonal shifts in relative importance, providing percentage contributions for each 
UFE that vary by season and 3 different spatial scales.

The Genizi method is also used to analyze energy consumption in EUI at the building level, with 
electricity and gas consumption as separate dependent variables. The predictor variables combine 
2 types of measurements: environmental context and building-specific variables.

NDVI and building ratio are considered as environmental context variables, which are averaged 
within 100m and 300m buffers around each building’s centroid that have energy consumption data. 
These buffers capture the surrounding urban environment that influences building energy consump-
tion, and using average values ensures these environmental variables represent neighborhood con-
ditions rather than point measurements.

Other UFEs (Building height, FSI, GSI, and building volume) are regarded as building-specific vari-
ables, which are used with the actual values for each individual building. This approach recognizes 
that a building’s own physical characteristics directly determine its energy consumption through 
several factors. Using actual values rather than averaged values for building-specific variables main-
tains the direct physical relationship between building form and energy consumption pattern.

Temperature Analysis

Energy Consumption (EUI) Analysis
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While the Genizi method shows the relative importance of each UFE, it does not show the direction-
al relationships. A key distinction is that partial correlation produces signed coefficients (-1 to +1) 
indicating whether each UFE increases or decreases temperature and energy consumption, while 
the Genizi method only provides unsigned importance values. Partial correlation analysis can be 
used with the Genizi method by indicating whether each UFE has a positive or negative effect on air 
temperature and energy consumption, while controlling for the influence of other variables, which 
are often represented as heatmaps.

Partial correlation measures the linear relationship between two variables while controlling for the 
effects of other variables in the system. The method takes as inputs the complete correlation matrix 
of all variables (both predictors and dependent variables) and calculates the correlation between 
any two variables after removing the linear effects of all other variables.

The calculation process involves matrix operations on the correlation or covariance matrix. For ex-
ample, to find the partial correlation between NDVI and air temperature while controlling for build-
ing ratio, height, FSI, GSI, and volume, the method first removes the variance in both NDVI and tem-
perature that can be explained by these other variables. It then calculates the correlation between 
the residual variations. Mathematically, this is computed using the inverse of the correlation matrix, 
where the partial correlation between variables i and j is calculated as -P(i,j)/sqrt(P(i,i)*P(j,j)), where 
P is the inverse correlation matrix.

The outputs are correlation coefficients ranging from -1 to +1 for each predictor-outcome pair. A 
value of -0.4 for NDVI means that, holding all other urban form elements constant, areas with high-
er NDVI tend to have lower temperatures. Unlike zero-order correlations which can be misleading 
when variables are intercorrelated, partial correlations reveal the unique relationship between each 
predictor and outcome. These values indicate both the strength (absolute value) and direction (pos-
itive or negative) of relationships. In this research, these coefficients are visualized as heatmaps 
where blue represents cooling effects (negative correlations) and red represents warming effects 
(positive correlations), providing an intuitive understanding of how each urban form element influ-
ences temperature and energy consumption when other factors are held constant.

5.6.2 Partial Correlation

Partial Correlation Principle
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For temperature analysis at the pixel level, partial correlations reveal the direct relationship be-
tween each UFE and air temperature at 3 spatial scales. Partial correlation examines the direction 
and strength of linear relationships, unlike the Genizi method, which decomposes total variance to 
show how much each UFE contributes. The analysis examines correlations while controlling for the 
other 5 UFEs, which is to answer like “What is the relationship between NDVI and air temperature if 
all buildings had the same height, FSI, GSI, building ratio, and volume?”. 

At each spatial scale, the partial correlation produces a matrix of partial correlations accompanied 
by significance tests. These statistical measures provide information that the Genizi method cannot 
produce, which is the reliability and precision of each UFE relationship. This method can help urban 
planners to clarify how to increase or decrease each UFE to achieve the desired air temperature.

The energy consumption analysis implements partial correlation to determine directional relation-
ships between UFEs and building energy consumption in EUI. Partial correlation provides signed 
coefficients that explicitly show whether each UFE contributes to an increase or decrease in energy 
consumption of the building.

The analysis uses the same structure as the Genizi method.  The environmental variables averaged 
within buffers and building-specific variables using actual values. For each UFE, the partial correla-
tion generates correlation coefficients that indicate both direction and magnitude of association with 
energy consumption after removing the confounding effects of other urban form elements.
Moreover, partial correlation enables direct comparison between electricity and gas consumption 
patterns. While the Genizi method’s importance percentages must be interpreted separately for 
each energy type, partial correlation coefficients can reveal opposing relationships, such as vege-
tation showing negative correlation with electricity (cooling effect) but positive correlation with gas 
(increased heating in green areas). This directional information, combined with the Genizi method 
results, provides a complete picture of how UFEs influence energy consumption, which can guide 
urban planners on which elements to prioritize and in which direction to modify them.

Temperature Analysis

Energy Consumption (EUI) Analysis
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5.7	 Changes over a Decade
Examining changes over a decade offers important insights into the relationship between urban form 
evolution and air temperature variations. This analysis examines the transformation of UFEs and air 
temperature in Heukseok-dong between 2015 and 2024, with additional focus on a specific district 
as a detailed case study. This temporal monitoring captures both area-wide development trends 
and localized changes, demonstrating how urban morphology and thermal conditions have evolved 
together over the decade.

The methodology follows changes by calculating yearly average values across the Heukseok-dong 
from 2015 to 2024. The analysis follows:

•	 Seasonal average values for air temperature and NDVI, calculated separately for spring, sum-
mer, fall, and winter each year.

•	 Annual average values for building ratio, building height, FSI, GSI, and building volume.

For air temperature and NDVI, seasonal averages capture the varying impacts throughout the year. 
These seasonal analysis aligns with Heukseok-dong’s climate patterns and vegetation cycles. The 
other 4 UFEs use annual averages, as they are stable urban characteristics that do not change sea-
sonally.

5.7.1 Changes in Heukseok-dong
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As Chapter 3.3.1 mentioned that there were several districts in Heukseok-dong undergoing redevel-
opment, which are valuable opportunities to examine substantial UFE and air temperature changes 
over the past decade. This research specifically focuses on District 3 in southern Heukseok-dong, 
which underwent a major transformation from 2018 to 2022. The temporal monitoring methodology 
is applied specifically to this district to document its distinct evolution patterns. The same method-
ology is applied exclusively to District 3.

•	 Seasonal values for air temperature and NDVI within District 3 boundaries

•	 Annual average values for building ratio, building height, FSI, GSI, and building volume within 
District 3.

This case study analysis captures how the transformation from low-rise residential to high-rise 
apartments affected both UFE and environmental conditions. The seasonal air temperature and 
NDVI data are particularly valuable for understanding how the redevelopment affected the local 
microclimate across different times of year.

5.7.2 District 3 Case Study

Figure 5.9 Location of District 3 in Heukseok-dong (red)



Results
06
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The MLP model was developed for converting LST to air temperature using AWS data as ground 
truth and further tested with an independent S-DoT sensor. The results show the model’s effective-
ness through both internal evaluation and external testing.

The MLP model training process converged efficiently, which achieved optimal performance at the 
71st epoch out of a maximum of 200 epochs. The earthly stopping monitored validation loss with 
a patience of 20 epochs, which successfully prevented the model from overfitting while ensuring 
learning the complex non-linear relationships between LST and air temperature.

The blue line represents training loss, showing how well the model fits the training data with each 
epoch, while the orange line represents validation loss. Validation loss measures the model’s per-
formance on the held-out validation set. Both curves show successful learning behavior, as they 
decrease rapidly in early epochs as the model learns patterns, then they gradually stabilize from 
around the 25th epoch. The convergence of both training and validation curves at similar loss values 
around 30-60 epochs indicates successful training without overfitting. If overfitting had occurred, 
the validation loss would increase, while the training loss continued to decrease, which creates a 
divergence. The early stopping activated at epoch 71 when validation loss showed no improvement 
for 20 consecutive epochs, which prevents unnecessary computation while ensuring learning.

Results06

6.1	 MLP Model Performance

6.1.1 Model Training and Performance Metrics

Figure 6.1 Training and validation loss curves

Training and Validation Loss Curves
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The R2 (coefficient of determination) value of 0.9684 indicates that the model explains approxi-
mately 96.8% of the variance in air temperature, demonstrating a strong predictive capability. The 
performance of this MLP aligns with recent studies in urban temperature estimation, where Salih et 
al. (2025)’s MLP model using TEMLI obtained an R2 of 0.91. A high R2 value can represent a well-cap-
tured nonlinear relationship between LST and air temperature. 

The RMSE (Root Mean Square Error) of 2.095 °C represents the average magnitude of prediction 
errors. The RMSE value shows that the model’s air temperature predictions are off from the actual 
measurements from AWS by around ±2.1°C. 2.095 °C RMSE is in a similar range compared to other 
papers, where Choi et al. (2021) got RMSE of 2.19 °C using an artificial neural network (ANN).

The MAE (Mean Absolute Error) of 1.616 °C provides the average absolute difference between pre-
dicted and actual air temperatures, while the CVRMSE (Coefficient of Variation of RMSE) of 15.50% 
represents the normalized error relative to the mean air temperature, which suggests that the typical 
error is about 15.50% of the average air temperature.

R2 MAERMSE CVRMSE

0.9684 1.616 °C2.095 °C 15.50 %

Table 6.1 Performance metrics of MLP
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The trained MLP model is further tested with independent S-DoT sensors. The independent testing 
using S-DoT sensors provides crucial evidence of the model’s real-world applicability beyond the 
trained model.

The analysis was conducted in two phases: first examining the specific period (May-August 2020) 
for which the systematic temperature difference between S-DoT and AWS was documented, then 
extending to the full available period (2020-2024) to assess long-term model consistency.

6.1.2 Independent S-DoT Testing Results
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Metric (May-August, 2020) Value

Mean Temperature Difference (Sensor - Predicted)

RMSE

R2

Standard Deviation

MAE

CVRMSE

Number of Testing Points

1.84 °C

2.76 °C

0.653

2.06 °C

2.25 °C

12.63 %

1,391

Table 6.2 Independent testing metrics with S-DoT sensors (May-August, 2020)

Figure 6.2 shows the predicted versus observed air temperatures at S-DoT sensor locations during 
May-August 2020. The mean difference between S-DoT measurements and MLP predictions is 
1.84°C, which is remarkably close to the expected 1.8°C known systematic temperature difference 
documented by Seoul municipality for this period. This alignment confirms that the MLP model, 
trained on AWS data, successfully maintains AWS temperature characteristics when applied to ur-
ban locations.

The distribution of temperature differences for this period, showing a narrow distribution centered 
at 1.84°C with a standard deviation of 2.06°C. Figure 6.3 indicates the consistent model perfor-
mance across different urban environments during the summer months.

Table 6.2 summarizes the performance metrics for May-August 2020. The R2 of 0.653 and CVRMSE 
of 12.63% demonstrate reasonable predictive capability, while the RMSE of 2.76°C and MAE of 
2.25°C reflect the combined effects of the systematic temperature difference and prediction uncer-
tainty. The close match between the observed difference (1.84°C) and expected difference (1.8°C) 
confirms the model’s validity.

Distribution of Temperature Differences (May-Aug, 2020)S-DoT Sensor Testing: Predicted vs Observed (May-Aug, 2020)

Figure 6.2 Predicted air temperature testing with S-DoT sensors 
(May-August, 2020)

Figure 6.3 Temperature difference between predicted and measured 
(May-August, 2020)

1:1 Line

Systematic Difference: 1.84 °C

Mean: 1.84 °C

Expected: 1.80 °C

May-August 2020 Independent Testing
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To assess the model’s long-term consistency, the analysis was extended to all available S-DoT data 
from 2020-2024. Figure 6.4 shows the scatter plot for this extended period, with points clustering 
along the 1:1 line. The mean difference of 0.98°C is lower than the summer 2020 value, suggesting 
that the systematic temperature difference between S-DoT and AWS varies seasonally, with smaller 
differences during non-summer months.

Figure 6.5 demonstrates the distribution of temperature differences across all seasons and years. 
The distribution remains approximately normal but with a larger standard deviation of 4.63°C, re-
flecting greater variability across different seasons and weather conditions. Table 6.3 shows the full 
period metrics, with an improved R2 of 0.807 indicating strong overall predictive capability.

The analysis demonstrates that the MLP model successfully converts LST to air temperature across 
different temporal periods and seasonal conditions. The summer 2020 independent testing confirms 
the model maintains AWS temperature patterns even when applied to systematically warmer urban 
locations, while the full period analysis shows robust performance across diverse conditions. The 
variation in systematic temperature differences (1.84°C in summer 2020 vs 0.98°C overall) likely re-
flects seasonal variations in urban heat island intensity, with stronger effects during summer months.

Metric (2020-2024) Value

Mean Temperature Difference (Sensor - Predicted)

RMSE

R2

Standard Deviation

MAE

CVRMSE

Number of Testing Points

0.98 °C

4.73 °C

0.807

4.63 °C

3.87 °C

31.17 %

23,465

Table 6.3 Independent testing metrics with S-DoT sensors (2020-2024)

S-DoT Sensor Testing: Predicted vs Observed (2020-2024) Distribution of Temperature Differences (2020-2024)

Figure 6.4 Predicted air temperature testing with S-DoT sensors 
(2020-2024)

Figure 6.5 Temperature difference between predicted and measured 
(2020-2024)

Mean: 0.98 °C

Expected: 1.80 °C

1:1 Line

Systematic Difference: 0.98 °C

Full Period (2020-2024) Independent Testing
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Figure 6.6 Scatter plot of land surface temperature and final predicted air temperature

6.1.3 Final Predicted Air Temperature Maps
Following the successful independent testing, the MLP model converted LST from satellite to final 
predicted air temperature maps. Figure 6.6 and Table 6.4 show the temperature difference between 
LST and predicted air temperatures.

LST vs Predicted Air Temperature

Metric

LST to Final Predicted Air Temperature

Value

Mean Temperature Difference

Standard Deviation

Mean Summer Temperature Difference

Median Temperature Difference

Mean Spring Temperature Difference

Mean Fall Temperature Difference

Mean Winter Temperature Difference

Data Points

7.78 °C

3.88 °C

12.24 °C

7.58 °C

9.40 °C

7.51 °C

3.94 °C

13,049,546

Table 6.4 Difference between land surface temperature and final predicted air temperature



80

The difference between LST and predicted air temperature is crucial for understanding the model’s 
physical validity and its implications for urban planning. These differences directly relate to how 
urban surfaces store and release heat, which affects both the urban heat island effect and building 
energy consumption patterns. Understanding these temperature differentials helps explain why cer-
tain urban form elements have stronger impacts during specific seasons.

Table 6.4 reveals clear seasonal patterns in LST and air temperature differences, with mean dif-
ferences ranging from 3.94°C in winter to 12.24°C in summer. This seasonal variation following 
the order summer (12.24°C) > spring (9.40°C) > fall (7.51°C) > winter (3.94°C), which aligns with 
Naserikia et al. (2023)’s findings, which observed greater temperature differences between LST and 
air temperature in built environments compared to natural Local Climate Zones (LCZ), especially 
during warm days.

The 12.24°C summer difference at 11:12 AM satellite overpass time reflects intense solar heating 
of urban surfaces during peak radiation hours, while winter’s lower sun angle and reduced radiation 
result in smaller differences of 3.94°C. This consistent seasonal pattern validates the model’s phys-
ical realism and demonstrates that the MLP successfully captures the varying thermal relationships 
throughout the year.

These temperature differentials are crucial for understanding the physical processes underlying ur-
ban heat island formation. The magnitude of difference indicates how much urban surfaces contrib-
ute to local heating above ambient air temperature conditions, with implications for both microcli-
mate formation and building energy demand. The larger summer differentials suggest that surface 
heating plays a more significant role during cooling-demand periods, while smaller winter differenc-
es indicate reduced surface heating contribution during heating-demand periods.

The comprehensive analysis confirms that the MLP model successfully captured the complex 
non-linear relationship between satellite-based LST and AWS-based air temperatures. The patterns 
across seasons validate the model’s physical realism, while the magnitude of temperature differenc-
es aligns with published studies on LST and air temperature relationships. 
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Figure 6.7 Land surface temperature and predicted air temperature on 25th May 2022 11:10:19

LST vs Predicted Air Temperature on 25th May 2022 at 11:10:19

Land Surface Temperature (LST)

Predicted Air Temperature

15°C 20°C 25°C 30°C 35°C
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The final predicted air temperature and NDVI maps focus only on Heukseok-dong using the GeoPan-
das clip tool, and other grids are removed. In the end, the research area is covered with 3436 grid 
cells of 30 by 30 meters (23.81 by 29.91 meters). These grid cells are overlapped with building 
shapefiles and calculate 6 UFE of each grid cell for relative importance analysis.

Figure 6.8 Clipped air temperature and NDVI map with 23.81m x 29.91m pixels

Figure 6.9 Buildings overlap in multiple pixels

Predicted Air Temperature on 13th June 2022 at 11:11:33 NDVI on 13th June 2022 at 11:11:33
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6.2	 Energy Consumption

6.2.1 Electricity EUI Pattern 

Figure 6.10 Mean Electricity EUI by Month and Year

Energy consumption data for both electricity and gas obtained from the Korean Architecture Hub 
were used to calculate the EUI of each building in Heukseok-dong. Calculated electricity and gas 
EUI show distinctive seasonal patterns.

The distribution of the electricity EUI shows distinct patterns between summer and winter seasons. 
In summer seasons, buildings have a slightly higher mean electricity EUI of 11.72 kWh/m2, com-
pared to buildings in winter seasons, 10.38 kWh/m2. This shows that the electricity consumption 
is significant throughout the year, but it mostly intensifies during the summer months. Figure 6.10 
clearly shows that both summer and winter seasons have substantial electricity usage, though with 
different distribution patterns.

Distribution of Electricity EUI: Summer vs Winter
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Figure 6.12 Histogram of Gas EUI in Summer and Winter

Figure 6.11 Mean Electricity EUI by Month and Year

When looking at the monthly trends across months and years, electricity consumption follows dis-
tinctive patterns with peaks mostly in the late summer season (August). Most years show higher 
electricity usage in January, a gradual decline through the spring season, and reach a minimum 
usage in May. Then, there is a steady increase through summer with a peak in August or September, 
before declining again in Autumn. This pattern explains that electricity is used year-round, not only 
for cooling, but also for other living appliances in all seasons,  with increased electricity EUI during 
both winter and summer, although summer seasons appear to create higher consumption.

6.2.2 Gas EUI Pattern 

Distribution of Gas EUI: Summer vs Winter

Mean Electricity EUI Month and Year
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Figure 6.13 Mean Gas EUI by Month and Year

Unlike electricity EUI consumption, the gas EUI consumption data shows a dramatically different 
seasonal pattern. In the winter season, the gas EUI is an average of 20.92 kWh/m2, which is signifi-
cantly higher than the summer average of only 2.95 kWh/m2. This huge difference demonstrates that 
gas is the predominant energy source for heating the buildings in Heukseok-dong.

Figure 6.13 shows a very definite relationship between the months and gas EUI. It shows a clear 
U-shaped pattern across all years, where the gas consumption consistently peaks in the winter sea-
son (December - February), and rapidly decreases through spring and reaches the lowest gas EUI 
level during the summer months (June - August) and September, then it increases rapidly again in 
autumn. This pattern is shown consistently across all years.

Mean Gas EUI Month and Year
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6.2.3 Building Type and Energy Use

Building Use

Building Use

Building Height

Building Height

Building Volume

Building Volume

Shape ID: 6540

Shape ID: 28022

Number of Floors

Number of Floors

Average Electricity EUI/month

Average Electricity EUI/month

Average gas EUI/month

Average gas EUI/month

Commercial Building

Residential Building

19.9 m

9.1 m

10,361 m3

813 m3

5

3

13.10 kWh/m2

8.31 kWh/m2

12.73 kWh/ m2

9.04 kWh/m2

While Chapter 6.2.1 and Chapter 6.2.2 examined seasonal patterns in energy consumption, to un-
derstand how building usage affects energy demand is equally important for urban energy planning. 
This analysis compares energy consumption patterns between low-rise residential buildings and 
commercial buildings in Heukseok-dong. Considering that the study area’s energy data is mostly 
from these two building types, analyzing their seasonal consumption pattern can provide insights of 
how building function, operational patterns, and occupancy differences influence energy use beyond 
physical building characteristics alone.
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Building Volume Low-rise Residential Buildings Commercial Buildings

Maximum Volume 2,197.3 m3 19,781.1 m3

Mean Volume 751.2 m3 7,123.9 m3

Minimum Volume 45.0 m3 817.0 m3

The analysis on the energy consumption patterns shows significant differences between building 
types in Heukseok-dong. Figure 6.14 shows the distribution of building volumes for low-rise resi-
dential and commercial buildings with available EUI data. Commercial buildings have a mean vol-
ume of 7,123.9 m3, approximately 9.5 times larger than low-rise residential buildings at 751.2 m3. 
This substantial size difference provides important context for understanding energy consumption 
patterns.

Building Volume Distribution by Type

Figure 6.14 Building Volume Distribution by Type

Table 6.5 Building Volume Distribution by Type
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Electricity EUI by Building Type and Season

Mean EUI (kWh/m3) SummerSpring Fall Winter

Commercial 13.289.14 9.90 10.08

Low-rise Residential 9.746.60 7.24 7.76

Difference 3.542.54 2.66 2.32

Table 6.6 Electricity EUI by Building Type and Season

Figure 6.15 Electricity EUI by Building Type and Season

Figure 6.15 shows the electricity EUI patterns across seasons for both low-rise residential and com-
mercial buildings. Commercial buildings consistently show higher electricity EUI throughout the 
year, with mean electricity consumption from 9.14 kWh/m2 in spring to 13.28 kWh/m2 in summer. In 
contrast, low-rise residential buildings consume less electricity per square meter, ranging from 6.60 
kWh/m2 in spring to 9.74 kWh/m2 in summer. The difference is the highest during summer months 
(3.54 kWh/m2), which explains that the higher cooling demands in commercial buildings are due to 
factors such as greater occupancy density, extended operating hours, and higher internal heat gains 
from equipment and lighting.
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Mean EUI (kWh/m3) SummerSpring Fall Winter

Commercial 7.7210.70 12.55 18.60

Low-rise Residential 5.547.86 10.52 15.16

Difference 2.182.84 2.03 3.44

Table 6.7 Gas EUI by Building Type and Season

Figure 6.16 Gas EUI by Building Type and Season

Gas EUI by Building Type and Season

Gas consumption shows a similar pattern, with commercial buildings showing higher EUI across all 
seasons. The difference is particularly the highest in winter, where the commercial buildings use an 
average of 18.60 kWh/m2 compared to 15.16 kWh/m2 for residential buildings. Both building types 
use the least gas during the summer months, confirming that gas is primarily used for heating. The 
consistently higher consumption in commercial buildings likely reflects their larger open spaces, 
which require more heating, different operational schedules, and potentially less efficient heating 
systems in older commercial structures.

Table 6.7 indicates that building type significantly influences energy consumption patterns beyond 
what can be explained by size alone. Despite EUI is normalized by floor area, commercial buildings 
demonstrate 30-40% higher EUI, suggesting fundamental differences in building operation, occu-
pancy patterns, and system requirements between commercial and residential uses in this old urban 
district.
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This research employed the Genizi method to determine the relative importance of each UFE to ad-
dress the challenge of multicollinearity. The analysis was conducted separately for each season and 
at multiple spatial scales to capture both seasonal and spatial variations in UFE impacts. It is par-
ticularly valuable as it properly allocates shared variance among correlated predictors (High NDVI 
with low building ratios). The result shows percentage contributions that reveal which UFEs drive the 
most variation in air temperature and energy consumption (EUI).

Air temperature analysis used 3 spatial scales (pixel scale, 100m buffer, and 300m buffer) with 4 
different seasons. A comprehensive result is demonstrated in Figure 6.17, Figure 6.18 and Figure 
6.19.

6.3	 Genizi Method

6.3.1 Air Temperature Relative Importance

Relative Importance of Urban Form Elements on Air Temperature by Season in Pixel Scale

Figure 6.17 Relative importance of urban form elements on air temperature by season and scale using Genizi method

The air temperature analysis finds distinct seasonal patterns in how UFEs affect air temperature 
variations. At the pixel scale, NDVI plays as the dominant predictor for three seasons,  contrib-
uting 59.2% in spring, 63.8% in fall, and 60.1% in winter. This consistent pattern highlights vege-
tation’s role as the primary temperature changer throughout most of the year. However, summer 
shows a dramatic shift: building characteristics become dominant, with building ratio (71.8%) and 
GSI (19.5%) together explaining over 90% of temperature variance. This seasonal flip suggests that 
during extreme heat, the physical presence and thermal mass of buildings overtake vegetation’s 
cooling effects.
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Relative Importance of Urban Form Elements on Air Temperature by Season in 100m Scale

Relative Importance of Urban Form Elements on Air Temperature by Season in 300m Scale

Figure 6.19 Relative importance of urban form elements on air temperature by season and scale using Genizi method

Figure 6.18 Relative importance of urban form elements on air temperature by season and scale using Genizi method
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This dramatic summer reversal reflects the extreme thermal contrasts created by peak tempera-
tures. At 11:12 AM in summer, building surfaces can exceed 40°C while vegetated areas maintain 
relatively stable temperatures around 22-26°C. This binary thermal pattern means that at pixel 
scale, temperature variance is overwhelmingly determined by whether a building is present rather 
than variations in vegetation density. The near-zero importance of NDVI (-1.2%) occurs because 
most vegetated pixels have similar temperatures, while building pixels create the extreme values 
that drive overall variance.

The 100m buffer analysis shows an intensification of patterns in the pixel scale. NDVI’s importance 
increases to 79.3% in spring, 64.7% in fall, and 71.6% in winter, which demonstrates that vegeta-
tion’s cooling effects are more powerful at the larger scale. In summer, the building ratio maintains 
its dominance at 62.3%, while GSI contributes 21.7%. The R2 values show improvement from pixel 
to 100m scale from 0.137 to 0.218 in spring, which suggests that immediate neighborhood charac-
teristics provide better explanatory power for temperature variations.

At the 300m neighborhood scale, the patterns become more complex with the highest R2 values 
across all seasons. NDVI continues to dominate with 82.9% in spring, 73.4% in fall, and 77.3% in win-
ter. Summer shows a more balanced distribution at this scale, with NDVI increases to 43.7% while 
GSI reaches 36.8%. 

The dramatic reduction in building ratio importance from 71.8% at pixel scale to 7% at 300m scale 
occurs because neighborhood buffers equalize building coverage, where most areas contain similar 
20-30% building ratios, eliminating its discriminating power. Instead, the quantity and distribution 
of neighborhood green infrastructure becomes the primary temperature determinant, explaining 
why NDVI rebounds to 43.7%. This scale-dependent behavior demonstrates that extreme summer 
heat fundamentally alters temperature controls: building presence dominates at fine scales, while 
neighborhood vegetation patterns determine area-wide thermal conditions. 

Interestingly, some variables show negative importance values at this scale, such as FSI at -10.3% 
in spring and volume density at -17.9% in summer, which indicate suppressor effects where these 
variables enhance other predictors’ explanatory power through their correlations.
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6.3.2 Electricity Consumption Relative Importance

Relative Importance of Urban Form Elements on Electricity EUI by Season and Scale

The Genizi method for electricity consumption in EUI reveals that air temperature emerges as the 
important driver across all seasons and scales, but its dominance varies seasonally. At the 100m 
scale, air temperature contributes 41.2% in spring, the highest at 54.3% in summer, and decreases 
to 36.8% in fall and 14.8% in winter. This seasonal pattern aligns with cooling demands as the stron-
ger influence of temperature in summer reflects the heavy reliance on air conditioning during hot 
months, while its reduced importance in winter, which indicates that electricity use becomes less 
temperature-dependent when cooling is not needed.

Building volume shows the second most important predictor at the 100m scale except for win-
ter, with contributions ranging from 15.8% to 33.8%. Its importance is comparably higher in winter 
(33.8%) when it becomes the dominant factor, suggesting that larger buildings require more electrici-
ty for lighting, ventilation, and general operations regardless of temperature. FSI follows as the third 
predictor, showing relatively stable importance across seasons (12.7% to 27.2%), with its highest 
contribution in winter, indicating that floor space intensity drives baseline electricity consumption.

Figure 6.20 Relative importance of urban form elements on electricity EUI by season and scale using Genizi method
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At the 300m scale, a similar pattern is shown, but with some notable variations. Air temperature 
maintains its dominance in spring and summer, but shows suppressor effects in winter, with building 
ratio displaying large negative importance values (-24.7% in summer, -14.8% in fall, and -10.3% in 
winter). These negative values indicate that building ratio, while not directly explaining electricity 
consumption variance, enhances the predictive power of other variables through its correlations. 
Areas with high building ratios tend to have low NDVI values when both are included in the model, 
building ratio’s negative importance means it helps NDVI better explain the variance by account-
ing for their shared relationship. This statistical phenomenon occurs when a variable improves the 
model’s overall explanatory power despite showing negative individual importance. NDVI shows 
positive importance at the 300m scale, particularly in summer (34.6%) and fall (25.6%), suggesting 
that vegetation’s cooling effects become more apparent at neighborhood scales, indirectly reducing 
electricity demand.

The R2 values range from 0.152 to 0.378, with the lowest at 300m scale in winter and the highest 
at 100m scale in summer. These modest R2 values indicate that UFEs explain only 15-38% of the 
variance in electricity consumption, suggesting that many other factors not captured in this analysis 
such as building age, occupancy patterns, equipment efficiency, and behavioral differences play 
substantial roles. The seasonal variation shows stronger relationships between UFEs and electricity 
consumption in summer, though even the best model explains less than 40% of variance. The anal-
ysis indicates that electricity use in Heukseok-dong is partially influenced by temperature-related 
cooling needs in warm months and building characteristics in cooler months, while the majority of 
variation remains unexplained. The scale comparison shows that the 100m scale captures more 
direct relationships with higher R2 values, while the 300m scale reveals more complex neighbor-
hood-level interactions, including the indirect benefits of vegetation on reducing cooling demands, 
though these relationships remain moderate at best.
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6.3.3 Gas Consumption Relative Importance

Relative Importance of Urban Form Elements on Gas EUI by Season and Scale

Figure 6.21 Relative importance of urban form elements on gas EUI by season and scale using Genizi method
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The Genizi method for gas consumption shows different patterns compared to electricity consump-
tion, which reflects the distinct role of gas as primarily a heating energy. Building volume emerges 
as the dominant predictor across all seasons and scales, with its importance ranging from 26.3% 
to 41.3% at the 100m scale. This dominance is most pronounced in winter and summer, but for 
different reasons. Winter reflects actual heating demands, while summer’s high percentage occurs 
despite very low overall gas consumption, making small variations appear proportionally large.

Air temperature shows the second-highest importance, but with a clear seasonal pattern that in-
versely shows in electricity consumption. At the 100m scale, air temperature contributes 31.3% in 
winter, 27.6% in fall, 24.8% in spring, but drops to just 6.8% in summer. This pattern directly reflects 
heating demands. Lower temperatures drive higher gas consumption, while summer’s minimal heat-
ing needs reduce temperature’s explanatory power. The relationship is even more highlighted at the 
300m scale.

FSI shows relatively stable importance across seasons (19.4% to 31.8% at 100m scale), which in-
dicates that it is a reliable indicator of heating demand. On the other hand, building height shows 
strong negative importance values across most seasons and scales, particularly at the 100m scale 
(-14.2% in spring, -13.2% in summer, -12.8% in fall, -11.7% in winter). These consistent negative val-
ues suggest that taller buildings are more heating-efficient per unit volume, possibly due to reduced 
surface-to-volume ratios.

The R2 values show strong seasonal and spatial variation, ranging from 0.164 in summer at a 300m 
scale to 0.382 in winter at a 100m scale. Low R2 in summer explains the minimal and irregular gas use 
during non-heating months, while winter’s higher values indicate moderate relationships between 
UFE and heating demands. The 300m scale shows similar patterns, but NDVI shows substantial 
positive importance at this scale (25.8% in spring, 28.3% in fall, 31.4% in winter), which seems coun-
terintuitive but likely reflects the spatial distribution of building types and ages in Heukseok-dong. 
At the 100m scale, immediate vegetation has little direct impact on heating needs. However, at the 
300m neighborhood scale, areas with high vegetation coverage often correspond to newer residen-
tial developments with modern insulation, while areas with low NDVI typically contain older build-
ings from the 1960s-1970s with poor heating efficiency. The Genizi method captures this spatial 
coincidence rather than direct causation.

To test whether building volume truly drives gas consumption or correlates with building type, the 
analysis in Chapter 6.2.3 examined energy patterns by building use. Commercial buildings average 
7,123.9 m2 compared to 751.2 m2 for low-rise residential buildings. However, when normalized as 
EUI, commercial buildings still consume 22% more gas per square meter in winter (18.60 vs 15.16 
kWh/m2). This confirms that building type influences consumption beyond volume effects alone. 
Overall, the analysis confirms that gas consumption in Heukseok-dong is driven by a combination 
of building size and building type characteristics, with temperature-related heating needs showing 
clear seasonal patterns that reflect the primary use of gas for heating.
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6.4	 Partial Correlation

6.4.1 Air Temperature Directional Importance

Partial Correlation with Air Temperature - Pixel Scale
(Red = Warming, Blue = Cooling)

While the Genizi method reveals the relative importance of UFEs, partial correlation provides the 
directional information, whether each UFE increases or decreases air temperature and energy con-
sumption. It uses the same spatial scales and seasonal analysis as the Genizi method, which would 
provide a comprehensive understanding of how UFEs directly affect temperature and energy use 
patterns in Heukseok-dong. 

The partial correlation reveals consistent directional patterns across all scales and seasons. NDVI 
shows the strongest cooling effect, with a range from -0.208 to -0.452 at different scales, peaking 
at -0.452 in summer at the pixel scale. This confirms vegetation’s role as the primary cooling mech-
anism, with effects intensifying during hot weather when evapotranspiration and shading are most 
active. The cooling effect remains substantial across all scales, though slightly decreased at the 
300m neighborhood level.

In contrast, GSI consistently shows warming effects across all seasons and scales, with the stron-
gest correlation of 0.440 in summer at the 300m scale. This indicates that higher ground coverage 
by buildings creates heat islands through reduced pervious surfaces and increased heat absorption. 
Building ratio similarly shows consistent positive correlations (0.125 to 0.334), which confirms that 
denser building coverage leads to higher temperatures. The warming effect of both GSI and building 
ratio is most pronounced in summer, aligning with the UHI effects.

Figure 6.22 Partial correlation of urban form elements on air temperature by season in pixel scale
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Partial Correlation with Air Temperature - 300m Scale
(Red = Warming, Blue = Cooling)

Partial Correlation with Air Temperature - 100m Scale
(Red = Warming, Blue = Cooling)

Figure 6.23 Partial correlation of urban form elements on air temperature by season in 100m scale

Figure 6.24 Partial correlation of urban form elements on air temperature by season in 300m scale
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Building volume shows moderate warming effects (0.146 to 0.227), while FSI displays relatively weak 
positive correlations (0.059 to 0.184). Weighted height shows consistent cooling effects across most 
seasons and scales (-0.045 to -0.223), suggesting that taller buildings may provide more shading or 
better air circulation. The seasonal patterns clearly show that summer has the strongest correlations 
for all variables, indicating that UFE effects on temperature are highlighted during hot weather. 
Winter shows the weakest correlations overall, suggesting that other factors like anthropogenic heat 
may play larger roles during cold months.

The scale analysis explains that the pixel scale shows the strongest correlations, particularly for 
NDVI’s cooling effect, while the 300m scale shows enhanced warming effects for GSI. This suggests 
that vegetation’s cooling benefits are most effective at immediate scales for direct temperature re-
duction. These directional insights, combined with the Genizi importance rankings, provide clear 
guidance for urban planning. Maximizing NDVI while minimizing GSI and building ratio would be 
most effective for temperature reduction, particularly during summer months.
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6.4.2 Electricity Consumption Directional Importance
Partial Correlation with Electricity EUI - 100m Scale

(Red = Warming, Blue = Cooling)

Partial Correlation with Electricity EUI - 300m Scale
(Red = Warming, Blue = Cooling)

Figure 6.25  Partial correlation of urban form elements on electricity EUI by season in 100m scale

Figure 6.26  Partial correlation of urban form elements on electricity EUI by season in 300m scale
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The partial correlation for electricity consumption (EUI) reveals that air temperature is the dominant 
positive driver across all seasons, with correlations ranging from 0.152 to 0.576. The relationship is 
most pronounced in summer, reaching 0.576 at the 100m scale, which directly reflects cooling de-
mands during hot weather. This strong positive correlation confirms that higher temperatures lead 
to increased electricity consumption, due to air conditioning use. The correlation weakens progres-
sively through fall (0.225) and winter (0.189 at 100m scale), as air conditioning needs less.

Building volume shows the second strongest positive correlation with electricity consumption, rang-
ing from 0.178 to 0.398 across seasons and scales. The relationship remains remarkably consis-
tent across seasons, suggesting that larger buildings require more electricity for lighting, ventilation, 
and equipment regardless of temperature. FSI follows a similar pattern with positive correlations 
(0.132 to 0.342), which indicates that larger floor space needs higher electricity demand. These 
building-related factors maintain relatively stable correlations across seasons, unlike the tempera-
ture-dependent variations.

NDVI demonstrates a consistent cooling effect, resulting in reduced electricity consumption, with 
negative correlations ranging from -0.042 to -0.362. The effect is most demonstrated at the 300m 
scale, where NDVI reaches -0.362 in summer, suggesting that neighborhood-level vegetation pro-
vides substantial indirect cooling benefits that reduce electricity demand. 

However, as shown in the air temperature consumption analysis (Chapter 6.4.1), NDVI’s effect on 
reducing air temperature is stronger at the pixel scale (-0.452) than at 100m and 300m scales (-0.381 
and -0.329). This scale-dependent reversal indicates different mechanisms: vegetation directly cools 
air temperature locally, but its energy-saving benefits operate through neighborhood-scale cumu-
lative cooling and microclimate creation. This cooling effect remains significant across all seasons, 
though weakest in winter when cooling is not needed.

Building height shows modest positive correlations (0.124 to 0.172), while GSI and building ratio 
show weaker positive relationships with electricity consumption. The seasonal patterns clearly show 
summer as the period of strongest correlations for all variables, reflecting the dominance of cool-
ing-related electricity use. Winter shows the weakest correlations overall, indicating that baseline 
electricity consumption for lighting and equipment is less sensitive to urban form variations. The 
scale comparison reveals that while the 100m scale shows stronger correlations for air temperature, 
the 300m scale better captures NDVI’s cooling benefits, suggesting that electricity consumption is 
influenced by both immediate building characteristics and broader neighborhood conditions.
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6.4.3 Gas Consumption Directional Importance

Partial Correlation with Gas EUI - 100m Scale
(Red = Warming, Blue = Cooling)

Partial Correlation with Gas EUI - 300m Scale
(Red = Warming, Blue = Cooling)

Figure 6.27 Partial correlation of urban form elements on gas EUI by season in 100m scale

Figure 6.28 Partial correlation of urban form elements on gas EUI by season in 100m scale
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Gas EUI shows completely different patterns from electricity, which makes sense since gas is mainly 
used for heating. The most distinct finding is that air temperature has a negative relationship with 
gas use, as when the temperature is lower, people use more gas for heating. This negative correla-
tion is strongest in winter (-0.387 at 100m scale, -0.563 at 300m scale) and nearly disappears in 
summer (-0.023 to -0.134) when heating is not needed.

Building volume stands out as the biggest positive factor for gas consumption, but unlike electricity, 
its importance changes dramatically with seasons. In winter, the correlation increases to 0.425, while 
in summer it drops to 0.085. However, since this analysis uses EUI, this positive correlation indicates 
that larger buildings have higher gas intensity per square meter, not just higher total consumption. 
As shown in Chapter 6.2.3, commercial buildings use 22% more gas per square meter than low-rise 
residential buildings  in winter, which confirms that building type and operational characteristics, 
not just volume, drive these patterns. FSI shows the same seasonal pattern, reaching 0.384 in winter 
but staying low in summer. Surprisingly, building ratio actually reduces gas consumption (negative 
correlations from -0.018 to -0.213). This might be because buildings packed closer together share 
walls and lose less heat. NDVI shows small positive correlations (0.011 to 0.145).

The 300m scale shows stronger relationships than the 100m scale, especially for the air tempera-
ture’s effect on gas EUI. This suggests that air temperature patterns on a larger scale predict heating 
needs better than just looking at immediate surroundings. Building height also increases the gas 
EUI (0.042 to 0.202), with the strongest effect in winter. Overall, these findings confirm that gas 
consumption depends mainly on how cold it is and building characteristics, including both size and 
type. The usage patterns are basically the opposite of electricity—high in winter for heating instead 
of high in summer for cooling.
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6.5	 UFE Changes over a Decade

6.5.1 UFE Changes in Heukseok-dong

Satellite Picture of Heukseok-dong in Feburary 2015

Satellite Picture of Heukseok-dong in March 2024

The decade from 2015 to 2024 showed significant urban transformation in Heukseok-dong, due 
to large scale redevelopment projects that changed the area’s urban forms. The analysis covers 
the entire Heukseok-dong and focuses on District 3, which had the most dramatic transformation. 
These real-world changes help confirm the relationships found in earlier Genizi method and partial 
correlation analyses.



105

Urban Form Element Heukseok-dong Trend Line

Air Temperature (°C)

NDVI

Building Metrics

Spring

Spring

FSI

Summer

Summer

GSI

Fall

Fall

Building Ratio

Building Volume (m3)

Winter

Winter

Number of Buildings

Building Height (m)

Temp = 0.3156 × Year - 624.23

NDVI = 0.00298 × Year - 5.9408

FSI = 0.004091 × Year - 6.892

Temp = 0.2192 × Year - 418.42

NDVI = 0.00230 × Year - 4.5537

GSI = -0.00632 × Year + 13.383

Temp = 0.1712 × Year - 333.63

NDVI = 0.00152 × Year - 2.9993

Ratio = -0.00323 × Year + 6.726

Volume = 45.87 × Year - 90,278.12

Temp = 0.0545 × Year - 111.28

NDVI = 0.000606 × Year - 1.1884

Buildings = -42.68 × Year + 89,286.72

Height = 0.0256 × Year - 42.84

Year

Year

Year

Mean Air Temperature Change over a Decade in Heukseok-dong

Urban Form Elements Change over a Decade in Heukseok-dong

Mean NDVI Change over a Decade in Heukseok-dong

Spring

Average Building HeightAverage Building Volume Average FSI Average Building RatioAverage GSI

Spring

Summer

Summer

Fall

Fall

Winter

Winter

2015

2015

Change

Change

2015

Change

2024

2024

2024

13.35 °C

2,161 m3 8.9 m 1.311 0.1890.675

+13.1 %

+44.2 % +4.5 % +5.6 % -15.7 %-18.5 %

23.80 °C

+12.5 %

12.75 °C

+21.1 %

-0.32 °C

-86.5%

0.068

+30.3 %

0.117

+11.6 %

0.086

+25.8 %

0.037

+ 13.5 %

15.13 °C

3,116 m3 9.3 m 1.384 0.1670.550

26.78 °C 15.44 °C -0.59 °C

0.089 0.131 0.108 0.042

Table 6.8 Mean air temperature and NDVI change over a decade in Heukseok-dong

Table 6.9 Average urban form elements change over a decade in Heukseok-dong

Table 6.10 Trend line of urban form elements change over a decade in Heukseok-dong
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The analysis of Heukseok-dong from 2015 to 2024 reveals significant changes in urban form, though 
these changes were not uniformly distributed across the entire area. Table 6.9 shows that average 
building volume increased by 44.2% from 2,161 m2 to 3,116 m2, while building height increased 
by 4.5%. The linear trend analysis further confirms this pattern, with building volume increasing at 
45.87 m2 per year and building height at 0.0256 m per year. These transformations occurred primar-
ily in specific districts through redevelopment projects, while other neighborhoods remained largely 
unchanged.

Ground coverage patterns show consistent decline across both snapshot and trend analyses. Table 
6.9 indicates GSI decreased by 18.5% (from 0.675 to 0.550) and building ratio dropped by 15.7% 
(from 0.189 to 0.167). The trend analysis supports this, showing GSI decreasing by 0.00632 units 
per year and building ratio by 0.00323 units per year. This reduction in ground coverage reflects 
the redevelopment in certain districts where older, low-rise residential buildings that covered more 
ground were replaced with high-rise apartments with smaller footprints.

Temperature patterns from satellite observations at 11:12 AM show complex changes. Table 6.8 
indicates temperature differences between 2015 and 2024 snapshots, with spring showing +1.78°C, 
summer +2.98°C, and fall +2.69°C, while winter showed a change from -0.32°C to -0.59°C. Howev-
er, these represent individual observations on specific days. The trend analysis provides a more ro-
bust assessment, revealing increasing temperature trends of 0.3156°C per year in spring, 0.2192°C 
per year in summer, 0.1712°C per year in fall, and 0.0545°C per year in winter over the decade.

NDVI shows improvement across all measures. Table 6.10 shows increases ranging from 11.6% to 
30.3% between 2015 and 2024 snapshots, while trend analysis confirms positive trajectories with 
spring NDVI increasing by 0.00298 per year, summer by 0.00230 per year, fall by 0.00152 per year, 
and winter by 0.000606 per year. This indicates gradual improvement in vegetation coverage asso-
ciated with mandatory green space requirements in redevelopment projects.

The combined evidence from both snapshot comparisons and trend analysis reveals a paradox: 
despite declining ground coverage (lower GSI and building ratio) and increasing vegetation (higher 
NDVI), temperature trends continue upward. While the snapshot data must be interpreted cautious-
ly as it represents specific days that may not be representative, the consistent upward temperature 
trends across all seasons suggest that urban redevelopment’s thermal impacts extend beyond sim-
ple relationships with green space. This demonstrates that while some districts of Heukseok-dong 
maintained their original UFEs, the areas that underwent redevelopment created impacts that af-
fected the entire district’s environmental conditions. It is important to note that these temperature 
data represent satellite observations at a single time point (11:12 AM) and may not capture the full 
diurnal temperature cycle or variations in weather conditions between observation days.
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6.5.2 UFE Changes in District 3

Satellite Picture of District 3 in Feburary 2015

Satellite Picture of District 3 in March 2019

Satellite Picture of District 3 in March 2024

478 Buildings - 2015

28 Buildings - 2024
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Figure 6.29 Redvelopment plan in Heukseok-dong

District 3 represents the most dramatic transformation within Heukseok-dong, serving as a clear 
example of how intensive redevelopment reshapes urban environments. It underwent one of the 
most significant transformations through redevelopment in Heukseok-dong. Before redevelopment, 
the district contained 478 buildings in 2015, consisting primarily of low-rise residential buildings. 
The redevelopment project began in 2017 and was completed in 2022, resulting in a fundamental 
change to the urban form. The transformation reduced the number of buildings to 28 high-rise 
apartment compound, each ranging from 11 to 25 floors, while creating substantially more open 
space between buildings.

This redevelopment has established District 3 as one of Heukseok-dong’s most modern residential 
areas. The new development offers improved living conditions through increased open space and 
advanced building systems that were not available in the previous low-rise buildings. These im-
provements have enhanced residents’ quality of life by providing better amenities and more efficient 
open spaces. However, this transformation has also produced huge impacts on the local environ-
ment, particularly affecting air temperature and NDVI  throughout the district.
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Year

Year

Year

Mean Air Temperature Change over a Decade in District 3

Urban Form Elements Change over a Decade in District 3

Mean NDVI Change over a Decade in District 3

Spring

Average Building HeightAverage Building Volume Average FSI Average Building RatioAverage GSI

Spring

Summer

Summer

Fall

Fall

Winter

Winter

2015

2015

Change

Change

2015

Change

2024

2024

2024

12.76 °C

1,175 m3 10.0 m 1.331 0.2630.705

+11.3 %

+2,112.6 % +332 % +83.5 % -53.6 %- 66.9%

23.15 °C

+5.0 %

13.52 °C

+9.1 %

-0.15 °C

-73.3 %

0.051

+60.8 %

0.104

+57.7 %

0.074

+ 47.3 %

0.025

+168.0 %

14.20 °C

25,998 m3 43.2 m 2.442 0.1220.233

24.31 °C 14.75 °C -0.26 °C

0.082 0.164 0.109 0.067

Table 6.11  Mean air temperature and NDVI change over a decade in District 3

Table 6.12  Average urban form elements change over a decade in District 3

Urban Form Element District 3 Trend Line

Air Temperature (°C)

NDVI

Building Metrics

Spring

Spring

FSI

Summer

Summer

GSI

Fall

Fall

Building Ratio

Building Volume (m3)

Winter

Winter

Number of Buildings

Building Height (m)

Temp = 0.1503 × Year - 291.04

NDVI = 0.00353 × Year - 7.0720

FSI = 0.3055 × Year - 617.70

Temp = 0.1632 × Year - 21.84

NDVI = 0.00450 × Year - 8.9742

GSI = -0.1088 × Year + 220.87

Temp = 0.1027 × Year - 193.73

NDVI = 0.00219 × Year - 4.3412

Ratio = -0.0514 × Year + 104.43

Volume = 2,456.63 × Year - 4,968,062.56

Temp = 0.0353 × Year - 72.43

NDVI = 0.00253 × Year - 5.0666

Buildings = -99.32 × Year + 201,593.03

Height = 2.81 × Year - 5,667.86

Table 6.13  Trend line of urban form elements change over a decade in District 3
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The changes in District 3 show more dramatic transformations than Heukseok-dong’s overall aver-
ages. Table 6.12 shows building volume increasing by 2,112.6% from 1,175 m2 in 2015 to 25,998 
m2 in 2024. This represents a complete transformation from a low-rise residential area to a high-
rise development zone, confirmed by the trend analysis in Table 6.13 showing building volume in-
creasing at 2,456.63 m2 per year. The vertical transformation is also greatly increased, with average 
building height from 10.0 m to 43.2 m, a 332% increase, with a trend of 2.81 m per year. FSI nearly 
doubled from 1.331 to 2.442 (83.5% increase), showing a trend of 0.3055 per year, yet GSI dropped 
dramatically by 66.9% (from 0.705 to 0.233), with a declining trend of -0.1088 per year, and building 
ratio fell by 53.6% (from 0.263 to 0.122). This means that while buildings became much taller and 
contained more floor space, they covered far less ground area.

Despite this dramatic reduction in GSI and building ratio, which should theoretically improve venti-
lation and reduce heat accumulation, temperatures in District 3 still increased across most seasons. 
Table 6.11 shows that the air temperatures in spring increased by 11.3%, summer by 5.0%, and fall 
by 9.1% between 2015 and 2024 snapshots. Moreover, the trend analysis confirms that air tempera-
tures have increased by 0.1503°C per year in spring, 0.1632°C per year in summer, and 0.1027°C 
per year in fall. However, when it is compared to the entire Heukseok-dong, the temperature in-
creases in District 3 were much lower. On the other hand,  Heukseok-dong’s trends show 0.3156°C, 
0.2192°C, and 0.1712°C per year for spring, summer, and fall, respectively, District 3’s trends are 
approximately half these rates. This suggests that despite a huge increase in building volume, the 
reduced GSI and increased NDVI provided mitigation of temperature increases.

The average NDVI after redevelopment shows substantial increases across all seasons. Winter NDVI 
showed the most dramatic improvement at 168.0%, while summer increased by 57.7%. These im-
provements significantly exceeded the entire Heukseok-dong averages, which ranged from 11.6% 
to 30.3%, reflecting the mandatory green space requirements and modern landscaping in the new 
development. The trend analysis shows positive NDVI increases of 0.00353 per year in spring and 
0.00450 per year in summer. However, these trends may not account the actual construction period, 
as they include the period of complete vegetation removal during construction (2018-2022).

While the air temperatures still increased in District 3, the smaller rate of increase compared to 
Heukseok-dong as a whole suggests that thoughtful redevelopment design can partially offset 
warming effects. The temperature increases cannot be attributed solely to local urban form chang-
es, as unpredictable factors like global warming might affect the entire region. The fact that Dis-
trict 3’s temperature increased less than Heukseok-dong’s average, despite its dramatic increase in 
building volume, indicates that the combination of reduced ground coverage, increased open space, 
and enhanced vegetation provided meaningful benefits. This real-world example demonstrates that 
while complete temperature neutrality may be difficult to achieve in high-density redevelopment, 
careful design incorporating substantial green infrastructure and open space can minimize warming 
impacts.
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6.6	 Overall Analysis
The analysis of UFEs in Heukseok-dong reveals complex non-linear relationships between building 
characteristics, NDVI, air temperature, and energy consumption. By combining the Genizi method 
results with partial correlations and real-world changes over a decade, several important patterns 
emerge that show both the power and limitations of urban form in shaping environmental condi-
tions. The most important finding is the gap between the individual correlation strength from the 
partial correlation and the overall explanatory power from the Genizi method. While NDVI shows 
strong cooling effects with correlations reaching -0.381 in summer at the 100m scale, the R2 values 
from the Genizi method range only from 0.067 to 0.328. This means that the model explains less 
than 33% of air temperature variance, leaving the majority influenced by factors not captured in this 
analysis. This finding becomes even more meaningful when examining District 3’s transformation, 
where NDVI improvements ranging from 47.3% to 168.0% across seasons with temperature increas-
es of 5.0% to 11.3% between the 2015 and 2024 observations. However, these snapshot compari-
sons must be interpreted cautiously, as they represent specific days that may have different weather 
conditions. The trend analysis provides more robust evidence, showing that District 3’s temperature 
increase rates were approximately half of Heukseok-dong’s temperature increase rates. This sug-
gests that the urban form changes may have provided partial mitigation despite the warming trends.

Scale effects play a crucial role in understanding these relationships. The 100m buffer scale bet-
ter captures energy consumption patterns, with the highest R2 of 0.378 for electricity in summer. 
This makes sense because energy use depends on individual building characteristics and imme-
diate surroundings. In contrast, the 300m buffer scale better explains air temperature variations, 
reaching R2 values up to 0.328, as temperature is influenced by broader neighborhood conditions 
and heat movement across areas. The scale effect is already confirmed by H. Chen et al. (2019) and 
Godoy-Shimizu et al. (2021), where building-level analysis at finer spatial resolutions (such as the 
100m scale) was necessary for accurate energy flux estimation, while neighborhood-level analysis 
at broader scales (such as the 300m scale) better captured area-wide temperature variations. How-
ever, these larger scales also introduce complexity, shown by negative importance values like FSI 
at -10.3% in spring, which indicate suppressor effects where variables enhance other predictors’ 
explanatory power through their correlations.

Seasonal patterns dramatically shift the importance of different urban form elements. NDVI domi-
nates air temperature variance in three seasons, contributing 79.3% importance in spring, 64.7% in 
fall, and 71.6% in winter at the 100m scale. This vegetation dominance is supported by Liao et al. 
(2021), who applied the Genizi method in Seoul and identified green space ratio as one of the domi-
nant variables affecting surface temperatures. However, while Liao et al.’s methodological approach 
was comprehensive, their analysis was limited to only four days of data (two summer and two winter 
days) and focused solely on LST rather than air temperature. This research builds upon Liao et al.’s 
framework by examining multiple satellite images across a full decade from 2015 to 2024, convert-
ing LST to air temperature for more direct relevance to building energy consumption, and extending 
the analysis to examine the complete cascade relationship from urban form through temperature to 
actual building energy consumption data. 

Additionally, Raj and Yun (2024) found strong negative correlations between NDVI change and sur-
face urban heat island intensity (R = -0.81) over 20 years in Seoul. While their study provided valu-
able long-term trends across Seoul, it focused on city-wide patterns rather than district-level analy-
sis and did not examine energy consumption relationships. This research complements their findings 
by providing fine-scale analysis at the district level with multiple spatial scales and directly linking 
temperature changes to building energy consumption patterns. 
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However, summer shows a complete pattern, with the building ratio taking over at 71.8% impor-
tance at the pixel scale, while NDVI drops to -1.2%. This result contradicts Wu et al. (2022)’s finding, 
which found that NDVI’s importance is the highest in summer. This contradiction is likely due to the 
different temperature metrics used. Wu et al. (2022) analyzed daily average temperatures, which 
integrate nighttime cooling effects of vegetation throughout the 24-hour cycle. In contrast, this study 
examines air temperatures at 11:12 AM, when the temperature difference between building and 
vegetated areas is at its highest. At this specific time, the presence of buildings creates significant 
temperature differences that overwhelm the variations in vegetation area, making building charac-
teristics dominate the temperature variance. This seasonal flip suggests that during extreme heat, 
the physical presence and thermal mass of buildings overwhelm vegetation’s cooling capacity. The 
partial correlations support this pattern, with GSI showing its strongest warming effect in summer, 
with 0.440 at a 300m scale.

Air temperature drives electricity consumption with correlations up to 0.576 in summer, when cool-
ing demands are highest. The relationship is the opposite for gas consumption, with negative cor-
relations reaching -0.387 in winter at the 100m scale, reflecting heating needs. This pattern is con-
firmed by P. Wang et al. (2023), who reported strong negative correlations between air temperature 
and gas use. The weak correlation in summer confirms that gas consumption is non-temperature 
dependent, such as in cooking and water heating. Surprisingly, building volume shows positive cor-
relations with both electricity (0.178 to 0.398) and gas EUI (0.085 to 0.425), despite EUI already 
being normalized. This suggests that larger buildings in Heukseok-dong have higher energy intensity 
per m2, possibly due to differences in building use types, age, or systems. This is confirmed by the 
analysis in Chapter 6.2.3, which shows that commercial buildings consume 30-40% more electricity 
and 22% more gas per square meter than residential buildings. This explains why building volume 
correlates with higher EUI.

Analysis of District 3 over the last decade provides real-world validation of the statistical patterns 
while revealing their limitations. Building volume in District 3 increased by 2,112.6% and height by 
332%, while GSI decreased by 66.9% and building ratio decreased by 53.6%. These changes created 
a fundamentally different urban form, which is from low-rise residential buildings covering most of 
the ground to high-rise apartments with substantial open space. Despite these improvements and 
significant NDVI increases, temperatures still rose across all seasons except winter. However, district 
3’s air temperature increases were lower than Heukseok-dong’s overall changes, suggesting that 
redevelopment can provide partial air temperature mitigation. The trend analysis provides more ro-
bust evidence of this mitigation effect. While Heukseok-dong’s temperature trends show increases 
of 0.3156°C/year in spring, 0.2192°C/year in summer, and 0.1712°C/year in fall, District 3’s trends 
are 0.1503°C/year, 0.1632°C/year, and 0.1027°C/year respectively, even though the building vol-
ume increases of 2,456.63 m2/year. This suggests that the combination of reduced GSI, increased 
NDVI, and improved spatial configuration provided measurable temperature mitigation.

Building ratio shows an interesting negative correlation with gas consumption (-0.018 to -0.213), 
suggesting that compact development patterns improve heating efficiency through shared walls and 
reduced heat loss. This finding, combined with the negative importance values at larger scales, 
demonstrates how UFEs interact in complex ways that simple correlations might miss.

The overall analysis reveals that while UFEs significantly influence air temperature and energy con-
sumption, they operate within a complex system where unmeasured factors play major roles. The 
scale-dependent nature of these relationships suggests that interventions must consider both im-
mediate building characteristics and broader neighborhood patterns. Most importantly, the gap be-
tween strong individual correlations and modest overall explanatory power, validated by District 3’s 
real-world experience, shows that urban form modifications alone cannot fully address environmen-
tal challenges, though they can provide meaningful improvements when thoughtfully implemented.
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Conclusion07
This research investigated the complex non-linear relationships between urban form elements 
(UFEs), air temperature, and energy consumption of buildings in Heukseok-dong, Seoul, through 
an integrated analysis spanning a decade from 2015 to 2024. The study aimed to understand how 
physical characteristics of the urban environment influence local climate conditions and building 
energy use patterns, providing empirical evidence for sustainable urban development strategies in 
dense residential districts.

The research successfully developed a Multi-Layer Perceptron model to convert satellite-based 
Land Surface Temperature (LST) to air temperature using Normalized Difference Vegetation Index 
(NDVI), Digital Elevation Model (DEM), and Solar Zenith Angle (SZA) using air temperature data from 
Automatic Weather Stations (AWSs) as ground truth data. The MLP model achieved an R2 of 0.9684 
and tested with independent S-DoT sensor data. 

The independent testing was conducted in two phases: examining May-August 2020, where the 
mean temperature difference was 1.84°C, remarkably close to the known systematic temperature 
difference of 1.8°C between S-DoT sensors and AWS during this period. When extended to the full 
available period, the mean difference was 0.98°C. The independent testing demonstrated an R2 of 
0.807, confirming that satellite imagery provides a reliable method for urban temperature monitor-
ing when ground-based stations are limited. The study analyzed six urban form elements: NDVI, 
building ratio, building height, Ground Space Index (GSI), Floor Space Index (FSI), and building vol-
ume, examining their impacts across multiple spatial scales and seasons.

Through the application of the Genizi method to address multicollinearity and partial correlation to 
determine directional relationships, the research found several key findings. NDVI emerged as the 
dominant cooling factor in most seasons, explaining up to 79.3% of temperature variance in spring, 
but surprisingly showed reduced importance in summer when building characteristics took domi-
nance. The analysis also revealed scale-dependent relationships, with energy consumption patterns 
best captured at the 100m scale while temperature variations emerged more clearly at the 300m 
scale.

The examination of energy consumption patterns showed distinct seasonal dependencies. Air tem-
perature strongly correlated with electricity consumption in summer (r = 0.576), reflecting cooling 
demands, while showing a negative correlation with gas consumption in winter (r = -0.387), indicating 
heating needs. Building volume consistently showed positive correlations with both electricity and 
gas EUI, which is confirmed in Chapter 6.2.3 where the commercial buildings consuming 22-40% 
more energy per m2 than the residential buildings. However, the low R2 values (0.067-0.378) across 
all analyses indicated that UFEs explain only a portion of variance, with factors such as building 
age, occupancy behaviors, and other system characteristics likely accounting for much of the unex-
plained variation, which were clearly mentioned by Yoshino et al. (2017) and Bäcklund et al. (2023).
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The decade-long transformation of District 3 provided important real-world validation of the sta-
tistical findings. Despite huge increases in building volume (2,112.6%) and height (332%), combined 
with substantial NDVI improvements (up to 168%), temperature trend analysis showed increases 
of 0.10-0.16°C per year, which are approximately half of Heukseok-dong’s overall rates of 0.17-
0.32°C per year. This demonstrates that thoughtful urban design can provide partial mitigation of 
warming effects even in high-density redevelopment.

However, it is important to acknowledge that this research includes an important temporal mismatch 
between satellite observations and energy consumption data. The analysis uses single hourly tem-
perature observations at 11:12 AM with monthly aggregated energy consumption. This limitation 
indicates that the research captures spatial correlations between UFEs, air temperature, and energy 
consumption, rather than proving their direct relationships. The R2 values (0.067-0.378) likely rep-
resent this temporal mismatch as much as unmeasured variables. Future research should prioritize 
obtaining hourly energy consumption data and obtaining more frequent satellite observations to 
better capture temporal scales and conclude clear cascade effects from urban form through tem-
perature to energy consumption. Despite this limitation, the decade-long analysis and multi-scale 
approach provide valuable insights into the spatial patterns and long-term trends that inform urban 
planning strategies.

This study advances the understanding of urban environmental relationships by providing empirical 
evidence from a long-term, multi-scale analysis using complementary analytical methods. While ur-
ban form modifications alone cannot mitigate temperature increases or excessive energy consump-
tion, the research demonstrates that evidence-based planning strategies can achieve meaningful 
improvements in urban environmental conditions. The methodology developed here, combining 
satellite monitoring, energy analysis, and statistical techniques to handle complex correlations, pro-
vides a framework applicable to other dense urban areas facing similar challenges of rapid devel-
opment and climate change.
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Although this research provides valuable insights into the relationships between UFEs, air tempera-
ture, and energy consumption in Heukseok-dong, there are several limitations that must be ac-
knowledged that affect the interpretation and generalizability of the results.

One of the most significant limitations is the energy consumption data coverage. The electricity and 
gas consumption data were not available for all buildings in Heukseok-dong, but primarily for low-
rise residential buildings. High-rise apartments, commercial buildings, and university buildings were 
largely absent from the energy dataset. This limited data availability creates a bias toward older, 
smaller residential buildings and may not accurately represent the energy consumption patterns of 
the entire buildings in Heukseok-dong. The positive correlation between building volume and EUI, 
despite normalization, might be influenced by this sampling bias, as larger buildings with potentially 
different use types and energy systems were underrepresented in the analysis.

The low R2 values throughout the analysis from the Genizi method, ranging from 0.067 to 0.378, 
indicate that 6 UFEs explain only a small portion of the variance in both air temperature and ener-
gy consumption. This suggests that many variables that are not considered have  substantial roles. 
For energy consumption specifically, many research papers have shown that occupant behavior has 
been widely considered as one of the key influencing factors on building energy consumption. The 
absence of occupancy data in this research represents a critical limitation, as building use patterns, 
occupant density, and behavioral differences significantly affect energy consumption beyond what 
physical form can predict.

The most critical limitation of this research is the temporal mismatch between satellite observa-
tions and energy consumption data. Landsat provides only 1-2 images per month at a fixed time of 
11:12 AM, meaning each monthly analysis relies on a single-hour observation, yet these snapshot 
observations are correlated with monthly aggregated energy consumption totals. Thus, this research 
assumes that the air temperature at 11:12 AM on one specific day can represent the entire month’s 
air temperature patterns and energy consumption. This is a significant assumption that likely con-
tributes to the moderate R2 values (0.067-0.378) found in this study. 

Furthermore, the 11:12 AM timing may miss energy demand periods, with peak cooling typically 
occurring between 2 and 4 PM, while peak heating occurs in the early morning hours and evenings. 
Building energy consumption is highly affected by occupancy patterns that vary throughout the day. 
Residential buildings show morning and evening peaks, while commercial buildings peak during 
business hours. The single snapshot cannot capture these diurnal variations that fundamentally af-
fect the energy demand of the buildings. This temporal mismatch is more severe than the monthly 
aggregation of energy data because monthly aggregations integrate full consumption patterns, while 
the satellite data represents an instantaneous moment that may not correlate with when the energy 
is actually consumed. The moderate correlations found between UFEs and energy consumption 
may therefore reflect coincidental spatial associations rather than causal relationships mediated by 
temperature. While the changes in the 10-year analysis provide some compensation through long-
term trends and explicitly focus on relationships at the satellite overpass time, these approaches do 
not resolve the fundamental issue with temporally aggregated energy data.

Discussion08
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Many building-specific characteristics that were not measured also contribute to the unexplained 
variance. The age of buildings, which varies considerably in Heukseok-dong with many structures 
dating from the 1950s to the 1970s, affects insulation quality, HVAC system presence, and overall 
energy efficiency. Building use types have different energy use patterns and operational schedules. 
Construction materials, window types, and other factors also influence thermal performance, but 
they were not included in the analysis. These unmeasured factors likely explain the 62-86% unex-
plained variance in energy consumption models.

Temporal limitations also affect the research findings. The satellite-based air temperature data cap-
tured only the 11:12 AM overpass time, missing important diurnal temperature variations. Peak 
cooling loads typically occur in mid-afternoon, while heating demands peak in early morning hours. 
The monthly aggregation of energy consumption data masks daily and weekly usage patterns that 
could provide deeper insights into the relationship between urban form and energy use. Seasonal 
variations in occupancy, such as vacation periods or academic schedules, were not captured but 
likely influence energy consumption patterns significantly.

These limitations do not invalidate the research findings but rather provide context for interpreta-
tion. The result of significant relationships between UFEs, air temperature, and energy consump-
tion, despite these limitations, suggests that the actual relationships may be even more complex 
than captured in this analysis. Future research addressing these limitations could provide a more 
comprehensive understanding of how urban form shapes environmental conditions and energy con-
sumption patterns in dense urban areas.
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This research makes several unique contributions that differentiate it from existing studies on urban 
environmental conditions and energy consumption. These contributions enhance methodological 
approaches and provide new insights into the complex relationships between urban form, tempera-
ture, and energy use.

The successful conversion of satellite-based LST to air temperature with independent testing with 
S-DoT sensors confirms a significant improvement over prior studies. While many researchers have 
tried to use satellite imagery for urban temperature analysis, few have validated their models with 
an independent sensor network. The testing using S-DoT sensors, which achieved an R2 of 0.807 de-
spite known systematic bias between sensor types, confirms that satellite imagery offers a reliable 
method for estimating air temperature in urban heat island studies. This independent testing, based 
on over 23,000 data points from a dense sensor network, shows that satellite-based approaches can 
accurately convert data to air temperature.

Unlike most urban studies that analyze data over a short period, this research examines a full de-
cade of data from 2015 to 2024. This long-term analysis captures not only seasonal variations but 
also the entire transformation of urban districts through redevelopment. The 10-year span allows 
for the detection of gradual changes in urban form and their cumulative effects on air temperature 
and energy consumption, revealing insights often missed in shorter studies. The analysis of District 
3 from pre-redevelopment through construction to completion provides empirical evidence of how 
urban transformations influence environmental conditions over time.

A key innovation in this research is the examination of cascade effects linking air temperature, UFEs, 
and energy consumption as an interconnected system. While many studies have explored the rela-
tionship between air temperature and energy consumption or between urban form and energy use 
separately, few have investigated how all three elements relate to each other. This study demon-
strates how UFEs influence air temperature, which in turn affects energy consumption patterns, 
creating a cascade of effects.

The combined use of the Genizi method and partial correlation analysis offers more comprehensive 
insights than either method alone. While the Genizi method reveals the relative importance of vari-
ables despite multicollinearity, partial correlation provides essential directional information. Few 
studies have employed both methods concurrently, missing either the importance rankings or the 
directional relationships that together give a complete understanding.

The validation of statistical results through real-world redevelopment enhances practical credibility 
often absent in purely theoretical studies. District 3’s transformation, with a 94% reduction in build-
ing count but a 2,112.6% increase in building volume, serves as a natural experiment to test whether 
statistical relationships hold in practice. The observation that, despite significant NDVI improve-
ments (up to 168%), temperatures still increased but less than the district average confirms both the 
potential and limitations of urban design interventions.

8.2	 Benefits of the Research
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The findings from this research provide specific, quantitative guidance for urban planning policies 
aimed at mitigating air temperature and managing energy consumption in dense residential districts. 
These recommendations are based on the identified relationships between UFEs, air temperature, 
and energy use patterns observed over a decade in Heukseok-dong.

For air temperature mitigation, urban planning policies should adopt seasonally differentiated 
strategies. During summer months, when building ratio dominates temperature variance (71.8% im-
portance), policies should prioritize reducing ground coverage and building density. The statistical 
analysis across Heukseok-dong suggests that lower GSI and building ratios correlate with reduced 
temperatures, while District 3’s case demonstrates that even with significant reductions in ground 
coverage (GSI decreased by 66.9%), temperature increases cannot be completely prevented. While 
NDVI shows reduced importance in summer (-1.2%), it remains crucial for other seasons, contrib-
uting up to 79.3% of temperature variance in spring. Therefore, green space requirements should 
exceed current standards, with enhanced vegetation coverage throughout redevelopment projects.

The scale-dependent findings indicate that temperature mitigation requires neighborhood-level 
interventions. Since temperature patterns emerge more clearly at a 300m scale, policies should 
mandate green corridors and open spaces that connect across multiple building blocks. Building 
height, showing cooling effects through partial correlation from -0.045 to -0.223, suggests that ver-
tical development with reduced ground coverage can provide better natural ventilation and avoid 
heat accumulation.

For energy consumption management, the research finds that building-level interventions are most 
effective, as energy patterns are best captured at a smaller scale. The positive correlation between 
building volume and EUI, despite normalization, indicates that larger buildings require more inten-
sive energy management strategies. Policies should mandate enhanced energy efficiency standards 
for buildings with high volume, such as advanced HVAC systems. The seasonal energy patterns de-
mand different policy approaches for electricity and gas consumption. Since air temperature drives 
54.3% of electricity variance in summer, cooling demand reduction through passive design becomes 
critical. Regulation should require external shading, high-performance glazing, and natural ven-
tilation options, particularly for redevelopments replacing older buildings that currently lack air 
conditioning. For winter heating, where building volume explains up to 41.3% of gas consumption, 
policies should prioritize thermal envelope improvements and district heating systems that leverage 
the efficiency of compact development patterns.

The substantial unexplained variance in energy consumption (62-86%) highlights the importance of 
addressing factors beyond urban form. Policies should monitor energy performance and disclosure 
for all buildings, not just new construction, to better understand consumption patterns across differ-
ent building ages and types. Given the significant role of occupancy behaviors identified in the other 
papers, mixed-use development that balances residential and commercial activities could optimize 
energy use throughout the day.

8.3	 Implementations of the Research
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Year Date Time
2013 16/Mar 02:12:30.8483140Z
2013 17/May 02:11:11.1128030Z
2013 11/Jun 02:11:06.4518000Z
2013 18/Sep 02:10:50.8580940Z
2013 22/Oct 02:10:21.4068040Z
2013 21/Dec 02:10:29.0925990Z
2014 17/Jan 02:10:40.5742760Z
2014 22/Feb 02:11:11.1177340Z
2014 29/Mar 02:11:07.8291040Z
2014 13/May 02:10:56.9703300Z
2014 16/Jun 02:10:47.4312600Z
2014 19/Aug 02:11:02.4569760Z
2014 21/Sep 02:11:04.9631590Z
2014 22/Oct 02:11:17.2364270Z
2014 13/Dec 02:10:48.0682050Z
2015 19/Jan 02:10:57.8989180Z
2015 17/Mar 02:11:08.6982830Z
2015 19/May 02:12:17.2364270Z
2015 21/Jun 02:12:13.1821710Z
2015 17/Jul 02:10:59.6394180Z
2015 19/Sep 02:12:48.0682050Z
2015 11/Oct 02:12:57.8989180Z
2015 23/Dec 02:11:08.6982830Z
2016 13/Jan 02:12:13.9619269Z
2016 22/Mar 02:11:07.8291040Z
2016 19/Apr 02:10:56.9703300Z
2016 17/May 02:12:47.4312600Z
2016 20/Jul 02:11:02.4569760Z
2016 22/Aug 02:12:04.9631590Z
2016 18/Sep 02:12:17.2364270Z

Year Date Time
2016 10/Oct 02:11:48.0682050Z
2016 14/Nov 02:10:57.8938180Z
2016 16/Dec 02:11:01.6982830Z
2017 13/Jan 02:12:17.2364270Z
2017 24/Feb 02:11:04.9631590Z
2017 23/Mar 02:11:17.2364270Z
2017 09/Apr 02:10:48.0682050Z
2017 17/May 02:10:57.8989180Z
2017 24/Jun 02:11:08.6982830Z
2017 28/Aug 02:12:17.2364270Z
2017 11/Oct 02:12:13.1821710Z
2017 18/Nov 02:10:59.6394180Z
2017 24/Dec 02:12:48.0682050Z
2018 25/Jan 02:11:01.6982830Z
2018 22/Feb 02:12:17.2364270Z
2018 14/Mar 02:11:04.9631590Z
2018 18/May 02:11:17.2364270Z
2018 20/Nov 02:10:48.0682050Z
2018 11/Dec 02:12:17.2364270Z
2019 08/Jan 02:12:17.2364270Z
2019 18/Feb 02:12:48.0682050Z
2019 29/May 02:12:57.8989180Z
2019 22/Jun 02:11:08.6982830Z
2019 26/Oct 02:12:17.2364270Z
2019 15/Nov 02:12:13.1821710Z
2019 19/Dec 02:11:04.9631590Z
2020 14/Jan 02:10:57.8389180Z
2020 09/Feb 02:11:08.6102830Z
2020 20/Mar 02:12:17.2114270Z
2020 15/Apr 02:12:13.2021710Z

Year Date Time
2020 28/May 02:12:09.2114270Z
2020 23/Dec 02:12:23.2021710Z
2021 23/Feb 02:12:15.6982830Z
2021 29/Mar 02:12:22.2364270Z
2021 11/Apr 02:11:43.9631590Z
2021 25/Jun 02:11:36.2364270Z
2021 19/Aug 02:12:43.0682050Z
2021 20/Sep 02:12:21.8989180Z
2021 11/Oct 02:11:15.6112830Z
2022 08/Jan 02:12:52.2064270Z
2022 27/Apr 02:12:23.1121710Z
2022 25/May 02:10:19.8989180Z
2022 13/Jun 02:11:33.6982830Z
2022 22/Sep 02:12:39.2364270Z
2022 18/Oct 02:12:52.1821710Z
2022 24/Nov 02:10:27.6394180Z
2022 15/Dec 02:12:49.0682050Z
2023 15/Mar 02:11:11.6982830Z
2023 19/May 02:12:25.2364270Z
2023 22/Oct 02:11:11.9631590Z
2023 22/Nov 02:11:10.2364270Z
2023 14/Dec 02:11:12.9631590Z
2024 13/Jan 02:12:30.8989180Z
2024 22/Apr 02:12:01.6283930Z
2024 19/May 02:12:17.2364270Z
2024 24/Jun 02:11:04.9631590Z
2024 29/Aug 02:11:17.2364270Z
2024 02/Oct 02:12:48.0682050Z
2024 14/Dec 02:12:57.8989180Z

126

Code Name Latitude Longitude Altitude Code
400 강남 37.4982 127.0816 12.66 419
401 서초 37.48462 127.026 33.05 421
402 강동 37.55556 127.145 55.29 422
403 송파 37.51151 127.0967 58.26 423
404 강서 37.5739 126.8295 9.299 424
405 양천 37.52823 126.8794 22.75 425
406 도봉 37.66557 127.0304 56.65 509
407 노원 37.62186 127.0919 25.3 510
408 동대문 37.58463 127.0604 53.96 889
409 중랑 37.58551 127.0868 39.09 590
410 기상청 37.4933 126.9175 41.758 541
411 마포 37.55165 126.9292 100.67 450
412 서대문 37.57047 126.9408 103.08 532
413 광진 37.53344 127.086 29.912 540
414 성북 37.61134 126.9998 128.62 444
415 용산 37.51955 126.9763 31.73 572
416 은평 37.64647 126.9427 55 649
417 금천 37.46551 126.9002 45 116
418 한강 37.52489 126.939 10.66 569

Name Latitude Longitude Altitude
중구 37.55236 126.9874 267.05
성동 37.54721 127.0389 34.73
북악산 37.60344 126.9844 333.8
구로 37.49328 126.8263 56.08
강북 37.63801 127.0098 69.8
남현 37.46347 126.9815 113
관악 37.45284 126.9502 141.64
영등포 37.52706 126.9071 25.38
현충원 37.50036 126.9765 16.23
과천 37.44028 127.0025 46.6

남양주 37.63405 127.1506 25.36
주교 37.59834 126.849 45.34

의정부 37.73476 127.0735 89.49
고양 37.6373 126.892 44.71
하남 37.53794 127.2137 27.68
성남 37.42093 127.1248 28.65
부평 37.47223 126.7507 25.91

관악(레) 37.44526 126.964 624.82
구리 37.58224 127.157 27.15

Obtained Time is in UTC (+9)

Appendix 1	 Information of AWS

Appendix 2	 Landsat 8 Obtained Time
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UFE

UFE

UFE

Air Temperature Genizi Method

Air Temperature Genizi Method

Air Temperature Genizi Method 300m Scale

100m Scale

Pixel Scale

Spring (R2=0.137)

Spring (R2=0.218)

Spring (R2=0.304)

Summer (R2=0.195)

Summer (R2=0.281)

Summer (R2=0.407)

Fall (R2=0.098)

Fall (R2=0.186)

Fall (R2=0.328)

Winter (R2=0.067)

Winter (R2=0.144)

Winter (R2=0.228)

NDVI
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NDVI

Weighted Height

Weighted Height

Weighted Height

Volume Density

Volume Density

Volume Density
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FSI
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-4.8

43.7

7.8

13.5

28.3

3.2

8.9

-17.9

71.8

62.3

-3.3

19.5

21.7

36.8

-1.1

-2.6

12.4

63.8

64.7

73.4

3.1

6.9

19.8

0.6

-1.3

12.7

60.1

71.6

77.3

13.5

19.8

34.7

1.2

-1.8

23.5

8.6

6.3

11.2

-3.6

1.5

3.5

5.4

-0.3

-0.9

-10.3

4.3

7.8

-1.7

0.9

2.4

-8.4

-0.1

-0.5

4.2

3.2

5.4

-4.3

1.8

6.2

-14.8

0.2

-1.2

Air Temperature

Appendix 3	 Genizi Method Result
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UFE

UFE

UFE

UFE

Electricity EUI Genizi Method - 100m Scale

Gas EUI Genizi Method - 100m Scale

Electricity EUI Genizi Method - 300m Scale

Gas EUI Genizi Method - 300m Scale
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Spring (R2=0.312)

Spring (R2=0.194)

Spring (R2=0.228)
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Air Temperature
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11.3
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Appendix 4	 10-Year Change in Heukseok-dong
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Year 2015
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Year 2016



132

Year 2017
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Year 2018
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Year 2019
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Year 2020
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Year 2021
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Year 2022
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Year 2023
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Year 2024
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Seasonal Air Temperature Change in Heukseok-dong (2015-2024)

Seasonal NDVI Change in Heukseok-dong (2015-2024)

0.00230 × Year - 4.5537

0.00152 × Year - 2.9993

0.00298 × Year - 5.9408

0.000606 × Year - 1.1884

0.2192 × Year - 418.42°C

0.1712 × Year - 333.63°C

0.3156 × Year - 624.23°C

0.0545 × Year - 111.28°C
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Average Building Height Change in Heukseok-dong (2015-2024)

Average Building Ratio Change in Heukseok-dong (2015-2024)

0.0256 × Year - 42.84 m

-0.00323 × Year + 6.726
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Average Building Volume Change in Heukseok-dong (2015-2024)

Total Number of Buildings Change in Heukseok-dong (2015-2024)

45.87 × Year - 90,278.12 m3

-42.68 × Year + 89,286.72
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Average Floor Space Index (FSI) Change in Heukseok-dong (2015-2024)

Average Ground Space Index (GSI) Change in Heukseok-dong (2015-2024)

0.004091 × Year - 6.892

-0.00632 × Year + 13.383
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Appendix 5	 10-Year Change in District 3

Seasonal Air Temperature Change in District 3 (2015-2024)

Redevelopment period

0.1632 × Year - 21.84°C

0.1027 × Year - 193.73°C

0.1503 × Year - 291.04°C

0.0353 × Year - 72.43°C

Seasonal NDVI Change in District 3 (2015-2024)

Redevelopment period

0.00450 × Year - 8.9742

0.00219 × Year - 4.3412

0.00353 × Year - 7.0720

0.00253 × Year - 5.0666
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Average Building Height Change in District 3 (2015-2024)

Average Building Ratio Change in District 3 (2015-2024)

Redevelopment period

Redevelopment period

2.81 × Year - 5667.86 m

-0.0514 × Year + 104.43
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Total Number of Buildings Change in District 3 (2015-2024)

Average Building Volume Change in District 3 (2015-2024)

Redevelopment period

Redevelopment period

2,456.63 × Year - 4,968,062.56 m3

-99.32 × Year + 201,593.03
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Average Ground Space Index (GSI) Change in District 3 (2015-2024)

Average Floor Space Index (FSI) Change in District 3 (2015-2024)

Redevelopment period

Redevelopment period

-0.1088 × Year + 220.87

0.3055 × Year - 617.70
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