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Abstract

This study investigates the relationships between urban form elements (UFEs), Ur-
ban Heat Island (UHI) effects, and building energy consumption in Heukseok-dong,
Seoul, South Korea. Using 10 years of satellite imagery, air temperature measure-
ments, and energy consumption data, the research examines how six UFEs (NDVI,
building ratio, building height, building volume, FSI, and GSI) influence air tempera-
tures and building energy consumption across multiple spatial scales and seasons.

A Multi-Layer Perceptron (MLP) neural network was developed to convert satel-
lite-derived Land Surface Temperature (LST) to air temperature, achieving an R? of
0.9684 and tested with independent S-DoT sensors. The independent testing was
conducted in two phases: for May-August 2020, the mean temperature difference
was 1.84°C, remarkably close to the known systematic temperature difference of
1.8°C between S-DoT sensors and AWS. When extended to 2020-2024, the mean
difference was 0.98°C with an R? of 0.807, confirming the model successfully pre-
dicts actual air temperatures rather than sensor-specific values.

The Genizi method and partial correlation analysis were combined to address mul-
ticollinearity while revealing both relative importance and directional effects of
UFEs. This complementary approach provides more comprehensive insights than
traditional regression methods alone. Key findings reveal that NDVI dominates
temperature variance in spring (79.3%), fall (64.7%), and winter (71.6%), but build-
ing characteristics become more important in summer, with building ratio contrib-
uting 71.8% at pixel scale. Scale-dependent patterns emerged, with energy con-
sumption best captured at 100m scale (R?up to 0.378) while temperature variations
appeared more clearly at 300m scale (R?up to 0.328). The cascade relationship
from UFE through air temperature to energy consumption showed air temperature
driving 54.3% of electricity variance in summer, while building volume consistently
influenced both electricity and gas consumption despite EUl normalization.

A decade-long analysis of District 3’s transformation from 478 low-rise buildings
to 28 high-rise apartments confirmed the statistical findings. Despite a 2,112.6%
increase in building volume and 168% improvement in NDVI, temperature trends
showed 0.10-0.16°C/year increases, which are approximately half of Heuk-
seok-dong’s 0.17-0.32°C/year rates, demonstrating that urban design can partially
mitigate but not eliminate warming effects.

The moderate R? values (0.067-0.378) indicate that urban form elements explain
only a portion of variance, partly reflecting the temporal limitation of correlat-
ing single hourly satellite observations with monthly energy totals. The research
provides evidence-based recommendations for urban planning policies, including
maintaining GSI below 0.55, achieving NDVI above 0.15, and implementing season-
al strategies for temperature mitigation and energy management.
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Lexicon

Air temperature

Energy use intensity

Floor space index

Genizi method

Ground space index

Land surface temperature

Multi layer perceptron

Normalized vegetation

difference index

Partial correlation

Urban heat island effect

Measure of how hot or cold the air is in a specific location,
typically measured with a thermometer a 1.5-2 meters above
the ground.

A measurement of a building’s energy efficiency calculated by
dividing total energy consumption by the building’s gross floor
area, typically expressed in kWh/m? per month or year.,

Measurement that shows the total floor area of buildings com-
pared to the land area they sit on. Higher FSI means more
densely built areas with taller or larger buildings.

A statistical technique that decomposes R? values to deter-
mine the relative importance of correlated predictor variables
by properly allocating shared variance among them.

Ratio of building footprint area to the total land area. It shows
how much of the ground is covered by buildings, with higher
values indicating more densely built areas.

Temperature of the Earth’s surface as measured from above
(often by satellites), reflecting how hot the actual ground or
roof surfaces are rather than the surrounding air.

Basic type of artificial neural network with multiple layers of
connected nodes that can learn to recognize patterns in data
and make predictions.

Measurement that uses satellite imagery to determine the
amount and health of vegetation in an area. Higher values in-
dicate more vegetation.

A statistical measure that determines the strength and direc-
tion of the relationship between two variables while controlling
for the effects of other variables.

Phenomenon where urban areas are significantly warmer than
surrounding rural areas due to human activities, buildings,
roads, and reduced vegetation, creating “islands” of higher
temperatures.
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01 Introduction

1.1 Problem statement

In recent years, rapid urbanization and industrialization have intensified the challenges posed by
global warming. As number of population in cities increases, urban areas have become significant
contributors to greenhouse gas emissions while simultaneously experiencing the adverse effects of
climate change. Among these effects, the Urban Heat Island (UHI) phenomenon becomes a critical
concern for urban planners, policymakers, and researchers. The UHI effect, defined as “a phenom-
enon involving increased air temperature of a city compared to the surrounding rural area” (Oh et
al., 2020), which exacerbates global warming by amplifying energy demands and deteriorating air
quality.

0..Global Mean Surface Temperature

annual mean
0.4-

—— 5—year running mean
I uncertainty

Tem perature Anomaly ("C)

1880 ' 1900 ' 1920 ' 1940 ' 1960 ' 1980 ' 2000

Figure 1.1 Annual global mean surface temperature (NASA, 2020)

The implications of the UHI effect extend beyond simple temperature increases. As urban tempera-
tures increase, buildings require significantly more energy for cooling during summer months, lead-
ing to increased electricity consumption. Moreover, the interaction between urban form elements
(UFEs) and the UHI effect is complex. While green spaces can mitigate heat through shading and
evaporative cooling, the density and configuration of buildings, road networks, and other impervi-
ous surfaces contribute to heat accumulation and reduced ventilation.

Understanding these relationships becomes even more critical as big cities face pressure to accom-
modate growing populations. United Nations (UN) expected the world’s population lives in urban ar-
eas is expected to increase by 68% by 2050, making it essential to develop evidence-based strategies
that balance development needs with environmental sustainability. However, existing approaches to
analyze and mitigate the UHI effect face several limitations. Most studies examined these phenom-
ena over short time periods, failing to capture long-term urban transformations. Research typically
investigated temperature-energy or urban form-energy relationships in isolation, missing the cas-
cading effects among all three elements. Additionally, the statistical challenges posed by correlated
urban variables often led to oversimplified or misleading conclusions about which factors truly drive
urban temperatures and energy consumption.

Seoul, South Korea, presents an ideal case study for investigating these complex relationships. As
one of the world’s most densely populated cities, Seoul has experienced rapid urban development
over several decades while facing increasing urban temperatures. The city’s diverse urban morphol-
ogy, ranging from traditional low-rise neighborhoods to modern high-rise apartments, provides a
good example for examining how different UFEs influence temperature and energy patterns. Fur-
thermore, Seoul’s comprehensive data infrastructure, including weather stations, energy consump-
tion history, and satellite coverage, enables detailed analysis of urban environmental conditions.
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This research focuses on one of the districts in Seoul, Heukseok-dong, which underwent significant
transformation from low-rise residential areas to high-rise developments. By analyzing the rela-
tionships between UFEs, the UHI effect, and building energy consumption over a decade, this study
aims to provide quantitative evidence for sustainable urban development strategies. The research
aims to address critical questions about how physical characteristics of the urban environment in-
fluence local climate conditions and energy use patterns.

1.2 Research Context and Gaps

While many studies have examined the UHI effect and building energy consumption, there are some
significant gaps remain in current approaches. Most research including Liao et al. (2021) analyzes
these phenomena over short periods, missing long-term urban transformations and their cumulative
impacts. While Raj and Yun (2024) analyzed UHI effect in Seoul over 20 years, it only analyzed how
the temperature changed but did not include energy consumption relationships and only focused on
city-wide patterns. This temporal limitation is particularly problematic in rapidly developing cities
where urban form can change dramatically within a decade. Studies typically examine either tem-
perature-energy or urban form-energy relationships separately such as S. Peng et al. (2011) and Su
et al. (2021)’s works, failing to capture the cascade effects among all three elements. The complex
interactions between urban morphology, local climate, and energy demand remain poorly under-
stood due to this fragmented approach.

The multicollinearity between UFEs, such as the negative correlation between vegetation coverage
and building density is often inadequately addressed or simply ignored. Traditional regression ap-
proaches struggle with these correlated predictors, leading to potentially misleading results about
which factors actually drive temperature and energy patterns. Many studies report simple correla-
tions without considering the relative importance of different variables when they interact, making
it difficult to prioritize urban planning interventions. Furthermore, there are limited validations with
independent datasets, relying solely on the same data used for model development, which limits
confidence in the generalizability of findings.

Methodological limitations extend to data collection and analysis approaches. Satellite-based stud-
ies, including this research, face temporal resolution constraints, capturing only single daily ob-
servations that miss diurnal temperature variations. While this limitation affects all satellite-based
approaches, many existing studies failed to acknowledge or address this constraint in their analysis.
This research explicitly recognizes this temporal limitation and addresses it by focusing on correla-
tions at the specific satellite overpass time (11:12 AM) rather than attempting to generalize to full
diurnal patterns.

Additionally, the testing with dense Seoul Data of Things (S-DoT) sensor networks and the de-
cade-long analysis partially compensates for the temporal resolution constraints by providing spa-
tial density and long-term trends that snapshot studies miss. Ground-based studies, while offering
better temporal resolution, often suffer from sparse spatial coverage that cannot capture urban
microclimate variations. The scale at which analysis is conducted varies widely across studies, with
little understanding of how relationships between urban form, temperature, and energy might differ
across spatial scales. Additionally, most research focused on modern buildings with comprehensive
HVAC systems, overlooking the significant portion of urban building stock consisting of older resi-
dential structures that may have different building characteristics.
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These limitations highlight the need for an integrated, long-term approach that can handle complex
statistical relationships while providing practical insights for urban planning. A comprehensive un-
derstanding requires analyzing the cascade effects from urban form through temperature to energy
consumption, employing methods that can properly account for multicollinearity while revealing
both the importance and direction of relationships. Long-term analysis capturing actual urban trans-
formations, rather than static snapshots, is essential for understanding how development patterns
influence environmental outcomes. This research addresses these gaps by examining a decade of
data from Heukseok-dong, employing complementary statistical methods, and validating findings
through both independent sensor networks and real-world urban redevelopment outcomes.

1.3 Research Questions

This research examines the complicated nonlinear relationships between the urban form elements
(UFEs), urban heat island (UHI) effects, and building energy consumption in one of the areas in
Seoul, South Korea. The research aims to understand how changes in urban form elements affect lo-
cal microclimate and influence energy consumption patterns. Through analysis of satellite imagery,
air temperature measurements, and energy consumption data over 10 years, this research would
answer the following main research question and sub-questions.

12



“How do urban form elements influence the
Main Research Question Urban Heat Island (UHI) effect and building energy performance
in a selected area of Seoul, South Korea?”

The main research question examines the complex non-linear relationships between physical urban
characteristics, local air temperature patterns, and energy consumption, providing insights for sus-
tainable urban development for urbanized cities like Seoul.

“How can land surface temperature (LST) from satellite imagery

Sub-question 1 be converted to air temperature for urban climate analysis?”

The 1st sub-question addresses the methodological challenge of using satellite data for urban tem-
perature monitoring. By developing and testing a conversion of LST to air temperature, the research
enables UHI analysis in cities with limited ground-based monitoring infrastructure.

“How have urban form elements (UFEs) changed
Sub-question 2 over the past decade, and what impact have these
changes had on the UHI effect?”

The sub-question 2 examines the temporal analysis on UFE and effects on air temperature. By
analyzing a decade of data, the research captures how actual urban transformations influence air
temperature patterns over time.

“How do urban form elements affect air temperature,
Sub-question 3 and how does this relationship influence energy consumption
across different seasons and spatial scales?”

This sub-question investigates the cascade effects from UFEs through air temperature to energy
consumption. By examining both electricity and gas consumption separately across seasons and
multiple spatial scales, the research reveals how these relationships vary temporally and spatially,
providing potential guidance for energy management strategies.

“"How does combining the Genizi method with Partial
Sub-question 4 correlation improve understanding of relationships between
UFEs, air temperature, and energy consumption?”

The last sub-question addresses the statistical challenge of multicollinearity in urban studies. By
employing complementary analytical methods, this research separates relative importance from
directional effects, providing more accurate insights than traditional regression approaches alone.

By answering these main research question and sub-questions, the research would provide a com-

prehensive understanding of urban heat island effects in Heukseok-dong, which can guide more
climate responsive and energy efficient during urban development in dense urban environments.

13
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02 Literature Review

2.1 Introduction

2.1.1 Literature Search

Multiple electronic research databases such as Scopus and TU Delft Research Portal were used
to conduct a comprehensive literature search. Some main keywords were used for searching the
literature such as “Urban heat island”, “Building”, “Urban element” and “Energy demand”. These
keywords were combined for advanced search in Scopus and TU Delft Research Portal along with a
few synonyms for each keyword using appropriate Boolean operators (e.g., OR, AND).

2.1.2 Quality of Literature

To ensure the quality and validity of the literature, some modifications to the query were added and
the search plan has been filtered. Urban heat island phenomenon has been actively researching from
the last several decades ago. The quality of the literature was ensured with the number of reviews
(peer-review) and citation numbers. Literature was excluded if they were review papers, editorials,
or conference proceedings and only limited to final articles (publication stage), which were legally
published by trustworthy sources.

2.2 Urban Heat Island (UHI) Effect

2.2.1 Definition and Fundamental Concepts

Figure 2.1 Urban heat island effect by Jamei and Tapper (2018)

The Urban Heat Island (UHI) effect is one of the most studied phenomena in urban climatology, de-
fined as “a phenomenon involving increased air temperature of a city compared to the surrounding
rural area” (Oh et al., 2020). UHI is fundamentally a heat accumulation phenomenon within urban
areas resulting from urban construction and human activities, and the conversion of pervious sur-
faces to impervious surfaces significantly modifies local energy balance in urban areas and contrib-
utes to urban heat island formation, mainly in densely developed cities (Vujovic et al., 2021).
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Multiple factors influence UHI intensity and characteristics. City size and morphology play crucial
roles, with UHI being a major anthropogenic alteration on Earth’s environments, and its geospatial
pattern remains poorly understood over large areas (Zhou et al., 2014). The physical mechanisms
underlying UHI formation were comprehensively explained by Oke (1982). The UHI phenomenon
results from various interacting mechanisms, including modified surface properties where imper-
vious surfaces replace natural surfaces, reduced evapotranspiration due to decreased vegetation
coverage, anthropogenic heat emissions from vehicles and buildings, and urban geometry effects
that trap heat radiation and reduce wind flow. The UHI index varies across cities due to different
development levels and climatic conditions. A summary of studies on UHI in different cities in China
is given in a review paper by Tian et al. (2021), which demonstrates the complexity of factors influ-
encing the UHI phenomenon.

The global significance of UHI continues to grow with accelerating urbanization. Santamouris (2015)
analyzed UHI effect in 101 Asian and Australian cities, indicating widespread prevalence across dif-
ferent climates. Of particular concern are synergies between UHI and climate change, and UHI and
global warming increase significantly the ambient temperature (Santamouris et al., 2014). Higher
temperatures have a serious impact on electricity consumption of the building sector, which increas-
es considerably the peak and the total electricity demand.

This fundamental understanding of UHI mechanisms and characteristics provides the essential foun-
dation for examining its relationships with urban form elements and building energy consumption,
particularly in the context of one of the most urbanized cities, like Seoul.

2.2.2 UHI Measurement and Assessment Methods

Measuring the UHI effect requires two main approaches: Ground-based methods that measure air
temperature and Satellite methods that measure surface temperature. Each method has its own
strengths and limitations for understanding how cities become warmer than their surroundings.

Ground-Based Air Temperature Measurement

The most direct way to measure UHI is through weather stations that record air temperature at stan-
dard heights. According to the EPA guidelines, air temperatures important for assessing heat islands
are those found within the urban canopy, from ground level to the tops of trees and buildings (Mea-
suring Heat Islands | US EPA, 2025). These types of measurements represent the best that people
actually experience. Traditional weather stations measure temperature at 1.5-2 meters height using
shielded sensors, following World Meteorological Organization standards. However, weather sta-
tions have limited spatial coverage, which may miss important temperature variations across urban
areas.

To address this limitation, researchers use mobile measurement where vehicles equipped with sen-
sors traverse urban areas, recording temperatures. Stewart et al. (2021) reviewed various mobile
traverse studies and found they effectively capture spatial temperature patterns, though they are
limited to specific time periods. Another solution is adding low-cost weather sensors. Schatz and
Kucharik (2015) installed 150 temperature and humidity sensors at 3.5 meters height on streetlights
and utility poles in Madison to capture fine-scale temperature variations.

Muller et al. (2013) reviewed urban meteorological networks and found that highlighted the need
for standardized approaches and better documentation of network characteristics. The selection of
appropriate weather stations is critical to ensure temperature differences reflect urbanization effects
rather than geographic factors.

16



Satellite-Based Land Surface Temperature Measurement

Satellites provide a very high spatial coverage of urban temperatures by measuring thermal radi-
ation from surfaces compared to weather stations. Voogt and Oke (2003) confirmed that thermal
remote sensing has been used for a few decades to assess the UHI, to perform land cover classifica-
tions, and as input for models of urban surface atmosphere exchange.

Different satellites offer various advantages for UHI studies. Landsat provides 30-100m thermal
resolution every 16 days, suitable for detailed spatial analysis, while MODIS offers daily coverage at
1km resolution, which is better for temporal studies. As reported by Zhou et al. (2014), MODIS data
effectively analyzed surface urban heat island (SUHI) across major Chinese cities.

Processing satellite thermal data requires several corrections. Atmospheric effects must be removed
using radiative transfer models. Surface emissivity varies with material type, and without proper
corrections, temperature error can exceed 2-3°C (Sobrino et al., 2004).

Key Measurement Challenges

Both methods face important challenges. For ground weather stations, main issues include ensur-
ing spatial coverage across the areas, avoiding microclimate effects from nearby heat sources or
shading, and maintaining consistent measurement protocols. On the other hand, satellite measure-
ments face different challenges. Urban surfaces create complex 3D structures that affect thermal
observations. As Voogt and Oke (2003) noted, viewing geometry significantly affects observed tem-
peratures. Satellites primarily observe horizontal surfaces from above, missing vertical surfaces like
walls that contribute to the complete urban thermal environment.

Stewart et al. (2021) highlighted that the diurnal cycles of atmospheric UHI are well known based
on years of continuous measurements in cities, but it cannot be measured continuously or in situ.
This fundamental difference between surface and atmospheric measurements creates challenges
for integrated UHI assessment.

Despite these challenges, combining ground and satellite measurements provides the most com-
prehensive UH| assessment. Ground weather stations offer accurate point measurements, while
satellites reveal spatial patterns across entire cities. This relationship between surface and air tem-
peratures measured by different methods varies with surface properties, weather conditions, and
time of the day, and combining these 2 methods would provide a comprehensive UH| assessment.
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2.3 Land Surface Temperature (LST) vs Air Temperature

2.3.1 Fundamental Differences

Definitions and Measurements

Land surface temperature (LST) is the radiative skin temperature of the uppermost layer Earth’s
surface (Li et al., 2013). LST represents how hot the surface of the Earth would feel to touch in
a particular location, which is usually measured remotely by satellites detecting thermal infrared
radiation emitted by surfaces. Air temperature, in contrast, is the temperature of air at a specific
height above the surface. Meteorological standards specify measurement at 1.5-2 meters height
using thermometers sheltered from direct radiation. Most global temperature analyses are based on
station air temperatures, which represent the atmospheric conditions humans directly experience
(Mildrexler et al., 2011).

The fundamental distinction between LST and air temperature lies in their physical nature and be-
havior. The analysis of 17 years of satellite data notes that the relationship between satellite LST and
ground-based observations of 2m air temperature (T2m) is characterized in space and time (Good
et al., 2017). The study found that LST and air temperatures can differ by 10-20°C during daytime,
particularly over dry surfaces.

Recent research by Naserikia et al. (2023) found that LST and air temperature have distinct spa-
tiotemporal characteristics, and their relationship differs by season, ecological infrastructure, and
building morphology. They mentioned that greater seasonal variability in LST compared to air tem-
perature, along with more pronounced intra-urban spatial variability in LST.

2.3.2 Importance for Building Energy Analysis

While LST serves specific purposes in environmental monitoring by providing critical information on
evapotranspiration (Li et al., 2013), air temperature, however, remains the standard for assessing
human exposure and comfort.

Air temperature represents the fundamental driver of building energy consumption, particularly
for heating and cooling demands. Building HVAC systems operate based on air temperature mea-
surements. Thermostats monitor indoor air temperature and modulate heating or cooling output to
maintain setpoint temperatures. The control logic responds to the temperature differential between
indoor and outdoor air, not LST, as mentioned that “the indoor-outdoor temperature difference de-
termines the load demands” by Xiong et al. (2023).

The empirical evidence by Su et al. (2021) strongly supports the primacy of air temperature in energy
consumption. The paper confirmed that “outdoor air temperature shows strong positive correlations
with cooling energy consumption”. This correlation reflects the direct physical relationship where
higher outdoor air temperatures increase cooling loads through conductive heat gain, increased
ventilation loads, and greater infiltration heat gains. Similarly, lower air temperatures drive heating
energy consumption through these same mechanisms operating in reverse.

Human comfort is highly related to building energy consumption. All standard thermal comfort in-
dices, including Predicted Mean Vote (PMV) and Physiological Equivalent Temperature (PET), rely
on air temperature measurements rather than surface temperature (Peng & Huang, 2022). Another
work by Schultz and Svendsen (1998) also concluded that the thermal comfort assessment requires
air temperature as a primary input parameter.

18



2.3.3 LST to Air Temperature Conversion Methods

Converting satellite-derived LST to air temperature has become a critical methodology in urban
climate research due to fundamental differences in spatial data availability. Ground-based weather
stations, while providing accurate point measurements, typically offer sparse spatial coverage in ur-
ban areas, often one station per several square kilometers. This spatial limitation makes it challeng-
ing to capture the fine-scale temperature variations essential for understanding urban heat island
effects and their relationships with UFEs at the building or neighborhood scale.

Satellite thermal imagery offers complete spatial coverage at resolutions of 30-100m, providing
temperature information for every pixel across entire cities. However, satellites measure surface
temperature rather than air temperature, necessitating conversion methods to obtain the air tem-
perature values required for building energy analysis and human comfort assessment. This conver-
sion enables researchers to leverage the spatial completeness of satellite data while maintaining
relevance to energy consumption patterns and urban planning applications.

The following review examines various LST to air temperature conversion methods that have been
developed to bridge this gap between spatial coverage and measurement type, evaluating their per-
formance and suitability for urban climate applications.

Linear and Statistical Methods

The most fundamental approach involves simple linear regression between LST and air tempera-
ture. Meyer et al. (2016) compared simple linear regression with machine learning algorithms for air
temperature prediction in Antarctica using MODIS LST satellite data. Their linear regression model
achieved an average R? of 0.78 and RMSE of 5.83°C, which demonstrates that simple approaches
can also provide high R? values.

Multiple linear regression (MLR) incorporates additional predictor variables beyond LST to improve
accuracy. Noi et al. (2017) employed MLR with MODIS LST data along with elevation and Julian day
as auxiliary variables in mountainous regions of Northwest Vietnam. The results showed very high
accuracy with R? values exceeding 0.93 for maximum temperature, 0.80 for minimum temperature,
and 0.89 for mean temperature, with RMSE values around 1.5-2.0°C. This suggests that when aux-
iliary data was included, especially in distinctive areas, the improvements were substantial.

Chen et al. (2016) developed an enhanced empirical regression method that incorporated multiple
predictors, including nighttime light data, LST, normalized difference vegetation index (NDVI), im-
pervious surface area, albedo, elevation, and daylight duration. Their approach achieved satisfac-
tory results with 98% of stations showing errors within £2.5K, demonstrating the value of including
diverse environmental variables.
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Tree-based Approaches

Random Forest (RF) has emerged as a powerful method for air temperature estimation, which is one
of the most common methods to convert LST to air temperature in recent studies. Tang et al. (2021)
used RF to create temperature maps by building multiple decision trees using predictors (LST, NDVI,
elevation) and aggregating their result. It achieved R? values between 0.96-0.98 with RMSE of 1.48-
2.55°C.

Although the RF algorithm has a great ability to handle non-linear relationships and multiple vari-
ables, making it particularly suitable for complex urban environments, the paper noted an import-
ant limitation. RF can create artificial spatial patterns due to its tree-based structure, which may be
problematic for continuous temperature mapping. Also, RF significantly understimates temperature
extremes and struggles to recover finer scale spatial resolution. The author suggests that standard
RF implementations miss important spatial context necessary for realistic temperature mapping,
making it less suitable than other nethods like neural neworks.

Geostatistical Methods

Regression Kriging (RK) combines regression analysis with spatial interpolation. It applies regression
to establish relationships between temperature and axuilary variables, which kriging to spatially
interpolate based on their spatial structure. Ding et al. (2023) used regression kriging to analyze ur-
ban air temperature in Guangzhou city, China based on the weather stations. The final temperature
map combines the regression-based trend surface with kriged residual surface, leveraging both the
explanatory power of environmental covariates and the spatial dependence of temperature fields.
Although the result show high R? of 0.95 with RMSE 0.92°C, the author mentioned that RK assumes
linear relationships in trend, while temperature analysis have beyond non-lienar complicated rela-
tionships, which not be feasible to analyze the detail relationships.

Neural Network Methods

Muli-Layer Perceptron (MLP) neural networks have shown superior performance for air temperature
estimation, particularly in challenging conditions. The Temperature Estimation with ML and Land
Input (TEMLI) framework by Salih et al. (2025) mentioned that “Among the models tested within
the TEMLI framework, the Multilayer Perceptron (MLP) demonstrated superior performance”, by
achieving R? of 0.91 and RMSE of 1.5°C. Apart from MLP, Choi et al. (2021) used Artificial Neural
Networks (ANN) and achieved high accuracy with R? of 0.98 and RMSE of 2.19°C. However, they
noted that model performance is highly dependent on input variables and network architecture.

The advantages of MLP for air temperature estimation are particularly relevant for complex ur-
ban environments. Unlike linear methods that assume constant relationships, MLP can capture the
non-linear relationships between LST and air temperature that vary with surface types, time of day,
and weather conditions. The ability to integrate multiple input variables simultaneously is another
key strength. As Noi et al. (2017) demonstrated, MLP can effectively combine LST with auxiliary
variables like NDVI, elevation, and solar angles to create comprehensive air temperature maps.
Combining with multiple variables is crucial as air temperature in urban areas is highly influenced by
numerous factors beyond surface temperature.

MLP also excels in maintaining spatial continuity, which is essential for urban climate applications.
While Random Forest methods can achieve high point accuracy, they often create artificial spatial
patterns or boundaries in temperature maps due to their tree-based structure. In contrast, MLP
learns the underlying physical relationships between variables and produces smooth, continuous
temperature surfaces that better represent the gradual transitions observed in real urban thermal
environments. This spatial continuity is particularly important for building energy analysis, where
temperature gradients between neighborhoods affect heating and cooling demands.
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Comparative Performance

Category Method Study R? RMSE (°C & K) Key Advantage Limitations
Statistical method  Linear Regression Meyer et al. (2016) 0.78 5.83 . Simple Cannot handle nonlinear
interpretable relationships
Multiple ngar Noiet al. (2017) 0.93/0.80/0.89 1.5/2.0/1.6 Good baseline Limited in spatlal\{arl-
Regression performance ations
Geostatistical . L . Smooth air  Assumes linear relation-
method Regression Kriging  Ding et al. (2023) 0.9 0.92 temperature variation ships in trend
Handles multiple  Creates artificial spatial

Tree-based methods Random Forest  Tang et al. (2021) 0.96-0.98 1.48-2.55 )
variables patterns
Neural Network MLP (TEMLI)  Salih et al. (2025) 0.91 15 Superior in Requires substantial
extreme conditions training data
Artificial Neural . Capture complex Highly dependent on
Network (ANN) Choiet al. (2021) 0.98 219 relationships input variables

Table 2.1 Comparative performance of methodologies to obtain air temperature

Study Application Purpose

Antarctic climate monitoring

Meyer et al. (2016) - General temperature distribution mapping for climate science, not urban or energy-specific applications

Agricultural and environmental monitoring in Vietnam

Noietal. (2017) - Temperature mapping for vegetation phenology and agricultural planning, not urban heat island or energy analysis

Urban climate adaptation

Ding et al. (2023) - Specifically for urban heat mitigation strategies and climate-responsive urban planning in Guangzhou

General temperature downscaling

Tang et al. (2021) - Improving spatial resolution of temperature data for various applications, tested on mixed land cover types

Climate monitoring across Morocco

Salih et al. (2025) - Country-wide temperature estimation for climate assessment, including but not limited to urban areas

Korean Peninsula weather forecasting

Choi et al. (2021) - Operational weather prediction and monitoring, general purpose temperature retrieval

Table 2.2 Air Temperature application purpose

The application context significantly influences the suitability of each LST to air temperature con-
version method. Studies focused on general climate monitoring or agricultural applications (Meyer
et al., 2016; Noi et al., 2017) may tolerate different error patterns than those specifically targeting
urban energy analysis. For instance, methods optimized for capturing spatial temperature patterns
for agricultural planning may not adequately represent the peaked midday temperatures critical for
cooling energy demand estimation.

Among the reviewed methods, the MLP approach (Salih et al., 2025) demonstrates particular ad-
vantages for urban applications despite being developed for country-wide climate monitoring in
Morocco. The TEMLI framework’s MLP architecture showed superior performance in handling ex-
treme temperature conditions and complex terrain, which are analogous to the heterogeneous ur-
ban environment with varying building heights, materials, and land cover types found in Seoul. Im-
portantly, MLP’s ability to capture non-linear relationships between multiple input variables (LST,
NDVI, elevation, solar angle) makes it well-suited for urban areas where temperature is influenced
by numerous interacting factors. While Salih et al. (2025) applied this method across diverse Moroc-
can landscapes, the model’s proven capability in areas with built environments and its high accuracy
(R2= 0.91) suggest strong transferability to dense urban contexts like Heukseok-dong.

Only Ding et al. (2023) specifically addressed urban applications, though their focus was on climate
adaptation rather than energy consumption. This highlights a gap in the literature where most LST
to air temperature conversion studies have not been specifically validated for building energy appli-
cations, which require accurate representation of temperature conditions during peak cooling and
heating hours. The selection of MLP for this research addresses this gap by applying a method with
proven non-linear modeling capabilities to the specific challenge of urban energy analysis.
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Temperature Conversion Method Selection Considerations

The choice of conversion method depends critically on the specific application, available resources,
and the trade-offs researchers are willing to accept. For building energy studies, ideally the method
would capture temperature variations at both temporal and spatial scales. However, current data
sources force a fundamental trade-off: ground-based stations provide excellent temporal resolution
(hourly or sub-hourly) but sparse spatial coverage, while satellite data offers complete spatial cov-
erage but is limited to snapshot observations at fixed overpass times.

Researchers using satellite-based methods, including this study, must acknowledge that they pri-
oritize spatial completeness over temporal resolution. This means capturing temperature patterns
across entire urban areas at building-level detail, but only at specific moments in time (11:12 AM
for Landsat in Seoul). This temporal limitation is significant for energy analysis since building energy
consumption varies throughout the day following occupancy patterns and diurnal temperature cy-
cles. However, for studies examining spatial relationships between urban form and environmental
conditions, or requiring temperature data for every building in a district, the spatial completeness
of satellite data becomes essential despite its temporal constraints.

While simple regression might suffice when only LST data exists, the inclusion of auxiliary variables
like vegetation indices, solar zenith angle, and elevation data significantly improves accuracy regard-
less of method choice. Computational resources also matter, particularly for operational systems
that need to process daily satellite imagery across entire cities. The method must handle data gaps
from cloud coverage while maintaining spatial and temporal consistency.

For urban heat island studies focusing on building energy impacts, MLP neural networks offer the
optimal balance of accuracy, computational efficiency, and physical realism. The method’s ability
to learn complex non-linear relationships while producing spatially continuous temperature fields
makes it particularly suitable for heterogeneous urban environments like Seoul. The seasonal vari-
ations and diverse urban forms in Seoul can create challenging conditions where temperature re-
lationships vary significantly across space and time. Conditions where MLP’s adaptive learning ca-
pabilities provide clear advantages over traditional statistical methods. This superiority in handling
urban complexity, combined with proven performance metrics from recent studies, provides strong
justification for adopting neural network approaches for converting satellite LST to air temperature
in urban energy analysis applications, despite the inherent temporal limitations of satellite-based
data.
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2.3.4 Satellite Data for Temperature Estimation

Multiple satellite platforms provide thermal data for LST acquisition, each offering different trade-
offs between spatial resolution, temporal frequency, and data availability. The selection of appropri-
ate satellite data is crucial for UHI studies and temperature mapping.

Exclusive Use Combination
Satellite
No. of Papers % No. of Papers %

Landsat 317 54.75 396 68.39

MODIS 103 17.79 185 31.95

ASTER 15 2.59 36 6.22

NOAA/AVHRR 1 0.17 7 1.21

METEOSAT - - 3 0.52

Table 2.3 Most used satellites/sensors to obtain LST data (De Almeida et al., 2021)

De Almeida et al. (2021) reviewed the different platforms of remote sensing techniques (satellites)
and summarized the use of each satellite platform. Landsat remains the most widely used platform
for LST studies, with 54.75% of papers exclusively using Landsat data, while MODIS accounts for
17.79% of exclusive use. The combination of multiple sensors is less common, with only 7% of stud-
ies using Landsat with AVHRR and 3% using METEOSAT.

Satellite Spatial Resolution Temporal Resolution Spectral Bands Years of Operation
Landsat 30m 16 days 11 bands (2 thermal) 2013 - present
MODIS 1000m Daily 36 bands (16 thermal) 1999 - present
ASTER 90m 16 days 14 bands (5 thermal) 1999 - present
Sentinel-3 1000m 2 days 11 bands (3 thermal) 2016 - present
ECOSTRESS 70m 5 days 6 bands (5 thermal) 2018 - present

Table 2.4 Satellites’ spatial, temporal resolution, spectral bands and years of operation

Table 2.4 shows a comprehensive overview of commonly used satellite platforms with spatial/tem-
poral resolution, spectral bands, and years of operations. Landsat has provided the longest contin-
uous record of thermal observation (Landsat 4), and since 2013, Landsat 8 accessories the Thermal
Infrared Sensor (TIRS) with 2 thermal bands. The thermal resolution is resampled to 30m, which
provides sufficient detail for UHI studies. The 30m optical bands enable precise land cover classi-
fication to support emissivity estimation and urban form analysis. The 16-day revisit cycle, while
limiting for some applications, provides consistent seasonal coverage. MODIS has been providing
satellite imagery since 1999, which was designed for global environmental monitoring. It provides a
very high temporal resolution with daily coverage and extensive spectral information with 36 bands.
However, its 1000m spatial coverage limits its application in urban environments where temperature
can vary significantly over short distances, especially in urban areas. AESTER was also launched in
1999, with 5 thermal bands at 90m resolution. It can provide detailed thermal information than most
sensors through 14 total spectral bands. However, similar to Landsat, the 16-day revisit cycle has a
limited acquisition schedule, making it challenging to obtain consistent time series data. Sentinel-3
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and ECOSTRESS were launched in recent years, with higher temporal resolution of 2-day revisit and
5-day revisit. However, Sentinel provides 1000m spatial resolution, which is insufficient for detailed
urban analysis where the areas of the building level variations are important. Although ECOSTRESS
provides 70m of spatial resolution and high temporal resolution, there are limitations for historical
archives for long-term studies.

For this research investigating Seoul’s urban heat island effects on building energy consumption over
a 10-year period, careful consideration of available platforms led to selecting Landsat as the pri-
mary data source. The 30m resolution effectively captures Seoul’s urban morphology, distinguishing
between high-rise residential complexes, commercial districts, and green spaces that influence local
temperature patterns. The complete temporal coverage from 2013-2024 enables robust analysis of
urban development impacts. Established processing methods, particularly the mono-window algo-
rithm, validated for East Asian urban environments, ensure reliable LST retrieval. Most importantly,
the extensive scientific validation of Landsat for urban heat island studies provides confidence in the
results and enables comparison with the broader literature.

2.3.5 Limitations of Using Satellite Data

A fundamental limitation of using Landsat is its temporal resolution as it captures only 1-2 images
per month at a fixed time of day, which can not represent the full diurnal temperature cycle. Li et al.
(2022) acknowledged that single daily observations miss critical temperature extremes and diurnal
variations essential for energy analysis. To address this limitation, some studies combined multiple
satellite platforms. Weng et al. (2014) used MODIS’s four daily observations to model diurnal tem-
perature cycles and applied patterns to enhance Landsat’s temporal resolution.

Zhou et al. (2014) noted in their analysis of Surface Urban Heat Island (SUHI) in Chinese cities that
Landsat’s temporal sampling ‘represents a snapshot rather than a comprehensive thermal char-
acterization,” but proceeded with analysis using only available images because their focus was on
spatial patterns of SUHI intensity across cities. Similarly, Imhoff et al. (2009) acknowledged that
MODIS captured only four moments in the diurnal cycle, potentially missing peak temperatures, yet
concluded this was acceptable for their comparative UHI mapping objectives.

However, many studies have simply acknowledged these temporal limitations without attempting
to overcome them. This research similarly accepts the temporal constraints of satellite data while
focusing on spatial relationships between urban form, temperature, and energy consumption at the
satellite overpass time. Rather than attempting to model full diurnal cycles, this study examines how
urban form elements correlate with both temperature and energy consumption patterns specifically
at 11:12 AM, acknowledging that this represents only one point in the daily energy consumption
cycle.
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2.4 Urban Form Elements (UFE) and Measurement

2.4.1 Urban Form Elements

Urban form elements (UFE) quantify the physical characteristics of cities that influence thermal be-
havior and energy consumption. One of the commonly mentioned UFEs in city studies is are Ground
Space Index (GSI) and the Floor Space Index (FSI). GSI represents the ratio of building footprint to
total land area, while FSI, also known as Floor Area Ratio (FAR), measures the total floor area rel-
ative to plot area, and these indicators provide essential metrics for understanding urban density
patterns (Pont & Haupt, 2023). Building height and building footprints represent the 3-dimensional
urban structure, while building volume provides a comprehensive measure of built mass that affects
heat storage and shadow patterns.

Vegetation indicators play a crucial role in UHI studies. The Normalized Difference Vegetation Index
(NDVI) is one of the most widely used metrics, which is calculated from red and near-infrared satel-
lite bands to quantify vegetation abundance with values ranging from -1 to 1, with higher values in-
dicating denser vegetation. S. Peng et al. (2011) evaluated that NDVI shows strong negative correla-
tions with surface temperature, with correlation typically running from -0.4 to -0.7 in urban areas.

Liao et al. (2021) examined the spatial heterogeneity in London and Seoul with 10 UFEs, including
canyon H/W ratio, building height, building ratio, street width, green space ratio, and analyzed the
relative importance of variables on LST using Partial Correlation and Genizi Method. While their
methodological approach was comprehensive, their analysis was limited to only four days of data,
specifically two summer and two winter days, and focused solely on LST rather than air temperature.

This research builds upon Liao et al.’s methodological framework while addressing several of their
limitations. Rather than analyzing isolated days, this study examines multiple satellite images across
a full decade from 2015 to 2024, enabling the detection of long-term trends and actual urban trans-
formations. The analysis converts LST to air temperature, providing more direct relevance to build-
ing energy consumption patterns. Additionally, this research investigates relationships across mul-
tiple spatial scales including pixel level, 100m buffers, and 300m buffers to understand how urban
form effects vary with scale. The seasonal analysis incorporates multiple images per season across
ten years rather than single representative days, providing more robust seasonal patterns. Most im-
portantly, this study extends beyond temperature analysis alone to examine the complete cascade
relationship from urban form through temperature to actual building energy consumption data, of-
fering practical insights for urban planning and energy management strategies.
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2.4.2 Scale of Analysis

Diverse spatial scales are used for understanding the relationship between UFE and temperature
patterns in UHI studies. Buffer analysis is generally useful to study the influence area of spatial en-
tities on their surroundings (Na et al., 2024). Many papers have employed various buffer distances
to capture the temperature effects of urban green spaces and other UFEs. Dong et al. (2020) ex-
amined 100 m buffer zones to evaluate cooling effects from the green roof installation in Xiamen
Island, which effectively captured immediate surroundings and local microclimate effects. The 100
m is also called as “characteristic cooling buffer zone”, making it particularly valuable for analyzing
building-level energy consumption patterns.

At larger scales, different buffer ranges affect the LST-distance fitting results of urban parks, and
Cai et al. (2023) confirmed that a 300 m buffer zone is the optimal fitting interval for understanding
neighborhood-level thermal dynamics. The cooling radiation range of urban green space (UGS) on
the UHI effect is 300 m, and the cooling effect is most effective from O to 200 m (Na et al., 2024,
Bhattarai et al., 2025). These findings support the use of both 100m and 300m buffer zones as they
can capture different scales of urban thermal dynamics, where the 100m buffer can reveal immedi-
ate building-environment relationships for energy analysis, while the 300m buffer reveals neighbor-
hood effects for understanding broader temperature patterns.
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2.5 Building Energy Consumption

2.5.1 Energy Consumption Patterns

Residential energy consumption shows distinct seasonal patterns, which are driven by space con-
ditioning and ambient temperature. M. Li et al. (2018) found that the household daily electrical
consumption varies significantly between months, with mean electrical load, peak load, load factor,
and timing of peak load all exhibiting significant monthly variations. In the summer season, average
electricity consumption increases by around 5-7% for each degree Celsius increase in ambient tem-
perature, while winter shows a similar magnitude of increase in gas consumption for each degree
decrease in temperature (Fikru & Gautier, 2015). The temperature sensitivity varies significantly
based on building uses, with energy-efficient buildings showing 40-50% less sensitivity to weather
variations compared to conventional buildings.

Wang et al. (2023) found that for each 1°C of temperature increase, energy use intensity (EUI) ex-
periences an average increase of approximately 14% for cooling and a decrease of 10% for heating.
The electricity demand patterns show both peaks in summer and winter due to mixed use of elec-
tricity for both cooling and heating systems, while natural gas consumption for heating can range
from more than 30 billion cubic feet per day in winter months, which is around ten times larger than
in the summer season (Su et al., 2021).

2.5.2 Factors Affecting Building Energy Consumption

Building energy demand is influenced by a combination of the interplay of climate variables, build-
ing characteristics, occupant behavior, and urban context effects. Among many factors, there are
six primary factors that affect building energy consumption: climate, building envelope, building
equipment, operation and maintenance, indoor environmental conditions, and occupant behaviors
(Yoshino et al., 2017).

Building characteristics play a crucial role in determining energy demand patterns, such as build-
ing size, envelope properties, and system efficiency. Building typology and floor area show strong
correlations with energy demand, as larger buildings and those with poor thermal insulation require
substantially more energy for space conditioning (Led, 2023). Led (2023) also found that building
orientation, window-to-wall (WTW) ratio, and thermal mass characteristics can influence annual
energy consumption by 15-40%, with these effects varying significantly across climate zones and
building types.

Occupant behavior is one of the most influential factors, which can cause up to 300% variation be-
tween predicted and actual building energy consumption (Delzendeh et al., 2017). According to the
World Business Council for Sustainable Development (WBCSD), wasteful behavior can add one-
third to a building’s designed energy performance, while conservation behavior can save a third
(Backlund et al., 2023).
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2.6 Relationships between UHI, UFE, and Energy

2.6.1 UHI Effect on Energy Consumption

The UHI effect significantly influences building energy consumption by elevating urban tempera-
tures, which directly increases cooling demands in summer and reduces heating demands in winter.
Li et al. (2019) examined a comprehensive review on UHI and building energy consumption, and
found that UHI effects result in a median increase of 19.0% in cooling energy consumption and a
median decrease of 18.7% in heating energy consumption, though with substantial spatial variations
ranging from 10-120% increase in cooling and 3-45% decrease in heating across different cities.
Yang et al. (2019) examined Local Climate Zone (LCZ) in Nanjing and concluded that heat islands in
urban neighborhoods increased cooling demand by 12-247% for residential buildings, while reducing
heating demand by 3-20%, resulting in a net annual energy increase of 2-6% for residential buildings.

The magnitude of UHI impacts on energy consumption varies significantly based on building type,
urban morphology, and climate zones. Santamouris (2019) reported that the global energy penalty
induced by UHI at the city scale averages 0.74 kWh/m?2/°C, translating to approximately 237 kWh
per person annually, with peak electricity demand increasing by 21 W per degree of temperature
rise. Another research by Su et al. (2021) provided empirical evidence showing that changes in av-
erage UHI intensity of 0.5K result in monthly cooling energy consumption increases from 0.17-1.84
kWh/m?2, with nocturnal UHI intensity correlating more strongly with energy consumption than day-
time values. These effects are accelerated during heat wave events when regional climate extremes
and local UHI can more than double the cooling energy penalty, which creates critical stress on ur-
ban electricity infrastructure and raises serious concerns during peak demand periods.

2.6.2 Urban Form Elements Impact on UHI

UFEs significantly influence the intensity and spatial distribution of UHI through their effects on
energy balance, surface properties, and atmospheric dynamics. The NDVI demonstrates the stron-
gest cooling effect among UFEs. Liao et al. (2021) found that the green space ratio was among the
most influential factors affecting LST in London and Seoul, with NDVI showing negative correlations
ranging from -0.415 to -0.688 with air temperature, depending on the season. Ziter et al. (2019)
explained that tree canopy cover above 40% provides substantial cooling benefits, with scale-de-
pendent interactions showing that cooling effects are most pronounced within 60-90m of vegetated
areas.

Building density and morphology can influence temperature variations through radiation trapping,
wind flow, and heat storage. Y. Li et al. (2020) showed that UHI intensity is directly related to a lin-
ear combination of city area and gross building volume, capturing the amplifying effects of building
density on temperature. Horizontal density metrics such as GSI and building coverage ratio show a
stronger correlation with LST than vertical metrics like building height.

The 3-dimensional configuration of UFEs introduces scale-dependent thermal impacts through a
complex interplay between building morphology and atmospheric processes. 3D metrics performed
better in predicting air temperature than 2D metrics at the 500m scale, while the influence of 2D fea-
tures was stronger at the 1000m scale, with 3D features showing stronger correlations with average
daily, daytime, and nighttime air temperatures, regardless of spatial scale (C. Yang et al., 2022). Fan
et al. (2023) proposed that the correlation between building coverage ratio, FAR, and LST is largest
at a 300m scale, while building height and sky view factor show the strongest correlations at a 400m
scale. These scale-dependent relationships show that urban morphology shows stronger correla-
tions with LST differences within built-up areas compared to entire cities, which indicates the critical
importance of ventilation and solar radiation for urban thermal environments (Gao et al., 2020).
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2.6.3 Urban Form Elements Impact on Energy

UFEs influence building energy consumption through both direct physical mechanisms and indirect
microclimate variations, with impacts varying significantly across different climate and spatial vari-
ations. Vegetation shows consistent cooling effects through evapotranspiration, which can reduce
energy consumption, particularly for summer cooling demands. Mostafavi et al. (2021) analyzed
12,700 buildings and found complex relationships between urban form factors and energy use.
Surprisingly, their statistical analysis showed a 1 m? increase in tree-cover area associated with a
0.04% increase in EUI, though this minimal effect (less than 0.1%) may reflect correlation rather than
causation, for instance, older neighborhoods with mature trees may also have less efficient build-
ings. More intuitively, they found that a one-unit increase in building count per hectare was associ-
ated with a 0.52% reduction in EUI, likely due to shared walls reducing heat loss and the efficiency
benefits of compact development. The study emphasized that “form, through the layout and orien-
tation of urban blocks, vegetation and high albedo materials, and the shading effect of surrounding
blocks, changes the microclimate within building networks,” with impacts varying between cities
based on local climate and urban density patterns.

Building density and 3D morphology of buildings create complex energy impacts through natural
ventilation and thermal mass. D. Wang et al. (2021) demonstrated that urban 3D form has a greater
influence than 2D form when investigating building energy consumption, as higher 3D compactness
may cause lower sky view factors, resulting in reduced air ventilation and hot air trapped between
buildings, significantly increasing cooling energy demand. Song et al. (2020) analyzed 5 urban mor-
phological parameters in China and found that higher aspect ratio (AR) and building height (BH)
were associated with lower heating EUI, likely due to reduced surface area-to-volume ratios in tall-
er buildings. However, they found that increasing building density (BD), floor area ratio (FAR), and
shape factor (SF) led to increased heating EUI. This partially contradicts Mostafavi et al. (2021), who
found building density reduced overall EUI. This discrepancy may reflect different climate contexts
or different definitions of density metrics. In cold climates, the negative effects of reduced solar
access in dense developments may outweigh the benefits of shared walls, while in mixed climates,
the year-round benefits of compact development may dominate. A similar study conducted in China
revealed that building density affects natural lighting and passive solar gains, causing energy use
variations up to 30% in offices and 19% in residential areas (Cui et al., 2024).
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2.7 Analytical Methods for Complex Urban Systems

2.7.1 Handling Multicollinearity

When analyzing UFEs in UHI studies, multicollinearity in UFEs can be found, which poses significant
challenges. Traditional regression methods struggle with such correlated predictors because they
cannot properly partition the shared variance among variables, such as high NDVI areas typically
correspond with low building ratios, and building height strongly correlates with FSI, creating con-
founding effects that obscure the true contribution of each variable.

To address these multicollinearity challenges, specialized variance decomposition methods have
been developed to quantify the effects of highly correlated spatial variables. Liao et al. (2021) ap-
plied the Genizi method in their study, which decomposes the total R? among predictors while ac-
counting for shared variance between correlated variables, producing percentage contributions that
sum to the total explained variance. The study mentioned that the Genizi method is particularly valu-
able when predictors show high correlations. While the Genizi method reveals relative importance
percentages, it must be complemented with other correlation methods to determine the direction
of relationships, as the variance decomposition does not show whether correlations are positive or
negative. By complementing with other methods, it can make a comprehensive understanding of
UFE impacts.

2.7.2 Feature Importance Methods

There are limitations to evaluating the feature importance of UFE with the Genizi method alone, as
it does not show whether it increases or decreases the target variable. One of the common methods
to complement the Genizi method is a Partial correlation. Partial correlation analysis complements
the Genizi method by revealing the directional effects of each variable while controlling for all oth-
er variables in the system. The combination of these methods has proven particularly effective for
urban climate study by Liao et al. (2021), which allows researchers to understand both the relative
importance percentages from the Genizi method and the directional relationships from the Partial
correlation coefficients.

Not only Partial correlation, but there are other comparative methods to show the directional anal-
ysis used in other UHI studies. Tong et al. (2017) used the Pearson correlation coefficient to analyze
simple bivariate relationships between variables, but they failed to account for the confounding
effects of other variables in the system, which restricts the predictors when they are correlated. The
article by Song et al. (2020) used Multiple linear regression (MLR) coefficients to show directional
effects, but the result became unstable and difficult to interpret when there is multicollinearity in
variables. Spearman rank correlation also offers improvement by assessing monotonic relationships
rather than strictly linear ones. However, it still only captures bivariate associations without con-
trolling for other variables, which does not properly show linear relationships between environmen-
tal factors (Chaudhary et al., 2022).
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3.1 Why Seoul as a Research Area

There are mainly three reasons why Seoul is chosen for the research area. Firstly, Seoul experienced
rapid urbanization, and the city has been experiencing a significant UHI| effect as a consequence
(Hong et al., 2019). Secondly, which is also the main reason for choosing Seoul, is the exceptional
data availability from both the Korean government and the Seoul municipality. Thirdly, Seoul has
very diverse urban form elements from high-rise to low-rise buildings across the districts and sever-
al major urban parks and mountains, which will be interesting to analyze in relation to the UHI effect
and energy consumption.

Regarding the data availability, the Korean government has been providing precise weather data
through automatic weather stations (AWS) since 1997, with 554 AWSs throughout Korea. Among
them, 39 AWSs are located within the Seoul boundary. These AWSs are well distributed across the
districts and provide comprehensive meteorological data, including air temperature, humidity, wind
speed, and air pressure (Hong et al., 2019). This extensive weather history from AWSs can facilitate
accurate and precise modelling and validation for the UHI effect. The accessibility of the data helps
to enhance the precision and reliability of the research methodology.

Moreover, the Seoul municipality has been providing a well-structured database for energy con-
sumption. It provides a very precise and detailed energy consumption database of electricity and
gas for buildings in Seoul. The energy demand has been recorded for more than a decade, which
enables analysis of the correlation with urban heat patterns in Seoul (Korea Architecture Hub, 2024).

Began in the 1960s due to rapid High-rise to Low-rise buildings across
urbanization and industrialization the districts and several major urban
parks
Experiencing Diverse Urban

Data Availability

UHI Effect Form Elements

More than 10 years worth of data for
Weather (AWS) and Energy Demand
(Electricity & Gas)
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3.2 City Characteristic

The capital city of South Korea, Seoul, is one of the most urbanized and populated cities in the
world, with a population of around 10 million in 2023. The total area of Seoul is approximately 605
km?, with very dense urban infrastructure, high-rise buildings, and a very complex transportation
system. Within Seoul, there are 25 Gu (boroughs) and 426 Dong (smaller units of boroughs). Each
Gu has different characteristics, and Seoul is mainly divided into Northern and Southern Seoul, with
the Han River running in the middle of the city.

Highly Urbanized Mega-City 1 . 9 . Compact and Vertical Development
Population: ~10 milion . Dominated by high-rise buildings and
Size: 605 km? mixed-use developments
Center of South Korea’s economy, . Limited land leads to high FSI

politics, and culture

Extreme Weather Conditions 3 4 Significant UHI Effect
Hot and humid summers with temperatures . Dense infrastructure and limited natural
often exceeding 30°C ventilation intensify UHI effect
Cold winters with below -10°C Map of boroughs (Gu) in Seoul, South Korea

Figure 3.1 4 major city characteristics in Seoul

As one of the most urbanized and complex cities in the world, Seoul has a very diverse range of
urban forms, from high-density business districts such as Gangnam to suburban residential areas.
Due to a high number of residents, the city is characterized by extensive impervious surfaces, high
buildings, and limited green spaces, which provide a rich context for studying how urban morphol-
ogy influences UHI effect and energy consumption.

In addition, Seoul has implemented green roofs and developed urban parks to mitigate the effects of
urbanization on the environment. The Seoul Metropolitan Government has introduced the concept
of green infrastructure to solve urban problems such as the urban heat island phenomenon, fine
dust, and localized heavy rains, with specific projects including support for roof greening and the
creation of ecological trails (J. Choi & Kim, 2022).
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3.3 Heukseok-dong

Seoul consists of 25 boroughs, where 14 boroughs are located on the north side and the other 11
boroughs are located on the south side of the Han River. Indeed, analyzing every single borough
would require a significant amount of time and numerous datasets. To reduce the timeframe of the
research, this paper focuses on one of the regions in Seoul. Since the research is aiming to find the
correlation of UHI, energy demand, and urban form elements in the last decade, it is ideal to choose

the region that has many changes in urban form elements in the last 10 years to analyze how the
change in urban form affects the other parameters.

Figure 3.2 Diverse urban form elements in Heukseok-dong
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One of the regions that fulfills these requirements is Heukseok-dong. Heukseok-dong is one of the
districts in Dongjak-gu. Heukseok-dong covers an area of 1.67 km? and is a multi-generational area
due to old buildings and a university campus. There are multiple reasons why Heukseok-dong is a
good area to be researched. The area has very diverse urban form elements from the Chung-Ang
University campus, a large park (Dalma park), and thousands of buildings, from old to new residen-
tial and multifunctional buildings. This would help to find how the different urban form elements are
related to air temperature distribution.

Building Types in Heukseok-dong (2024)

Low-rise Residential Buildings
High-rise Apartments

I Commerical Buildings

I University Buildings

Figure 3.3 Different building types in Heukseok-dong in 2024

Despite ongoing redevelopment, Heukseok-dong in 2024 remains characterized by a huge number
of low-rise residential structures. While certain districts have undergone transformation into high-
rise apartment districts, the predominant building type continues to be low-rise residential building,
which is almost 81% of the total buildings in Heukseok-dong. These buildings are densely packed
with short distances between buildings, contrasting with other building types that have compara-
tively more open areas. This dense, compact arrangement of low-rise buildings represents a typical
urban pattern throughout Seoul and it should be an important consideration for this research.
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3.3.1 Heukseok New Town Project

There is also an ongoing redevelopment promotion project, which is called ‘Heukseok New Town
Project’. Heuksoek-dong is one of the places where many refugees gathered together during and
after the Korean War in 1950s. As a result, there are still many very old residential buildings, and the
Seoul municipality started a redevelopment project in the early 2000s, which is still ongoing these
days. This project has continuously changed the number and characteristics of buildings over the
years in Heukseok-dong. The Seoul municipality classified 11 districts in Heukseok-dong, which are
in need of redevelopment.

Figure 3.4 Heukseok-dong redevelopment project timline between 2015 and 2025

Heukseok-dong comprises 11 districts at various stages of urban transformation, with some al-
ready redeveloped and others awaiting renewal. Districts 3, 4, 5, 6, 7, and 8 have been transformed
into high-rise residential complexes, replacing the original compact low-rise buildings. The primary
purpose of this redevelopment is to transition from densely packed low-rise structures to modern
high-rise apartments with increased open spaces, which would enhance residents’ quality of life and
improve environmental conditions.
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Figure 3.5 2030 SeoulPlan cover page

The Seoul municipality has published a com-
prehensive vision for Heukseok-dong’s future
through its *2030 SeoulPlan” report, which con-
tains four main goals and ten strategic approach-
es for transforming the area. Goal 3 addresses
residential area management and establishment,
and Goal 4 focuses on expanding leisure spaces
and developing green infrastructure networks.
The report plans a mixed-use development ap-
proach, promoting single and double-household
apartments alongside multifunctional complexes
near Heukseok subway station. Additionally, the
Seoul municipality aims to create an inner-city
green space and establish connectivity between
Dalma Park and the Han River through an inte-
grated green network. This plan will significantly
change the key urban form elements, especially
vegetation coverage and building density ratios,
which have direct implications for UHI effects in
the area.
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04 Data Collection

Data collection is a fundamental component of this research, providing the foundation for analyzing
the relationship between UHI effects, energy consumption and UFE. This chapter shows the five
primary data sources. Each data source contributes unique spatial and temporal information nec-
essary for understanding the complex interactions between Heukseok-dong’s urban morphology,
microclimate effects, and energy consumption patterns.

4.1 Satellite Imgery

4.1.1 Landsat 8

One of the most widely used methods for obtaining precise temperature data in UHI studies is using
satellite imagery. Although there are hundreds of satellites that capture the LST (land surface tem-
perature) of the Earth, this research uses Landsat 8 due to its extensive temporal coverage of over
10 years and high spatial resolution of 30 by 30 meters. From Landsat 8, the digital elevation model
(DEM) and solar zenith angle (SZA) can be acquired, while LST and normalized difference vegetation
index (NDVI) can be calculated using 3 spectral bands.

Landsat-7 ETM+ Bands (um) Landsat-8 OLI and 7/RS Bands (um)

30 m Coastal/Aerosol 0.435-0.451 Band 1
Band 1 30 m Blue 0.441-0.514 | 30 m Blue 0.452-0.512 | Band2
Band 2 30 m Green 0.519 - 0.601 30 m Green 0.533-0.590 Band 3
Band 3 30 m Red 0.631-0.692 | 30m Red 0.636-0.673 | Band 4
Band 4 30 m NIR 0.772-0.898 | 30 m NIR 0.851-0.879 | Band5
Band 5 30 m SWIR-1 1.547-1.749 [ 30 m SWIR-1 1.566 - 1.651 | Band 6
Band 6 60 m TIR 10.31-12.36 | 100m TIR-1 10.60—11.19 | Band 10

100 m TIR-2 11.50 - 12.5] | Band 11
Band 7 30m SWIR-2  2.064 -2.345 [ 30 m SWIR-2 2.107-2.294 | Band 7
Band 8 15 m Pan 0.515-0.896 | 15m Pan 0.503 - 0.676 Band 8

30 m Cirrus 1.363-1.384 | Band 9

Table 4.1 Landsat band information by B. Markham (July 2013)

To calculate LST and NDVI of the research area, 3 bands are required: Band 4 (RED), Band 5 (NIR),
and Band 10 (TIR-1).

Band 4 (RED) - OLI Band
« It captures red light in the visible spectrum of 0.64-0.67 um, which is the portion of light that
human eyes perceive as red. This band is often used to assess vegetation health analysis, distin-

guishing vegetation from non-vegetated surfaces and urban area identification (Landsat NASA,
2023).
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Band 5 (NIR) - OLI Band

« Band 5 captures near-infrared radiation (NIR), which is invisible to human eyes, that is wave-
lengths between 0.85-0.88 um. Vegetations reflect strongly in NIR, as when there are healthi-
er plants, the more complex the internal structure, the higher the reflectance can be captured
(Landsat NASA, 2023).

Band 10 (Thermal Infrared) - TIRS Band
« This band captures thermal infrared radiation, which is also known as heat, by measuring emit-
ted radiation (Landsat NASA, 2023).

These bands can be obtained from the various websites, but this research uses Google Earth Engine
(GEE) as it can calculate the research area by itself and download all the required bands at once.

4.1.2 Calculating LST and NDVI

To calculate the LST and NDVI of the research area, a method, the *Mono-window Algorithm’ or
“Single-channel Algorithm” should be used. This method is commonly used with Landsat data for
LST and NDVI retrieval, which uses a systematic flowchart that includes calculating Top of Atmo-
sphere (TOA) radiance, Proportion of Vegetation (PV), Brightness temperature (BT), and finally LST.
This report follows the methodology that Sahani (2021) proposed in the published paper.

Figure 4.1 Flowchart of calculating NDVI and LST from Landsat 8 by Sahani (2021)

L. Wang et al. (2019) compared 3 algorithms for the retrieval of land surface temperature from the
Landsat 8 images, and their report is well summarized for each step for calculating NDVI and LST.
According to their research, it requires 6 steps to calculate NDVI and LST, which are interrelated.

Step 1 - Retrieval of TOA spectral radiance

« Thefirst stepis to convert Digital Number (DN) values from the Landsat 8 TIRS Band 101 to spec-
tral radiance using the equation.

RN = ML x Qcal + AL
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« RAis spectral radiance, ML is the radiance multiplicative scaling factor, Qcal is the DN value, and
AL is the radiance additive scaling factor. These parameters can be found in the metadata (MTL)
file that comes with Landsat imagery when downloading.

Step 2 - Transmission of spectral radiance to at-sensor brightness temperature

« Once the spectral radiance is calculated, it has to be converted to brightness temperature using
Planck’s function.

TB = K2 / In(K1/RA + 1) - 273L.15

« TBis brightness temperature in Kelvin, K1 and K2 are calibration or thermal constants specific
to Landsat 8 Band 10, where K1 = 774.8853 and K2 = 1321.0789. It is important to substitute
273.15 to convert Kelvin to degrees Celsius.

Step 3 - Calculation of NDVI

« NDVI (Normalized Vegetation Index) is one of the most widely used urban factors to examine
environmental impacts, which can be calculated using the equation.

NDVI = (NIR - RED) / (NIR + RED)

« NIR is the value from Band 5, and RED can be derived from Band 4. NDVI values range from -1
to 1, with water typically below O, soil between 0-0.2, and vegetation above 0.2.

Step 4 - Calculation of Proportion of Vegetation (Pv)

« The proportion of vegetation represents the fractional vegetation cover within a pixel. It can be
calculated by using the fractions from NDVI values.

Pv = [(NDVI-NDVI_) / (NDVI__ - NDVI_ )2

X

- NDVI . is the minimum value of the NDVI, which is usually for bare soil (typically 0.2), and NDVI-
. is the NDVI for full vegetation. The range for Pv is from O (no vegetation) to 1 (full vegetation),

Step 5 - Calculation of Land Surface Emissivity (LSE)

« Land surface emissivity is the efficiency with which a surface emits thermal radiation compared
to a perfect blackbody. It has to be determined to calculate the final LST using the proportion of
vegetation (Suresh. S et al., 2016).

LSE = 0.004 x Pv + 0.986

Step 6 - Calculation of Land Surface Temperature (LST)

« LST can be finally calculated using all the factors that are obtained.
LST=TB/[1+AxTB/p)* In(LSE)]

+ A represents the wavelength of emitted radiance, which can be used as 10.8, while p represents
the radiation constants used in Planck’s law. It consists of Planck’s constant, speed of light, and
Boltzmann constant, but it can be easily used as 14388 when calculating LST.

41



4.1.3 Data Quality

Satellite imagery can be obtained using the mono-window algorithm introduced in Chapter 4.1.2.
However, when using the Google Earth Engine, it is much easier to obtain satellite imagery as it is
published to anyone for free, and it can reduce time to calculate the NDVI and LST, as they can be
calculated using the java script, which does not require manual work. However, not all satellite im-
ageries are useful from the Landsat. Seoul is in continental climate, where the summers being long,
warm, muggy, and wet, while winters are short, freezing, but mostly clear. Moreover, the summer
season in Seoul is very humid due to sporadic monsoon rains, so most of the days are covered by
heavy clouds. Satellite imagery is very vulnerable to cloud cover, as they can cover most of the land
areas. As a result, the quality of the satellite imagery should be manually monitored.

Clear Clouds
Fully covered

Good Imagery

Bad Imagery

Too many Clouds
Fully covered

Clear Clouds
Partially covered

Figure 4.2 Quality of satellite imagery (Landsat)

The quality of the satellite imagery can be divided into good and bad imagery. Good imagery is
when the satellite imagery has clear sky, so that the land of the research area is visible, and it fully
covers the whole research area. On the other hand, bad imagery detects too many clouds so that
the land is not clearly visible, also some of the imagery does not capture the whole research area,
but only partially covers it. As a result, to proceed with calculating LST and NDVI, only good images
are selected to determine a more precise and accurate correlation with urban form elements and
air temperature distribution.
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Figure 4.3 Available Land surface temperature (LST) from 2013 with cloud covers

LST and NDVI are derived from Landsat imagery for Seoul. The selection of satellite images involved
a quality control process based on cloud coverage thresholds. Initially, a maximum cloud coverage
of 30% was set as the selection criterion to ensure high-quality imagery. However, when no suitable
images were available within this threshold for specific time periods, the cloud coverage limit was
incrementally increased until acceptable quality images could be obtained. This adaptive approach
ensured continuous temporal coverage while maintaining the best possible image quality for each
month. The resulting dataset is summarized in a table showing the number of images acquired for
each month and year, with cell colors indicating the cloud coverage percentage of the selected im-
ages, providing a visual representation of data quality across the temporal range.

Satellite imagries from the Landsat8 are available from March 2013. Although the research is look-
ing at the temporal analysis of 10 years from 2015 to 2024, some satellite images in the years 2013
and 2014 are obtained as well to increase the number of samples to find the correlation with the
automatic weather station later. It is possible to modify the cloud coverage of the satellite imagery,
and Figure 4.3 shows what percentage of cloud coverage was used to get images from the Landsat.
Ideally, the number of images from the Landsat should be 118 from the year 2013 to 2024 (excluding
January and February in 2013), but not every single month is available. Especially satellite images
in summer seasons are not obtained as many as in other seasons due to cloud coverage. This is due
to the unique climate conditions in Seoul in the summer season, as mentioned earlier.

Moreover, Landsat 8 orbits the Earth every 16 days, which means that the satellite only captures
the area 1 or 2 times in a month (USGS, 2025). According to the Metadata from the Landsat, the
research area is captured at around 11:12 in the morning, which is normally considered as the peak
temperature in a day. Although it has a very high spatial resolution of around 30 by 30 meters (23.81
by 29.91 meters), it has a very limited temporal resolution as it only captures the LST and NDVI at
11:12 AM and on a biweekly basis . This temporal limitation means that the model outputs consist of
single monthly values derived from these satellite observations at their specific capture times, rather
than continuous temporal data. The AWS data, introduced in the next sub-chapter, serves a differ-
ent purpose in the analysis rather than addressing the satellite’s temporal resolution limitations.
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4.2 Automatic Weather Station (AWS)

Automatic Weather Station (AWS) Locations
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Figure 4.4 Location of AWS in Seoul and nearby

The Korean Meteorological Administration (KMA) first installed automatic weather stations (AWSs)
throughout the country in 1997. The AWSs record air temperatures within a range of -40°C to 60°C
with a £ 0.3°C accuracy using a metallic system equipped with thin film sensors, as well as wind
speed, pressure, and other climatic factors, which are measured in minutes, hourly, and monthly,
based on AWSs (Korea Meteorological Administration, n.d.). There are 554 AWSs in Korea, and 28
AWSs are installed in Seoul. The KMA provides detailed information on each AWS, including its ex-
act location (longitude, latitude, and height) in the WGS84 coordinate system. However, some of the
AWSs have been moved ot other locations, so some information is not available. Although the spatial
resolution of the AWS is relatively low (28 AWSs in Sdoul - 605.25 km?), it has a very high temporal
resolution. Although there are 28 AWSs within the Seoul boundary, this research also considers 9

1271

127.2

127.3

more AWSs that are located near the Seoul border to increase spatial resolution.

Figure 4.5 Picture of AWS in Gangnam (Code 400)
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Code
Longitude
Height (m)
Measuring unit
Address

Purpose

AWS Information

400 Name Gangnam
37.4892 Latitude 127.08162
12.66

Minute

Tancheon Water Recycling Center, 580 Ilwon-dong,
Gangnam-gu, Seoul

Monitor disaster prevention

Table 4.4 Infomation of AWS in Gangnam (Code 400)



4.3 S-DoT Sensors

The Korean government installed weather sensors in 2020 as part of an initiative called Seoul Data
of Things (S-DoT). S-DoT is a city data sensor that collects various urban phenomena data, such
as fine dust level, temperature, relative humidity, and noise, illumination level, ultraviolet, and oth-
er parameters (Park & Baek, 2023). The sensors are installed in major mountains, riversides, and
downtowns to analyze how different Seoul’s living environment is in each area’s characteristics (Seoul
City Hall, 2023). Sensors were first installed in 2020, and after the COVID-19 pandemic, more sen-
sors were installed all around Seoul as environmental consciousness rose suddenly. The sensors
are authorized by the government, and 1159 sensors are installed in 2024 (Smart Seoul Data of
Things(S-DOT), 2024). Depending on the sensors, they usually provide high temporal resolution, as
they mostly measure hourly. The location of the weather sensors is also provided by the Seoul mu-
nicipality, which contains the exact longitude, latitude, and height of the sensors that are installed.

Figure 4.6 Weather sensors installed in Seoul (Seoul City Hall, 2023) Figure 4.7 Location of installed weather sensors in Seoul

S-DoT sensors were already used in many published papers to explore the living environment char-
acteristics in Seoul. Kim et al. (2023) used sensors installed in Seoul to collect living environment
data such as particulate matter and noise at an hourly rate, which they then aggregated to daily,
monthly, seasonal, and annual averages for analysis. Their report created detailed spatial and tem-
poral models of environmental quality across Seoul, which could be correlated with various urban
planning factors. Another research study was conducted by Park and Baek (2023), which analyzed
temperature patterns during heatwaves and coldwaves throughout Seoul with sensors installed in
different urban environments. The study demonstrated how sensors can provide highly granular en-
vironmental information that captures the urban heat island effect and other microclimate variations
that standard weather stations miss using the newly developed QMS-SDM system.

The Seoul municipality has been distributing the results of measurement data on 10 environmental
factors, including fine dust, temperature, ultraviolet rays, and noise, since 2020. According to the
result they analyzed, the temperature was about 1.8°C higher than that of the AWS (Analysis of
Temperature Distribution in Seoul Using Urban Data Sensors, n.d.). Even within the same city, Seoul
has a rather large temperature difference between regions, and differences of up to 4°C were ob-
served on the same day.
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4.4 Urban Form Element (UFE)

There are thousands of urban form elements (UFEs) that contribute to air temperature and energy
consumption of the buildings and cities, but this research considers 6 UFEs: Normalized Difference
Vegetation Index (NDVI), Building ratio, Weighted height, Building volume, Floor space index (FSI),
and Ground space index (GSI). These 6 UFEs are base parameters in UHI studies, which were al-
ready used in other papers (Y. Su et al., 2012; Ngarambe et al., 2021, J. Park et al., 2016). Moreover,
due to the limited accessibility of the data, not every single UFE can be obtained, but only these 6
UFEs are selected, which can be calculated from the shapefiles and satellite images.

No. Urban form element Description Measure
1 NDVI Normalized difference vegetation index Derived from the Landsat
2 Building ratio The ratio of building in a grid cell The ratio of total building space in a grid cell
3 Weighted height ;eoitgg\rt"?tfck))fugjii&gii:sccount for size and xttekiﬁ:ttigagcr?db:eifing’s height by its footprint area
4 Building volume The volume of a building Building height x Building footprint
5 FSI Floor space index of a building Gross floor area / Site area
6 GSI Ground space index of a building Building footprint / Site area

Table 4.5 6 Urban form elements

One of the first UFEs is normalized difference vegetation index (NDVI), which represents how much
green the area has. NDVI is a very critical UFE in the UHI study as it is considered one of the dom-
inant drivers for temperature variation due to evapotranspiration and heat absorption (Liao et al.,
2021). Another UFE, the building ratio, represents the compactness of the buildings, which is calcu-
lated as the ratio of the total building spaces in a grid cell from the Landsat 8. Analyzing the building
ratio would provide a comprehensive analysis of how the compactness of the buildings affects the
air temperature variations and building energy consumption. Instead of using the average or the sum
of the building heights in each grid cell, the weighted height is selected as another UFE. Weighted
building height shows several significant advantages over the simple average building height for
analyzing UHI effects and energy consumption. By accounting for building size and footprint, this
parameter better captures the actual thermal mass and shading effects within areas, which directly
influence local air temperatures. Building volume is another UFE in this research, as D. Wang et al.
(2021) mentioned the importance of the 3D morphology of the buildings when analyzing energy con-
sumption and temperature variation due to wind flow. Building volume can be calculated by multi-
plying the building footprint by height. Floor space index (FSI), which is also called Floor Area Ratio,
shows the ratio of a building’s total built-up floor area to the total area of the land plot it stands on,
while ground space index (GSI) shows the ratio of the building’s ground floor footprint area to the
total site or land area. FSI and GSI show the schematic morphology and layout of the buildings in
the area, which are related to temperature variations. All the urban form elements are calculated
based on each grid cell. The grid is created from the LST and NDVI from the satellite, which is 23.81
meters by 29.9 meters.
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To calculate these 6 UFEs, a basic building shapefile should be prepared, which is made by merging
3 shapefiles that are produced by the Seoul municipality and the Korean government.

Figure 4.8 Shape file blue (AL_DO010), green (F_FAC), red (Z_KAIS)

These 3 shapefiles are produced for different purposes, so that the attributes and information that
each shapefile contains are different. AL_DO010 is GIS building integrated information, F_FAC is for
building integrated floor plans, and Z_KAIS is to present buildings with new road names. AL_DO10
shapefiles are used as base shapefiles and merged information from the F_FAC and AL_DO10, as
only AL_DO10 shapefiles have at least 1 shapefile for each year from 2015 to 2024. Each shape-
file extracts the buildings that are in the research area first to reduce the size of the files, and other
buildings in other areas are not considered in this research.

When merging AL_DO10 with other shapefiles, some requirements are made. Although each shape-
file has almost the same number and shape of buildings, some of the buildings are not located in
the same coordinates. To make sure each of the buildings is the same, make sure all the shapefiles
are using the same CRS coordinate systems and set the minimum percentage of overlap. In addition
to that, each building has a unique ID or a GIS building identification number, and these are used to
identify if the buildings from different shapefiles are the same buildings or not.

However, to calculate 6 UFEs, some of the building attributes and building information are missing.
To make every single building UFE attributes, especially building height, building volume, FSI, and
GSlI, some architectural assumptions are used.

1. If GFA (Gross floor area) is missing, it can be calculated as “Building footprint” x *Number of
floors”

2. If the height of the building is missing but the number of floors is available, assume that each
floor is 3 meters high

3. If the building footprint is missing, estimate using the “area” function in the Python package
GeoPandas for building geometry

When all the urban form elements are ready for each year in the AL_DO010 shapefiles, buildings in
the research area are selected using the “clip” function in GeoPandas. When clipping shapefiles into
the research area, only cells that are at least 30% within the research area are selected, and the other
grid cells are excluded. In the end, the research area is covered with 3436 grid cells.

However, although AL_DO10 shapefiles have one shape file for each year, they are not up to date,
and some buildings and areas should have been modified. Buildings in Heukseok-dong have been
continuously changed in the last 10 years due to a redevelopment project, but these are not well
included in the shapefiles.
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1 Satellite View Building Layout (2024) 2 Initial Building Layout (2024)

3 Buildings Removed within Exclusion Polygons (2024) 4 Final Building Layout (2024)

Figure 4.9 Satellite Imagery (1st), Initial building geometry (2nd), Buildings to be removed (3rd), and the Final building geometry (4th) in 2024

In 2017, a redevelopment project in District 7 was started in Heukseok-dong, which demolished
old residential buildings and built new residential apartments and low-rise multifamily residential
buildings. But the AL_DO010 shapefiles do not include such redevelopment projects, but remain the
old residential buildings. As a result, areas with new redevelopment projects are manually adjusted
by removing all the buildings that are in the redevelopment project zones and adding updated new
buildings. When adding updated new buildings to the AL_DO10 shapefile, shapefile F_FAC is used,
as it is the most updated shapefile (2023). Not only the year 2017, but also the years from the years
2017 to 2024 are checked for the redevelopment project zones, and new buildings are manually
added. Information for the new buildings could be estimated using Google Street View, and building
heights, building volume, FSI, and GSI are separately calculated using the building information on
the internet.

Most of the added buildings are apartments, which have more than 15 floors. To ensure the final
shapefiles of each year, the height distribution is checked, which can be easily detected and com-
pared with the Google Street View. In the final step, buildings with less than 1m? are considered
errors and removed.
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Building Heights by Category - 2024

[ 1 Low-rise (0-10m)

[ ] Mid-rise (10 - 25m)
[ High-rise (25 - 50m)
I skyscraper (50 - 100m)

Figure 4.10 Building heights by category in 2024

Year Before After Change
2015 3400 3399 -1
2016 3400 3399 -1
2017 2945 2862 -83
2018 2947 2865 -82
2019 2948 2387 - 561
2020 2933 2372 - 561
2021 2915 2356 - 559
2022 2820 2370 -450
2023 2821 2371 -450
2024 3398 2433 - 965

Table 4.6 Number of buildings before and after processing the shapefile
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4.5 Energy Consumption

Energy consumption data of the buildings is provided by the Korean Architecture HUB (Korean Ar-
chitecture Hub - Building Energy, 2025). It provides the electricity and gas consumption of the build-
ings per month, along with the building addresses. Electricity and gas consumption of the buildings
that are in the research area are manually downloaded.

No. Site location District code Neighborhood code  Y/M of use New address road code Amount used (kWh)
1 MESEEA SHF B4 13 11590 10500 202008 115903119009 765
2 MeEYA SAT 54 4 11590 10500 202008 115903119009 9225
3 MEELA SET EMS 65 11590 10500 202008 1156903119009 18643
4 MEEEA ST EM4F 6-21 11590 10500 202008 115904157413 4379
5 MESELEA SHF E4S 71 11590 10500 202008 1156903119009 1876
6 MBSEYA SF SMS 8-30 11590 10500 202008 1156903119009 5424

Table 4.7 2020-August electricity consumption in Heukseok-dong (Korean Architecture Hub, 2025)

Energy demand data should be merged with the buildings in the final shapefiles of each year. To
match energy data with buildings, site location from the energy demand data, and building address
from the shapefiles are used. The format of the site location and building address are different, but
they used the same numbering, and considers the site location and building address are matched
when they shared the same numbering.

All Buildings with Electricity Data - August 2020 All Buildings with Gas Data - August 2020
I Buildings with electricity data I Buildings with gas data
[T Buildings without electricity data [ TBuildings without gas data
Figure 4.11 Buildings with electricity data in August 2020 Figure 4.12 Buildings with electricity data in August 2020

Figure 4.11 and Figure 4.12 show the buildings that are matched with electricity and gas consump-
tion data in August 2020. Not all buildings have energy consumption data, however, a significant data
limitation arose from the address-level aggregation of energy consumption data. In the study area,
254 addresses correspond to multiple buildings, including the 23 buildings on Chung-Ang University
campus and various apartment complexes. Since the energy consumption data is reported at the
address level rather than for individual buildings, it is impossible to determine the actual energy
demand of each building when multiple structures share the same address.
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While Energy Use Intensity (EUI) could be calculated by dividing total energy consumption by Gross
Floor Area (GFA) at each address, which is a straightforward but powerful measure of how efficient-
ly building uses energy. This would unrealistically assume that all buildings at the same address,
regardless of their size, function, or occupancy patterns have identical EUl for the buildings that
share the addresses. Given this limitation and the need for building-specific energy analysis, this
research excluded all addresses corresponding to multiple buildings and focused only on addresses
that match single buildings, ensuring more accurate representation of individual building energy
consumption patterns.

Buildings with Electricity Data by Address Type - August 2020

I Unique address with electricity data
[T Shared address with electricity data

[__INo electricity data

Figure 4.13 Buildings with electricity data by address type in August 2020

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2015 419 425 425 426 427 427 428 432 430 392 383 381
2016 378 375 369 364 362 359 347 351 362 359 359 358
2017 351 351 224 223 224 222 222 214 213 248 245 242
2018 242 242 244 241 236 234 234 238 241 240 239 236
2019 229 229 229 232 237 240 237 239 238 239 243 242
2020 227 227 227 228 227 225 225 224 223 223 225 225
2021 225 277 227 225 225 224 225 225 228 227 228 228
2022 229 228 228 228 228 228 231 232 232 232 225 232
2023 218 212 208 206 204 0 0 0 0 0 0 0
2024 187 188 187 188 188 189 190 191 191 192 190 190

Table 4.8 Buildings with unique address with electricity data in August 2020
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Buildings with Gas Data by Address Type - August 2020

I Unique address with gas data

[ 1Shared address with gas data

[C_INo gas data
Figure 4.14 Buildings with gas data by address type in August 2020

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2015 419 425 425 426 427 427 428 432 430 307 308 309
2016 306 305 303 297 292 290 244 242 241 244 252 253
2017 258 259 197 196 209 189 186 202 205 206 211 210
2018 209 209 207 203 198 196 193 190 192 197 200 200
2019 199 198 200 198 205 202 202 200 200 201 210 91
2020 199 200 197 195 193 186 183 185 178 185 195 195
2021 197 194 193 193 193 185 184 185 183 191 196 198
2022 200 199 199 199 199 195 188 189 188 190 187 183
2023 173 170 166 165 160 0 0 0 0 0 0 0
2024 150 150 150 147 146 142 142 142 142 141 145 147

Table 4.9 Buildings with unique address with electricity data in August 2020

Note that energy consumption data for June through December 2023 was not available from the
Korean Architecture Hub database, resulting in zero values for these months in Table 4.8 and Table
4.9. Ultimately, electricity EUI data was obtained for 29,501 building-month records, and gas EUI
data for 24,737 building-month records. These represent cumulative counts across all months from
2015 to 2024, not the number of unique buildings. The actual number of unique buildings with en-
ergy data varies by month, ranging from approximately 180 to 430 for electricity and 140 to 310 for
gas consumption.
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05 Methodology

Although there are various methodologies to convert LST to air temperature, this research employs
Multi Layer Perceptron (MLP). The relationship between LST and air temperature is non-linear and
complex, which are affected by various factors like solar radiation, greening elements and elevation.
MLP’s advanced capability to model these relationships makes it more suitable than other conven-
tional methodologies like linear regression or regression kriging. As demonstrated in Chapter 2.3.3,
comparative studies confirmed that MLP performed the best in LST to air temperature conversion.
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5.1 Multi Layer Perceptron (MLP)

The Multi Layer Perceptron (MLP) is a basic type of neural network commonly used in industrial
settings and data analysis applications (Kotsiopoulos et al., 2021). An MLP consists of at least three
layers: an input layer where data enters the system, one or more hidden layers that process this
information, and an output layer that delivers the final results. Each layer contains computing units
called neurons that are connected to neurons in the neighboring layers, with each connection having
a numerical value called a weight (Gardner & Dorling, 1998).

Figure 5.1 Architecture of Multi layer perceptron

In an MLP, data moves forward through the network in one direction only. Each neuron receives val-
ues from all neurons in the previous layer, multiplies each incoming value by its connection weight,
adds these products together, and then applies a mathematical function to produce its output value
(Chan et al., 2023). This function, called an activation function, is important because it allows the
network to learn complex relationships in the data.

MLPs improve their performance through a learning process called backpropagation. During train-
ing, the network compares its predicted output with the correct answer and calculates the differ-
ence. This error measurement is then used to adjust the connection weights throughout the network
to improve future predictions (Gardner & Dorling, 1998). The network repeats this process many
times with different examples until it performs well (Kotsiopoulos et al., 2021).

These networks are effective for both classification tasks (sorting data into categories) and regres-
sion tasks (predicting numerical values), making them useful for industrial applications such as pre-
dicting equipment failures or identifying product defects (Gardner & Dorling, 1998; Chan et al.,
2023). While training an MLP requires significant computing resources and careful selection of set-
tings, their ability to discover patterns in data makes them valuable analytical tools. Unlike more
specialized neural networks, MLPs work well with standard table-formatted data and do not need
special data structures to perform effectively (Kotsiopoulos et al., 2021).
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5.2 Methodology Overview

The methodology employs a two-stage approach to ensure both model accuracy and generalizabil-
ity. Figure 5.2 shows the complete workflow, demonstrating how satellite-derived inputs and AWS
data are processed through the MLP architecture to generate spatially continuous air temperature
maps at 30 by 30 meter resolution.

Figure 5.2 Methodology of MLP

Stage 1: Model Development with Automatic Weather Stations (AWSs)

Stage 1 focuses on training the MLP using 39 AWSs data as ground truth. AWSs provide accurate
air temperature measurements at 11:12 AM from 2013 to 2024, which are precisely matched with
the Landsat 8 overpass time. The MLP model learns the complex non-linear relationships between
4 input variables: Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI),
Digital Elevation Model (DEM), and Solar Zenith Angle (SZA), and the measured air temperature
from AWSs. This stage employs a 70-15-15 split for training, validation and testing.

Stage 2: Independent Testing with S-DoT sensors

Stage 2 tests the trained model using independent data from over 1,100 S-DoT sensors across
Seoul since 2021. This independent testing confirms the model’s performance on a spatially dense
network not used during training. According to a report published by the Seoul municipality, S-DoT
sensors measure temperatures that are on average 1.8°C higher than AWS measurements during
May-August 2020. This systematic difference likely reflects the urban heat island effect, as S-DoT
sensors are placed within the urban environment while AWS stations are typically located in more
open areas.
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5.3 Stage 1: Model Development with Automatic Weather Stations

5.3.1 Input Features

Normalized Difference Vegetation Index (NDVI)

NDVI represents vegetation greenness, which
significantly affects the LST and air temperature
relationship through the evapotranspiration pro-
cess. Areas with dense vegetation typically show
smaller differences between LST and air tem-
perature due to cooling effects, while built-up
areas show larger temperature differences. NDVI
values range from -1 to 1, with higher values in-
dicating denser vegetation.

Solar Zenith Angle (SZA)

SZA represents the angle between the sun and
the vertical direction, which determines the in-
tensity of solar radiation. It influences the amount
of solar radiation reaching the surface, affecting
both LST and air temperature. The SZA is ob-
tained based on the Landsat acquisition time and
geographic coordinates.

58

Land Surface Temperature (LST)

LST serves as the primary input, providing ther-
mal information measured by Landsat 8 bands at
11:12 AM. Its relationship with air temperature
is complex and nonlinear, influenced by atmo-
spheric conditions. The LST values extracted at
each AWS location creates the basis for learning
this relationship.

Digital Eleveation Model (DEM)

DEM represents terrain elevation, affecting air
temperature through the environmental lapse
rate where temperature decreases approximate-
ly 6.5°C per 1000m elevation gain. In Seoul’s ur-
ban context, elevation influences wind exposure
and cold air pooling, making it an essential pre-
dictor for temperature estimation.



5.3.2 MLP Architecture

The MLP employs a four hidden layer architecture with an input layer of 4 features and an output
layer that progressively reduces the number of neurons from input features to air temperature pre-
diction. This funnel-shaped design enables hierarchical feature learning while maintaining compu-
tational efficiency.

Figure 5.3 MLP of five-layer dense architecture with dropouts

Input Layer 4 Input features (LST, NDVI, DEM, SZA)

Layer 1 128 neurons with RelLU activation & 20% dropout
Layer 2 64 neurons with RelLU activation & 20% dropout
Layer 3 32 neurons with RelLU activation

Layer 4 16 neurons with ReLU activation

Output Layer 1 neuron for air temperature prediction
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The choice of 128 neurons in the first hidden layer follows established practices in neural network
design for regression tasks with limited input features. With only 4 input features (LST, NDVI, DEM,
SZA), starting with 128 neurons provides sufficient capacity to capture non-linear interactions with-
out excessive parameterization. This follows the common heuristic of having the first hidden layer
size as a power of 2 between 2-5 times the number of inputs (Heaton, 2008). The 32:1 ratio (128
neurons to 4 inputs) allows the network to learn complex feature combinations while the subsequent
layers progressively compress these representations. This architecture size has proven effective in
similar atmospheric and environmental prediction tasks where the relationship between inputs and
outputs involves multiple non-linear interactions (Rasp et al., 2018).

20% dropout is applied to the first 2 hidden layers. Dropout is one of the most popular regulariza-
tion methods for preventing neural network models from overfitting in the training phase (Salehin &
Kang, 2023). The dropout technique deactivates 20% of neurons during training, which allows the
model to learn redundant representations and prevent overlapping features.

The Rectified Linear Unit (ReLU) activation function is used throughout the hidden layers. ReLU pro-
vides computational efficiency and addresses the vanishing gradient problem that affects traditional
activation functions in deep networks (Glorot et al., 2011). ReLU enables the model to learn non-
linear mappings while maintaining gradient flow during backpropagation. The output layer employs
linear activation, appropriate for continuous temperature prediction.

5.3.3 Training Process

The MLP model follows a 70-15-15 split for training, validation, and testing sets respectively. The
70-15-15 split represents an optimal balance for air temperature prediction. Hastie et al. (2009)
mentioned that having at least 50% of data for training in nonlinear models is recommended to en-
sure learning capacity, with 70% providing additional robustness for capturing complex nonlinear
relationships. The 15% validation provides stable estimates for early stopping and hyperparameter
selection in neural networks. The 15% for testing set aligns with best atmospheric science applica-
tions. Rasp et al. (2018) used the same proportions in their neural network of atmospheric research
and mentioned that climate prediction models require substantial test sets to evaluate performance
across diverse conditions. The 15% test ensures statistical reliability or performance, while maxi-
mizing available training data.
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Figure 5.4 Training set, validation set, and test set in MLP

Training Set (70%)

The training serves as the primary source for model training. During the training phase, it under-
goes complete forward and backward propagation cycles. In forward propagation, input features
go through all hidden layers, with each neuron computing weighted sums and applying activation
functions to generate predictions. The Mean Squared Error (MSE) loss is calculated by comparing
predicted temperatures with AWS measurements. Backpropagation computes gradients, propagat-
ing error signals backwards through the neurons to update weights. The 70% ensures sufficient data
diversity to capture temperature variations and patterns while maintaining adequate data for vali-
dation and testing.

Validation Set (15%)

Validation is important in the model, which does not participate in the learning process. After each
training epoch, the validation data undergoes forward propagation only, without weight updates or
backpropagation. It provides an unbiased estimation of model performance during training. The
validation loss serves as the primary metric for early stopping, with training ending if no improve-
ment is made for 20 consecutive epochs. This mechanism prevents overfitting by halting training at
the point of optimal generalization rather than continuing until the model memorizes training data
(Prechelt, 2012).

Test Set (15%)

The 15% test set remains isolated throughout the training and validation process, which only pro-
vides a final assessment of the model’s performance. There is only forward propagation after all
training is complete. The test set evaluation indicates the final performance metrics, including R?,
root mean squared error (RMSE), mean absolute error (MAE), and coefficient of variation of the root
mean squared error (CVRMSE).
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Implementation Details

The model employs several key parameters that control how the learning process unfolds. Each
parameter serves a specific purpose in ensuring efficient and stable training.

The Adam optimizer guides how the model updates its weights during training. It adapts the learning
rate for each weight individually, which keeps track of the average gradients and their squared val-
ues over time. This approach helps the model learn more efficiently, and parameters with consistent
gradients receive larger updates, while those with fluctuating gradients receive smaller ones. Adam
also incorporates momentum, which helps the optimization process continue moving in productive
directions and avoid getting stuck in local minima (Kingma & Ba, 2014).

The learning rate 0.001 is used in weight updates. When the learning rate is too large, it might cause
the model to overshoot optimal values, while one that is too small would make training extremely
slow. The value of 0.001 is a widely tested starting point that provides stable convergence for neural
networks across various applications (Bengio, 2012).

The model uses a batch size of 32, which processes 32 training examples before updating its weights.
Instead of updating after every single batch or waiting until all batches are processed, training with
32 batches makes a balance. Processing 32 batches provides a more stable estimate of gradient
direction while keeping computational requirements. 32 batch size provides a sufficient gradient
averaging to smooth out the randomness inherent in individual samples (Masters & Luschi, 2018).

The model trains for a maximum of 200 epochs, where each epoch represents one complete pass
through the entire training dataset. However, due to early stopping, training rarely continues for
all 200 epochs. Early stopping patience with 20 epochs is used in this model, which monitors the
validation loss after each epoch. If the validation loss does not improve for 20 consecutive epochs,
training is automatically stopped. It prevents the model from overfitting, which prevents the model
from memorizing training data. The patience of 20 epochs allows for natural variations in the learn-
ing process, as validation loss might slightly increase before improving again.

5.4 Stage 2: Independent Testing with S-DoT Sensors

Stage 2 of the methodology tests the trained MLP model using an independent dataset from over
1,100 S-DoT sensors throughout Seoul. This stage serves a distinct purpose from the validation set
used during training, as it tests the model’s performance on a completely different measurement
system with known systematic temperature differences.

5.4.1 Independent Testing Methodology

The independent testing begins after the MLP model has completed training using the AWS data.
The trained model generates air temperature predictions at each S-DoT sensor location by extract-
ing the corresponding LST, NDVI, DEM, and SZA. These predictions are then directly compared with
the actual air temperature measurements from the S-DoT sensors at 11:00 AM, which is the closest
available time to the 11:12 AM Landsat overpass time.

This independent testing differs from the validation set in the training process. While the training
validation set consisted of AWS data, the S-DoT sensor testing uses data from an entirely differ-
ent sensor network. The S-DoT sensors are more densely distributed across Seoul, which provides
a spatial testing that the sparse AWS can not provide. The dense network captures microclimate
variations within the urban environment, testing the model’s ability to predict air temperatures at
locations far from any training stations.
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5.4.2 Systematic Temperature Difference Approach

The S-DoT sensors show a known systematic temperature difference compared to AWS measure-
ments. According to the Seoul Research Data Service documentation, S-DoT measurements were
found to be approximately 1.8°C higher than AWS measurements during May-August 2020. This
temperature difference reflects the distinct environments where these sensors are placed. S-DoT
sensors are installed within the urban canopy among buildings and streets where heat accumulates,
while AWS are positioned in relatively open areas following meteorological standards. This place-
ment difference captures the urban heat island effect, with S-DoT sensors experiencing the elevated
temperatures created by surrounding buildings, reduced ventilation, and heat-absorbing surfaces.

The testing process examines whether the MLP model, trained on AWS data, maintains predictions
closer to AWS temperatures when applied to S-DoT sensor locations. While the 1.8°C difference
was specifically measured during summer 2020, it provides a reference point for understanding
the systematic temperature difference between the two sensor networks. The average difference
between model predictions and S-DoT measurements helps evaluate the model’s consistency and
its ability to predict air temperatures rather than sensor-specific readings, acknowledging that this
systematic difference may vary seasonally and annually.

5.4.3 Spatial and Temporal Considerations

Figure 5.5 Temporal differences between AWS and S-DoT sensors

Stage 2 independent testing incorporates both spatial and temporal dimensions to evaluate the
model performance. It examines how prediction accuracy varies across Seoul, and the high density
of S-DoT sensors allows assessment of the model’s spatial interpolation, especially in areas distant
from AWS stations. The testing utilizes S-DoT data from 2020 to 2024, overlapping with AWS data
throughout this period.
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The analysis examines the mean difference between predicted air temperature from the MLP model
and S-DoT sensor measurements. While the systematic temperature difference of 1.8°C between
S-DoT and AWS was specifically documented for May-August 2020, this value provides a refer-
ence point for understanding the expected difference between the two sensor networks. The testing
evaluates whether model predictions maintain consistency with AWS temperature patterns when
applied across the entire S-DoT network from 2020-2024, acknowledging that the systematic tem-
perature difference may vary seasonally and annually. Unlike the MLP training phase, this reflects
the model’s performance on a truly independent dataset with different measurement characteris-
tics. The successful testing against S-DoT sensors, despite the systematic temperature difference
between sensor types, demonstrates the model’s robustness and applicability for generating air
temperature maps across Seoul.

5.5 Final Application: Air Temperature Map Generation

After the 2-stage development and testing stages, the trained MLP model is applied to generate the
final predicted air temperature maps for all Landsat 8 images. The final application deploys insights
from both stages to create reliable air temperature predictions across Seoul.

In Stage 1, the model developed using AWS as a ground truth data provides the fundamental air tem-
perature prediction capability, which learns the complex nonlinear relationship between LST, NDVI,
DEM, SZA, and air temperature. The Stage 2 independent testing with S-DoT sensors confirms the
model’s spatial generalization ability, which demonstrates consistent performance even in areas
without AWSs. These 2-stage approaches ensure reliability in applying the model across all pixels.
During operational application, each 30 by 30 meters (23.81 by 29.91 meters) pixel in the Landsat
pictures undergoes forward propagation through the trained model. The absence of dropout during
inference ensures that decision outputs will involve all neurons contributing to the final prediction.
This process generates continuous temperature surfaces that capture microclimate-scale tempera-
ture variations.

The Stage 2 independent testing results inform the interpretation and application of these predic-
tions. The dense S-DoT network confirms the model’s ability to interpolate between sparse training
locations, supporting its application to all pixels regardless of AWS vicinity. While S-DoT sensors
show systematic temperature differences compared to AWS data, the model maintains alighment
with AWS temperature patterns, ensuring scientific consistency of the output air temperature maps.

The final predicted air temperature maps at 30-meter resolution between 2013 and 2024 provide
high-resolution spatial thermal data that are important and necessary for analyzing relationships
between urban form elements and building energy consumption. However, these maps are not suf-
ficient for comprehensive energy analysis due to their temporal limitations. With only 1-2 snapshots
per month at 11:12 AM, the data cannot capture diurnal temperature variations that drive daily
energy consumption cycles, nor can they represent peak cooling or heating conditions that typically
occur at different times of day. This research therefore focuses on spatial relationships at the specific
satellite overpass time, acknowledging that the correlations found represent only a partial view of
the complex temporal dynamics between temperature and energy consumption. The analysis exam-
ines how urban form relates to both temperature and monthly energy consumption at this specific
time, rather than attempting to model full diurnal or sub-daily energy patterns.
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5.6 Urban Form Elements Importance

Figure 5.6 Methodology of urban form elements importance

Analyzing the relative importance and directional relationships between UFEs, air temperature, and
building energy consumption provides a comprehensive outline for urban planners and policymak-
ers to design urban layouts to make cities more sustainable. The analysis employs 2 complementary
statistical methods to address the challenge of highly correlated urban form elements in dense ur-
ban environments.

The analysis examines 6 UFEs: NDVI, building ratio, weighted height, FSI, GSI, and building volume.
These elements often show strong intercorrelations in urban areas, where areas with high vegetation
typically have a lower building ratio, while building height is highly correlated with FSI. Traditional
statistical methods struggle with such multicollinearity, which would produce unreliable and mis-
leading results. Therefore, this research uses the Genizi method to quantify relative importance and
Partial correlation to determine directional relationships.

The analysis consists of 2 parts: Temperature analysis and Energy analysis, with multiple spatial
scales to capture both immediate and neighborhood effects. Temperature analysis examines pix-
el-level and averages within 100m and 300m buffers from the centroids of each pixel, while energy
analysis focuses on 100m and 300m buffers around building centroids. This multi-scale approach
determines thermal and energy consumption patterns differently for urban form at various spatial
extents.
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Figure 5.7 Sptial scales in temperature analysis

Figure 5.8 Spatial scales in energy consumption analysis
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5.6.1 Genizi Method

Genizi Method Principle

The Genizi method works by decomposing the total R? from a multiple regression model to deter-
mine how much each predictor contributes to the explained variance. The method takes as inputs
the correlation matrix between all predictor variables and the dependent variable, along with the
regression coefficients from the full model.

The calculation process involves several steps. First, it computes the direct contribution of each
variable. Second, it calculates the shared contributions between pairs and groups of variables that
arise from their correlations. Third, and most importantly, it allocates these shared contributions
back to individual variables based on their relative strengths in the model. For example, if NDVI and
building ratio are negatively correlated and the combination explains 30% of temperature variance,
the Genizi method determines how much of that 30% should be attributed to each variable based
on their regression coefficients and individual correlations with temperature.

The outputs are percentage contributions for each predictor that sum to the total R? of the model.
Unlike other standardized regression coefficients, which can be misleading when predictors are cor-
related, the Genizi method represents the true relative importance of each variable after accounting
for multicollinearity. A variable showing 25% importance genuinely contributes one-quarter of the
model’s explanatory power, regardless of its correlations with other predictors. This makes the Ge-
nizi method particularly valuable for urban studies where factors like vegetation and building densi-
ty are highly correlated, it allows researchers to understand which urban form elements truly drive
temperature and energy patterns.

67



Temperature Analysis

The temperature analysis uses the Genizi method at three spatial scales: At the pixel level, each 30
by 30 meters (23.81 by 29.91 meters) cell’s air temperature, derived from MLP, serves as the depen-
dent variable, with the 6 UFEs at the exact location as predictors. This fine-scale analysis captures
immediate temperature variations in relation to local urban form. UFE values are averaged within
100m and 300m buffers centered on each pixel. The 100m buffer represents the immediate thermal
environment, which captures nearby effects, while the 300m buffer extends to the neighborhood
scale, incorporating broader urban morphology patterns that influence local climate.

The implementation enables seasonal variation. The method uses 4 seasons: Spring (March, April,
May), Summer (June, July, August), Fall (September, October, November), and Winter (December,
January, February). NDVI in summer is typically higher than in winter, and if the approach does not
consider seasonal effects, the results would not be reliable and trustworthy. The Genizi method
quantifies these seasonal shifts in relative importance, providing percentage contributions for each
UFE that vary by season and 3 different spatial scales.

Energy Consumption (EUI) Analysis

The Genizi method is also used to analyze energy consumption in EUI at the building level, with
electricity and gas consumption as separate dependent variables. The predictor variables combine
2 types of measurements: environmental context and building-specific variables.

NDVI and building ratio are considered as environmental context variables, which are averaged
within 100m and 300m buffers around each building’s centroid that have energy consumption data.
These buffers capture the surrounding urban environment that influences building energy consump-
tion, and using average values ensures these environmental variables represent neighborhood con-
ditions rather than point measurements.

Other UFEs (Building height, FSI, GSI, and building volume) are regarded as building-specific vari-
ables, which are used with the actual values for each individual building. This approach recognizes
that a building’s own physical characteristics directly determine its energy consumption through
several factors. Using actual values rather than averaged values for building-specific variables main-
tains the direct physical relationship between building form and energy consumption pattern.
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5.6.2 Partial Correlation

While the Genizi method shows the relative importance of each UFE, it does not show the direction-
al relationships. A key distinction is that partial correlation produces signed coefficients (-1 to +1)
indicating whether each UFE increases or decreases temperature and energy consumption, while
the Genizi method only provides unsigned importance values. Partial correlation analysis can be
used with the Genizi method by indicating whether each UFE has a positive or negative effect on air
temperature and energy consumption, while controlling for the influence of other variables, which
are often represented as heatmaps.

Partial Correlation Principle

Partial correlation measures the linear relationship between two variables while controlling for the
effects of other variables in the system. The method takes as inputs the complete correlation matrix
of all variables (both predictors and dependent variables) and calculates the correlation between
any two variables after removing the linear effects of all other variables.

The calculation process involves matrix operations on the correlation or covariance matrix. For ex-
ample, to find the partial correlation between NDVI and air temperature while controlling for build-
ing ratio, height, FSI, GSI, and volume, the method first removes the variance in both NDVI and tem-
perature that can be explained by these other variables. It then calculates the correlation between
the residual variations. Mathematically, this is computed using the inverse of the correlation matrix,
where the partial correlation between variables i and j is calculated as -P(i,j) /sqrt(P(,i)*P(j,j)), where
P is the inverse correlation matrix.

The outputs are correlation coefficients ranging from -1 to +1 for each predictor-outcome pair. A
value of -0.4 for NDVI means that, holding all other urban form elements constant, areas with high-
er NDVI tend to have lower temperatures. Unlike zero-order correlations which can be misleading
when variables are intercorrelated, partial correlations reveal the unique relationship between each
predictor and outcome. These values indicate both the strength (absolute value) and direction (pos-
itive or negative) of relationships. In this research, these coefficients are visualized as heatmaps
where blue represents cooling effects (negative correlations) and red represents warming effects
(positive correlations), providing an intuitive understanding of how each urban form element influ-
ences temperature and energy consumption when other factors are held constant.
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Temperature Analysis

For temperature analysis at the pixel level, partial correlations reveal the direct relationship be-
tween each UFE and air temperature at 3 spatial scales. Partial correlation examines the direction
and strength of linear relationships, unlike the Genizi method, which decomposes total variance to
show how much each UFE contributes. The analysis examines correlations while controlling for the
other 5 UFEs, which is to answer like “What is the relationship between NDVI and air temperature if
all buildings had the same height, FSI, GSI, building ratio, and volume?”.

At each spatial scale, the partial correlation produces a matrix of partial correlations accompanied
by significance tests. These statistical measures provide information that the Genizi method cannot
produce, which is the reliability and precision of each UFE relationship. This method can help urban
planners to clarify how to increase or decrease each UFE to achieve the desired air temperature.

Energy Consumption (EUI) Analysis

The energy consumption analysis implements partial correlation to determine directional relation-
ships between UFEs and building energy consumption in EUI. Partial correlation provides signed
coefficients that explicitly show whether each UFE contributes to an increase or decrease in energy
consumption of the building.

The analysis uses the same structure as the Genizi method. The environmental variables averaged
within buffers and building-specific variables using actual values. For each UFE, the partial correla-
tion generates correlation coefficients that indicate both direction and magnitude of association with
energy consumption after removing the confounding effects of other urban form elements.
Moreover, partial correlation enables direct comparison between electricity and gas consumption
patterns. While the Genizi method’s importance percentages must be interpreted separately for
each energy type, partial correlation coefficients can reveal opposing relationships, such as vege-
tation showing negative correlation with electricity (cooling effect) but positive correlation with gas
(increased heating in green areas). This directional information, combined with the Genizi method
results, provides a complete picture of how UFEs influence energy consumption, which can guide
urban planners on which elements to prioritize and in which direction to modify them.
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5.7 Changes over a Decade

Examining changes over a decade offers important insights into the relationship between urban form
evolution and air temperature variations. This analysis examines the transformation of UFEs and air
temperature in Heukseok-dong between 2015 and 2024, with additional focus on a specific district
as a detailed case study. This temporal monitoring captures both area-wide development trends
and localized changes, demonstrating how urban morphology and thermal conditions have evolved
together over the decade.

5.7.1 Changes in Heukseok-dong

The methodology follows changes by calculating yearly average values across the Heukseok-dong
from 2015 to 2024. The analysis follows:

« Seasonal average values for air temperature and NDVI, calculated separately for spring, sum-
mer, fall, and winter each year.

« Annual average values for building ratio, building height, FSI, GSI, and building volume.
For air temperature and NDVI, seasonal averages capture the varying impacts throughout the year.
These seasonal analysis aligns with Heukseok-dong's climate patterns and vegetation cycles. The

other 4 UFEs use annual averages, as they are stable urban characteristics that do not change sea-
sonally.
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5.7.2 District 3 Case Study

Figure 5.9 Location of District 3 in Heukseok-dong (red)

As Chapter 3.3.1 mentioned that there were several districts in Heukseok-dong undergoing redevel-
opment, which are valuable opportunities to examine substantial UFE and air temperature changes
over the past decade. This research specifically focuses on District 3 in southern Heukseok-dong,
which underwent a major transformation from 2018 to 2022. The temporal monitoring methodology
is applied specifically to this district to document its distinct evolution patterns. The same method-
ology is applied exclusively to District 3.

« Seasonal values for air temperature and NDVI within District 3 boundaries

« Annual average values for building ratio, building height, FSI, GSI, and building volume within
District 3.

This case study analysis captures how the transformation from low-rise residential to high-rise
apartments affected both UFE and environmental conditions. The seasonal air temperature and
NDVI data are particularly valuable for understanding how the redevelopment affected the local
microclimate across different times of year.
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06 Results

6.1 MLP Model Performance

The MLP model was developed for converting LST to air temperature using AWS data as ground
truth and further tested with an independent S-DoT sensor. The results show the model’s effective-
ness through both internal evaluation and external testing.

6.1.1 Model Training and Performance Metrics

The MLP model training process converged efficiently, which achieved optimal performance at the
/1st epoch out of a maximum of 200 epochs. The earthly stopping monitored validation loss with
a patience of 20 epochs, which successfully prevented the model from overfitting while ensuring
learning the complex non-linear relationships between LST and air temperature.

Training and Validation Loss Curves

Figure 6.1 Training and validation loss curves

The blue line represents training loss, showing how well the model fits the training data with each
epoch, while the orange line represents validation loss. Validation loss measures the model’s per-
formance on the held-out validation set. Both curves show successful learning behavior, as they
decrease rapidly in early epochs as the model learns patterns, then they gradually stabilize from
around the 25th epoch. The convergence of both training and validation curves at similar loss values
around 30-60 epochs indicates successful training without overfitting. If overfitting had occurred,
the validation loss would increase, while the training loss continued to decrease, which creates a
divergence. The early stopping activated at epoch 71 when validation loss showed no improvement
for 20 consecutive epochs, which prevents unnecessary computation while ensuring learning.
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R? RMSE MAE CVRMSE
0.9684 2.095°C 1.616°C 15.50 %

Table 6.1 Performance metrics of MLP

The R? (coefficient of determination) value of 0.9684 indicates that the model explains approxi-
mately 96.8% of the variance in air temperature, demonstrating a strong predictive capability. The
performance of this MLP aligns with recent studies in urban temperature estimation, where Salih et
al. (2025)’s MLP model using TEMLI obtained an R?of 0.91. A high R? value can represent a well-cap-
tured nonlinear relationship between LST and air temperature.

The RMSE (Root Mean Square Error) of 2.095 °C represents the average magnitude of prediction
errors. The RMSE value shows that the model’s air temperature predictions are off from the actual
measurements from AWS by around +£2.1°C. 2.095 °C RMSE is in a similar range compared to other
papers, where Choi et al. (2021) got RMSE of 2.19 °C using an artificial neural network (ANN).

The MAE (Mean Absolute Error) of 1.616 °C provides the average absolute difference between pre-
dicted and actual air temperatures, while the CVRMSE (Coefficient of Variation of RMSE) of 15.50%
represents the normalized error relative to the mean air temperature, which suggests that the typical
error is about 15.50% of the average air temperature.
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6.1.2 Independent S-DoT Testing Results

The trained MLP model is further tested with independent S-DoT sensors. The independent testing
using S-DoT sensors provides crucial evidence of the model’s real-world applicability beyond the
trained model.

The analysis was conducted in two phases: first examining the specific period (May-August 2020)

for which the systematic temperature difference between S-DoT and AWS was documented, then
extending to the full available period (2020-2024) to assess long-term model consistency.
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May-August 2020 Independent Testing

S-DoT Sensor Testing: Predicted vs Observed (May-Aug, 2020) Distribution of Temperature Differences (May-Aug, 2020)
— — 1:1 Line — — Mean: 1.84°C
— — Systematic Difference: 1.84 °C — — Expected: 1.80 °C
Figure 6.2 Predicted air temperature testing with S-DoT sensors Figure 6.3 Temperature difference between predicted and measured
(May-August, 2020) (May-August, 2020)
Metric (May-August, 2020) Value
Mean Temperature Difference (Sensor - Predicted) 1.84 °C
Standard Deviation 2.06 °C
RMSE 2.76°C
MAE 2.25°C
R? 0.653
CVRMSE 12.63 %
Number of Testing Points 1,391

Table 6.2 Independent testing metrics with S-DoT sensors (May-August, 2020)

Figure 6.2 shows the predicted versus observed air temperatures at S-DoT sensor locations during
May-August 2020. The mean difference between S-DoT measurements and MLP predictions is
1.84°C, which is remarkably close to the expected 1.8°C known systematic temperature difference
documented by Seoul municipality for this period. This alignment confirms that the MLP model,
trained on AWS data, successfully maintains AWS temperature characteristics when applied to ur-
ban locations.

The distribution of temperature differences for this period, showing a narrow distribution centered
at 1.84°C with a standard deviation of 2.06°C. Figure 6.3 indicates the consistent model perfor-
mance across different urban environments during the summer months.

Table 6.2 summarizes the performance metrics for May-August 2020. The R? of 0.653 and CVRMSE
of 12.63% demonstrate reasonable predictive capability, while the RMSE of 2.76°C and MAE of
2.25°C reflect the combined effects of the systematic temperature difference and prediction uncer-
tainty. The close match between the observed difference (1.84°C) and expected difference (1.8°C)
confirms the model’s validity.
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Full Period (2020-2024) Independent Testing

S-DoT Sensor Testing: Predicted vs Observed (2020-2024) Distribution of Temperature Differences (2020-2024)
— — 1:1 Line — — Mean: 0.98 °C
— — Systematic Difference: 0.98 °C — — Expected: 1.80 °C
Figure 6.4 Predicted air temperature testing with S-DoT sensors Figure 6.5 Temperature difference between predicted and measured
(2020-2024) (2020-2024)
Metric (2020-2024) Value
Mean Temperature Difference (Sensor - Predicted) 0.98 °C
Standard Deviation 4.63 °C
RMSE 4.73°C
MAE 3.87 °C
R? 0.807
CVRMSE 3117 %
Number of Testing Points 23,465

Table 6.3 Independent testing metrics with S-DoT sensors (2020-2024)

To assess the model’s long-term consistency, the analysis was extended to all available S-DoT data
from 2020-2024. Figure 6.4 shows the scatter plot for this extended period, with points clustering
along the 1:1 line. The mean difference of 0.98°C is lower than the summer 2020 value, suggesting
that the systematic temperature difference between S-DoT and AWS varies seasonally, with smaller
differences during non-summer months.

Figure 6.5 demonstrates the distribution of temperature differences across all seasons and years.
The distribution remains approximately normal but with a larger standard deviation of 4.63°C, re-
flecting greater variability across different seasons and weather conditions. Table 6.3 shows the full
period metrics, with an improved R? of 0.807 indicating strong overall predictive capability.

The analysis demonstrates that the MLP model successfully converts LST to air temperature across
different temporal periods and seasonal conditions. The summer 2020 independent testing confirms
the model maintains AWS temperature patterns even when applied to systematically warmer urban
locations, while the full period analysis shows robust performance across diverse conditions. The
variation in systematic temperature differences (1.84°C in summer 2020 vs 0.98°C overall) likely re-
flects seasonal variations in urban heat island intensity, with stronger effects during summer months.
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6.1.3 Final Predicted Air Temperature Maps

Following the successful independent testing, the MLP model converted LST from satellite to final
predicted air temperature maps. Figure 6.6 and Table 6.4 show the temperature difference between
LST and predicted air temperatures.

LST vs Predicted Air Temperature

Figure 6.6 Scatter plot of land surface temperature and final predicted air temperature

LST to Final Predicted Air Temperature

Metric Value
Mean Temperature Difference 7.78 °C
Median Temperature Difference 7.58 °C
Standard Deviation 3.88 °C
Mean Spring Temperature Difference 9.40 °C
Mean Summer Temperature Difference 12.24 °C
Mean Fall Temperature Difference 7.51°C
Mean Winter Temperature Difference 3.94°C
Data Points 13,049,546

Table 6.4 Difference between land surface temperature and final predicted air temperature
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The difference between LST and predicted air temperature is crucial for understanding the model’s
physical validity and its implications for urban planning. These differences directly relate to how
urban surfaces store and release heat, which affects both the urban heat island effect and building
energy consumption patterns. Understanding these temperature differentials helps explain why cer-
tain urban form elements have stronger impacts during specific seasons.

Table 6.4 reveals clear seasonal patterns in LST and air temperature differences, with mean dif-
ferences ranging from 3.94°C in winter to 12.24°C in summer. This seasonal variation following
the order summer (12.24°C) > spring (2.40°C) > fall (7.51°C) > winter (3.94°C), which aligns with
Naserikia et al. (2023)’s findings, which observed greater temperature differences between LST and
air temperature in built environments compared to natural Local Climate Zones (LCZ), especially
during warm days.

The 12.24°C summer difference at 11:12 AM satellite overpass time reflects intense solar heating
of urban surfaces during peak radiation hours, while winter’s lower sun angle and reduced radiation
result in smaller differences of 3.94°C. This consistent seasonal pattern validates the model’s phys-
ical realism and demonstrates that the MLP successfully captures the varying thermal relationships
throughout the year.

These temperature differentials are crucial for understanding the physical processes underlying ur-
ban heat island formation. The magnitude of difference indicates how much urban surfaces contrib-
ute to local heating above ambient air temperature conditions, with implications for both microcli-
mate formation and building energy demand. The larger summer differentials suggest that surface
heating plays a more significant role during cooling-demand periods, while smaller winter differenc-
es indicate reduced surface heating contribution during heating-demand periods.

The comprehensive analysis confirms that the MLP model successfully captured the complex
non-linear relationship between satellite-based LST and AWS-based air temperatures. The patterns
across seasons validate the model’s physical realism, while the magnitude of temperature differenc-
es aligns with published studies on LST and air temperature relationships.
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LST vs Predicted Air Temperature on 25th May 2022 at 11:10:19

Land Surface Temperature (LST)

Predicted Air Temperature

15°C 20°C 25°C 30°C 35°C

Figure 6.7 Land surface temperature and predicted air temperature on 25th May 2022 11:10:19
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The final predicted air temperature and NDVI maps focus only on Heukseok-dong using the GeoPan-
das clip tool, and other grids are removed. In the end, the research area is covered with 3436 grid
cells of 30 by 30 meters (23.81 by 29.91 meters). These grid cells are overlapped with building
shapefiles and calculate 6 UFE of each grid cell for relative importance analysis.

Predicted Air Temperature on 13th June 2022 at 11:11:33 NDVI on 13th June 2022 at 11:11:33

Figure 6.8 Clipped air temperature and NDVI map with 23.81m x 29.91m pixels

Figure 6.9 Buildings overlap in multiple pixels
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6.2 Energy Consumption

Energy consumption data for both electricity and gas obtained from the Korean Architecture Hub
were used to calculate the EUI of each building in Heukseok-dong. Calculated electricity and gas
EUl show distinctive seasonal patterns.

6.2.1 Electricity EUI Pattern

Distribution of Electricity EUl: Summer vs Winter

Figure 6.10 Mean Electricity EUI by Month and Year

The distribution of the electricity EUl shows distinct patterns between summer and winter seasons.
In summer seasons, buildings have a slightly higher mean electricity EUI of 11.72 kWh/m?, com-
pared to buildings in winter seasons, 10.38 kWh/m?. This shows that the electricity consumption
is significant throughout the year, but it mostly intensifies during the summer months. Figure 6.10
clearly shows that both summer and winter seasons have substantial electricity usage, though with
different distribution patterns.
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Mean Electricity EUl Month and Year

Figure 6.11 Mean Electricity EUI by Month and Year

When looking at the monthly trends across months and years, electricity consumption follows dis-
tinctive patterns with peaks mostly in the late summer season (August). Most years show higher
electricity usage in January, a gradual decline through the spring season, and reach a minimum
usage in May. Then, there is a steady increase through summer with a peak in August or September,
before declining again in Autumn. This pattern explains that electricity is used year-round, not only
for cooling, but also for other living appliances in all seasons, with increased electricity EUl during
both winter and summer, although summer seasons appear to create higher consumption.

6.2.2 Gas EUI Pattern

Distribution of Gas EUl: Summer vs Winter

Figure 6.12 Histogram of Gas EUI in Summer and Winter
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Mean Gas EUl Month and Year

Figure 6.13 Mean Gas EUI by Month and Year

Unlike electricity EUl consumption, the gas EUl consumption data shows a dramatically different
seasonal pattern. In the winter season, the gas EUl is an average of 20.92 kWh/m?, which is signifi-
cantly higher than the summer average of only 2.95 kWh/m?. This huge difference demonstrates that
gas is the predominant energy source for heating the buildings in Heukseok-dong.

Figure 6.13 shows a very definite relationship between the months and gas EUI. It shows a clear
U-shaped pattern across all years, where the gas consumption consistently peaks in the winter sea-
son (December - February), and rapidly decreases through spring and reaches the lowest gas EUI
level during the summer months (June - August) and September, then it increases rapidly again in
autumn. This pattern is shown consistently across all years.
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6.2.3 Building Type and Energy Use

While Chapter 6.2.1 and Chapter 6.2.2 examined seasonal patterns in energy consumption, to un-
derstand how building usage affects energy demand is equally important for urban energy planning.
This analysis compares energy consumption patterns between low-rise residential buildings and
commercial buildings in Heukseok-dong. Considering that the study area’s energy data is mostly
from these two building types, analyzing their seasonal consumption pattern can provide insights of
how building function, operational patterns, and occupancy differences influence energy use beyond
physical building characteristics alone.
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Building Use

Building Volume

Building Height

Number of Floors

Average Electricity EUl/month

Average gas EUl/month

Commercial Building
10,361 m®

19.9m

5

13.10 kWh/m?

12.73 kWh/ m?

Shape ID: 28022

Building Use

Building Volume

Building Height

Number of Floors

Average Electricity EUl/month

Average gas EUl/month

Shape ID: 6540

Residential Building
813 m?

9.1m

3

8.31 kWh/m?

9.04 kWh/m?



Building Volume Distribution by Type

Figure 6.14 Building Volume Distribution by Type

Building Volume Low-rise Residential Buildings
Mean Volume 751.2 m®

Maximum Volume 2,197.3 m®

Minimum Volume 450 m®

Table 6.5 Building Volume Distribution by Type

Commercial Buildings
7,123.9 m?
19,7811 m°

817.0 m®

The analysis on the energy consumption patterns shows significant differences between building
types in Heukseok-dong. Figure 6.14 shows the distribution of building volumes for low-rise resi-
dential and commercial buildings with available EUl data. Commercial buildings have a mean vol-
ume of 7,123.9 m3, approximately 9.5 times larger than low-rise residential buildings at 751.2 m?.
This substantial size difference provides important context for understanding energy consumption

patterns.
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Electricity EUI by Building Type and Season

Figure 6.15 Electricity EUI by Building Type and Season

Mean EUIl (kWh/m?) Spring Summer Fall Winter
Low-rise Residential 6.60 9.74 7.24 7.76
Commercial 9.14 13.28 9.90 10.08
Difference 2.54 3.54 2.66 2.32

Table 6.6 Electricity EUI by Building Type and Season

Figure 6.15 shows the electricity EUI patterns across seasons for both low-rise residential and com-
mercial buildings. Commercial buildings consistently show higher electricity EUI throughout the
year, with mean electricity consumption from 9.14 kWh/m? in spring to 13.28 kWh/m? in summer. In
contrast, low-rise residential buildings consume less electricity per square meter, ranging from 6.60
kWh/m2 in spring to 9.74 kWh/m? in summer. The difference is the highest during summer months
(3.54 kWh/m?), which explains that the higher cooling demands in commercial buildings are due to
factors such as greater occupancy density, extended operating hours, and higher internal heat gains
from equipment and lighting.
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Gas EUI by Building Type and Season

Figure 6.16 Gas EUI by Building Type and Season

Mean EUIl (kWh/m?) Spring Summer Fall Winter
Low-rise Residential 7.86 5.54 10.52 15.16
Commercial 10.70 7.72 12.55 18.60
Difference 2.84 218 2.03 3.44

Table 6.7 Gas EUI by Building Type and Season

Gas consumption shows a similar pattern, with commercial buildings showing higher EUI across all
seasons. The difference is particularly the highest in winter, where the commercial buildings use an
average of 18.60 kWh/m? compared to 15.16 kWh/m? for residential buildings. Both building types
use the least gas during the summer months, confirming that gas is primarily used for heating. The
consistently higher consumption in commercial buildings likely reflects their larger open spaces,
which require more heating, different operational schedules, and potentially less efficient heating
systems in older commercial structures.

Table 6.7 indicates that building type significantly influences energy consumption patterns beyond
what can be explained by size alone. Despite EUl is normalized by floor area, commercial buildings
demonstrate 30-40% higher EUI, suggesting fundamental differences in building operation, occu-
pancy patterns, and system requirements between commercial and residential uses in this old urban
district.

89



6.3 Genizi Method

This research employed the Genizi method to determine the relative importance of each UFE to ad-
dress the challenge of multicollinearity. The analysis was conducted separately for each season and
at multiple spatial scales to capture both seasonal and spatial variations in UFE impacts. It is par-
ticularly valuable as it properly allocates shared variance among correlated predictors (High NDVI
with low building ratios). The result shows percentage contributions that reveal which UFEs drive the
most variation in air temperature and energy consumption (EUI).

6.3.1 Air Temperature Relative Importance

Air temperature analysis used 3 spatial scales (pixel scale, 100m buffer, and 300m buffer) with 4
different seasons. A comprehensive result is demonstrated in Figure 6.17, Figure 6.18 and Figure
6.19.

Relative Importance of Urban Form Elements on Air Temperature by Season in Pixel Scale

Figure 6.17 Relative importance of urban form elements on air temperature by season and scale using Genizi method

The air temperature analysis finds distinct seasonal patterns in how UFEs affect air temperature
variations. At the pixel scale, NDVI plays as the dominant predictor for three seasons, contrib-
uting 59.2% in spring, 63.8% in fall, and 60.1% in winter. This consistent pattern highlights vege-
tation’s role as the primary temperature changer throughout most of the year. However, summer
shows a dramatic shift: building characteristics become dominant, with building ratio (71.8%) and
GSI (19.5%) together explaining over 90% of temperature variance. This seasonal flip suggests that
during extreme heat, the physical presence and thermal mass of buildings overtake vegetation’s
cooling effects.
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Relative Importance of Urban Form Elements on Air Temperature by Season in 100m Scale

Figure 6.18 Relative importance of urban form elements on air temperature by season and scale using Genizi method

Relative Importance of Urban Form Elements on Air Temperature by Season in 300m Scale

Figure 6.19 Relative importance of urban form elements on air temperature by season and scale using Genizi method
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This dramatic summer reversal reflects the extreme thermal contrasts created by peak tempera-
tures. At 11:12 AM in summer, building surfaces can exceed 40°C while vegetated areas maintain
relatively stable temperatures around 22-26°C. This binary thermal pattern means that at pixel
scale, temperature variance is overwhelmingly determined by whether a building is present rather
than variations in vegetation density. The near-zero importance of NDVI (-1.2%) occurs because
most vegetated pixels have similar temperatures, while building pixels create the extreme values
that drive overall variance.

The 100m buffer analysis shows an intensification of patterns in the pixel scale. NDVI’s importance
increases to 79.3% in spring, 64.7% in fall, and 71.6% in winter, which demonstrates that vegeta-
tion’s cooling effects are more powerful at the larger scale. In summer, the building ratio maintains
its dominance at 62.3%, while GSI contributes 21.7%. The R? values show improvement from pixel
to 100m scale from 0.137 to 0.218 in spring, which suggests that immediate neighborhood charac-
teristics provide better explanatory power for temperature variations.

At the 300m neighborhood scale, the patterns become more complex with the highest R? values
across all seasons. NDVI continues to dominate with 82.9% in spring, 73.4% in fall, and 77.3% in win-
ter. Summer shows a more balanced distribution at this scale, with NDVI increases to 43.7% while
GSl reaches 36.8%.

The dramatic reduction in building ratio importance from 71.8% at pixel scale to 7% at 300m scale
occurs because neighborhood buffers equalize building coverage, where most areas contain similar
20-30% building ratios, eliminating its discriminating power. Instead, the quantity and distribution
of neighborhood green infrastructure becomes the primary temperature determinant, explaining
why NDVI rebounds to 43.7%. This scale-dependent behavior demonstrates that extreme summer
heat fundamentally alters temperature controls: building presence dominates at fine scales, while
neighborhood vegetation patterns determine area-wide thermal conditions.

Interestingly, some variables show negative importance values at this scale, such as FSl at -10.3%

in spring and volume density at -17.9% in summer, which indicate suppressor effects where these
variables enhance other predictors’ explanatory power through their correlations.
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6.3.2 Electricity Consumption Relative Importance

Relative Importance of Urban Form Elements on Electricity EUl by Season and Scale

Figure 6.20 Relative importance of urban form elements on electricity EUl by season and scale using Genizi method

The Genizi method for electricity consumption in EUI reveals that air temperature emerges as the
important driver across all seasons and scales, but its dominance varies seasonally. At the 100m
scale, air temperature contributes 41.2% in spring, the highest at 54.3% in summer, and decreases
to 36.8% in fall and 14.8% in winter. This seasonal pattern aligns with cooling demands as the stron-
ger influence of temperature in summer reflects the heavy reliance on air conditioning during hot
months, while its reduced importance in winter, which indicates that electricity use becomes less
temperature-dependent when cooling is not needed.

Building volume shows the second most important predictor at the 100m scale except for win-
ter, with contributions ranging from 15.8% to 33.8%. Its importance is comparably higher in winter
(33.8%) when it becomes the dominant factor, suggesting that larger buildings require more electrici-
ty for lighting, ventilation, and general operations regardless of temperature. FSI follows as the third
predictor, showing relatively stable importance across seasons (12.7% to 27.2%), with its highest
contribution in winter, indicating that floor space intensity drives baseline electricity consumption.
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At the 300m scale, a similar pattern is shown, but with some notable variations. Air temperature
maintains its dominance in spring and summer, but shows suppressor effects in winter, with building
ratio displaying large negative importance values (-24.7% in summer, -14.8% in fall, and -10.3% in
winter). These negative values indicate that building ratio, while not directly explaining electricity
consumption variance, enhances the predictive power of other variables through its correlations.
Areas with high building ratios tend to have low NDVI values when both are included in the model,
building ratio’s negative importance means it helps NDVI better explain the variance by account-
ing for their shared relationship. This statistical phenomenon occurs when a variable improves the
model’s overall explanatory power despite showing negative individual importance. NDVI shows
positive importance at the 300m scale, particularly in summer (34.6%) and fall (25.6%), suggesting
that vegetation’s cooling effects become more apparent at neighborhood scales, indirectly reducing
electricity demand.

The R? values range from 0.152 to 0.378, with the lowest at 300m scale in winter and the highest
at 100m scale in summer. These modest R? values indicate that UFEs explain only 15-38% of the
variance in electricity consumption, suggesting that many other factors not captured in this analysis
such as building age, occupancy patterns, equipment efficiency, and behavioral differences play
substantial roles. The seasonal variation shows stronger relationships between UFEs and electricity
consumption in summer, though even the best model explains less than 40% of variance. The anal-
ysis indicates that electricity use in Heukseok-dong is partially influenced by temperature-related
cooling needs in warm months and building characteristics in cooler months, while the majority of
variation remains unexplained. The scale comparison shows that the 100m scale captures more
direct relationships with higher R? values, while the 300m scale reveals more complex neighbor-
hood-level interactions, including the indirect benefits of vegetation on reducing cooling demands,
though these relationships remain moderate at best.
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6.3.3 Gas Consumption Relative Importance

Relative Importance of Urban Form Elements on Gas EUl by Season and Scale

Figure 6.21 Relative importance of urban form elements on gas EUI by season and scale using Genizi method
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The Genizi method for gas consumption shows different patterns compared to electricity consump-
tion, which reflects the distinct role of gas as primarily a heating energy. Building volume emerges
as the dominant predictor across all seasons and scales, with its importance ranging from 26.3%
to 41.3% at the 100m scale. This dominance is most pronounced in winter and summer, but for
different reasons. Winter reflects actual heating demands, while summer’s high percentage occurs
despite very low overall gas consumption, making small variations appear proportionally large.

Air temperature shows the second-highest importance, but with a clear seasonal pattern that in-
versely shows in electricity consumption. At the 100m scale, air temperature contributes 31.3% in
winter, 27.6% in fall, 24.8% in spring, but drops to just 6.8% in summer. This pattern directly reflects
heating demands. Lower temperatures drive higher gas consumption, while summer’s minimal heat-
ing needs reduce temperature’s explanatory power. The relationship is even more highlighted at the
300m scale.

FSI shows relatively stable importance across seasons (19.4% to 31.8% at 100m scale), which in-
dicates that it is a reliable indicator of heating demand. On the other hand, building height shows
strong negative importance values across most seasons and scales, particularly at the 100m scale
(-14.2% in spring, -13.2% in summer, -12.8% in fall, -11.7% in winter). These consistent negative val-
ues suggest that taller buildings are more heating-efficient per unit volume, possibly due to reduced
surface-to-volume ratios.

The R? values show strong seasonal and spatial variation, ranging from 0.164 in summer at a 300m
scale to 0.382 in winter at a 100m scale. Low R? in summer explains the minimal and irregular gas use
during non-heating months, while winter’s higher values indicate moderate relationships between
UFE and heating demands. The 300m scale shows similar patterns, but NDVI shows substantial
positive importance at this scale (25.8% in spring, 28.3% in fall, 31.4% in winter), which seems coun-
terintuitive but likely reflects the spatial distribution of building types and ages in Heukseok-dong.
At the 100m scale, immediate vegetation has little direct impact on heating needs. However, at the
300m neighborhood scale, areas with high vegetation coverage often correspond to newer residen-
tial developments with modern insulation, while areas with low NDVI typically contain older build-
ings from the 1960s-1970s with poor heating efficiency. The Genizi method captures this spatial
coincidence rather than direct causation.

To test whether building volume truly drives gas consumption or correlates with building type, the
analysis in Chapter 6.2.3 examined energy patterns by building use. Commercial buildings average
7,123.9 m? compared to 751.2 m? for low-rise residential buildings. However, when normalized as
EUI, commercial buildings still consume 22% more gas per square meter in winter (18.60 vs 15.16
kWh/m?). This confirms that building type influences consumption beyond volume effects alone.
Overall, the analysis confirms that gas consumption in Heukseok-dong is driven by a combination
of building size and building type characteristics, with temperature-related heating needs showing
clear seasonal patterns that reflect the primary use of gas for heating.
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6.4 Partial Correlation

While the Genizi method reveals the relative importance of UFEs, partial correlation provides the
directional information, whether each UFE increases or decreases air temperature and energy con-
sumption. It uses the same spatial scales and seasonal analysis as the Genizi method, which would
provide a comprehensive understanding of how UFEs directly affect temperature and energy use
patterns in Heukseok-dong.

6.4.1 Air Temperature Directional Importance

Partial Correlation with Air Temperature - Pixel Scale
(Red = Warming, Blue = Cooling)

Figure 6.22 Partial correlation of urban form elements on air temperature by season in pixel scale

The partial correlation reveals consistent directional patterns across all scales and seasons. NDVI
shows the strongest cooling effect, with a range from -0.208 to -0.452 at different scales, peaking
at -0.452 in summer at the pixel scale. This confirms vegetation’s role as the primary cooling mech-
anism, with effects intensifying during hot weather when evapotranspiration and shading are most
active. The cooling effect remains substantial across all scales, though slightly decreased at the
300m neighborhood level.

In contrast, GSI consistently shows warming effects across all seasons and scales, with the stron-
gest correlation of 0.440 in summer at the 300m scale. This indicates that higher ground coverage
by buildings creates heat islands through reduced pervious surfaces and increased heat absorption.
Building ratio similarly shows consistent positive correlations (0.125 to 0.334), which confirms that
denser building coverage leads to higher temperatures. The warming effect of both GSI and building
ratio is most pronounced in summer, aligning with the UHI effects.
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Partial Correlation with Air Temperature - 100m Scale
(Red = Warming, Blue = Cooling)

Figure 6.23 Partial correlation of urban form elements on air temperature by season in 100m scale

Partial Correlation with Air Temperature - 300m Scale
(Red = Warming, Blue = Cooling)

Figure 6.24 Partial correlation of urban form elements on air temperature by season in 300m scale



Building volume shows moderate warming effects (0.146 to 0.227), while FSI displays relatively weak
positive correlations (0.059 to 0.184). Weighted height shows consistent cooling effects across most
seasons and scales (-0.045 to -0.223), suggesting that taller buildings may provide more shading or
better air circulation. The seasonal patterns clearly show that summer has the strongest correlations
for all variables, indicating that UFE effects on temperature are highlighted during hot weather.
Winter shows the weakest correlations overall, suggesting that other factors like anthropogenic heat
may play larger roles during cold months.

The scale analysis explains that the pixel scale shows the strongest correlations, particularly for
NDVI’s cooling effect, while the 300m scale shows enhanced warming effects for GSI. This suggests
that vegetation’s cooling benefits are most effective at immediate scales for direct temperature re-
duction. These directional insights, combined with the Genizi importance rankings, provide clear
guidance for urban planning. Maximizing NDVI while minimizing GSI and building ratio would be
most effective for temperature reduction, particularly during summer months.
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6.4.2 Electricity Consumption Directional Importance

Partial Correlation with Electricity EUl - 100m Scale
(Red = Warming, Blue = Cooling)

Figure 6.25 Partial correlation of urban form elements on electricity EUI by season in 100m scale

Partial Correlation with Electricity EUI - 300m Scale
(Red = Warming, Blue = Cooling)

Figure 6.26 Partial correlation of urban form elements on electricity EUI by season in 300m scale
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The partial correlation for electricity consumption (EUI) reveals that air temperature is the dominant
positive driver across all seasons, with correlations ranging from 0.152 to 0.576. The relationship is
most pronounced in summer, reaching 0.576 at the 100m scale, which directly reflects cooling de-
mands during hot weather. This strong positive correlation confirms that higher temperatures lead
to increased electricity consumption, due to air conditioning use. The correlation weakens progres-
sively through fall (0.225) and winter (0.189 at 100m scale), as air conditioning needs less.

Building volume shows the second strongest positive correlation with electricity consumption, rang-
ing from 0.178 to 0.398 across seasons and scales. The relationship remains remarkably consis-
tent across seasons, suggesting that larger buildings require more electricity for lighting, ventilation,
and equipment regardless of temperature. FSI follows a similar pattern with positive correlations
(0.132 to 0.342), which indicates that larger floor space needs higher electricity demand. These
building-related factors maintain relatively stable correlations across seasons, unlike the tempera-
ture-dependent variations.

NDVI demonstrates a consistent cooling effect, resulting in reduced electricity consumption, with
negative correlations ranging from -0.042 to -0.362. The effect is most demonstrated at the 300m
scale, where NDVI reaches -0.362 in summer, suggesting that neighborhood-level vegetation pro-
vides substantial indirect cooling benefits that reduce electricity demand.

However, as shown in the air temperature consumption analysis (Chapter 6.4.1), NDVI’s effect on
reducing air temperature is stronger at the pixel scale (-0.452) than at 100m and 300m scales (-0.381
and -0.329). This scale-dependent reversal indicates different mechanisms: vegetation directly cools
air temperature locally, but its energy-saving benefits operate through neighborhood-scale cumu-
lative cooling and microclimate creation. This cooling effect remains significant across all seasons,
though weakest in winter when cooling is not needed.

Building height shows modest positive correlations (0.124 to 0.172), while GSI and building ratio
show weaker positive relationships with electricity consumption. The seasonal patterns clearly show
summer as the period of strongest correlations for all variables, reflecting the dominance of cool-
ing-related electricity use. Winter shows the weakest correlations overall, indicating that baseline
electricity consumption for lighting and equipment is less sensitive to urban form variations. The
scale comparison reveals that while the 100m scale shows stronger correlations for air temperature,
the 300m scale better captures NDVI’s cooling benefits, suggesting that electricity consumption is
influenced by both immediate building characteristics and broader neighborhood conditions.
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6.4.3 Gas Consumption Directional Importance

Partial Correlation with Gas EUl - 100m Scale
(Red = Warming, Blue = Cooling)

Figure 6.27 Partial correlation of urban form elements on gas EUI by season in 100m scale

Partial Correlation with Gas EUI - 300m Scale
(Red = Warming, Blue = Cooling)

Figure 6.28 Partial correlation of urban form elements on gas EUI by season in 100m scale
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Gas EUl shows completely different patterns from electricity, which makes sense since gas is mainly
used for heating. The most distinct finding is that air temperature has a negative relationship with
gas use, as when the temperature is lower, people use more gas for heating. This negative correla-
tion is strongest in winter (-0.387 at 100m scale, -0.563 at 300m scale) and nearly disappears in
summer (-0.023 to -0.134) when heating is not needed.

Building volume stands out as the biggest positive factor for gas consumption, but unlike electricity,
its importance changes dramatically with seasons. In winter, the correlation increases to 0.425, while
in summer it drops to 0.085. However, since this analysis uses EUI, this positive correlation indicates
that larger buildings have higher gas intensity per square meter, not just higher total consumption.
As shown in Chapter 6.2.3, commercial buildings use 22% more gas per square meter than low-rise
residential buildings in winter, which confirms that building type and operational characteristics,
not just volume, drive these patterns. FSI shows the same seasonal pattern, reaching 0.384 in winter
but staying low in summer. Surprisingly, building ratio actually reduces gas consumption (negative
correlations from -0.018 to -0.213). This might be because buildings packed closer together share
walls and lose less heat. NDVI shows small positive correlations (0.011 to 0.145).

The 300m scale shows stronger relationships than the 100m scale, especially for the air tempera-
ture’s effect on gas EUI. This suggests that air temperature patterns on a larger scale predict heating
needs better than just looking at immediate surroundings. Building height also increases the gas
EUI (0.042 to 0.202), with the strongest effect in winter. Overall, these findings confirm that gas
consumption depends mainly on how cold it is and building characteristics, including both size and
type. The usage patterns are basically the opposite of electricity—high in winter for heating instead
of high in summer for cooling.
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6.5 UFE Changes over a Decade

The decade from 2015 to 2024 showed significant urban transformation in Heukseok-dong, due
to large scale redevelopment projects that changed the area’s urban forms. The analysis covers
the entire Heukseok-dong and focuses on District 3, which had the most dramatic transformation.
These real-world changes help confirm the relationships found in earlier Genizi method and partial
correlation analyses.

6.5.1 UFE Changes in Heukseok-dong

Satellite Picture of Heukseok-dong in Feburary 2015

Satellite Picture of Heukseok-dong in March 2024
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Mean Air Temperature Change over a Decade in Heukseok-dong

Year Spring Summer Fall Winter
2015 13.35 °C 23.80 °C 12,75 °C -0.32°C
2024 156.13°C 26.78 °C 1544 °C -0.59 °C
Change +13.1 % +12.5 % +21.1% -86.5%

Mean NDVI Change over a Decade in Heukseok-dong

Year Spring Summer Fall Winter
2015 0.068 0.117 0.086 0.037
2024 0.089 0.131 0.108 0.042
Change +30.3 % +11.6 % +25.8 % +13.5%

Table 6.8 Mean air temperature and NDVI change over a decade in Heukseok-dong

Urban Form Elements Change over a Decade in Heukseok-dong

Year Average Building Volume Average Building Height Average FSI Average GSI
2015 2,161 m? 1.311 0.675
2024 3,116 m® 1.384 0.550
Change +44.2 % +5.6 % -18.5 %

Table 6.9 Average urban form elements change over a decade in Heukseok-dong

Urban Form Element
Air Temperature (°C)
Spring

Summer

Fall

Winter

NDVI

Spring

Summer

Fall

Winter

Building Metrics

FsSI

GSlI

Building Volume (m?)
Building Height (m)
Building Ratio

Number of Buildings

Heukseok-dong Trend Line

Temp = 0.3156 x Year - 624.23
Temp = 0.2192 x Year - 418.42
Temp = 0.1712 x Year - 333.63

Temp = 0.0545 x Year - 111.28

NDVI = 0.00298 x Year - 5.9408
NDVI = 0.00230 x Year - 4.5537
NDVI = 0.00152 x Year - 2.9993

NDVI = 0.000606 x Year - 1.1884

FSI = 0.004091 x Year - 6.892

GS| = -0.00632 x Year + 13.383
Volume = 45.87 x Year - 90,278.12
Height = 0.0256 x Year - 42.84
Ratio = -0.00323 x Year + 6.726

Buildings = -42.68 x Year + 89,286.72

Table 6.10 Trend line of urban form elements change over a decade in Heukseok-dong

Average Building Ratio
0.189
0.167

-15.7 %
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The analysis of Heukseok-dong from 2015 to 2024 reveals significant changes in urban form, though
these changes were not uniformly distributed across the entire area. Table 6.9 shows that average
building volume increased by 44.2% from 2,161 m? to 3,116 m?, while building height increased
by 4.5%. The linear trend analysis further confirms this pattern, with building volume increasing at
45.87 m? per year and building height at 0.0256 m per year. These transformations occurred primar-
ily in specific districts through redevelopment projects, while other neighborhoods remained largely
unchanged.

Ground coverage patterns show consistent decline across both snapshot and trend analyses. Table
6.9 indicates GSI decreased by 18.5% (from 0.675 to 0.550) and building ratio dropped by 15.7%
(from 0.189 to 0.167). The trend analysis supports this, showing GSI decreasing by 0.00632 units
per year and building ratio by 0.00323 units per year. This reduction in ground coverage reflects
the redevelopment in certain districts where older, low-rise residential buildings that covered more
ground were replaced with high-rise apartments with smaller footprints.

Temperature patterns from satellite observations at 11:12 AM show complex changes. Table 6.8
indicates temperature differences between 2015 and 2024 snapshots, with spring showing +1.78°C,
summer +2.98°C, and fall +2.69°C, while winter showed a change from -0.32°C to -0.59°C. Howev-
er, these represent individual observations on specific days. The trend analysis provides a more ro-
bust assessment, revealing increasing temperature trends of 0.3156°C per year in spring, 0.2192°C
per year in summer, 0.1712°C per year in fall, and 0.0545°C per year in winter over the decade.

NDVI shows improvement across all measures. Table 6.10 shows increases ranging from 11.6% to
30.3% between 2015 and 2024 snapshots, while trend analysis confirms positive trajectories with
spring NDVI increasing by 0.00298 per year, summer by 0.00230 per year, fall by 0.00152 per year,
and winter by 0.000606 per year. This indicates gradual improvement in vegetation coverage asso-
ciated with mandatory green space requirements in redevelopment projects.

The combined evidence from both snapshot comparisons and trend analysis reveals a paradox:
despite declining ground coverage (lower GSI and building ratio) and increasing vegetation (higher
NDVI), temperature trends continue upward. While the snapshot data must be interpreted cautious-
ly as it represents specific days that may not be representative, the consistent upward temperature
trends across all seasons suggest that urban redevelopment’s thermal impacts extend beyond sim-
ple relationships with green space. This demonstrates that while some districts of Heukseok-dong
maintained their original UFEs, the areas that underwent redevelopment created impacts that af-
fected the entire district’s environmental conditions. It is important to note that these temperature
data represent satellite observations at a single time point (11:12 AM) and may not capture the full
diurnal temperature cycle or variations in weather conditions between observation days.
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6.5.2 UFE Changes in District 3

Satellite Picture of District 3 in Feburary 2015

478 Buildings - 2015

Satellite Picture of District 3 in March 2019

Satellite Picture of District 3 in March 2024

28 Buildings - 2024
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Figure 6.29 Redvelopment plan in Heukseok-dong

District 3 represents the most dramatic transformation within Heukseok-dong, serving as a clear
example of how intensive redevelopment reshapes urban environments. It underwent one of the
most significant transformations through redevelopment in Heukseok-dong. Before redevelopment,
the district contained 478 buildings in 2015, consisting primarily of low-rise residential buildings.
The redevelopment project began in 2017 and was completed in 2022, resulting in a fundamental
change to the urban form. The transformation reduced the number of buildings to 28 high-rise
apartment compound, each ranging from 11 to 25 floors, while creating substantially more open
space between buildings.

This redevelopment has established District 3 as one of Heukseok-dong’s most modern residential
areas. The new development offers improved living conditions through increased open space and
advanced building systems that were not available in the previous low-rise buildings. These im-
provements have enhanced residents’ quality of life by providing better amenities and more efficient
open spaces. However, this transformation has also produced huge impacts on the local environ-
ment, particularly affecting air temperature and NDVI throughout the district.

108



Mean Air Temperature Change over a Decade in District 3

Year
2015
2024

Change

Summer Fall Winter
23.15°C 13.52°C -0.15°C
24.31°C 14.75°C -0.26 °C

+5.0 % +9.1% -73.3 %

Mean NDVI Change over a Decade in District 3

Year
2015
2024

Change

Summer Fall Winter
0.104 0.074 0.025
0.164 0.109 0.067

+57.7 % +47.3% +168.0 %

Table 6.11 Mean air temperature and NDV/| change over a decade in District 3

Urban Form Elements Change over a Decade in District 3

Year Average Building Volume Average Building Height
2015 1,175 m®

2024 25,998 m®

Change +2,112.6 %

Average FSI Average GSI
1.331 0.705
2.442 0.233

+83.5 % -66.9%

Table 6.12 Average urban form elements change over a decade in District 3

Urban Form Element
Air Temperature (°C)
Spring

Summer

Fall

Winter

NDVI

Spring

Summer

Fall

Winter

Building Metrics

FSI

GSl

Building Volume (m?®)
Building Height (m)
Building Ratio

Number of Buildings

District 3 Trend Line

Temp = 0.1503 x Year - 291.04
Temp = 0.1632 x Year - 21.84
Temp = 0.1027 x Year - 193.73

Temp = 0.0353 x Year - 72.43

NDVI = 0.00353 x Year - 7.0720
NDVI = 0.00450 x Year - 8.9742
NDVI = 0.00219 x Year - 4.3412

NDVI = 0.00253 x Year - 5.0666

FSI = 0.3055 x Year - 617.70

GS| =-0.1088 x Year + 220.87

Volume = 2,456.63 x Year - 4,968,062.56
Height = 2.81 x Year - 5,667.86

Ratio = -0.0514 x Year + 104.43

Buildings = -99.32 x Year + 201,5693.03

Table 6.13 Trend line of urban form elements change over a decade in District 3

Average Building Ratio

0.263

0.122

-563.6 %
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The changes in District 3 show more dramatic transformations than Heukseok-dong'’s overall aver-
ages. Table 6.12 shows building volume increasing by 2,112.6% from 1,175 m? in 2015 to 25,998
m? in 2024, This represents a complete transformation from a low-rise residential area to a high-
rise development zone, confirmed by the trend analysis in Table 6.13 showing building volume in-
creasing at 2,456.63 m? per year. The vertical transformation is also greatly increased, with average
building height from 10.0 m to 43.2 m, a 332% increase, with a trend of 2.81 m per year. FSI nearly
doubled from 1.331 to 2.442 (83.5% increase), showing a trend of 0.3055 per year, yet GSI dropped
dramatically by 66.9% (from 0.705 to 0.233), with a declining trend of -0.1088 per year, and building
ratio fell by 53.6% (from 0.263 to 0.122). This means that while buildings became much taller and
contained more floor space, they covered far less ground area.

Despite this dramatic reduction in GSI and building ratio, which should theoretically improve venti-
lation and reduce heat accumulation, temperatures in District 3 still increased across most seasons.
Table 6.11 shows that the air temperatures in spring increased by 11.3%, summer by 5.0%, and fall
by 9.1% between 2015 and 2024 snapshots. Moreover, the trend analysis confirms that air tempera-
tures have increased by 0.1503°C per year in spring, 0.1632°C per year in summer, and 0.1027°C
per year in fall. However, when it is compared to the entire Heukseok-dong, the temperature in-
creases in District 3 were much lower. On the other hand, Heukseok-dong’s trends show 0.3156°C,
0.2192°C, and 0.1712°C per year for spring, summer, and fall, respectively, District 3’s trends are
approximately half these rates. This suggests that despite a huge increase in building volume, the
reduced GSI and increased NDVI provided mitigation of temperature increases.

The average NDVI after redevelopment shows substantial increases across all seasons. Winter NDVI
showed the most dramatic improvement at 168.0%, while summer increased by 57.7%. These im-
provements significantly exceeded the entire Heukseok-dong averages, which ranged from 11.6%
to 30.3%, reflecting the mandatory green space requirements and modern landscaping in the new
development. The trend analysis shows positive NDVI increases of 0.00353 per year in spring and
0.00450 per year in summer. However, these trends may not account the actual construction period,
as they include the period of complete vegetation removal during construction (2018-2022).

While the air temperatures still increased in District 3, the smaller rate of increase compared to
Heukseok-dong as a whole suggests that thoughtful redevelopment design can partially offset
warming effects. The temperature increases cannot be attributed solely to local urban form chang-
es, as unpredictable factors like global warming might affect the entire region. The fact that Dis-
trict 3’s temperature increased less than Heukseok-dong’s average, despite its dramatic increase in
building volume, indicates that the combination of reduced ground coverage, increased open space,
and enhanced vegetation provided meaningful benefits. This real-world example demonstrates that
while complete temperature neutrality may be difficult to achieve in high-density redevelopment,
careful design incorporating substantial green infrastructure and open space can minimize warming
impacts.
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6.6 Overall Analysis

The analysis of UFEs in Heukseok-dong reveals complex non-linear relationships between building
characteristics, NDVI, air temperature, and energy consumption. By combining the Genizi method
results with partial correlations and real-world changes over a decade, several important patterns
emerge that show both the power and limitations of urban form in shaping environmental condi-
tions. The most important finding is the gap between the individual correlation strength from the
partial correlation and the overall explanatory power from the Genizi method. While NDVI shows
strong cooling effects with correlations reaching -0.381 in summer at the 100m scale, the R2 values
from the Genizi method range only from 0.067 to 0.328. This means that the model explains less
than 33% of air temperature variance, leaving the majority influenced by factors not captured in this
analysis. This finding becomes even more meaningful when examining District 3’s transformation,
where NDVI improvements ranging from 47.3% to 168.0% across seasons with temperature increas-
es of 5.0% to 11.3% between the 2015 and 2024 observations. However, these snapshot compari-
sons must be interpreted cautiously, as they represent specific days that may have different weather
conditions. The trend analysis provides more robust evidence, showing that District 3’s temperature
increase rates were approximately half of Heukseok-dong’s temperature increase rates. This sug-
gests that the urban form changes may have provided partial mitigation despite the warming trends.

Scale effects play a crucial role in understanding these relationships. The 100m buffer scale bet-
ter captures energy consumption patterns, with the highest R? of 0.378 for electricity in summer.
This makes sense because energy use depends on individual building characteristics and imme-
diate surroundings. In contrast, the 300m buffer scale better explains air temperature variations,
reaching R? values up to 0.328, as temperature is influenced by broader neighborhood conditions
and heat movement across areas. The scale effect is already confirmed by H. Chen et al. (2019) and
Godoy-Shimizu et al. (2021), where building-level analysis at finer spatial resolutions (such as the
100m scale) was necessary for accurate energy flux estimation, while neighborhood-level analysis
at broader scales (such as the 300m scale) better captured area-wide temperature variations. How-
ever, these larger scales also introduce complexity, shown by negative importance values like FSI
at -10.3% in spring, which indicate suppressor effects where variables enhance other predictors’
explanatory power through their correlations.

Seasonal patterns dramatically shift the importance of different urban form elements. NDVI domi-
nates air temperature variance in three seasons, contributing 79.3% importance in spring, 64.7% in
fall, and 71.6% in winter at the 100m scale. This vegetation dominance is supported by Liao et al.
(2021), who applied the Genizi method in Seoul and identified green space ratio as one of the domi-
nant variables affecting surface temperatures. However, while Liao et al.’s methodological approach
was comprehensive, their analysis was limited to only four days of data (two summer and two winter
days) and focused solely on LST rather than air temperature. This research builds upon Liao et al.’s
framework by examining multiple satellite images across a full decade from 2015 to 2024, convert-
ing LST to air temperature for more direct relevance to building energy consumption, and extending
the analysis to examine the complete cascade relationship from urban form through temperature to
actual building energy consumption data.

Additionally, Raj and Yun (2024) found strong negative correlations between NDVI change and sur-
face urban heat island intensity (R = -0.81) over 20 years in Seoul. While their study provided valu-
able long-term trends across Seoul, it focused on city-wide patterns rather than district-level analy-
sis and did not examine energy consumption relationships. This research complements their findings
by providing fine-scale analysis at the district level with multiple spatial scales and directly linking
temperature changes to building energy consumption patterns.
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However, summer shows a complete pattern, with the building ratio taking over at 71.8% impor-
tance at the pixel scale, while NDVI drops to -1.2%. This result contradicts Wu et al. (2022)’s finding,
which found that NDVI’s importance is the highest in summer. This contradiction is likely due to the
different temperature metrics used. Wu et al. (2022) analyzed daily average temperatures, which
integrate nighttime cooling effects of vegetation throughout the 24-hour cycle. In contrast, this study
examines air temperatures at 11:12 AM, when the temperature difference between building and
vegetated areas is at its highest. At this specific time, the presence of buildings creates significant
temperature differences that overwhelm the variations in vegetation area, making building charac-
teristics dominate the temperature variance. This seasonal flip suggests that during extreme heat,
the physical presence and thermal mass of buildings overwhelm vegetation’s cooling capacity. The
partial correlations support this pattern, with GSI showing its strongest warming effect in summer,
with 0.440 at a 300m scale.

Air temperature drives electricity consumption with correlations up to 0.576 in summer, when cool-
ing demands are highest. The relationship is the opposite for gas consumption, with negative cor-
relations reaching -0.387 in winter at the 100m scale, reflecting heating needs. This pattern is con-
firmed by P. Wang et al. (2023), who reported strong negative correlations between air temperature
and gas use. The weak correlation in summer confirms that gas consumption is non-temperature
dependent, such as in cooking and water heating. Surprisingly, building volume shows positive cor-
relations with both electricity (0.178 to 0.398) and gas EUI (0.085 to 0.425), despite EUI already
being normalized. This suggests that larger buildings in Heukseok-dong have higher energy intensity
per m2, possibly due to differences in building use types, age, or systems. This is confirmed by the
analysis in Chapter 6.2.3, which shows that commercial buildings consume 30-40% more electricity
and 22% more gas per square meter than residential buildings. This explains why building volume
correlates with higher EUI.

Analysis of District 3 over the last decade provides real-world validation of the statistical patterns
while revealing their limitations. Building volume in District 3 increased by 2,112.6% and height by
332%, while GSI decreased by 66.9% and building ratio decreased by 53.6%. These changes created
a fundamentally different urban form, which is from low-rise residential buildings covering most of
the ground to high-rise apartments with substantial open space. Despite these improvements and
significant NDVI increases, temperatures still rose across all seasons except winter. However, district
3’s air temperature increases were lower than Heukseok-dong’s overall changes, suggesting that
redevelopment can provide partial air temperature mitigation. The trend analysis provides more ro-
bust evidence of this mitigation effect. While Heukseok-dong’s temperature trends show increases
of 0.3156°C/year in spring, 0.2192°C/year in summer, and 0.1712°C/year in fall, District 3's trends
are 0.1503°C/year, 0.1632°C/year, and 0.1027°C/year respectively, even though the building vol-
ume increases of 2,456.63 m2/year. This suggests that the combination of reduced GSI, increased
NDVI, and improved spatial configuration provided measurable temperature mitigation.

Building ratio shows an interesting negative correlation with gas consumption (-0.018 to -0.213),
suggesting that compact development patterns improve heating efficiency through shared walls and
reduced heat loss. This finding, combined with the negative importance values at larger scales,
demonstrates how UFEs interact in complex ways that simple correlations might miss.

The overall analysis reveals that while UFEs significantly influence air temperature and energy con-
sumption, they operate within a complex system where unmeasured factors play major roles. The
scale-dependent nature of these relationships suggests that interventions must consider both im-
mediate building characteristics and broader neighborhood patterns. Most importantly, the gap be-
tween strong individual correlations and modest overall explanatory power, validated by District 3’s
real-world experience, shows that urban form modifications alone cannot fully address environmen-
tal challenges, though they can provide meaningful improvements when thoughtfully implemented.
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07 Conclusion

This research investigated the complex non-linear relationships between urban form elements
(UFEs), air temperature, and energy consumption of buildings in Heukseok-dong, Seoul, through
an integrated analysis spanning a decade from 2015 to 2024. The study aimed to understand how
physical characteristics of the urban environment influence local climate conditions and building
energy use patterns, providing empirical evidence for sustainable urban development strategies in
dense residential districts.

The research successfully developed a Multi-Layer Perceptron model to convert satellite-based
Land Surface Temperature (LST) to air temperature using Normalized Difference Vegetation Index
(NDVI), Digital Elevation Model (DEM), and Solar Zenith Angle (SZA) using air temperature data from
Automatic Weather Stations (AWSs) as ground truth data. The MLP model achieved an R? of 0.9684
and tested with independent S-DoT sensor data.

The independent testing was conducted in two phases: examining May-August 2020, where the
mean temperature difference was 1.84°C, remarkably close to the known systematic temperature
difference of 1.8°C between S-DoT sensors and AWS during this period. When extended to the full
available period, the mean difference was 0.98°C. The independent testing demonstrated an R? of
0.807, confirming that satellite imagery provides a reliable method for urban temperature monitor-
ing when ground-based stations are limited. The study analyzed six urban form elements: NDVI,
building ratio, building height, Ground Space Index (GSI), Floor Space Index (FSI), and building vol-
ume, examining their impacts across multiple spatial scales and seasons.

Through the application of the Genizi method to address multicollinearity and partial correlation to
determine directional relationships, the research found several key findings. NDVI emerged as the
dominant cooling factor in most seasons, explaining up to 79.3% of temperature variance in spring,
but surprisingly showed reduced importance in summer when building characteristics took domi-
nance. The analysis also revealed scale-dependent relationships, with energy consumption patterns
best captured at the 100m scale while temperature variations emerged more clearly at the 300m
scale.

The examination of energy consumption patterns showed distinct seasonal dependencies. Air tem-
perature strongly correlated with electricity consumption in summer (r = 0.576), reflecting cooling
demands, while showing a negative correlation with gas consumption in winter (r = -0.387), indicating
heating needs. Building volume consistently showed positive correlations with both electricity and
gas EUI, which is confirmed in Chapter 6.2.3 where the commercial buildings consuming 22-40%
more energy per m? than the residential buildings. However, the low R? values (0.067-0.378) across
all analyses indicated that UFEs explain only a portion of variance, with factors such as building
age, occupancy behaviors, and other system characteristics likely accounting for much of the unex-
plained variation, which were clearly mentioned by Yoshino et al. (2017) and Backlund et al. (2023).
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The decade-long transformation of District 3 provided important real-world validation of the sta-
tistical findings. Despite huge increases in building volume (2,112.6%) and height (332%), combined
with substantial NDVI improvements (up to 168%), temperature trend analysis showed increases
of 0.10-0.16°C per year, which are approximately half of Heukseok-dong’s overall rates of 0.17-
0.32°C per year. This demonstrates that thoughtful urban design can provide partial mitigation of
warming effects even in high-density redevelopment.

However, it is important to acknowledge that this research includes an important temporal mismatch
between satellite observations and energy consumption data. The analysis uses single hourly tem-
perature observations at 11:12 AM with monthly aggregated energy consumption. This limitation
indicates that the research captures spatial correlations between UFEs, air temperature, and energy
consumption, rather than proving their direct relationships. The R2 values (0.067-0.378) likely rep-
resent this temporal mismatch as much as unmeasured variables. Future research should prioritize
obtaining hourly energy consumption data and obtaining more frequent satellite observations to
better capture temporal scales and conclude clear cascade effects from urban form through tem-
perature to energy consumption. Despite this limitation, the decade-long analysis and multi-scale
approach provide valuable insights into the spatial patterns and long-term trends that inform urban
planning strategies.

This study advances the understanding of urban environmental relationships by providing empirical
evidence from a long-term, multi-scale analysis using complementary analytical methods. While ur-
ban form modifications alone cannot mitigate temperature increases or excessive energy consump-
tion, the research demonstrates that evidence-based planning strategies can achieve meaningful
improvements in urban environmental conditions. The methodology developed here, combining
satellite monitoring, energy analysis, and statistical techniques to handle complex correlations, pro-
vides a framework applicable to other dense urban areas facing similar challenges of rapid devel-
opment and climate change.
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8.1 Limitations of the Research

Although this research provides valuable insights into the relationships between UFEs, air tempera-
ture, and energy consumption in Heukseok-dong, there are several limitations that must be ac-
knowledged that affect the interpretation and generalizability of the results.

One of the most significant limitations is the energy consumption data coverage. The electricity and
gas consumption data were not available for all buildings in Heukseok-dong, but primarily for low-
rise residential buildings. High-rise apartments, commercial buildings, and university buildings were
largely absent from the energy dataset. This limited data availability creates a bias toward older,
smaller residential buildings and may not accurately represent the energy consumption patterns of
the entire buildings in Heukseok-dong. The positive correlation between building volume and EUI,
despite normalization, might be influenced by this sampling bias, as larger buildings with potentially
different use types and energy systems were underrepresented in the analysis.

The low R? values throughout the analysis from the Genizi method, ranging from 0.067 to 0.378,
indicate that 6 UFEs explain only a small portion of the variance in both air temperature and ener-
gy consumption. This suggests that many variables that are not considered have substantial roles.
For energy consumption specifically, many research papers have shown that occupant behavior has
been widely considered as one of the key influencing factors on building energy consumption. The
absence of occupancy data in this research represents a critical limitation, as building use patterns,
occupant density, and behavioral differences significantly affect energy consumption beyond what
physical form can predict.

The most critical limitation of this research is the temporal mismatch between satellite observa-
tions and energy consumption data. Landsat provides only 1-2 images per month at a fixed time of
11:12 AM, meaning each monthly analysis relies on a single-hour observation, yet these snapshot
observations are correlated with monthly aggregated energy consumption totals. Thus, this research
assumes that the air temperature at 11:12 AM on one specific day can represent the entire month'’s
air temperature patterns and energy consumption. This is a significant assumption that likely con-
tributes to the moderate R2 values (0.067-0.378) found in this study.

Furthermore, the 11:12 AM timing may miss energy demand periods, with peak cooling typically
occurring between 2 and 4 PM, while peak heating occurs in the early morning hours and evenings.
Building energy consumption is highly affected by occupancy patterns that vary throughout the day.
Residential buildings show morning and evening peaks, while commercial buildings peak during
business hours. The single snapshot cannot capture these diurnal variations that fundamentally af-
fect the energy demand of the buildings. This temporal mismatch is more severe than the monthly
aggregation of energy data because monthly aggregations integrate full consumption patterns, while
the satellite data represents an instantaneous moment that may not correlate with when the energy
is actually consumed. The moderate correlations found between UFEs and energy consumption
may therefore reflect coincidental spatial associations rather than causal relationships mediated by
temperature. While the changes in the 10-year analysis provide some compensation through long-
term trends and explicitly focus on relationships at the satellite overpass time, these approaches do
not resolve the fundamental issue with temporally aggregated energy data.
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Many building-specific characteristics that were not measured also contribute to the unexplained
variance. The age of buildings, which varies considerably in Heukseok-dong with many structures
dating from the 1950s to the 197/0s, affects insulation quality, HVAC system presence, and overall
energy efficiency. Building use types have different energy use patterns and operational schedules.
Construction materials, window types, and other factors also influence thermal performance, but
they were not included in the analysis. These unmeasured factors likely explain the 62-86% unex-
plained variance in energy consumption models.

Temporal limitations also affect the research findings. The satellite-based air temperature data cap-
tured only the 11:12 AM overpass time, missing important diurnal temperature variations. Peak
cooling loads typically occur in mid-afternoon, while heating demands peak in early morning hours.
The monthly aggregation of energy consumption data masks daily and weekly usage patterns that
could provide deeper insights into the relationship between urban form and energy use. Seasonal
variations in occupancy, such as vacation periods or academic schedules, were not captured but
likely influence energy consumption patterns significantly.

These limitations do not invalidate the research findings but rather provide context for interpreta-
tion. The result of significant relationships between UFEs, air temperature, and energy consump-
tion, despite these limitations, suggests that the actual relationships may be even more complex
than captured in this analysis. Future research addressing these limitations could provide a more
comprehensive understanding of how urban form shapes environmental conditions and energy con-
sumption patterns in dense urban areas.
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8.2 Benefits of the Research

This research makes several unique contributions that differentiate it from existing studies on urban
environmental conditions and energy consumption. These contributions enhance methodological
approaches and provide new insights into the complex relationships between urban form, tempera-
ture, and energy use.

The successful conversion of satellite-based LST to air temperature with independent testing with
S-DoT sensors confirms a significant improvement over prior studies. While many researchers have
tried to use satellite imagery for urban temperature analysis, few have validated their models with
an independent sensor network. The testing using S-DoT sensors, which achieved an R? of 0.807 de-
spite known systematic bias between sensor types, confirms that satellite imagery offers a reliable
method for estimating air temperature in urban heat island studies. This independent testing, based
on over 23,000 data points from a dense sensor network, shows that satellite-based approaches can
accurately convert data to air temperature.

Unlike most urban studies that analyze data over a short period, this research examines a full de-
cade of data from 2015 to 2024. This long-term analysis captures not only seasonal variations but
also the entire transformation of urban districts through redevelopment. The 10-year span allows
for the detection of gradual changes in urban form and their cumulative effects on air temperature
and energy consumption, revealing insights often missed in shorter studies. The analysis of District
3 from pre-redevelopment through construction to completion provides empirical evidence of how
urban transformations influence environmental conditions over time.

A key innovation in this research is the examination of cascade effects linking air temperature, UFEs,
and energy consumption as an interconnected system. While many studies have explored the rela-
tionship between air temperature and energy consumption or between urban form and energy use
separately, few have investigated how all three elements relate to each other. This study demon-
strates how UFEs influence air temperature, which in turn affects energy consumption patterns,
creating a cascade of effects.

The combined use of the Genizi method and partial correlation analysis offers more comprehensive
insights than either method alone. While the Genizi method reveals the relative importance of vari-
ables despite multicollinearity, partial correlation provides essential directional information. Few
studies have employed both methods concurrently, missing either the importance rankings or the
directional relationships that together give a complete understanding.

The validation of statistical results through real-world redevelopment enhances practical credibility
often absent in purely theoretical studies. District 3’s transformation, with a 94% reduction in build-
ing count but a 2,112.6% increase in building volume, serves as a natural experiment to test whether
statistical relationships hold in practice. The observation that, despite significant NDVI improve-
ments (up to 168%), temperatures still increased but less than the district average confirms both the
potential and limitations of urban design interventions.
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8.3 Implementations of the Research

The findings from this research provide specific, quantitative guidance for urban planning policies
aimed at mitigating air temperature and managing energy consumption in dense residential districts.
These recommendations are based on the identified relationships between UFEs, air temperature,
and energy use patterns observed over a decade in Heukseok-dong.

For air temperature mitigation, urban planning policies should adopt seasonally differentiated
strategies. During summer months, when building ratio dominates temperature variance (71.8% im-
portance), policies should prioritize reducing ground coverage and building density. The statistical
analysis across Heukseok-dong suggests that lower GSI| and building ratios correlate with reduced
temperatures, while District 3’s case demonstrates that even with significant reductions in ground
coverage (GSI decreased by 66.9%), temperature increases cannot be completely prevented. While
NDVI shows reduced importance in summer (-1.2%), it remains crucial for other seasons, contrib-
uting up to 79.3% of temperature variance in spring. Therefore, green space requirements should
exceed current standards, with enhanced vegetation coverage throughout redevelopment projects.

The scale-dependent findings indicate that temperature mitigation requires neighborhood-level
interventions. Since temperature patterns emerge more clearly at a 300m scale, policies should
mandate green corridors and open spaces that connect across multiple building blocks. Building
height, showing cooling effects through partial correlation from -0.045 to -0.223, suggests that ver-
tical development with reduced ground coverage can provide better natural ventilation and avoid
heat accumulation.

For energy consumption management, the research finds that building-level interventions are most
effective, as energy patterns are best captured at a smaller scale. The positive correlation between
building volume and EUI, despite normalization, indicates that larger buildings require more inten-
sive energy management strategies. Policies should mandate enhanced energy efficiency standards
for buildings with high volume, such as advanced HVAC systems. The seasonal energy patterns de-
mand different policy approaches for electricity and gas consumption. Since air temperature drives
54.3% of electricity variance in summer, cooling demand reduction through passive design becomes
critical. Regulation should require external shading, high-performance glazing, and natural ven-
tilation options, particularly for redevelopments replacing older buildings that currently lack air
conditioning. For winter heating, where building volume explains up to 41.3% of gas consumption,
policies should prioritize thermal envelope improvements and district heating systems that leverage
the efficiency of compact development patterns.

The substantial unexplained variance in energy consumption (62-86%) highlights the importance of
addressing factors beyond urban form. Policies should monitor energy performance and disclosure
for all buildings, not just new construction, to better understand consumption patterns across differ-
ent building ages and types. Given the significant role of occupancy behaviors identified in the other
papers, mixed-use development that balances residential and commercial activities could optimize
energy use throughout the day.

120



09

Reference



68% of the world population projected to live in urban areas by 2050, says UN. (2018). United Nations. https://www.un.org/devel-
opment/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html

Analysis of temperature distribution in Seoul using urban data sensors. (n.d.). The Seoul Research Data Service. Retrieved Septem-
ber 11,2025, from https://data.si.re.kr/data-insight-report/55616

Backlund, K., Molinari, M., Lundqvist, P., & Palm, B. (2023). Building Occupants, Their Behavior and the Resulting Impact on
Energy Use in Campus Buildings: A Literature Review with Focus on Smart Building Systems. Energies, 16(17), 6104. https://doi.
org/10.3390/en16176104

Bengio, V. (2012). Practical recommendations for gradient-based training of deep architectures. arXiv (Cornell University). https://
doi.org/10.48550/arxiv.1206.5533

Bhattarai, S., Banjara, P., Pandey, V. P., Aryal, A., Pradhan, P., Al-Douri, F., Pradhan, N. R., & Talchabhadel, R. (2025). Quantifying
the cooling effects of blue-green spaces across urban landscapes: A case study of Kathmandu Valley, Nepal. Urban Climate, 61,
102493, https://doi.org/10.1016/j.uclim.2025.102493

Cai, X., Yang, J., Zhang, VY., Xiao, X., & Xia, J. (2023). Cooling island effect in urban parks from the perspective of internal park
landscape. Humanities and Social Sciences Communications, 10(1). https://doi.org/10.1057/s41599-023-02209-5

Chan, K. Y., Abu-Salih, B., Qaddoura, R., Al-Zoubi, A. M., Palade, V., Pham, D., Del Ser, J., & Muhammad, K. (2023). Deep neu-
ral networks in the cloud: Review, applications, challenges and research directions. Neurocomputing, 545, 126327. https://doi.
org/10.1016/j.neucom.2023.126327

Chaudhary, V., Bhadola, P., Kaushik, A., Khalid, M., Furukawa, H., & Khosla, A. (2022). Assessing temporal correlation in environ-
mental risk factors to design efficient area-specific COVID-19 regulations: Delhi based case study. Scientific Reports, 12(1). https://
doi.org/10.1038/s41598-022-16781-4

Chen, H., Han, Q., & De Vries, B. (2019). Urban morphology indicator analyzes for urban energy modeling. Sustainable Cities and
Society, 52, 101863. https://doi.org/10.1016/j.5cs.2019.101863

Chen, Y., Quan, J., Zhan, W., & Guo, Z. (2016). Enhanced statistical estimation of air temperature incorporating nighttime light
data. Remote Sensing, 8(8), 656. https://doi.org/10.3390/rs8080656

Choi, J., & Kim, G. (2022). History of Seoul’s Parks and Green Space Policies: Focusing on policy changes in urban development.
Land, 11(4), 474. https://doi.org/10.3390/land 11040474

Choi, S., Jin, D., Seong, N., Jung, D., Sim, S., Woo, J., Jeon, U., Byeon, Y., & Han, K. (2021). Near-Surface Air Temperature
Retrieval Using a Deep Neural Network from Satellite Observations over South Korea. Remote Sensing, 13(21), 4334. https://doi.
org/10.3390/rs13214334

Cui, P, Lu, 3., Wu, VY., Tang, J., & Jiang, J. (2024). Effect of urban morphology on microclimate and building cluster energy con-
sumption in cold regions of China. Sustainable Cities and Society, 105838. https://doi.org/10.1016/j.scs.2024.105838

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals and Systems, 2(4),
303-314. https://doi.org/10.1007/bf02551274

De Almeida, C. R., Teodoro, A. C., & Gongalves, A. (2021). Study of the Urban Heat Island (UHI Using Remote Sensing Data/Tech-
niques: A Systematic Review. Environments, 8(10), 105. https://doi.org/10.3390/environments8100105

Delzendeh, E., Wu, S., Lee, A., & Zhou, Y. (2017). The impact of occupants’ behaviours on building energy analysis: A research
review. Renewable and Sustainable Energy Reviews, 80, 1061-1071. https://doi.org/10.1016/j.rser.2017.05.264

Ding, X., Zhao, Y., Fan, Y., Li, Y., & Ge, J. (2023). Machine learning-assisted mapping of city-scale air temperature: Using sparse
meteorological data for urban climate modeling and adaptation. Building and Environment, 234, 110211. https://doi.org/10.1016/j.
buildenv.2023.110211

Dong, J., Lin, M., Zuo, J., Lin, T., Liu, 3., Sun, C., & Luo, J. (2020). Quantitative study on the cooling effect of green roofs in a
high-density urban Area—A case study of Xiamen, China. Journal of Cleaner Production, 255, 120152. https://doi.org/10.1016/j.
jclepro.2020.120152

Fan, J., Chen, X., Xie, S., & Zhang, Y. (2023). Study on the response of the summer land surface temperature to urban morphology
in Urumgqi, China. Sustainability, 15(21), 156255. https://doi.org/10.3390/su152115255

Fikru, M. G., & Gautier, L. (2015). The impact of weather variation on energy consumption in residential houses. Applied Energy,
144, 19-30. https://doi.org/10.1016/j.apenergy.2015.01.040

Gao, S., Zhan, Q., Yang, C., & Liu, H. (2020). The Diversified Impacts of Urban Morphology on Land Surface Temperature

among Urban Functional Zones. International Journal of Environmental Research and Public Health, 17(24), 9578. https://doi.
org/10.3390/ijerph17249578

Gardner, M., & Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric
sciences. Atmospheric Environment, 32(14-15), 2627-2636. https://doi.org/10.1016/s1352-2310(97)00447-0

Glorot, X., Bordes, A., Bengio, Y., DIRO, Universit’e de Montr'eal, Heudiasyc, UMR CNRS 6599, & UTC, Compi‘egne, France.
(2011). Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on Artificial Intelligence and
Statistics (AISTATS) 2011. http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf

Godoy-Shimizu, D., Steadman, P., & Evans, S. (2021). Density and morphology: from the building scale to the city scale. Buildings
and Cities, 2(1), 92-113. https://doi.org/10.5334/bc.83

Good, E. J., Ghent, D. J., Bulgin, C. E., & Remedios, J. J. (2017). A spatiotemporal analysis of the relationship between near sur-
face air temperature and satellite land surface temperatures using 17 years of data from the ATSR series. Journal of Geophysical
Research Atmospheres, 122(17), 9185-9210. https://doi.org/10.1002/2017jd026880

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning. In Springer series in statistics. https://doi.
org/10.1007/b94608

Hong, J., Hong, J., Kwon, E. E., & Yoon, D. (2019). Temporal dynamics of urban heat island correlated with the socio-economic
development over the past half-century in Seoul, Korea. Environmental Pollution, 254, 112934. https://doi.org/10.1016/j.en-
vpol.2019.07.102

Hu, Y., Dai, Z., & Guldmann, J. (2020). Modeling the impact of 2D/3D urban indicators on the urban heat island over different
seasons: A boosted regression tree approach. Journal of Environmental Management, 266, 110424, https://doi.org/10.1016/j.
jenvman.2020.110424

Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2009). Remote sensing of the urban heat island effect across biomes in the
continental USA. Remote Sensing of Environment, 114(3), 504-513. https://doi.org/10.1016/j.rse.2009.10.008

Jamei, E., & Tapper, N. (2018). WSUD and urban Heat island effect mitigation. In Elsevier eBooks (pp. 381-407). https://doi.

122



org/10.1016/b978-0-12-812843-5.00019-8

Kingma, D. P., & Ba, J. L. (2014). Adam: A method for stochastic optimization. arXiv (Cornell University). https://doi.org/10.48550/
arxiv.1412.6980

Korea Architecture Hub. (2024, May). Retrieved September 10, 2025, from https://www.hub.go.kr/portal/opn/tyb/idx-nbem-elcty.
do

Korea Meteorological Administration. (n.d.). Retrieved September 11, 2025, from https://data.kma.go.kr/cmmmn/main.do

Korean Architecture Hub - Building energy. (2025). Retrieved September 11, 2025, from https://www.hub.go.kr/portal/opn/tyb/idx-
nbem-elcty.do

Kotsiopoulos, T., Sarigiannidis, P., loannidis, D., & Tzovaras, D. (2021). Machine Learning and Deep Learning in smart manufactur-
ing: The Smart Grid paradigm. Computer Science Review, 40, 100341. https://doi.org/10.1016/j.cosrev.2020.100341

Led, R. (2023). Buildings. In Cambridge University Press eBooks (pp. 953-1048). https://doi.org/10.1017/9781009157926.011

Li, M., Allinson, D., & He, M. (2018). Seasonal variation in household electricity demand: A comparison of monitored and synthetic
daily load profiles. Energy and Buildings, 179, 292-300. https://doi.org/10.1016/j.enbuild.2018.09.018

Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., & Li, W. (2019). Urban heat island impacts on building energy consumption: A review of ap-
proaches and findings. Energy, 174, 407-419. https://doi.org/10.1016/j.energy.2019.02.183

Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. (2020). On the influence of density and morphology on the Urban Heat Island intensi-
ty. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-16461-9

Li, Z., Tang, B., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, |. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature:
Current status and perspectives. Remote Sensing of Environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008

Li, Z., Wu, H., Duan, S., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X.,
Shang, G., Tang, B., Yan, G., & Zhou, C. (2022). Satellite Remote sensing of global land surface temperature: definition, methods,
products, and applications. Reviews of Geophysics, 61(1). https://doi.org/10.1029/2022rg000777

Liao, W., Hong, T., & Heo, VY. (2021). The effect of spatial heterogeneity in urban morphology on surface urban heat islands. Energy
and Buildings, 244, 111027. https://doi.org/10.1016/j.enbuild.2021.111027

Masters, D., & Luschi, C. (2018). Revisiting small batch training for deep neural networks. arXiv (Cornell University). https://doi.
org/10.48550/arxiv.1804.07612

Measuring heat islands | US EPA. (2025, March 18). US EPA. https://www.epa.gov/heatislands/measuring-heat-islands

Meyer, H., Katurji, M., Appelhans, T., Mlller, M., Nauss, T., Roudier, P., & Zawar-Reza, P. (2016). Mapping daily air temperature for
Antarctica based on MODIS LST. Remote Sensing, 8(9), 732. https://doi.org/10.3390/rs8090732

Mildrexler, D. J., Zhao, M., & Running, S. W. (2011). A global comparison between station air temperatures and MODIS land surface
temperatures reveals the cooling role of forests. Journal of Geophysical Research Atmospheres, 116(G3). https://doi.org/10.1029/
2010jg001486

Mostafavi, N., Heris, M., Gandara, F., & Hoque, S. (2021). The Relationship between Urban Density and Building Energy Consump-
tion. Buildings, 11(10), 455. https://doi.org/10.3390/buildings11100455

Muller, C. L., Chapman, L., Grimmond, C. S. B., Young, D. T., & Cai, X. (2013). Sensors and the city: a review of urban meteorologi-
cal networks. International Journal of Climatology, 33(7), 15685-1600. https://doi.org/10.1002/joc.3678

Na, N., Lou, D., Xu, D., Ni, X., Liu, Y., & Wang, H. (2024). Measuring the cooling effects of green cover on urban heat island effects
using Landsat satellite imagery. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2358867
Naserikia, M., Hart, M. A., Nazarian, N., Bechtel, B., Lipson, M., & Nice, K. A. (2023). Land surface and air temperature dynam-
ics: The role of urban form and seasonality. The Science of the Total Environment, 905, 167306. https://doi.org/10.1016/j.scito-
tenv.2023.167306

Ngarambe, J., Oh, J. W., Su, M. A., Santamouris, M., & Yun, G. Y. (2021). Influences of wind speed, sky conditions, land use and
land cover characteristics on the magnitude of the urban heat island in Seoul: An exploratory analysis. Sustainable Cities and Soci-
ety, 71, 102953, https://doi.org/10.1016/j.5cs.2021.102953

Noi, P., Degener, J., & Kappas, M. (2017). Comparison of Multiple Linear Regression, Cubist Regression, and Random Forest Al-
gorithms to Estimate Daily Air Surface Temperature from Dynamic Combinations of MODIS LST Data. Remote Sensing, 9(5), 398.
https://doi.org/10.3390/rs9050398

Oh, J. W., Ngarambe, J., Duhirwe, P. N., Yun, G. Y., & Santamouris, M. (2020). Using deep-learning to forecast the magnitude and
characteristics of urban heat island in Seoul Korea. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60632-z

Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455),
1-24. https://doi.org/10.1002/qj.49710845502

Park, J., Kim, J., Lee, D. K., Park, C. V., & Jeong, S. G. (2016). The influence of small green space type and structure at the street
level on urban heat island mitigation. Urban Forestry & Urban Greening, 21, 203-212. https://doi.org/10.1016/j.ufug.2016.12.005
Park, M., & Baek, K. (2023). Quality Management System for an loT Meteorological Sensor Network—Application to Smart Seoul
Data of Things (S-DOT). Sensors, 23(5), 2384. https://doi.org/10.3390/523052384

Peng, M., & Huang, H. (2022). The synergistic effect of urban canyon geometries and greenery on outdoor thermal comfort in humid
subtropical climates. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.851810

Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F., Nan, H., Zhou, L., & Myneni, R. B. (2011). Surface Urban Heat
Island across 419 global big cities. Environmental Science & Technology, 46(2), 696-703. https://doi.org/10.1021/es2030438

Pont, M. B., & Haupt, P. (2023). SpaceMatrix: Space, Density and Urban form. https://doi.org/10.59490/mg.38

Prechelt, L. (2012). Early stopping — but when? In Lecture notes in computer science (pp. 53-67). https://doi.org/10.1007/978-3-
642-35289-8_5

Raj, S., & Yun, G. Y. (2024). Exploring the role of strategic urban planning and greening in decreasing surface urban heat island
intensity. Journal of Asian Architecture and Building Engineering, 1-14. https://doi.org/10.1080/13467581.2024.2308592

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models. Proceedings of the
National Academy of Sciences, 115(39), 9684-9689. https://doi.org/10.1073/pnas.1810286115

Sahani, N. (2021). Assessment of spatio-temporal changes of land surface temperature (LST) in Kanchenjunga Biosphere Reserve
(KBR), India using Landsat satellite image and single channel algorithm. Remote Sensing Applications Society and Environment, 24,
100659. https://doi.org/10.1016/j.rsase.2021.100659

Salehin, I., & Kang, D. (2023). A Review on Dropout Regularization Approaches for Deep Neural Networks within the Scholarly Do-
main. Electronics, 12(14), 3106. https://doi.org/10.3390/electronics12143106

123



Salih, W., Khalki, E. M. E., Ongoma, V., Lguensat, R., Aithssaine, B., Ouatiki, H., Driouech, F., Sebbar, B., Achli, S., & Chehbouni, A.
(2025). TEMLI: A High-Resolution air temperature estimation using machine learning and land surface data across Morocco. Earth
Systems and Environment. https://doi.org/10.1007 /s41748-025-00629-8

Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and
regions. The Science of the Total Environment, 512-513, 582-598. https://doi.org/10.1016/j.scitotenv.2015.01.060

Santamouris, M. (2019). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, en-
vironmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482. https://
doi.org/10.1016/j.enbuild.2019.109482

Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2014). On the impact of urban heat island and global warming on the
power demand and electricity consumption of buildings—A review. Energy and Buildings, 98, 119-124. https://doi.org/10.1016/j.
enbuild.2014.09.052

Schatz, J., & Kucharik, C. J. (2015). Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environmental
Research Letters, 10(9), 094024. https://doi.org/10.1088/1748-9326/10/9/094024

Schultz, 3. M., & Svendsen, S. (1998). WinSim: A simple simulation program for evaluating the influence of windows on heating
demand and risk of overheating. Solar Energy, 63(4), 251-258. https://doi.org/10.1016/s0038-092x(98)00062-0

Smart Seoul Data of Things(S-DOT). (2024, July 25). Seoul Metropolitan Government. https://news.seoul.go.kr/gov/ar-
chives/539344

Sobrino, J. A., Jiménez-Mufioz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sens-
ing of Environment, 90(4), 434-440. https://doi.org/10.1016/j.rse.2004.02.003

Song, S., Leng, H., Xu, H., Guo, R., & Zhao, Y. (2020). Impact of urban morphology and climate on heating energy consumption

of buildings in severe cold regions. International Journal of Environmental Research and Public Health, 17(22), 8354. https://doi.
org/10.3390/ijerph17228354

Stewart, I. D., Krayenhoff, E. S., Voogt, J. A., Lachapelle, J. A., Allen, M. A., & Broadbent, A. M. (2021). Time evolution of the sur-
face urban Heat Island. Earth S Future, 9(10). https://doi.org/10.1029/2021ef002178

Su, M. A., Ngarambe, J., Santamouris, M., & Yun, G. Y. (2021). Empirical evidence on the impact of urban overheating on building
cooling and heating energy consumption. iScience, 24(5), 102495. https://doi.org/10.1016/j.isci.2021.102495

Su, Y., Foody, G. M., & Cheng, K. (2012). Spatial non-stationarity in the relationships between land cover and surface tempera-
ture in an urban heat island and its impacts on thermally sensitive populations. Landscape and Urban Planning, 107(2), 172-180.
https://doi.org/10.1016/j.landurbplan.2012.05.016

Tang, K., Zhu, H., & Ni, P. (2021). Spatial Downscaling of Land Surface Temperature over Heterogeneous Regions Using Random
Forest Regression Considering Spatial Features. Remote Sensing, 13(18), 3645. https://doi.org/10.3390/rs13183645

Tian, L., Li, Y., Lu, J., & Wang, J. (2021). Review on Urban Heat Island in China: methods, its impact on buildings energy demand
and mitigation strategies. Sustainability, 13(2), 762. https://doi.org/10.3390/s5u13020762

Tong, S., Wong, N. H., Jusuf, S. K., Tan, C. L., Wong, H. F., Ignatius, M., & Tan, E. (2017). Study on correlation between air tem-
perature and urban morphology parameters in built environment in northern China. Building and Environment, 127, 239-249.
https://doi.org/10.1016/j.buildenv.2017.11.013

USGS: What are the acquisition schedules for the Landsat satellites? (2025, February 14). https://www.usgs.gov/faqgs/what-are-ac-
quisition-schedules-landsat-satellites

Voogt, J., & Oke, T. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370-384. https://
doi.org/10.1016/s0034-4257(03)00079-8

Vujovic, S., Haddad, B., Karaky, H., Sebaibi, N., & Boutouil, M. (2021). Urban Heat Island: Causes, Consequences, and Mitiga-
tion Measures with Emphasis on Reflective and Permeable Pavements. CivilEng, 2(2), 459-484. https://doi.org/10.3390/civi-
leng2020026

Wang, C., Song, J., Shi, D., Reyna, J. L., Horsey, H., Feron, S., Zhou, VY., Ouyang, Z., Li, Y., & Jackson, R. B. (2023). Impacts of cli-
mate change, population growth, and power sector decarbonization on urban building energy use. Nature Communications, 14(1).
https://doi.org/10.1038/s41467-023-41458-5

Wang, D., Zhang, G., Lin, T., Hu, X., Zhao, Z., & Shi, L. (2021). Exploring the Connection between Urban 3D Form and Building
Energy Performance and the Influencing Mechanism. ISPRS International Journal of Geo-Information, 10(10), 709. https://doi.
org/10.3390/ijgi10100709

Wang, L., Lu, Y., & Yao, Y. (2019). Comparison of Three Algorithms for the Retrieval of Land Surface Temperature from Landsat 8
Images. Sensors, 19(22), 5049. https://doi.org/10.3390/519225049

Wang, P., Yang, Y., Ji, C., & Huang, L. (2023). Influence of built environment on building energy consumption: a case study in Nan-
jing, China. Environment Development and Sustainability, 26(2), 5199-5222. https://doi.org/10.1007 /s10668-023-02930-w
Weng, Q., Fu, P., & Gao, F. (2014). Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS
data. Remote Sensing of Environment, 145, 55-67. https://doi.org/10.1016/j.rse.2014.02.003

Wu, W., Yu, Z., Ma, J., & Zhao, B. (2022). Quantifying the influence of 2D and 3D urban morphology on the thermal environment
across climatic zones. Landscape and Urban Planning, 226, 104499. https://doi.org/10.1016/j.landurbplan.2022.104499

Xiong, J., Chen, L., & Zhang, Y. (2023). Building energy saving for indoor cooling and heating: Mechanism and comparison on tem-
perature difference. Sustainability, 15(14), 11241. https://doi.org/10.3390/su151411241

Yang, C., Kui, T., Zhou, W., Fan, J., Pan, L., Wu, W., & Liu, M. (2022). Impact of refined 2D/3D urban morphology on hour-

ly air temperature across different spatial scales in a snow climate city. Urban Climate, 47, 101404. https://doi.org/10.1016/j.
uclim.2022.101404

Yang, X., Peng, L. L., Jiang, Z., Chen, Y., Yao, L., He, Y., & Xu, T. (2019). Impact of urban heat island on energy demand in build-
ings: Local climate zones in Nanjing. Applied Energy, 260, 114279. https://doi.org/10.1016/j.apenergy.2019.114279

Yoshino, H., Hong, T., & Nord, N. (2017). IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods. Ener-
gy and Buildings, 152, 124-136. https://doi.org/10.1016/j.enbuild.2017.07.038

Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and
drivers. Remote Sensing of Environment, 152, 51-61. https://doi.org/10.1016/j.rse.2014.05.017

Ziter, C. D., Pedersen, E. J., Kucharik, C. J., & Turner, M. G. (2019). Scale-dependent interactions between tree canopy cover

and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences, 116(15),
7575-7580. https://doi.org/10.1073/pnas. 1817561116

124



10
Appendix



Appendix 1 Information of AWS
Code Name Latitude Longitude Altitude Code Name Latitude Longitude Altitude
400 e 37.4982 127.0816 12.66 419 =7 37.565236 126.9874 267.05
401 Mz 37.48462 127.026 33.05 421 s 37.54721 127.0389 34.73
402 +& 37.55556  127.145 55.29 422 Hobak 37.60344 126.9844 333.8
403 %3 37.51151 127.0967 58.26 423 T= 37.49328 126.8263 56.08
404 74 37.5739 126.8295 9.299 424 J&E 37.63801 127.0098 69.8
405 4 37.52823 126.8794 22.75 425 @& 37.46347 126.9815 113
406 =% 37.66557 127.0304 56.65 509 ol 37.45284 126.9502 141.64
407 =9l 37.62186 127.0919 25.3 510 dS}E 37.52706 126.9071 25.38
408 FUi- 37.58463 127.0604 53.96 889 HAZF Y 37.50036 126.9765 16.23
409 =% 37.58551 127.0868 39.09 590 I 37.44028 127.0025 46.6
410 7123 37.4933 126.9175 41.758 541 S5 37.63405 127.1506 25.36
411 ul3¥ 37.55165 126.9292 100.67 450 Tul 37.59834  126.849 45.34
412 AU 37.57047 126.9408 103.08 532 oK 37.73476 127.0735 89.49
413 P37 37.53344 127.086 29.912 540 1 37.6373  126.892 44.71
414 A& 37.61134 126.9998 128.62 444 3 37.53794 127.2137 27.68
415 &4k 37.51955 126.9763 31.73 572 A 37.42093 127.1248 28.65
416 23 37.64647 126.9427 55 649 39 37.47223 126.7507 25.91
417 = 37.46551 126.9002 45 116 ok 37.44526 126.964 624.82
418 37 37.52489  126.939 10.66 569 2 37.58224 127.157 27.15
Appendix 2 Landsat 8 Obtained Time
Year Date Time Year Date Time Year Date Time
2013  16/Mar 02:12:30.8483140Z 2016 10/Oct 02:11:48.0682050Z 2020  28/May 02:12:09.2114270Z
2013 17/May 02:11:11.1128030Z 2016 14/Nov 02:10:57.8938180Z 2020 23/Dec 02:12:23.2021710Z
2013 11/3Jun 02:11:06.4518000Z 2016 16/Dec 02:11:01.6982830Z 2021 23/Feb 02:12:15.6982830Z
2013 18/Sep 02:10:50.8580940Z 2017 13/Jan 02:12:17.2364270Z 2021 29/Mar 02:12:22.2364270Z
2013 22/0Oct 02:10:21.4068040Z 2017 24/Feb 02:11:04.9631590Z 2021 11/Apr 02:11:43.9631590Z
2013 21/Dec 02:10:29.0925990Z 2017 23/Mar 02:11:17.2364270Z 2021 25/Jun 02:11:36.2364270Z
2014 17/Jan 02:10:40.5742760Z 2017 09/Apr 02:10:48.0682050Z 2021 19/Aug 02:12:43.0682050Z
2014 22/Feb 02:11:11.1177340Z 2017 17/May 02:10:57.8989180Z 2021 20/Sep 02:12:21.8989180Z
2014 29/Mar 02:11:07.8291040Z 2017 24/Jun 02:11:08.6982830Z 2021 11/0ct 02:11:15.6112830Z
2014 13/May 02:10:56.9703300Z 2017 28/Aug 02:12:17.2364270Z 2022 08/Jan 02:12:52.2064270Z
2014 16/Jun 02:10:47.4312600Z 2017 11/0ct 02:12:13.1821710Z 2022 27/Apr 02:12:23.1121710Z
2014 19/Aug 02:11:02.4569760Z 2017 18/Nov 02:10:59.6394180Z 2022 25/May 02:10:19.8989180Z
2014 21/Sep 02:11:04.9631590Z 2017 24/Dec 02:12:48.0682050Z 2022 13/Jun 02:11:33.6982830Z
2014 22/0Oct 02:11:17.2364270Z 2018 25/Jan 02:11:01.6982830Z 2022 22/Sep 02:12:39.2364270Z
2014 13/Dec 02:10:48.0682050Z 2018 22/Feb 02:12:17.2364270Z 2022 18/0Oct 02:12:52.1821710Z
2015 19/Jan 02:10:57.8989180Z 2018 14/Mar 02:11:04.9631590Z 2022 24/Nov 02:10:27.6394180Z
2015 17/Mar 02:11:08.6982830Z 2018 18/May 02:11:17.2364270Z 2022  15/Dec 02:12:49.0682050Z
2015 19/May 02:12:17.2364270Z 2018 20/Nov 02:10:48.0682050Z 2023 15/Mar 02:11:11.6982830Z
2015 21/Jun 02:12:13.1821710Z 2018 11/Dec 02:12:17.2364270Z 2023 19/May 02:12:25.2364270Z
2015 17/3ul 02:10:59.6394180Z 2019 08/Jan 02:12:17.2364270Z 2023 22/0ct 02:11:11.9631590Z
2015 19/Sep 02:12:48.0682050Z 2019 18/Feb 02:12:48.0682050Z 2023 22/Nov 02:11:10.2364270Z
2015 11/Oct 02:12:57.8989180Z 2019 29/May 02:12:57.8989180Z 2023 14/Dec 02:11:12.9631590Z
2015  23/Dec 02:11:08.6982830Z 2019 22/Jun 02:11:08.6982830Z 2024 13/Jan 02:12:30.8989180Z
2016 13/Jan 02:12:13.9619269Z 2019 26/0ct 02:12:17.2364270Z 2024 22/Apr 02:12:01.6283930Z
2016 22/Mar 02:11:07.8291040Z 2019 15/Nov 02:12:13.1821710Z 2024 19/May 02:12:17.2364270Z
2016 19/Apr 02:10:56.9703300Z 2019 19/Dec 02:11:04.9631590Z 2024  24/Jun 02:11:04.9631590Z
2016 17/May 02:12:47.4312600Z 2020 14/Jan 02:10:57.8389180Z 2024 29/Aug 02:11:17.2364270Z
2016 20/Jul 02:11:02.4569760Z 2020 09/Feb 02:11:08.6102830Z 2024 02/0Oct 02:12:48.0682050Z
2016  22/Aug 02:12:04.9631590Z 2020 20/Mar 02:12:17.2114270Z 2024  14/Dec 02:12:57.8989180Z
2016 18/Sep 02:12:17.2364270Z 2020 15/Apr 02:12:13.2021710Z
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Appendix3  Genizi Method Result

Air Temperature

Air Temperature Genizi Method Pixel Scale
UFE Spring (R?=0.137) Summer (R?=0.195) Fall (R?=0.098)  Winter (R?=0.067)
NDVI 59.2 -1.2 63.8 60.1
Building Ratio 6.3 71.8 4.3 3.2
Weighted Height 5.8 7.8 3.1 13.5

GSlI 1.5 19.5 0.9 1.8

Volume Density 0.8 3.2 0.6 1.2

FSI -0.3 -1 -0.1 0.2

Air Temperature Genizi Method 100m Scale
UFE Spring (R?=0.218) Summer (R?=0.281) Fall (R?=0.186)  Winter (R2=0.144)
NDVI 79.3 -4.8 64.7 71.6
Building Ratio 11.2 62.3 7.8 5.4
Weighted Height 9.7 13.5 6.9 19.8

GSlI 3.5 21.7 2.4 6.2

Volume Density -2.8 8.9 -1.3 -1.8

FSI -0.9 -2.6 -0.5 -1.2

Air Temperature Genizi Method 300m Scale
UFE Spring (R?=0.304) Summer (R?=0.407) Fall (R?=0.328)  Winter (R2=0.228)
NDVI 83.9 43.7 73.4 77.3
Building Ratio -3.6 -3.3 -1.7 -4.3
Weighted Height 23.5 28.3 19.8 34.7

GSlI 54 36.8 -8.4 -14.8
Volume Density 15.8 -17.9 12.7 23.5

FSI -10.3 12.4 4.2 8.6
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Electricity EUI

Electricity EUI Genizi Method - 100m Scale 100m Scale
UFE Spring (R?=0.256) Summer (R?=0.378) Fall (R?=0.271)  Winter (R=0.238)
Air Temperature 41.2 54.3 36.8 14.8
NDVI 2.8 1.3 7.6 1.3
Building Ratio 8.2 13.5 7.3 16.9
Building Height -11.3 -6.8 -9.4 -4.3
GSlI 14.6 9.2 13.8 11.3
Building Volume 25.8 15.8 23.7 33.8
FsI 18.7 12.7 20.2 27.2
Electricity EUl Genizi Method - 300m Scale 300m Scale
UFE Spring (R?=0.194) Summer (R?=0.262) Fall (R?=0.172)  Winter (R?=0.152)
Air Temperature 324 39.8 23.2 8.5
NDVI 28.7 34.6 25.6 20.8
Building Ratio 6.7 -24.7 -14.8 -10.3
Building Height 12.7 6.0 13.6 3.8
Gsl -18.3 21.3 -13.2 -19.7
Building Volume 21.3 13.2 28.3 31.2
FSI 16.5 9.8 17.3 25.7

Gas EUI
Gas EUI Genizi Method - 100m Scale 100m Scale
UFE Spring (R?=0.312) Summer (R?=0.236) Fall (R?=0.337)  Winter (R>=0.382)
Air Temperature 24.8 6.8 27.6 31.3
NDVI 2.8 0.6 1.2 -1.3
Building Ratio 7.8 3.5 5.1 3.8
Building Height -14.2 -13.2 -12.8 -11.7
Gsl 16.8 194 15.2 12.8
Building Volume 26.3 41.3 28.9 35.2
FSI 21.7 31.8 23.4 20.1
Gas EUI Genizi Method - 300m Scale 300m Scale
UFE Spring (R?=0.228) Summer (R?=0.164) Fall (R?=0.243)  Winter (R>=0.252)
Air Temperature 17.8 3.2 21.3 23.7
NDVI 25.8 18.7 28.3 31.4
Building Ratio -12.7 -8.7 -13.5 -14.2
Building Height 4.2 2.3 3.8 2.3
GSlI -18.6 -23.8 -15.4 -12.8
Building Volume 23.8 38.6 26.8 32.6
aN]] 19.3 29.3 20.7 17.8
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Appendix4  10-Year Change in Heukseok-dong
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Year 2015
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Year 2016
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Year 2017
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Year 2018
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Year 2019
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Year 2020
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Year 2021
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Year 2022
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Year 2023
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Year 2024
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Seasonal Air Temperature Change in Heukseok-dong (2015-2024)

1

0.2192 x Year - 418.42°C

0.3156 x Year - 624.23°C

J

0.1712 x Year - 333.63°C

0.0545 x Year - 111.28°C

J

Seasonal NDVI Change in Heukseok-dong (2015-2024)

0.00230 x Year - 4.5537

!

0.00152 x Year - 2.9993

1

0.00298 x Year - 5.9408

!

0.000606 x Year - 1.1884
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Average Building Height Change in Heukseok-dong (2015-2024)

0.0256 x Year -42.84 m

N

Average Building Ratio Change in Heukseok-dong (2015-2024)

/

-0.00323 x Year + 6.726

141



Average Building Volume Change in Heukseok-dong (2015-2024)

N\

45.87 x Year - 90,278.12 m?

Total Number of Buildings Change in Heukseok-dong (2015-2024)

-42.68 x Year + 89,286.72

/
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Average Floor Space Index (FSI) Change in Heukseok-dong (2015-2024)

\

0.004091 x Year - 6.892

Average Ground Space Index (GSI) Change in Heukseok-dong (2015-2024)

-0.00632 x Year + 13.383

/

143



Appendix 5 10-Year Change in District 3

Seasonal Air Temperature Change in District 3 (2015-2024)

1

0.1632 x Year - 21.84°C

0.1027 x Year - 193.73°C

\
1

0.1503 x Year - 291.04°C

Redevelopment period

0.0353 x Year - 72.43°C

\

Seasonal NDVI Change in District 3 (2015-2024)

Redevelopment period

0.00450 x Year - 8.9742

N

0.00219 x Year - 4.3412

\

0.003583 x Year - 7.0720

\

0.00253 x Year - 5.0666
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Average Building Height Change in District 3 (2015-2024)

2.81 x Year - 5667.86 m

N

Redevelopment period

Average Building Ratio Change in District 3 (2015-2024)

Redevelopment period

/

-0.0514 x Year + 104.43
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Average Building Volume Change in District 3 (2015-2024)

N\

2,456.63 x Year - 4,968,062.56 m®

Redevelopment period

Total Number of Buildings Change in District 3 (2015-2024)

Redevelopment period

-99.32 x Year + 201,593.03

/
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Average Floor Space Index (FSI) Change in District 3 (2015-2024)

0.3055 x Year - 617.70

\

Redevelopment period

Average Ground Space Index (GSI) Change in District 3 (2015-2024)

Redevelopment period

/

-0.1088 x Year + 220.87
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