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Model Predictive Controller
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Abstract—The successful integration of autonomous vehicles
(AVs) in human environments is highly dependent on their ability
to navigate safely and timely through dense traffic conditions.
Such conditions involve a diverse range of human behaviors,
ranging from cooperative (willing to yield) to non-cooperative
human drivers (unwilling to yield) that need to be identified
without any explicit inter-vehicle communication. In order to
maneuver through such conditions, AVs must not only compute
a collision-free trajectory but also account for the effects of its
actions on the surrounding agents to negotiate the navigation
maneuver safely. Existing motion planning techniques fail in
these environments because they suffer from one or more of the
following drawbacks: suffer from ”the curse of dimensionality”
due to the high number of agents (e.g., optimization-based
methods); do not account for the interaction effects among the
agents; do not provide any collision avoidance or trajectory
feasibility guarantees (e.g., learning-based methods). In this
paper, we propose a novel navigation framework combining the
strengths of learning-based with optimization-based algorithms.
More specifically, we employ a Soft Actor-Critic agent to learn
a continuous guidance policy that provides global guidance to
an optimization-based planner generating feasible and collision-
free trajectories. We evaluate our method in a highly inter-
active simulation environment where we compare our method
with two baseline approaches, a learning-based method and
an optimization-based method, and present performance results
demonstrating our method significantly reduces the number of
collisions and increase the success rate with fewer number of
deadlocks. We also show that that our method is able to generalise
and applicable to other traffic scenarios (e.g., an unprotected left
turn).

Index Terms—Safe Navigation, Motion Planning, Deep Rein-
forcement Learning, Optimal Control

I. INTRODUCTION

Robust driving in real-world dense traffic scenarios requires
interacting with human drivers, which still stands as a hurdle
in the widespread deployment of autonomous vehicles [1].
To successfully integrate autonomous vehicles (AVs) into
our society, AVs need to deal with cluttered environments
such as highway merging and unprotected left turns where
navigation is not possible without interacting with other traffic
participants. These type of cluttered scenarios involve intricate
observations and interactions that even human drivers find
challenging.

Driving in dense traffic conditions is intrinsically an in-
teractive task, where the actions executed by the AVs elicit
immediate reactions from nearby traffic participants and vice
versa. An example of such behavior is illustrated in Fig. 1,
where the autonomous vehicle needs to perform a merging

Fig. 1. Illustration of a dense on-ramp merging traffic scenario where the
autonomous vehicle (yellow) needs to interact with other traffic participants
in order to merge onto the main highway in a timely and safe manner.
The potential follower (purple) may yield (green arrow) to the autonomous
vehicle leaving space for the autonomous vehicle to merge or behave non-
cooperatively (red arrow) to deter the autonomous vehicle from merging. To
successfully merge, the autonomous vehicle needs to identify the cooperative
ones by interacting with them without any explicit inter-vehicle communica-
tion.

maneuver onto the main lane. To accomplish this task, it needs
to leverage the cooperativeness of other vehicles to make them
yield, creating room in the process for it to merge safely.

Despite all the recent advancements in learning and opti-
mization methods, mobile computational power that enable
all the current autonomous driving solutions (e.g., Waymo
[2], Uber [3]), current motion planning solutions still fail to
scale in cluttered environments. The majority of the traditional
motion planning methods are too conservative and fail in
dense scenarios because they do not account for the interaction
between the autonomous vehicle and the nearby traffic [1], [4].
Nevertheless, works that account for the interaction among the
agents either do not scale for a large number of agents due to
the curse of dimensionality [5] or cannot be in real-time [6]
or do not allow to define collision constraints explicitly [7].
Moreover, most of these methods rely on finding obstacle-free
space, which is hard to find in these dense traffic scenarios [4].
Hence, motion planning methods that can safely interact with
the other navigating agents while generating kino-dynamically
feasible trajectories are necessary.

In this paper, we propose a method for autonomous navi-
gation in dense traffic scenarios. Our method leverages the in-
teraction effects among the vehicles to create free-space areas
for the ego-vehicle to navigate and allowing it to successfully
complete various driving maneuvers in cluttered environments.
More specifically, we propose to use Model-free Deep Re-
inforcement Learning (MDRL) to learn a continuous policy
that provides global guidance to a local optimization-based



planner. By exploiting Deep Reinforcement Learning’s ability
to learn joint interaction behavior, we learn complex policies
from data while the optimization-based planner ensures that
the generated trajectories are kino-dynamically feasible and
safety constraints are respected.

II. RELATED WORK

The literature devoted to the problem of modelling human
interactions among traffic participants is vast. A recent survey
by [1] divides these works into four main categories: rule-
based, game theoretic, learning-based and optimization-based
methods.

Firstly, rule-based methods [8]–[10] have been proposed to
tackle the decision-making problems demonstrating excellent
ability to solve specific problems (e.g., precedence at an
intersection followed by waiting for availability of enough free
space for the vehicle to pass safely [8]). Nevertheless, these
methods do not consider the interactions between multiple
traffic participants and fail in dense traffic scenarios.

Real driving environments are intrinsically partially ob-
servable. Hence, to account for un-observable states of the
other agents, [11] considers partially observable Markov de-
cision process (POMDPs) into the formulation. Furthermore,
[12] proposed to use dimensional reduction techniques creat-
ing a compressed and fixed-size representation of the other
agents information and incorporate road context [13] to scale
for larger number of vehicles. These methods demonstrated
promising results but are limited to environments for which
they were specifically designed, demand high computational
power and can only consider a discrete set of actions. Not only
motion planners must account for the interaction among the
driving agents but also generate motions plans which respect
social constraints. Hence, to generate socially compatible
plans, Inverse Reinforcement Techniques have been used to
learn human-drivers preferences [14], [15]. These methods
either fail to scale to interact with multiple agents [14] or
can only handle a discrete set of actions [15] rendering them
incapable to be used safely in highly interactive and dense
traffic scenarios.

Game Theoretic approaches such as [16] propose to model
the interaction among the agents as a game allowing to infer
the influence on each agent’s plans. However, the task of mod-
elling interactions requires inter-dependency of all agents on
each other actions, to be embedded within the framework. This
results in an exponential growth of interactions as the number
of agents increase, rendering the problem computationally
intractable. Another example would be [17] where an iterative
level-k model based on cognitive hierarchy reasoning [18] has
been used to obtain a near optimal policy for performing merge
maneuvers in highly dense traffic scenarios. This method
shows promise but is limited to discrete action spaces and still
needs to be analysed in an interactive simulation exhibiting a
diverse range of human driving behaviors.

Learning-based approaches leverage on large data collection
to build interaction models. In [5], deep neural networks
were used to learn from data the action distributions of a

driving agent conditioned on the interaction history. Recently,
Reinforcement Learning has shown a potential in modelling
interactions in highly dense and uncertain traffic scenarios
[19], [7], [20]. These methods are able to learn a working
policy under highly interactive traffic conditions involving
multiple entities. However, they fail to provide any safety guar-
antees and reliability, rendering these methods vulnerable to
collisions. Moreover, MDRL’s policies trained in simulations
rarely transfer to real life situations (e.g., due to kino-dynamic
constraints associated with vehicles in real life) thus, limiting
their practical application.

In contrast, optimal control methods consider the vehicle
dynamics model to generate kino-dynamically feasible trajec-
tories, allow to follow a pre-defined path while avoiding static
and dynamic obstacles [1], [21]. However, they fail to account
for interaction and struggle to find a collision free trajectory
in highly dense traffic scenarios. Efforts have been made to
embody interaction within the optimal controller framework
[22], [23] but they either assume complete control over other
agent’s actions [22] or can only handle interaction with a single
agent [23]. Moreover, these methods also suffer from the curse
of dimensionality and their performance in a highly interactive
simulation still needs to be investigated.

A. Contribution

The main contributions of this work are:
• A novel navigation framework for interaction-aware and

safe navigation in cluttered environments that involves
providing global guidance to a local optimization-based
controller by an interaction-aware MDRL agent.

• Extensive simulation results demonstrating the ability of
our approach to negotiate with cooperative and non-
cooperative vehicles in a highly interactive simulation
environment capable of simulating complex negotiating
behavior that considers future state of the ego vehicle to
achieve non-reactive interaction-aware behavior for the
agents.

III. PROBLEM FORMULATION

Let us consider a set of vehicles interacting in a dense traffic
scenario comprising of an autonomous vehicle (henceforth
referred to as the ego vehicle) and n human drivers (henceforth
referred to as agents) exhibiting different levels of willingness
to yield. The term ”vehicles” is used to collectively refer to
the ego vehicle and agents. The state z0 of the ego vehicle
and the agent i ∈ {1, . . . , n} is defined by

z0,i = {x, y, ψ, v}∀i ∈ {1, . . . , n}

where p = [x, y] is the position, ψ the heading angle and v
the forward velocity in a global inertial frame W . We define
the joint state as the set of all agent states Z = {z0, . . . , zn}.
The area occupied by the ego vehicle is given by Aego whereas
for the agents, it is represented by Aobs. The ego vehicle needs
to be cognizant of the effects of its own actions on nearby
vehicles (referred to as ”interaction”) which is required to
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Fig. 2. Our proposed architecture comprises of three main modules: Interactive Reinforcement Learner (SAC-Agent), Local Motion Planner (LMPCC) and
Simulation Model. The ego vehicle observes the leader state ẑl and follower state ẑf relative to it which serves as input to the Interactive Reinforcement
Learner. The SAC-Agent samples a reference velocity vref ∼ N (µ, σ) (µ-mean, σ-standard deviation) for LMPCC to follow. The Local Motion Planner
LMPCC then computes locally optimal sequence of commands u∗

0:H−1 while minimizing a cost function J(z̄0k,uk). w = [w1, . . . , w5] denotes a set of
cost weights. The cost function includes penalties for contour error (êck), lag error (êlk) and control commands uak and uδk . The term ‖vref−vk‖ motivates the
planner to follow vref closely provided by the SAC-Agent. C-IDM then computes acceleration values a1:n for the agents while being aware of ego vehicle’s
future plan y0H . The joint state for the next time step Zt+1 is then computed using the Vehicle model.

maneuver through a cluttered environment. The objective is to
learn a continuous policy π controlling the interaction with the
other agents and minimizing the expected driving time E[tg]
for the ego vehicle to reach its goal position. We formulate
our objective as the following optimization problem:

argmin
π(Z)

E [tg | Z0, π] (1a)

s.t. Z0
k+1 = f(Z0

k,uk), (1b)

Aegok ∩Aobsk = ∅ (1c)

where f(Z0
k,uk) is the state transition function1 for the

ego vehicle and uk the control command. Moreover, the
policy must respect the ego-vehicle kino-dynamics (Equation
1(b)) and ensure collision-free motion (Equation 1(c)). In
this paper, we assume that Z is accessible (within a limited
perception range) to the ego vehicle using sensor fusion of
various on board sensors (e.g., cameras, Lidar, Radar, IMUs,
GPS) capable of processing incoming information in real time.
Furthermore, it is assumed that there is no sensor noise and
inter-vehicle communication. Moreover, to consider a more
realistic scenario, we consider a mixed-agents setting with a
continuously varying cooperation level ci ∈ [wmin, wmax]∀i ∈
{1, n} (detailed in Sec. IV-D1) ranging from wmin, a non-
cooperative agent, to wmax, a fully-cooperative agent.

IV. INTERACTIVE POLICY CONSTRUCTION AND
PLANNING

A. Overview

In this section, we introduce our motion planning framework
for safe navigation in dense and interactive scenarios. Figure
2 depicts our proposed motion planning architecture. The pro-
posed approach comprises of three main modules: An Interac-
tive Reinforcement Learner (SAC-Agent), a local optimization
planner (LMPCC) and a simulation model. Firstly, we present
a training algorithm employing an MDRL agent (Section IV-B)

1This is identical to the Vehicle Model used in the simulation.

combined with a local optimization planner (Section IV-C) to
jointly learn an interaction-aware safe navigation policy. Then,
to model interaction, we propose an expansion for the IDM
model allowing the agents to react on the other’s predicted
plans (SectionIV-D).

B. Interactive Reinforcement Learner

In this paper, we propose to use MDRL to learn a global
guidance policy taking advantage of the interactions among
the agents to enable navigation in dense environments, and
thus, solving the Freezing Robot Problem.

The task of autonomous driving is inherently a continuous
control task. Hence, in this work we consider a continu-
ous control policy allowing fine control for the ego-vehicle.
Moreover, we consider a stochastic policy and aim to learn
probability distribution π(ẑlt, ẑ

f
t ) −→ vref conditioned on leader

state ẑlt and follower state ẑft relative to the ego vehicle. To
train our policy, we use the Soft Actor Critic Agent (SAC)
[24] method. SAC agent augments the objective of traditional
RL algorithms with the entropy of the policy. This embeds
the notion of exploration into the policy while giving up on
clearly unpromising paths [24]. Yet, note that our approach is
agnostic to which learning algorithm we use.

1) Observation Space: For the ego vehicle, a leader (agent
in front) and a follower (agent behind the ego vehicle) are
computed at every timestep. We define the observation vector
as the joint state for the leader and the follower relative to ego
vehicle’s state (z0). The state for the leader relative to z0 is
denoted by ẑl whereas the state of the follower relative to z0

is represented by ẑf .
This observation space is used as an input to the neural

network parameterizing our policy. The ego vehicle is assumed
to have a limited perception range meaning it only has access
to states of the agents within the perception range.

2) Action Space: We propose to model the guidance in-
formation to the ego-vehicle as a velocity reference vref ∼
N (µ, σ), where µ is the mean and σ is the variance. By
providing a velocity reference to a local motion planner, the
Interactive Learner can directly control the interaction at the



merging point with the other agents by being more aggressive
(high speed values) or more conservative (low speed values).

3) Reward Function: We formulate a reward function to
motivate progress along a reference path, to penalise collisions
and infeasible solutions, and when moving too close to another
vehicle. The reward function is the summation of the four
terms described as follows:

Rk (Z,a) =


v0
t

rinfeasible if cobst,i
k > 1 ∀i ∈ {1, n}

rcollision if Aegok ∩Aobsk 6= ∅
rnear dmin(x0,xi) ≤ ∆dmin ∀i ∈ {1, n}

(2)
where cobst,i

k is the collision avoidance constraint between the
ego vehicle and the agent i as described in eq. (5), Aegok ∩
Aobsk represents the common area occupied by the ego vehicle
and the agents at step k. dmin is the minimum distance to
the closest agent i and ∆dmin is a hyper-parameter distance
threshold. The first term v0

t is a reward proportional to the
ego-vehicle’s velocity encouraging higher velocities and thus,
minimizing the time to goal. The second rinfeasible, third rcollision
and fourth term rnear penalize the ego-vehicle for infeasible
solutions, collisions and for driving too close to other agents,
respectively.

C. Local Motion Planner

An MDRL agent can be directly used to learn a control
policy in dense traffic scenarios [7], [19] however, there is
no guarantee that the computed plan would be safe and kino-
dynamic constraints would be satisfied. MPC, on the other
hand, can help provide these assurances. In this paper, we
use an MPC to generate locally optimal trajectories satisfying
kino-dynamics and collision avoidance constraints. Addition-
ally, MPC follows a global reference path while respecting the
road boundaries.

In our method we used the LMPCC inspired by [25]. To
make the MPC formulation more legible, we augment the
state z0 of the ego vehicle with the progress variable θ that
represents the progress along the reference path. The new state
for the ego vehicle in the MPC formulation is now denoted
by z̄0.

1) Cost Function: The LMPCC receives a velocity refer-
ence vref, from the Interactive Learner (SectionIV-B), account-
ing for the interaction effects of the ego-vehicle with the other
agents. We design the stage cost motivating the ego-vehicle to
follow a pre-defined path and tracking the velocity reference,
defined as follows:

J(z̄0k,uk) = w1‖êck(z̄0
k)‖2 + w2‖êlk(z̄0

k)‖2

+ w3‖vref − vk‖2 + w4‖uak‖2 + w5‖uδk‖2
(3)

where w = [w1, . . . , w5] denotes a set of cost weights.To
track the reference path closely, we minimize two cost terms:
the contour error (êck) and lag error (êlk). Contour error
gives a measure of how far the ego vehicle deviates from
the reference path laterally whereas lag error measures the

deviation of the ego vehicle from the reference path in the
longitudinal direction. For more details on path parameteriza-
tion and tracking error, please refer to [25]. The third term,
‖vref − vk‖, motivates the planner to follow vref closely.
Finally, to generate smooth trajectories, we add a quadratic
penalty to the control commands uak and uδk.

2) Dynamic Obstacle Avoidance: The occupied area for the
ego vehicle is represented by Āego(p), which is approximated
by a union of nc circles i.e Āego(p) ⊆

⋃
c∈{1,...,nc}Ac(p),

where Ac is the area occupied for a circle with radius r.
For every agent i, the occupied area is represented by Ai
which is approximated by an ellipse of semi-major axis ai and
semi-minor axis bi and orientation ψ. At any instant, the area
occupied by all the agents is given by Āobs =

⋃
i∈{1,...,n}Ai.

To ensure collision-free motion over the planning horizon, the
following condition must be satisfied:

Āego(pk) ∩ Āobs
k = ∅ ∀k ∈ {0, . . . , N − 1} (4)

For every agent i ∈ {1, . . . , n} and prediction step k, we
define a non-linear constraint imposing that each circle j of
the ego vehicle with the elliptical area occupied by the agent
do not intersect:

cobst,j
k (Zk)=

[
∆xjk
∆yjk

]T

R(ψ)T
[ 1
α2 0
0 1

β2

]
R(ψ)

[
∆xjk
∆yjk

]
> 1, (5)

The parameters ∆xjk and ∆yjk represent x-y relative distances
in ego-agent’s frame between the disc j and the agent for
prediction step k. To guarantee collision avoidance we enlarge
the other agent semi-major and semi-minor axis with a rdisc
coefficient, assuming α = a + rdisc and β = b + rdisc as
described in [21].

3) Road boundaries: To ensure that the vehicle stays within
the road boundaries, we introduce constraints on the lateral
distance d(z̄0

k), computed as the contour error of the ego-
vehicle with respect to the reference path is bounded [11].

− wmaxim ≤ d(z̄0
k) ≤ wmaxim (6)

where wmaxim is the maximum value of the vehicle’s bound-
ary projected in the norm direction of the reference path.

4) MPC Formulation: We formulate the motion planning
problem as a Receding Horizon Trajectory Optimization prob-
lem (7) with planning horizon H conditioned on the following
constraints:

u∗0:H−1 = min
u0:H−1

H−1∑
k=0

J(z̄0k,uk) + J(z̄0
H) (7a)

s.t. z0
k+1 = f(z0

k,uk), (7b)

−wmaxim ≤ d(z̄0
k) ≤ wmaxim (7c)

cobst,j
k (Zk) > 1 ∀j ∈ {1, . . . , nc} ∀obst (7d)

D. Simulation Model

We build our simulation environment2 on [26] expanding it
to incorporate complex interaction behavior.

2https://github.com/eleurent/highway-env

https://github.com/eleurent/highway-env


Algorithm 1: Training Procedure of SAC + LMPCC
// Collect batches from multiple instances of the same
environment running in parallel

Initialize Global path for ego vehicle;
while episodes < max episodes do

// For every episode:
Initialize states - Z0;
while not terminal do

// Sample vref from the policy given the
current joint state Zt (Section IV-B)
vref ∼ π(Zt);
// Using the same vref , compute actions and

transition the states for 2 consecutive
time-steps

K = 0;
while K ≤ 2 do

// Solve the trajectory optimization problem
to compute optimal actions for the ego
vehicle with obstacle avoidance
constraints disabled (Section IV-C)

u∗0, y
0
H = LMPCC(vref ,Zt+K);

// Compute longitudinal accelerations for
agents using C-IDM (Section IV-D1)
a1:n = C-IDM(Zt+K , y

0
H);

// Step the states using vehicle model
(Section IV-D2) by executing u∗0, a

1:n and
get the new joint state Zt+K+1

Zt+K+1 = f(Zt+K ,u
∗
0, a

1:n);
K = K + 1;
Check terminal;

end
end
// Concatenate samples from all the instances of

the environment
// Run SAC algorithm

end

1) Behavior Module (C-IDM): The main objective of the
Behavior Module is to be able to simulate dense and complex
negotiating behavior with varying degrees of willingness to
yield. In a typical dense traffic scenario (e.g. on-ramp merg-
ing), agents trying to merge onto the main lane needs to
leverage the cooperativeness of other agents to create obstacle
free space to be able to safely merge. On the other hand, agents
on the main lane exhibit different levels of willingness to yield
with some agents stopping as soon as they spot the agent on
the adjacent lane (Cooperative) while other agents ignore the
agent entirely and may even accelerate to deter it from merging
(Non-Cooperative). Moreover, at the merging point, they also
consider the future plan of the agent on the adjacent lane to
decide if they should yield or not. Modelling such complex
behavior is non-trivial. This section provides insights on the
method used to model such complex negotiating behavior
exhibited by the agents.

Past works use the popular rule based method Intelligent

Driver Model (IDM) to model the other agents driving policy
[27]. In IDM, an agent compromises between reaching a pre-
defined maximum velocity and maintaining a minimum safe
distance to the agent in front (leader). However, this model
only considers the current state of the agents in the same
lane leading to reactive and incomplete representation of the
behavior of the agents typical in dense traffic scenarios such
as on-ramp merging and unprotected left turn.

We extend IDM to compute longitudinal accelerations for
agents on the current lane while being aware of the future plan
of the agents on the adjacent lane3 The agents on the main
lane maintain an internal belief about the other agents plan
(on the adjacent lane) which in the case of the ego vehicle,
is an approximation of the LMPCC plan. Specifically, this is
achieved by introducing a continuous cooperation constant for
every agent (ci) that controls whether an agent cooperates with
the ego vehicle or not.

At the beginning of the simulation, the value of ci is
sampled from the uniform distribution defined bounded by
[wmin, wmax] where wmax is the distance between the center of
the current lane and the adjacent lane which is a constant (4 m)
in our case and wmin ∈ [0, wmax]. wmin plays in important role
in the behavior of the final policy as it controls the proportion
of cooperative and non-cooperative agents encountered by the
ego vehicle during training which can either make the final
policy too aggressive or conservative. At every time step, the
cooperativeness value of every agent is compared with the
lateral horizon parameter (y0

H) (future plan) which is defined
as the the lateral position of the H horizon step state output of
the solution of Eq. 7 If ci > y0

H , the ego vehicle is included in
the set of potential leaders following which a leader is chosen
for the agent’s IDM based on the closest longitudinal distance.
For the case where the leader comes out to be the ego vehicle
on the adjacent lane, the agent moves with the projection of
the ego vehicle on the current lane.

One of the main reasons for using y0
H instead of the

current lateral position y0
0 is to incorporate the future plan

of ego vehicle into the behavior of the agents. This helps
in eliciting non-reactive behavior from the agents. Moreover,
the notion of ego vehicle’s aggressiveness is also inculcated
into their behavior as the lateral horizon parameter (y0

H) is
a direct function of the current velocity of the ego vehicle.
By using ci as a parameter to incorporate varying degrees of
cooperativeness and y0

H to elicit non-reactive behavior from
agents, a wide variety of behaviors can be simulated which
helps in evaluating the efficacy of the proposed approach.

2) Vehicle Model: We employ a kinematic bicycle model
to model the motion of the vehicles, described as follows:

3For the Ramp Merging scenario (detailed in Sec. V-B1), the current lane
corresponds to the main lane whereas the adjacent lane refers to the merge lane
whereas for the Unprotected Left Turn scenario (detailed in Section V-B2),
the current lane refers to the top lane and the adjacent lane corresponds to
the bottom lane.



ẋ = v cos(ψ + β)
ẏ = v sin(ψ + β)

ψ̇ =
v

lr
sin(β)

v̇ = a

β = arctan

(
lr

lf + lr
tan (δ)

) (8)

where δ is the front tyre’s angle, β is the velocity angle
and a the linear acceleration. The distances of the rear and
front tires from the center of gravity of the vehicle are lr and
lf , respectively and, are assumed to be identical for simplicity.
The vehicle control input is the steering angle and acceleration
u = [a, δ].

E. Training Procedure

We jointly train the guidance policy with local motion
planner allowing the trained policy to learn with the cases
that result in an infeasible solution for the MPC solver.

Algorithm 1 presents a step by step overview of our training
procedure. We employ a parallel implementation of the SAC
method allowing to speed-up the sample collection process.
Every episode begins with the initialisation of state Z0 of
all the vehicles. For every K control cycles, we sample a
reference velocity vref from the policy π. Using the same
vref for K control cycles helps the learning algorithm to
better assess the impact of its action on the environment. A
detailed analysis of the impact of different values of K on the
behavior of the final policy can be found in Section VI-F.
Using vref, LMPCC computes locally optimal sequence of
commands u∗0:H−1 for the ego vehicle to execute out of which
only the action for the first time-step is applied. During the
training, we disable the obstacle avoidance constraint from the
LMPCC formulation to allow the ego-vehicle to be exposed
to dangerous situations or to collisions. This helps our policy
to learn to closely interact with nearby agents. A detailed
analysis of the effects of training with obstacle avoidance
constraints enabled and disabled on the final policy can be
seen in Appendix B. C-IDM then computes actions a1:n for
the agents while being aware of the ego vehicle on the adjacent
lane. The states are then advanced using the Vehicle Model.

An episode is executed until a terminal state is reached
which can happen due to one of the following reasons: the
ego vehicle reaches the goal position; the ego vehicle collides
with other agent; An infeasible solution is computed by the
solver or a time out. In the context of our implementation, the
solver outputs an infeasible solution if the obstacle avoidance
constraints or road boundary constraints are violated.

V. IMPLEMENTATION

A. Experimental setup

The training was carried out on an Intel(R) Core(TM)
i9-9980HK CPU @ 2.40GHz processor with 16 cores and
took approximately 15 hours to train. This corresponds to 12
million training steps of the environment. The hyperparameters

for the SAC algorithm can be found in Table I. Our code can
be found here4.

TABLE I
HYPERPARAMETERS FOR SAC

Hyperparameter Value
Number of workers in parallel 7
Q neural network model 2 dense layers of 256
Policy neural network model 2 dense layers of 256
Activation units Relu
Training batch size 2100
Discount factor 0.99
Optimizer Adam
Initial entropy weight (α) 1.0
Target update (τ ) 5× 10−3

Target entropy lower bound -1.0
Target network update frequency 1
Actor learning rate 3× 104

Critic learning rate 3× 104

Entropy learning rate 3× 104

Replay buffer size 106

B. Driving scenarios

We consider two driving scenarios: merging on a densely
populated highway and maneuvering through dense traffic to
take an unprotected left turn.

The vehicles are modeled as rectangles with 5 m length and
2 m width. For each episode, the initial distance between the
agents is drawn from a uniform distribution bounded by [7,
10] m and kept constant for every agent. This is followed
by addition of uniform noise from the interval [-1, 1] m.
Their initial and target velocities and sampled from a uniform
distribution bounded by [3, 4] m/s. Finally, to simulate more
realistic scenarios, we consider agents with different coopera-
tion levels sampled from a uniform distribution ci ∼ U(0, 4)
m. The motivation behind choosing wmin as zero can be found
in Appendix A. This initial configuration of agents prevents
early collisions while ensuring there are no gaps of more
than 2 m present that are typical of highly dense traffic
scenarios. This compels the ego vehicle to leverage other
agents’ cooperativeness while also exposing it to a myriad
of different scenarios that are critical for the performance of
the final policy.

1) Ramp Merging: The merging scenario can be seen in
Fig. 3. It comprises of two lanes: main lane and merge lane.
The main lane has a length of 230 m with a width of 4 m. It is
populated with only agents at the beginning of the simulation
where the agents move from left to right. In contrast, the merge
lane only includes the ego vehicle and stretches for 50 m with
the same width as the main lane, followed by a dead end.

Fig. 3. Ramp Merging scenario

4https://github.com/Achin17/highwayenv

https://github.com/Achin17/highwayenv


2) Unprotected Left Turn: The unprotected left turn sce-
nario is illustrated in Fig. 4. It consists of two roads : main
road and left road, that are perpendicular to each other. The
main road is populated with agents (on the top lane) and the
ego vehicle (on the bottom lane). The agents move from right
to left on the main road whereas the ego vehicle is initialised
at the bottom lane of the main road and it’s objective is to
take an unprotected left turn onto the left road. The length of
the main highway is 108 m with a width of 8 m whereas the
length of the left highway is 40 m with the same width as the
main highway.

Fig. 4. Unprotected Left Turn scenario

VI. EXPERIMENTS

In this section, we shed insights on the different types of
traffic scenarios (Sec. VI-A) used to evaluate the efficacy
of our proposed method. Then, we compare our proposed
method against different baselines detailed in Sec. VI-B using
evaluation metrics detailed in Sec. VI-C. Additionally, we
present qualitative results (Sec. VI-D) and quantitative results
(Sec. VI-E) for different policies in a variety of traffic condi-
tions with varying degrees of cooperativeness to check their
generalization capabilities in leveraging the cooperativeness of
other agents. Finally, we present an ablation study in Sec. VI-F
to determine the optimal number of time-steps for which same
action queried from the Interactive Learner should be executed.

A. Evaluation Scenarios

We present simulation results for the following traffic sce-
narios:
• Cooperative: In this scenario, the majority of the agents

are cooperative (ci ∼ U(2, 4) m), implying that as soon
as the ego vehicle shows intentions of merging into the
main lane, the agent starts considering the ego vehicle
as its new leader, leaving space for it to merge into the
main lane. This evaluation scenario helps in assessing the
merging speed of the policy.

• Non-Cooperative: This scenario comprises of mostly non-
cooperative agents (ci ∼ U(0, 2) m), meaning that the
agents would not stop for the ego vehicle unless the ego
vehicle’s lateral horizon state is in the top lane. This
scenario explicitly assesses the policy’s aggressiveness.
In these scenarios, the best option for the ego vehicle is
to stop and wait for gaps and then merge in as quickly
as possible.

• Mixed: This traffic scenario involves agents with varying
degrees of cooperativeness (ci ∼ U(0, 4) m), featuring a
continuous transition from cooperative to non-cooperative
agents. Evaluating policies in this scenario helps to assess
the policy’s generalization capabilities as the ego-vehicle
is exposed to a much more diverse range of behaviors.

This scenario also allows to assess if a policy can behave
differently to cooperative and non-cooperative agents.

B. Baseline Policies

We compare our proposed method with a learning based
approach and an optimization based method. For both the
baselines and our proposed method, we control the longitu-
dinal behavior of the ego vehicle. The lateral behavior of the
ego vehicle is controlled by the LMPCC for all the policies as
the lateral control is only contingent on the global reference
path which is identical for all the policies.
• RL: A learning based method which involves learning

a continuous policy using SAC algorithm. A reference
velocity is sampled from the policy followed by compu-
tation of acceleration for the ego vehicle using equation
a = (vref − v0)/∆t.
Since the interaction-aware behavior for the agents in
the simulation is a function of lateral horizon parameter
(y0
H), an online optimization problem is still solved in the

background using the reference velocity sampled from the
policy.

• LMPCC: We use the state-of-the-art trajectory optimiza-
tion method minimizing a contour and lag error to follow
a reference path while respecting kino-dynamics and
collision avoidance constraints. For evaluation purposes,
the reference velocity is set to a constant reference,
vref = 3m/s, and the weights are manually tuned to
get the best possible performance while executing the
merging maneuver.

Rule based methods such as IDM, MOBIL fail in highly
dense traffic conditions and thus have not been included for
evaluation purposes [7].

C. Evaluation metrics

To evaluate our proposed method, we compare our policy
with the baseline policies in a total of 1200 episodes with
400 accounting for each of the cooperative, non-cooperative
and mixed scenarios. The following metrics are used to com-
pare the performance of learning based method, Optimization
methods and our proposed method.
• Success Rate: This metric measures the number of suc-

cessful merge maneuvers. A merge maneuver is deemed
successful if the ego vehicle is able to reach the goal after
merging on to the main highway before the time out.

• Collisions: This returns the number of collisions encoun-
tered by the ego vehicle during the roll-out of the policy.

• Time-out: This metric returns the number of times, the
ego vehicle is not able to reach the goal position before
the time out. This metric does not include those episodes
that terminate due to collisions or infeasible solutions.

D. Qualitative Results

In this section, we present simulation results for two driving
scenarios of our learned behavior, as depicted in Fig. 5.
The qualitative results in Fig. 5(a) clearly show that our
policy can successfully leverage the cooperativeness of other



 
 

 

t =6.8s t = 12.1s t = 18.0s t = 25.1s t = 32.7s

a) This sequence of figures illustrate a typical behavior learnt by our policy. As the ego vehicle approaches the merging point, it tries to
assess the reaction of its action on the agent titled ”25” by inching closer to the main lane. The agent’s non cooperative behavior does not
elicit a response typical of agents that are willing to yield forcing the ego vehicle to stop. It tries the same with the agent titled ”29” by
creeping closer to the main lane but fails again. Finally, the merge is successful when a cooperative driver titled ”91” emerges and gives
way to the ego vehicle.

 
 
 

t = 9.0s t = 12.1s t = 15.5s t = 22.4s t = 32.1s

b) This sub-figure highlights one of the most important benefits of our approach. In this case, the global guidance provided by the RL
agent wrongfully assumes the non-cooperative nature of the agent titled ”6” to be cooperative. This guidance compels the ego vehicle to
merge in front of the agent but the obstacle avoidance constraint forces the ego vehicle to steer away from the agent in order to avoid an
impending collision. Finally, the agent merges in front of the cooperative agent titled ”84”.

 t = 3.1s t = 12.5s t = 20.5s t = 21.6s t = 22.2s

c) This shows an unprotected left turn scenario where we use our proposed approach. Our policy is first trained in this environment and
then evaluated. The behavior is similar to the one demonstrated by figure V-B2. This shows that our proposed method can be adapted to
quite a different number of environments and is therefore, versatile in nature.

Fig. 5. All the scenarios were simulated by using the C-IDM model as discussed in subsection IV-D1 . The ego vehicle is represented in yellow whereas
the future states, as computed by LMPCC have been shown in light blue. The agents on the main lane show a transition from red to green with red being
non-cooperative (0) and green being cooperative (100). All the numbers in between show a continuous transition from non-cooperative to cooperative.

agents to perform the merging maneuver. Another example
has been shown in Fig. 5(b) that illustrates one of the critical
aspects of our implementation: safety guarantees that come
with obstacle avoidance constraints. In this scenario, at 12.1
s, the ego-agent initiates a merging maneuver. However, the
non-cooperative agent does not allow it and the local planner
aborts and initiates a collision avoidance maneuver, at 15.5
s, merging successfully later when encountering a cooperative
agent, at 22.4 s. Moreover, we demonstrate the generalization
capabilities of our proposed method in Fig. 5(c), where we
evaluate our method in an unprotected left turn scenario. Our
policy successfully navigates the ego vehicle through dense
traffic in an unprotected left turn scenario.

E. Quantitative Results

Aggregated results in Table II show that our method out-
performs the baseline methods in terms of successful merges,
number of collisions and infeasible solutions (Fig. 6) for
all scenarios. The combined capability of Interactive Learner
to implicitly embed inter-vehicle interactions into the policy
and the safety provided by the collision avoidance guarantees
allows our method to succeed in all the environments.

As far as optimization methods are concerned, the policy is
biased towards executing more aggressive actions, exhibiting
abysmal performance. The reason is the lack of assimilation
of inter-vehicle interactions into the policy and a tracking

error term in the cost function formulation that drives the ego
vehicle towards the goal, disregarding any consequences of its
actions on the nearby agents. This compels the ego vehicle to
behave in a reactive manner, which leads to more collisions
and infeasible solutions. In general, optimization methods fail
to account for the effect of their actions on the nearby agents
and thus do not consider the future evolution of states of the
nearby agents, thereby exhibiting poor performance.

Regarding the comparison between RL and RL + LMPCC,
both the methods achieve similar performance. The exception
case is collision and success rate for non-cooperative scenarios
which proves the superiority of our method over solely learn-
ing based methods. Our policy results in 15% more success
rate and 5.5% less collision rate which can be attributed to the
inclusion of obstacle avoidance constraint in the RL + LMPCC
formulation.

To demonstrate our policy’s ability to leverage agents co-
operativeness explicitly, we evaluate 600 episodes in a mixed
scenario where we track the cooperation level of agents in
front of which the ego vehicle performs a successful merging
maneuver. The results are shown in Fig. 7, which clearly
illustrate our method’s ability to identify cooperative agents
by interacting with them successfully. A small number of
successful merges can be seen with non-cooperative agents as
well. This behavior can be attributed to the random sampling



TABLE II
RESULTS FOR EVALUATION OF DIFFERENT POLICIES FOR DIFFERENT TRAFFIC CONDITIONS IN MERGING SCENARIO

Cooperative Mixed Non Cooperative
Success(%) Collision(%) Time-out(%) Success(%) Collision(%) Time-out(%) Success(%) Collision(%) Time-out(%)

RL 97.0 1.5 1.5 80.0 2.0 18.0 20.25 5.75 74.0
LMPCC 58.75 6.0 35.25 37.75 30.0 32.25 9.25 54.25 36.5

RL+LMPCC 97.5 0.0 2.5 81.0 0.0 19.0 35.25 0.25 64.5

Fig. 6. Number of infeasible solutions encountered by the solver for different
scenarios while evaluating the baselines.

of IDM parameters resulting in different agents’ acceleration
values. Thus, when moving from a standstill position, the
agents might leave a gap big enough for the ego vehicle to
merge onto the lane.

Fig. 7. This figure provides a comprehensive analysis of the cooperation level
of agents (0 - non cooperative, 100 - cooperative) in front of which the ego
vehicle was able to merge successfully.

F. Ablation study

In this section, we analyse the effect of the query’s fre-
quency to the Interactive Learner per number of control cycles
K on the training performance. More specifically, every K
control cycles we query the Interactive Learner for a new
velocity reference. We assess the influence of training policies
with different K values on the behavior of the final policy.
All the policies are evaluated using K = 1 which means that
the Interactive Learner is queried after every 0.1 s and then
executed for just one time step.

The results have been summarized in Table III. The results
clearly show that the policy trained with K = 2 outperforms
other policies in terms of success and collision rate. The policy

trained with K = 1 elicits an overly aggressive response from
the ego vehicle which is evident from a really high collision
rate and a low Time-out percentage. On the other hand, the
ego vehicle exhibits an overly conservative behavior when
evaluated with the policy trained with K = 4. This behavior
can be attributed to the long duration (0.4 s) for which the
same action is applied after querying from the Interactive
Learner. After reaching the merging point, if the same action is
applied for 0.4 s, it becomes highly likely that a collision will
transpire for high reference velocities for the ego vehicle. This
compels the Interactive Learner to learn to sample really low
or zero reference velocities to avoid an impending collision
resulting in an overly conservative behavior.

The policy trained with K = 2 elicits a balanced response
from the ego vehicle that is neither too conservative nor too
aggressive resulting in a high success rate and a low collision
rate for all the scenarios.

VII. CONCLUSION

We present a novel navigation framework for maneuvering
through highly interactive and dense traffic scenarios in a
timely and safe manner. We combine Deep Reinforcement
Learning’s capability of learning complex policies from sim-
ulated data with an optimization-based planner that can pro-
vide safety guarantees and compute kino-dynamically feasi-
ble trajectories. We train and evaluate our proposed method
in a highly interactive simulation environment capable of
simulating diverse range of human behaviors. Moreover, the
simulation takes autonomous vehicle’s future plan into account
and thus, elicits non-reactive behavior from human drivers.
The results show that our method outperforms solely learning
based and optimization based planner in terms of collisions,
successful maneuvers and fewer deadlocks. We also showcase
our method’s generalisation capabilities in a different dense
traffic scenario (unprotected left turn). Our proposed method
can easily handle interaction with multiple traffic participants
exhibiting a wide variety of behaviors and compute a collision-
free trajectory while respecting kino-dynamic and real-time
constraints and provide safety guarantees.

Future works involves investigation into different neural net-
work architectures for guidance policy construction capable of
handling inputs from a dynamic number of traffic participants.
Moreover, simulation needs to be validated by comparing
it with real life dataset of a highly interactive dense traffic
scenario.



TABLE III
RESULTS FOR ANALYSING THE EFFECT OF THE QUERY’S FREQUENCY TO THE INTERACTIVE LEARNER PER NUMBER OF CONTROL CYCLES K ON THE

FINAL BEHAVIOR OF THE POLICY

Cooperative Mixed Non Cooperative
Success(%) Collision(%) Time-out(%) Success(%) Collision(%) Time-out(%) Success(%) Collision(%) Time-out(%)

K = 1 90.25 0.0 9.75 75.75 0.0 24.25 33.5 0.25 66.25
K = 2 97.5 0.0 2.5 81.0 0.0 19.0 35.25 0.25 64.5
K = 3 71.5 0.0 28.5 46.75 0.0 53.25 5.5 0.0 94.5
K = 4 72.0 0.0 28.0 47.0 0.0 53.0 0.0 0.0 100.0
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APPENDIX A

The proportion of cooperative and non-cooperative agents
during training has major influence on the learned policy’s
cooperativeness/aggressiveness. The behavior of the learned
policy is contingent on the cooperativeness of agents encoun-
tered during the training process. For instance, if the ego
vehicle is exposed to solely cooperative agents, the learned
policy will result in aggressive actions as the ego vehicle will
always expect the agents to yield, resulting in many collisions
during evaluation where the ego vehicle faces a lot more
diverse range of behaviors. On the contrary, if the ego vehicle
encounters only non-cooperative agents during training, the
resultant policy will result in very conservative actions leading
to Freezing Robot Problem. This section sheds insights on the
procedure followed to find the optimal ratio of cooperative and
non-cooperative agents that elicits balanced behavior from the
ego vehicle.



A. Ablation study for cooperativeness variable (ci)

In our work, the sampling distribution of cooperative-
ness variable ci controls the ratio of cooperative and non-
cooperative agents encountered by the ego vehicle during
training. The intervals for the sampling distribution of ci
are estimated in an experimental manner. The values of ci
are sampled from three different uniform distributions during
training followed by evaluation of the final policy in a diverse
range of scenarios. The three uniform distributions are selected
as follows:
• ci ∼ U(0, 4) m
• ci ∼ U(1, 4) m
• ci ∼ U(2, 4) m
By incrementing the minimum sampling value wmin of ci,

there is an increase in the proportion of the agents that start
yielding to the ego vehicle as soon as it shows any intention of
merging in (e.g, by moving closer to the main lane). The final
policy obtained using three different sampling distributions is
evaluated using RL+LMPCC as it outperforms other policies
across the board (as can be seen in Table II). The values of ci
during evaluation are sampled from ci ∼ U(2, 4) m to ensure a
fair evaluation for all the three training sampling distributions.
Evaluations are done using 1200 episodes in total with 400
accounting for cooperative ci ∼ U(3, 4) m, mixed ci ∼ U(2, 4)
m and non-cooperative ci ∼ U(2, 3) m scenarios.

The results have been shown in Table IV. The results
clearly show that for the merging scenario, the policy trained
using ci values sampled from ci ∼ U(0, 4) m learns the
most balanced behavior that outperforms other ci training
sampling distributions across the board. As the proportion of
cooperative agents increase during training (for ci ∼ U(1, 4)
m and ci ∼ U(2, 4) m), the policy tends to be biased towards
executing more aggressive actions which can be seen by a high
collision rate and a decreasing Time-out percentage. This can
be attributed to high reward gained by sampling aggressive
actions (high vref values) during training leading to successful
maneuvers due to the presence of mostly cooperative agents.
Thus, for our final policy we sampled ci ∼ U(0, 4) m to elicit
a balanced behavior from the ego vehicle.

APPENDIX B

This section sheds insights on the effects of obstacle
avoidance constraints during training on the behavior of the
final policy. Learning navigation in dense traffic using RL
requires being aware of the effects of one’s own actions on
the neighboring agents. This involves getting feedback on
actions that result in a collision or an infeasible solution by
the solver. The learning algorithm needs to be cognizant of the
states preceding a collision or an infeasible solution. This can
only be achieved if the ego vehicle interacts closely with the
neighboring agents. However, inclusion of obstacle avoidance
constraints in the motion planning framework might restrict
movement with the nearby agents.

In our proposed method, obstacle avoidance constraints
are incorporated in the LMPCC framework as inequality

constraints using eqn. 5. Depending on Āego(p) and Āobs

(Sec. IV-C2), the ego vehicle can either interact closely or
maintain its distance and may be never be exposed to perilous
states. Thus, it is imperative to study the influence of these
constraints during the learning process on the behavior of the
final policy. To quantitatively assess the effects of training with
obstacle avoidance constraints, we compare a policy where
obstacle avoidance constraints are enabled during the training
process with a policy where obstacle avoidance constraints are
disabled. To summarize, we compare the policies trained with
the following criteria:
• Obs on: In this formulation, the policy is trained with

obstacle avoidance constraints enabled.
• Obs off : In this formulation, the policy is trained with

obstacle avoidance constraints disabled.
We evaluate the aforementioned training methods in merg-

ing scenarios (see Sec. V-B1) for three different traffic con-
ditions (see Sec. VI-A) on the basis of the metrics defined
in Sec. VI-C. The results have been shown in Table V. The
results clearly show that Obs off performs the best in terms
of successful merging maneuvers and collision rate.

These results can be attributed to the behavior learnt during
training with the inclusion of obstacle avoidance constraints.
With obstacle avoidance constraints enabled during training,
the ego vehicle becomes too reliant on these constraints to
steer it out of an impending collision state. This leads to
aggressive behavior during the evaluation of the policy where
the ego vehicle gets too close to the agents on the main lane
and then expects the other agent to yield. Moreover, over-
dependency on Obstacle avoidance constraints and close prox-
imity to non-cooperative agents that don’t yield culminates in
high number of collisions.

Obstacle avoidance constraints are meant to be use as a
safety precaution to assure obstacle avoidance and not as a
means to model interactions to decide if other agents yield
or not. Therefore, we train our final policy with obstacle
avoidance constraints disabled.

APPENDIX C

This section sheds insights on the various implementation
aspects of our method.

A. Intelligent Driver Model Parameters

A modification of the Intelligent Driver Model (IDM) was
implemented to achieve interaction-aware behavior for the
agents (Sec. IV-D1). However, the underlying model that
controls the longitudinal behavior of the agents is still IDM
which has been represented by eqn. 9.

ẋ = dx
dt = v

v̇ = dv
dt = a

(
1−

(
v
v0

)δ
−
(
s∗(v,∆v)

s

)2
)

with s∗ (v,∆v) = s0 + vT + v∆v
2
√
ab

(9)

where v0, s0, T, a, b and δ are constants. v0 represents the
desired velocity, s0 gives the desired minimum distance to the



TABLE IV
RESULTS FOR DIFFERENT TRAINING PROCEDURES EVALUATED FOR DIFFERENT SAMPLING DISTRIBUTIONS OF THE COOPERATIVENESS VARIABLE (ci)

Cooperative Mixed Non Cooperative
Success(%) Collision(%) Time-out(%) Success(%) Collision(%) Time-out(%) Success(%) Collision(%) Time-out(%)

ci ∼ U(0, 4) m 100.0 0.0 0.0 97.5 0.0 2.5 39.0 0.0 61.0
ci ∼ U(1, 4) m 99.5 0.0 0.5 86.5 11.5 2.0 79.75 15.25 5.0
ci ∼ U(2, 4) m 99.75 0.0 0.25 91.0 9.0 0.0 86.75 13.25 0.0

TABLE V
RESULTS FOR DIFFERENT TRAINING PROCEDURES WITH REGARDS TO OPERATIONAL STATUS OF OBSTACLE AVOIDANCE CONSTRAINTS

Cooperative Mixed Non Cooperative
Success(%) Collision(%) Time-out(%) Success(%) Collision(%) Time-out(%) Success(%) Collision(%) Time-out(%)

Obs on 70.0 29.5 0.5 42.25 57.5 0.25 0.0 100.0 0.0
Obs off 97.5 0.0 2.5 81.0 0.0 19.0 35.25 0.25 64.5

vehicle in front, T represents the minimum possible time to
the vehicle in front, a gives the maximum acceleration, b gives
the comfortable braking deceleration and δ is the acceleration
exponent. ∆v is the difference in velocities of the vehicle in
front and the ego vehicle. The value of these parameters have
been shown in Table VI.

TABLE VI
PARAMETERS FOR IDM

Parameter Value
v0 U(3, 4) m/s
s0 U(2, 3) m
T 0.5 s
a U(1, 2) m/s2

b U(−2,−1) m/s2
δ U(3, 4)

The values of the parameters have been chosen to make
sure there are no collisions among the agents while exhibiting
a diverse range of human behaviors by means of sampling.
These values result in dense traffic conditions which helps in
training and evaluating the efficacy of our proposed approach.

B. LMPCC weights

The weights for the eqn. 3 are manually tuned to ensure
proper tracking of the reference path. The weights have been
shown in Table VII.

TABLE VII
WEIGHTS FOR LMPCC

Weight Value
w1 10
w2 0.2
w3 20
w4 0.1
w5 10

C. Reward function parameters

The parameters of the reward function have been shown
in Table VIII. A high negative reward is assigned to the
ego vehicle in case of a collision or an infeasible solution

while a small negative reward is allocated to discourage close
movement with other agents.

TABLE VIII
REWARD FUNCTION CONSTANTS

Parameter Value
rinfeasible -150
rcollision -150
rnear -1.5


