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ABSTRACT
Real-world problems are often dependent on multiple data modal-
ities, making multimodal fusion essential for leveraging diverse
information sources. In high-stakes domains, such as in healthcare,
understanding how each modality contributes to the prediction
is critical to ensure trustworthy and interpretable AI models. We
present MultiFIX, an interpretability-driven multimodal data fusion
pipeline that explicitly engineers distinct features from different
modalities and combines them to make the final prediction. Initially,
only deep learning components are used to train a model from data.
The black-box (deep learning) components are subsequently either
explained using post-hoc methods such as Grad-CAM for images
or fully replaced by interpretable blocks, namely symbolic expres-
sions for tabular data, resulting in an explainable model. We study
the use of MultiFIX using several training strategies for feature
extraction and predictive modeling. Besides highlighting strengths
and weaknesses of MultiFIX, experiments on a variety of synthetic
datasets with varying degrees of interaction between modalities
demonstrate that MultiFIX can generate multimodal models that
can be used to accurately explain both the extracted features and
their integration without compromising predictive performance.

CCS CONCEPTS
• Computing methodologies→ Genetic programming; Learn-
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1 INTRODUCTION
Data availability is significantly expanding across numerous do-
mains, not only in volume but also in diversity, translating to a het-
erogeneous data landscape [2]. Contrary to the oftentimes unimodal
nature of Artificial Intelligence (AI) approaches, domain experts
rely on multiple data modalities in their decision-making processes.
For instance, in the healthcare domain, medical experts typically
consider medical imaging exams, demographics, blood analysis,
and further clinical information to make an informed decision. It is
known that Multimodal Machine Learning (ML) can outperform
single-modality approaches [15], offering increased robustness and
the ability to leverage complementary information [12].

Despite the state-of-the-art performance of Deep Neural Net-
works (DNNs) in various unimodal and multimodal tasks [26],
their opaque nature can present challenges in high-stakes domains,
where interpretability and trust are paramount. Thus, to be em-
ployed in real-world situations, AI frameworks must be human-
verifiable, and in some cases interpretable [17], considering not
only ethical but also legal and privacy aspects.

Interpretable multimodal approaches increase transparency, can
lead to knowledge discovery, and enable verifiability. Moreover,
these promote vital and constant interaction between AI and do-
main experts, interpreting how models work, and providing input
on if and how models should be adjusted [10]. Especially for predic-
tive models in several high-stakes fields, this is of key importance.

In this work, we demonstrate MultiFIX: a Multimodal Feature
engIneering approach to eXplainable AI. MultiFIX is a framework
that is aimed at interpretability through the discovery of key fea-
tures for different modalities, the combination of which is used to
make predictions. By providing explanations of the features and the
final predictions, MultiFIX provides a unique, novel approach to ex-
plainable multimodal AI. To develop MultiFIX models, the powerful
learning potential of Deep Learning (DL) and the interpretability
of symbolic expressions generated with Genetic Programming (GP)
are leveraged. The latter is used to create models that can readily
be analyzed and interpreted as a surrogate for the deep learning
model. Additionally, other modality-specific post-hoc explanation
techniques can be used to study model components in MultiFIX
- for instance, the use of Grad-CAM for image processing neural
networks.
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Additionally to the MultiFIX pipeline, a key contribution of this
paper is the examination of different training strategies. Prelimi-
nary work on MultiFIX [14] illustrates initial favorable outcomes in
multimodal integration, primarily using end-to-end training. While
end-to-end training has the potential to effectively leverage joint
optimization of all components in MultiFIX, the complexity of the
joint learning task may present certain limitations. We therefore
also consider sequential and hybrid training, in combination with
different pre-training procedures, providing flexibility in the most
suitable training strategy according to the nature of the problem
and the preferred architectural blocks in practice. This paper pro-
vides the first comprehensive analysis of the MultiFIX pipeline and
various training methods, making it the most complete and detailed
study on the subject. To demonstrate the versatility and potential
of MultiFIX, in this paper we perform an exploratory study on
synthetic problems with various degrees of dependence between
modalities that are representative of real-world scenarios.

The remainder of this paper is organized as follows: Section 2
reviews related work; Section 3 details the MultiFIX methodology
and experimental design; Section 4 presents the staged problems
and outcomes, namely the resulting interpretable models; Section
5 reflects a discussion on the exploratory study; and Section 6
concludes the present work with a discussion of future directions.

2 RELATEDWORK
We specifically focus on techniques that combine image and tabular
data - two modalities that are commonly incorporated in multi-
modal AI pipelines [21].

Multimodal learning methods are commonly categorized by fu-
sion strategies: early fusion, which concatenates input data before
feature extraction; intermediate fusion, which combines modality-
specific features after extraction; and late fusion, which aggregates
predictions from unimodal models [9, 22]. Late fusion is the dom-
inant strategy due to its simplicity and effectiveness in handling
heterogeneous data [21]. However, recent advancements in inter-
mediate fusion methods provide enhanced ways of capturing inter-
actions between modalities, especially with the development of DL
techniques for feature extraction [7].

Despite these advancements, most multimodal systems still lack
interpretability, a crucial aspect for building trust in AI. Recent lit-
erature highlights the importance of interpretability in multimodal
models, particularly in high-stakes sectors where transparency and
clarity on how the models work are critical to using them [19].
Current state-of-the-art literature on explainable multimodal ap-
proaches relies substantially on modality-specific post-hoc meth-
ods.

Post-hoc explainability methods for image data have been pri-
marily used in unimodal approaches, where the exclusive contri-
bution of the image is mapped to the prediction. Grad-CAM is
arguably the most-used method among gradient-based methods
that rely on the backpropagation process of Convolutional Neural
Networks (CNNs) to generate attention maps in the images [1].

The most common explainability method for tabular data anal-
ysis is the post-hoc use of SHAP values to analyze feature impor-
tance [1]. Another approach is GP, which can be used to evolve
higher-level features in the form of symbolic expressions [24, 27], or
to directly evolve prediction models that are fully white-box [3]. In

comparison to post-hoc methods like SHAP, GP directly generates
interpretable models without additional approximations, reducing
the risk of misleading explanations. In Evans et al. [5], GP is used to
generate compact symbolic expressions that are used as a post-hoc
method to approximate ML estimators without compromising the
predictive performance significantly.

Utilizing single modality, post-hoc, explainability methods, Chen
et al. [4] propose an explainable multimodal pipeline using an inter-
mediate fusion approach to provide prognostic predictions across
14 types of cancer. Specifically, they use attention mechanisms
for histology images and SHAP values for genomic data to find
correlations between input features and the target prediction.

Post hoc explanations are frequently chosen to explain black-
box models, but may provide misleading and unreliable explana-
tions [16]. Hence, Swamy et al. [23] describe an inherently inter-
pretable multimodal approach that indicates the cumulative con-
tributions of each modality to the prediction. Additionally, the
modularity of the pipeline allows multi-task predictions while han-
dling potentially missing modalities, due to its sequential training
strategy. However, the proposed pipeline does not include inter-
pretability on a feature extraction level, i.e., the feature contribu-
tions within each modality remain a black box, which arguably
limits explainability, including knowledge discovery.

In contrast to existing literature, MultiFIX introduces innovative
feature engineering interpretability with explicit contributions of
each modality to the final prediction. Specifically, we address two
major challenges: to incorporate inherently interpretable fusion
techniques within an intermediate fusion pipeline by using GP to
generate symbolic expressions; and to use sparse embedded feature
engineering to extract a narrow bottleneck of modality-specific
features that capture patterns that are potentially relevant to the
prediction.
3 METHODOLOGY
We describe the MultiFIX pipeline, including methods used and the
experimental setup. Additionally, we provide a general description
of the input data used.

3.1 MultiFIX: Multimodal Feature engIneering
for eXplainable AI

In MultiFIX, DL architectures are trained to generate black-box
models that are designed to learn representative, potentially com-
plex features from each modality. Whenever possible, these models
are replaced by GP-generated symbolic expressions that are inter-
pretable by design, and otherwise are explained using Grad-CAM
to generate visual explanations. While we use Grad-CAM in this
work, other image explainability methods could be used.

We demonstrate our pipeline using two data modalities: image
and tabular data. However, the modularity of the pipeline supports
straightforward integration of other data modalities by adding
modality-specific feature engineering blocks. An overview of Mul-
tiFIX is provided in Figure 1.

3.2 Feature Engineering Blocks
The structure of each feature engineering block is very similar,
regardless of the modality to be analyzed, comprising a DL archi-
tecture to process the input data and extract meaningful features.
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We introduce the concept of sparse feature engineering, where the
feature engineering bottleneck is deliberately restricted to a small
number of features (we use at most three in this paper), in order to
increase the chance of obtaining (easily) interpretable models.

For image data, we use a Convolutional Neural Network (CNN).
In this paper, we use a pre-trained Resnet [8], but the architec-
ture may be adjusted to suit specific needs or be optimized using
neural architecture search. Besides this, an autoencoder (AE) can
be trained (with the same architecture) and used as a pre-trained
image processing block in some training strategies.

For tabular data, we use a Multi-Layer Perceptron (MLP) with
three hidden layers, all of which are 128 nodes wide. Dropout and
batch normalization are used to prevent overfitting and promote
fast convergence.

3.3 Fusion Strategy
MultiFIX employs an intermediate fusion strategy to combine the
engineered features from eachmodality to make the final prediction.
However, the unique enforcement of a bottleneck with up to three
features per modality makes the fusion analysis simpler and, thus,
interpretability-focused.

The architecture used for the fusion block in this paper consists
of the same MLP architecture used for tabular processing. Here
also, alternative architectures could be used, or architecture search
could be applied.

3.4 Training Strategies
We study different training strategies with MultiFIX, to explore
the potential benefits of different strategies specific to different
types of problems and synergies between modalities. Additionally,
single-modality approaches were used as a baseline comparison, as
well as pre-trained blocks for the respective modalities.

Multimodal
Dataset

Image Data

Tabular Data
10 variables

between [0,1]

I

T

0

1

2. Inference Stage

I

T

GP

Grad-CAM

1. Training Stage

GP

0

1

Symbolic Expression

T

Symbolic Expression

I

T

Feature(s) extracted

from Image Data

Feature(s) extracted

from Tabular Data

Image Block

Tabular Block

Fusion Block

Figure 1: Overview of MultiFIX. Data passes into the feature
engineering blocks. Feature vectors I and T are concatenated
and passed to the fusion block to make the final prediction
in the Training Stage (top). In the Inference Stage, image
features are explained through Grad-CAM, and symbolic
expressions are obtained for both the tabular features and
the target prediction with GP-GOMEA, replacing their NN
counterparts.

Population size initially 64 (using IMS [25])
Number of generations 512

numeric [+, −, ∗, /, .2, .3, ]
Operators Boolean [==,≠,>,<, 𝐴𝑁𝐷,𝑂𝑅 ]

if-then-else
Maximum tree depth [2, 3]

Table 1: GP-GOMEA settings.

Six different training strategies were considered, each varying
either in pre-training weights for feature engineering blocks, se-
quential or parallel training, or partial temporary freezing of the
architectural blocks:

(1) End-to-end training (End): train the entire architecture simul-
taneously.

(2) Sequential training with AE weights (Seq AE): use encoder
weights from the trained AE in the image feature engineering
block; freeze the latter while training the tabular feature
engineering and the fusion blocks.

(3) Sequential training with AE weights and De-freezing (Seq AE
Temp Freeze): use encoder weights from the trained AE in
the image feature engineering block; freeze image block for
15 epochs while training remaining blocks and then train
the whole architecture simultaneously.

(4) Sequential training with single modality weights (Seq Single):
use weights from each single modality model for respective
feature engineering blocks; train fusion block sequentially,
while freezing the remaining blocks.

(5) Hybrid trainingwith AEweights (HybAE): use encoderweights
from the trained AE in the image feature engineering block;
train the whole architecture simultaneously using the pre-
trained block.

(6) Hybrid training with single modality weights (Hyb Single): use
weights for each single modality model for respective feature
engineering blocks; train whole architecture simultaneously
using the pre-trained blocks.

3.5 Interpretability Techniques
In the inference stage, the DL model blocks are either explained
using post-hoc explainable methods or replaced by a symbolic
expression obtained using inherently interpretable methods. For
images, Grad-CAM [20] leverages the gradient information from
convolutional layers to generate visualizations that portray which
parts of an image contribute (more) to a specific prediction. GP-
GOMEA [25] is amodel-based evolutionary algorithm for GP known
for its effectiveness in evolving small and potentially interpretable
symbolic expressions [13].We use a recent adaptation of GP-GOMEA
that allows the use of both numeric and Boolean operators, as well
as if-then-else statements [18].

The explainability method used for feature engineering blocks
depends on the nature of the data: Grad-CAM is used for images; GP-
GOMEA is used for tabular data. GP-GOMEA is also used to replace
the fusion block. Grad-CAM is applied to the activations from the
last residual convolutional block of the ResNet, as suggested in
guidelines [6]. For GP-GOMEA, we followed the settings described
in Table 1 for all experiments.
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3.6 Experimental Setup
The experiments were designed to evaluate the performance of the
MultiFIX pipeline and the interpretability of the resulting models
for different multimodal datasets and training strategies. Single-
modality performance is used as a baseline to study whether im-
provements are obtained when data modalities are combined.

A standard experimental setup is used for all experiments, fol-
lowing the configurations described in Table 2. We use 5-fold cross-
validation to assess the generalization capability of the models and
a stratified 80/20 data split between train and validation sets. The
Adam optimizer [11] is used with the Cross-Entropy (CE) or Binary
Cross-Entropy (BCE) loss, depending on the nature of the target
label. Early stopping is used with a patience of 5 epochs, with a
maximum training period of 75 epochs. The batch size is 32. Hyper-
Parameter Optimization (HPO) is performed using a grid-search
strategy to choose the optimal Learning Rate, Weight Decay, and
number of extracted features (up to three) for the image and tabu-
lar inputs (Image Bottleneck and Tabular Bottleneck, respectively).
The optimal configuration can be unimodal if a bottleneck of zero
features for either one of the modalities is chosen. This configura-
tion will, however, differ from the unimodal baseline, since it also
includes the fusion block, in this case combining features from a
single modality.

For each of the studied problems, all training strategies men-
tioned in Subsection 3.4 are used, in addition to single modality
approaches, resulting in eight trained models, all following the
same protocol. The autoencoder, needed for three out of the six
training strategies, is trained following the configuration of Table 2.
The trained models are evaluated using Balanced Accuracy (BAcc)
for performance purposes, with loss and AUC-ROC metrics also
being evaluated and available in the Supplementary Material. The
final interpretable models are evaluated considering two aspects:
predictive performance and interpretability. For the former, we
compare BAcc values of the DL model with the interpretable model.
Additionally, we compare the performance of the studied training
strategies using statistical tests on cross-validation results. For each
pair of strategies, we performed a paired t-test to determine if the
performance differences were statistically significant. Following
common statistical practice, we set the significance level at 𝛼 = 0.05
and applied Bonferroni correction to control for inflated Type I error
due to multiple pairwise comparisons. Interpretability is evaluated
through a manual analysis.

AE settings
AE

Settings

Optimiser Adam
Loss Function MSE
Learning Rate 0.0001
No. of Epochs 100

MultiFIX Settings
MultiFIX
Settings

Optimiser Adam
Loss Function CE or BCE
No. of Epochs 75
Early Stopping Patience 5 epochs

Grid-Search
HPO
Grid

Learning Rate [1e-3, 1e-4, 1e-5]
Weight Decay [1e-3, 1e-4, 0]
Image Bottleneck [0, 1, 2, 3]
Tabular Bottleneck [0, 1, 2, 3]

Table 2: Settings used in the MultiFIX pipeline. The best
parameters are chosen according to the loss (lowest average
± standard deviation over the 5 folds).

3.7 Dataset
We created a synthetic dataset with images and tabular data. For
the imaging modality, 1,000 samples were automatically generated,
each with a size of 200 × 200 pixels. Each image can contain the
following shapes: a circle, a rectangle and/or a triangle. Each shape
can either be present or absent in the image, with the possibility of
having none or up to three shapes. None of the shapes can appear
twice in the same sample, and all are generated randomly with a 50%
chance, in different sizes and colors. Random noise was introduced
to all images by mutating the color of 10,000 random pixels. An
illustration of possible samples is presented in Figure 2. Tabular data
consists of 1,000 samples with ten numerical features, uniformly
sampled between 0 and 1, that are then used in each problem to
synthetically engineer tabular features that combine two or more
of the numerical input features.

4 EXPERIMENTS AND RESULTS
In this section, we present the results of training the proposed
MultiFIX pipeline using various training strategies for five synthetic
problems that feature different dependencies between modalities.

Each subsection pertains to one of the proposed problems, in-
cluding: the problem description; DL performance results for single
modality approaches and six multimodal approaches with different
training strategies; and the explainable model for the best perform-
ing strategy.

4.1 AND Problem
4.1.1 Problem Description. This problem comprises the binary op-
eration AND between the presence of a circle (𝑐𝑖𝑟𝑐𝑙𝑒) in the image
data, and the tabular feature 𝑥1 > 𝑥2. The target label is thus the out-
put of 𝐴𝑁𝐷 (𝑐𝑖𝑟𝑐𝑙𝑒, 𝑥1 > 𝑥2). This problem shows a moderate level
of dependence between the two modalities to predict the target,
since the target label 1 is only possible if both engineered features
are present, but the target label 0 correlates with any feature being
0.

4.1.2 DL Performance Results. Figure 3 presents the performance
results for the AND Problem using a single modality and Multi-
FIX with different training strategies. Statistical testing highlights
that all multimodal approaches significantly outperform single
modality approaches. The multimodal approaches perform gener-
ally similarly from a statistical significance perspective, excluding
the comparison between end-to-end and sequential AE approaches,
in which the former is significantly better than the latter.

4.1.3 Interpretable Model. Figure 3(a) illustrates the resulting inter-
pretable model for the AND problem using the end-to-end training
strategy, which obtained the highest average BAcc results. With the
interpretable model, one can analyze the prediction in a block-by-
block fashion: the image visual explanations along with the feature
values indicate a high correlation between 𝐼2 and the presence of
a circle, denoted by 𝐼𝐺𝑇 ; the tabular feature 𝑇1 is obtained with a
piecewise symbolic expression that inversely correlates with the
required feature 𝑥1 > 𝑥2; the prediction 𝑌𝑝𝑟𝑒𝑑 is obtained with a
symbolic expression with a binary output that is 1 generally for
very high values of 𝐼2 and low values of 𝑇1, excluding feature 𝐼1,
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Figure 2: Representative samples for the image modality.

Image Only Tabular Only End-to-End Hybrid AE Hybrid Single Sequential AE Sequential AE Defreeze Sequential Single

Image Only 0.607 ± 0.041 not significant worse worse worse worse worse worse
Tabular Only not significant 0.693 ± 0.034 worse worse worse worse worse worse
End-to-End better better 0.939 ± 0.029 not significant not significant better not significant not significant
Hybrid AE better better not significant 0.925 ± 0.022 not significant not significant not significant not significant
Hybrid Single better better not significant not significant 0.923 ± 0.014 not significant not significant not significant
Sequential AE better better worse not significant not significant 0.881 ± 0.032 not significant not significant
Sequential AE Defreeze better better not significant not significant not significant not significant 0.914 ± 0.038 not significant
Sequential Single better better not significant not significant not significant not significant not significant 0.901 ± 0.029

Table 3: AND Problem - BAcc Results with Statistical Testing: average BAcc and standard deviation over 5 folds are highlighted
in blue; each row indicates statistical significance comparison with the remaining approaches: better, worse or not significant.

which is not relevant for the model. The truth table presented bi-
narizes the feature values according to each explained extracted
feature and the corresponding output. Although the model does not
include the intended modality feature values, the final prediction
is correct. The model found, while not appearing as anticipated, is
an equivalent model, since the induced tabular feature is just the
complement of the true hidden tabular feature. Only by explaining
all components in MultiFIX can we actually see this (and realize
that such equivalent reasonings exist). The predictive power of the
interpretable model is very similar to the black-box (DL) model,
with a difference of 0.006 in BAcc.

4.2 XOR Problem
4.2.1 Problem Description. This problem comprises the binary op-
eration XOR between the presence of a circle (𝑐𝑖𝑟𝑐𝑙𝑒) in the image
data, and the tabular feature 𝑥1 > 𝑥2. The target label is thus the
output of 𝑋𝑂𝑅(𝑐𝑖𝑟𝑐𝑙𝑒, 𝑥1 > 𝑥2). The XOR problem reflects an ex-
treme dependence between the two modalities since neither the
image feature nor the tabular feature alone gives any information
about the target label.

4.2.2 DL Performance Results. Figure 4 presents the performance
results for the XOR Problem using single modality learning and
MultiFIX with different training strategies. Statistical testing high-
lights that all multimodal approaches significantly outperform sin-
gle modality approaches. Although, similarly to the AND problem,
the performance values between multimodal approaches are mostly
similar from a statistical perspective, their spread is larger, with the
hybrid single training strategy leading to the highest average BAcc
values.

4.2.3 Interpretable Model. Figure 3(b) illustrates the interpretable
model for the XOR problem using the hybrid single training strategy.
The image extracted features and respective explanations indicate
a high correlation between 𝐼2 and the presence of a circle (𝐼𝐺𝑇 ); the
tabular feature𝑇1 is obtained with a piecewise symbolic expression
inversely correlated with 𝑥1 > 𝑥2 (𝑇𝐺𝑇 ); 𝑌𝑝𝑟𝑒𝑑 is obtained with a
symbolic expression that outputs 1 if the binarization of each useful
feature using different thresholds is equal, and 0 otherwise. The
truth table presented binarizes the feature values according to each

evolved threshold (0.3 for the tabular feature and 0.7 for the image
feature) and the corresponding prediction. Again, the complete
model is correct, but the intermediate features are inverted, which
leads to an equivalent model, as we can now see with MultiFIX.
The predictive power of the interpretable model is higher than the
black-box (DL) model, with an increase of 0.035 in BAcc.

4.3 Multifeature Problem
4.3.1 ProblemDescription. In this problem, complexity is increased
by scaling the number of required features per modality. It entails
the following relationship:

𝑂𝑅(𝐴𝑁𝐷 (𝑐𝑖𝑟𝑐𝑙𝑒, 𝑥1 > 𝑥2), 𝐴𝑁𝐷 (!𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒, 𝑥3 > 𝑥4)) (1)

Predictions of whether or not a circle and whether or not a trian-
gle are in the image are now needed as separate features. For the
tabular data, two features are also required: 𝑥1 > 𝑥2 and 𝑥3 > 𝑥4.
The Multifeature Problem reflects a pairwise dependence between
features from each modality. While each AND operation is par-
tially dependent on both modalities, the real added difficulty of this
problem comes from the need to learn each intermediate feature
individually.

4.3.2 DL Performance Results. Figure 5 presents the performance
results for the Multifeature Problem using single modality learning
andMultiFIXwith different training strategies. Average BAcc values
and respective standard deviations show worse performance with
single modality approaches and better performance for end-to-end
and hybrid training approaches. Statistical testing, however, does
not show significant differences between most of the approaches,
excluding the comparison between the image approach and the
sequential training approach using single modality weights. This
can be justified by the extremely high variance of all multimodal
approaches across different folds, and the low sample size that
can reduce the sensitivity of the statistical test, despite the clear
separation in BAcc ranges for different approaches.

4.3.3 Interpretable Model. Figure 4(a) illustrates the resulting in-
terpretable model for the Multifeature problem using the hybrid
training strategy with encoder weights for the pre-trained image
feature engineering block, which obtained the highest average
performance over the remaining approaches. The inherent added
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Image Only Tabular Only End-to-End Hybrid AE Hybrid Single Sequential AE Sequential AE Defreeze Sequential Single

Image Only 0.502 ± 0.027 not significant worse worse worse worse worse worse
Tabular Only not significant 0.552 ± 0.020 worse worse worse worse worse worse
End-to-End better better 0.899 ± 0.023 not significant not significant not significant not significant not significant
Hybrid AE better better not significant 0.902 ± 0.020 not significant not significant not significant not significant
Hybrid Single better better not significant not significant 0.918 ± 0.017 not significant not significant not significant
Sequential AE better better not significant not significant not significant 0.812 ± 0.031 not significant not significant
Sequential AE Defreeze better better not significant not significant not significant not significant 0.894 ± 0.046 not significant
Sequential Single better better not significant not significant not significant not significant not significant 0.766 ± 0.041

Table 4: XOR Problem - BAcc Results with Statistical Testing: average BAcc and standard deviation over 5 folds are highlighted
in blue; each row indicates statistical significance comparison with the remaining approaches: better, worse or not significant.
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Grad-CAM
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0
1
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0
0
0
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0
0
1
1

0
1
0
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0
0
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(a) AND Problem End-to-End Training

Explainable Model - XOR Problem
Grad-CAM

GP

CNN

DL Model: BAcc = 0.940
Explainable Model: BAcc = 0.975

GP

Hybrid Single Training Strategy

0
0
1
1

1
0
1
0

0
1
1
0

0
0
1
1

0
1
0
1

0
1
1
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(b) XOR Problem Hybrid Single Training

Figure 3: Interpretable Models: Grad-CAM heatmaps explain the image input contributions for each extracted feature. GP-
GOMEA symbolic expressions explain the tabular features and the fusion of both modalities to make the prediction. Learned
features and predictions are compared to their Ground Truth (GT) counterparts.

Image Only Tabular Only End-to-End Hybrid AE Hybrid Single Sequential AE Sequential AE Defreeze Sequential Single

Image Only 0.655 ± 0.006 not significant not significant not significant not significant not significant not significant worse
Tabular Only not significant 0.674 ± 0.028 not significant not significant not significant not significant not significant not significant
End-to-End not significant not significant 0.798 ± 0.044 not significant not significant not significant not significant not significant
Hybrid AE not significant not significant not significant 0.799 ± 0.054 not significant not significant not significant not significant
Hybrid Single not significant not significant not significant not significant 0.798 ± 0.058 not significant not significant not significant
Sequential AE not significant not significant not significant not significant not significant 0.703 ± 0.046 not significant not significant
Sequential AE Defreeze not significant not significant not significant not significant not significant not significant 0.766 ± 0.077 not significant
Sequential Single better not significant not significant not significant not significant not significant not significant 0.743 ± 0.018

Table 5: Multifeature Problem - BAcc Results with Statistical Testing: average BAcc and standard deviation over 5 folds are
highlighted in blue; each row indicates statistical significance comparison with the remaining approaches: better, worse or not
significant.

complexity of this problem is reflected in the resulting interpretable
model. In the image feature engineering block, complex features
were learned. Naively, one would hope that each extracted feature
would exclusively relate to one of the shapes of interest (circle and
triangle). However, the resulting intermediate features, although
comprising relevant information, are not as simple to analyze. Plot-
ting samples with different image characteristics in a 2D space with
𝐼1 and 𝐼2 on the axes revealed that lower values of 𝐼1 are correlated
with the presence of a triangle and the absence of a circle in the
image; very high values of 𝐼2 (approximately higher than 0.8) are
correlated with the absence of both shapes in the image; samples
in which 𝐼1 > 𝐼2 are correlated with the presence of a circle in the

image; when a circle is present, the presence or absence of a triangle
is not well distinguished (which indicates samples for which the
model fails). The reason for this happening is that the intermediate
image features are set to be real-valued, making it possible to map
multiple features that are essentially binary to subranges of one
real-valued feature. This analysis is corroborated with the analyzed
plot in the Supplementary Material. The fusion symbolic expression
with the highest performance is a tree with depth three, while for
the problems so far, a tree with depth two sufficed. This increases
complexity and arguably decreases interpretability. Despite being
still transparent and readable, the obtained expression is not easy
to interpret. The condition is related to whether there is a circle in
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the image and the then-branch is related to the relation between
𝑥1 and 𝑥2. The else-branch is related to the relation between 𝑥3
and 𝑥4, as well as whether there is a triangle in the image, which
signals correct logic in terms of features involved. The tabular fea-
ture engineering block reveals symbolic expressions that accurately
correlate to the two required features: 𝑇1 is inversely correlated
with 𝑥1 > 𝑥2, presenting values larger than 0.4 when 𝑥1 < 𝑥2, and
values smaller or equal to 0.4 otherwise; 𝑇2 and 𝑇3 are correlated
and inversely correlated (respectively) with 𝑥3 > 𝑥4, using different
evolved binarization thresholds. Lastly, the predictive power of the
interpretable model is higher than the black-box (DL) model, with
an increase of 0.020 in BAcc.

4.4 Multiclass Problem
4.4.1 Problem Description. The last problem has a multiclass target
with four possible classes rather than a binary target. The classes
relate to combinations of the intermediate features of each modality
(presence of circle in an image, and 𝑥1 > 𝑥2), as demonstrated in
Table 6. Despite each modality being correlated with the endpoint,
optimal predictions need joint information from both inputs.

𝑓 𝑡𝑐𝑖𝑟𝑐𝑙𝑒 𝑓 𝑡𝑥1>𝑥2 𝑌𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠

0 0 0
0 1 1
1 0 2
1 1 3

Table 6: Multiclass Problem using 𝑓 𝑡𝑐𝑖𝑟𝑐𝑙𝑒 and 𝑓 𝑡𝑥1>𝑥2 .

4.4.2 DL Performance Results. In figure 7 the performance results
for the Multiclass Problem using single modality learning and Mul-
tiFIX with different training strategies are shown. Statistical testing
highlights that all multimodal approaches significantly outperform
single modality approaches, excluding the sequential training ap-
proach using AE weights in the image block. Similarly to the AND
and XOR problems, the different multimodal approaches are close
in performance from a statistical significance perspective, although
the hybrid single training strategy achieves higher average BAcc
values.

4.4.3 Interpretable Model. Figure 4(b) illustrates the resulting in-
terpretable model for theMulticlass problem using the hybrid single
training strategy. The image visual explanations along with the
feature values indicate a high correlation between 𝐼1 and the ab-
sence of a circle, which can be inferred from a very low feature
value and a low-contribution heatmap when a circle is present; the
tabular feature𝑇1 is obtained with a piecewise symbolic expression
that directly correlates with the engineered feature 𝑥1 > 𝑥2; the
prediction 𝑌𝑝𝑟𝑒𝑑 is calculated with a piecewise symbolic expression
with the condition 𝐼1 < 0.5 (is a circle present in the image), and
with two possible subtrees that use 𝑇1 to assign the values 2 or 3, if
a circle is in the image, and 0 or 1, if a circle is absent in the image.
The predictive power of the interpretable model is substantially
higher than the black-box (DL) model, with an increase of 0.075 in
BAcc.

5 DISCUSSION
MultiFIX is a unique approach to explainable multimodal learning
that enforces a small number of features to be learned from differ-
ent modalities. The strengths of DL and GP are leveraged to learn

interpretable models that integrate symbolic expressions for both
interpretable tabular feature extraction and interpretable fusion
of different modalities, and image explanation techniques such as
Grad-CAM. Our results showcase the potential for developing mod-
els that are interpretable by design without sacrificing performance,
specifically in problems that include tabular data or combine het-
erogeneous data modalities. This work contributes to the growing
need for explainable multimodal methods in high-stakes domains,
such as healthcare.

In comparison to post-hoc methods like SHAP, GP-GOMEA
directly generates interpretable models without additional approxi-
mations, reducing the risk of misleading explanations. Furthermore,
the incorporation of interpretability at the feature level enables di-
rectly understanding which variables are relevant for the task at
hand. Lastly, our experiments indicate that end-to-end and hybrid
training achieve better performance than sequential training ap-
proaches. However, statistical testing indicates that most of the
studied training approaches obtain similar performance. Thus, the
choice of training strategy should rely on the specifications of
the problem. For instance, one may have a powerful feature engi-
neering block for one of the modalities that can be used either as
pre-training weights or as a sequential block. Additionally, in many
multimodal problems, there are different amounts of samples per
modality, which usually translates in removing samples from the
oversampled modality. Using hybrid and sequential training, the
total amount of samples can be leveraged to learn more accurate
feature engineering blocks.

While providing a unique step toward interpretable multimodal
learning, the way we have trained and used MutiFIX so far has
clear limitations as well. Firstly, we have here considered a limited
set of problems with a limited number of modalities. While this
is important to be able to fundamentally study the possibilities
and limitations of MultiFIX when the ground truth is known, the
added value offered byMultiFIXmust be corroborated on real-world
datasets, which we intend to do in the near future.

Whenmore than one complex feature is needed, as demonstrated
in the Multifeature Problem, the complexity of the intermediate im-
age features can hinder interpretability. Moreover, requiring more
features in the bottleneck creates possibilities to obtain different,
but equivalent models, making it not always easy to interpret what
the model is doing, as at first it may be counterintuitive. Forcing
the image block to engineer simpler features can reduce the over-
all complexity and increase interpretability. More generally, the
penalization of complexity as an additional objective is likely ad-
vantageous. For the discovery of symbolic expressions, using a
multi-objective variant of GP-GOMEA could help to find models
of different sizes, some of which are more easily interpretable in
their own right, or may provide hints as to what slightly larger (and
potentially more accurate) expressions are capable of modeling.

The use of Grad-CAM to explain image feature extraction high-
lights regions used by the DL model that contribute to the engi-
neered feature. However, the post-hoc nature of Grad-CAM limits
the symbolic meaning that can be associated with each feature.
Having inherently interpretable image blocks would be highly ben-
eficial from an interpretability perspective. Lastly, the interpretable
models generated by MultiFIX, although readable and transpar-
ent, can further benefit from user-friendly presentations that can
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Image Only Tabular Only End-to-End Hybrid AE Hybrid Single Sequential AE Sequential AE Defreeze Sequential Single

Image Only 0.485 ± 0.004 not significant worse worse worse not significant worse worse
Tabular Only not significant 0.453 ± 0.014 worse worse worse worse worse worse
End-to-End better better 0.823 ± 0.038 not significant not significant not significant not significant not significant
Hybrid AE better better not significant 0.858 ± 0.036 not significant not significant not significant not significant
Hybrid Single better better not significant not significant 0.919 ± 0.007 not significant not significant not significant
Sequential AE not significant better not significant not significant not significant 0.691 ± 0.061 not significant not significant
Sequential AE Defreeze better better not significant not significant not significant not significant 0.849 ± 0.053 not significant
Sequential Single better better not significant not significant not significant not significant not significant 0.742 ± 0.055

Table 7: Multiclass Problem - BAcc Results with Statistical Testing: average BAcc and standard deviation over 5 folds are
highlighted in blue; each row indicates statistical significance comparison with the remaining approaches: better, worse or not
significant.

Explainable Model - Multifeature Problem
Grad-CAM

GP

CNN

DL Model: BAcc = 0.864
Explainable Model: BAcc = 0.884

GP

Hybrid AE Training Strategy

(a) Multifeature Problem Hybrid AE Training

Explainable Model - Multiclass Problem
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Explainable Model: BAcc = 0.995
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Hybrid Single Training Strategy
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0
1
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1
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0
1
0
1

0
1
2
3

(b) Multiclass Problem Hybrid Single Training

Figure 4: Interpretable Models: Grad-CAM heatmaps explain the image input contributions for each extracted feature. GP-
GOMEA symbolic expressions explain the tabular features and the fusion of both modalities to make the prediction. Learned
features and predictions are compared to their GT counterparts.

enhance overall interpretability. This includes further visual expla-
nations, approximations, and simplifications for the user, as well as
ways to perform interactive and sample-based analyses.

6 CONCLUSION
In this paper, we present the first comprehensive experimental work
on MultiFIX, a novel multimodal pipeline to obtain multimodal,
interpretable models. The uniqueness of MultiFIX is reflected in its
interpretability-focused design by forcing a limited number of fea-
tures per modality to be automatically engineered and subsequently
used to make predictions. DL can be used to perform feature engi-
neering, whereas GP-GOMEA can be used to evolve interpretable
symbolic expressions for tabular engineered features and for the
final fusion. Modality-specific post-hoc explainability techniques
can be used, such as Grad-CAM for images to explain the overall
model in a component-wise fashion.

Considering the different multimodal training strategies that we
have studied, there seems to be no statistically significant difference

in performance for the created benchmark problems. The choice of
the most suitable training strategy is up to the specifications of the
task at hand. In general, our results demonstrated that MultiFIX
can accurately capture multimodal relationships and that learned
models have high potential for interpretability.

Despite these advancements, MultiFIX needs further improve-
ments, predominantly interpretability enhancements that minimize
complexity and promote inherently interpretablemethods for image
features, in combination with additional interactive visualization
tools to intuitively clarify the mechanics of the learned models. Fur-
thermore, we aim to evaluate our pipeline on real-world datasets
that involve more modalities as well as more complex intermodal
relationships.

In conclusion, we believe that we have demonstrated the feasibil-
ity and potential to perform interpretable multimodal learning by
leveraging a unique feature-inducing architecture combined with
inherently interpretable methods across heterogeneous data types
with MultiFIX.
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