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ABSTRACT

In this article, the authors investigate the global and exponential dissipativity of quaternion-valued inertial neural networks
(QVINNS) with mixed time-varying delays, without utilizing order reduction of inertial neural networks (INNs) and quaternion
separation methods. Using innovative Lyapunov functional and inequality techniques, several fruitful sufficient criteria with
multi-parameters are derived for QVINNS to ensure global dissipativity (GD), which generalizes and refines existing results. This
article estimates the attractive sets and exponentially attractive sets globally. Unlike previous studies in which quaternion-valued
neural networks (QVNNSs) are separated into real-valued neural networks (RVNNs) and INNs are reduced into first-order sys-
tems, the foundation of this article rests upon approaches that diverge from the traditional methods of separation and order
reduction. Unlike existing results on the GD of traditional neural networks (NNs) with bounded discrete time delays, this arti-
cle focuses on INNs with unbounded discrete time-varying delays, which is more realistic because neurons consider their entire
past rather than partial history within bounded time delays. In general, in exponential stability, synchronization, and dissipativity
results, researchers typically impose an upper bound on the rate of convergence 4, but in the present article, the authors inves-
tigate dissipativity criteria without such a restriction on the convergence rate in global exponential dissipativity (GED). Finally,
to demonstrate the efficiency of our theoretical work, three consecutive examples are proposed to illustrate the effectiveness of
the obtained results. The first two examples verify the proposed results, and the third one, related to QVNNS, redemonstrates the
efficiency of storing true color image patterns.

1 | Introduction longed deceleration when contrasted with advancements in the

real and complex fields. This has been a primary factor in the slow
In 1853, W.R. Hamilton first introduced quaternions [1], asubset  development of QVNNs. Fortunately, as modern mathematics
of Clifford algebra different from the real and complex domains. has advanced and expanded, the applications of quaternions in
One of its remarkable properties is that the law of commuta-  varjous fields have been discovered. Due to their great potential,
tivity does not apply to quaternion multiplication. Due to the  research on quaternions has gained considerable attention. For
non-commutativity inherent in quaternion algebra, progress in  example, they have promising applications in three-dimensional
research within the quaternion domain has experienced a pro-  ind forecasting [2], color face recognition [3], image compres-
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sion [4], and quantum mechanics [5]. Quaternions are partic-
ularly useful in 3D and 4D applications. One such example
is their utilization in succinctly expressing spatial rotations
within the context of 3D geometrical affine transformations and
translations [6].

Keeping these aspects in mind, researchers have been exploring
the dynamic behavior of QVNNS. Initially, QVNNs were sepa-
rated into four equivalent real-valued neural networks (RVNNs)
or two complex-valued neural networks (CVNNs) to facilitate
their study, leading to significant findings [7-11], among oth-
ers. However, in the separation method, authors need to han-
dle four RVNNs instead of a single quaternion-valued system
(QVS), making the results more complex and computationally
intensive. Additionally, this approach increases the original sys-
tem’s dimensions, complicating mathematical analysis. In practi-
cal applications, multi-dimensional data are frequently addressed
in their original forms, and this issue cannot be efficiently
resolved by processing multi-dimensional input through multi-
ple real-valued neurons.

Nowadays, the separation technique is considered outdated. A
complex-valued neuron can process two-dimensional data as a
whole, and similarly, researchers have proposed using quaternion
numbers in neural networks to describe multi-dimensional infor-
mation, such as color and 3D coordinates, through quaternion
neurons. The direct quaternion-based mathematical approach
for QVNNSs has gained increasing popularity. It is essential to
recognize that utilizing the direct quaternion approach provides
clear advantages over the decomposition approach when han-
dling QVNNSs. This is primarily due to its superior capability
to retain the inherent properties of neural networks. A grow-
ing trend among researchers involves applying the direct quater-
nion approach, leading to significant advancements in address-
ing QVNNSs and yielding remarkable results [12-15]. Motivated
by this perspective, the authors of the present article discuss the
dynamical behavior of QVNNs using the fully quaternion-based
approach.

The introduction of inductors into neural circuits by Babcock
and Westervelt in 1986 [16] led to the proposal of a class of NNs
called INNs. These INNs exhibit a second-order derivative of
state variables. Furthermore, an INN with time delay was intro-
duced by Babcock and Westervelt, considering that neurons have
afinite frequency response or a transfer characteristic with a time
delay [17]. The authors observed that inertial components in elec-
tronic NNs might result in complex phenomena such as instabil-
ity, spontaneous oscillations, ringing around fixed positions, and
chaotic behavior. It is evident that INN systems differ from con-
ventional NN systems, which are defined by first-order differen-
tial equations, making the analysis of their dynamical behaviors
more complicated and challenging.

The inertial term can be introduced into neural systems with a
wide range of biological backgrounds. For instance, by adding
inductance, the membrane can exhibit electrical tuning and fil-
tering activities, enabling the quasi-active membrane activity of
neurons to be modelled [18]. The axon of the squid demonstrates
phenomenological inductance [19], and circuits incorporating
inductance can replicate key features of neurons, such as the

quasi-active membrane and the axon-like behavior observed in
squids [20]. Compared to first-order NNs, the dynamical behav-
ior of INNs is generally more complex and challenging to analyze.
In some cases, the presence of the inertial term can even lead
to instability [21, 22]. Early research revealed that inertial terms
could introduce chaos and bifurcation, highlighting the impor-
tance of considering their incorporation into artificial NNs.

Itis essential to note that utilizing the direct quaternion approach
provides significant advantages when handling QVNNs com-
pared to the decomposition approach, primarily due to its supe-
rior ability to retain the inherent properties of NNs. A grow-
ing trend among researchers involves applying the direct quater-
nion approach, leading to significant advancements in addressing
QVNNs and achieving remarkable results [12-15]. Motivated by
these findings, this study investigates the dynamical behavior of
QVINNS using the fully quaternion approach.

This version improves clarity, eliminates redundancy, and
ensures grammatical accuracy. To analyze the dynamic behavior
of various kinds of INNS, the researchers frequently use the vari-
able substitution approach by which second-order systems are
reduced to first-order systems as [12, 23-33]. The obtained crite-
ria are also effective, but they are more complex and challenging
to implement due to the increased number of variables. Nowa-
days, the authors frequently use the non-reduction approach to
study the INNs, which keeps the originality of the system and
makes the analysis approach easy and find tremendous results
[34-36]. Keeping these things in mind for INNs, the current
study has employed the without-reduction order technique for
QVINNS.

In the year 1970s, Willems proposed dissipativity since it has been
used in numerous areas, including chaos, robust control, state
estimation, and stability theory. Certainly, dissipativity can be
viewed as a generalization or extension of Lyapunov stability, as it
encompasses not only the stability of equilibrium points but also
a broader range of dynamical behaviors [37]. The most signifi-
cant advantage of the dissipative theory is that it can be used to
discuss complicated systems and offer a reliable framework for
stability analysis. One must identify the attractive global set in
the subject of dissipativity, an estimated range of periodic states.
The equilibrium point and chaos may be calculated once the set
has been found. Many researchers are interested in the dissipativ-
ity analysis of NNs, and many significant conclusions have been
obtained [7, 12, 38—41]. Unfortunately, these works are mainly
based on traditional NNs. To date, Still, up to now, there are very
few results of GD on INNs [12, 42-44]. The authors of the current
article directed their attention toward the INNs and considered
the GD of INNs with time delays in the quaternion domain.

Due to the limited signal transmission rate and the finite switch-
ing rates of neuron amplifiers, time delays should be considered
in NNs and electronic circuits, as they might cause performance
degradation [45, 46]. Recent achievements in investigating the
dynamical behavior of QVNNs and INNs with time delays can be
found in the research articles [7, 12, 38—44, 47]. It is important
to note that the above research primarily considers discrete-time
delays as bounded delays. When time delays are finite, this sug-
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gests thata neuron’s current dynamics are only partially related to
its past. We understand that a neuron’s current actions are linked
to its prior states. As a result, one should consider time delays in
NNs to be unbounded, which can more accurately reflect how
neurons behave in human brains [48]. However, it should be
noted that unbounded time-varying delays without a separation
approach and GED with an unbounded rate of convergence factor
have not yet been investigated in the context of QVINNSs. On the
other hand, considering the existence of numerous parallel path-
ways characterized by varying axon sizes and lengths, it becomes
more reasonable to incorporate continuously distributed delays
into neural network models [10, 49, 50]. This choice aligns with
the intricate nature of biological neural networks, where infor-
mation transmission occurs through diverse pathways with dis-
tinct temporal characteristics. The introduction of continuously
distributed delays allows for a more accurate representation of
the heterogeneous delays in these parallel pathways, enhancing
the model’s realism and capturing the complexities inherent in
biological neural systems. Inspired by the above discussion, the
main contribution of this article is to study the GD of QVINNs
with unbounded discrete and distributed time delays as outlined
below.

1. Contrary to different results on the GD of traditional
RVNNs, CVNNSs, and QVNNSs [3, 40, 46, 51], the present
article deals with the GD and the attractive global set for
QVINNs and the concerned mathematical model is the
more general complex model.

2. Unlike the common method that used order reduction
and quaternion separation approach for QVNNs and
QVINNS [8-10, 26, 28, 51, 52], this article is based on the
non-separation non-reduction and methods and is reduc-
ing the computation complexity and making the analysis
approach easy.

3. Unlike the bounded time-varying delays for QVNNs and
QVINNS [2, 8-12, 26, 28, 38, 39, 51, 52], the present arti-
cle is based on the unbounded discrete time-varying delays,
which relate the to all of the previous states of neurons’
rather than the bounded time delays which partially relates
of the neurons dynamics history.

4. To guarantee the GD and GED of the respective mod-
els, which encompass certain recent findings as specific
instances and possess broader applicability. Some valid
requirements are derived using testable algebraic inequal-
ities.

5. The numerical simulation validates the effectiveness of
quaternion domain neural networks in successfully storing
and retrieving true color images.

The remainder of this paper can be outlined as follows: In
Section 2, we introduce the QVINNS system along with pertinent
definitions and lemmas. The primary findings, encompassing GD
and GD, are expounded upon in Section 3. Section 4 showcases
numerous numerical simulations that corroborate the principal
outcomes. Finally, Section 5 depicts a brief conclusion and out-
lines potential avenues for future research.

Notations: Throughout this paper, the following notation is
employed: I signifies the set {1,2,3, ... ,n}, while R, C, and
Q correspond to the real, complex, and quaternion skew field,
respectively. Additionally, R* denotes the set of positive real
numbers, and R” denotes n-dimensional real vectors, while Q"
represents n-dimensional quaternion-valued vectors. A quater-
nion number can be expressed as g = g® +q'i + ¢’ +¢¥X € Q,
where gk, ¢, ¢/, and ¢X are real, i, j, and k are imaginary
units, and the modulus |q| = \/(qR)2 + (g2 + (¢7)? + (g¥)2.
For a quaternion-valued vector g = (q;, 4,, 45, ... ,¢,) € Q" with
g =qf+4q/i+q +qf, the vector norm is defined as ||g|| =

V@2 + @) + ()2 + (@)% The notation  ¢((—0,01, Q")
represents the set of all continuous functions mapping from
(=00,0] to Q™.

2 | Model Description

In this article, consider the class of QVINNs with unbounded
time-varying delays as follows:

d’r,(1) dr (1) -
i —ﬁlr,(r)+j=21,a,_/}3(r,<t>>
+ D b, (r,(t = 7,(1)) 6))
J=1

n t
+ Zd(,/ ()hj(rj(s))ds +u ), 1el
J=1 t—o (1

J

2
where r,(t) is the state of the ith neurons, Lt'z(’) is the iner-

tial terms, «,, §, € R, a,, bu’ and dl] € Q are weight connection
matrices respectively, 5,0, g0, and hy(.) are the activation func-
tions, 7,(1), o, denotes the delays from j-th neurons at a time ¢, u,(¢)

is the external input.
In this article, the following are taken into account:

Lemmal. ([12]).
holds:

M x+y=x+yIDHxy=yx.

For any x,y € Q, the following properties

Lemma 2. ([12]).
€xx + %y}.

If x,y€e Q,and ¢ € R*, then yx +y x <

Assumption 1. The discrete time-varying delays 7(t),) €1
are unbounded, differentiable and satisfy TN <r<], where 7
is constant.

Assumption 2. For any je€I,Vs,s, €Q, there exist
non-negative constants M,L and K, the nonlinear activation
functions are satisfied as

|fj(51) - fj(sz)l < ]\4]|S1 = 5,1
|g1(51) - gj(sz)l < LJ|31 = 5,1,
|hj(51) - hj(sz)l < K_]|S1 = 8,
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Assumption 3. For any ;€ I,Vs,s, €Q, there exist
non-negative constants M, L,, and, K, such that the nonlinear
activation functions are satisfied as

I£,(51) = £, (5] < M5y = 55,
lg,(51) = 8,(52) < L5, — 5,775,

h,(s1) = hy(s)l <K s, = s,

where 7,(1) is the time delay in the system (1) and a > 0 is
sufficiently large number.

Definition 1. If there is a compact set Y ¢ Q", for V ¥(s),
Y (s)eQ"-Y for s€&(-o0,t)], 3T >0 such that
r(t, 1y, ¥, ¥*) C Y for t > T +1, then QVINNs (1) is referred
to as a GD system. The set Y is the globally attractive set
(GAS) of (1). A set Y is called to be the positive invariant set
if for V W(s),¥*(s) € Y for s € (—o,1y] which implies that
r(t, ty, ¥, ¥*) C Y for ¢ > t,.

Definition 2. Let Y be a GAS of the QVINNs model (1). Then
the model (1) is said to be a globally exponentially dissipative sys-
tem if there exists a compactset Y c Q", for all ¥(s), ¥*(s) € Q" —
Y, s € (—o0,1,], there exist constants K(¥,¥*) > 0, 4> 0 such
that inf oy {llr(t, 1o, ¥, W) —u||lu* € Y} < K(P, PF)e 4010,
Meanwhile, the set Y is a globally exponential attractive set of (1).

Remark 1. Most of the results regarding GD and stability for
QVINNs and QVNNS rely on the method of quaternion separa-
tion, as seen in [7-11, 51, 52]. As a result, the number of variables
and dimensions increases, leading to higher computational com-
plexity. Instead of using this technique, we propose to perform
the analysis directly, which better fits the requirements of actual
applications while preserving the originality of the addressed
systems.

Remark 2. 1t's worth highlighting that Assumption 3 covers a
range of time delay types as specific instances. For instance, it
encompasses constant discrete delays as discussed in references
like [26, 28], proportional delays as explored in [38], and bounded
discrete-time delays, as examined in works such as [12, 23,2629,
34, 51, 52]. This characteristic renders our model more com-
prehensive and adaptable. Conversely, investigating GED com-
monly poses challenges when involving unbounded time delays.
However, this article introduces an innovative assumption for
the activation function g,(-), which simplifies addressing this
challenge.

Remark 3. According to the majority of the existing research,
the most popular approach for analyzing the dynamic char-
acteristics of INNs is transforming the INNs into first-order
differential equations by appropriate selection of variable substi-
tutions. However, this work directly analyzes the GD of the pro-
posed QVINNS s by utilizing a novel Lyapunov functional without
converting the suggested system into a conventional one. The
considered Lyapunov functional, unlike the usual Lyapunov
functional, directly includes both the state variables and their
derivatives. This approach is more effective for examining the
asymptotic characteristics of different INNs as it minimizes
unnecessary computational steps and simplifies the theoretical
analysis.

3 | Main Results

This section will analyze GD results by employing Lyapunov
theory along with various analytic techniques, which are alterna-
tives to the conventional reduced order and separation technique.

Theorem 1. Presume Assumptions (1) and (2), there exist
8, >0 and the system (I), such that X, <0, Y, <0, 22 <XY

1
i€l, where Z =6—-a-p+1 Yl=2—2(ll+€5+€+
3

> ( a,a, + ’szd> and X, =eq+ &+, M2 - 26, +

(=1
(es+eg)lb, > L} )

2
nelMl +n€2Ml + =)

1 = o, -
" (Zzal]alj + ZK2d,d,+
Then QVINN model (1) is a global dissipative system, and the
set Y, = {r(t) € Q7 (0r,() < ST, 1€ I}
attractive set and a positively invariant set of QVINNs (1) where
2
K= min1§l$n{ % - X,} and u(t) = 21 1, Ou, (D).

is a global

Proof.  To establish the proof for this theorem, let us employ a
Lyapunov functional in the following manner:

Vo = Zaronn+ L RO+ r0) (0 +r0)
=1 =

n n

(e +eylb,
+3Y / — L E (r()g,(r(s)ds
=1 =1 J1-7,(1) 1-7

non 0 1
+ 2 )2, / / 7,(9)r,(9)dsd9
—o,(t) J1+s

=1 =1

n 0 ¢ _
" ;1 -/—T Aeylfl(r’(s))fl(rt(S))dsde

Taking derivative along Equation (1), one can get

2

dV o 5 -
(’ ) Za F(Or(0) + Zﬁlr,(t)i'l(t) + Z(f,(:) + FO)F0) + r,(0)

(e3+ e4)|bU|

N Z(r O+ +1)+ TS a0

1=1)=1

(8,0 )g,(ry (1) = ()t = 7))g, (r, (¢ = 7, () = £,(1))

n o n t
+ Zz2py<aj(t)7](t)rj(t) —(1-6,()) /M (I)Fj(s)rj(s)ds)

1=1y=1
+ X or f O ) = Y, / T () f(r (9))ds,
=1 =1 =7
% < Y SEWOr@ + Y EFORD + Y FOFD) +F0Or, 1)
=1 =1 =1
+ D (0F,(0) + T, (07, (1) + 2{ — a7, (1) = BT (1)
=1 =1

+ 2 1, 0)a, + Y8, — 7,(0O)b,
J=1 J=1

n o _
+ Z / hj(rj(s))d,st + ﬂ,(l)}(fl(t) +r,(1)
J=1J1=0)(®)
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+ ) 0+ 7,(:)){—a,r‘,(t) = Br O+ Y a,f,r, )
=1 J=1

n n t
+ ;bygj(rj(z - ’r](l‘))); /H (t)h,(rj(s))dljds + u,(z)}

+e >| ,|
+nylf (r N, (r, <r))+22 L (1)g (1)

1=1)=1

+222p,}<a 07, (0r,(1) = (1 = 6,(1)) / (o) (s)ds>

1=1)=1

= DN (e3 + €01, 178, (t = 7,(0)) X g, (1 (t = 7, (D)),

=1 =1

dVv (1)
dt

< D ROR® + Y8500 + DO 1) + F(0Or,0)
=1 =1 =1
+ D (0F,(0) + T, (07,(1) + Z(—za,?,(t)r,(t) — a,7,(Or,(1)
=1 =1
- ﬂl;l(t)i'l - Zﬂl;l(t)rl(t) - al;l(t)i'l(t) - ﬂl;,(t)rl(t))

+ 20 X (50,0, + Fo0)a 0,0 )

=1 =1

+ 2 X (7,0, @0, + Fo(0)a 0,0 )
1=1j=1

+ 20 X (5,0, = 5,00b, 7,0 + 70,8, (1, ¢ = ,0)
1=1)=1

+ 2 ( (r)(t = 7, (0)b,r (1) +7,(1)b,g,(r,(t — 7,(1)))

n n t t
+ <;I(I)du / h,(rj(s)ds + / (r (s)dsdyr,(t)ds
t—0,(1) 1=0,(1)

]

+ 2 (R0 + 7,050 ) + X 700 +a,0r,0)

1 =1

o "2 (e +e4)| ,]|
+ Y F s+ XY S g (08, (1)

=1 1=1 =1

n t
+ 2p,,<a_,(z>7_,(z)r_,(r) —(1-6,1) / 7,(s>r,<s)ds)
J=1 1—0,(1)

- <e3 +eg)|b, 1, (r (1 — 7,(0))g, ()t — 7,(1))).

On behalf of Lemma 2, one can get

()
T =1(5 —a,— B, + Di,0)r, (z)+;(5 —a, — B, + DF,(0F, ()

+ 2(2 2a,)F,(DF, (1) + Z( =27, (Or, (1)

=1 =

+ ZZ (elf,(r O),(r, ) + —r (1), a,,r,(z))

1=1)=1

+ ZZ(ezf,('" ®) X f,(r,(®) + r (Daya,r (t))

=1 =1

t
h(r)(s)ds + / (r (s)dsd,r,(nds
=0, (1)

n o n

+ (egg,(r,(t — 1, ())b, b, g,(r,(t — T,(1) + }E(r)rym)
3

=1 =1

n n

+ (e@,(r,(t—r,(z)))&,b,,g,(r,(r 50 + = r<r>r <r>)

J=

Il
—
—

n n

+ <€5?,(t)r‘,(t) + éﬁ,(r)u,(t)) + Z <e67,(t)r,(t) + éﬁ,(r)u,(t))

1 =1

BN

+ey)lb, 2
+ Y oy [ OV () + 2;,2:, : )’ 2,(r,(0)g,(r, (1)
=1 1=1)=
- (3 + €4)1b, 128, (r,(t = 7, (1)), (r,(t = 7,(1))
1=1)=1

n n t _ O'J(l) _ _
+ / e7h,(r(s)h,(r,(s)ds + —i‘,(t)dl]d,]i‘l(t)>
1=1,=1 =0, (1) €7
n on t _ O'J(l) ~ _
+ / egh, (r/(s)h(r(s)ds + —r,)d, d,r (1)
1=1,=1 =0, (1) €8

t
+ 2pl,<oj(t)7,(t)r,(t> -1 -6,0) / FJ(S)rj(s)ds).
=1 1=0,(1)

Following Assumptions 1 and 2 and rearranging the terms, one
can get

< Y6 =, — B+ VRO + D26, — a, = B, + D)7, (1)

=1 =1

+ D 2= 20 (OF 0+ Y (<2B)F,(0r, (1)
=1 =1

+2 ) (elMIZFJ(t)rJ(t) + i?l(t)a,ﬁ,]f,(z)>

1=1)=1

B

+ 23 (eM; r(t))r(t)+ (e, a,,r,(f)>
1,

(e
<

n n

+ e L7 (1 -1, (t))b g b7yt = 7,(0) + —r (OF, (1)>

Il
—
I
-

J

B

+
M=

€4 LIT,(t = 7,(0)b, byr,(t = 7,(1)) + r(t)r(t)>

I
—
Il
—

J

Bl

+ 3 (e (080 + la,(z)u,(r)>
€5

=N

= |

n

+ (eéa(t)r,(t) + éa,w,m) + DTy, M7, (0)r (1)

=1

=N

n n

(e3+eplby*
+ ?T)’ L7, (0)r, (1)

n o n '
+ / e7K I (s)r (s)ds + 25 (1)d, dljrl(t)
1=1,=1 t—q,(t)

t
+ </ eSK r,(s) X r/(s)ds + ¥ (1)d, d,]rl(t)>
1 1—0,(t)

Bl
3

t
2py\ o1, () - 0.5/ 7 (s)r,(s)ds |,
1=1)=1 t—o,(1)
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Select p, = (e; + eS)KJZ, and e* = <l +1

€5 €

), we obtain

%t(t) < Z =, — B+ 1))

+ 3
M= =

(6, —a, = B, + 1)F, (1), (1)

=1

3

n
+ <2—2(x,+—+65
= €3

B

=1

+ Vaa + 2k 3 ) eora
Zla%/au ; y Cu%y 7, ()7 (1)

~

n

20, + ne; Ml2 + nele2

(e5+¢€,)|b, 1> L]
1-7

< iz, (?l(t)r,(t) + F,(t)f,(t)) + Zn:Yfl(t)r}(t)
=1

=1

n
€+ — + T}/,Ml2 -
€4

+
i

B

Lwg + 24
+ Zzal']alj-'-e_s y l_]+

J=1

7O + ) €U, (u,(0).
=1

+ ZIXLF,(t)rL(t) + Z‘e*ﬁl(t)ul(z)

r, ? < 2 <r )+ %"ﬁ)) <" ®+ %"z(t)>

n ZZ n
+ ; <X,— Ti)Fl(t)rl(t)+ ;e*ﬁ,(t)u,(t) (3)

n 22
or, dl;t(t) < 2 { (X - 71)1‘ Or,®) + "u,(u (t)}

or, T —kllr@®11> + e*Ju@)|I> < 0 )

% 2
for [|r(r)||? > <O,

Thatis, r(f) € Y. Thisimplies thatif ¥(s), ¥*(s) € Y, then r(r) C
Y, fort > t,, which means that the set Y is a positive invariant set
of (1). When W(s), ¥*(s) € Y,,thereisaT > Osuchthatr(t) C Y,
for t > T +t,. This means Y, is a global attractive set, and then
the QVINN system is a GD system, Y, is a global attractive set,
and it is a positively invariant set of (1). m]

Corollary 1. If d, =0 in system (1) and presume Assump-

tions 1 and 2, there exist 6,>0 such that X, <0, Y, <0,

ZZ<X,Yl,zeI where Z, =6, — a, —ﬂ +1, Y, =2-2a,+¢5+
and X, =€+ = +77,M} = 2f;, +nelM2

1
(e3+€y)lb, I° LZ)

+ =17 —a, au
nele + Z/=1<Zz a,a, + (1—%)

Then, the QVINN model (1) is a global dissipative system, and
theset Y, = {r(t) € QIR0 < ST0u0). 1€ 1} is a global
attractive set and a positively invariant set of QVINNS (1)

Corollary 2. Presume Assumptions 1 and 2, and if the time
delay is bounded, that is,7 (1) <7 and () <1, where 7> 0.
Then there exist 6,>0 and the systems (1), such that X, <
0, Y, <0, ZZ<4XYzeI where Z, =6, —a,— f,+1,Y,=2—
20, + €5+ = +Z ( a,a, + /szd> and X, =€, +1+

Ty, M? - Zﬁl +ne,M? + ne, M? + Zj=l<_ aa, + - sz d,+
(€3+64)|bﬂ|zL,z )

1-7)

The system (1) is global dissipative under the same conditions of the
Theorem 1.

Corollary 3. Presume Assumptions 1 and 2, such that, if 6,
=a,+p,—1and Y,<0,Z, <0, then the system (1) is global

dissipative and the set Y, = {r(z) e Q"|r,(r, (1) < <m )u

Ou,(), 1€ } is the global attractive set.

Theorem 2. Followed from Assumptions 1 and 3, the
considered system is GED for A <o such that X, <0, le <

4XY,1€1, where Z,=A+6+1-a,—-p, Y,=A4+2-

20, + L+es+ T (La,q,+ 2d,d,), X, = 4G+ 1) - 25, +
52 2

ne;M? + ne,M? + = +e6+2 ( a,a, +2(L1’_|i;‘ ’dl/dll>

where o is the 4suﬁ‘iczent large positive number. Then
QVINN (1) is a global dissipative system, and the set

Y: = {r(t) € QR0 < ST Mu 0, 1€ 1} is a global

attractive set and a positively invariant set of QVINN model (1),
2

where k; = minls:gn{ 27 - X,

Proof. We can consider the Lyapunov functional as follows:

V() = Y87 00" + Z (r',(t) + rl(t)) (F@0) +r,@0)e"
=1 =

1o 2eL2|b, 2
+ r(s)r (s)e“ (5)
;Jz:’ 1-1) ;—fj(z)j !
0 t
+ 222/),] / / 7 (9r (9)e* dsd9
=1 =1 —o,(t) J 1+s

Taking derivative along Equation (1), we have

dv ()

yrae 2 (/1517,(t)r,(t) + 8,7, (Dr (1) + 5,7,(t)r',(t)>e"

=1

+ 2/1((?,(0 + F,(z))) (A0 + ()
=1

+ D F0) + F OO + r(1)e

=1

+2 (70 +7.0) (7.0 + 1, 0) )
non 2eL2|b
+Y Y —— T (F(Or (e =7t = 7,1)

1=1)=1

(= 7)1 — ()X (’”) " ZZsz

1=1)=1

<”’(”7/<’>r,<t>e" —a-am [ <,f./<s>r.,<S>e“”’S>
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n

n

= (;1(5, + DR (Or,(t) + (A + 8, + i (O)r,(1) ‘Z—‘t/ < DU(CAG, + 1) = 2B)F,()r, (1) + (A+1+ 8, — &, — BF(D)r, (1)
= =1
+ (A+ 5, + 1)7,(1)"‘,(0 + A+ 2)?,(1‘)/",([))6“ +(A+1+ 51 - = ﬂl);L(t)i.l(t) +(A+2 —2<x,);l(l)i’l(l))eh
n n 2=
4y {—ai, 0= 7.0+ 3,005, + 2}]21, (elM 7 (0O, (0) + + r [(Na,a, i (z))
=1 J=1
i N - + M? (t) (t)+ —r,(Ha,a, LU))
+ D gt =1, (O)b, + Z/ hj(rj(s))duds+ﬁl(t)} ;;(fz r(or r a,a,r
J=1 ’ J=1 1=0,(1)
n + ZZ<63LZFJ(1 ()b, b,r,(t — 7,(1)e” 279 + l?,(z)f,(z))
X (7,(1) + r,(0)eM + Y F(0) + 7,(1) =1=1 s
=1 n n
n n + z <e4szf/(t - ‘;/(t))b byr,(t—1 (t))e*Zfrr o 4 7,(t)r,(t)>e/“
{—a,f,(r) = Br 0+ Y a, £,r,) + D b,e,(r,(t = 7,(0) =1=1
J=1 J=1 n
0 + (esr ®)i,(1) + u (D, (t)>
+Y / dyhy(r,(s)ds +u, (t)} -
=1 J1-0; (1) n
= . + <e6r W)+ = u (Du, (r)> 22 ’) 7 (0)r (e’
non 2L |b =1 =1,=1
+ 2121 = (r (Or, (0" = F,(t = 7, (D), (1 = 7,(1) s .
= + / &7 K7 (s)r,(s)ds + L d,,d, 7, (0)
n on i=1=1 t—aj(t) ’ €7
% (1- T.J(,)))e/l(r—r,(r))> + ZZZP’J non . pu
== + / g K27 (s)r (s)ds + LF,(0d, d,r ,(r))
P =1 =1 t=0,(1) / €3
<6,(t)7,(t)r,(t)e’“ -1 -6,0) / 7,(S)r,(S)e“ds>, 0o
1=0,(1) - 2eL?|b, |7t = 7, () (1 = (1)
n 1=1)=1
((/1(51 +1) =287, (0r,() + (A+6,+ 1 — a, — B)F,()r,(D) n :
=1 + 2p,j(a/(r)7/(z)rj(z)e“ -05 / FJ(s)r](s)e“ds)
=1 =1 1—0,(1)
+A+6,+1—a —por,@)F M)+ (A+6,+1— 2a,)?l(t)r'l(t))e’“ '
non . Since “:j;f—i’j,‘)? = ¢7472) <1, choose p, = (¢; +€g)K?, and € =
+ 20 X (50,003, 7.0 + o 0)a, 1,0, ) Max (& ¢,)
1=1)=1
+ 20 X (50,00 X 81,0 + 7.0 £, 00 ) d V(’) (446, +1-a,~ ) (Fr0 +E0RD) )
=1 =1 =1
+ (g](r (t = 7,00y (1) + 7. (Db, 8 (1, (t — T (r)))) + 2 (A8, + 1) = 2B, + ne; M} + ne, M}
=1=1 =1
w o n (1 2eLbP o
) (800 = 500D, 0 + 7,08, 5,7, ~ 5,0 ) T et ;(5“0% T aon T o
n n Gy A+2-2
+ z(u OF () + 7, (Du (t)) 3 (@00 + F(0u,(0) ¢ ronn + ;( TaTluT L T
=1 =1
n 1 _
n 1 2eL2|b, | + Z( a,, + = d d, >>e“f,(r)f,(r)
+ ﬁ <r Or, (e =7, — 7, (0)r,(t — 7,(1) ANe
1=1)=1 n
. +y (el + %)e"ﬁ,(r)u,(t)
x (1 —f_,(z))em*fz(f))) ZZ(r (d, / " h,(r,(s)ds =LATS e
=1)=1 9
t t A = < T e
+ / iy (rs)dsd, r (ds ) + ZZ(}‘ (0yd, / (1, (s)ds > {Zl(’l(’)’l(’) +HORO) + XHORO
t=0,(1) =1,=1 o)1) =
t non — .—
+ / by (ry(s)dsd, .05 ) + Y 2, (6,07, Wr,(De* + X O +e ”l(t)"'(’)}
1=0,(1) 1=1)=1 (8)
u Z V4
' =" Y,(',(t)+ - ,(t))(',(r>+ - ,(r))
—a- 6](1))/ FJ(s)rj(s)e“ds) ‘ Z‘{ R A AN
r—(r/(t)
z? —
Now by using Lemma 2 and Assumptions 1 and 3, one can have (X - 7, )r Or,(6) + €7u (O, (t)}
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n ZZ
or, ? <eM 2 { <X - Y)r ®)r, (1) + €*u, (), (t)} 9

dv(t
f 0 < (rlr O + e @I?) <0 (10)
For||r(1)||? > < ”“(’)”2, that is, r(r) € Y,. From Equation (10),
one has V(t)<V(t0) then from Equation (5), we have
2 8, (1) < MV (1) < eV (1)

Let§ = min,.,, M(¥,¥*)=1sup, ., V() then

inf {[Ir(t) = = |1} < llr(2) - O < M (¥, PHe )1 > 1

reY. 2

Based on the definition provided in Definition 2, it can be
deduced that the system described by Equation (1) qualifies as
a global exponential dissipative system, and the set Y7 is a global
exponentially attractive set. m]

Corollary 4. Followed from Assumptions 1 and 3, the consid-
ered system is GED without distributive delay term for A < o such
that X, <0, Z*<4X)Y, 1€, whereZ=A+5,+1—al—ﬁl,

1
Y, =2+2-2a,+ = +e5+2 aalJ,X—/l(5,+1)—2ﬁ,+n
2€LIZ|bU|z

ey M} +ne, M} + = + e+ X ( a,a, + == ), where o is
the sufficient large positive number. Then QVINN (1) is a
global dissipative system, and the set Y= {r(z) e Q"|r,
®rm < 6—E(t)u (), 1€l is a global attractive set and a
positively mvarlant set of QVINN model (1) without distributive
delay.

Corollary 5. Followed from Assumptions 1 and 3,
the considered system (1) is GED, for A>0 such that
X, <0, ZZ<4XLY,,zeI where Z, = A+ 5, +1-a,~f,, ¥, =
A+2-20+ = - tes+ Z_ o4 X, = A6, + 1) — 2ﬂ,+n€1M12

ZG(LI‘Z_'f';'Z ) and Y* = {r(t) c
Q"|r,(t)r (1) S %El(z)u,(z) el } is a global attractive set, which

is a positively invariant set of QVINN model (1).

5 —
+ne, M} + = +e6+2 <6 a,a, +

Corollary 6. Followed from Assumptions 1 and 2, if
6,=(A+1-a,—-p)and X, <0,Y, <0, then the system (1) is

{rveQ o
)u ®Ou, (), 1€l } is the global attractive set.

global dissipative system and the set Y =
r0 < (o

min, g, [X,|
Remark 4. In many studies, the focus has been on exponential
stability and synchronization [24, 34, 44, 53], where researchers
have commonly imposed a bound on the rate of convergence
denoted by A. Specifically, they consider 4 € (0, 1), indicating that
a lower convergence rate corresponds to a slower stabilization
speed. However, the authors of the present article deviate from
this convention by eliminating the restriction on the convergence
rate. Instead, they have derived criteria that allow researchers to
choose any large value for A without jeopardizing the validity of
the results. This departure offers flexibility in selecting higher
values for 4 and provides potential benefits in terms of stabiliza-

tion speed. By removing the constraint on 4, the authors have
expanded the range of possibilities and opened up new avenues
for research in the field of stability and synchronization. This
approach allows researchers to explore scenarios with faster con-
vergence rates, potentially leading to more efficient and practical
applications in various domains.

Remark 5. Our results yield interesting and significant impli-
cations. Specifically, when the external inputs are set to zero
(u,(1) = 0), and the parameters of the system satisfy the condi-
tions outlined in Theorem 1, it can be concluded that the equi-
librium point r = 0 of the QVNN model (1) is globally asymptoti-
cally stable. This finding implies that under these circumstances,
the system will converge to the equilibrium point for any ini-
tial condition. Furthermore, if the system parameters fulfill the
conditions specified in Theorem 2, the equilibrium point r = 0
exhibits global exponential stability. This means that not only
does the system converge to the equilibrium point, but it does
so at an exponential rate, ensuring faster and more robust sta-
bilization. Hence, this article proposes a systematic method for
examining the Lyapunov stability of QVNNs. By identifying the
conditions for global asymptotic and exponential stability, the
authors offer a valuable approach to analyzing and understand-
ing the stability properties of QVNN models. These results have
practical implications and contribute to the advancement of sta-
bility analysis in the field of NNs.

Remark 6. This article introduces a novel perspective by con-
sidering the dissipativity of QVINNS, representing a broader con-
cept of stability beyond the traditional Lyapunov stability. Unlike
Lyapunov stability, dissipativity focuses on the dynamics of the
entire system rather than solely on equilibrium points. It consid-
ers the behavior of the system’s orbits, which may not necessarily
converge to equilibrium points in some instances. Furthermore,
dissipativity is applicable even in situations where certain net-
works do not possess equilibrium points at all. This character-
istic significantly broadens the scope of applicability for dissipa-
tivity compared to traditional stability analysis. By incorporat-
ing dissipativity analysis, the article expands the understanding
and evaluation of stability in QVINNS, considering the system
dynamics beyond equilibrium points. This approach offers valu-
able insights and a more comprehensive understanding of the
behavior and properties of QVINNS.

Remark 7. In addition to dissipativity analysis, this article
presents a detailed estimation of the global attractive set for
QVINNSs. This estimation is highly valuable as it simplifies the
study of QVNN dynamics to a significant extent. It enables
researchers to investigate the dynamics within the identified
global attractive set. The concept of the global attractive set, as
explained by [54], encompasses all equilibria, periodic solutions,
and chaos attractors that exist within the QVNN system. By con-
fining the analysis to this attractive set, researchers can com-
prehensively understand the system’s dynamics without need-
ing to explore regions outside this set. Consequently, the article
provides an effective and practical approach to examining the
dynamics of QVNNs. Researchers can concentrate their efforts
on understanding and analyzing the behaviors occurring within
the GAS.
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Remark 8. The proof derivation process in Theorems 1 and 2
is relatively straightforward due to the utilization of the direct
method. This approach involves the application of two inequal-
ities and standard operations with real numbers. By employing
this direct method, the proof’s complexity is significantly reduced
compared to the separation technique. One notable advantage of
the direct method is that it avoids decomposing the quaternion
system into four real-valued systems. This decomposition pro-
cess is typically required when utilizing the separation technique,
which increases the computational complexity of the analysis. By
circumventing this decomposition step, the direct method offers
a more streamlined and efficient approach to proving the desired
results. The simplicity and computational efficiency of the direct
method make it an attractive choice for analyzing the stability
and dissipative properties of QVINNs. By minimizing complex-
ity and reducing computational burden, this method allows for
more efficient analysis and facilitates the practical application of
the derived results.

Remark 9. Up to this point, numerous outcomes have been
obtained regarding the GD of QVNNSs. These outcomes have
been established for scenarios involving either constant delay or
bounded delays, as referenced in [7, 12, 40, 51, 52, 55]. In contrast
to these existing studies, the present article focuses on the GD
of QVNNSs with inertial terms. Specifically, it considers QVNNs
with unbounded time delays and employs a non-separation,
non-reduction order approach that is more realistic and practical.

Remark 10. Based on the conditions outlined in Theorems 1
and 2 and Corollaries 1-6, it can be concluded that the zero solu-
tion of the model described by Equation (1), with u,(¢) = u,(t) =
0, will demonstrate both global attractiveness and global expo-
nential attractiveness, respectively.

4 | Numerical Examples

Example 1. The QVINNs with time delays in a two-dimen
sional setting are to be thought of as

@

0.3

0.2 1

o
a
o
<)
o
a

Yo |
o
o
a
<)
o
o
o
o

0.3

0.2 i

0.1 I I I I I I I I I
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 006 0.08 0.1 0.12

FIGURE1 | Phase plotofstate variables (a) 7, 7R and (b) ], ! of the

system (12). [Colour figure can be viewed at wileyonlinelibrary.com]

d*r () _ 4o
dr? 'odt

n
S
J=1

1
-0, (t

= Br )+ Y a, f(s,0) + Y b8, (s, = 7,(1))
J=1 J=1

h(r(s)ds+u@), 1€1
%

(12)

where the parametric values are @, = 10,a, = 11,4, = 15,4, =
16,6, =12, 6, =15y, =7, =05, ¢, =6, =€; =€, = €5 = €5 =
e, =€ ==1,f, = f, = ; tanh(r(t)), g, = g, = ; tanh((®)), h,
hy = tanh(r(t)), 7,(t) = 7,(t) = %, u,(t) = 0.1sin(t) + 0.6sin(t)i —
1.2sin(t)j + 0.2cos(t)k, u,(t) = 1.7sin(t) — 0.5sin(t)i + 0.7sin(t)j
— 0.4cos(t)k

Now, consider the weight connection matrices as

(., = 0.5+1.2i—04j+0.6k 0.6+0.9i+0.6j+k
227 11409 —-0.5j +0.8k 0.7—-12i—0.9j +0.5k )’

(Bl = 0.84i—-09j—05k 09-1.1i—j+0.1k
227 \0.7-08i+1.1j—12k 1-05i—14j—k )’

@ =~ 0.25—-0.2i +0.3j +0.12k 0.1 —0.3i —0.5j — 0.1k
227\ 0154025 —02j—03k —0.140.2i—04j—05k)"

Casel. When distributive delays are considered, the model
becomes more general and complex. In the context of neural
networks, distributive delays refer to delays that are not confined
to a specific connection but spread out or distributed across
the network. This more comprehensive model accounts for
a broader range of temporal interactions within the system,
making it more applicable to real-world scenarios where delays
are not instantaneous. In summary, while the model with
distributive delays is more general and realistic, it is also more
complex, requiring advanced mathematical techniques for anal-
ysis and interpretation. Then, by simple computations, one can
get Li=L,=M,=M,=3K=K,=1r=3¢"=2 k=
1.0936 and Z,=-12<0,Y; =-10.118, X; = —15.32571.
It is obvious that Z?=144<Y,X, =155065 also

0.3

= 01F

0.3

0.2 i

01 I I I I
-0.05 0 0.05 » 0.1 0.15 0.2

()
FIGURE2 | Phase plotofstate variables (c) !, ! and (d) ], r of the
system (12). [Colour figure can be viewed at wileyonlinelibrary.com]
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Z,=-11<0,Y, =-10.9312, X, = —13.8787, and therefore,
222 =121 < Y,X, = 151.7120. Hence, Theorem 1 is satisfied,
our considered system (12) is globally dissipative, and the set
Y, = {r®).r,0) € Qllr,0|l <1.819, ||r,()] <2.6326} is a
GAS and a positive invariant set of (12). For the initial conditions
{¥,(5), ¥, (s), P (5), ¥,(s)} = {0.1,0.1,-0.8,0.3},

CaseIl. When contemplating the scenario where d, =0, it
implies that there are no distributive delays in the considered
model. This condition simplifies the model by eliminating the
contribution of distributive delays between the nodes. Then,
by simple computations, one can get L, =L, =M, =M, =

ST=3.6" =2 k=1432and Z, = -12<0,Y; = -1026, X, =

rit(t), T3 (t)

FIGURE3 | Timeresponse ofstate variables (a) ¥, rX and (b) r{, r] of
the system (12). [Colour figure can be viewed at wileyonlinelibrary.com]

(a)
0.6 T T T
ri(t)
r3(t)
504 J
»-\.Ez
) .
=
-
ok +
. . . . . .
0 5 10 15 20 25 30 35 40 45 50
t
('i’)

0.6

5 (b), T ()

FIGURE4 | Time response of state variables (a) r{,rJ and (b) r&, r&
of the system (12). [Colour figure can be viewed at wileyonlinelibrary.
com]

—15.4675. It is obvious that Z? = 144 < Y, X; = 158.6965 also
Z,=-11<0,Y, =111, X, = —=14.0475, and therefore, Z; =
121 < Y, X, = 155.927. Hence, Corollary 1 is satisfied, our con-
sidered system (12) is globally dissipative, and the set Y, =
{r(@).ry(1) € Q*[lIr (1| <1.5899, |Iry(1)]] <2.2516} is a GAS
and a positive invariant set of (12). For the initial conditions
[¥,(5), W,(5), ¥} (5), W5(s)} = {0.1,0.1,~0.8,0.3}.

Figures 1 and 2 show the phase trajectories of the system (12),
and Figures 3 and 4 depict the time changes of the state variables
r (1), r,(¢). Figures 5 and 6 show the global attractiveness of the
zero solution for the Equation (12), which also validates the accu-
racy of Remark 10.

05 @ ;
;vN 0
i
205 .
i
4 s s s s s
0 5 10 15 20 25 30
t
b’
05 ®) ;
ri(t)
T3 (t)
= o0
=
=705 .
4 s s s s s
0 5 10 15 20 25 30
t
FIGURES5 | Time response of statevariables(a) rX, rX and (b) r{, r! of
the system (12) with J %, JX, J] and J] = 0. [Colour figure can be viewed
at wileyonlinelibrary.com]
1 © ‘
= 05 .
=
T of
05 s s s s s
0 5 10 15 20 25 30
t
1 @ ‘
rif(t)
_ ()
= 05 k ]
Mo
-
05 s s s s s
0 5 10 15 20 25 30
t
FIGURE6 | Time response of state variables (c) r{,r and (d) rf, rX
of the system (12) with J/,J;,JK and J¥ = 0. [Colour figure can be

viewed at wileyonlinelibrary.com]

10 of 16

Mathematical Methods in the Applied Sciences, 2025

85U0| 7 SUOWILIOD B8O 3|edt dde ay) Ag peusenob aJe s3jofie O ‘SN 0 SaIN 1o} Akeiq1T3UIIUO A8|IA UO (SUOIIPUOD-PUB-SUISY/W0D" A3 | 1M AR 1 [u[UO//StY) SUORIPUOD Pue SWie | 8U1 88S *[5202/S0/T0] Uo AriqiTauliuo AIM 1ea ASRAIIN oIUYoe L AQ 9E60T BWIW/Z00T OT/I0p/W0D A3 (1M Areiq BuUljuo//Sdiy Woiy papeojumod ‘0 9Ly T660T


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

Example 2. The two-dimensional QVINNSs with time delays
are to be thought of as

d?r, dr, ! !
= ma A0+ Y, £,(s,0) + Yb,g (st = ,(0)
J=1 J=1

n t
+Yd, / hy(r (s)ds +u,(t), 1€ 1
J=1 t—o,(1)

' (13)
where the parametric values are A=1,a; =12,a, = 14,8, =
17, p,=19,6,=13,6,=15, €, =€, =€3 =€, = €5 = €5 = €; =
eg==1, f, = f, =3 tanh(r,(1), g =g, =3 tanh(r,(1)e ",
7,(t) =7,(t) = 0.5In(1+71), o,(t) =0.25 sin’(r), o =2, u(t) =
—1.2sin(t) + 0.9cos(t)i + 0.9cos(t)j — 0.5sin(t)k, u,(t) = 0.8sin(t)
— 0.7sin(t)i + 0.3sin(t)j — 0.9cos(t)k.

-0.05 0 0.05 0.1 0.15 0.2 0.25
R
ri(t)

FIGURE7 | Phase plot ofstate variables (a) rf, X and (b) r], r! of the
system (13). [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

‘
-0.05 0 0.05 0.1 0.15 0.2 0.25
(1)

-0.05 0 0.05 0.1 0.15 2 025 03 035 04 045

FIGURES8 | Phase plot of state variables (a) r{,r and (b) r¥,rX of

the system (13). [Colour figure can be viewed at wileyonlinelibrary.com]

Now, consider the weight connection matrices as

o = 0.51 —0.35i —0.6j — 0.1k 0.2+ 0.5i —0.7j — 0.2k
2271 0.25-0.1i —0.4j + 0.6k 0.3 —0.25i —0.5j — 0.6k )’

bl = 0.5-0.2i4+0.3j —0.7k —0.1—0.4i 4+ 0.6j — 0.9k
227 10.3-0.35i —0.5j + 0.6k —0.7 — 0.3i + 0.5j + 0.6k )

@ =~ 0.1 -0.3i —0.5j + 0.2k —0.7 + 0.3i + 0.4j — 0.6k
227\ -0.24+0.5i4+0.1j —02k —0.1+0.4i—0.8j—0.2k/"

Casel. When distributive delays are considered, the model
becomes more general. Then, by simple computations, one
can get M1=M2=L1=L2=§,K1=K2=1, T=%,O’=
0.25,6 = 0.5, ¢* =2, k; = min{0.4894,1.4519} = 0.4894, Z, =
-14<0,Y; = —16.32975 < 0, X; = —12.11975, then it is obvious

a,
1 (\) . .
i (t)
osl ) |
s o
e \
=l
= 0or
=
Ao
" -05F 1
“ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
o 2 4 6 8 10 12 14 16 18 20
t
)
; (b) ‘ :
ry(t)
05 ()] |
_0
=
= or
E
" o5 1
“ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
o 2 4 6 8 10 12 14 16 18 20
t
FIGUREY | Time response ofstate variables (a) rX, rX and (b) r{, r! of

the system (13). [Colour figure can be viewed at wileyonlinelibrary.com]
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4 s s s s s s s s s
0 2 4 6 8 0 12 14 16 18 2
t
d
1 @ ; ;
ri; Et)
L ry(t)| |
5 08
e
-
= or
S
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=051 1
1 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 0 12 14 16 18 2
t
FIGURE10 | Time response of state variables (a) r{, rJ and (b) r¥, rX

of the system (13). [Colour figure can be viewed at wileyonlinelibrary.
com]
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that Z? =196 <Y, X, =197.9124. Similarly, Z,=-16<
0,Y,=-203475<0,X,=—13525<0,  which  shows
that  Z7 =256 <Y,X, =2751999.  Hence, conditions

of Theorem 2 are satisfied, and our considered sys-
tem (13) is globally exponential dissipative. The set
Y = {ry (), (1) € Q¥lIr @)l < 2.9084, [Ir,()] <2232} is
a GAS and a positive invariant set of (13).

CaseII. When contemplating the scenario where d,=0, it
implies that there are no distributive delays in the considered
model, this condition simplifies the model by eliminating
the contribution of distributive delays between the nodes.
Then, by simple computations, one can get M, =M, =L, =

Ly=2, t=1, ¢ =2, ik = min{1.4324,3.1465} = 1.4324,

Z,=214<0Y, = -167025 < 0, X, = —12.492,  then it
is obvious that Z}=196<Y,X, =208.656. Similarly,
Z,=-16<0,Y, = —20.645 <0, X, = -13.822<0,  which
shows that Z2 =256 <Y,X,=285365. Hence condi-

tions of Corollary 4 are satisfied, and our considered
system (13) is globally exponential dissipative. The set
Y; = {r 0., € @|llr O]l < 1.5360, [Iry0)]| <1.3471}
is a GAS and a positive invariant set of (13). For the initial
conditions {¥,(s), ¥,(s)¥;(s), ¥5(s)} = {0.2,0.3,0.3,-0.5}.

Figures 7 and 8 are the phase trajectory of the system (13), and
Figures 9 and 10 are the time changes of the state variables
r (1), r,(t). Figures 11 and 12 depict the global exponential attrac-
tiveness of the zero solution for Equation (13), which also vali-
dates the correctness of Remark 10.

Example 3. To illustrate the application of traditional
QVNNs, let us focus on the example of a 12 x 12 pixel image
pattern denoted as “T,” and its corresponding color image repre-
sentation is shown in Figure 13. In this context, a set of QVNNs
in the format of (14) are configured, comprising 144 neurons.
These QVNNs possess 144-dimensional equilibrium points,

(a)

1 : : : :

i (t)
 osh ) |
Za K
-
= 0r
=
= -05F 1

4 . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 9 10
t
: —— ®) —
Ty (t)
os o] |
=
= 0r
" o5 .
4 . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 9 10
t
FIGURE11 | Time response of state variables (a) rX, rX and (b) r{.r]
of the system (13) with JX, JX JI and J = 0. [Colour figure can be

viewed at wileyonlinelibrary.com]

which facilitate the storage of colored “T” patterns. Therefore,
we shall now consider the traditional QVNNSs to proceed.

d n n
d—rt’ = —pr () + z}a,/f/(rj(t)) + Zlb,jgj(rj(t —oO)+u, 1T
= =

(14)

in this context, where B, >0 and a, and b, represent weight con-
nection matrices, while u, denotes the external input of (14). The
chosen parameter values for the QVNNs defined by Equation (14)
are taken to be as

g =1 (15)
1 . . . — @ . . :
ri(t)
osh A |
E
" o5f 1
’ . . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
t
i —— e
i (t)
— 05F ry(t) | |
o \\
—_ 0 B
Mo
- 05 L |
’ . . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
t
FIGURE12 | Timeresponseofstatevariables(c)r].rj anddrf, X of
the system (13) with J;/, J/, J¥ and J¥ = 0. [Colour figure can be viewed

at wileyonlinelibrary.com]

12

10

0
0 2 4 6 8 10 12

FIGURE 13 | Original color image of pattern “T.” [Colour figure can
be viewed at wileyonlinelibrary.com]
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t=0

t

=1 t=1.5

0 5 10 0
t=2

FIGURE14 |
40+40x1071 —3.0x1071j +50x107 'k, 1=y
a, =
Y 40%x1071 =50%x1071 +50%x 1071 —3.0x 107k, 1 #£,
(16)
—20x1071+20%x107Y —5.0%x 107 j +4.0x 107k, 1<y
b, =42+30x1071+20x107"j -3.0x 107k, 1=y
—1.0x10714+20x 1071 +3.0x 1071 j = 5.0x 107k, 1>,
17)
fj *(r) = tanh(r) (18)

where 1,7=1,2,...,144 and x=0,1,2,3. In order to
recall the image pattern “T,” The equilibrium point of the
designed QVNNs should be r=(r,r,, ... 1)’ € Q™
where r; =0+415.0x1072% +3.0x 107"/ + 150 x 1072k, r, =
041501072 +3.0x 107" j + 14.0 X 1072k, ... ,r;44 = 0+ 15.
0% 1072i + 0j + Ok,which correspond to the color (15.0X
1072,3.0 x 1071,0.150), (15.0x 1072, 3.0x 107!, 14.0 x 1072),
... ,(15.0x 1072,0,0) of the pixels in color image pattern “T.”
Figure 14 shows a simulation with random initial values. Based
on the equilibrium points r, we can easily calculate the external

5

t=2.5

Simulation of retrieving image “T” with random initial values of time ¢. [Colour figure can be viewed at wileyonlinelibrary.com]

10 0 5 10
t=5

input parameter u that is calculated as U = (u;,u,, ... ,uj4) €
Q™. where  u; =—628.0x 107! +2275.0 x 1072/ — 905.0
x1071j = 725.0 x 1072k,u, = —63 +2095.0 x 1072i —905.0 X
1071 = 566.0 x 1072k, ... ,up,, = — 914.0 x 107! —2346.0 x
1071i — 908.0 x 1071 + 2214.0 x 10~k. Owing to spatial con-
straints, we list only three elements of r and u. One simulation
results, conducted with random initial data, are presented in
Figure 14. The parameters extracted from Equations (15-18)
indicate that the examined system (14) possesses the capability
to recover the aforementioned “T” pattern consistently.

Remark 11. Example 3 demonstrates that the proposed sys-
tem (14), defined by Equations (15-18) for its parametric values,
necessitates the use of 144.00 neurons to store a 12 x 12 pixel
image pattern. In contrast, according to the findings in the arti-
cle [56], a comparable image stored in a CVNN would require
432 neurons, a significantly larger quantity. This distinction high-
lights the greater storage capacity of QVNNs over CVNNs. This
article deals specifically with QVNNs employing the “tanh” acti-
vation functions. Remarkably, the image “T” reconstruction can
be approximated to occur within a time span of 7 = 2.5.

13 of 16

85UB01 SUOWIWOD SAIIERID 3[dedl|dde ayy Aq peusenob afe sajoie YO ‘s Jo SNl Joj Ariq18UlUO 8|1 UO (SUONIPUOD-PUE-SWB) W00 A8 1M AReq)1|Bul [UO//:SdNL) SUOIPUOD pue SWe 1 841 88S *[5202/50/T0] Uo ARigiTauliuo A(Im ‘Hied AiseAlun [eoluyse | A 960T BWIL/ZOOT OT/I0PW00" A8 | Ake.d1jpuluo//sdny woy papeojumod ‘0 ‘9./yT660T


http://wileyonlinelibrary.com

5 | Conclusion and Future Work

In this article, the authors have comprehensively examined
the GD and GED of QVINNs with unbounded time-varying
delays. The Lyapunov function and inequality approaches have
been employed to investigate these properties. The authors have
focused on the without-separation approach of QVINNs and the
non-reduction order method for inertial terms, providing a novel
perspective for analyzing these complex systems. The first contri-
bution of this article, as presented in Theorem 1, pertains to the
GD of QVINNS. By utilizing inequality techniques, the authors
have established a global attractive set for the system (1). Addi-
tionally, two corollaries were derived to refine and extend the
findings of the theorem. Moving on to Theorem 2, the GED and
global exponential attractive set of QVINNs have been investi-
gated. This theorem highlighted the unbounded nature of the
convergence rate, further enhancing the understanding of the
system’s stability properties. Two corollaries were proposed to
provide additional insights based on these results. Furthermore,
the article has presented several algebraic criteria for assess-
ing the GD of QVINNs with unbounded time-varying delays.
This consideration of unbounded time delays is particularly rel-
evant as it aligns with real-world scenarios more accurately
than bounded delays. To illustrate the practical implications of
the proposed results, the authors have provided three consec-
utive examples. The first two examples satisfied the conditions
outlined in the first two theorems and corollaries, demonstrat-
ing the applicability of the derived criteria. The third example
demonstrates the potential of QVNNS in efficiently storing large
amounts of data using fewer neurons. Overall, this article con-
tributes to the field of QVINNS by offering novel insights into
GD and exponential dissipativity, providing algebraic criteria and
demonstrating their practical applications through illustrative
examples.

In future work, the authors have planned to investigate the
pre-assigned fixed-time stability of a specific class of QVINNs
with unbounded and non-differentiable time delays. This
research direction addresses an important aspect of stability
analysis by considering fixed-time stability, which imposes a
pre-determined time constraint on achieving stability rather than
relying on convergence over an arbitrary duration. Including
unbounded and non-differentiable time delays the complexity
of the analysis may be enhanced to reflect the, reflecting real-
istic scenarios in various practical applications. By considering
these types of delays, the authors aim to provide a more com-
prehensive understanding of the dynamics and stability prop-
erties of QVINNs. Examining fixed-time stability in QVINNs
with unbounded and non-differentiable time delays, a significant
extension of the existing research can be made. Furthermore, our
work on INNs can be extended to the hypercomplex domain, as
discussed in [57], and we will explore true color image applica-
tions in the hypercomplex domain by utilizing the direct results.
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