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Abstract
In today’s scenario due to rapid urbanisation there has been a shift of population from rural to urban ar-
eas especially in developing countries in search of better opportunities. This has lead to unprecedented
growth of cities leading to various urbanisation problems. One of the main problems that comes across
in urban areas is the increased traffic congestion. This has led to pollution and health issues among
people. With the current advancement in Artificial Intelligence, especially in the field of Deep Neural
Networks various attempts have been made to apply it in the field of Traffic Light Control. This thesis
is an attempt to take forward the problem of solving traffic congestion thereby reducing the total travel
time. One of the contributions of this thesis is to study the performance of Deep Recurrent Q-network
models in different traffic demands or congestion scenarios. Another contribution of this thesis is to
apply different coordination algorithms along with Transfer Learning inMulti-Agent Systems or multiple
traffic intersections and study their behaviour. Lastly, the performance of these algorithms are also
studied when the number of intersections increase.
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RL: Reinforcement Learning
MDP: Markov Decision Process
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MBGD: Mini-Batch Gradient Descent
SGD: Stochastic Gradient Descent
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TLC: Traffic Light Control
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VE: Variable Elimination
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BC: Brute Coordination
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IC: Individual Coordination
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[!h] 𝒮: State space
𝒜: Action space
𝐺፭: Expected cumulative reward
𝑅፭: Reward at time step 𝑡
𝑣(𝑠): Value function
𝑞(𝑠, 𝑎): Q-function or Q-value or Action-Value function
𝛾: Discount factor
𝛼: Learning Rate
𝜖: Exploration Rate
𝜏: History Size
𝜇።፣(𝑎፣): Message passing parameter
𝑅(a): Global Payoff function
𝑎∗ or a*: Optimal Joint Action
𝑓።፣(𝑎። , 𝑎፣): Factored Global Payoff Function
𝑄᎕Ꮂ : Primary Q-Network
𝑄᎕Ꮍ : Target Q-Network
𝑛: Number of intersections
𝑝: Number of Edges in a Coordination Graph
𝑑: Average number of neighbours per agent
𝑞: Probability of a car entering the simulation environmnet at each time step
𝑄።፣: Factored or local Q-function for agent 𝑖 and 𝑗
𝑎።: Action of agent 𝑖
𝑚: Total number of iteration for MaxPlus Algorithm
𝑡: Time step
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1
Introduction

Currently the world is undergrowing rapid urbanisation due to the influx of more andmore people into the
urban areas from rural hinterlands, especially in developing countries. In order to keep up with the rapid
urbanisation, the cities are adopting to new technology in the field of city planning. One of the major
affects of this unsustainable rapid urbanisation is the increase in traffic on the roads. Existing traffic light
causes numerous issues such as delays, accidents, noise, air pollution and monetary losses. Based
on a 2012 study by Washington University, it was concluded that long commutes eat up exercise time
leading to various health issues like obesity problems, lower fitness levels, higher blood pressure—all
strong predictors of heart disease and diabetes[4]. Today’s traffic light systems leads to inefficient traffic
flow and therefore longer travel times.

In some recent research work [31], Reinforcement Learning(RL) has been used to reduce the total
travel time thereby reducing delays. This is executed by treating the traffic light control problem as
a sequential decision making problem. In a sequential decision making problem, an agent which is
the traffic light intersection, first observes the traffic environment. The environment conveys the agent
relevant information about the traffic. Then the agent based on its observation takes an action, that is
it changes the traffic signals thereby receiving rewards. In RL, the agent(or the traffic light intersection)
learns from trial and error by interacting with the environment. The goal of the agent is to maximise the
reward(or reduce the average travel time). In case of application of RL in traffic flow problems, Markov
Decision Process(MDP) is used to model the problem, where the states contains the information of
the traffic light intersections or simply said it contains the information about the traffic environment, the
actions are the different traffic lights configurations(red, green or yellow) which the agent can choose
from, while the rewards are formulated by taking into account different factors like waiting time, delays
etc. The reward function specific to the traffic control problem are formulated to penalise the agent
when there is an increase in the travel time. As mentioned earlier that the agent learns from trial and
error, this means that the agent explores by taking different actions and eventually learns which actions
are better suited for a given environment.

This thesis is a continuation of previous work [31] [28] [26] [27] wherein Deep Q-Learning is used to
predict Q-values which chooses an action in order to maximise the total cumulative reward of the state.
The Q-value tells the agent which action to perform so that it can gain more rewards in the long term.
After learning to optimise the traffic flow for a single intersection(or single agent), the same idea can
be extrapolated to Multi Agent System(MAS), where the number of intersections are more than one. In
multiple intersection case, each intersection needs to coordinate with its neighbours since a poor per-
formance of one intersection can lead to traffic congestion in other lanes. Moreover instead of training
the agent for different number of intersections in a bigger problem, a variant of Transfer Learning known
as Transfer Planning [19] can be used. This method uses the idea of breaking down multiple intersec-
tion problem into smaller source problems(or problems containing fewer traffic intersections). These
source problems can be trained and then used in a bigger problem while they coordinate with each
other to reduce total travel time for the entire system. In order to define relationships or dependencies
between these sub-problem, Coordination Graphs [6] can be used. Thus the problem reduces to de-
composition of global coordination problem into local coordination problem to find a global optimal joint
action. In order to coordinate between the intersections, various coordination algorithms are available

1



2 1. Introduction

in the literature. In this thesis the algorithms used for coordination are Brute Coordination, Max-Plus
and Individual Coordination. It is interesting to study the performance of these algorithms in multiple
intersection case. While Brute Coordination algorithm scales exponentially with increase in the number
of coordinating agents, Max-Plus is considered a good approximate algorithm for coordination since it
involves communicating with its neighbouring agents by exchanging messages. These algorithms can
be compared with Individual Coordination which involves absolutely no communication.

The aim of the thesis is to extend the previous work for different demand scenarios in Multiple traffic
intersections. In order to do this, various congestion scenarios are selected first. Then single and
multiple traffic intersections are trained for these scenarios. Finally using the approach of Transfer
Planning(TP) along with different Coordination Algorithms various congestion scenarios are studied.

1.0.1. Research Questions And Contributions
By conducting research as described above, this thesis aims to find answers to the following questions:

• How does the Transfer Planning approach combined with the Max-Plus or Brute Coordination
algorithm perform when compared to Individual Coordination?
This can studied by training agents for single as well as multiple traffic intersections. The multiple
traffic intersections can be trained for a small source problem which then can be extended to a
bigger problem by using Transfer Planning. Finally, comparison can be done on the basis of the
reward function and average travel time.

• How does the TLC agent perform for different traffic demands?
Again the above approach can be followed, but first the agents need to be trained for different
traffic congestion scenarios. In order to define congestion, various literature can be studied and
conclusions can be drawn on how to choose low, medium or high traffic congestion.

• How does the different coordination algorithms perform computationally in case of Traffic Light-
Control problem?
This can be studied by measuring the time complexity and the actual runtime for the different
algorithms as the number of intersections increase. There can be several factors influencing the
performance as the number of agents are scaled up.

1.0.2. Outline
In the subsequent chapters theoretical concepts necessary to understand MDP, Deep Recurrent Q-
Network(DRQN), TP and coordination algorithms are discussed. Further, experimental setup, Network
Architecture, simulation software is discussed for single agent and MAS. Then experiments results are
given for both systems. Finally, results are concluded and discussed along with future work.



2
Background

In this section, Reinforcement learning is introduced which is used to train the traffic light agent. When
we think of learning, we think of interaction. In order to learn something, we always rely on feedback.
Our learning process is dependent on what feedback we receive during the learning process. Sup-
pose, when an infant is learning simple things about it surrounding, it interacts with the surrounding
and perceives the feedback from the surrounding using its sensory organ and then this feedback helps
him or her about the consequences. These experiences gained during the learning process can be
useful for lifetime. Therefore, learning from interaction is a foundational idea underlying nearly all the-
ories of learning and intelligence [23]. Then in order to mathematically formalise RL, Markov Decision
Process(MDP) is dicussed. In a MDP, we see how an agent interacts with the environment, and re-
ceives rewards which leads to the ultimate goal of the task. An agent is simply the infant, and the
environment is the surrounding of the infant. So when an infant touches something hot, it perceives
displeasure(reward) in the form of burn though its sensory organs and immediately takes his or hand
off, which is the action taken by the agent. This helps the infant to know that this action was bad and it
should not take this action when it encounters the same situation again. This is how an infant learns. In
order to mathematically form this goodness of a particular state, four subparts of RL is discussed: re-
ward function, policy, value function and state-value functionHowever a MDP is an idealised framework
of RL, therefore we need real life framework for the learning process. Thus we introduce RL algorithms
in order to generalise real life scenarios in a better way. We discuss two types of RL methods namely,
model-free and model-based. In a model-based method an agent is able to predict the outcome of
its action. While in a model-free method, the agent estimates value function and then takes its action
accordingly. Then we build on the idea of model-free RL methods using neural networks, which is a
way to estimate these value function approximately. This forms the main idea of implementation used
in this thesis.

2.0.1. Reinforcement Learning
Reinforcement Learning is a type of learning in which the states are mapped to actions in order to
maximise a numerical reward signal. An agent is the one that learns and takes decision or action.
In simple words, it is a mapping from state to actions. In order to take action, an agent observes
the environment and makes its decision based on the visibility of environment. The agent observes
the environment either fully or partially and takes some action in order to land in a different state and
receives a reward for taking that particular action. When an agent takes a action based on the current
state, it lands in a different state and receives a reward. Thus, the next state is influenced by its current
action and therefore subsequent rewards. The agent is not told which action to take instead it must
learn which action yields most reward. In order to increase its reward, an agent must take an action
that has in the past been fruitful or has secured rewards. But in order to find these actions, it must try a
lot of different actions. This leads to a dilemma of exploration and exploitation, an agent must trade-off
between exploration and exploitation.

Next we discuss the mathematical framework to describe a Reinforcement Learning.

3



4 2. Background

2.0.2. Markov Decision Process
Markov Decision process (MDP) is the idealisedmathematical framework of sequential decisionmaking
used in RL. As shown in the Fig. 2.1, an agent observes the environment, environment is best described
as the surrounding an agent is in, excluding itself. In this process, the agent observes the environment
at each time step 𝑡 = 0, 1, 2, 3... in the form of state 𝑠፭ and selects some action 𝑎፭. One time step later
after taking the action, it receives a numerical reward 𝑟፭ዄኻ, and ends up in state 𝑠፭ዄኻ.

Figure 2.1: The agent–environment interaction in a Markov Decision Process.

MDP is formally represented as:

• 𝒮 is the space of possible states;

• 𝒜 is the space of possible actions;

• 𝑝(𝑠ᖣ, 𝑟 |𝑠, 𝑎) ≐ 𝑃𝑟{𝑆፭ = 𝑠ᖣ, 𝑅፭ = 𝑟 ∣ 𝑆፭ዅኻ = 𝑠, 𝐴፭ዅኻ = 𝑎},
the transition probability of ending up in state 𝑠ᖣ and obtaining reward 𝑟 from previous state 𝑠 by
taking an action 𝑎

The agent’s goal is to maximise the total reward it receives over time, this means maximising not
just the immediate reward but the cumulative reward in the long run. A reward signal is a function
which helps an agent achieve its ultimate goal. It should be framed in such a way that by maximising
cumulative reward, it is able to achieve the final task. This can be represented as the following:

𝐺፭ ≐ 𝑅፭ዄኻ + 𝛾𝑅፭ዄኼ + 𝛾ኼ𝑅፭ዄኽ +⋯ =
ጼ

∑
፤ኺ

𝛾፤𝑅፭ዄ፤ዄኻ (2.1)

where 𝑅። is the reward at time step 𝑖 and 𝛾 is the discounted rate such that 0 ≤ 𝛾 ≤ 1.

𝛾 determines the present value of future rewards. If 𝛾 = 1, then every reward is weighed equally,
whereas when it equals 0, then the agent is myopic and is concerned only with maximising immediate
rewards.

It can also be represented as:
𝐺፭ ≐ 𝑅፭ዄኻ + 𝛾𝐺፭ዄኻ (2.2)

Now another important part of RL is discussed which is known as policy. A policy is a mapping from
state to probabilities on which action to select. If an agent follows a policy 𝜋 at time 𝑡, then 𝜋(𝑎|𝑠) is
the probability of taking an action 𝐴፭ = 𝑎 when in state 𝑆፭ = 𝑠 at time 𝑡. In Reinforcement Learning,
this policy is updated from experience in order to attain maximum cumulative reward.

A Value function is an estimate of how good it is for an agent to be in a particular state, which is
defined in terms of the expected future reward. It is the expected cumulative reward when starting in
state 𝑠 and following a policy 𝜋.

𝑣(𝑠) ≐ 𝔼[𝐺፭|𝑆፭ = 𝑠] = 𝔼[
ጼ

∑
፤ኺ

𝛾፤𝑅፭ዄ፤ዄኻ|𝑆፭ = 𝑠], (2.3)

for all 𝑠 ∈ 𝒮.
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Next we come to the Action-Value function or popularly known as the Q-function. It is similar to
value function except that it takes into account an action as well. An Action-Value function denoted as
𝑞(𝑠, 𝑎), is the expected return starting from state 𝑠, taking an action 𝑎, and thereafter following policy
𝜋:

𝑞(𝑠, 𝑎) ≐ 𝔼[𝐺፭|𝑆፭ = 𝑠, 𝐴፭ = 𝑎] = 𝔼[∑𝛾፤𝑅፭ዄ፤ዄኻ|𝑆፭ = 𝑠, 𝐴፭ = 𝑎] (2.4)

where ∑
፬ᖤ∈𝒮

∑
፫∈ℛ
𝑝(𝑠ᖣ, 𝑟 |𝑠, 𝑎) = 1, for all 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜(𝑠).

In RL, the values of 𝑣(𝑠) and 𝑞(𝑠, 𝑎) can be learned from experience. If one maintains the average
of return that follow a particular state, for each time the state has been encountered then this value
converges to 𝑉(𝑠), since the number of times the state is encountered is infinite. If the average is
kept for each action taken when in a particular state, then this will converge to the action-value function
𝑞(𝑠, 𝑎).

The Bellman Equation is a representation of the value of the state, assuming one takes the best
possible action now and at each subsequent step. Below, the recursive relationship between the value
function of a state with respect to other state is shown. This is also known as the Bellman Equation.

𝑣(𝑠) = 𝔼[𝐺፭|𝑆፭ = 𝑠]

=∑
ፚ
𝜋(𝑎 ∣ 𝑠)∑

፬ᖤ
∑
፫
𝑝(𝑠ᖣ, 𝑟 ∣ 𝑠, 𝑎) [𝑟 + 𝛾𝔼 [𝐺፭ዄኻ ∣ 𝑆፭ዄኻ = 𝑠ᖣ]]

=∑
ፚ
𝜋(𝑎 ∣ 𝑠)∑

፬ᖤ ,፫
𝑝(𝑠ᖣ, 𝑟 ∣ 𝑠, 𝑎) [𝑟 + 𝛾𝑣(𝑠ᖣ)]

(2.5)

for all 𝑠 ∈ 𝒮.

Optimal Policies and Optimal Value Function: Optimal policies are the policies that secure maximum
rewards in the long term (cumulative reward). A policy 𝜋 is better or equal to another policy 𝜋ᖣ if its
expected return is greater than or equal to that of 𝜋ᖣ for all states 𝑠 ∈ 𝒮. Therefore, 𝜋 ≥ 𝜋ᖣ if and only if
𝑣(𝑠) ≥ 𝑣ᖤ(𝑠). This policy 𝜋 is often known as optimal policy, and often written as 𝜋∗.

Optimal State-Value Function:
𝑣∗(𝑠) ≐max


𝑣(𝑠) (2.6)

for all 𝑠 ∈ 𝒮.

Optimal Action-Value Function:
𝑞∗(𝑠, 𝑎) ≐max


𝑞(𝑠, 𝑎) (2.7)

for all 𝑠 ∈ 𝒮 and 𝐴 ∈ 𝒜(𝑠).
It is the expected reward when in state 𝑠 and taking an action 𝑎 and thereafter, following an optimal

policy. Therefore, the optimal action-value function can be represented as a function of the optimal
state-value function in the following way:

𝑞∗(𝑠, 𝑎) = 𝔼[Rtዄ1 + 𝛾v∗(Stዄ1) ∣ St = s, At = a] (2.8)
Bellman Optimality equation: According to this, the value of a state under an optimal policy must

equal the expected return for the best action from that state.

𝑣∗(𝑠) ≐ max
ፚ∈𝒜(፬)

𝑞∗(𝑠, 𝑎)

=max
ፚ
𝔼∗[𝐺፭|𝑆፭ = 𝑠, 𝐴፭ = 𝑎]

=max
ፚ
𝔼∗[𝑅፭ዄኻ + 𝛾𝑣∗(𝑆፭ዄኻ) ∣ 𝑆፭ = 𝑠,At = a]

=max
ፚ
∑
፬ᖤ ,፫
𝑝(𝑠ᖣ, 𝑟 ∣ 𝑠, 𝑎) [𝑟 + 𝛾𝑣∗(𝑠ᖣ)]

(2.9)
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𝑞∗(𝑠, 𝑎) = 𝔼[Rtዄ1+𝛾maxፚᖤ
𝑞∗(𝑆፭ዄኻ), 𝑎ᖣ) ∣ 𝑆፭ = 𝑠, 𝐴፭ = 𝑎]

=∑
፬ᖤ ,፫
𝑝(𝑠ᖣ, 𝑟 ∣ 𝑠, 𝑎)[𝑟 + 𝛾max

ፚᖤ
𝑞∗(𝑠ᖣ, 𝑎ᖣ)]

(2.10)

If the state of the environment is well defined or in other words if the transition probability is known,
then dynamic programming methods can be used to find the optimal solution using the recursive def-
inition. One of these method is Value Iteration, in which the value function is updated for all states by
updating each q-value and then using the maximum q-value to update the value function.

Explicitly solving the Bellman optimality equation provides one route to finding an optimal policy, and
thus to solving the reinforcement learning problem. However, this solution is rarely directly useful. This
is so because it is based on the following three assumptions, which are rarely met: the environment
is accurately known, Markov Property(the property of probability p for each possible value of 𝑠፭ and 𝑟፭
depends only on the immediately preceding state and action 𝑠፭ዅኻ and 𝑎፭ዅኻ) and sufficient computational
power. Therefore, in many cases the transition probability is unknown. Under such a scenario, the
agent uses RL algorithms. The agent learns a mapping from state to actions from interacting with the
environment and receiving feedback. Thus we can define two types of Reinforcement Learning:

• Model-based: The agent samples from the environment to estimate the transition probability, then
uses planning algorithm to find an optimal policy.

• Model-Free: The agent directly estimates the state-action value function from experience.

These two methods are different but the core problem is similar, which is the estimation of value
functions. In a Model-based method, an agent can predict how the environment responds to its action.
In other words, it is able to predict the next state and reward based on its current state and reward. While
model-free relies on learning from experience. Having established the fundamentals of RL through
MDP, we will look at different ways to estimate these value functions through model-free methods.

2.0.3. Tabular Q-Learning
Q-learning is a model-free reinforcement learning algorithm. That is, it does not build its own model
of the environment’s transition functions, but rather directly estimates the Q-value of the state-action
pair 𝑞(𝑠, 𝑎). Specifically, Q-learning is an off-policy algorithm, which is a class of algorithms that uses
a different policy for estimating Q-values than for action-selection. That is, Q-learning updates the Q-
values of the current state-action pair using the greedy policy to estimate the Q-value of the optimal
policy of the next state-action pair.

In traditional Q-learning, the agent employs a lookup table of state-action pairs and iteratively up-
dates the Q-value estimates using:

𝑞፭ዄኻ(𝑠, 𝑎) = 𝑞፭(𝑠, 𝑎) + 𝛼[𝑅፭ + 𝛾[maxፚᖤ
𝑞፭(𝑠፭ዄኻ, 𝑎ᖣ)] − 𝑞፭(𝑠, 𝑎)] (2.11)

In words, the difference between the current estimate of the state-action pair, and the actual value
of the (𝑠, 𝑎)-p air. However, since the true value of the (𝑠, 𝑎)-pair is not known upfront, the agent
instead uses the current reward signal and the maximizing Q-value of the next state as a proxy for the
true value.This is called tabular Q-learning, and it has the nice property that it converges given infinite
samples. However, in many practical cases, the state space is enormous. And for such enormous
state space, we need large look-up tables which leads to memory issues as well as computational time
increases tremendously. Therefore we need a way to overcome this memory and computational time
issue. In the following subsection, how to overcome these issues with approximation are discussed.

2.0.4. Q learning with Function Approximation
Extending reinforcement learning to function approximation also makes it applicable to partially observ-
able systems, in which the full state is not available to the agent. A solution to the problem of continuous
𝑆 is function approximation, where supervised machine learning algorithms are used to approximate
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the Q-function. Q-value is a function parameterised by weight 𝜃. These weights can be updated using
gradient descent methods, minimizing the mean squared error between the current estimate of 𝑞(𝑠, 𝑎)
and the target, which is defined as the true Q-value of the (𝑠, 𝑎)-pair under policy 𝑞(𝑠, 𝑎).

The gradient descent update can be derived by taking the derivative of the mean squared error
(MSE):

𝑀𝑆𝐸(𝜃) =∑
፬∈𝒮
𝑃(𝑠) [𝑞(𝑠, 𝑎; 𝜃∗) − 𝑞፭(𝑠, 𝑎; 𝜃፭)]

ኼ (2.12)

where 𝑃(𝑠) is the sampling distribution, or the probability of visiting state 𝑠 under policy 𝜋.

With the Q-function approximation represented as a function with learnable parameters, a regu-
lar supervised learning method can be used to approximate the true Q-function. Machine Learning
algorithms assumes data samples used for training to be uncorrelated as well as independently and
identically distributed(i.i.d). However, due to function approximation of the q values, these assumptions
are violated. The reasons for violations are discussed in the subsequent sections.

2.0.5. Neural Network
A neural network is a machine learning model parameterised by a set of parameters 𝜃 that maps an M-
dimensional input vector �⃗� through a series of hidden layers and activations, to a K-dimensional output
vector �⃗�. It is used as a non-linear function approximator. Specifically, a neural network consists of
interconnected layers, where each layer computes a linear mapping between the input 𝑥 and its weights
𝑤, adding a bias term 𝑏 and mapping the result through a non-linear activation function - needed
to introduce non-linearity into the model, for example a Rectified Linear Unit(ReLU). For example,
mapping input vector �⃗� through one hidden layer with weights 𝑊ኺ ∈ 𝜃, bias term 𝑏ኺ ∈ 𝜃 and non-
linearity ℎኺ results in the following equation:

�⃗�ᖣ = ℎኺ(𝑊ኺ�⃗� + 𝑏ኺ) (2.13)

The output �⃗�ᖥ can be used as input to the next hidden layer, for example weights𝑊ኻ ∈ 𝜃, bias 𝑏ኻ ∈ 𝜃
and non-linearity ℎኻ:

�⃗�ᖥ = ℎኻ(𝑊ኻℎኺ(𝑊ኺ�⃗� + 𝑏ኺ) + 𝑏ኻ) (2.14)

And so on. As the network grows deeper, the model can approximate more complex functions, but it
also becomes harder to train. For that reason, much of the field of deep learning is dedicated to solving
problems such as finding more reliable and faster methods of training neural networks and escaping
local minima.

2.0.6. Convolution Network
Convolution Neural Networks(CNN) are analogous to Artificial Neural Networks(ANN) but with a differ-
ence. CNN is primarily used in the field of pattern recognition within images. This allows us to encode
image-specific features into the architecture, making the network more suited for image-focused tasks,
whilst further reducing the parameters required to set up the model [20]. In ANN the input layer is fully
connected to a series of hidden layers which ultimately is connected to the output layer as shown in
Fig. 2.2. Whereas in CNN, only small regions of the input neurons are connected to the neurons in the
hidden layer, these regions of the input layer are known as the local receptive fields. The local receptive
field is translated across an image to create a feature map from input layer to the hidden layer. Like a
typical ANN, CNN also have neurons with weights and biases. The model learns these values during
the training process and it continuously updates them with each new training example. However in
CNN, the weights and biases are same for all neurons in a given hidden layer. This means all neurons
are detecting the same feature such as an edge or blob in different regions of an image. Then the
output of each neuron is transformed using an activation function. This can be further transformed by
applying a pooling step for reducing the dimensionality of the feature map. Finally, in the last hidden
layer each neuron is fully connected to the output layer, this produces the final output.

The architecture of the CNN can be divided into the following subdivisions :

• As found in other forms of ANN, the input layer will hold the pixel values of the image.
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Figure 2.2: Artificial Neural Network [32]

• The convolutional layer will determine the output of neurons of which are connected to local re-
gions of the input through the calculation of the scalar product between their weights and the
region connected to the input volume. The rectified linear unit (or ReLu) aims to apply an ’ele-
mentwise’ activation function such as sigmoid function to the output of the activation produced by
the previous layer.

• The pooling layer will then simply perform downsampling along the spatial dimensionality of the
given input, further reducing the number of parameters within that activation.

• The fully connected layers will then perform the same duties found in standard ANNs and attempt
to produce class scores from the activations, to be used for classification. It is also suggested that
ReLu may be used between these layers, as to improve performance by introducing non-linearity
into the model.

2.0.7. Training the Neural Network
At the beginning of training of the neural network, we randomise the weights. But in order to produce
optimum results we have to updates the weights so that our final result is as close as possible to the
target weights. In order to do this, we define a Loss function or an error function and minimise it at
every step of training process. There are various methods used in order to update the weights to reach
an optimum result. These are known as the Optimisation Algorithms, which help us minimise the Loss
or Objective function and are based on certain learnable parameters of the model.

2.0.8. Gradient Descent
Gradient is a multi variate generalisation of a derivative. It has a direction and points to the direction
of steepest increase of the function. Our job is to minimise the loss function, therefore we take a step
in the negative direction of the gradient. If we compute the gradient of the loss function with respect to
our weights and take a step in the negative gradient and update the new weights, eventually our loss
function will decrease and converge to some local minima [1]. The idea is to choose a optimum step in
the negative direction. If the step is too big, then the algorithm diverges and we jump over the minima.
And if it is too small, we might converge to the local minima. Mathematically, it can be represented as
the following:

𝑤(።ዄኻ) = 𝑤(።) − 𝜂∇𝐸(𝑤(።)), (2.15)
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where,
𝐸 ∶ loss function
𝑤 ∶ weight
𝜂 ∶ learning rate.

In machine learning, the error function is generalised in the form of sums as follows:

𝐸(𝑤) = 1
𝑛

፧

∑
።ኻ
𝐸።(𝑤) (2.16)

There are various types of Gradient Descent method. The important ones are Mini-Batch Gradient
Descent(MBGD) and Stochastic Gradient Descent(SGD).
In Mini-Batch, we approximate the derivative on some small batch of the dataset and use it to update
the weights as shown in equation 2.17, whereas in Stochastic approach we update the weights for each
training example as shown in equation 2.18.

Mini-Batch GD:

𝑤(።ዄኻ) = 𝑤(።) − 𝜂
፧

∑
።ኻ
∇𝐸።(𝑤)/𝑛, (2.17)

Stochastic GD:
𝑤(።ዄኻ) = 𝑤(።) − 𝜂∇𝐸።(𝑤), (2.18)

2.0.9. ADAM
ADAM (ADaptive Moment Estimation) [9] is a variant of combination of AdaGrad and RMSProp [25]. It
makes use of both the average first moment(mean)and the average second moment(variance) of the
gradient.

𝑚፭ዄኻ = 𝛽ኻ ⋅ 𝑚፭ + (1 − 𝛽ኻ).∇𝐸 (2.19)

𝑣፭ዄኻ = 𝛽ኼ ⋅ 𝑣፭ + (1 − 𝛽ኼ) ⋅ ∇𝐸ኼ (2.20)

where, 𝛽ኻ and 𝛽ኼ are hyperparameters.

2.1. Issues with Deep Q Learning
In this section various problems related to DQN are discussed and related solutions available in the
literature are explained.

2.1.1. High Correlation
As mentioned earlier, the data samples used to train the DQN are highly correlated in nature. This is
due to the fact that the next state-action pair (𝑠፭ዄኻ, 𝑎፭ዄኻ) is highly dependent on the current state-action
pair (𝑠፭ , 𝑎፭). Thus the transition probability is highly dependent on the current state-action (𝑠, 𝑎) pair.

2.1.2. Data Distribution
As the DQN is trained, the Q-values are globally iteratively updated based on the data samples stored
in the replay memory 𝑀. This update of Q-values leads to a non-stationary data distribution because
the data sample at a particular time step can follow a very different distribution when compared to a
data sample from a later stage of training. Thus, the samples tend to be heavily correlated as well as
dependent in nature with non-identical distribution.

2.1.3. Moving Q-Target
As seen earlier, a DQN is updated using the MSE. Thus when we update the weight based on MSE,
the weights of both the current Q-value as well as the Q-target is updated. This thus changes the target
Q-value causing the issue of moving Q-targets. Thus as we move closer to the target Q-values, we
also change the target values, thereby we keep chasing the target without getting closer to it. This
leads to either oscillation or divergence thereby destabilising the system.
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2.2. Overcoming Issues
In order to overcome the aforementioned issues with DQN, the following methods are suggested which
are widely used.

2.2.1. Experience Replay
In order to overcome the issue of highly correlated and non-i.i.d data samples, a widely used approach
is Experience Replay(ER) [15][17]. In this approach, a large database(replay memory 𝑀) is created in
order to store experiences before the starting of the training procedure. These stored data samples are
later uniformly sampled from the replay memory as mini-batches in order to train the network. This gets
rid of the issue of non-stationary data distribution as well as the correlation. The experiences stored
are in the form of < 𝑠፭ , 𝑎፭ , 𝑟፭ , 𝑠፭ዄኻ > tuples.

2.2.2. Freezing Target Network
As mentioned earlier, when we globally update the weights of the Q-network, the target Q-value
changes too. A way to overcome this problem of moving target would be to freeze the Q-target values.
This is implemented by creating two Q-networks, one primary and one target network. The target Q-
network is used to estimate the target Q-values and kept frozen for a certain number of iteration, this
period is known as freeze interval [17]. After the freeze interval, the parameters of the updated primary
network is copied to the target network. This alleviates the problem of moving targets.



3
Traffic Light System

3.1. Single-Agent System
3.1.1. Single Agent
One of the earliest work done in the application of Deep Reinforcement Learning in the field of traffic
flow problem was done by Li et al [13] which used Deep Q-Learning to control a single intersection.
Several other researches started exploring this area and came up with different ways to define the
states, rewards functions and actions for modelling the Traffic Light Control(TLC) problem. An agent
in TLC problem is defined as a single intersection which controls all the traffic lights available at the
intersection as shown in the Fig. 3.1.

Figure 3.1: A Single Traffic Light Intersection.

3.1.2. States
The states in terms of traffic flow problem is usually defined in terms of vehicle’s position and velocity.
The definition of the state defined in this thesis is based on previous works [26][27][28][13][14][21]. The
idea proposed is to divide the intersection into a network of grids such that each element of the grid can
contain a maximum of one vehicle. The smallest elements of the grid are small-sized square shaped.
Depending on the presence of a vehicle the grid is assigned binary values, either 1 or 0. Value is 1

11
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when the vehicle is present and 0 when there is no vehicle in the grid. This can be quantified in terms
of matrices, where corresponding to the cell of the grid, there is an element in the matrix, with binary
values as shown in Fig. 3.2 and 3.3. In addition to representation of the cars in the matrix, traffic light
is also an important information for the agent [26] [28]. So in order to incorporate the traffic light in the
binary matrix, float values are assigned to different traffic light, specifically 0.8 for green, 0.5 for yellow
and 0.2 for red. These values are again chosen from previous works [26] [28]. Similar to the position of
vehicles in the binary matrix represented by 1, the traffic light values are represented by their particular
values at their specific positions in the binary state matrix(corresponding to their actual position in the
traffic environment).

Figure 3.2: Representation of Traffic Environment.

Figure 3.3: Binary Matrix representation of corresponding Traffic Environment.

3.1.3. Rewards
Several factors should be taken into account while formulating the reward function. One way to do is
by penalising the agent every time the car stops which is commonly known as the waiting time. Other
ways of penalising the agent is when the average speed of the vehicles in a lane is below the maximum
allowed speed, well established as delay. Normalised delay is represented as the ratio of difference
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between maximum allowed speed and the vehicle speed to maximum allowed speed.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐷𝑒𝑙𝑎𝑦 = 1 − 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑆𝑝𝑒𝑒𝑑
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑙𝑙𝑜𝑤𝑒𝑑 𝑆𝑝𝑒𝑒𝑑 (3.1)

The reward function used throughout this thesis is based on previous work [28] represented as:

𝑅𝑒𝑤𝑎𝑟𝑑 = −0.5
ፍ

∑
።ኻ
𝑑። − 0.5

ፍ

∑
።ኻ
𝑤። (3.2)

where 𝑑። and 𝑤። represent individual vehicle normalised delay and waiting time.

3.1.4. Actions
The actions in case of a traffic control problem are defined as the different combinations of traffic light
signal at an intersection. It is usually expressed as different phases and the agent selects one of these
phases or actions to maximise the long term cumulative reward. Actions are essentially the options
from which the agent choose in order to assign a traffic lane green light. Based on previous work [28],
the possible actions made available to the agent are GrGr and rGrG as shown in the Fig. 3.4 and 3.5.

Figure 3.4: Representation of Action GrGr.

3.1.5. Yellow Light
The yellow signal is important for switching between two phases as it guarantees safety by allowing
speeding vehicles to stop by providing them with enough time when the switch is being made between
green and red signals. It can be formulated either as a fixed time for yellow light when switching between
two actions or it can be selected as an action itself. In this thesis, the yellow light timing is chosen to be
fixed and is activated every time there is a change in action. Based on previous work [28], it is assigned
to be 4 seconds. This provides enough time for the traffic to come to a halt safely between switching
of actions.
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Figure 3.5: Representation of Action rGrG.

3.2. Multi Agent System
Multi Agent systems in Traffic Light control is represented as multiple intersections which coordinate
with each other in order to reduce congestion. It is shown in the Figure 3.6 & Fig. 3.7.

Figure 3.6: Two Agent Traffic Light Scenario.
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Figure 3.7: Three Agent Traffic Light Scenario.

3.3. Multi-Agent Learning
When the number of agents increases, the common goal of these multiple agents together is to find a
joint optimal action such that the global reward is maximised. This joint optimal action is represented
as the following:

𝑎∗ = (𝑎ኻ, 𝑎ኼ, ..., 𝑎ፍ) (3.3)

where 𝑎። is the local action taken by the agent 𝑖. One way to do this is to have central controller that
learns joint action for every agent present in the environment in order to maximise the global reward
and communicate to each agent its individual action. However, this approach is not feasible since the
joint action space increases exponentially with increase in the number of agents.

Another way to approach MAS is to factorise the global Q-function into local Q-functions and then
update during training is performed either in coordination with other agents or individually as discussed
in subsequent sections. This part of the chapter discusses different ways in which multiple agents can
be trained together. Since the training process involves minimising the cost function and updating the
actual values, various ways are available in the literature to perform these updates in a multi agent
learning process.

3.3.1. Independent Q-Learning
Here, at first we discuss the Multi-Agent reinforcement learning techniques, where each agent takes
its own action independent of other agents [5]. The global Q-function(state-action value function) is
expressed as a linear combination of all individual Q-functions as shown below:

𝑄(s,a) =
፧

∑
።ኻ
𝑄።(s, 𝑎።) (3.4)

The individual Q-function is updated entirely based on its own local reward as shown below:

𝑄።(s, 𝑎።) ∶= 𝑄።(s, 𝑎።) + 𝛼[𝑅።(𝑠, 𝑎) + 𝛾maxፚᑚᖤ𝑄።(sᖣ, 𝑎።ᖣ) − 𝑄።(s, 𝑎።))] (3.5)

This technique has storage and computational advantages since the action space for each agent
is small. But convergence does not hold anymore since, actions are taken independent of each other
and it ignores other agent’s action which influences the system as a whole.

3.3.2. Distributed Q-Learning
In this approach [22], each agent’s local Q-function is defined based on its individual action and state
𝑄።(s። , 𝑎።). Each agents coordinates with only a subset of agents. Each local Q-function is updated
based on its neighbour 𝑗 using a weight function𝑓(𝑖, 𝑗) which determines how much the neighbour 𝑗
contributes to the Q-function of agent 𝑖.
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𝑄።(s። , 𝑎።) ∶= (1 − 𝛼)𝑄።(s። , 𝑎።) + 𝛼[𝑅።(s,a) + 𝛾 ∑
፣∈{።∪ጁ(።)}

𝑓(𝑖, 𝑗)maxፚᑛᖤ𝑄፣(sᖣ, 𝑎፣ᖣ)] (3.6)

However, this approach leads to non-stationarity since both the agent and its neighbour are learning
at the same time. A change is policy of the neighbour will lead to change in policy of the agent, thus
leading to a condition of moving targets [2].

In this chapter we discussed single and multiple traffic intersections, the state, reward function and
different actions available to the agent. We also discussed the training process involved in multi agent
cases. However, as the number of agents increase new models need to be trained every time. This
is highly unfeasible. Therefore in order to circumvent this issue, we introduce different coordination
algorithms which is combined with transfer learning approach in a multi agent case.



4
Multi Agent Coordination

In this chapter different ways in which individual agents in a MAS can coordinate are discussed. In
multi agent coordination, individual agents contribute to the joint optimal action by selecting their indi-
vidual action based on their individual payoff function. In our case, the individual payoff function is the
individual Q-value function contributing to the global payoff function which is the linear combination of
individual payoff function. Here, the three different ways to coordinate in MAS are also discussed. The
first one being Individual Coordination which does not guarantee optimal action selection since it has
very limited observability of its neighbouring agents. Then we discuss the Variable Elimination(VE) [7]
algorithm, this method always leads to optimal joint action, however scales exponentially as the number
of agents increases. Finally we discuss,the Maxplus algorithm [10] which is an approximation algorithm
for VE, analogous to belief propagation in Bayesian networks [10]. This is an anytime algorithm which
can be stopped anytime to give approximate results and thus it is very much applicable in real life
scenario.

As stated above, each agent selects its action individually and the joint action is the contribution
of each individual action. This joint action may or may not be optimal in nature, since the action of
one agent influences other agents. In many real life scenarios, the influence of one agent is however
localised. This means that the action of one agent depends on the action of a subset of agents in a
MAS. The agents which are located close to each other affect each other more compared to an agent
located spatially far from these agents. Therefore in order to define dependencies between subset of
agents close to each other, Coordination Graphs(CG) [7][6] are used. Using CGs, we can decompose
a global coordination problem into smaller sub-problems.

The problem with Multi agent learning was discussed in the previous chapter. This part of the thesis
introduces a variant of Transfer learning, namely Transfer Planning, which circumvents the problem
of training the network for multiple agents. It uses the idea of breaking down a multi agent system
into smaller sub-problems, then training smaller sub-problems and transferring it to bigger systems. It
saves a lot of computational time and expensive calculations.

4.1. Coordination Graph
As discussed in the introduction to this chapter, each agent selects its individual action based on its
local Q-function. This local(or individual) Q-function(or payoff function) can be used to compute the
global payoff function. A formal representation of the coordination problem is as follows: Each agent
selects its action 𝑎። thus, forming a joint action 𝑎∗ = (𝑎ኻ, 𝑎ኼ, ..., 𝑎፧) for a MAS composed of n agents.
This gives rise to a global payoff function 𝑅(a) for the entire MAS. This global payoff function should
not be confused with reward function introduced in chapter 1. The coordination problem is to find a
joint optimal action 𝑎∗ that maximises 𝑅(a), thus a∗ = argmaxፚ𝑅(a) [7].

A Coordination Graph [6][4] is a graphical representation of the decomposition of the global payoff
function(𝑅(a)) into a set of smaller local factors(𝑓።፣), where each factor is a function involving less
number of variables, depending on the subset of the agents that the factor represent.

A coordination graph is represented as 𝐶𝐺 = (𝑉, 𝐸), where 𝑉 are vertices and 𝐸 are edges as shown
in Fig. 4.1. The vertices(or circles) represent the agents and the edges which represent the relation or

17



18 4. Multi Agent Coordination

dependencies between the agents. The local payoff function is represented by 𝑓።፣, where (𝑖, 𝑗) ∈ 𝐸 for
agents 𝑎። and 𝑎፣ are connected via edges.

Figure 4.1: Coordination Graph.

The global payoff function is therefore given by the equation below, where 𝑖 ∈ 𝑉 and (𝑖, 𝑗) ∈ 𝐸:

𝑅(a) = ∑
(።,፣)∈ፄ

𝑓።፣(𝑎። , 𝑎፣) (4.1)

The joint optimal action is the one that maximises the global payoff function 𝑅(a) [6]:

a∗ = argmaxፚ𝑅(a) (4.2)

Next, we discuss the VE algorithm which makes use of the CG in order to find the joint optimal
action.

4.2. Variable Elimination
Variable Elimination(VE) [7] is an algorithm used to solve the coordination graphs by eliminating agents
one at a time and maximising over that agent. That is finding the best action of the eliminated agent
for each action of the non-eliminated agents. Even though it is much faster than maximising over the
joint action space, for large scale agents, the problem scales exponentially. Since it is not an anytime
algorithm [12](an algorithm which can be stopped anytime during running and get approximate results),
it cannot be run for fewer iterations to get an approximate answer. Variable elimination is illustrated for
the coordination graph in the Fig. 4.1.

The equation below represents the global payoff function as a sum of local payoffs.

𝑅(a) = 𝑓ኻኼ(𝑎ኻ, 𝑎ኼ) + 𝑓ኻኽ(𝑎ኻ, 𝑎ኽ) + 𝑓ኽኾ(𝑎ኽ, 𝑎ኾ) (4.3)

The order of elimination of agents followed is 1,2,3,4. At first we eliminate agent 1. Since agent 1
does not influence local payoff 𝑓ኽ,ኾ, we apply maximisation step for the other two local payoffs.

maxa𝑅(a) =maxፚᎴ ,ፚᎵ ,ፚᎶ {𝑓ኽኾ(𝑎ኽ, 𝑎ኾ) +maxፚᎳ[𝑓ኻኼ(𝑎ኻ, 𝑎ኼ) + 𝑓ኻኽ(𝑎ኻ, 𝑎ኽ)]} (4.4)

This gives a conditional payoff function function 𝜙ኼኽ(𝑎ኽ) = 𝑚𝑎𝑥ፚᎳ[𝑓ኻኼ(𝑎ኻ, 𝑎ኼ) + 𝑓ኻኽ(𝑎ኻ, 𝑎ኽ)] which
depends on the action of agent 2 and 3. Since we have eliminated agent 1, the equation 5.3 reduces
to:

maxa𝑅(a) =maxፚᎵ ,ፚᎶ[𝑓ኽኾ(𝑎ኽ, 𝑎ኾ) + 𝜙ኼኽ(𝑎ኼ, 𝑎ኽ)] (4.5)

The next agent in the elimination step is agent 2, this gives us equation 4.6 using𝜙ኽ(𝑎ኽ) = 𝑚𝑎𝑥ፚᎴ𝜙ኼኽ(𝑎ኽ).

maxa𝑅(a) =maxፚᎵ ,ፚᎶ[𝑓ኽኾ(𝑎ኽ, 𝑎ኾ) + 𝜙ኽ(𝑎ኽ)] (4.6)

Finally, we eliminate agent 3, using 𝜙ኾ(𝑎ኾ) = maxፚᎵ[𝑓ኽኾ(𝑎ኽ, 𝑎ኾ) + 𝜙ኽ(𝑎ኽ)]. Lastly, we select the
best action for agent 4 that maximises equation 5.7.

maxa𝑅(a) =maxፚᎶ𝜙ኾ(𝑎ኾ) (4.7)

VE does not depend on the elimination order and always produces joint optimal action. However,
this is not always appropriate for real-time MAS where decision making must be done under time
constraints.In these cases, an anytime algorithm that improves the quality of the solution over time
would be more appropriate [29]. VE does guarantee convergence, however it is highly restricted due
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to scalability issues. It is computationally expensive as well as time constrained. Hence in order to
use it in the real life situations, where we often need to make decisions in a fixed amount of time,
this method might not be feasible. Therefore an approximate coordination technique that gives an
acceptable solution to the TLC problem is needed. One of these method is discussed in the subsequent
section 4.4.

4.3. Brute Coordination
The Brute Coordination(BC) algorithm is a naive approach to coordination in multi agent systems. In
this approach, the global Q-function is calculated for all possible combinations of actions for the given
number of agents. The global Q-function is the linear combination of local Q-function as given by
the eqn. 4.3. The action combination that leads to maximisation of the global Q value is chosen as the
optimal joint action to be implemented in the environment. The Algorithm 1 is the implementation of BC.
The 𝑄፟ is the Q-function for the agents connected by edges in CG which in the algorithm is represented
as factored Q-function. The term 𝑎ᖤ፟ represents the action combination of the agents connected with
edges in CG, this action is the part of the joint action for all the agents.

Algorithm 1: Brute Force Coordination.
initialise sum_q_value = list[ ]
for all possible joint action combination aᖣ do

q_value = 0
for all factored Q-function from 1 to n do

𝑞_𝑣𝑎𝑙𝑢𝑒 + = 𝑄፟(𝑎
ᖤ
፟)

sum_q_value.append(q_value)
a∗ = argmaxaᖤ sum_q_value
return a∗

As is the case with VE, BC also does not scale effectively in terms of computation time when the
number of agents increase. This is so because as the number of agents increase, the joint action
space increases exponentially. Therefore the algorithm takes more time to try all the combination of
joint action in order to find the optimal joint action that maximises the global Q-function.

4.4. Max-Plus Algorithm
The Max-Plus(MP) [10] is an inference algorithm based on message passing. It is used to find the
maximum a posteriori (MAP) state in graphical models. It uses messages which are passed over the
edges between the connected agents. These messages are essentially the conditional payoff function
similar to the one in VE. Messages containing information over locally optimal actions are exchanged
between agents iteratively to find the optimal joint action. It is based on a message passing parameter
as shown:

𝜇።፣(𝑎፣) = 𝑚𝑎𝑥ፚᑚ [𝑓።፣(𝑠, 𝑎። , 𝑎፣) + ∑
፤∈፧፞(።)\፣

𝜇፤።(𝑖) + 𝑐።፣] (4.8)

The message from the agent 𝑖 to the agent 𝑗 is as shown above, where 𝑛𝑒(𝑖)\𝑗 is the set of 𝑖ᖣ𝑠
neighbours, excluding 𝑗. This message represents the approximated payoff that 𝑖 can achieve for a
given action of 𝑗. It is computed by maximising over the actions of agent 𝑖, the sum of the payoff function
(𝑓።፣) and all the incoming messages to agent 𝑖 from all its neighbours other than 𝑗.

In case of cyclic graphs, the MP algorithm does not guarantee convergence. However they have
been applied in TLC problem before [26]. Some issues need to be taken care of in order to apply MP
in cyclic graphs. For instance, in a cyclic graph, an outgoing message from an agent 𝑖 becomes a part
of its incoming message. Since the messages are summed up as shown in equation 5.8, this leads to
continuous increase in message values. Therefore we add a normalisation constant at every outgoing
message to tackle this issue. This normalisation constant is 𝑐።፣ as shown below:
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𝑐።፣ = −
1
|Aj|

∑
ፚᑛ∈Aj

𝜇።፣(𝑎፣) (4.9)

Still it might be possible that messages do not converge to a fixed point. Therefore, the algorithm
needs to receive a deadline signal to report the best optimal joint action found so far. This is useful in
situations where there is fixed amount of time to compute action because of the nature of the problem
as is the case in the TLC problem.

At the end of exchanging messages for a particular agent 𝑖, the best individual action is computed
from 𝑎ᖣ። = argmaxፚᑚ𝑔።(𝑎።), where 𝑔።(𝑎።) is the sum of all messages received by the agent 𝑖 from all
its neighbours. As explained earlier, MP can be used as an anytime extension, that is the algorithm
can be used to report the optimal joint action found so far as soon as it receives a deadline signal. In
order to implement this, when all agents have exchanged messages, the global payoff is computed
based on the local action of the agent. This global payoff function and its corresponding joint action is
updated only when it is improved upon during the next iteration steps. As soon as the deadline signal
is received, the best optimal joint action so far is reported. The Algorithm 2 represents the pseudocode
Max-Plus implementation.

Algorithm 2: Pseudo-code of the centralised max-plus algorithm for 𝐺 = (𝑉, 𝐸).
initialise 𝜇።፣(𝑎፣) = 𝜇፣።(𝑎።) = 0 for (𝑖, 𝑗) ∈ E, 𝑎። ∈ Ai, 𝑎፣ ∈ Aj
initialise 𝑔።(𝑎።) = 0 for 𝑖 ∈ V, 𝑎። ∈ A። , and 𝑚 = −∞
while fixed point = false and deadline to send action has not yet arrived do
// run one iteration,
fixed point = true
for every agent 𝑖 do

for all neighbours 𝑗 = Γ(𝑖) do

compute 𝜇።፣(𝑎፣) = 𝑚𝑎𝑥ፚᑚ [𝑓።፣(𝑎። , 𝑎፣) + ∑፤∈ጁ(።)\፣ 𝜇፤።(𝑖)] + 𝑐።፣
send message 𝜇።፣(𝑎፣) to agent 𝑗
if 𝜇።፣(𝑎፣) differs from previous message by a small threshold then

fixed point = false
end

end
compute 𝑔።(𝑎።) = ∑፣∈ጁ(።) 𝜇፣።(𝑎።) and
𝑎ᖣ። = argmaxፚᑚ𝑔።(𝑎።)

end
aᖣ = (𝑎ᖣ።)
if use anytime extension then

if 𝑅(aᖣ) > 𝑚 then
a∗ = aᖣ and 𝑚 = 𝑅(aᖣ)

end
else

a∗ = aᖣ
end

end
return a∗

4.5. Individual Coordination
This is a coordination method which involves absolutely no exchange of messages between the agents.
Each agent chooses its individual action based on its payoff function, that is the action which maximises
its individual payoff function. Thus the joint action is the combination of individually selected actions of
each agent. This approach is fast compared to BC or MP, however it does not guarantee convergence.
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Algorithm 3: Individual Coordination.
initialise sum_q_value = list[ ]
for all agent 𝑎። do

𝑎∗። = argmaxaᖤi
𝑄።

a∗ = (a∗i )
return a∗

4.6. Transfer Planning
In section 3.3, we discussed how we can train MAS by dividing the global Q-function into individual
Q-functions and updating them using different techniques. However, this leads to an issue of training
every new MAS we come across, that is if the number of agents in a MAS changes we need to train
the model again. This becomes cost ineffective and time and computationally expensive. Therefore,
an approach to MAS could be to use pre-trained smaller systems and use them in a bigger MAS, along
with coordination algorithms to coordinate between these smaller systems in a large MAS. This will
reduce the need and effort to rebuild and train models for every new system we come across, thereby
reducing expensive calculations, energy wastage and saving time.

Based on the previous work [26][27][19] [18], Transfer Planning(TP) is a good approach for solving
Multi-agent systems. In Transfer Planning [19], Q-function is learnt for a subproblem of a larger multi-
agent problem. TP steps can be briefly explained as follows:

• Identification of the source task or a number of source tasks which can be transferred: A MAS
can have a configuration which requires one or more than one source problem. This depends on
the differences between the source tasks in which the MAS can be divided.

• Training the model on the source task/tasks: In order to export the source problem in a MAS, we
first need to train them on the source task.

• Effectively transferring the learned source tasks to a bigger problem(target task): This is closely
related to the first step. If the source tasks are not identified effectively or when identified but not
used properly in MAS, the results can be compromising.

Provided that the source problem and other subproblems are similar, we can then re-use the source
problem’s Q-function for each subproblem in the larger multi-agent problem, rather than training a Q-
function for each separate subproblem.

This transfer planning approach circumvents two problems present in multi-agent reinforcement
learning. The first is the non stationarity in the environment introduced by multiple agents learning
and acting simultaneously. By training on a source problem, the environment dynamics do not change
during learning. The second is the cost of training many agents simultaneously. Because the source
problems are independent, they can be solved independently (e.g. sequentially). Moreover, exploiting
symmetries of our source further reduces the computational cost.

4.7. TP with Coordination Algorithm in Traffic Light Problem
In this section, we discuss how can one define a source problem and use them in a MAS with traffic
control problem perspective.

In a TLC problem with multiple traffic intersections, we first identify the different sources. For a
TLC problem with four intersections, we identity two different source problems used in this thesis. The
first one is as shown in the Fig. 4.2. This source problem consists of two agents. Here we have a
source problem indicated by the dotted lines. However, the configuration of the two source problem is
different, one being horizontal(red) and the other being vertical(blue). Instead of defining these as two
different source problems, we train our source problem for either one of the configurations and apply a
transformation to use it for the vertical case.

The second source problem that we define for four intersections is as shown in the Fig. 4.3. This
source problem consists of a single agent only.
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Figure 4.2: Two agent source problem.

Figure 4.3: Single source problem.

After identification of the source problem, we train our models for these source problems. For a
single agent source problem we train the model for a single intersection in order to learn Q-values for
its individual action. Whereas, for a two agent source problem, we train the model to learn Q-values
for joint action of the two agents together.

The next and the final step is to effectively transfer the learned source tasks to a bigger problem. For
the four intersection TLC problem, we load or transfer the source problem for each configuration similar
to the source problem. In a two agent source case, the source problems are imported(transferred) for
every pair of two intersections as shown in Fig. 4.4. The black and dark blue sources represent the
horizontal whereas yellow and cyan-blue source represent the vertical source problem transferred to
the four intersection.

In a single agent source case, the source problem is transferred for every traffic intersection as
shown in Fig. 4.5.

This completes the transferring of source problems into a bigger MAS. The next step is to coordi-
nate between these source problems using coordination algorithm explained earlier in order to find an
optimal joint action.
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Figure 4.4: Transferred Two source problem in MAS.

Figure 4.5: Transferred Single source problem in MAS.





5
Experimental Setup

Traffic flow problems can be visualised as a Single or Multi intersection problem, which can be trained
in order to optimise the traffic flow. In terms of traffic light control, the agent can be modelled as the
traffic signal itself, which takes certain actions like changing the traffic light and receives rewards based
on these actions and tries to maximise the cumulative long term reward effectively leading to smooth
flow without any delays. The simulation of the traffic flow can be performed in one of the simulation
software known as SUMO(Simulation of Urban Mobility) [11] discussed in the subsequent section. This
section also covers the neural network architecture used, training and evaluation procedure as well as
the design and modelling of traffic simulation and congestion.

5.0.1. Network Architecture
The network architecture followed is based on previous work in traffic light problem using DRQN ap-
proach [28] [8]. The network architecture represented in Fig. 5.1 is the skeleton of the neural network.
The input matrix to the network architecture is the state matrix represented in Fig. 3.3. The height and
width of the state matrix represent the rows and columns. Since the training is done in mini-batches
of samples, the input matrix to the architecture comprises of one mini-batch of state matrix(that is a
fixed number of state-matrix). The subsequent layers are convolutional layers each followed by a ReLU
which is then followed by a linear layer. This layer is then followed by LSTM layers which extracts his-
torical information from the sequence of state matrices. Finally the network terminates to approximate
Q-values for each of the state matrix in the mini-batch. The width of the Q-value layer is the same as
the number of action of the agent, each representing a Q-value for a particular action. Knowing the
Q-values for each action for a given state, an action can be selected accordingly.

5.0.2. Training
The agents are trained for 1,000,000 time steps using the network described above. During the filling
of replay memory, the exploration rate is set to 𝜖 = 1, and once the memory is filled it is reduced
to as mentioned in the Table 5.1. Algorithm 4 describes the DRQN approach along with Experience
Replay(ER) used to train the agent.

5.0.3. Evaluation
After every 10,000 steps, each model is evaluated by performing a purely greedy policy. Evaluation is
done by running 8 SUMO simulations and the results are plotted in terms of the average reward and
the average travel time along with shaded region showing two standard deviations. The evaluation
method used is depicted by Algorithm 5.

5.0.4. SUMO(Simulation of Urban Mobility)
In order to conduct TLC experiments, SUMO is used. SUMO [11] is free, open source software that
allows for a realistic simulation of different traffic networks. It comes with a plethora of tools which can
be used for visualisation, emission calculations, network importing and finding the route. It allows to
import maps from OpenStreetMap, VISUM, VISSIM etc. It can be used to model multimodal traffic
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Figure 5.1: Network Architecture.

Matrix Size 84 x 84
Matrix State Type Binary Position Matrix + Light Configuration
Discount factor(𝛾) 0.99
Learning Rate(𝛼) 0.00025
Exploration Rate(𝜖) 0.1
Freeze Interval 30,000

Optimiser Adam
Batch Size 32

History Size(𝜏) 10
Replay Memory Size 30,000

Stack Size 1

Table 5.1: Parameters used for Training.

like vehicles, pedestrians, public transport as well as cyclists. SUMO is implemented in C++ and only
uses portable libraries. The input binary state matrix is obtained based on this environment, and the
actions are communicated to SUMO software to implement it in the environment. At every time step of
the simulation, we can obtain the total waiting time and the total delay from SUMO, thus building our
reward function. However, in order to obtain the total average travel time, we need to wait till the end
of the simulation.

5.0.5. Demand Data generation
In SUMO [11] the demand data refers to when and where vehicles are generated in the traffic environ-
ment and which route they follow during the simulation. Each vehicle generated in the environment is
assigned a route randomly from source to destination. In the Demand Data Algorithm 6, the probability
𝑞 (car probability) is the probability of a car entering the environment at each time step. Therefore, for
a given value of 𝑞 and and total simulation time 𝑁, the total number of vehicles entering the simulation
environment is 𝑞 ∗𝑁. This probability 𝑞 of a vehicle entering the simulation environment at a given time
step is used to define the congestion scenario in Section 5.0.6.
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Algorithm 4: Deep Recurrent Q-Learning Algorithm with Experience Replay
Initialise Primary Q-Network 𝑄᎕Ꮂ and Target Network 𝑄᎕Ꮍ ;
Initialise the Replay Memory 𝑀 = [ ];
Initialise Environment, state 𝑠ኺ, Action space U(A);
𝑖 ← 0
while 𝑖 < 𝑀 do

Randomly select an action 𝑎። from the action space 𝑎። ∼ U(A).
Obtain reward 𝑟።, next state 𝑠ᖣ።
Add (< 𝑠። , 𝑎። , 𝑟። , 𝑠ᖣ። >) to the memory 𝑀

end
while 𝑖 < maximum training time do

With probability 𝜖 select random action 𝑎፭;
Otherwise 𝑎፭ = argmaxᖣፚQ᎕Ꮂ(𝑠፭ , ℎ፭ዅኻ, 𝑎፭) ;
Obtain reward 𝑟።, next state 𝑠ᖣ። ;
Add (< 𝑠። , 𝑎። , 𝑟። , 𝑠ᖣ። >) to the memory 𝑀
if 𝑖 % Freeze interval == 0 then

𝑄᎕Ꮂ ← 𝑄᎕Ꮍ
end
𝐵 = (𝑠፣ , 𝑎፣ , 𝑟፣ , 𝑠ᖣ፣)...(𝑠፣ዄᎡ , 𝑎፣ዄᎡ , 𝑟፣ዄᎡ , 𝑠ᖣ፣ዄᎡ)

batch size
፣ኻ ⊆ 𝑀

for each sequence(𝑠፣ , 𝑎፣ , 𝑟፣ , 𝑠ᖣ፣)...(𝑠፣ዄᎡ , 𝑎፣ዄᎡ , 𝑟፣ዄᎡ , 𝑠ᖣ፣ዄᎡ) ∈ 𝐵 do
ℎ፣ዅኻ ← 0;
for 𝑘 = 𝑗 to 𝑘 = 𝑗 + 𝜏 do

update the hidden state ℎ፤ = 𝑄᎕Ꮂ(𝑠፤ , ℎ፤ዅኻ)
end
𝑦፣ = 𝑟፣ዄᎡ + 𝛾𝑄᎕Ꮍ(𝑠ᖣ፣ዄᎡ, argmaxፚᖤQ᎕Ꮂ(𝑠ᖣ፣ዄᎡ , ℎ፣ዄᎡ), ℎ፣ዄᎡ);
𝔏𝔧 = (𝑦፣ዄᎡ − 𝑄᎕Ꮂ(𝑠፣ዄᎡ , 𝑎፣ዄᎡ , ℎ፣ዄᎡዅኻ))ኼ

end

end

Algorithm 5: Evaluation Algorithm
Initialise Environment, state 𝑠ኺ
∀ factor 𝑓 ∈ 𝐶𝐺 initialise saved DRQN model 𝑄፟
Define 𝑖 = total number of simulation per model
while i < total number of simulation do

for factor 𝑓 ∈ 𝐶𝐺 do
get local or factored q-value 𝑄፟

end
compute joint action 𝑎∗ using the choice of algorithm
for factor 𝑓 ∈ 𝐶𝐺 do

take action 𝑎∗፟
end
Obtain reward 𝑟, next state 𝑠ᖣ

end

5.0.6. Traffic Congestion
The term Traffic congestion is defined as a condition which leads to longer travel time, increase in vehi-
cle queuing or delays. One of the more formal definition is that it is the situation where the introduction
of an additional vehicle into a traffic flow increases the journey times of the others [24]. Up to a certain
level of vehicles, the traffic flow is smooth without any delays, however with an increase in the number
of vehicles above a certain threshold sets in congestion. These vehicles not only increase their own
travel time but also cause delay for other vehicles.

There is no standardmetric to define congestion, however most measures include increased delays,
increased travel time or queuing. In order to define traffic congestion for our problem we use one of the
definitions available in the literature [3] where, congestion is calculated in terms of increase in travel
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Algorithm 6: Demand Data generation
Define different possible Routes for the car.
Initialise Route probability 𝑝
Initialise Route List = [ ]
for t= 0 to N do

for Routes in Possible Route do
sample 𝜌 ∼ 𝑈(0, 1)

end
if 𝑝 > 𝜌 then

Route List.append(Routes) at time t.
end

end

time due to the introduction of additional vehicles in the traffic scenario.
In Fig. 5.2, two plots are shown, one representing the average travel time 𝑡 = 𝑓(𝑞) as a function

of different car probability(𝑞)(volume of traffic). This 𝑞 is same as the car probability defined in the
Demand Data generation Algorithm 6. Increasing 𝑞 means increasing the probability of a car entering
the SUMO environment every time step and thus the total number of cars for a given 𝑁 (total simulation
time).

The average travel time is calculated at the end of every simulation. It is defined as the total sum of
the time needed by vehicles for route completion divided by the total number of vehicles that entered
the SUMO environment during a simulation.

Figure 5.2: Representation of Concept of Traffic Congestion .

Car probability Congestion
0.05 Low
0.2 Medium
0.4 High

Table 5.2: Different Traffic Congestion or Demand scenarios.

In order to calculate the average travel time for different traffic volumes 𝑞, eight simulations were
carried out and average travel time(in red) was computed and plotted. The second plot(in blue) is the
average travel time due to increase in the traffic volume Ꭷ(፪፭)

Ꭷ፪ = 𝑡 + 𝑞𝑓ᖣ(𝑞). The term Ꭷ(፪፭)
Ꭷ፪ is the

change in travel time due to change in the volume of traffic or the car probability 𝑞. Since 𝑡 = 𝑓(𝑞) is
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a function of 𝑞, therefore Ꭷ፭
Ꭷ፪ = 𝑓

ᖣ(𝑞). The difference between the two graphs, indicate the increase in
the average travel time due to introduction of additional vehicles. Up to a certain point both the graphs
coincide indicating the fact that, till this point of coincidence the additional vehicles introduced do not
cause an increase in travel time. However, after the point of coincidence, the two graphs begin to
diverge, indicating that the additional vehicles are increasing the overall travel time. As we go along
the x-axis this difference becomes larger and larger, which means the average traffic speed increases
and the travel time decreases leading to higher congestion. Based on the above inference, table 5.2
lists the three different congestion configurations used throughout the thesis. Thus the total number of
vehicles entering the simulation environment for the low, medium and high congestion case are 180,
720 and 1440 respectively. Thus there is a four fold increase in number of vehicles from low to medium
and two fold increase from medium to high congestion case.
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Single Agent Experiment

In this section, the experimental results for single agent comprising of one traffic intersection for different
congestion is presented. Single intersection is as shown in the Fig. 6.1. The results are expressed in
terms of the average reward and the average travel time.

6.0.1. Experimental Setup
The agent is trained for 1,000,000 million time steps and evaluated every 10,000 step by performing 8
simulations. The plots are the average reward and the average travel time of 8 simulations for every
evaluated model. The shaded region is the region of two standard deviations.

Figure 6.1: Single Agent Traffic Intersection.

6.0.2. Results and Discussion
The model is trained for different traffic congestion as mentioned before. The graphs depicts the fact
that for the low congestion problem, the agent quickly learns a good policy and maintains it throughout.
As we upscale to the medium traffic demand, the agent learns good policy and maintains it with a
slight dip in reward towards the end. The agent still remains stable throughout for medium congestion.
However, the stability decreases significantly in case of the high traffic demand. In the high congestion
scenario, the agent learns good policy initially and then forgets. It recovers soon and then forgets again.
Towards the end of the graph, the agent recovers and maintains it. However, there is an increase in
instability when compared to medium and low congestion cases.

The aim of the TLC problem is to reduce the average travel time. The average travel time shown
in the graph is the ratio of total sum of time needed by vehicles to accomplish the route by the total
number of vehicles. It is not a one to one mapping of the reward function. However, the reward function
used is a good estimate of the average travel time as shown in the Fig. 6.2 & 6.3. This is the reason
that even though the rewards are same for the medium and high congestion case at the beginning of
the training, the average travel time is significantly different for them. From the average travel time plot,
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Figure 6.2: Single Agent reward for different Traffic Congestion.

Figure 6.3: Single Agent Average Travel Time for different Traffic Congestion.

it is clearly depicted that for the low and medium case congestion, it becomes constant after the initial
training and remains so throughout. However for the high congestion case, there is little fluctuation in
the graph initially, but then it becomes constant towards the end. However, it takes more time for the
simulation to end in high congestion case compared to the low and medium case since the number of
vehicles are more for the latter.

For the low and medium congestion case, the average travel time seem to coincide with each other,
whereas for the high congestion is remains above through the graph. This is so because even though
there is four fold increase in the number of vehicles from low to medium congestion, the increase in
travel time due to addition of extra vehicles in the lane is less when compared to high congestion case,
where there is two fold increase in number of vehicles frommedium to high congestion. This is depicted
in the Fig. 5.2 where the divergence between the graph increases from low to medium and becomes
even larger when reaching the high congestion.



7
Multi Agent Experiments

In this section, experimental results for Multi agent cases comprising of more than one traffic intersection
for different traffic demands are presented. The performance of different algorithms when accompanied
with TP for four and higher number of intersections are compared. The results are expressed in terms
of average reward and the average travel time similar to single intersection case.

7.1. Two Intersections
In this part of the multi agent experiment, a scenario with two agents or two traffic intersections are
considered. The action space of the agent is bigger when compared to the single agent case, since
the agent learns Q-values for the joint action of the two intersections together. In the single agent
case, the actions available to the agent were either 0 or 1. In this case the joint action space is
𝐴 = {(0, 0), (0, 1), (1, 0), (1, 1)}, thus when an agent chooses an action it controls both the intersec-
tions together. In other words both the intersections are controlled in a centralised manner.

Figure 7.1: Two Agent Traffic Intersection.

7.1.1. Experimental Setup
For all multiple intersection scenarios, the agent is trained for 1,000,000 million time steps and evalu-
ated every 10,000 step by performing 8 simulations. The plots are the average reward and the average
travel time of 8 simulations for every evaluated model. The shaded region is the region of two standard
deviations. For maxplus implementation, the following Table 7.1 displays the parameters used:

Number of iterations 30
Type of variant used Centralised with random agent schedule

Noise Gaussian random noise
Normalisation Used

Table 7.1: Parameters for Max-Plus Algorithm.
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Figure 7.2: Two Agent Average Reward for different Traffic Congestion.

Figure 7.3: Two Agent Average Travel Time for different Traffic Congestion.

7.1.2. Results and Discussion
In case of the two agent scenario, we observe an increase in instability for the medium and high con-
gestion case. The fluctuations are higher towards the end of the graph. For the low congestion case,
the agent learns optimal policy and maintains it throughout. The increase in instability can be attributed
to multiple reasons. Firstly since the matrix size is kept constant for the single and two agent case, the
resolution of the state matrix is decreased. In two agent case, the same state matrix has to account for
a bigger simulation environment. Thus there is compression of the environment thereby reducing the
resolution of the state matrix. Secondly there is overlapping of binary values of vehicles in each cell due
to compression. That is since the resolution is low, each matrix element is no longer a representation
of a single vehicle. Instead, a cell can now have more than one vehicle in it. This leads to the violation
of our earlier consideration that the state matrix are binary in nature. Therefore, in multi agent cases
keeping the state matrix constant and upscaling leads to increase in values in each cell. Thus a single
cell in a state matrix can now have values of two or three or even more depending on the number of
cars close to each other in the environment. This leads to a complex learning problem for the agent.
The agent now has to learn not just the binary values but also learn the different values in each cell.

During the first half of the Fig 7.2, the agent learns optimal policy and maintains it. But during the
second half of the graph, it forgets this optimal policy, recovers and then forgets again, and this cycle
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continues. The fall in rewards towards the end are even higher than before training. One possible
explanation to this could be that when the agent comes across a very different traffic scenario and it
forgets previously learnt policies in trying to learn the new scenario.

7.2. Four Intersections
In the four intersection case as shown in the Fig. 7.4, for every pair of agents connected with edges
in CG representation(or every traffic intersection connected via a lane), we transfer the pre-trained
two agent from the previous two intersection case. For the vertical pair of agents, we transform the
pre-trained horizontal intersection by taking transpose of the state matrix. Then we coordinate between
each intersection(or vertex in CG) in order to achieve our goal of minimum travel time. For the Individual
Coordination algorithm, we transfer pre-trained single agent case for every intersection and use the
coordination Algorithm 2.

Figure 7.4: Four Agent Traffic Intersection.

7.2.1. Results and Discussion

Figure 7.5: Four Agent Average Reward for low Traffic Congestion.

In case of low congestion, coordination using MP and Brute Coordination(BC) gives a stable re-
ward function as compared to the Individual Coordination(IC). The fluctuations in the case of Individual
Coordination are comparitively high throughout the training period. This is so because there is abso-
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lutely no communication or partial observability between the agents. MP and BC algorithms perform
similar to each other and their graphs almost coincide throughout the plot. The messages in case of
MP converge and the average difference between the last two messages are between the order of
10ዅ to 10ዅዂ. When comparing the low traffic demand between two and four intersections, none of the
algorithms perform as good as the agent in two intersections case. The pattern of the plots for two and
four intersections are also very different. While there are fluctuations present in the four intersections,
in the two agent case, the agent quickly learns good policies and maintains it throughout. However,
towards the end of the plots, the four intersections performance improves and becomes close to the
performance curve in the two intersections case. The performance of IC is particularly bad, as is visible
from the shaded region for IC. The fluctuations are particularly high during the initial part while towards
the end it improves. While for BC and MP, the fluctuations are not as high.

Figure 7.6: Four Agent Average Travel Time for low Traffic Congestion.

Figure 7.7: Four Agent Average Reward for medium Traffic Congestion.

The reward plot for the medium congestion shows that the IC surprisingly performs very well when
compared to the other algorithms. In fact IC performance for four intersection is even better than two
intersections case. This is a rarity since each agent’s action selection that maximises its Q-function
does not guarantee selection of optimal joint action. When comparing the medium traffic demand
between four and two intersection, a peculiar behaviour is observed. It is observed that fluctuations for
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two and four intersections do not coincide. That is in the two intersections case, the fluctuations are
high towards the end, while it is fairly stable for the four intersections. In fact, towards the end for the
four intersections case, all algorithms perform very well.

Figure 7.8: Four Agent Average Travel Time for medium Traffic Congestion.

Figure 7.9: Four Agent Average reward for high Traffic Congestion.

In the high congestion case, it is observed that the rewards are highly fluctuating initially but even-
tually it becomes stable towards the end of the plot for all algorithms. Therefore, it can be inferred that
for a given traffic demand, at the end of training period the performance is improved for all algorithms
for four intersections.

However, it is also observed that as the congestion increases there is also an increase in fluctu-
ations for all the algorithms. When the high traffic demand plots are compared for the two and four
intersections, behaviour similar to medium traffic demand is observed. That is during the initial part of
the plot, when the two intersections case is fairly stable, high amount of fluctuations are observed for
four intersections. And towards the end when two intersections plot fluctuates, the four intersections
plot becomes stable.
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Figure 7.10: Four Agent Average Travel Time for high Traffic Congestion.

7.3. Six Intersections
In this part of the chapter, six intersections scenario is evaluated as shown in the Fig. 7.11. The Transfer
Planning approach is similar to the four intersections.

Figure 7.11: Six Agent Traffic Intersection.

7.3.1. Results and Discussion
The six intersections scenario with the low traffic demand, experiences an increase in instability when
compared to the four and the two intersections scenarios for BC and MP. The pattern followed when
comparing six intersections to two intersections is similar to the one followed between four and two in-
tersections. That is during the initial part of the plot the graphs are highly fluctuating in nature. However
towards the end, the plots become fairly stable with the decrease in fluctuations. In case of the IC for
low traffic demand, the fluctuations are high during the initial period but eventually the graph becomes
stable. For BC and MP, in the mid region of the plot, the performance is worse than IC.

When the congestion is increased from low to medium, there is an increase in average reward and
the average travel time, which is expected since the number of cars entering the simulation environment
is increased by four times. Unlike the case of medium traffic demand in the four intersections, where
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Figure 7.12: Six Agent Average Reward for low Traffic Congestion.

Figure 7.13: Six Agent Average Travel Time for low Traffic Congestion.

the fluctuations eventually become less, the fluctuations here are comparatively higher towards the
end. Thus, it does not seem to follow the same pattern. From the Fig 7.14 & 7.15, it is depicted that
even towards the end of the plots, the rewards and the average travel time are high and fluctuating.
Even though the values of average travel time and the average reward seem to improve at the very
end, it cannot be said that on being evaluated further it will remain the same. This is so because even
during the initial part of the plot, the values become less, but then they start to fluctuate and increase.
Thus, it is difficult to draw inference from the medium traffic demand plots of the six intersections.

Increasing the traffic demand from medium to high, increases the fluctuations in the plots for both
the average travel time and the average rewards. The Fig. 7.16 & 7.17 are relatable to its medium
counterparts. They behave in the same manner that is they have high fluctuations throughout the
graphs. However, in the high traffic demand it is visible that at the very end that the fluctuations increase
and the average travel time plots for different algorithms are not low. Towards the end theMP algorithms
experiences a sudden dip in rewards, similar to the initial part of the curve. Though MP follows BC plot
throughout, it diverges at the very end.
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Figure 7.14: Six Agent reward for medium Traffic Congestion.

Figure 7.15: Six Agent Average Travel Time for medium Traffic Congestion.

Figure 7.16: Six Agent reward for High Traffic Congestion.
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Figure 7.17: Six Agent Average Travel Time for High Traffic Congestion.

7.4. Eight Intersections
The traffic light scenario for the eight intersections are as shown in the Fig. 7.18.

Figure 7.18: Eight Agent Traffic Intersection.

7.5. Results and Discussion
The performance of the eight intersections agent in the low congestion case, when compared to four
and six intersections are similar. That is in the beginning of the graphs, there are high fluctuations and
towards the end it becomes less. The average travel time and the average reward plots also exhibit
improve in the performance towards the end. The pattern followed by the eight intersections plot with
respect to two intersections is similar to the one exhibited by four and six intersections. In case of IC,
the performance initially is highly fluctuating however as the training progresses, it outperforms both
the other algorithms.

With the increase in the traffic demand from low to medium, BC and MP initially performs poorly,
however they recover and towards the end of the plot a low average travel time is achieved. The fluctu-
ations are however higher for all algorithms compared to its four and two intersections counterparts. IC
performs really well initially but towards the very end there is a sudden increase in the average travel
time and the dip in the average reward.

The increase in the traffic demand frommedium to high causes the BC andMP plots to be fluctuating
in the beginning. However there is some recovery during the second half of the graph. But towards the
very end there is an increase in the fluctuations. IC plots also follow the pattern similar to BC and MP.
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Figure 7.19: Eight Agent Average Reward for low Traffic Congestion.

Figure 7.20: Eight Agent Average Travel Time for low Traffic Congestion.

Figure 7.21: Eight Agent Average Reward for medium Traffic Congestion.
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Figure 7.22: Eight Agent Average Travel Time for medium Traffic Congestion.

Figure 7.23: Eight Agent Average Reward for highTraffic Congestion.

Figure 7.24: Eight Agent Average Travel Time for high Traffic Congestion.
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7.5.1. Coordination Algorithm Comparison
It is interesting to study the behaviour of different algorithms for the different number of intersections
with different traffic demands. A good way to visualise this is by using a Heatmap. A Heatmap is a
way to depict sequential or divergence relationship between multiple variables in terms of colour. The
heatmaps are plotted for the different number of intersections on x-axis and different traffic demands on
y-axis. The values inside each cell represents the average travel time over all the evaluated models.
In the TLC problem, ideally with the increase in the number of traffic intersections or the traffic demand,
the average travel time should go up. This is so because with the increase in the number of agents,
each agent is prone to less observability (only in the case of IC, since there is no communication
between agents) of the entire traffic environment since the number of its indirect agents (agents which
are not directly connected) increase. In case of multiple intersections a wrong action selection by an
intersection can have a multiplying effect on the entire traffic environment. Thus higher number of
intersections are more prone to higher travel times. And also with the increase in traffic demand, we
see an increase in average travel time as was shown for different intersections.

In case of Individual coordination, the heatmap justifies our argument that individual coordination
does not guarantee optimal joint action selection. Going vertically down (or with increasing congestion)
for the four intersections case, first the average travel time decreases for medium traffic demand and
then it increases for high demand. This was also depicted in the Fig 7.7 where IC performed better than
other algorithms. For the six and eight intersections scenario, an expected trend (increase in average
travel time when going vertically down) is shown by IC. However, going horizontally (along the fixed
traffic demand), a pattern is observed. That is first there is an increase in average travel time from four
to six intersections and then there is a decrease moving further from six to eight intersections. The
Table 7.2, contains the standard deviations for the IC heatmap.

Figure 7.25: Heat Map for Individual Coordination for different traffic intersections with different demands.

Traffic Demand Four intersections Six intxersections Eight interseections
0.05 287.17 454.72 230.4
0.2 22.91 848.9 395.1
0.4 146.02 2158.03 1253.8

Table 7.2: Standard deviation for Individual Coordination Heatmap.

The Fig. 7.26 shows the heatmap for BC along with its standard deviations in Table 7.3. Going
vertically down, the average travel time increases for a given intersection, and so does the standard
deviations. Going horizontally along the increasing number of intersections, a pattern similar to IC
is observed only for the high traffic demand case. While for low and medium demands, there is an
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increase in the average travel time.

Figure 7.26: Heat Map for Brute Coordination for different traffic intersections with different demands.

Traffic Demand Four intersections Six intxersections Eight interseections
0.05 133.4 118 115.1
0.2 429.4 503 636.82
0.4 697.26 2293.73 949

Table 7.3: Standard deviation for Brute Coordination Heatmap.
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The heatmap for Max-Plus algorithm is shown in the Fig 7.27. The vertically downward trend is as
expected. Moving horizontally along the low traffic demand sees an increase in the average travel time
as the number of intersections increase. This pattern is also followed in the medium traffic demand.
Whereas for the high traffic demand, pattern followed is similar to BC and IC. That is with the increase
in the number of intersections from four to six, there is an increase in the average travel time. But
going from six to eight intersections, there is a fall in the average travel time. Since the Max-Plus is
an approximate algorithm for BC, they follow the same pattern. However this peculiar pattern is only
exhibited by the six intersections case. This can also mean that with the increase in the number of
intersections, the TP approach with coordination algorithms may or may not perform well.

Figure 7.27: Heat Map for Max-Plus for different traffic intersections with different demands.

Traffic Demand Four intersections Six intxersections Eight interseections
0.05 46.6 128.7 114.9
0.2 255.1 528.4 898.61
0.4 697.47 1837.2 908.1

Table 7.4: Standard deviation for Max-Plus Heatmap.

Thus the assumption that higher number of intersections will increase the average travel time is
falsified. When the heatmaps as well as the plots for BC and MP are considered, it is observed that
both the plots follow each other closely. Since MaxPlus is an approximate method for coordination,
which circumvents the task of listing all possible joint action as in case of BC, it should not perform
better than BC. Since both the algorithms are being evaluated for the same evaluation seed for route
generation, MP should perform at best as BC and not better. This suggests a bug in the code for MP.
In order to investigate this, both BC and MP were subjected to same set of Q-values, and the action
and the global payoff computed by both were reported. For all such experiments the global payoff for
both the MP and BC coincided. And the actions reported by them were same. To be more sure the
same experiment was performed for different number of agents, and similar behaviour was observed.
Thus it is difficult to draw any conclusion, however it maybe due to the internal working of SUMO.
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Algorithm Performance Analysis

The Max-Plus algorithm in one iteration, for each agent 𝑖 computes 𝜇።፣ and sends it to all its neighbours
𝑗 ∈ Γ(𝑖). This process continues until all messages are converged, or a ‘deadline’ signal is received
and the current joint action is reported. In case of anytime extension, the current computed joint action
is used after every iteration to find the global Q-value. If this global Q-value is found to improve then the
best action is updated as the current computed joint action. Brute coordination on the other hand lists
all the possible joint actions and computes the corresponding global Q-function. The joint action that
maximises the global payoff is reported as the optimal joint action. In case of Individual Coordination,
individual actions(𝑎።) which maximise local payoff function (𝑄።) is selected for each agent, then the joint
action is reported which is the combination of these actions.

The MP algorithm implementation has complexity 𝑂(𝑚𝑛𝑑ኽ) where 𝑚 is the number of iterations,
𝑛 is the number of agents and 𝑑 is the average number of neighbours per agent. While for BC, the
complexity is 𝑂(2፧𝑝), where 𝑝 is the total number of edges in the CG or the total number of lanes
connected with traffic intersections at either end. For Individual Coordination, this is 𝑂(𝑛).

The following are the attributes of the traffic light intersection used to arrive at the complexity nota-
tions:

• The total number of actions per agent is equal to 2, that is rGrG or GrGr.

• The local Q-function(for BC and MP) 𝑄።፣ is the joint Q-function comprising of only two agents 𝑖
and 𝑗.

Figure 8.1: Timing results for different Algorithm.

In the implementation of MP algorithm, the total number of iterations performed were 30. After
30 iteration, the best joint action found so far was reported. The Fig. 8.1 shows the timing result(on
linear scale) for different algorithms as the number of intersections increase. From the plot, it is clear
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that BC outperforms Max-Plus algorithm in terms of computation time. There is a negligible increase in
computation time between BC and IC as the number of intersections increase from four to six. Whereas
there is a slight increase from six to eight intersections. However MP consumes large amount of time
for all the intersections. While IC is the fastest it fails to produce good results compared to the others.
The difference between IC and BC will become more prominent as the number of intersections are
increased.

Number of intersections(𝑛) Average number of neighbours per agen(𝑑) Total possible joint action
4 2 2ኾ
6 2.33 2ዀ
8 2.5 2ዂ

Table 8.1: Attributes of Different intersections.

For the linear arrangement of traffic intersections, in which there is a single chain of traffic inter-
sections connected one after another, the average number of neighbours per agent can be calculated
using the formula (፧ዅኼ)∗ኼዄኼ

፧ and this changes the Big-O complexity for MP to 𝑂(𝑚𝑛). Whereas for the
distribution of traffic intersections used in this thesis, the average number of neighbours per agent can
be calculated using the formula (፧ዅኾ)∗ኽዄዂ

፧ . This also changes the Big-O complexity for MP to 𝑂(𝑚𝑛).
For the arrangement of traffic intersections used in this thesis 𝑝 varies according to the table 8.2.

Number of intersections(𝑛) Number of Edges(𝑝)
4 4
6 7
8 10
10 13
12 16
14 19
16 22

Table 8.2: The number of edges(፩) with respect to number of traffic intersections(፧).

From Fig. 8.2 to 8.5, the complexity graphs are plotted on log scale for different number of inter-
sections( with similar arrangement to the one used in this thesis) with different number of iterations for
Max-Plus algorithm.

Figure 8.2: Complexity graph for different Algorithms with 1 iteration for Max-Plus.

It can be observed that for one iterationMP plot coincides exactly with IC. In this case both algorithms
are linear in nature with complexity 𝑂(𝑛). In case of four intersections(𝑝 = 4), all the algorithms are
coincident. But with the increase in the number of intersections the plots begin to diverge.

In case of two iterations for MP, a significant change can be observed for all intersections between
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Figure 8.3: Complexity graph for different Algorithms with 2 iteration for Max-Plus.

MP and other algorithms. From Fig 8.4 and Fig. 8.5 it is observed that the difference becomes even
larger as the number of iterations increases.

Figure 8.4: Complexity graph for different Algorithms with 10 iteration for Max-Plus.

Figure 8.5: Complexity graph for different Algorithms with 30 iteration for Max-Plus.
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Discussion

The Performance of DRQN seems promising for multiple intersections with different traffic demands
coordinating using different algorithms. However there are still some drawbacks which needs to be
improved upon. Here the results are discussed and possible outcomes are enlisted.

First the performance of multi agent case with different traffic demand is discussed. In case of IC,
the performance is unpredictable in nature. For the four intersections scenario it performs comparable
to MP and BC towards the end of the plots for all traffic demands. However it is fluctuating in the
beginning, but towards the end the performance improves considerably well. This is also true for the
six intersections scenario with low demand. However for the low and medium demands, the plots do
not show any considerable dip or improvement throughout despite an initial improvement. For the
eight intersections with low demand, there are fluctuations in the initial part of the plot, however during
the second half there is a considerable improvement in its performance. In the case of the medium
demand, there is an improvement in performance which is maintained throughout. However towards
the very end, there is an increase in the fluctuations. Finally for the high demand case, there are high
fluctuations in the beginning, and then the agent learns a good policy. And then forgets it again towards
the end.

The performance of the BC and MP are mostly similar despite the nature of traffic intersections
being cyclic. In case of the four intersections with low demand there is an initial improvement in the
performance and this is maintained throughout the training period. However in the case of medium and
high demands, there are initial fluctuations present(higher for the former) but towards the end there is a
recovery and the performance is improved. Similar behaviour is observed for the six intersections with
low demand. Whereas for the medium and high demands, the fluctuations are present for most part
of the graphs. In case of the eight intersections, the low demand plots are similar to the four and six
intersections scenarios. The plots for the medium demand case are similar to the low demand case.
With the increase in congestion to high demand, there is an improvement in performance with respect
to the initial part of the plot. However, this improvement is accompanied by fluctuations throughout.
The forgetfulness of the agent can be due to the fact that when it encounters a very different scenario
which it has never experienced before. In trying to learn the new experience, older learnt policies are
forgotten. This phenomenon is known as catastrophic forgetting [16].

Thus for all the intersections with low demand, the plots for BC and MP improves as the training
continues. And the increase in the traffic demand and the number of intersections causes an increase
in the fluctuations. A possible reason can be the decrease in the resolution of state matrix with the
increase in the number of intersections.

It is also seen that the behaviour of multi-agent intersections can be very different from their source
problem. Thus the combination of Transfer Planning with coordination algorithms can perform very
different than their source problem.

Lastly, the performance analysis of algorithms were investigated. It showed that the BC, MP and IC
exhibit the Big-O complexity of 𝑂(𝑚𝑛𝑑ኽ), 𝑂(2፧𝑝) and 𝑂(𝑛) respectively. The performances are depen-
dent on the factors like the number of iterations performed, the number of traffic lanes with intersections
at either end (or edges in CG) and the average number of neighbours per agent. For maximum of one
iteration, the complexity plots for MP and IC are coincident, whereas it is higher for BC. And when the

51



52 9. Discussion

number of iterations are increased, the MP time performance deteriorates. However, the performance
of MP can be studied under lower number of iterations for different traffic scenarios. However, the
actions may or may not be optimal.
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Conclusion

The Traffic Light Control problem was studied for different traffic demands for multiple intersections
using different coordination algorithms.

• How does the Transfer Planning approach combined with the Max-Plus or the Brute Coordination
algorithm perform when compared to the Individual Coordination?
The Transfer Planning approach significantly saves computational cost and time. It is fruitful when
combined with an optimal coordination algorithm. However Individual Coordination lacks observ-
ability of the global environment. It acts independently and there is no sort of communication
between the direct or indirect neighbours. For most cases towards the end of the training period
its performance improves. However its performance is still unpredictable. The performance of
Brute Coordination and Max-Plus are similar to each other and they also possess a consistent
behaviour unlike IC. The Max-Plus algorithm has better observability than IC due to message
passing mechanism. While the BC selects the joint action corresponding to the maximum global
payoff.

• How does the TLC agent perform for different traffic demands?
For a given number of intersections, the increase in the traffic demand causes an introduction
of fluctuations. There is an increase in the average travel time and the dip in rewards as the
traffic demand increases. The increase in fluctuations when the demand increases varies for the
different- number of intersections.

• How does the different coordination algorithms perform computationally in case of Traffic Light
Control problem?
The Individual Coordination performance is exceptionally fast, followed by Brute Coordination
and then Max-Plus. Despite being fast, IC has unpredictable behaviour and sometimes it can
perform better than any other algorithms. While in other cases its performance is compromised.
The Max-Plus algorithm performance is dependent on the total number of iterations performed.
However for low iterations, the MP can outperform BC, however the resulting actions may or may
not be optimal.

10.1. Future Work
The area of Deep Reinforcement Learning is an upcoming field and a lot more exploration still needs
to be done. With the recent application in the field of TLC, there is a lot of motivation to further explore
this field. The thesis opens up a few more ideas that still needs to be investigated. These ideas are
suggested below.

Higher training time: In this thesis, some results show that towards the end the performance of
the agent is improving. Therefore, it is worth trying to train the model for higher time steps and observe
their performance.
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Increase in the Resolution of State Matrix: It has been observed that keeping the size of state
matrix constant while upscaling the number of traffic intersections, relevant information is compressed.
While in previous work [26], increasing the resolution has lead to better performance. It would be in-
teresting to see the implication of increased matrix size for different demand scenarios.

Distral(Distill & transfer learning): In this approach a joint objective function is used to optimise
the model. This method aims to find a distilled policy 𝜋ኺ by regularising the task specific policies 𝜋።.
Therefore an agent can be trained to learn policy 𝜋ኺ (which can be followed for all congestion scenar-
ios) with regularisation of 𝜋።(demand specific policy).

Multi Task learning: For every congestion scenario, the agent had to be trained. This leads to an
increase in computational costs and well as time. It would be very efficient to train a single model that
learns to perform in different congestion cases.

Curriculum Learning: This is an approach which can be applied in case of training the agent for
the high congestion case. It was observed from the single agent high congestion plot that the learning
is fairly unstable. This method can circumvent this problem by training the agent for smaller congestion
scenarios first and then gradually increasing the congestion level.

CoordinationAlgorithmswith better convergence properties: There exists algorithms that have
better convergence properties for cyclic graphs. A tree based reparameterization [30] method that com-
bines the exact solutions of different cycle-free subgraphs.

Double DQN: As it was observed from the results that with the increase in demand, the fluctuations
increase. This may be caused by overestimation of Q-values. Therefore using two separate networks
for action evaluation and action selection can be helpful in reducing fluctuations. This method has
shown to improve performance.
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