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Abstract We report a new thermal boundary layer equation for turbulent Rayleigh–Bénard convection for Prandtl number Pr > 1

that takes into account the effect of turbulent fluctuations. These fluctuations are neglected in existing equations, which are based on
steady-state and laminar assumptions. Using this new equation, we derive analytically the mean temperature profiles in two limits:
Pr & 1 and Pr � 1. These two theoretical predictions are in excellent agreement with the results of our direct numerical simulations
for Pr = 4.38 and Pr = 2547.9, respectively.

RAYLEIGH–BÉNARD CONVECTION

Turbulent Rayleigh–Bénard convection (RBC) [1, 2, 3, 5, 12], consisting of a fluid confined between two horizontal
plates, heated from below and cooled from above, is a paradigm system for studying turbulent thermal convection, which
is ubiquitous in nature. The state of fluid motion in RBC is determined by the Rayleigh number Ra = αg∆H3/(κν)
and Prandtl number Pr = ν/κ. Here α denotes the isobaric thermal expansion coefficient, ν the kinematic viscosity and
κ the thermal diffusivity of the fluid, g the acceleration due to gravity, ∆ the temperature difference between the bottom
and top plates, and H the distance between the plates. In turbulent RBC, there are viscous boundary layers (BLs) near
all rigid walls and two thermal BLs, one above the bottom plate and one below the top plate. Both viscous and thermal
BLs play a critical role in the turbulent heat transfer of the system and in particular the thicknesses of the thermal BL λ is
inversely proportional to the heat transport. Therefore the understanding of the processes within the BLs and prediction
of the mean temperature and velocity profiles are very important [4].

PREDICTION OF THE TEMPERATURE PROFILES AND DNS RESULTS

In [8] we derived a new thermal BL equation for turbulent RBC that takes into account the effect of the turbulent fluctu-
ations, which are neglected in the existing BL equations based on steady-state and laminar assumptions [10, 9, 7]. Using
this equation, we derive analytically the mean temperature profiles for Pr & 1 and Pr � 1, compare our theoretical
predictions with our DNS results for Pr = 4.38 and Pr = 2547.9, and find excellent agreement.
For laminar BLs, where fluctuations are absent, the temperature Prandtl–Blasius–Pohlhausen (PBP) BL equation can be
written as θξξ + ωΓω

(
1 + ω−1

)
ξω−1θξ = 0 with ω = 2 for Pr � 1 and ω = 3 for Pr � 1 and thus the laminar
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Figure 1. (a) Normalized eddy thermal diffusivity κt/κ, averaged in time and over horizontal cross-sections, as obtained in the DNS
of RBC in a cylindrical container of the aspect ratio 1 for Pr = 4.38 and Ra = 107 (diamonds), 108 (triangles) and 109 (circles)
together with a fit forRa = 109 (line) show that close to the plate holds κt/κ ∝ ξ3. The dashed line shows the slope ∝ ξ that causes
the logarithmical temperature profiles in the core part of the domain for sufficiently large Ra. (b) Mean temperature profiles obtained
in the DNS of RBC for Pr = 4.38 (filled symbols) and Pr = 2547.9 (open symbols) for Ra = 107 (diamonds), 108 (triangles) and
109 (circles). Excellent agreement with the predictions (1) for Pr & 1 (solid line) and (2) for Pr � 1 (dashed line) is demonstrated.
An expanded view with the PBP prediction [11] for Pr � 1 (dotted line) and Pr � 1 (dot-dashed line) for comparison is shown in
the inset.



temperature profiles for any Pr are bounded by θ(ξ) =
∫ ξ
0

exp
[
−Γω

(
1 + ω−1

)
χω
]

dχ, with 2 ≤ ω ≤ 3 where Γ is the
gamma function [11]. Here ξ = z/λ, z is the distance from the plate and λ the local thickness of the thermal BL.
To take into account the fluctuations, we need to know the eddy thermal diffusivity κt = κt(x, z), defined as 〈u′zT ′〉t ≡
−κt∂z〈T 〉t, where 〈·〉t denotes the average in time, u′z and T ′ the fluctuations of the vertical velocity and temperature,
respectively. A common approach for fully turbulent BLs is κt ∝ ξ [7] consequently leading to logarithmic temperature
profiles. For moderate Ra, such log-profiles are also found but only in the turbulent bulk, which is at a relatively large
distance from the plate. In the vicinity of the plate κt behaves rather as κt ∝ ξ3 (see Fig. 1a). In [8] it was derived that
κt/κ ≈ a3ξ3 holds for small ξ with some dimensionless constant a. For Pr ≥ the following thermal BL equation was
also derived in [8]:

(1 + a3ξ3)θξξ + 3a3c ξ2θξ = 0

with the solution

θ(ξ) =

∫ ξ

0

(1 + a3η3)−cdη.

Note that the constants a and c are related by the requirement θ(∞) = 1, which gives a = B(c − 1/3, 1/3)/3, where B
is the beta function. Our DNS show that 0.52 < a3 < 1.76, with a ∼ 1.2 for Pr & 1 and a ∼ 0.8 for Pr � 1. Thus we
have c ∼ 1 for Pr ∼ 1 and c ∼ 2 for Pr � 1. The analytical solutions of the BL equation for c = 1 and c = 2 read

θ =

√
3

4π
log

(1 + aξ)3
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+

3

2π
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3

)
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1

4
, c = 1, a = 2π/(3

√
3) ≈ 1.2, (1)
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4
, c = 2, a = 4π/(9

√
3) ≈ 0.8. (2)

Thus, all temperature profiles for Pr > 1 lie between (1) (Pr & 1) and (2) (Pr � 1).
To check the predictions, eq. (1) and eq. (2), we conducted DNS of turbulent RBC for Pr = 4.38 and Pr = 2547.9
[6] for Ra from 107 to 109. The DNS were conducted using the RBC-version [6] of the code [13]. The obtained mean
temperature profiles collapse and depend only on Pr and ξ (see Fig. 1b). The DNS profile for Pr = 4.38 is in perfect
agreement with the predicted profile (1) for Pr & 1 while the DNS profile for Pr = 2547.9 is in perfect agreement
with the predicted profile (2). On the other hand, the PBP prediction [11] with ω = 3 for Pr � 1 lies well above the
DNS profile for Pr = 2547.9 and the DNS profile for Pr = 4.38 lies outside the bounds of the PBP predictions with
2 ≤ ω ≤ 3.
In summary, we have derived a new thermal BL equation for turbulent RBC for Pr > 1 using the idea of an eddy thermal
diffusivity, which is shown to depend on the cubic power of the distance from the plate. We have solved the equation to
obtain two analytical mean temperature profiles for Pr & 1 and Pr � 1 respectively, and demonstrated that they are in
excellent agreement with the DNS profiles.
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