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[1] The short‐term statistics of 10 million individual waves observed with buoys in deep
water have been investigated, corrected for a sample‐rate bias, and normalized with the
standard deviation of the surface elevation (the range of normalized wave heights
is 0 < ~H < 10). The observed normalized trough depths are found to be Rayleigh
distributed with near‐perfect scaling. The normalized crest heights are also Rayleigh
distributed but 3% higher than given by the conventional Rayleigh distribution. The observed
normalized wave heights are not well predicted by the conventional Rayleigh distribution
(overprediction by 9.5% on average), but they are very well predicted by Rayleigh‐like
distributions obtained from linear theories and by an empirical Weibull distribution (errors
<1.5%). These linear theories also properly predict the observed monotonic variation of the
normalized wave heights with the (de‐)correlation between crest height and trough depth. The
theoretical Rayleigh‐like distributions may therefore be preferred over the empirical Weibull
distribution and certainly over the conventional Rayleigh distribution. The values of the
observed expectedmaximumwave height (normalized) as a function of duration are consistent
with these findings. To inspect nonlinear effects, the buoy observations were supplemented
with 10,000 waves observed with laser altimeters mounted on a fixed platform (0 < ~H < 7).
The (normalized) crest heights thus observed are typically 5% higher than those observed with
the buoys, whereas the (normalized) trough depths are typically 12% shallower. The
distribution of the normalized wave heights thus observed is practically identical to the
distribution observed with the buoys. These findings suggest that crest heights and trough
depths are affected by nonlinear effects, but wave heights are not. One wave in our buoy
observations may qualify as a freak wave.

Citation: Casas‐Prat, M., and L. H. Holthuijsen (2010), Short‐term statistics of waves observed in deep water, J. Geophys. Res.,
115, C09024, doi:10.1029/2009JC005742.

1. Introduction

[2] The short‐term statistics of wind‐generated waves in
deep water are often based on the assumption that the sea
surface elevation is a stationary, Gaussian process, resulting
in a Rayleigh distribution for crest heights, through depths
and wave heights (assuming that the wave heights are twice
the crest heights [Longuet‐Higgins 1952]). Many studies
have been carried out, either to find a better distribution or
simply to demonstrate agreement with observations in the
field [e.g., Cartwright and Longuet‐Higgins, 1956;
Forristall, 1978, 1984; Nolte and Hsu, 1979; Longuet‐
Higgins, 1980; Larsen, 1981; Vinje, 1989; Boccotti, 1989,
2000; Tayfun, 1990, 1994, 2004, 2006; Mori and Yasuda,
2002; Stansell, 2004, 2005; Mori and Janssen, 2006]. The
number of observed or numerically simulated waves in
these studies is typically 10,000–50,000 waves, with notable

exceptions with fewer waves [e.g., Mori and Janssen,
2006] or more waves [e.g., Stansell, 2004; Vinje, 1989].
An excellent review of the literature on the subject has been
given by Tayfun and Fedele [2007]. With our records of
some 10 million waves, we can inspect more extreme sta-
tistics than those in the previous studies.
[3] Our data were measured with Waverider buoys of the

Xarxa d’Instruments Oceanogràfics i Meteorològics de la
Generalitat de Catalunya network off the Catalan coast of
Spain in the Mediterranean Sea [Bolaños et al., 2009]. We
are well aware of the fact that, owing to the hydrodynamic
characteristics of a buoy, the peaks of steep waves tend to be
flatter in the time records than they actually are. In fact, a
buoy seems to linearize the waves, i.e., the waves look more
sinusoidal than they would be when observed with a fixed
instrument [James, 1986; Magnusson et al., 1999]. Non-
linear effects such as the sharp peaks of steep waves
therefore cannot be properly investigated with a buoy.
Another potential problem is that a buoy may be dragged
through or swerve around the 3‐D peaks of waves [Allender
et al., 1989]. However, most wave measurements at sea are
made with buoys, and understanding the statistics thus
obtained is important, leaving the interpretation in terms of
a fixed instrument as a separate issue. But to see the effect of
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using a fixed instrument rather than a floating buoy, we also
considered some 10,000 waves observed with laser altim-
eters from an offshore platform in the North Sea during the
Wave Direction Measurement Calibration Project (WADIC)
experiment [Allender et al., 1989].
[4] The questions that seem most relevant to scientists and

engineers are as follows: (1) To what extent are wave
heights, crest heights, and trough depths Rayleigh distrib-
uted (or should modifications be applied)? (2) If they are
Rayleigh distributed, can the scale of this distribution be
predicted from the spectrum of the waves? and (3) Can the
maximum crest height and wave height in a given duration
correspondingly be predicted from the spectrum? These
questions have been addressed extensively in the review of
Tayfun and Fedele [2007]. They concluded, on the basis of
comparing theoretical expectations with real ocean waves,
that nonlinear effects do not affect wave heights and that the
linear model of Boccotti [1989, 2000] describes observed
wave heights extremely well.
[5] We therefore focus initially on the conventional

Rayleigh distribution (i.e., with its scale parameter equal to
the standard deviation of the sea surface elevation). But
because of its shortcomings, we also consider Rayleigh‐like
distributions with other values of the scale parameter that
account for the (de‐)correlation between the crest height and
the trough depth of a wave. We do not consider nonlinear
theories [e.g., Longuet‐Higgins, 1963; Tayfun, 1994; Mori
and Yasuda, 2002; Janssen, 2003; Kharif and Pelinovsky,
2003; Mori and Janssen, 2006; Onorato et al., 2009]
because (1) the surface elevations in our data are nearly
Gaussian distributed (so that nonlinear theories reduce to
the linear theory), which is closely related to the fact that
(2) the buoys cannot properly observe nonlinear effects and
to the extent that they do, they add their own nonlinear
effects which are not included in the nonlinear wave
theories, and (3) the nonlinear effects seem to be small for
the wave heights as shown by Tayfun and Fedele [2007],
although they may be larger for the wave crests.

[6] We describe our primary data and initial analysis in
section 2 and the theoretical and empirical expectations in
section 3. In sections 4 and 5, we show the results of our
statistical analysis, and in section 6 we discuss our findings
and formulate our conclusions.

2. Observations and Initial Analysis

2.1. Observations

[7] Most of the observations that we analyze are time series
of the sea surface elevation measured by four Waverider
buoys in theMediterranean Sea off the Catalan coast of Spain
at locations Roses, Tordera, Llobregat, and Tortosa (see
Figure 1) during a 15 year period (1991–2006). The exact
location, depth, and other specifics of the buoys are given in
Table 1. The Tortosa buoy is a directional buoy (but we used
only the vertical buoymotion), and the others are scalar buoys
(measuring only the vertical motion).
[8] The discretization of the sea surface elevation in

time poses a potential problem inasmuch as wave heights
are systematically underestimated by equidistant sampling.
Tayfun [1993] has shown that the corresponding bias of the
average normalized wave heights D = ( ~H1/p − ~H ′1/p)/ ~H1/p

would be D = −(pDt/Tm01)
2/6, in which ~H1/p is the mean of

the 1/p highest true normalized wave heights and ~H ′1/p is the
same of the observed normalized heights, Dt is the sample
rate and Tm01 is the mean wave period (see equation (4) for
definition). Because the mean value in the buoy observations
of (Dt/Tm01)

2 is 0.0175 and 0.0168 for the laser altimeter
observations, the bias value would be 2.9% and 2.8%,
respectively. Because Tayfun [1993] shows that this applies
to the distributions of normalized wave heights, we have
upscaled all of our corresponding distributions accordingly.
[9] The buoy data that we received were raw data; i.e.,

they were obtained by integrating the vertical acceleration
of the buoy without any quality control to detect errors,
anomalies, or other unwanted phenomena. We therefore

Figure 1. The location of the four WAVERIDER buoys off the Catalan coast used in this study.
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subjected the data to some rigorous tests. We did not con-
sider repairing the observations, because we had sufficient
data to work with (initially some 130,000 records with a
total of 40 million waves). Of the original records, we
accepted only those for which the following criteria were
met (in order of testing):
[10] 1. The record has the nominal length (see Table 1).
[11] 2. All absolute values of the vertical accelerations are

<1/2g (the maximum acceleration in a Stokes wave, where g
is gravitational acceleration).
[12] 3. After removing the linear trend in the record, no linear

sections in the surface elevation occur (i.e., sequences of more
than three consecutive data points with zero acceleration).
[13] 4. The significant wave height Hs = 4s (s is the

standard deviation of the surface elevation in the record) is
>0.5 m (the size, shape, and weight of the buoy may affect
the measurement of smaller waves). With a characteristic
wave steepness of 4%, say, this implies a characteristic
wave length >12.5 m, so that the buoy diameter (0.7 m and
0.9 m) is only a small fraction of that wave length.
[14] 5. No two consecutive data points occur >2.83Hs. A

longer sequence is accepted as it may indicate the occur-
rence of a freak wave (the value 2.83Hs is exceeded on
average once per 100 storms, each with 2,000 waves and a
Benjamin‐Feir index BFI = 0.8; see Appendix A).
[15] 6. Mean frequency fm01 (see equation (3) for defini-

tion) is less than the Nyquist frequency fNyq = 1/(2Dt)
divided by 2.2 (i.e., fNyq > 2.2 fm01; to avoid excessive

aliasing errors). (See Holthuijsen [2007] for details about the
Nyquist frequency.)
[16] 7. Low‐frequency variance density is <0.004 m2/Hz

(i.e., <0.0065 Hz for the buoy data and <0.008 Hz for the
altimeter data) to avoid records in which the buoy showed
slow oscillations such as those induced by a boat or by
flotsam hitting the buoy.
[17] 8. The mean wave length (determined with the linear

wave theory from the above mean frequency) is smaller than
one half the local water depth.
[18] In the records thus selected, we found a few unusual

looking records. These almost always had skewness or
kurtosis values deviating considerably from the values for a
Gaussian variable (0 and 3). We found 35 records with
skewness >0.3 or kurtosis >4.0, and after a visual inspection
we rejected 16 of these (none of these contained obvious
freak waves). This is admittedly a subjective criterion which
we can only illustrate with an example shown in Figure 2.
Such a small number does not seem to compromise the
statistics of the remaining records. With these nine criteria
(including the visual inspection), we accepted 42,377 buoy
records with a total of approximately 10 million waves. The
highest individual wave height in this data set is 8.53 m, and
the highest significant wave height is 5.38 m.
[19] To find some indication of the differences between

observations with a moving buoy and observations with a
fixed instrument, we supplemented our buoy data with
measurements obtained with two laser altimeters mounted

Figure 2. Example of an unusual looking record that was rejected (two unusually long and high wave
groups; kurtosis is 4.1).

Table 1. Specifics of the Buoy Observations off the Catalan Coast and of the Altimeter Observations in the North Sea

Roses Tordera Llobregat Tortosa Edda

Coordinates 03 11.99°E 42 10.79°N 02 48.93°E 41 38.81°N 02 08.48°E 41 16.69°N 00 58.89°E 40 43.29°N 03 28°E 56 28°N
Depth (m) 46 74 45 60 70
Diameter (m) 0.7 0.7 0.7 0.9 –
Sample interval (s) 1/2.56 1/2.56 1/2.56 1/1.28 1
Vertical resolution (m) 0.01 0.01 0.01 0.01 0.001
Instrument Scalar buoy Scalar buoy Scalar buoy Directional buoy Laser altimeters
Record length 20 min 20 min 20 min 20 min 17 min 4 s
Period 2001–2006 2002–2006 2001–2004 1991–1997, 2001–2006 5–6 Nov 1985,

21–23 Dec 1985
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on the Phillips Edda platform in the North Sea during the
WADIC project [Allender et al., 1989]. Most of the data
from this project were collected during the period of October
1985 to January 1986 with 20 instruments. In the present
study, 92 time series that were registered during November–
December 1985 by two laser altimeters from a pentagon
array mounted on the Phillips Edda platform (see Figure 3)
were at our disposal. Details such as water depth and sample
interval time are given in Table 1. These laser observations
represent two independent storms, one of which had signif-
icant wave heights >10 m. We did not censor these records
as they were used in the WADIC experiment after recovery
of 87% of the initial raw data. We only considered the
requirement of shallow water (see above criteria), which
caused 23 records to be rejected (including the ones with
the highest significant wave height in November 1985).
The remaining 69 records contained about 10,000 waves. The
highest individual wave height in these records is 13.55 m,
and the highest significant wave height is 8.82 m.

2.2. Initial Analysis

[20] To define wave parameters such as wave height and
wave crest we defined a wave as the surface profile between
two consecutive zero‐down crossings. It is important to note
that we used this down‐crossing definition because the
statistics of the alternative up‐crossing definition may well
be different [Haring et al., 1976]. The zero‐crossing points
were obtained by linear interpolation of the surface elevation
in time between the nearest two data points (after removing
the linear trend in the record). The individual crest height
hcrest, trough depth htrough, wave height H = hcrest − htrough,
and period T were thus defined from the maximum and
minimum elevation in each individual wave and from the
zero‐crossing points. We subsequently computed for each
record the significant wave height as follows:

H1=3 ¼ 1

N=3

XN=3

i¼1

Hi; ð1Þ

in which N is the number of waves in the record and i is the
rank number of the wave height (i = 1 being the highest
wave). To avoid excessive effects of measurement noise
near the zero level, in particular on the estimation of the
number of waves, we ignored all wave heights <0.05 m and
all crest heights and trough depths <0.025 m and periods
smaller than twice the sampling interval time.
[21] We also carried out a spectral analysis for each

record. We estimated the spectrum as E( f ) ≈ 1=2a2j =Df, in
which aj is the amplitude of the harmonic with frequency fj
and the overbar indicates averaging over the frequency band
Df. We used a standard fast Fourier transform technique
(tapering the first 5% and last 5% of each record with a
cosine function). The Nyquist frequency was 0.64 Hz for the
Tortosa buoy, 1.28 Hz for the other buoys, and 0.5 Hz for
the altimeters. We thus obtained a spectrum for each record
with a frequency resolution of about Df = 0.013 Hz for the
buoy data and Df = 0.016 Hz for the altimeter data and with
an error in the spectral density of ∼25% (standard deviation).
In addition, we computed for each record the following
wave parameters on the basis of the moments of the spec-
trum mn =

R
0
∞ f n E( f ) df:

Significant wave height H1=3; Rayleigh ¼ 4
ffiffiffiffiffiffi
m0

p ð2Þ

Mean frequency fm01 ¼ m1=m0 ð3Þ

Mean wave period Tm01 ¼ 1=fm01 ð4Þ

From the definition of the spectrum, it follows that
ffiffiffiffiffiffi
m0

p
is

the standard deviation of the surface elevation.

3. Theoretical and Empirical Expectations

3.1. The Individual Wave Height and Crest Height

[22] The conventional approach to estimating the short‐
term statistics of crest height, trough depth, and wave height
is a linear approach in the sense that the waves are assumed
to be the sum of a large number of independent harmonic
waves with random, uniformly distributed phases (leading to
a stationary Gaussian process). Under these conditions and
for waves with a narrow‐band spectrum, Longuet‐Higgins
[1952] showed that the crest height (and by implication
trough depth) is Rayleigh distributed:

p ~�crestð Þ ¼ ~�crest exp �1=2~�2crest
� � ¼ p~�crest ;Rayleigh; ð5Þ

in which p(~�crest) is the probability density function of ~�crest =
hcrest/

ffiffiffiffiffiffi
m0

p
, and

ffiffiffiffiffiffi
m0

p
is the scaling factor (and likewise for

the trough depth). We refer to this Rayleigh distribution as
the conventional Rayleigh distribution for crest heights.
Longuet‐Higgins [1980] pointed out that in his original
formulation of 1952, ~�crest = hcrest/(

ffiffiffi
2

p
�crest), in which �crest is

the mean crest height rather than the above ~�crest = hcrest/
ffiffiffiffiffiffi
m0

p
.

But for Gaussian sea states, the two normalizations are
identical. Cartwright and Longuet‐Higgins [1956] gave a
more complicated expression for local maxima rather than
crest heights as defined here, for a spectrum with an arbitrary
width. This expression involves a spectral width parameter
that contains the fourth‐order moment of the spectrum " =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2
2= m0m4ð Þ

p
. But because the spectrum of wind‐

generated waves often has a high‐frequency tail proportional

Figure 3. The location of the WADIC experiment, near the
EDDA platform.
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to frequency to a power between –4 and –5, the value of this
width parameter depends very much on the upper limit of the
integration interval. It has therefore been largely abandoned
[Tucker and Pitt, 2001], and we do not consider this
approach.
[23] The short‐term statistics of the wave height is often

obtained simply by assuming that the wave height is twice
the crest height H = 2hcrest; in other words, that the crest
height is equal to the preceding trough depth. Transforming
the above Rayleigh distribution, using the proper Jacobian
then gives the Rayleigh distribution for the normalized wave
height ~H = H/

ffiffiffiffiffiffi
m0

p
as follows:

p ~H
� � ¼ 1

4
~H exp � 1

8
~H2

� �
¼ p ~H ;Rayleigh: ð6Þ

We refer to this Rayleigh distribution as the conventional
Rayleigh distribution for wave heights. This assumption of
the wave height being equal to twice the crest height seems
reasonable as a first approximation, and in fact, the observed
shape of the distribution of the wave height is very nearly
that of a Rayleigh distribution as shown in Figure 4.
However, Figure 4 also shows that often the actual scale of
the distribution is smaller than the nominal scale

ffiffiffiffiffiffi
m0

p
(Longuet‐Higgins [1980] suggests for this example scaling
with 0.925

ffiffiffiffiffiffi
m0

p
, although Forristall [1978] gives H1/3 =

3.77
ffiffiffiffiffiffi
m0

p
, which suggests a scaling of 0.942

ffiffiffiffiffiffi
m0

p
). In other

words, the conventional Rayleigh distribution overestimates
the wave heights in these observations.
[24] Longuet‐Higgins [1980] showed that increasing the

width of the spectrum by adding a perturbation (i.e., noise)
to a narrow‐banded process gives a rescaling of the con-
ventional Rayleigh distribution, depending on the width of
the spectrum. The result for the wave height, expressed in
terms of the spectral width parameter n =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0m2=m2

1 � 1
p

[Longuet‐Higgins, 1975] is as follows:

p ~H
� � ¼ ~H

4�2
exp �

~H2

8�2

� �
; ð7Þ

with the scaling factor a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=8�2 � 1=2ð Þ�2p

. Since
H = 2hcrest is assumed, this correction also applies to the
crest heights. In another approach, in which both the crest
height and the trough depth are considered to be random
variables with a certain correlation r (rather than a priori
assuming H = 2hcrest), Naess [1985; equation (14)] finds a
scaling factor a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 1� �ð Þp

. For large wave heights
(Tayfun [1990] suggests ~H >

ffiffiffiffiffiffi
2�

p
≈ 2.5), Boccotti [1989,

2000; equation (9.69)], and Vinje [1989; equation (30)]
multiply this distribution (for the same value for a) with a
coefficient b, whereas Tayfun [1990; equations (29) and (32)]
multiplies Vinje’s distribution (i.e., for the same value for
a and b, referred to in Tayfun and Fedele [2007] as the T1
model but with a different correlation coefficient), again

Figure 4. The distribution of normalized observed individual wave heights plotted with Rayleigh scales
(plot {− ln [1 − Pr(x ≤ x)]}1/2 against x). The observations arrange themselves along a straight line, illus-
trating that they are nearly Rayleigh distributed (data from five hurricanes in the Gulf of Mexico from
Forristall [1978; after Holthuijsen, 2007]). The scaling with 0.925

ffiffiffiffiffiffi
m0

p
was suggested by Longuet‐

Higgins [1980].
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with a function f ( ~H) that modifies the shape of the dis-
tribution. The Rayleigh distribution can thus be generalized
to the following:

p ~H
� � ¼ � ~H

4�2
exp �

~H2

8�2

� �
f ~H
� �

: ð8Þ

The coefficients and the function f ( ~H) are summarized in
Table 2.
[25] The correlation r may be estimated as r ≈ C(t0) =

E{~� (t) .~� (t + t0)}, where ~� is the normalized surface ele-
vation ~� = h/

ffiffiffiffiffiffi
m0

p
and t0 is the average time interval

between the crest and trough of a wave. Naess [1989]
stated that the precise choice of this interval is not crucial.
Tayfun [1990] takes t0 = 1/2Tm01, whereas Vinje [1989] and
Boccotti [1989, 2000] take t0 = t1, where the autocorre-
lation function C (t) attains its (global) minimum. To avoid
computing C (t) and searching for its minimum to find t1,
we follow Tayfun [1990] and take t0 = 1/2Tm01 in all our
estimates of r. Following the expressions of Naess [1985]
and Boccotti [1989, 2000], we estimate r directly from the
spectrum as rNB = m0

−1R
0
∞E( f ) cos(2pft0)df. Tayfun [1990]

uses a slightly more complicated expression, which we
also use in the approach of Vinje [1989] (to make it
coincide with the T1 model of Tayfun and Fedele, 2007]):
rVT = −(c2 + s2)1/2 with c = m0

−1R
0
∞E( f ) cos(2pft0)df and

s = m0
−1R

0
∞E( f )sin(2pft0)df. We estimate the correlation r″

between the vertical velocities (see Table 2) following
Boccotti [1989, 2000] as r″ = m2

−1R
0
∞f 2E( f )cos(2pft0)df.

Because of replacing t1 with 1/2Tm01, we refer to the results
thus obtained as the results of the theories of Vinje [1989]
and Boccotti [1989, 2000] with modified correlation coef-
ficients, both denoted with asterisks, i.e., Vinje* [1989] and
Boccotti* [1989, 2000]. All these Rayleigh‐like distribu-
tions reduce to the conventional Rayleigh distribution of
equation (6) for very narrow spectra (v = 0) or for unity
correlations (r = 1 and r″ = 1).
[26] Forristall [1978] suggests, on the basis of observa-

tions in five hurricanes in the Gulf of Mexico with 0 < ~H < 9,
using a two‐parameter Weibull distribution:

Pr H � Hf g ¼ P ~H
� � ¼ 1� exp � ~H

a
=b

� �
; ð9Þ

with a = 2.126 and b = 8.42 (note that for a = 2 and b = 8, this
distribution reduces to the conventional Raleigh distribu-

tion). Nolte and Hsu [1979], using a subset of these data with
0 < ~H < 6.7, suggested a = 2.138 and b = 9.08.

3.2. The Significant Wave Height and Maximum Wave
and Crest Height

[27] Given the probability density function for the indi-
vidual wave height, the value of the significant wave height
H1/3 (the mean of the one‐third highest waves) is readily
estimated as follows:

H1=3 ¼
Z 1

H*
H p Hð ÞdH

�Z 1

H*
p Hð ÞdH ; ð10Þ

where H* is defined such that
R
H*
∞ p(H)dH = 1/3. For the

conventional Rayleigh distribution of equation (6), the result
in terms of the spectrum is as follows:

H1=3 � H1=3; Rayleigh ¼ 4:004 . . .
ffiffiffiffiffiffi
m0

p � 4
ffiffiffiffiffiffi
m0

p
; ð11Þ

which typically overestimates the significant wave height as
determined from time records (see Figure 5). For the scaled
Rayleigh distribution (equation (7)), the result is obviously

H1=3 � H1=3; Rayleigh; scaled ¼ 4�
ffiffiffiffiffiffi
m0

p
: ð12Þ

For the other theoretical distributions, a closed analytical
expression for the significant wave height seems to be
available only for Tayfun [1990, equations (48), (49), and
(52)]. If required in the following, the significant wave
height is determined numerically from the computed theo-
retical probability density functions. For the two‐parameter
Weibull distribution, the significant wave height, estimated
as the mean of the one‐third highest waves in the Weibull
distribution, is as follows:

H1=3 � H1=3; Weibull ¼ 3b1=aG 1þ 1=a; ln 3ð Þ; ð13Þ
in which G(1 + 1/a, ln 3) =

R
ln 3
∞ t1/a e−t dt is the incomplete

G function.
[28] The cumulative distribution function of the maximum

crest height or maximum wave height in a record of N
waves is readily obtained, assuming that crest heights or
wave heights are independent (for large N, the results are
fairly insensitive to this assumption). The expressions are
identical for the wave height and the crest height. Re-
presenting either of these as x gives the following equation:

Pr xmax < xmaxf g ¼ P xmaxð Þ ¼ P xð Þ½ �N : ð14Þ

Table 2. The Parameters of the Various Rayleigh(‐like) Probability Density Functions for the Normalized Wave Heighta

b a f ( ~H)

All Wave Heights
Rayleigh [Longuet‐Higgins, 1952] 1 1 1
Longuet‐Higgins [1980] 1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1=8�2 � 1=2ð Þ�2p 1

Naess [1985] 1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 1� �NBð Þp 1

Large Wave Heights
Vinje* [1989]b ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2 1� ��1
VT

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 1� �VTð Þp 1

Boccotti* [1989]b
1þ �

0 0� �
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0 0 1� �NBð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2 1� �NBð Þp 1

Tayfun [1990] ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 1� ��1

VT

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 1� �VTð Þp

[1 + (rVT
2 − 1)/(4rVT ~H

2)]

aVariable r″ is the (global) minimum correlation between the vertical velocities of the surface elevation (as a function of time lag) in this study taken
at t = 1/2Tm01.

bWith modified correlation coefficients.
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If the (scaled) Rayleigh probability density function (b = 1
in Table 2) is written as follows:

p xð Þ ¼ x

�=2
exp � x2

�

� �
; ð15Þ

then the expected value of the maximum [Longuet‐Higgins,
1952; Forristall, 1978] is

E xmaxf g � 1þ 	E
2 lnN

� 	 ffiffiffiffiffiffiffiffiffiffiffiffi
� lnN

p
; ð16Þ

where gE = 0.5772 is Euler’s constant. For the conventional
Rayleigh distribution d = 2 or d = 8 for the crest height
and wave height, respectively, and d = 8a2 for the scaled
Rayleigh distribution for the wave height. For the Rayleigh‐
like distributions of Table 2 with f( ~H) = 1, Tayfun and Fedele
[2007] additionally replace N in our equation (16) with bN.

3.3. The Joint North Sea Wave Project (JONSWAP)
Spectrum

[29] For an average JONSWAP spectrum [Hasselmann et
al., 1973] (with peak‐enhancement factor g = 3.3 and peak‐

width parameters sa = 0.07 and sb = 0.09), the value of v
is v = 0.382. This gives a scaling factor in the approach of
Longuet‐Higgins [1980] a = 0.945, which is slightly higher
than the scaling factors of 0.925 and 0.927 suggested by
Figures 4 and 5 but in good agreement with the suggestion
of Forristall [1978] that a = 0.942 for these observations.
For the same spectrum, r = −0.727 in the Naess [1985]
approach, with a corresponding scaling factor a = 0.929.
These numbers, together with those for Vinje* [1989],
Tayfun [1990], and Boccotti* [1989, 2000] are summarized
in Table 3. Note that the correlations r and r″ in the
approach of Vinje* [1989], Tayfun [1990], and Boccotti*
[1989, 2000] not only affect the scaling –but also enhance
the probability density for high wave heights (without
specifying what happens to the lower wave heights). This
high‐end scaling is illustrated here with the scaling as it
applies to the significant wave height, i.e., the ratio of the
significant wave height from these modified Rayleigh dis-
tributions and from the conventional Rayleigh distribution
(a = 1), indicated with H1/3,theory/H1/3,Rayleigh (Table 3). The
fact that the value of H1/3,theory/H1/3,Rayleigh of Naess [1985]

Figure 5. The significant wave height H1/3 estimated directly from the time records of the waves, com-
pared with the theoretical estimate H1/3,Rayleigh = 4

ffiffiffiffiffiffi
m0

p
for each record. Buoy observations from location

K13 in the southern North Sea (53.13°N, 03.13°E) during December 2003 [from Holthuijsen, 2007].
Solid line is the least squares best fit of the data.

Table 3. The Relevant Parameters and the Scaling H1/3,theory/H1/3,Rayleigh for the Various Approaches for a JONSWAP Spectruma

JONSWAP Spectrum Parameter a b H1/3,theory/H1/3,Rayleigh

Longuet‐Higgins [1980] v = 0.382 0.945 1 0.945
Naess [1985] rNB = −0.727 0.929 1 0.929
Vinje* [1989]b rVT = −0.753 0.936 1.079 0.953
Tayfun [1990] rVT = −0.753 0.936 1.079 0.958
Boccotti* [1989, 2000]b rNB = −0.727, r″ = 0.479 0.929 1.150 0.962
Forristall [1978] – – – 0.942

aAll correlations are taken from the observed correlation function (obtained as the fast Fourier transform of the observed spectrum) at t = 1/2Tm01.
bWith modified correlation coefficients.
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is closest to the above average observed values of 0.925 and
0.927 (see Figures 4 and 5) is not indicative of any supe-
riority of this approach as the spectrum of these observations
is not necessarily a JONSWAP spectrum. The significant
wave height obtained with the empirical Weibull approach
of Forristall [1978] is approximately equal to the significant
wave height in these theoretical approaches (Table 3). It is
obvious that for a JONSWAP spectrum, all approaches
predict a significant wave height 4%–7% lower than that
predicted by the conventional Rayleigh distribution. The
corresponding distribution functions are shown in Figure 6
(with Rayleigh scales; see Figure 4). Note that under these
(academic) conditions, the theoretical distributions are
almost indistinguishable from each other (differences <1.7%
in wave heights for ~H ≈ 12).
[30] For this academic case of a JONSWAP spectrum, the

Weibull distribution of Forristall [1978] is almost equal to
the theoretical distributions for ~H < 5, say, but predicts
much lower wave heights for high wave heights. The dif-
ference with the conventional Rayleigh approach is 6% for
~H ≈ 4 but 12% for ~H ≈ 12. The fact that the significant wave
height with the Weibull approach of Forristall [1978] is
approximately equal to the significant wave height in the
other approaches in Table 3 illustrates that this high‐end tail
of the distribution barely affects the estimation of the sig-
nificant wave height.
[31] The corresponding expected values of the maximum

wave height and of the maximum crest height as a function
of the number of waves are shown in Figure 7. Strictly
speaking, the values of the maximum wave height for the
approaches of Vinje* [1989], Tayfun [1990], and Boccotti*

[1989, 2000] cannot be estimated analytically from the
distribution (because the integral of the distribution is not
unity). Still, as noted earlier, if f ( ~H) = 1, Tayfun and Fedele
[2007] estimate the expected value of the maximum wave
height by replacing N in our equation (16) with bN. But we
verified numerically that for waves with an average
JONSWAP spectrum and for the approaches with f ( ~H) = 1
and b ≠ 1 (i.e., Vinje* [1989] and Boccotti* [1989, 2000];
see Table 2), this replacement overestimated the expected
values, varying from 3.5% for N = 103 to 1.5% for N = 107.
We therefore estimated for these three approaches the
expected values numerically from the zeroth and the first
order moment of the probability density function of the
maximum wave height p (xmax) = d [p(x)]N/dx (see equation
(14)). This was also done for the Weibull distribution of
Forristall [1978].
[32] Note that, consistent with the above, the expected

maxima in Figure 7 for the theoretical distributions are
nearly identical. The results for the Weibull distribution of
Forristall [1978] are much lower than for all the other ap-
proaches, also consistent with the above. The results for the
maximum crest heights are based on the conventional
Rayleigh distribution (a = 1) and the theory of Longuet‐
Higgins [1980]. The other theories mentioned do not
apply to the crest height.

4. Buoy Observations

4.1. Wave Height and Crest Height

[33] The large number of waves in our buoy observations
allows us to show the distribution of the normalized wave

Figure 6. The theoretical distributions for the normalized wave height and crest height for an average
JONSWAP spectrum (coefficients from Table 3) and the empirical Weibull distribution of Forristall
[1978]. The distributions of Vinje* [1989], Boccotti* [1989, 2000], and Tayfun [1990] are shown
for ~H > 2.5. Silhouette of Rayleigh probability density function p( ~H) is added for reference.
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heights to rather high values, in fact, up to H/
ffiffiffiffiffiffi
m0

p
= 10.35

(after correcting for the sampling‐rate bias). To do this, we
ranked the individual wave or crest heights and used the
plotting position suggested by Goda [1988] for Rayleigh
distributions:

Pr x < xf g � 1� i� aGð Þ= N þ bGð Þ; ð17Þ

in which x is either the normalized crest height, trough
depth, or wave height and the values of the coefficients in
this expression are aG = 0.20 + 0.27/

ffiffiffiffi
C

p
and bG = 0.20 +

0.23
ffiffiffiffi
C

p
with C = 2 for a Rayleigh distribution. For the sake

of clarity, we show only the results that are located nearest
to multiples of 1/2

ffiffiffiffiffiffi
m0

p
for the wave heights and nearest to

multiples of 1/4
ffiffiffiffiffiffi
m0

p
for crest heights and trough depths. We

added the highest value in each distribution to show the full
range of the observations. The results are shown in Figure 8.
[34] For the normalized crest heights, the agreement

between the conventional Rayleigh distribution (a = 1) and
the observations is reasonable because the observations
cluster well along a straight line and the (least squares) best
fit gives a scaling factor a = 1.030. The trough depth is
Rayleigh distributed with nearly perfect scaling (a = 0.995
or 0.5% discrepancy with the conventional Rayleigh distri-
bution).
[35] The distribution of the normalized observed wave

heights deviates, as expected because of the (de‐)correlation
between crest height and trough depth, considerably from
the conventional Rayleigh distribution (a = 1). These nor-
malized observed wave heights are significantly lower, and
the shape of the distribution shows a gentle S‐curve (when
plotted with Rayleigh scales as in Figure 8), with higher
waves at low values and lower waves at high values (at the
same levels of probability). A similar S‐curve is noticeable

in the observations of Forristall [1978; Figure 4]. In fact,
Figure 8 shows that the Weibull distribution of Forristall
[1978] (a = 2.155 and b = 8.42) fits our data nearly per-
fectly (Figure 8), the maximum difference with the obser-
vations being ∼1.5%. The S‐curve is so gentle that the
observations cluster reasonably enough around a straight
line (the value of a is close enough to a = 2) to say that the
normalized observed wave heights are nearly Rayleigh
distributed, but with lower values than given by the con-
ventional Rayleigh distribution (a = 1). A least squares best
fit with a scaled Rayleigh distribution (equation (6)) gives
a = 0.905. Still, the difference in normalized wave height (at
the same level of probability) between this best fit scaled
Rayleigh distribution and the Weibull distribution as sug-
gested by Forristall is 7% for ~H ≈ 2, 5% near ~H ≈ 4, and 2.5%
near ~H ≈ 10 (the Weibull distribution fitting the observations
better). These differences also occur in the altimeter obser-
vations (see section 6) and may well be significant in an
engineering context. We therefore do not support the con-
clusion of Longuet‐Higgins [1980] that the introduction of
the two‐parameter Weibull distribution offers no obvious
advantage (even if the parameters of this Weibull distribution
cannot as yet be obtained from the spectrum with a predictive
theory).
[36] The observed values of the parameters that are rele-

vant for the various theories, the spectral width v (deter-
mined from the observed spectra), and the correlations rNB,
rVT, and r″ (determined from the observed surface corre-
lation functions obtained as the Fourier transforms of the
observed spectrum multiplied by f 2 when required, at t =
1/2Tm01), are shown in the histograms of Figure 9. The
average values are � = 0.415, �NB = −0.567, �VT = −0.618, and
�0 0 = 0.335, respectively (note that this value of � is almost

Figure 7. The expected value of the maximum normalized wave height and crest height in N waves for
the various Rayleigh‐based approaches for an average JONSWAP spectrum (coefficients from Table 3)
and for the Weibull distribution of Forristall [1978].
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Figure 8. The distributions of the normalized wave height, crest height, and trough depth as observed by
the buoys in the present study, the best fit (scaled) Rayleigh distributions and the empirical (Forristall)
Weibull distribution. The conventional Rayleigh distributions (a = 1) have been added for reference. Only
data points nearest to multiples of 1/2

ffiffiffiffiffiffi
m0

p
or 1/4

ffiffiffiffiffiffi
m0

p
are shown. The highest normalized observed crest

height, wave height, and deepest trough depth are added (top value in each distribution) to show the full
range of the observations.

Figure 9. The histograms of the parameters observed in this study (buoys only) that are relevant for
the various theories (n is the number of observations in each interval of parameter values).
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identical to the value v = 0.416 for a Pierson‐Moskowitz
spectrum [Pierson andMoskowitz, 1964]. The corresponding
theoretical distributions are compared with the observed
distributions in Figure 10. The crest height distribution of
Longuet‐Higgins [1980] underpredicts the normalized
observed crest heights by ∼9.5%. The three theoretical dis-
tributions of the normalized wave height of Vinje* [1989],
Boccotti* [1989, 2000], and Tayfun [1990] agree very well
with the observations for ~H > 2.5 (e.g., maximum 1.5% dif-
ference). In fact, they reproduce the S‐shape of the observed
distribution very well (i.e., show the proper S‐curve of Figure
8 in this range; the distribution of Tayfun [1990] slightly
better for low values of ~H and the distribution of Vinje*
[1989] slightly better for high values of ~H). With the close
agreement between these three theoretical distributions and
the Weibull distribution of Forristall [1978] on the one hand,
and the observations on the other, it is no surprise that these
four distributions are almost identical to each other, at least
for these observations (differences between the Weibull dis-
tribution and the distribution of Tayfun [1990] is <1.5% over
the range of observations and ~H > 2.5). The distribution of
Naess [1985] underestimates the normalized observed wave

heights by 2 – 10% for ~H < 8 but is as good as the other three
theoretical distributions for ~H > 8.

4.2. Maximum Wave Height and Crest Height

[37] In this section, we consider the maximum normalized
crest height and maximum normalized wave height in a
sequence of N consecutive individual normalized waves.
More precisely, we consider the average of these maxima
from n such sequences, each obtained by concatenating
normalized observed records h (t)/

ffiffiffiffiffiffi
m0

p
of nominal duration.

The results for this and for the Weibull distribution and the
best fit scaled Rayleigh distributions are given in Figure 11.
The 95% confidence interval of the average is estimated as for
a Gaussian distribution with standard deviation [Cartwright,
1958] 
�crest; max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var�crest; max=n

p
in which

var�crest; max ¼ E �2crest; max

� 	
� E2 �crest; max

� �

� 1

2 ln Nð Þ 1:6449� 2:1515

ln Nð Þ
� �

: ð18Þ

The standard deviation for the average maximum wave
height would be twice as high (assuming H ≈ 2hcrest).

Figure 10. The observed normalized crest height and wave height distribution (same as in Figure 8) and
the theoretical distributions for the average observed parameters of Figure 9. The distributions of Tayfun
[1990], Vinje* [1989] and Boccotti* [1989, 2000] are shown for ~H > 2.5 and enlarged in the box for 2.5 <
~H < 5.0. Only data points nearest to multiples of 1/2

ffiffiffiffiffiffi
m0

p
or 1/4

ffiffiffiffiffiffi
m0

p
are shown. The highest normalized

observed crest height and wave height are added (top value in each distribution) to show the full range of
the observations.
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[38] The conventional Rayleigh approach (a = 1) for
predicting the expected maximum normalized crest heights
(lower set of data in Figure 11) does not agree well with the
observations for N > 2000: the deviations are as large as 5%
(underprediction). The same conventional Rayleigh approach
(a = 1) also does not properly predict the normalized maxi-
mum wave heights (top observations in Figure 11). But
using a = 0.905 of the above best fit scaled Rayleigh
distribution gives very reasonable predictions (deviations
<2%, except near N = 500, where the average normal-
ized observed maximum wave height is 5% lower than

predicted). The predictions by the best fit Weibull dis-
tribution are just as good (but the errors are of opposite
sign).
[39] The theoretical predictions using the above observed

average parameter values � = 0.415, �NB = −0.567, �VT =
−0.618, and �00 = 0.335 are shown in Figure 12. The pre-
dictions of the normalized maximum wave heights (top
observations in Figure 12) by Longuet‐Higgins [1980] are
obviously systematically slightly too high (5%, except at
N ≈ 500, where it is 10%). The agreement for the other
theories is almost perfect, with a maximum error of 1%

Figure 11. The average maximum wave height and crest height (normalized) observed by the buoys as a
function of the number N waves in a sequence and the predictions from the best fit scaled Rayleigh dis-
tributions and the (Forristall) Weibull distribution (see Figure 8).

Figure 12. The average maximum crest height and wave height (normalized) observed by the buoys as a
function of the number N of waves in a sequence and the theoretical predictions.
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(overprediction) for the approaches of Boccotti* [1989,
2000] and Naess [1985] near N = 106 and virtually no errors
(<1%) for Vinje* [1989] and Tayfun [1990], except near N =
500. In contrast to the predictions of the normalized maxi-
mum wave heights, the approach of Longuet‐Higgins [1980]
underpredicts the normalized maximum crest heights by as
much as 7% at N = 107 (the other theories do not apply).

4.3. The Significant Wave Height

[40] The scale of the wave heights is usually represented
by the significant wave height, which can be estimated either
directly from the wave record H1/3 or with one of the above
theories from the spectrum or with the empirical Weibull
distribution. With the above estimated Rayleigh, Rayleigh‐
like, and Weibull distributions (see Table 4), we com-
puted these estimates (analytically when possible: Rayleigh;
Weibull; Longuet‐Higgins [1980]; Naess [1985]; Tayfun
[1990, equations (48), (49) and (52)]; and numerically with
the required moments of the distributions when not analyti-
cally possible: Vinje* [1989] and Boccotti* [1984, 2000]) and
from the observed distribution of Figure 8 (for which the best
fit scaled Rayleigh distribution gives ~H s, obs = 3.62). The
results are given in Table 4, from which it is obvious that the
estimate of the significant wave height by the conventional
Rayleigh distribution is too high (by 4%). The estimate with
Naess [1985] is too low by 7.8%, whereas the estimate with
Boccotti* [1989, 2000] is nearly perfect.
[41] To inspect the variability of the ratioH1/3, theory/H1/3, obs,

we also computed this ratio for each individual wave record
separately (only for the analytical estimates, i.e., without
Vinje* [1989] and Boccotti* [1989, 2000]), with the observed
values of the significant wave height corrected for the sam-
pling‐rate bias with the expressions of Tayfun [1993] given in
section 2.1 (i.e., with themeanwave period and sample rate for
each individual record). The scatter diagrams of these values
are shown in Figure 13. These results are reasonably consistent
with the results of Table 4 in the sense that the slope of the least
squares best fit linear relationship is reasonably close to the
above values of H1/3, theory/H1/3, obs. They also show that the
theory of Tayfun [1980] gives the best estimate of the signifi-
cant wave height (slope closest to unity, highest correlation,
and smallest scatter index; see figure legend for definitions).

4.4. The Dependency on Correlation

[42] The above theories indicate that the statistical char-
acteristics addressed depend on the correlation r between

crest height and trough depth (such correlation is strongly
related to the width of the spectrum, implying that the sta-
tistics are equally dependent on v). Such dependency should
then be evident as stratification in the above results. To
verify this, we ranked all records in ascending order of
correlation (we used rVT) and divided them into five groups
(each containing 20% of the total number of records). The
result for the observed distribution functions for the nor-
malized wave height is shown in Figure 14, where the labels
�10, �30, �50, �70, and �90 represent the groups in ascending
order of (absolute) correlation. It is obvious that the
observed values are well organized in the sense that at each
value of ~H for ~H > 1.5, the observed wave heights increase
monotonically with increasing (absolute) correlation (the
only exceptions being the highest normalized wave height in
the group �10 = −0.447, which has been labeled as an outlier
in Figure 14, and the highest normalized wave in the group
�90 = −0.743). As expected, the group with the highest
(absolute) correlation �90 = −0.743 corresponds to the highest
normalized wave heights (at the same level of probability)
and is closest to the conventional Rayleigh distribution. For
~H < 1.5, the stratification is similarly monotonic but with an
opposite trend (the lines in Figure 14 cross near ~H = 1.5),
which is also consistent with the group with highest
(absolute) correlation being closest to the Rayleigh distri-
bution, because the Rayleigh distribution crosses the obser-
vations near ~H = 1.5. To verify that the linear theories can
reproduce this variation, we compare the normalized obser-
vations with the predictions of Tayfun [1990], which com-
bines the availability of analytical expressions with overall
good agreement with our observations] for the groups with
the highest and the lowest (absolute) correlation in Figure 14.
This comparison shows that the variation is very well
predicted (see Figure 14). We did the same analysis for
the average normalized observed maximum wave height
(Figure 15) with basically the same result, except that the
monotonic character of the stratification is not fully main-
tained above N = 7 × 104.

5. Altimeter Observations

[43] We mentioned in the introduction that we do not
consider nonlinear theories, because our observations were
carried out with buoys, which by their nature do not prop-
erly represent the nonlinear character of the waves. How-
ever, to cursorily inspect the effect of nonlinearities, we

Table 4. The Relevant Parameters and the Scaling of the Significant Wave Height for the Various Approaches for the Observations of
the Present Studya

Parameter a b H1/3,theory/H1/3,Rayleigh H1/3,theory/H1/3,obs

Rayleigh [Longuet‐Higgins, 1952] – – – 1 1.042
Longuet‐Higgins [1980] � = 0.415 0.935 1 0.935 0.974
Naess [1985] �NB = −0.567 0.885 1 0.885 0.922
Vinje [1989]b �VT = −0.618 0.899 1.144 0.930 0.969
Tayfun [1990] �VT = −0.618 0.885 1.144 0.936 0.975
Boccotti [1989, 2000]b �NB = −0.567, r″ = 0.335 0.899 1.303 0.944 1.000
Forristall [1978] a = 2.126, b = 8.42 – – 0.942 0.982
Observed time series (this study) H1/3,obs/H1/3,Rayleigh, 0.957 H1/3,obs/H1/3,obs, 1

aAll correlations taken from the observed correlation functions (obtained as the fast Fourier transforms of the observed spectrum multiplied with f 2 when
required) at t = 1/2Tm01. The value for H1/3,theory/H1/3,Rayleigh = 1/1.045 = 0.957 has been taken from Figure 13 (top left).

bWith modified correlation coefficients.
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compared the results of our buoy observations with similar
results obtained with the (fixed) laser altimeters described
earlier. The analysis of the altimeter data is identical to the
above analysis of the buoy data. The results are compared
with those of the buoys in Figures 16 and 17 over the range
of the altimeter observations (which is much shorter than
that of the buoy observations). It must be noted that these
two data sets are taken in very different circumstances.
Differences may therefore be due not only to different in-
struments but also to different physical conditions. The basis
for the comparison is that both data sets represent the nor-

malized surface elevation of wind‐generated waves in deep
water.
[44] Given this caveat, it is remarkable that the distribu-

tion of the normalized wave heights as observed using the
altimeters is almost identical to that observed by the buoys.
It shares the same gentle S‐curve (see Figure 8) with the
buoy data (except for the highest altimeter data, which seem
to be mildly anomalous, i.e., at ~H ≈ 7). This implies that the
two‐parameter Weibull distribution and the distributions of
Vinje* [1989], Boccotti* [1989, 2000], and Tayfun [1990],
which fitted the buoy observations very well, provide an

Figure 13. The significant wave height estimated directly from the observed time records and predicted
by the various approaches (using the spectral width and the correlation from the time records; analytical
predictions only). The solid line is the best fit line, and the dashed line shows perfect agreement. (slope)
Slope of best fit line; (corr) correlation coefficient of data; (s.i.) scatter index, or rms‐error normalized
with average of observations.
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Figure 14. The distributions of the normalized wave height as observed by the buoys in the present
study, for five groups of correlation and their variation theoretically predicted using the method of
Tayfun [1990] over the range of validity ( ~H > 2.5). One outlier is labeled as such. Highest normalized
observed wave height in each group is added (top value in each distribution) to show the full range of the
observations.

Figure 15. The average values of the maximum wave height (normalized) observed by the buoys in the
present study, for five groups of correlation and the theoretical predictions of Tayfun [1990].
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equally good fit to the altimeter observations. The coinci-
dence of the two observed data sets indicates that the dis-
tribution of the wave heights does not seem to be severely
affected by the type of measuring instrument used: either a
moving buoy or a fixed altimeter. Over all, the conventional
Rayleigh distribution (a = 1) overpredicts these normalized

altimeter wave height observations by 12%, i.e., the best fit
scaled Rayleigh distribution for these observations gives a =
0.894 (the inverse of which is 1.12). This is marginally more
than in the buoy data (where a = 0.905 or 10% over-
prediction). Without the one highest normalized altimeter
data point in Figure 16, the overprediction is slightly less

Figure 16. The distributions of the normalized wave height and crest height as observed by the buoys
and the altimeters in the present study (over the range of the altimeter observations) and the Rayleigh
distributions that best fit the altimeter observations (compare with Figure 8). Only data points nearest
to multiples of 1/2

ffiffiffiffiffiffi
m0

p
or 1/4

ffiffiffiffiffiffi
m0

p
are shown. Highest observed crest height and wave height in each laser

altimeter distribution added (top value in each distribution) to show the full range of the observations.

Figure 17. The average values of the altimeter observed maximum wave height and crest height (nor-
malized) as a function of the number of waves in a sequence. Vertical bars indicate 95% confidence inter-
val of observed average value.
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(a = 0.908). The normalized crest heights observed by the
altimeters are generally slightly higher than those observed
by the buoys, with a = 1.078 for the best fit scaled Rayleigh
distribution. The normalized trough depths observed by the
altimeters are overall significantly shallower than observed
by the buoys, with a = 0.873 for the best fit scaled Rayleigh
distribution (versus a = 0.995 for the buoy observations).
This difference in scaling confirms the idea that a laser
altimeter observes the nonlinear character of the waves
better than a buoy does. The good agreement of the buoy
observations with the Rayleigh distribution is therefore not
valid for the altimeter observations.
[45] The only linear theory that predicts a (scaled

Rayleigh) distribution for the crest heights is the theory of
Longuet‐Higgins [1980]. For the normalized altimeter
observations, for which v = 0.485, the corresponding theo-
retical scaling parameter would be a = 0.910, considerably
lower than the observed value a = 1.078. This further sup-
ports the idea that the altimeter observations show nonlinear
effects in the crests heights, which are obviously not included
in any linear theory.
[46] The average maximum normalized crest height and

wave height in a sequence of N waves observed by the alti-
meters are given in Figure 17. These values are reasonably
consistent with the scaling of the distributions as shown by
the solid lines, but the deviation is somewhat larger for the
maximum wave heights for large sequences (N > 3000, say),
still within the 95% confidence interval.

6. Discussion and Conclusions

[47] In this study, we have analysed the short‐term sta-
tistics of 10 million individual deep‐water wind‐generated
waves in open sea by normalizing and concatenating
>40,000 wave records obtained during a period of 15 years
with four buoys located along the Catalan coast of Spain on
the Mediterranean Sea. We could thus inspect the statistical
characteristics of these waves over a range of normalized
wave heights of 0 < ~H < 10 (wave heights defined with
downward zero crossings of the surface elevation). The
main limitation of these observations is that buoys tend to
“linearize” waves, i.e., they tend to suppress the nonlinear
character of the waves. To inspect this effect, we supple-
mented our data with some 10,000 individual waves
observed with laser altimeters in the North Sea. The range of
these observations is 0 < ~H < 7. We upscaled the observed
normalized crest heights, trough depths, and wave heights
with 3% (approximately) to account for a sampling‐rate
bias.
[48] The normalized crest heights observed by the buoys

are typically 3% higher than predicted with the conventional
Rayleigh distribution (scaling parameter a = 1), whereas the
altimeter observations are even higher: typically 5% higher
than observed with the buoys. The scaled Rayleigh distri-
bution of Longuet‐Higgins [1980] predicts lower crest
heights and thereby underestimates the normalized crest
heights observed by the buoys by ∼9.5%. The normalized
trough depths observed by the buoys are very well predicted
by the conventional Rayleigh distribution (scaling parameter
a = 1; 0.6% underestimation). This is not the case for the
altimeter observations, for which the normalized trough
depths are 12% shallower than observed with the buoys.

These differences between the results of the buoys and the
laser altimeters supports the idea that a buoy tends to line-
arize the waves.
[49] The differences between the buoy‐observed and

predicted maximum normalized crest heights are consistent
with these findings (i.e., the expected value of the maximum
normalized crest height in a sequence of many waves).
[50] The distribution of the normalized wave heights

observed by the buoys is very well approximated over the
entire range of observations by a two‐parameter Weibull
distribution with the parameter values suggested by
Forristall [1978], the maximum difference from the nor-
malized observations being ∼1.5%. This is also the case for
the altimeter observations, for which the distribution of
normalized observed wave heights is almost identical to the
distribution of the buoy‐observed normalized wave heights
over the range of these observations 0 < ~H < 7 (except for
one or two mildly anomalous altimeter data points). This
supports the conclusion of earlier studies [e.g., Tayfun,
1983; Vinje, 1989; Massel, 1996; Tayfun and Fedele,
2007] that nonlinear effects do not seem to affect the sta-
tistics of individual wave heights significantly (but they do
affect the statistics of the crest heights). This conclusion
contradicts the conclusion of theories that try to predict the
occurrence of freak waves [e.g., Mori and Yasuda, 2002;
Janssen, 2003; Mori and Janssen, 2006; Onorato et al.,
2009], but these conclusions are being adapted (see
Dysthe et al. [2008], Socquet‐Juglard et al. [2005], Onorato
et al. [2009], Gramstad and Trulsen [2007], Waseda
[2006], Onorato et al. [2009], and other nonlinear theories
[e.g., Longuet‐Higgins, 1963]). The superior fit of the
Weibull distribution compared to that of the scaled Rayleigh
distribution is an empirical finding without theoretical sub-
stantiation and consequently without theoretical predictions
of its coefficients. However, the close agreement between
the results obtained with different types of instruments
(buoys, wave staffs, and laser altimeters) and different
physical conditions (hurricanes in the Gulf of Mexico, all
weather off the Catalan coast, and storms in the central
North Sea) suggest a reasonably general applicability of this
Weibull distribution. The conventional Rayleigh distribution
does not fit the normalized wave height distributions
observed in the present study nearly as well: neither the
buoy observations nor the altimeter observations. It over-
predicts the normalized wave heights by ∼10% and the
observed significant wave height by 4%. The latter finding
would be close to the 7.5% and 7.3% of Longuet‐Higgins
[1980] and Holthuijsen [2007], respectively, if we had not
corrected our observations for the sample rate bias (bringing
our value from 4% to 6.9%) or vice versa. The Rayleigh‐like
distributions of Boccotti* [1989, 2000], Vinje* [1989], and
Tayfun [1990] are almost identical to the above Weibull
distribution and agree very well (maximum 1.5% difference)
with the buoy observations (and therefore also the altimeter
observations) for ~H > 2.5 (below this range, the theories are
not valid). The scaled Rayleigh distributions of Longuet‐
Higgins [1980] and Naess [1985] do not provide such a
good fit. The first distribution underpredicts the lower nor-
malized wave heights (by as much as 8% near ~H = 2.5), and
it overpredicts the higher normalized wave heights by as
much as 5% near ~H = 10. The second distribution under-
predicts the normalized wave heights by ∼5% or more for
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~H < 4. The conclusion for this aspect of our study is
therefore that the Weibull distribution and all theoretical
distributions, except the ones of Longuet‐Higgins [1980]
and Naess [1985], fit the observations very well. The the-
oretically predicted dependency of the buoy‐observed
normalized wave height distribution on the (de‐)correlation
between crest height and trough depth has been confirmed
by stratifying our data. This dependency is very well pre-
dicted by the theory of Tayfun [1990] and probably also by
the theories of Boccotti* [1989, 2000] and Vinje* [1989].
These theories are therefore more generally applicable than
the Weibull distribution of Forristall [1978].
[51] As a final comment, we want to add that having

10 million individual waves at our disposal gives us the
opportunity to try and identify freak waves in our data. We
were careful to formulate our criteria for the initial selection
such that we would not filter out very large waves. However,
we did reject complete records on the basis of these criteria,
and such a record may have contained an extremely large
wave. In addition, as mentioned in section 1, a buoy may
swerve around a steep wave crest. It may thus inherently fail
to observe a freak wave (this argument obviously does not
apply to the laser altimeters). The following comments are
therefore qualified.
[52] Unfortunately, the term freak wave is not well

defined. Any definition in terms of somewhat higher than
twice the significant wave height, i.e., a freak wave is a
wave with a height H > bHm0 (where b is a constant 2 ≤ b ≤
2.5 [e.g., Onorato et al., 2002; Kharif and Pelinovsky, 2003;
Mori and Janssen, 2006; Liu and MacHutchon, 2006;
Dysthe et al., 2008]) implies that we found thousands of
such waves, hardly the rare event that a freak wave is
supposed to be. An alternative definition and one that we
favor is that a freak wave is an unexpected wave the height
of which is a statistical high outlier, i.e., inconsistent with
the statistics of the ambient sea state. We did not carry out a

formal procedure to detect such outliers, but a visual
inspection of the observed distribution of the normalized
wave heights (the data underlying Figure 8, 14, and 16) and
of the normalized extreme wave heights (the data underlying
Figures 11, 15, and 17) showed one obvious outlier (iden-
tified as such in Figure 14, the highest normalized wave in
the group with lowest crest‐trough correlation; it is the
highest normalized wave in our buoy observations). In an
absolute sense, it is a rather low wave, only 1.69 m, but
compared to the significant wave height of this record,H1/3 =
0.59 m and Hm0 = 0.67 m, it is relatively high, with H =
10.05

ffiffiffiffiffiffi
m0

p
(or H = 10.35

ffiffiffiffiffiffi
m0

p
when corrected for the sample

rate bias). This wave may therefore qualify as a freak wave
(shown in Figure 18). However, it must be noted that (1) this
wave is an outlier only in a selected group of wave records
(lowest crest‐trough correlation), and (2) this wave seems to
fit the statistics of the complete data set of the buoys perfectly
well (the highest normalized wave in Figure 8). The latter
comment nicely illustrates the statement of Forristall [2005,
p. 34]: “An unusually large wave will always stand out as a
rogue wave in a short record. Yet it may fit standard statistics
perfectly well if the statistics from many hours are com-
bined.” We do not want to suggest that freak waves do not
occur. To the contrary, sufficient instrument observations
and eyewitness accounts exist to support the contention that
they do occur, not only in computer simulations or in the
laboratory but also at open sea [e.g., Draper, 1965; Mallory,
1974; Smith, 1976; Atkins, 1977; Haver and Andersen, 2000;
Buckley, 2005; Holthuijsen, 2007].

Appendix A: Benjamin‐Feir Index and Large
Waves

[53] The definition of the Benjamin‐Feir Index (BFI;
Benjamin and Feir [1967]) is basically the ratio of wave
steepness to randomness of the waves [Mori and Janssen,

Figure 18. The one wave in the buoy observations that may qualify as a freak wave in the sense that it
seems to be a statistical outlier.
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2006]. If the steepness of the waves is expressed as " = kmean

sh (the mean wave number kmean = 2p/Lmean, where Lmean is
the mean wave length and sh is the standard deviation of the
random surface elevation) and the degree of randomness m
is expressed in terms of the peakedness Qp of the wave
spectrum E(w) (the inverse of spectral width relative to mean
frequency [Goda, 1976]), m−1 = Qp

ffiffiffi
�

p
= 2

ffiffiffi
�

p R
0
+∞ w E2 (w)

dw/(
R
0
+∞ E (w)dw)2, then the Benjamin‐Feir Index may be

defined as BFI = "
ffiffiffi
2

p
/m. To estimate the probability of

encountering a large wave height in a storm, we define a
reference storm as a stationary wave condition with a typical
number of waves (N = 2000) and a typical value for the
BFI( = 0.8). To arrive at these numbers, consider a reason-
able duration of a storm of 6 hours and a mean wave period
of 10 s. The number of waves then is N ≈ 2000. The outcome
of the following analysis is fairly insensitive to the precise
value, e.g., N = 4000 gives n0.01 = 2.90 rather than n0.01 =
2.83. To arrive at a typical value for the BFI, consider a
typical spectrum and a typical wave steepness in a storm. The
spectrum is the well‐established JONSWAP spectrum
[Hasselmann et al., 1973]. The value of the peakedness
parameter for this spectrum is Qp,JONSWAP = 3.1437 (peak
enhancement factor g = 3.3, spectral width parameters sa =
0.07 and sb = 0.09). The wave steepness in a storm is typi-
cally [Kahma and Calkoen, 1992] " = 0.1, so that BFI = 0.8
in the reference storm. The probability that an arbitrarily
chosen (normalized) wave height n = H /Hs in the reference
storm is lower than n is 1 ‐ P(n), where, in the present
approach, P(n) is the Rayleigh‐Edgeworth distribution [Mori
and Janssen, 2006] P(n) = e−2n

2

[1 + 2 pn2 (n2 − 1) BFI2/
(3

ffiffiffi
3

p
)]. The probability that the maximumwave height in the

storm (i.e., of N statistically independent waves) is higher
than n is 1 − [1 − P(n)]N. For the reference storm, with N =
2000 and BFI = 0.8, this probability is 0.01 for n = n0.01 =
2.83. In other words, in the context of the theory ofMori and
Janssen [2006], the maximum wave height per (reference)
storm exceeds the value 2.83Hs once in 100 (reference)
storms (on average). It must be emphasized that the theory
utilized here applies only to unidirectional waves. Any short‐
crestedness in the waves would greatly reduce the effects
mentioned [e.g.,Waseda, 2006], so that the above represents
an upper limit.
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