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A B S T R A C T

While Resistive RRAM (RRAM) provides appealing features for artificial neural networks (NN) such as low power 
operation and high density, its conductance variation can pose significant challenges for synaptic weight storage. 
This paper reports an experimental evaluation of the conductance variations of manufactured RRAMs memory 
cells at the memory array level. Variability is evaluated with respect to the RRAM low resistance state (LRS) and 
high resistance state (HRS) conductance ratio. This ratio is selected as the parameter of interest as it guarantees 
the proper operation of the RRAM: the larger the ratio, the more reliable and robust the RRAM cell is in storing 
and retrieving data. The measurement results show that conductance ratio is significantly influenced by vari-
ability. Using these findings, the performance of an artificial neural network that uses individual RRAM cells for 
synaptic weight storage is evaluated in relation to conductance variability. It is shown that RRAM variability can 
heavily affect the network behavior, resulting in a substantial decrease in the classification accuracy during 
inference.

1. Introduction

Resistive RAM (RRAM) is a promising technology not only for large 
data storage but also to enable energy efficient computing solutions 
which could facilitate the deployment of artificial intelligence at the 
edge (edge-AI) [1]. However, not solving the issues related to no- 
idealities such as the variability in the electrical parameters of RRAMs 
(e.g., conductance variability) may hinder the technology's continued 
advancement [2,3]. In RRAM-based neural networks (NN), conductance 
variability results in weight variability [4–6]. Weight variability can 
affect the network during training and inference, affecting the network 
ability to make precise predictions [7,8]. Therefore, there is an urgent 
need to analyze and quantify the conductance variability in RRAMs.

A solution to improve the network resilience against conductance 
fluctuation issues is to intentionally inject some noise into the synaptic 
weights during the training, exploiting a technique called variability- 
aware training (VAT) [9]. To obtain realistic results after the training 
process, such noise should be linked to the actual variability of the 
RRAM device, including device to device (D2D) and cycle to cycle (C2C) 
variabilities. However, this last point is neglected in many publications 

[10]. An alternative way to mitigate conductance fluctuations issues at 
the NN level is the mapping-aware biased training methodology [11] 
which consists in identifying RRAM conductance states inherently more 
immune to variation (favorable states). Then, a mapping-aware training 
technique is adopted where important weights are directly get mapped 
to such favorable states [12]. Mapping-aware techniques take into ac-
count the inherent non-idealities of RRAM devices, such as variations in 
conductance levels [12]. As a result, identifying devices affected by 
variability issues is a critical step before the practical implementation of 
a mapping-aware training methodology. However, in this case as well, 
this aspect is often ignored in many publications [13].

In this context, this paper advances the state-of the art by providing a 
silicon-based analysis of the conductance variability in RRAMs. 
Conductance variability is assessed quantitatively for each cell of a 
memory array test chip. Afterwards, a ranking of the cells more immune 
to variability is established. Finally, the study is extended to a basic NN 
used for image classification.

The main contributions of this study are summarized below: 
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• RRAM conductance variation silicon data are collected at the test 
chip level.

• A deep analysis of the conductance variation over multiple cycles is 
provided.

• The impact of variability on a RRAM neural network performances is 
assessed.

• Outcomes of this work are supported by silicon results provided by 
ST-Microelectronics.

Considering that the limited precision of RRAM devices intended to 
map synaptic weights is addressed [14], outcomes derived from this 
study can be applied to any mapping technique currently used to 
implement RRAM-based NN accelerators, namely, (a) multilevel 
[15,16], (b) binary [17], (c) unary [18], (d) multilevel with redundancy 
[19] and (e) slicing [8]. Moreover, this study contributes to the under-
standing of the conductance variation in RRAMs [20] from an electrical 
standpoint, which is the first step before enabling accurate analogue 
computing with imprecise memory devices [21,22].

The remainder of this paper is organized as follows. Section 2 in-
troduces the specifications of the manufactured RRAM cells. Section 3
presents the experimental setup. Section 4 reports the silicon measured 
data on RRAM conductance variability and analyze them. Section 5
shows how conductance variability can impact the performances of a 
RRAM-based NN used for image classification. Finally, Section 6 con-
cludes the paper.

2. Specifications of the manufactured RRAMs

RRAM devices typically operate based on the reversible change in 
resistance caused by the formation and rupture of conductive filaments 
(CFs) [15]. When a voltage is applied across the cell (i.e., between the 
top and bottom electrodes), depending upon the voltage polarity, one or 
more CFs made out of oxygen vacancies are either formed or ruptured. 
Once the conductive filaments (CFs) are formed within the metal oxide, 
bridging the top and bottom electrodes, they establish a low-resistance 
state (LRS). Subsequent changes in resistance are achieved by 
rupturing the filaments. Applying a voltage with reversed polarity 
causes the filaments to break, leading to a high-resistance state (HRS). 
Fig. 1a presents the considered 1T1R RRAM memory cell where one 
transistor (W = 0.8 μm and L = 0.5 μm) is connected in series with one 
resistive element (RRAM). The resistive element, shown in Fig. 1b, is 
incorporated in the Back End Of Line (BEOL) of a 130 nm technology, 
between metal layers [23]. The stack is deposited using Physical Vapor 
Deposition (PVD) where a 10 nm Hafnium dioxide (HfO2) layer is placed 
on the top of a TiN Bottom electrode (BE). A Ti/TiN bilayer stack is then 
deposited as a top electrode (TE) to form a capacitor-like structure. 
Fig. 1c illustrates the typical I-V characteristics of a 1T1R device, 
showcasing a hysteresis behavior. Based on this hysteresis, the memory 
cell operation can be understood as follows: after an initial electro- 
Forming (FMG) stage, the memory element can be switched reversibly 
between LRS and HRS. The resistance change is triggered by applying 

specific biases across the 1T1R cell: VSET to switch to LRS after a SET 
operation and VRST to switch to HRS after a RESET (RST) operation.

Table 1 presents the voltage levels applied during the various oper-
ating stages, along with the corresponding nominal resistance and 
conductance values. It should be noted that a nominal conductance ratio 
of approximately 16 is achieved for the targeted technology (66.6 μS 
divided by 4 μS). During the READ operation, a small read voltage 
(typically 0.1 V) is used to avoid disrupting the cell's state. Also, it is 
important to note that in the 1T1R configuration, the transistor regulates 
the current flowing through the cell based on its gate voltage bias. This 
controlled current is known as the compliance current (ICC).

3. Experimental setup

Fig. 2a shows the test chip used for measurements, which is a typical 
1T1R memory array. Memory cells are grouped to form eight 8-bit 
memory words. Word Lines (WLX) signals are used to address a spe-
cific row, Bit Lines (BLX) signals are used to address specific columns 
during a SET operation and Source Lines (SLX) signals are used to RST a 
whole memory word or an addressed cell. To allow a full flexibility 
during characterization, BL, WL and SL nodes are externally available. 
During the RRAM cell characterization, the extraction of RLRS and RHRS 
is achieved using 1 ms DC voltage sweeps with a 1 mV voltage step; the 
applied voltage increases step by step and the current flowing through 
the cell is measured, allowing an extraction of the I-V characteristics of 
each cell. Fig. 2b shows the fabricated memory array. Due to the probe 
card's limited pinout, only a 7 × 7 memory array is accessible for our 
experiments, which represents a subset of the full 8 × 8 array.

Before any operation, each cell of the memory array is first formed. 
Then, memory cells are RST one by one to extract the RHRS value at 0.1 
V. After RST, cells are SET to extract the RLRS value, also at 0.1 V. The 
RST/SET process is repeated 230 times for the whole array in order to 
catch C2C as well as D2D variability. A total of 230 cycles is used to 
evaluate the stability of the conductance ratio for each memory cell 
without addressing long-term degradation. This limited number of cy-
cles is chosen to avoid the influence of reliability factors, such as 
endurance and retention, on the extracted resistance levels [23]. In 
other words, a “time-zero” robustness assessment is conducted before 
any stress effect is observed. The measurement protocol seen by each 

Fig. 1. (a) Schematic view of a 1T1R memory cell. (b) SEM cross section of the 
RRAM stack [23]. (c) RRAM I-V hysteresis.

Table 1 
Standard cell operating voltages.

FMG RST SET READ

WL 2 V 2.5 V 2 V 2.5 V
BL 3.3 V 0 V 1.2 V 0.1 V
SL 0 V 1.2 V 0 V 0 V
Resistance 10 kΩ 240 kΩ 15 kΩ –
Conductance 100 μS 4 μS 66,6 μS –

Fig. 2. (a) 8 × 8 RRAM memory array and (b) physical view of the fabricated 
memory array.
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cell of the array is presented in Fig. 3.

4. Experimental results

This section examines the variability of RRAM devices, with a focus 
on both temporal and spatial variations in the LRS and HRS states. Also, 
a comprehensive evaluation of the conductance ratio variability is 
provided.

4.1. RRAM variability experimental evidence

Although RRAMs have shown interesting properties, one of the most 
important challenges of the technology is the control of the device 
variability (temporal and spatial) in both LRS and HRS states [24,25]. In 
fact, variations of RHRS/RLRS are so unpredictable that they have been 
employed as an entropy source in True Random Number Generators 
(TRNG) [26,27]. Fig. 4 shows the impact of D2D and C2C variability at 
the I-V characteristic level after RST/SET operations applied to each of 
the 49 cells of the memory array (D2D variability, Fig. 4a) and after a 
RST/SET operation applied only 49 times (for comparison purposes) to 
an isolated cell of the memory array (C2C variability, Fig. 4b). The 
nominal characteristic is highlighted in red (RST) and blue (SET) colors. 

This qualitative analysis demonstrates that different I-V hysteresis sig-
natures can arise when cycling the same cell (C2C) or when extracting 
different I-V hysteresis patterns for different cells within the memory 
array (D2D). To complement this analysis, a quantitative analysis of 
variability is conducted in the next sub-section. Based on these pre-
liminary measurement results, it appears clearly that HRS and LRS 
resistance/conductance is affected by spatial and temporal variations. 
Hence, this non-ideality has to be considered when designing RRAM- 
based NN. In the next section, a cell tracking analysis will be conduct-
ed in order to monitor the evolution of the conductance ratio of each cell 
of the memory array presented in Fig. 2a over 230 programming cycles. 
The state of individual memory cells will be tracked to detect cells that 
deviate from their nominal behavior (i.e., deviation from the nominal 
conductance ratio of 16).

4.2. Conductance ratio variability evaluation

In Fig. 5, the evolution of the LRS/HRS conductance ratio of three 
different cells (i.e., located at three different addresses) is presented in 
the logarithmic scale. Cell (5;0), where ‘5’ and ‘0’ represent the WL and 
BL line numbers respectively, is the most affected by variability.

Large conductance fluctuations are reported with a conductance 
ratio standard derivation σ = 97.6 with respect to its mean value μ =
61.5. In contrast, cell (1;0) and cell (3;0) are less impacted with standard 
derivation values equal to 6.3 and 13 respectively. Note that for cell 

Fig. 3. Measurement protocol: after FMG, a RST/SET operation is repeated 230 
times for each addressed cell. RST and SET operations are followed by a read 
operation to extract the cell resistances.

Fig. 4. Experimental evidence of (a) cell level D2D variability and (b) cell level C2C variability. The nominal characteristic is highlighted in color.

Fig. 5. Conductance ratio versus the number of RST/SET cycles for 3 different 
cells of the memory array presented in Fig. 2a.

H. Aziza et al.                                                                                                                                                                                                                                   Microelectronics Reliability 166 (2025) 115594 

3 



(5;0), the conductance ratio falls below one in two cycles, resulting in an 
overlap between LRS and HRS conductance levels. Hence, this cell needs 
to be avoided for synaptic weight storage. The evolution of the 
conductance ratio standard derivation of the 49 cells of the memory 
array is provided in Fig. 6a. The standard deviation ranges from 2.8 
(min. value) to 97.6 (max. value).

A 2D representation of the standard deviation values over the 

memory array is presented in Fig. 6b. Each cell is associated with a 
variable degree of grey. The whiteness of a cell reflects lower standard 
deviations. The white color being associated with the minimal standard 
deviation and the black color with the maximal standard deviation. For 
instance, cell at location (5;0), associated with a black color, is the most 
affected by variability with a standard deviation of 97.6, while cell at 
location (4;5), associated with a white color, is the least affected by 

Fig. 6. (a) Evolution of the conductance ratio standard deviation of each cell of the memory array. (b) Topological representation of the standard deviation of each 
cell of the memory array. The values of the most impacted cell (97.6) and least impacted cell (2.8) are reported in (a) and (b).

Fig. 7. (a) Evolution of the conductance ratio mean value of each cell of the memory array. (b) Topological representation of the mean value of each cell of the 
memory array. Largest and smallest values are reported in (a) and (b).

Fig. 8. (a) Evolution of the coefficient of variation CV of each cell of the memory array. (b) Topological representation of CV for each cell of the memory array.
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variability regarding its standard deviation of 2.8.
Fig. 7 presents the evolution of the mean value of the conductance 

ratio for each cell of the memory array. Interestingly, this parameter is 
also affected by variability, demonstrating that the conduction window 
differs across the cell in the array.

The fluctuation in the mean value of the conductance ratio is crucial 
when mapping NN weights, as a narrower conductance window leads to 
a substantial decrease in the cell's ability to modulate conductance (i.e., 
a reduction in the number of available analog conductance levels).

The objective of Figs. 5, 6, and 7 is to present a synthesis of the 
variability analysis of the memory array, highlighting the most robust 
cells based on their conductance ratio standard deviations and their 
conductance ratio mean values. Fig. 8 focuses on the evolution of the 
ratio of the standard deviation over the mean value (σ/μ) for each cell of 
the memory array. This parameter is a dimensionless quantity that is 
used to measure the relative variability of the conductance ratio dataset, 
even if the datasets have different scales (i.e., different mean values). It 
is referred to as the coefficient of variation CV. The formula for calcu-
lating CV is given in (1). 

CV (%) =
Standard deviation

Mean
• 100 =

σ
μ • 100 (1) 

Dividing the standard deviation by the mean value essentially stan-
dardize the measure of the variability. In Fig. 8a, the minimum CV value 
of 21.6 % indicates that the standard deviation is relatively small 
compared to the mean, while the maximum CV value of 159 % suggests 
a larger relative variability. As this parameter combine the influence of 
the standard deviation and the mean value, the latter will be considered 
in the upcoming discussion section.

4.3. Favorable cells ranking

Based on the CV parameter, a ranking of the most favorable cells (i. 
e., cells with lower μ/σ ratio) is proposed in Table 2. The CV parameter 
(column 2) accounts for both the stability (σ contribution, column 3) and 
the mean value (μ contribution, column 4) of the conductance ratio. The 
addresses of each cell are reported in column 5.

According to Table 2 and based on the NN application requirements, 
favorable conductance states presenting low CV values can be chosen to 
map significant weights [13]. Conversely, conductance states presenting 
high CV values (such as the worst cell in Table 2 last column) can be 
skipped during the weight mapping process due to less immunity to 
variations.

5. Variability aware neuromorphic computing

This section focuses on evaluating the implications of conductance 
variability for RRAM-based artificial neural networks (ANNs) during the 
inference stage. It describes the process of modeling and simulating 
variability effects on an ANN accuracy.

5.1. Neural network level implications

Table 2 reveals that conductance variability is a major concern for 
RRAM-based computing. Hence, the performance of artificial neural 
networks (ANN) relying on individual RRAM cells to store the synaptic 
weights has to be assessed versus conductance variability.

In ANNs, there are two distinct phases, each with specific purposes 
and processes: training and inference. Inference refers to the process of 
using a trained model to make predictions on new data. It consists in 
retrieving stored weights during a read operation and performing 
computations based on them. In contrast, training is the process of 
learning the weights of a model from data. It involves iterative updates 
of the model's parameters using optimization algorithms such as 
gradient descent, requiring both read and write operations. RRAM is 
commonly used during inference owing to its fast and energy-efficient 
read operations, making it a good candidate for read-intensive appli-
cations. The latter are generally associated with in-memory computing 
and more particularly with ANN applications where synaptic weights 
are constantly and simultaneously read during inference. Additionally, 
using RRAM exclusively during inference prevents cycling endurance 
issues as the RRAM technology has a finite number of write cycles before 
the cells degrade, which can be a limitation in the context of training 
where frequent memory write operations are required.

Introducing conductance variability into a RRAM ANN during 
inference involves simulating the actual imperfections of the RRAM 
devices. Indeed, and as already mentioned, variability in conductance 
leads to inaccuracies in weight representations, thereby degrading the 
inference accuracy of the overall ANN. To describe the conductance 
variability, a mathematical model based on a Gaussian distribution is 
assumed and proposed in Eq. (2). 

Greal = Gnominal+ΔG (2) 

where, Greal is the actual conductance used during inference, which in-
cludes the variability, Gnominal is the nominal conductance without 
variability and ΔG, given in (3), is a random variable following a normal 
distribution with a mean value referred to as μ and a standard deviation 
σ representing the conductance variation. 

ΔG ∼ N(μ,σ) (3) 

5.2. Neural network level evaluation

In this section, a comprehensive step-by-step description of a RRAM- 
based ANN for image classification is presented. The network is then 
evaluated against conductance variability. For clarity, we consider a 
relatively simple network (i.e., single layer perceptron).

Table 2 
Favorable cells ranking.

# CV (%) σ μ (S) (WL; BL)

1 21.6 2.79 12.04 (4;5)
2 22.4 6.58 29.33 (6;6)
3 25.8 4.07 15.72 (0;3)
4 28.0 4.25 15.15 (1;3)
5 28.2 6.35 22.53 (1;0)
6 30.2 6.33 20.97 (0;0)
7 31.0 7.95 25.64 (6;0)
8 31.1 4.24 23.62 (3;4)
9 32.2 3.97 12.35 (2;2)
10 32.7 11.80 36.25 (2;5)
Worst cell 159 97.6 61.5 (5;0)

Fig. 9. (a) Two-layer feed-forward neural network and (b) neural network 
mapping to a crossbar RRAM array. The VMM algorithm is reported for the 
abstract NN (Eq. 4) and for the RRAM-based NN (Eq. 5).
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5.2.1. Vector-matrix multiplication
The most studied network architecture in the literature is the fully 

connected NN where each neuron in a layer is connected to every neuron 
in the previous layer. In this work, a two-layer fully connected NN 
presented in Fig. 9a is considered. This feed-forward network can be 
used for image classification based on a linear predictor function 
combining a set of weights Wik with the input vector Xi. Outputs Yk are 
computed using Vector-Matrix Multiplication (VMM), which is the 
fundamental computation algorithm in neural networks (see Eq. 4 of 
Fig. 9a).

An array of RRAM cells could naturally accomplish VMM within one 
step by collecting the output current of the array. Fig. 9b describes how 
the neural network of Fig. 9a can be mapped to a crossbar RRAM array. 
Input vectors (Xx) are mapped to input voltages (Vx) and the weight 
matrix (Wik) is mapped to memory cell conductance values 1/Rik. VMM 
can be easily implemented following Eq. 5 of Fig. 9b: when voltages Vx 
are applied to the rows, the current through each cell is proportional to 
the product of the input voltage and the cell's conductance (which 
represents the weight). The weighted sum is obtained by measuring the 
total current Ik. It is worth mentioning that an activation function (not 
presented here) can be applied to the total current. Note that the RRAM 
crossbar structure allows a simultaneous computation of multiple dot 
products as currents in all columns are instantaneously summed by 
Kirchhoff's Current Law (KCL). Before performing a VMM, different 
weights are loaded into the crossbar matrix. Hence, the key point of this 
approach is the ability of the RRAM device to store data as different 
conductance levels.

5.2.2. Image dataset and neural network architecture
Given the complexity and technology-specific nature of actual RRAM 

hardware implementation, simulating the impact of variability on 
RRAM neural network performances can be effectively achieved 
through software. In this context, TensorFlow neural network libraries 
are used to define and train an ANN model using a custom image dataset.

In the context of image classification, an image is represented as a 
matrix of pixels with dimensions n × m. We have considered 5 × 4 
grayscale images representing digits (0–9), in which the color of pixels is 
codified by one single value: each pixel has a value between 0 (black) 
and 255 (white). Note that before use, a preprocessing step is needed to 
convert the images into a format suitable for NN training and inference 

(pixel values are normalize to a range of 0 to 1). Fig. 10a shows the 
considered dataset made of 10 different classes. Each class gathers six 
different instances of the same digit.

Given the small size of the images, a simple feedforward NN with two 
layers is targeted (see Fig. 10b). The input layer is fed with 20 inputs 
encoding the 5 × 4 input pixels. The output layer is made of 10 output 
neurons and determines the final prediction of the model. The model 
parameters include 200 synaptic weights along with 10 biases. It is 
important to note that synaptic weights and biases can be represented 
using both positive and negative floating-point numbers.

5.2.3. Impact of variability during inference
Variability in RRAM is modeled under the TensorFlow framework by 

introducing noise (or variations) in the synaptic weights and biases 
during inference. More particularly, variability is incorporated into the 
ANN model while primary focusing on C2C variability, since the study 
examines resistance fluctuations occurring after a programming opera-
tion is applied to a specific cell.

Accuracy is chosen as the key performance metric to evaluate the 
robustness of the NN under different variability conditions. Fig. 11
presents the conductance variability simulation workflow: (i) After the 
definition of the targeted NN model, (ii) a mathematical model repre-
senting the variability characteristics of RRAM devices (e.g., Gaussian 
noise with a specific mean and variance) is used to generate weights and 
biases values that account for variability, (iii) the NN model is updated 

Fig. 10. 60 5 × 4 grayscale patterns representing digits (0–9). Each class 
gathers six different instances of the same digit. (b) Two-layer fully connected 
neural network made of 20 input neurons and 10 output neurons. The network 
is defined by 210 parameters (200 weights and 10 biases).

Fig. 11. Conductance variability simulation workflow under Tensor-
Flow framework.

H. Aziza et al.                                                                                                                                                                                                                                   Microelectronics Reliability 166 (2025) 115594 

6 



with new weight and bias values and (iv) the model is simulated during 
inference to extract the accuracy of the predictions. The same process is 
repeated with new input images to calculate the average accuracy across 
multiple inputs. A new image dataset (that was not used during training) 
is derived from the dataset presented in Fig. 10. In this new dataset, the 
color of half of the pixels of each image has been modified to values 
different from 0 (black) and 255 (white). 15 and 240 have been chosen 
for black and white respectively.

Fig. 12 shows simulation results related to the considered NN 
without considering variability (golden simulation). The softmax func-
tion is skipped to see the direct result of the linear VMM transformation. 
Indeed, softmax converts the raw output of the network into probabili-
ties, hence, masking the VMM transformation result. In Fig. 12, for each 
digit, ranging from 0 to 9, the blue bar represents the VMM result for the 
considered digit. The higher the blue bar value, the better the inference 
accuracy. For each digit, the blue bar shows a higher value compared to 
the red bars, hence, a “pass” test is reported for each tested digit, thereby 
achieving an overall accuracy of 100 %.

The same protocol is used for the second inference test, presented in 

Fig. 13, expect that variability has been injected into the weights and 
biases of the NN model. A standard deviation with respect to the mean 
value (σ/μ) of 0.25 is considered (CV = 25). Under these conditions, a 
global accuracy of 70 % is reported.

Simulations with varying levels of introduced variability have been 
performed, and their impact on the NN accuracy is shown in Fig. 14. The 
impact of variability on the accuracy can be significant. Beyond 0.1 (CV 
= 10), the accuracy reaches 10 %. Beyond 0.5 (CV = 50), the accuracy 
drops below 4 %.

If we consider experimental variability results reported in Table 2, 
and more particularly the CV parameter variation range (changing from 
20 to 150), it appears clearly that the actual RRAM conductance vari-
ation can lead to a noticeable drop in the classification accuracy.

6. Discussion

In this study, the conductance ratio has been chosen as the main 
criterion to assess the robustness of RRAMs used in computing appli-
cations for two reasons: (i) a stable conductance ratio is essential for 

Fig. 12. Golden simulation: inference test achieved without variability. An overall accuracy of 100 % is reached.

Fig. 13. Inference test achieved after nose injection in the NN. A standard deviation with respect to the mean value (σ/μ) of 0.25 is considered.
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consistent learning processes, enabling the network to adapt to new 
information while updating the previously stored information (ii) a high 
conductance ratio provides a larger dynamic range for multi-level cell 
storage (MLC [28]) which enables better differentiation between 
different synaptic states, turning the NN more robust. The conductance 
ratio has been monitored against 230 RST/SET programming cycles. The 
standard deviation, the mean value and the CV parameters have been 
computed to analyze the behavior of each cell. By leveraging software 
simulations, the impact of RRAM variability on a NN dedicated to image 
classification has been evaluated during inference. It has been demon-
strated that RRAM variability can significantly impact the accuracy of 
the NN. While the conductance variability is an important criterion at 
time zero [29], it is worth noting that time-dependent reliability metrics 
[6] such as endurance, retention and read/write stress also play a critical 
role in determining the robustness of RRAM-based NNs. Particularly, 
cycling and endurance can lead to hard errors (memory cell stuck at one 
conductance state forever, with a conductance ratio stuck at one [30]). 
Also, similarly to other emerging memory technologies, RRAMs is sub-
ject to defects that directly impact the conductance ratio [31]. There-
fore, appropriate test mechanisms are required to detect RRAM-related 
failures due to these defects [32,33]. Beyond RRAMs, the NN CMOS 
subsystem variability [34] (including the neurons [35], the RRAM 
reading [36] and programming circuitry [37,38]) can also impact the 
conductance ratio. Hence, a complete analysis strategy [39] has to be 
defined to mitigate the impact of all these non-idealities on the 
conductance fluctuations in RRAM-based NN accelerators.

7. Conclusion

The existing of important fluctuations in the RRAM conductance has 
been experimentally established. The electrical behavior of each cell of 
an elementary array has been analyzed at the electrical level. After 
having computed the coefficient of variation CV of each cell of the array, 
a large variation of this parameter has been reported (from 21.6 to 159). 
Based on these results, it has been demonstrated that the impact of the 
RRAM conductance variability on the accuracy of a neural network can 
be significant and cannot be ignored, especially in precision-critical 
applications like image classification. Hence, investigating strategies 
to mitigate this variability is crucial in order to maintain high perfor-
mances in RRAM-based neural networks.
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