BAP TU Delft

ASD detection

subgroup Feature Selection
F.Kreté, G.van Wingerden

S

oy,

025 « B

.—‘--. .

%

BAP TU Delft ASD detection

subgroup Feature Selection

Author: F.Krete, G.v.Wingerden
Degree Program: BSc Electrical Engineering
Student Number: 5850363, 5603900

Supervisors:
Prof. Geert Leus
Ruben Wijnands

Institution:
Faculty Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Date of Submission:
July 10, 2025

]
TUDelft

Abstract

In the Netherlands, 3% of people above 4 years old are diagnosed with autism.
Diagnosing is currently done with a psychological assessment, but classifying people
with autism using resting state functional magnetic imaging, or rs-fMRI, has become
promising. The goal of this project was to see if new features could be found, based
on the graph of rs-fMRI data stored in the Autism Brain Imaging Data Exchange
(ABIDE) dataset, that had a significant positive influence on the accuracy of a
predictive model. To do this, several feature selection modules were researched and
coded in Python. Subsequently, these were tested with the features and classification
methods created by our partner subgroups. The best performing model, using all
data, had an accuracy of 74.26% and a sensitivity of 65.35%. The best performing
model using graph features, on all data, had an accuracy of 60.4% and a sensitivity
of 46.6%. This indicates that there were no graph features developed that had a
significant positive influence on classifying whether someone has autism.

Contents

Introduction

Pre-required knowledge

2.1 ASDinthebrain
2.2 MRIdata e
2.3 ABIDE dataset
2.4 Graph features
Program of requirements

3.1 Functional requirements
3.2 System requirements Lo Lo

Feature selection methods

4.1 Feature selection L
4.2 Permutation Importance
4.2.1 Methodology
422 Prosandcons
4.3 Lasso e e
4.3.1 Methodology
4.3.2 HSIC Lasso o v o e
4.3.3 Prosandconso
4.4 Sequential Feature Selection
4.4.1 Methodology
442 Prosandcons e
Preprocessing
51 mRMR e e
5.2 Clustering
5.3 Hyperparameter tuning Lo oL
Pipeline
6.1 Loading file and pre-processing
6.2 Trainand testdata
6.3 Feature selection
6.4 Classification and evaluation L.
6.5 Parallel running
Results
7.1 Classification methods
7.2 Useddata e e e
7.2.1 Full Correlation
722 Graph Data
7.3 Full correlation
7.3.1 Performance on multisite data,

7.3.2 Performance on single-site data 0L

13
13
14
14

16
16
16
16
16
17

8 Graph results
8.1 Dataset 1 e
8.2 Dataset 2 (tuned parameters)

9 Discussion

9.1 Full correlation
9.1.1 Sex-specific observations
9.1.2 Multi- and single site L 0oL
9.1.3 Feature selection behavior across subsets
9.2 Graph features e
9.3 Futurework

10 Conclusion

A Appendix A

A.1 Full correlation multisite
A.1.1 Combined
A12 Femaledata e
A13 Maledata e

A.2 Full correlation single site L
A.2.1 Combined data
A.22 Femaledata
A23 Maledata e

B Appendix B
B.1 Graph multisite
B.2 graph NYU 0o o
B.3 Laplacian NYU
B.4 Laplacian multisite
B.5 rspect NYU . . . o o0
B.6 rspect multisite Lo

C Appendix C
C.1 pipeline
C.2 Feature selection methods

D Appendix D

E Appendix E
E.1 Graph Features
E.1.1 Dataset 1

E.1.2 Dataset 2 (tuned parameters)

1 INTRODUCTION 1

1 Introduction

Autism Spectrum Disorder (ASD), often simply denoted as autism, is a neurodevelop-
mental disorder. It is mainly characterized by challenges in social interactions and com-
munication and by restricted or repetitive behaviors. According to the 'Centraal Bureau
voor de Statistiek’ (CBS), 3% of Dutch people above 4 years of age indicated having ASD
between 2022 and 2024 [1]. This is equivalent to about 280.000 men and 140.000 women
in the Netherlands alone. This statistic can be seen in Figure 1. At this moment, ASD is
diagnosed through a comprehensive psychological assessment. In the Netherlands, this is
done by a psychiatrist, or 'gz-psycholoog’. According to the ’Nederlandse Vereniging voor
Autisme’ (NVA), there is no biomarker for ASD, and diagnosis relies only on identifying
specific behavioral characteristics [2]. The diagnostic process typically involves multiple
interviews and observations to assess aspects such as social interaction, communication,
and repetitive behaviors. According to the "Zorgstandaard Autisme’, a thorough diagnos-
tic trajectory takes approximately twelve to fourteen hours to complete. It is important
to know if someone has ASD, because they have different needs. In addition to this,
according to CBS, 74% of people with ASD above 12 years of age had suffered depressive
or fearful feelings in the last 4 weeks, compared to 43% of people without ASD.

Research has started to try to find
certain biomarkers to classify ASD. The auismespectrumstoomis, 202212024
search for biomarkers could speed up di-
agnosis and make it more reliable. It
could also help deepen our understand-
ing of ASD and how it affects the brain.

To find these biomarkers, rs-fMRI data is
used. The use of machine learning clas-
sifiers on rs-fMRI data has been reported

to be promising. Some results indicate an = & ..

overall summary sensitivity and specificity N
estimates of 73.8% and 74.8%, respectively

[3]. With the addition of other brain == ™ = tewen 55 vomen

imaging data or phenotypic data, achiev-
ing even higher sensitivities compared to
rs-fMRI data alone (84.7% versus 72.8%).

Classifying ASD using rs-fMRI data is done by machine learning. Machine learning
is the practice of teaching computers to recognize patterns and make predictions on data
without being explicitly programmed. It works in 4 steps. The first step is data collection,
where samples are collected. Here, the type of data can vary. Second is training, where
the data is fed into an algorithm, and this algorithm should try and learn the patterns.
It then creates a model based on what it has learned, and finally, this model is used to
make predictions on new data. It is important to understand the idea of feature selection.
Here, features are evaluated and only the best features are held on to, in an attempt to
make the model perform better and faster. The exact process will be explained in the
thesis, but is visually illustrated in Figure 4.

It seems that right now, no one has tried to convert the rs-fMRI data to graph features
and use these to predict ASD. These graph features could introduce new information on
how the brain of someone with ASD differs from that of someone without ASD, called
an allistic individual. The goal is to identify new features that have a positive effect on

Totaal

4 tot 12 jaar
12 tot 15 jaar
15 tot 25 jaar
25 tot 40 jaar
40 tot 50 jaar

50 tot 65 jaar

Figure 1: Reported ASD 2022-2024 CBS [1]

1 INTRODUCTION 2

the precision of predictive models when trying to classify ASD. To do this, the second
version of the Autism Brain Imaging Data Exchange (ABIDE) [4] was used. All of this
is to hopefully promote further research.

To execute this process, the work was divided among 3 subgroups.

1. Feature design
2. Classification
3. Feature selection

Their relationship can be seen in Figure 2.

Feature design will transfer the rs-fMRI data into a graph and extract graph features,
along with possible other features. They will then push these features to the other sub-
groups. Classification will design several classification methods to try to get the best
performance with the given features. Finally, feature selection will try to eliminate ir-
relevant features and identify the features most important for the performance of the
process. Next to this, it was decided that there should be a GUI for the project. This
task was taken up by the classification subgroup. This thesis will detail the design and
subsequent challenges of the feature selection subgroup. It will talk about which feature
selection methods have been applied and which features, if any, are the most effective,
the design of these features, or the design of the classification methods can be found in
their respective thesis.

The thesis will go through the different feature selection methods, how they work,
and why they were selected. It will show the results gathered from the feature selection
methods and draw a conclusion based on these results.

Y

Y

Feature Design

Classification Feature Selection

Figure 2: Overview of the subgroups in the project pipeline.

2 PRE-REQUIRED KNOWLEDGE 3

2 Pre-required knowledge

2.1 ASD in the brain

While the NVA says that there are no biomarkers for ASD [2], there is still significant
research done on the workings of ASD in the brain. This research has been mostly done
using MRI.

Studies show that the brain structure of people with ASD is different than that of allistic
people. In the brain of a person with ASD, high connectivity can be measured within local
regions of interest, or ROIs, while low long-range connectivity is measured between these
different ROIs [5]. ROI pairs with the strongest correlation are shown to be the most
abnormal in people with ASD. Especially negatively correlated ROI pairs showed less
anti-correlation, possibly representing weaker long-range connections between different
regions of interest pairs [6, 7].

O Q
O O OO (@]

Figure 3: Network connectivity in a neuro-typical brain (left) and a brain with ASD
(right) [5]

It is important to know that ASD behaves differently in the brains of females than
in males. ASD is more prevalent in males, with around 70% of diagnosed ASD cases
being described as males [8]. Males with ASD demonstrate more externalizing behavior,
like aggressiveness or hyperactivity, while females with ASD are more likely to experience
internalizing problems, like anxiety and other emotional problems [8]. Female children
are more likely to camouflage their social challenges, having less intense ASD symptoms,
while male children are more likely to play alone, showing clear symptoms of ASD [9, 10].
This shows a clear male bias in our understanding of ASD.

Differences are also found when looking at the brains of males and females with ASD
using MRI. For example, research shows that, relative to allistic peers, females had more
extensive cortical differences than autistic males [11]. This also shows for the classification
process of people with ASD using MRI, where different classifiers have a contrasting
performance based on gender [12].

2.2 MRI data

fMRI is an imaging scan that shows activity in specific areas of the brain. A standard
MRI scan uses an extremely powerful magnet, radio waves, and computer processing
to generate highly detailed 3D pictures of the inside of your body. An fMRI scan uses

2 PRE-REQUIRED KNOWLEDGE 4

the same MRI machine, but tracks blood flow in different parts of your brain. This, in
combination with the fact that brain cells use more oxygen when utilized for certain tasks,
means that the areas of your brain that are working the hardest appear brighter on an
fMRI scan [13].

To investigate brain disorders such as ASD, rs-fMRI has been considered because of
the minimal need for participants’ cooperation, does not rely on cognitive task design,
and eliminates the need for additional equipment during imaging. Using rs-fMRI, it is
possible to examine resting-state network (RSN) abnormalities in individuals with ASD.
The RSNs are a set of brain regions between which there are consistent spatial and tem-
poral fluctuations and provide valuable information about the brain functions in healthy
individuals and those with neurological disorders, such as individuals with ASD. Numer-
ous studies have suggested patterns of abnormalities in RSNs as potential biomarkers for
the diagnosis of ASD [12].

2.3 ABIDE dataset

All data used in this project is from the ABIDE dataset. This is a collection of rs-fMRI
scans from different universities, related to subjects who are either allistic or have ASD.
The use of this dataset makes new research easier and cheaper, because there is no need
for access to subjects, an MRI machine, or professional staff to operate the machine.
Also, since more than 20 international research sites have uploaded their data, the data
is extensive and diverse. Extensiveness means the influence of outliers will be minimized,
and diversity means the result will apply to a broader population. It contains 1112 rs-
fMRI data sets with corresponding structural MRI and phenotypic information from 539
individuals with ASD and 573 age-matched typical controls [14]. While ABIDE is useful
and extensive, there are also things to consider when using the dataset, like the fact that
it uses data from different research sites. This means that there are also differences in the
way the sites did their research. This leads to differences in methods, which can impact
research findings.

‘ 1. Data Collection’

Y

‘ 2. Training ’

Y

‘ 3. Model Creation’

(1_{ Feature SelectiD
|

‘ 4. Prediction |

Y

Figure 4: The machine learning pipeline illustrating the main steps and where most of
the feature selection takes place.

2 PRE-REQUIRED KNOWLEDGE)

2.4 Graph features

An important term in this project is ’graph features’. A graph is a collection of nodes
that are either connected or not connected to other nodes. A graph and its nodes can
represent a lot of things. In a social network, the nodes might represent people, and in
a computer network, they might represent computers or routers. In the case of rs-fMRI,
the nodes represent ROIs in the brain. The connections between nodes can also have
weights or directions, but do not have to. When imaging a collection of nodes and their
connections, a graph is created as seen in Figure 5. A graph can also be represented as
can be seen in Table 1. Here, the nodes are present on both the x-axis and the y-axis.
A connection is represented as a 1 and no connection is represented as a 0. There are
several graph-specific features. Examples are connectivity, how many different nodes a
node is connected to, centrality, what is the average distance to each node, etc.

Example Connectivity Graph

0

Figure 5: Example connectivity graph showing correlations between regions. Red edges
indicate positive correlations, and blue edges indicate negative correlations.

Table 1: Adjacency matrix representing the weighted connections between nodes.

node 0 nodel node?2 node3 node4d nodeb

node 0 0.80 -0.60 0.00 0.00 0.00
node 1 0.80 0.00 0.70 0.00 0.00
node 2 -0.60 0.00 0.00 0.00 0.00
node 3 0.00 0.70 0.00 -0.90 0.00
node 4 0.00 0.00 0.00 -0.90 0.50

node 5 0.00 0.00 0.00 0.00 0.50

3 PROGRAM OF REQUIREMENTS 6

3 Program of requirements

For this project, the feature selection process is quite important. First of all, the feature
selection process makes sure only the important features for classification are used in the
classification process. This makes the process less computationally expensive and prevents
overfitting of the model. This way, accuracy can also be improved by this process.

Apart from that, for the purpose of further research, the features most prominent in
the classification process should be shown in the interface. It is the goal of the feature
selection group to find and record these features.

It is important to note that, for a performance indicator, reduced misclassifications
has been used instead of improved accuracy. This is because improved accuracy can be
insensitive to changes if the initial accuracy is already high. Reduced misclassifications
focus on the actual errors reduced, making it an informative indicator of feature selection
performance.

To make sure the end product is in line with the given goals, a program of requirements
was set up. Below the functional requirements, what the system should do, and the system
requirements, how the program should perform, are given.

3.1 Functional requirements

o The system must use the ABIDE dataset

o The system works with different classification methods

o The system works with different graph inference methods
o The system shows which features it selects

o The system selects all features that have a positive effect on the performance of the
program with the current classification method

e The system shows the accuracy of the model

o The system uses a selection method based on the classification method chosen.

3.2 System requirements

o The system reduces the misclassifications by 25%
e The system runs in less than an hour

o The system is scalable to datasets with 500 features and 1000 subjects

4 FEATURE SELECTION METHODS 7

4 Feature selection methods

4.1 Feature selection

An important step in the process of machine learning is the selection of features. By
reducing the features in the dataset to only the most important ones, the system will be
less computationally intensive. This means that the classification process will take less
time to run, which is crucial if this process needs to take a certain amount of time.
Feature selection is also useful because of another problem, called the curse of dimension-
ality. This is a phenomenon that happens when a machine learning program is trained on
extremely high-dimensional data, or a lot of features. At first, the accuracy increases with
higher dimensionality, but as dimensionality rises further, the accuracy can go down [15].
This is because the training model begins to overfit. This overfitting happens when a ma-
chine learning algorithm has been learning from many particular details from a training
set, including noise and outliers. This way, the model performs very well on the training
set, but when it runs on the test data, it performs a lot worse. By only training the
model on the features deemed important, the problem of overfitting will be reduced, and
accuracy goes up, despite using fewer features.

Feature selection can be done in many ways, but the different techniques almost always
fall into three categories: filter, wrapped, and embedded methods [16]. Filter methods
rank features without the use of a classifier. It usually consists of two steps. The first of
which ranks features based on certain criteria. Either in a univariate scheme, indepen-
dently ranking features, or in a multivariate scheme, which evaluates features in a batch.
The second step chooses the highest ranked features [17]. Examples of filter methods
include filtering the features using Pearson correlation between the features and the class
label, or filtering the features by only keeping the features that cross a certain threshold
of variance. Filter methods are usually fast and have a low computational cost, but lack
accuracy. They are useful for pre-processing large amounts of data.

Prediction

Y

Selected Features —> ML Model

Y

Raw Data —>{ Filter Method

Figure 6: Filter-based feature selection: Independent method applied before model train-
ing.

Wrapper methods utilize the performance of the predictor as a way to select features.
The predictor is wrapped on a search algorithm that tries to find a subset of features that
performs the best. It does this in a couple of steps. It first finds a subset of features, it
then evaluates this subset by the performance of the chosen classifier. It repeats steps 1
and 2 until a desired performance is found [18]. This produces a high accuracy but is very
computationally expensive. The size of the search space for m features is 2™ [17]. These
algorithms are very slow to run and scale exponentially with large amounts of features.
Both these methods have their advantages and disadvantages. Filter methods are com-
putationally efficient, but do not take into account the biases of the classifiers. Wrapper
methods generally have a high performance, but have to evaluate the dataset many times
using a classifier, which can take a lot of time. The third sort of feature selection method
has the advantages of both filter and wrapper methods. They incorporate the classifier
into the selection, but are computationally less expensive than wrapper methods [17, 16].

4 FEATURE SELECTION METHODS 8

Y
Y
\4

ML Model

Feature Subsets Prediction

Raw Data

<

<

\4

Evaluate Performance

Figure 7: Wrapper-based feature selection: Model is trained on various feature subsets,
performance guides selection.

They are called embedded methods. Embedded methods incorporate feature selection as
part of the training process. Like wrapper methods, these methods search for an optimal
subset of features, but try to limit the computational cost by building the feature selection
inside the classifier.

ML Model with FS

Prediction

Y
Y

Raw Data

Figure 8: Embedded feature selection: Feature selection happens during model training.

To find the best features in the process of this report, several feature selection methods
were developed. Because this process prioritizes performance over computational cost up
until it takes longer than an hour to run, wrapper and embedded methods were chosen
over filter methods. Also, feature selection methods should be compatible with our data,
because the rs-fMRI graph data is very high-dimensional, and the features can be ex-
pected to be nonlinear.

Each method has its upsides and downsides, especially in combination with different clas-
sification methods. The next section will help explain each feature selection method and
why they were chosen. For a quick overview, Table 2 can be referenced.

4.2 Permutation Importance

The first feature selection method evaluated is a wrapped method called Permutation Im-
portance. The method changes every sample of a single feature and evaluates the change
in scoring of the classifier model. It repeats this to give each feature an 'importance’. To
implement this method, the scikit learn library was used in Python [19].

4.2.1 Methodology

Permutation importance is model agnostic, which means that it can work with any classi-
fication model. To implement permutation importance, the model needs to run normally
first. It creates a baseline metric by scoring the model with all features intact. This
scoring method can be in different parameters, but when set to default, it will use the
scoring method of the given model. So it will use accuracy for a classifier, in our case,
this is always. After this is done, it will randomly assign all samples for a given feature
a new value. By randomizing these samples, the connection between the feature and the

4 FEATURE SELECTION METHODS 9

outcome should be broken. After randomizing, the program checks the scorer again to see
how it has changed. It then assigns a feature an importance equal to the amount the score
has dropped. This value is thus negative if the score has increased, indicating a negative
influence on the accuracy of the classification in our case. The model also repeats this
process multiple times per feature. It does this for robustness, by testing multiple times,
it reduces the chance of outliers. The equation for finding the final importance score can
be found in equation 1

33
ij=8——=> Skj (1)
J Kkzl J

Here s is the initial score,)| is the importance score for feature j, and K is the number
of repetitions.

4.2.2 Pros and cons

Permutation importance is a very useful method because it works with nonlinear data
and with every classifier. There are, however, downsides; some of them make permutation
importance less useful for certain classifiers.

First of all, permutation importance is computationally expensive. It needs to check every
feature and has to do this repeatedly for a more robust importance score. This means
that when your data is high-dimensional, this method becomes slow. It becomes almost
impossible to use when the classifier also has a high computational training cost or cost
per prediction, like complex neural networks.

The method is not good at handling data that is highly correlated, once again, something
that occurs more often in high-dimensional data. Since permutation importance checks
each feature one by one, it might mark two highly correlated features as unimportant,
since it doesn’t affect the score when only one of the features is missing. However, the
score can still drop when both features are removed. Thus, permutation importance might
miss important features.

Finally, permutation importance does not work well with unstable models or models with
high variance, like single decision trees. Since permutation importance randomly shuffles a
feature’s values, if the score is vastly different each time, then this will lead to inconsistent
importance scores.

4.3 Lasso

The next feature selection method is called the Least Absolute Shrinkage and Selection
Operator (LASSO). The selection method was implemented using the pyHSIC Lasso
package made by Yamada and Climente [20, 21].

4.3.1 Methodology

Lasso is a modification of the Ordinary Least Squares (OLS) cost function. Lasso adds an
L1 penalty to OLS, minimizing the absolute sum of the coefficients. This penalty shrinks
certain coefficients to zero and effectively performs feature selection [22]. The formula for
Lasso can be found in Equation 2.

4 FEATURE SELECTION METHODS 10

2
~ lasso . 1 P P
/8 = arg min 52 yi_ﬂO_inij +/\Z|BJ| (2)
A i=1 j=1 j=1

Where y is the vector of the observed target values, X is the matrix of input features,
B is the vector of regression coefficients to be estimated, and A is the regularization
parameter. The higher this parameter, the more the coefficients shrink to zero. As can
be seen, the equation can be divided into two parts: the first of which is the residual sum
of squares. The second part represents the L1-penalty function.

By shrinking different feature coefficients to zero, the L1-penalty improves the prediction
accuracy and makes the model easily interpretable. It can handle high-dimensionality and
high correlation in features by choosing one feature among a group of highly correlated
features and shrinking the rest to zero.

Lasso is particularly useful when the number of features is larger than the number of
training samples [23]. This is exactly the case with the data of this project, which has a
lot of samples. It also has a relatively low computational cost, making it a good feature
selection method for our data.

4.3.2 HSIC Lasso

While Lasso is a useful feature selection tool and can handle the high-dimensionality
present in our dataset, there is still a critical limitation of Lasso. On its own, Lasso
cannot capture non-linear dependency. Because the dataset can be expected to have non-
linear features, the Lasso method should be modified to capture non-linearity. A good
method that can still handle high-dimensional feature selection uses the Hilbert-Schmidt
Independence Criterion (HSIC) [20]. This feature-wise non-linear Lasso, called HSIC
Lasso, can be seen in Equation 3.

2
+ A8l (3)
Frob
As can be seen, the equation looks like Equation 2, with some notable differences.
|| * || Frob is the Frobenius norm, which is the square root of the sum of the squares of all
elements in the matrix. L and K are centered Gram Matrices, based on Gram Matrices
K;; = K(zy;,xr) and L; ; = L(y;,y;) [20]. d here is the total number of features.
According to Equation 4, the first part of Equation 3 can be rewritten as

| A N (L
faléln@zH Zﬁ’“

[\V]
ISH

QHSIC Y,y Z B HSIC (ug, y) + = 5 Z BrBHSIC (ug, wi) (4)
Frob k=1 k=1

N[—

o g

HSIC(u,y), is the Hilbert-Schmidt independence criterion, a kernel-based indepen-
dence measure [20]. ug = [Tk 1,...Tkn)T € R™ is the vector of the kth feature for all sam-
ples. Here, HSIC(y,y) is a constant and can be ignored. When using a kernel such as the
Gaussian kernel, HSIC goes to zero if two variables are statistically independent. This
way, HSIC Lasso is functionally a minimum redundancy maximum relevancy, or mRMR,
based feature selection method, a feature selection method that will be explained later in
the report. Equation 5 is the function that finds the relevancy to the output label, and
Equation 6 is the function that finds the redundancy between every feature.

4 FEATURE SELECTION METHODS 11

d
> aHSIC(ug, y) (5)
k=1
1 d
- Z OékalHSIC(Uk,Ul) (6)
2 k=1

The fact that HSIC Lasso is an mRMR-based feature selection method makes it a
filter method, not an embedded method like basic Lasso. Even though it uses an L1
penalty to select a sparse subset of features, like Lasso, it selects features before training
a classifier, like filter methods do. Besides that, HSIC Lasso is still a very useful feature
selection method. It works with non-linear features and, like basic Lasso, it works well
with datasets that have a large number of features and a relatively low number of samples.
This makes it a good feature selection method for our dataset.

4.3.3 Pros and cons

Lasso is a great method because it performs feature selection and regression simultane-
ously. It handles high-dimensional data well, which makes it very efficient. The HSIC
method should be even better, since it works with non-linear data.

However, Lasso may discard all but one arbitrary feature among correlated features. This
can hurt interpretability, making it hard to see which feature influences the classification.

The HSIC lasso has some other specific downsides. It is more complex to implement,
but more importantly, it depends on the choice of kernel and the hyperparameters. This
means that more parameters can differ and have to be taken into account.

4.4 Sequential Feature Selection

Sequential Feature Selection (SFS) is a wrapped feature selection method used. It creates
subsets of features by adding or removing features sequentially based on an estimator. To
implement this method, the scikit learn library was used in Python.

4.4.1 Methodology

SF'S has two opposite versions: forwards SFS and backwards SFS. Forward SFS starts
with an empty set. It then runs the program for each feature individually and evaluates
the performance based on a specific indicator. The feature that increases the performance
the most is then added to this set. After this, the program repeats these steps with every
feature not yet added to the set, adding them to the features that have already been
chosen and evaluating their performance. The program only stops when a given number
of features have been added, the performance stops increasing by a given amount, or all
features have been added.

When SFS works backwards, the program starts with a subset containing every feature
and removes each feature individually. It then checks which removed feature drops the
accuracy the least, or even improves it, and removes that feature from the subset perma-
nently. Like with forwards SF'S, the program then repeats these steps with the remaining
features. It only stops when a given number of features is left, the performance is not

4 FEATURE SELECTION METHODS 12

incremented by at least a given amount, while this amount can be negative, or when all
features have been removed.

4.4.2 Pros and cons

SF'S is an intuitive and powerful method for feature selection because it directly measures
the impact of each feature on model performance, in the context of all other features.
Besides that, it works with any model. There are, however, downsides.

To start, SF'S can be computationally expensive. Both methods first have n evaluations
for an amount of chosen features n. The iteration after this becomes n — 1 evaluations.
This leads to O(n?) evaluations, which grow exponentially with more features. Still, the
backwards variation is quite more expensive than the opposite. This is because, while the
forwards variant begins with an empty set, the backward SFS begins its program with
every feature. This makes the first evaluations very expensive. Also, depending on the
chosen amount of selected features n, forward SEF'S only has n iterations, while backwards
SF'S has m — n iterations, where m is the total number of features. This makes backward
feature selection very computationally expensive for high-dimensional data.

Performance-wise, the forward model can be lacking. By adding features iteratively, the
program can select features that contribute significantly in isolation, but may not be as
useful when combined in a set with others. By removing features iteratively, backwards
SE'S is much better at handling these features in the context of a set, which can lead to
a better performing model.

Also, the program is not always good at correlated features. The forwards method might
not add features, because on itself they add nothing to the performance of the model, while
they do have a positive effect when combined with other features. The backwards method
handles correlated features better, since it would see a significant drop in performance
when removing one of the two.

Finally, it should be noted that these methods are greedy. When a feature is removed
or added, it is not considered again. In forwards SFS, this means that when a feature is
added, it will never be removed again, even though in combination with other features,
it might not have as much of an effect. In backwards this means that when a feature is
removed, it will never be added again, even though when a different feature is removed,
it might be relevant again.

5 PREPROCESSING 13

5 Preprocessing

Now, all the proposed feature selection methods have been explained, and their pros and
cons have been elaborated on. It seems some cons are shared by multiple methods. The
biggest problem is the high dimensionality, which often results in computationally expen-
sive feature selection and more highly correlated features. To try and remedy this, the
data can be processed, and the features going into the final feature selection method are
reduced before trying to select the most influential features. This has been implemented
in two ways: a filter method called mRMR and clustering.

5.1 mRMR

mRMR is a very useful method of pre-processing large-scale feature selection problems for
more accurate wrapper methods. This method is good for filtering the very large num-
ber of features into the few that are most important, using only these for a much more
computationally expensive wrapper method. This way, both the advantage of faster filter
methods as well as the higher accuracy of a wrapper method are present in the feature
selection. mRMR has been implemented using the scikit feature package [24].

mRMR is based on Mutual Information for its selection, which can define the depen-
dency of variables. The equation for mutual information is given in Equation 7 [25].

p(z,y)
I(z;y) //p:cylog @ (y)dxdy (7)
Here, p(x), p(y) and p(x,y) are probabilistic density functions of x and y. mRMR consists
of two different criteria: minimal redundancy and maximal relevance.

First, the algorithm searches for a subset of features S with the maximal relevance to
label y. It does this by using the mean value of all mutual information values between an
individual feature x; and label y. This criterion can be seen in Equation 8 [25].

max D(S,y), |S[> I(ziy (8)

;€S

Equation 8 on its own could already perform feature selection, choosing the set of features
most relevant to the label y. However, this method would not consider the dependency
of features in the subset of features. When two features have a very high dependency,
the subset should not care if one of the features is removed. This is where the minimal
redundancy comes into play. The minimal redundancy part of mRMR also uses mutual
information, but this is used to evaluate how much the features depend on each other.
The minimal redundancy part can be seen in Equation 9 [25].

> Iz, xy) (9)

| x5,2,€8

min R(5),

In equation 10, it can be seen how both equations come together to form an mRMR score.
[25]
max®(D,R), ®=D—-R (10)

In reality, this method works with a greedy approach by starting with an empty set.
It first searches for the feature with the most relevance to the label y. After that, it uses

5 PREPROCESSING 14

a forward selection technique with a sequential search strategy to iteratively find new
features with the highest relevancy to the label, while having a low redundancy to the
created subset [26].

Although mRMR is a filter, it balances both relevance and redundancy, making sure
all selected features are not redundant, while being computationally inexpensive. It is,
however, still a filter, which means that it will probably have a lower accuracy than the
more intricate wrapper and embedded methods. At least when it is used alone.

Next to this, the strategy is greedy. It works towards a local optimum and not a global
optimum. The program iteratively chooses the best feature and the next best feature. It
doesn’t check each possible combination, meaning it can miss a global optimum.

5.2 Clustering

Another method for pre-processing is clustering. In this method similar features are
grouped or ’clustered’. This helps, not only because it removes the total amount of fea-
tures, but it also groups highly correlated features, meaning that feature selection methods
that struggle with highly correlated features should work better with clustered features.
An example method for clustering features is provided in the documentation of scikit
learn.

In this method, first the Spearman’s correlation is used. The Spearman correlation be-
tween two variables is equal to the Pearson correlation between the rank values of those
two variables; while Pearson’s correlation assesses linear relationships, Spearman’s cor-
relation assesses monotonic relationships, whether they are linear or not. If two feature
ranks are the same, they get a value of 41, and when they are the exact opposites, they get
a value of -1. The function used to calculate the Pearson correlation is given in equation
11.

r

S D))
\/Z;;l(ifi —2)? X (v — 9)?

The program creates a Spearman correlation matrix, where each feature is related to

each other. Using hierarchical clustering with Ward’s linkage, features are grouped based

on their correlation structure. From each cluster, a representative feature is chosen to

represent the core data. A threshold value is added to determine how far the features
have to be clustered.

To visualize this method of clustering, Figure 9 has been added. In this figure, only 30
features are used and subsequently clustered to make the process clearer. In this figure,
the left subplot shows a hierarchical clustering tree, showing what features are clustered at
what threshold. The features that are used are shown on the x-axis. The y-axis shows the
threshold value. The right graph is a heatmap of the Spearman correlation matrix. Both
axes show the used features. If a spot is bright, then these features are highly correlated;
if the spot is dark, then these features are not correlated or even anti-correlated.

5.3 Hyperparameter tuning

Some feature selection methods have hyperparameters. These are parameters that are
not trained by the model, but set by the user before the program runs. In the context
of feature selection, this is mostly how punishing the method is, like the a in the Lasso

5 PREPROCESSING

15

2.5

2.0 1

SNR_ROI_5
mean_ROI_5

num_peaks_ROI_1

mean_ROI_1
num_peaks_ROI_2

1.5+

1.0 4

0.5 q

num_peaks_ROI_5
num_peaks_ROI_3
num_peaks_ROI_4
max_amplitude_ROI_1
mean_amplitude_ROI_1

std_ROI_1
max_amplitude_ROI_2
mean_amplitude_ROI_2
std_ROI_2

max_amplitude_ROI_S

mean_amplitude_ROI_5

max_amplitude_ROI_3

mean_amplitude_ROI_3

std_ROI_3

max_amplitude_ROI_4

mean_amplitude_ROI_4

0.0 = std_ROI_4

plitude_ROI_:
plitude_ROI_4

n_am

n\m\v\q‘lmlmlﬁ N\ N\Hlﬂlﬁlwlm\m\d’\l—‘\l—‘\r‘\N\N\NI L{’\I!’Irﬂlmlrﬂ\q‘\“"lq'l mlmlvlwlm\mlﬁ N|N\H‘Hlﬁ\N\m\mlqr\H\H\H‘N\N\N|mlmlm\m\m‘v
cococc“"Coocooooooo0 o000CCO0C0GCO0 SocCoooY"00c0c0o000000 CGC000GCG000
258852%22525005025252552535535 2855557 2305099000555229225353
ece'de's ce'dv vy es e e's v e e u's Wa's e cle'de's 2'ce'cu'n'v v et vt s o'u's
Z2 0 Z .2 @ Z M2 XXX YN YDOHRTOHETTTTHRETS R Z0Z2TZ20 ZOZOXXXMYTORERTOFETTTTH
LRRGER RG] VoA gyg®®o®@O®ooS 3 == S3S33 == NolueAy AURQTOCOTSS =01 S35
£ £ E £ ELUUUUEE BE EEEE EE £ E E £ ELOOUULEE BE EEBE
59994%5EF B8 GEEE &8 2999255 B8 EE8E
EEEEEEE EE EEEE EE EEEEEEE EE EEEE E
g ggggm\m\ fU‘fU‘ m\mlmlml m\ml gggggm\m\ fU‘fU‘ mlmlm\m\ ®
x C fo = x ox C x C b= b= x o xXCc *
Figure 9: Visualisation of clustering
Table 2: Overview of Feature Selection Methods
Method Upsides Downsides
Permutation Importance | - Model-agnostic (works with any classifier) | - Computationally expensive, especially with
(Wrapper) - Captures non-linear dependencies many features

- Robust through repeated testing

- Struggles with correlated features
- Poor performance with unstable models

mRMR (Filter)

- Low computational cost
- Balances relevance and redundancy
- Useful as pre-selection for wrapper methods

- May have lower final accuracy than wrap-
per/embedded methods

- Greedy strategy may miss the global opti-
mum

Lasso (Embedded)

- Performs feature selection and regression si-
multaneously

- Handles high-dimensional and correlated
features

- Efficient for large datasets

- Cannot capture non-linear dependencies
- May discard all but one among correlated
features

HSIC Lasso (Filter)

- Captures non-linear dependencies
- Handles high-dimensional data well
- Effective with a few samples

- More complex implementation
- Depends on choice of kernel and hyperpa-
rameters

Sequential Feature Selec-
tion (Wrapper)

- Simple and intuitive
- Evaluates feature impact in context
- Works with any classifier

- Very computationally expensive, especially
backward SFS

- May miss correlated features

- Greedy strategy

method, or how many features the method should select. The best accuracy possible can
only be achieved when these hyperparameters are set correctly. Using hyperparameter
tuning, this can be done.
Using hyperparameter tuning, the feature selection method won’t be used only once, but
several times over a certain range of values for a single hyperparameter. Every time, the
tuning checks the accuracy and records the highest accuracy of the entire tuning process.
The hyperparameter value with the highest accuracy gets used in the final feature selection

process.

Lasso has a special function called alpha_ that selects the best alpha for the dataset.
HSIC Lasso needs to be run several times to find the prime alpha.

6 PIPELINE 16

6 Pipeline

To be able to test and run the program, the classification methods and features of the other
subgroups had to be used. For this end, an overarching file was created, called 'pipeline’.
This pipeline would combine both the feature design module and the classification module,
designed by their respective subgroups, with the feature selection module.

6.1 Loading file and pre-processing

The first part of the pipeline is loading and pre-processing the data supplied by the
feature design group. Before loading this data, a choice can be made between the male
and female repository. After this choice is made, the selected data will be loaded. Using
code from the feature design group, features will be computed and stored in a dataframe
per individual. After this, the phenotypic data, which determines if a person has ASD,
are loaded and merged into the dataframe.

The data will then be split into X, which contains the features, and y, which contains
DX Group, that determines if a person has ASD. After that, the features are preprocessed.
Every feature is made to be numeric. Columns with more than 50% NaN values and
columns without any variation are discarded. Last, every NalN value is filled with the
median value of the column.

6.2 Train and test data

After this, the pipeline can use two methods to train the model using the classifiers made
by the classification group. Splitting the data into train and test data early is very impor-
tant for machine learning, as doing it later might lead to leakage from the test data into
the training data. This leads to a skewed accuracy. These options are splitting the data
into test and train data with an 80-20 split and using cross-validation. For most feature
selection methods, 5-fold cross-validation is used, but for the methods Permutation Im-
portance and backwards Sequential Feature Selection, it is too computationally expensive
to run five times. This is why these methods are run using only a train-test split.

6.3 Feature selection

After this, the training data goes through the selected feature selection process. Some-
times this method is combined with a pre-processing method, like a filter or clustering.
The feature selection module presents a list of features that the method thinks will give
the best result. After the features are selected, the model is run again to see how the set
of selected features affects the accuracy and possibly other performance metrics. Depend-
ing on the feature selection method, the classification method will already be taken into
account. The feature selection part outputs the indices of the selected features, ready for
the last classification process.

6.4 Classification and evaluation

As a last step in the process, the selected features will be used in the classification process.
This process gets trained on features and labels of the training data. It uses this training
to predict new labels for the test data. These predicted labels are then compared to the

6 PIPELINE 17

true labels of the test data.

Performance is evaluated on a couple of factors. The first indicator is the accuracy.
This is the fraction of correct predictions, as can be seen in equation 12.

TP+ TN
TP+ FP+TN+ FN

Accuracy = (12)

This is a good indicator, but can sometimes be misleading. It doesn’t work well when
there is a class imbalance, for example. If the sample group is 95% allistic, then classifying
everyone as allistic will result in a high accuracy of 95%, even though the model has no
true positives. Such a model would not help in finding features that indicate ASD. That
is why other indicators are also considered.

The second factor is precision, or how many of the positives were classified correctly 13.

TP
Precision = ————— 13
TP+ FP (13)
After that, the next factor is sensitivity, or how many positives were caught 14. This is
important when false negatives are costly, like with classifying people with a potential

condition like ASD. This is why we consider sensitivity as an extra important indication.

TP

The F1 score combines the precision and sensitivity into a single score 15. This is good
for imbalanced datasets.

P19y Precision x Recall (15)

Precision + Recall

Last, AUC, or the Area Under ROC Curve, measures how well the classifier ranks
positive vs. negative examples.

After all methods have been evaluated the methods are compared and the best com-
bination of inference method, classifier, and feature selection method is shown alongside
the features selected by that method.

6.5 Parallel running

Because the pipeline needs to run the same code five times, each for every classifier, an
overarching pipeline has been built using joblib that can run this code for each classifier
in parallel on different CPU cores. This significantly speeds up the execution time for
tasks that can be done independently, such as training the different classifiers using all
the feature selection methods. Using this parallelization, the runtime of the program is
reduced to the runtime of the slowest classifier.

The developed pipeline code can be found in Appendix C. This does not include the code
developed by other subgroups.

7 RESULTS 18

7 Results

The goal of this part of the project was to try to find which features were important for
classifying someone with ASD and whether or not graph features improved in classifica-
tion. To do this, all developed feature selection methods were tested with every developed
classification method for both the graph features and the full Pearson correlation features.

7.1 Classification methods

Several classification methods have been developed by the classification subgroup. Al-
though their contents are not the main subject of this thesis, it was decided that a sum-
mary of their methodology was beneficial. The classification methods used are:

e Support Vector Machine

o Logarithmic Regression

o Random Forrest

e Linear Discriminant Analysis
o K-neighbours classifier

A support vector machine (SVM) is a classification method that uses a hyperplane to
separate the data into classes. It tries to find the optimal hyperplane that maximizes the
margin between the classes.

Logistic regression (LogR) is a linear model that predicts the probability of a class using
a logistic function.

A Random Forest (RandForrest) is a machine learning algorithm that combines mul-
tiple decision trees to improve prediction accuracy. It’s like a "forest" of trees, where each
tree makes its prediction, and the final prediction is an average of all the trees’ predictions.

A linear discriminant analysis (LDA) is a classifier with a linear decision boundary, gen-
erated by fitting class conditional densities to the data and using Bayes’ rule [19].

A K-neighbors classifier (KNN) is a classifier implementing the k-nearest neighbors vote
[19].

7.2 Used data
7.2.1 Full Correlation

The non-graph data used as a baseline is called the full-correlation data. Full correlation
is calculated by computing the Pearson correlation coefficient between all pairs of features
in a dataset. In the context of rs-fMRI, this means computing the Pearson correlation
coefficient between every ROI in the brain and using this as a feature. Full correlation
has proven to be a good method for classifying ASD using rs-fMRI data [27]. In the full
correlation dataset used, 115 ROI’s are considered.

7 RESULTS 19

7.2.2 Graph Data

The goal of the project is to determine if graph data can be used to help classify people
with ASD. This graph data is extracted from the rs-fMRI. The pipeline was run for 4
different inference methods. Each of these methods is a unique way to collect graph
features from the rs-fMRI data.

e partial correlation

o mutual info

« normalised Laplacian

o Regularized Logarithmic Spectrum

All of these methods were designed by the feature design subgroup, and their methodology
and the choices behind them should be explained there. Although there were more meth-
ods developed by the feature selection subgroup, only these methods were working within
the pipeline when testing began; thus, it was decided to use them instead of spending
more time trying to get the remaining methods to work within the pipeline. The following
is the list of graph features used in the feature selection process.

o Closeness Centrality ROI X

e CLustering Coefficient ROI X
o Degree Centrality ROI X

o Figenvector Centrality ROI X
o Average Clustering

o Diameter

« Spectral Entropy

e Mean Laplacian Eigenvalue

o Max Laplacian Eigenvalue

e Frobenius Norm

o Algebraic Connectivity

o Graph Energy

Next to these graph methods, two separate datasets were developed using Regularized
Spectrum and normalized Laplacian. The 20 ROIs were derived from the resting-state
network atlas published in [28]. Only the first 10 have gotten names; these can be found
in Appendix D.

7 RESULTS 20

7.3 Full correlation

In the following sections, an overview of all the results will be provided, both for the full
correlation features, based on Pearson’s correlation, as well as the graph features. First,
a summary of full correlation features results is shown in the following tables; the com-
plete overview can be seen in A. In these results, because of the computational costs of
the methods, the permutation importance and the Sequential Features Selection methods
were evaluated using a train-test split of 0.80 — 0.20 respectively. The rest of the meth-
ods were evaluated using a stratified 5-K fold cross-validation. Permutation importance
is preprocessed with clustered features, using only 56, while forward SFS is tested with
mRMR filtered features, running on 70 remaining features. This is because clustering
reduces correlated groups of features, which is a struggle for permutation importance.
Forward SFS can struggle if it’s adding redundant features frequently, which can hurt
performance. This is why mRMR is chosen, which gets rid of redundant features.

While backwards SF'S was tested on full correlation data, the method proved to be too
computationally expensive to be run without the method being fully redundant due to
extensive pre-filtering of harsh clustering or mRMR. This is why backward SFS is not
included in the results.

In results show the feature selection method with the best accuracy for every classi-
fier. It also shows the percentage of reduced misclassifications using the feature selection
method compared to the accuracy of the whole set. This is calculated using Equation 16.
Next to that, sensitivity is shown, which is shown to be extra important in classifying
people with autism. The equation to calculate the improved sensitivity is seen in Equa-
tion 17. The extensive tables covering performances of every feature selection method on
every classifier can be found in Appendix A.

(1 — Acc without) — (1 — Acc)

% Reduced Misclassification = (1 — Acc without)

x 100% (16)

Sens — S
% Improved Sensitivity = N5 7 oS TAW . 100% (17)
Sens raw

7.3.1 Performance on multisite data

First, the feature selection methods are considered on the full correlation dataset con-
taining every site available. First, in Table 3, the performance of the combined data is
evaluated. After this, the results are split into only male or female data in Tables 4 and
5.

In Table 3, it is clear that Lasso is a dominant feature selection method with the full cor-
relation dataset, having the best accuracy of all feature selection methods with four out
of five classifiers. Still, the highest accuracy measured is from forward SF'S using Random
Forest as a classifier with an accuracy of 0.7426. This is also the highest reduction of
misclassifications, with 28.46%. Another high performer is LDA, with a 23.45% reduction
of misclassifications and a 54.06% improvement of sensitivity.

Low relative performers are SVM and LogR. These methods have a high initial perfor-
mance, but have the worst relative improvement using Lasso feature selection. The lowest

reduction in misclassifications is achieved by LogR with only a reduction of 2.45%.

7 RESULTS 21

Table 3: Best performance per classifier on multisite data

Classifiers Best | Acc Acc raw Sens Sens raw Reduced Improved
Misclas. (%) | sens (%)
SVM Lasso | 0.6786 0.6549 0.6027 0.5413 6.87 10.19
LogR Lasso | 0.6583 0.6368 0.6272 0.5930 2.45 5.77
RandomForest | fSFS | 0.7426 0.6345 0.6535 0.4680 28.46 39.64
LDA Lasso | 0.6583 0.5701 0.6224 0.4040 23.45 54.06
KNN Lasso | 0.6210 0.5475 0.5292 0.4193 16.15 26.21

In Table 4, the female split is evaluated. In the female split, permutation importance
is the most prominent feature selection method. The best relative performers in mis-
classifications are LogR, LDA, and KNN, all using permutation importance, with 8.87%,
12.28%, and 16.22% respectively. With improved sensitivity, the classifiers perform fur-
ther apart, with the top performers being SVM, which uses forward SFS for a 1400%
improvement, and Random Forest, which doubles its sensitivity. The sensitivity of KNN
goes down by 40.12%. Still, all these sensitivities are relatively low, around 0.3. Table 5,
the male split is evaluated. The best feature selection methods are very diverse, with only
Permutation importance being the best twice. The best improvement in the classifier is
LDA using forward SF'S with 15.63% reduced misclassifications and 86.45% improvement
in sensitivity. The lowest performer is LogR using Lasso, with a worse sensitivity and a
1.51% reduced misclassification.

Table 4: Best performance per classifier on multisite female data

Classifiers Best Acc Acc raw Sens Sens raw Reduced Improved
Misclas. (%) | sens (%)
SVM fSFS 0.6428 0.6233 0.3 0.02 5.18 1400
LogR Permutation | 0.6378 0.6026 0.3753 0.36 8.87 4.25
RandomForest mRMR 0.6381 0.6309 0.2095 0.1 2.01 109.5
LDA Permutation | 0.6429 0.5929 0.5 0.28 12.28 78.57
KNN Permutation | 0.6786 0.6164 0.2 0.3340 16.22 -40.12

Table 5: Best performance per classifier on multisite male data

Classifiers Best Acc Acc raw Sens Sens raw Reduced Improved
Misclas. (%) | sens (%)
SVM fSFS 0.68 0.6435 0.6527 0.5724 10.24 14.03
LogR Lasso 0.6287 0.6230 0.6174 0.6227 1.51 -0.85
RandomForest | Permutation | 0.68 0.6206 0.6667 0.5278 15.63 26.32
LDA fSFS 0.6333 0.5617 0.625 0.3354 16.34 86.45
KNN Permutation | 0.6067 0.5482 0.625 0.3965 12.95 57.64

7.3.2 Performance on single-site data

To eliminate the effect of the difference between site data on the performance of the fea-
ture selection methods, the methods have also been tested on a single site. NYU has been
chosen as the single site, because it has the most samples out of all sites. Like the mul-
tisite results, these results are also first evaluated using the combined data, after which
the results have also been split between male and female samples.

7 RESULTS 22

In Table 6, more variety can be seen in the best-performing feature selection method
per classifier, while Lasso is still the best-performing feature selection method. The best
performing classifiers according to reduced misclassifications are LDA using forward SFS
and KNN using Lasso, with 14.17% and 8.81% respectively. The worst relative performers
are SVM and logR, with only 1.54% and 3.43%.

The raw sensitivities of the classifiers are very low, with the lowest being of SVM with
only 0.2467. All classifiers improve their sensitivity significantly using a feature selection
method.

Table 6: Best performance per classifier using the entire NYU data.

Classifiers Best Acc Acc raw Sens Sens raw Reduced Improved
Misclas. (%) | Sens (%)
SVM Lasso | 0.6546 0.6492 0.4781 0.2467 1.54 93.84
LogR mRMR | 0.6440 0.6314 0.5733 0.4781 3.43 19.91
RandForest | Lasso | 0.6723 0.6482 0.4895 0.3552 6.84 37.78
LDA fSFS | 0.7142 0.6669 0.6 0.5467 14.17 9.75
KNN Lasso | 0.6373 0.6023 0.3819 0.3171 8.81 20.44

Table 7 shows female performance and has the best accuracies of all, but shows why

only looking at accuracy can give a skewed impression. Looking at SVM, it has a raw
accuracy of 0.7142, while having a sensitivity of 0.0, meaning it got this accuracy by clas-
sifying everyone as allistic. This reflects the limited number of female samples available.
SVM, LogR, and Random Forest have been able to reduce the misclassifications using
Lasso, while improving the sensitivity. LDA and KNN have also improved their sensitiv-
ity, but not reduced their misclassifications, with KNN even increasing by 14.33% using
HSIC Lasso.
Table 8 shows KNN with forward SFS as the best relative performer, reducing misclassifi-
cations by 11.62% and improving sensitivity by 106.19%. The lowest performer based on
misclassifications is Random Forest using Lasso with —2.00%, while SVM using mRMR
does not increase sensitivity at all.

Table 7: Best performance per classifier on females from the NYU data.

Classifiers Best Acc Acc raw Sens Sens raw Reduced Improved
Misclas. (%) | Sens (%)
SVM Lasso 0.8000 0.7142 0.4 0.0 29.93 -
LogR Lasso 0.8286 0.7429 0.4 0.2 33,26 100.0
RandomForest Lasso 0.8286 0.7714 0.5 0.2 25.07 150.0
LDA Lasso 0.7714 0.7714 0.5 0.3 0.00 66.67
KNN HSIC Lasso | 0.7714 0.8000 0.4 0.1 -14.33 300.0

Table 8: Best performance per classifier using the male NYU data.

Classifiers Best Acc Acc raw Sens Sens raw Reduced Improved
Misclas. (%) | Sens (%)
SVM mRMR 0.6251 0.6177 0.5308 0.5308 1.93 0.0
LogR mRMR 0.6188 0.5891 0.5782 0.5333 7.24 8.42
RandomForest Lasso 0.6471 0.6540 0.6538 0.5282 -2.00 23.68
LDA Permutation | 0.6465 0.6397 0.6256 0.6270 1.88 -0.22
KNN fSFS 0.6429 0.5960 0.7693 0.3731 11.62 106.19

8 GRAPH RESULTS 23

8 Graph results

Each set of features was run through each combination of classifiers and feature selection
methods. The complete list of performance metrics will be found in Appendix B. In this
section, only the summary tables will be covered.

8.1 Dataset 1

The program was run for both multi-site as well as single-site. For the same reasons
as noted above. In Table 9, the most selected features for multi-site and single-site are
shown. Their score in this case is the number of times they are selected by a feature
selection method. A full list of used graph features can be found in Appendix E. The top
3 in both cases are: Mean Laplacian Eigenvalue, Spectral Entropy, and Graph Energy.
Although these might have a significant effect, their results are most likely skewed. Some
of the inference methods, when examined more closely, had very little to no difference in
all but 6 features, leaving only these features to be considered:

o Average Clustering
o Diameter
e Spectral Entropy
e Mean Laplacian Eigenvalue
o Max Laplacian Eigenvalue
e Frobenius Norm
o Algebraic Connectivity
o Graph Energy
Considering this, it is the remaining features that are of more interest.
» Eigenvector Centrality ROI 2
» Eigenvector Centrality ROI 4
o Clustering Coefficient ROI 3

Eigenvector centrality and clustering coefficient are graph features. Eigenvector cen-
trality can be calculated with equation 18. It represents not just how many connections
a node has, but whether those connections are to important nodes.

T; = /\1 Z Aij$j (18)

Jjé€neighbors(i)

The clustering coefficient can be calculated with equation 19. This represents how inter-
connected a node’s neighbours are.

262'

TR

(19)

8 GRAPH RESULTS 24

Table 10 and Table 12 show the best-performing combinations. The performance
metric here is the F1 score. The main goal was, however, to decrease misclassifications,
which means that a higher accuracy is the most important metric. Tables 10 and 12 show
the best-performing combination in accuracy. Coincidentally, these are the same methods
at the top of our previous tables.

« norm Laplacian, KNN, backwards SFS (for multisite)
« mutual info, LDA, forwards SFS (for single site)

Between these two, the single site has a better reduction in missclassification. It results
in % Reduced Misclassification = (1*0'4?%)0:1{%;)0'6765) x 100% = 36.14%. Compared to

% Reduced Misclassi fication = (170'5?i’?0f5(§g)0‘5854) x 100% = 16.09%. Although both

of these methods seem promising, it should be noted that the SFS methods were not
cross-validated, meaning their results may not be replicated and are thus unreliable.

Table 9: Top selected features for Multisite and NYU datasets

Selected Feature (Multisite) | Score
Mean Laplacian Eigenvalue 97
Spectral Entropy 95
Graph Energy 79
Eigenvector Centrality ROI 2 51
Eigenvector Centrality ROI 4 47
Selected Feature (NYU) Score
Mean Laplacian Eigenvalue 64
Spectral Entropy 56
Graph Energy 50
Clustering Coefficient_ ROI_3 47
Frobenius Norm (Laplacian Spectrum) 45

Table 10: Top multisite classifier performance

Classifier | Graph Method | Feature Selector | F1 score
KNN norm_ laplacian | backward SFS 0.527778
KNN partial _corr forwards SFS 0.513158
KNN partial corr backward SFS 0.513158
KNN partial corr mRMR 0.489523
KNN partial corr Raw data 0.489523

8 GRAPH RESULTS 25

Table 11: Multisite detailed classification metrics for the highest accuracy

Value
KNN

Metric
Classifier
Graph Method norm__laplacian
Feature Selector backward SF'S
Number of Features | 20.0

Accuracy 0.585366
Precision 0.550725
sensitivity 0.506667
F1 Score 0.527778
AUROC 0.553708
Sensitivity 0.651685

Table 12: Top NYU classifier performance

Classifier | Graph Method | Feature Selector | F1 score
LDA mutual info forwards SFS 0.592593
LDA norm_ laplacian | forwards SFS 0.580645
LDA mutual info backward SF'S 0.551724
LogR norm_ laplacian | forwards SF'S 0.551724
LDA norm__ laplacian HSIC Lasso 0.510297

Table 13: NYU detailed classification metrics for the highest accuracy.

Metric

Value

Classifier

Graph Method
Feature Selector
Selected Feature
Number of Features
Accuracy

Precision
sensitivity

F1 Score

AUROC

Sensitivity

LDA
mutual info

forwards SFS

Closeness Centrality ROI_1

20.0

0.676471
0.666667
0.533333
0.592593
0.698246
0.789474

8.2 Dataset 2 (tuned parameters)

Next to these methods, there were also two datasets designed separately. These datasets
used regularized spectrum and normalised Laplacian inference methods, but had param-
eters that were more specifically tuned, which should lead to better results. The best
overall performing feature selection method for each classifier can be found in Table 14.
Next to this, the feature selection methods with the highest accuracy can be found in
Table 15. As you can see, the best performing feature selection method and classifier
combinations, when setting accuracy as the most important performance metric, are:

8 GRAPH RESULTS 26

KNN & forwards SFS
LogR & forwards SF'S

Random forest & forwards SF'S

e SVM & Permutation

Only two of these get to 60% accuracy. Which is lower than every result obtained from
the full correlation features. The top 20 most influential features can be found in Table
16. These features correspond to the edge weights between ROIs. There is no feature

with a significantly higher prevalence than the others.

Table 14: Best overall feature selection method per classifier

Classifier Feature Selection Accuracy Precision sensitivity F1_score Auroc Sensitivity

KNN forwards SFS 0.566 4+ 0.055 0.517 £0.079 0.444 +0.098 0.474 4+ 0.076 0.551 £0.035 0.660 = 0.095
LDA forwards SFS 0.580 £ 0.015 0.532 £0.023 0.470+0.044 0.498 +0.033 0.583 £0.014 0.666 =+ 0.043
LogR forwards SF'S 0.590 £ 0.025 0.546 £0.033 0.473+£0.046 0.506 £ 0.036 0.587 £0.018 0.682 % 0.052
RandomForest forwards SF'S 0.604 +0.047 0.576 £0.075 0.464 +0.046 0.5114+0.044 0.598 +0.051 0.715 4 0.083
SVM Permutation 0.604 +0.010 0.582 £0.015 0.456 + 0.058 0.500 4 0.040 0.618 £0.014 0.456 + 0.058

Table 15: Best accuracy feature selection method per classifier

Classifier Feature Selection Accuracy Precision sensitivity F1 score Auroc Sensitivity

KNN forwards SFS 0.566 + 0.055 0.517 +£0.079 0.444 +0.098 0.4744+0.076 0.551 +0.035 0.660 £ 0.095
LDA Lasso_selection 0.584 £0.048 0.559 £0.062 0.409 £ 0.045 0.465 £+ 0.048 0.586 £ 0.055 0.409 + 0.045
LogR forwards SFS 0.590 £+ 0.025 0.546 £0.033 0.473 +0.046 0.506 4+ 0.036 0.587 £0.018 0.682 + 0.052
RandomForest forwards SFS 0.604 £0.047 0.576 £0.075 0.464 £0.046 0.511£0.044 0.598+£0.051 0.715+£0.083
SVM Permutation 0.604 £ 0.010 0.582 £0.015 0.456 +0.058 0.500 & 0.040 0.618 £0.014 0.456 =+ 0.058

Table 16: Top selected features across all methods and both datasets

Feature Count
A 0 2 41
A1 2 40
A 11 18 37
A 0 12 36
A 9 13 35
A 8 10 34
A 12 18 33
A 2 17 32
A 3 10 32
A 0 17 31
A 4 13 31
A1 11 31
A 18 19 31
A 9 17 30
A 11 17 30
A 39 30
A 37 30
A 409 30
A5 6 29
A15 28

9 DISCUSSION 27

9 Discussion

9.1 Full correlation
9.1.1 Sex-specific observations

The female sample size is far smaller than the male sample size, only having 138 samples
in the full dataset and 35 in the single-site dataset. This high dimensionality creates
an unstable accuracy and a low sensitivity. Feature selection remedies this problem and
improves performance a lot. This phenomenon is less prevalent in the bigger male dataset.

9.1.2 Multi- and single site

The raw performances are similar in terms of accuracy, while the sensitivity is far lower
in the single-site data. As can also be seen in the female data, the sensitivity can be
improved a lot using feature selection if the sample size is low and the data is high-
dimensional. This improvement in sensitivity is not translated into the misclassifications
because false positives increased. Examining reduced misclassifications, the multisite data
outperforms the single-site data. The number of samples ensures the selection of better
features, outweighing the difference in sites.

9.1.3 Feature selection behavior across subsets

Overall, Lasso, permutation importance, and fSFS are the most prevalent feature selec-
tion methods. HSIC Lasso is far less prevalent, only being the best method once. This
can be explained by HSIC Lasso being a filter method, mostly focused on nonlinear data.
The fact that permutation importance and fSFS are the best-performing feature selection
methods can be explained by the fact that they are wrapper methods, built for high per-
formance, but can also be explained by them not being cross-validated and having a very
fortunate data split.

The classifiers benefiting most from feature selection are LDA, KNN, and Random Forest.
SVM and LogR benefit less from feature selection when looking at misclassifications. The
sensitivity of SVM can improve a lot when feature selection is used.

Overall, apart from a few exceptions, in all datasets, there is at least one feature selec-
tion method that can help classifiers in their performance, especially when looking at
sensitivity.

9.2 Graph features

Looking at the graph features, no significantly high accuracies were achieved. Notably, the
single-site results were better than the multisite results for the first set of graph features,
which was not as clear with the new dataset. This difference in performance may result
from variations in measurements and how they are recorded at different universities.

It is notable that in the top multisite performers, a raw data entry is included. This
means that the program had a higher F1 score when no feature selection was applied.
When looking through further data, it is clear that this is due to a difference in inference
method. As this particular inference method creates a relatively high F1 score overall, it
is only beaten out once in the top 5.

Which feature selection method works best differs wildly between the datasets used. When
looking at specific datasets, Random forest using forwards SF'S with the 2nd rspect NYU

9 DISCUSSION 28

dataset does achieve 68.57% accuracy with a sensitivity of 85%. This would outperform
the previous graph datasets and compete with the full correlation datasets. However,
since this method could not be cross-validated due to computational limits, these results
are not trustworthy.

9.3 Future work

For future work, it would be ideal to have a consistent supply of features. The immense
difference in results between datasets and the fluctuation in features made it difficult to
achieve concrete results, and our dependence on their changing code required us to debug
essential elements each time the feature design team introduced new features.

Our reliance on their code meant that we had to wait for them before we could test
and properly evaluate our methods. This caused delays in development and restricted
our ability to create and test more advanced methods. Along with limiting the time to
properly process and evaluate the results.

Finally, it would be beneficial to have additional documentation for each component. This
would facilitate a better understanding of the code developed by the various subgroups, as
well as the meanings of their outputs. Ultimately, making it easier to utilize each other’s
work and build upon it.

10 CONCLUSION 29

10 Conclusion

The constructed pipeline works with the ABIDE dataset along with different classification
methods and graph inference methods. It shows which features it selects and shows the
achieved accuracy. Each method has selected all features that have a positive effect on
the performance of the classifier, according to the selection method. The program does
not select the best feature selection method for each classifier beforehand, because the
best feature selection method changes if the dataset changes. A compromise was made,
where the pipeline now shows the best combination of inference method, classifier, and
feature selection method and shows the chosen features. In some, but not all cases, the
feature selection module can reduce misclassification by 25% or more. In all cases, the
program runs in less than an hour with at least 500 features and 1000 subjects, barring
the cross-validation of SF'S. Several sets of combinations have been used to try and see if
graph features have a significant impact on classifying people with ASD. Unfortunately,
most of the classifiers using graph features could not even achieve an accuracy of more
than 60% without decreasing other performance metrics. In general, the sensitivity is very
low, even the highest values do not reach 60%, meaning that there are always more than
40% of people with ASD who are not classified. This seems to indicate that the gathered
graph features do not have a significant impact on classifying whether someone has ASD.
Especially when compared to the full correlation features, they underperform. These
features consistently get accuracies over 60% as well as more consistent sensitivities.

REFERENCES 30

References

[10]

[11]

[12]

[13]

[14]

[15]

Centraal Bureau voor de Statistiek (CBS). & Procent van de Bevolking Geeft aan
een Autismespectrumstoornis te Hebben. Geraadpleegd op 27 mei 2025. 2025.

Stichting Autisme Nederland. Diagnose Autisme. Geraadpleegd op 27 mei 2025.
2025.

C. P. Santana et al. “rs-fMRI and machine learning for ASD diagnosis: a systematic
review and meta-analysis”. In: Scientific Reports 12 (2022), p. 6030. bor: 10.1038/
s41598-022-09821-6.

Craddock Cameron et al. “The Neuro Bureau Preprocessing Initiative: open sharing
of preprocessed neuroimaging data and derivatives”. In: Frontiers in Neuroinformat-
ics 7 (Jan. 2013). DOI: 10.3389/conf . fninf.2013.09.00041.

Matthew K. Belmonte et al. “Autism and Abnormal Development of Brain Con-
nectivity: Figure 1.” In: Journal of Neuroscience 24.42 (Oct. 2004), pp. 9228-9231.
DOI: 10.1523/jneurosci.3340-04.2004.

Jeffrey S. Anderson et al. “Functional connectivity magnetic resonance imaging
classification of autism”. In: Brain 134.12 (Oct. 2011), pp. 3742-3754. poIL: 10.
1093/brain/awr263.

M. A. Just. “Cortical activation and synchronization during sentence comprehension
in high-functioning autism: evidence of underconnectivity”. In: Brain 127.8 (June
2004), pp. 1811-1821. por: 10.1093/brain/awh199.

Antonio Napolitano et al. “Sex Differences in Autism Spectrum Disorder: Diagnos-
tic, Neurobiological, and Behavioral Features”. In: Frontiers in Psychiatry 13 (May
2022). DOI: 10.3389/fpsyt.2022.889636.

Michelle Dean, Robin Harwood, and Connie Kasari. “The art of camouflage: Gender
differences in the social behaviors of girls and boys with autism spectrum disorder”.
In: Autism 21.6 (Nov. 2016), pp. 678-689. DOI: 10.1177/1362361316671845.

Meng-Chuan Lai and Peter Szatmari. “Sex and gender impacts on the behavioural
presentation and recognition of autism”. In: Current Opinion in Psychiatry 33.2
(Dec. 2019), pp. 117-123. DOL: 10.1097/yco.0000000000000575.

Derek S Andrews et al. “Sex differences in trajectories of cortical development in
autistic children from 2-13 years of age”. In: Molecular Psychiatry 29.11 (May 2024),
pp. 3440-3451. DOI: 10.1038/s41380-024-02592-8.

Hossein Haghighat. “A sex-dependent functional-effective connectivity model for
diagnostic classification of Autism Spectrum Disorder using resting-state fMRI”.
In: Biomedical Signal Processing and Control 85 (Mar. 2023), p. 104837. por: 10.
1016/ j.bspc.2023.104837.

Cleveland Clinic Medical Professional. “Functional MRI (FMRI)”. In: Cleveland
Clinic (Mar. 2025). Accessed: 2025-06-03.

Adriana Di Martino et al. “The Autism Brain Imaging Data Exchange: Towards a
large-scale evaluation of the intrinsic brain architecture in autism”. In: Molecular
Psychiatry 19.6 (2014), pp. 659-667. DOI: 10.1038/mp.2013.78.

Adolfo Crespo Méarquez. The Curse of Dimensionality. Springer, Jan. 2022, pp. 67—
86. DOI: 10.1007/978-3-030-97660-6\{ 1}7.

https://doi.org/10.1038/s41598-022-09821-6
https://doi.org/10.1038/s41598-022-09821-6
https://doi.org/10.3389/conf.fninf.2013.09.00041
https://doi.org/10.1523/jneurosci.3340-04.2004
https://doi.org/10.1093/brain/awr263
https://doi.org/10.1093/brain/awr263
https://doi.org/10.1093/brain/awh199
https://doi.org/10.3389/fpsyt.2022.889636
https://doi.org/10.1177/1362361316671845
https://doi.org/10.1097/yco.0000000000000575
https://doi.org/10.1038/s41380-024-02592-8
https://doi.org/10.1016/j.bspc.2023.104837
https://doi.org/10.1016/j.bspc.2023.104837
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1007/978-3-030-97660-6\{_}7

REFERENCES 31

[16]

[17]

[18]

[19]
[20]
[21]

[22]

28]

Girish Chandrashekar and Ferat Sahin. “A survey on feature selection methods”.
In: Computers FElectrical Engineering 40.1 (Dec. 2013), pp. 16-28. po1: 10.1016/
j.compeleceng.2013.11.024.

Jiliang Tang, Salem Alelyani, and Huan Liu. “Feature selection for classification: A
review”. In: Data classification: Algorithms and applications (2014), p. 37.

Ron Kohavi and George H. John. “Wrappers for feature subset selection”. In: Arti-
ficial Intelligence 97.1-2 (Dec. 1997), pp. 273-324. DOT: 10.1016/s0004-3702(97)
00043-x.

Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825-2830.

Makoto Yamada et al. “High-dimensional feature selection by feature-wise kernelized
lasso”. In: Neural computation 26.1 (2014), pp. 185-207.

Héctor Climente-Gonzalez et al. “Block HSIC Lasso: model-free biomarker detection
for ultra-high dimensional data”. In: Bioinformatics 35.14 (2019), pp. i427-i435.

Ramakrishnan Muthukrishnan and R Rohini. “LASSO: A feature selection tech-
nique in predictive modeling for machine learning”. In: 2016 IEEFE international
conference on advances in computer applications (ICACA). Teee. 2016, pp. 18-20.

Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”. In: Journal
of the Royal Statistical Society Series B (Statistical Methodology) 58.1 (Jan. 1996),
pp- 267-288. pOI: 10.1111/7j.2517-6161.1996.tb02080. x.

Jundong Li et al. “Feature selection: A data perspective”. In: ACM Computing
Surveys (CSUR) 50.6 (2018), p. 94.

Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-redundancy”.
In: IEEE Transactions on pattern analysis and machine intelligence 27.8 (2005),
pp. 1226-1238.

Mary Walowe Mwadulo. “A review on feature selection methods for classification
tasks”. In: Unknown (2016). Journal name not provided.

Jac Fredo Agastinose Ronicko et al. “Diagnostic classification of autism using resting-
state fMRI data improves with full correlation functional brain connectivity com-
pared to partial correlation”. In: Journal of Neuroscience Methods 345 (July 2020),
p. 108884. pOI: 10.1016/j. jneumeth.2020.108884.

Stephen M Smith et al. “Correspondence of the brain’s functional architecture dur-
ing activation and rest”. In: Proceedings of the National Academy of Sciences 106.31
(2009), pp. 13040-13045.

https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.jneumeth.2020.108884

A APPENDIX A 32
A Appendix A — Results
A.1 Full correlation multisite
A.1.1 Combined
Table 17: Performance of feature selection methods with full correlation
FS Method ‘ Features ‘ Acc ‘ Precision ‘ Sensitivity ‘ F1 ‘ AUC
Perfomance SVM
Raw data 6671 0.655 + 0.040 0.652 + 0.159 0.541 + 0.048 0.589 + 0.069 0.715 + 0.038
LASSO 945 0.679 4+ 0.038 | 0.669 & 0.047 | 0.602 £ 0.050 | 0.633 & 0.082 | 0.719 & 0.052
HSIC LASSO 98 0.640 4 0.046 | 0.631 4+ 0.088 | 0.529 #+ 0.057 | 0.579 + 0.038 | 0.686 £ 0.057
mRMR 200 0.6018 4 0.042 | 0.5870 £ 0.164 | 0.4681 £ 0.032 | 0.5192 &+ 0.101 | 0.6474 £ 0.153
Permutation 20 0.582 + 0.000 0.571 + 0.000 0.390 + 0.000 0.464 + 0.000 0.640 + 0.000
fSFS Not feasible
Perfomance LogR
Raw data 6671 0.637 & 0.033 | 0.612 4 0.047 | 0.593 & 0.058 | 0.600 & 0.038 | 0.689 = 0.030
LASSO 36 0.658 + 0.026 0.631 + 0.032 0.627 + 0.058 0.628 + 0.044 0.714 + 0.043
HSIC LASSO 98 0.643 + 0.054 0.616 + 0.048 0.600 + 0.033 0.608 + 0.058 0.679 + 0.035
mRMR 100 0.587 £ 0.093 | 0.560 4+ 0.113 | 0.505 + 0.093 | 0.530 + 0.075 | 0.630 + 0.092
Permutation 20 0.638 4+ 0.000 | 0.629 4 0.000 | 0.537 & 0.000 | 0.579 + 0.000 | 0.673 =+ 0.000
fSFS Not feasible
Perfomance Random Forest
Raw data 6671 0.635 + 0.084 0.646 + 0.050 0.468 + 0.050 0.540 + 0.050 0.688 + 0.061
LASSO 36 0.682 + 0.022 | 0.670 & 0.055 | 0.615 £ 0.057 | 0.641 & 0.034 | 0.732 & 0.030
HSIC LASSO 98 0.610 4= 0.053 | 0.606 & 0.121 | 0.559 £ 0.102 | 0.508 & 0.092 | 0.648 4 0.062
mRMR 100 0.593 & 0.035 | 0.581 £ 0.182 | 0.591 £ 0.098 | 0.521 4 0.100 | 0.618 4 0.048
Permutation 20 0.610 £ 0.000 0.607 + 0.000 0.549 + 0.000 0.517 + 0.000 0.639 + 0.000
fSFS Not feasible
Perfomance LDA
Raw data 6671 0.570 = 0.024 | 0.608 & 0.088 | 0.404 £ 0.298 | 0.385 & 0.249 | 0.580 & 0.065
LASSO 36 0.661 4+ 0.029 | 0.635 £ 0.035 | 0.622 £ 0.048 | 0.628 4 0.041 | 0.713 & 0.027
HSIC LASSO 98 0.601 £ 0.052 0.571 + 0.094 0.549 + 0.072 0.559 + 0.065 0.648 + 0.092
mRMR 200 0.613 £+ 0.068 0.587 + 0.037 0.544 + 0.102 0.564 + 0.093 0.637 + 0.050
Permutation 20 0.644 4+ 0.000 | 0.638 & 0.000 | 0.537 £ 0.000 | 0.582 4 0.000 | 0.672 4 0.000
fSF'S Not feasible
Performance KNN
Raw data 6671 0.548 + 0.024 0.514 + 0.037 0.419 + 0.050 0.460 £ 0.034 0.555 + 0.030
LASSO 36 0.618 4+ 0.038 | 0.599 & 0.047 | 0.532 £ 0.054 | 0.562 & 0.050 | 0.645 4 0.032
HSIC LASSO 98 0.583 &= 0.056 | 0.565 & 0.068 | 0.579 £ 0.053 | 0.519 4 0.124 | 0.579 4 0.054
mRMR 100 0.546 4+ 0.032 | 0.512 £ 0.086 | 0.539 £ 0.128 | 0.517 & 0.119 | 0.561 4 0.049
Permutation 20 0.531 £ 0.000 0.507 + 0.000 0.537 + 0.000 0.522 + 0.000 0.583 + 0.000
fSFS Not feasible

A APPENDIX A

33

A.1.2 Female data

Table 18: Performance of feature selection methods with full correlation on female data.

‘ FS Method ‘ Features ‘ Acc ‘ Precision ‘ Sensitivity ‘ F1 ‘ AUC ‘
Performance SVM
Raw data 6671 0.623 £+ 0.014 | 0.067 £+ 0.133 | 0.020 4+ 0.040 | 0.031 + 0.062 | 0.563 + 0.161
LASSO 10 0.616 4+ 0.037 | 0.402 £ 0.220 | 0.240 £ 0.150 | 0.283 + 0.151 | 0.501 + 0.118
HSIC LASSO 26 0.596 + 0.087 | 0.390 £ 0.410 | 0.100 4 0.110 | 0.149 + 0.157 | 0.520 £ 0.170
mRMR 100 0.623 £+ 0.014 | 0.100 £ 0.200 | 0.020 4 0.040 | 0.033 + 0.067 | 0.493 + 0.159
Permutation 20 0.645 £ 0.000 | 0.200 =+ 0.000 | 0.020 4 0.000 | 0.036 + 0.000 | 0.500 + 0.000
fSFS 20 0.643 £ 0.000 | 0.500 =+ 0.000 | 0.300 4 0.000 | 0.375 + 0.000 | 0.522 + 0.000
Performance LogR
Raw data 6671 0.603 £+ 0.089 | 0.424 + 0.183 | 0.360 4 0.242 | 0.372 + 0.185 | 0.553 + 0.123
LASSO 20 0.609 + 0.031 | 0.417 £ 0.105 | 0.380 4 0.204 | 0.386 + 0.162 | 0.537 £ 0.100
HSIC LASSO 26 0.544 £ 0.047 | 0.346 £ 0.067 | 0.280 & 0.075 | 0.305 + 0.064 | 0.512 + 0.086
mRMR 100 0.623 4+ 0.099 | 0.507 £ 0.130 | 0.540 £+ 0.120 | 0.511 + 0.098 | 0.585 + 0.114
Permutation 20 0.638 + 0.000 | 0.502 4+ 0.000 | 0.320 4 0.000 | 0.375 £+ 0.000 | 0.588 + 0.000
fSFS 20 0.571 + 0.000 | 0.417 4+ 0.000 | 0.500 4 0.000 | 0.455 + 0.000 | 0.544 + 0.000
Performance Random Forest
Raw data 6671 0.631 + 0.044 | 0.367 4+ 0.371 | 0.100 4+ 0.089 | 0.150 £+ 0.133 | 0.647 £+ 0.108
LASSO 10 0.610 + 0.052 | 0.296 4+ 0.257 | 0.240 4+ 0.224 | 0.257 4+ 0.226 | 0.555 £+ 0.147
HSIC LASSO 32 0.565 4+ 0.037 | 0.232 £ 0.192 | 0.140 £ 0.120 | 0.174 + 0.146 | 0.545 + 0.042
mRMR 100 0.638 4+ 0.042 | 0.450 £+ 0.245 | 0.140 £+ 0.102 | 0.210 + 0.142 | 0.560 + 0.060
Permutation 20 0.607 £+ 0.000 | 0.400 £ 0.000 | 0.200 4 0.000 | 0.267 + 0.000 | 0.694 + 0.000
fSFS 20 0.571 £ 0.000 | 0.333 £ 0.000 | 0.200 4 0.000 | 0.250 + 0.000 | 0.528 + 0.000
Performance LDA
Raw data 6671 0.593 £+ 0.120 | 0.348 £ 0.095 | 0.720 4 0.306 | 0.452 + 0.129 | 0.475 £ 0.102
LASSO 10 0.609 £ 0.031 | 0.425 £ 0.100 | 0.420 4 0.194 | 0.413 + 0.156 | 0.535 £ 0.090
HSIC LASSO 16 0.544 + 0.088 | 0.306 + 0.176 | 0.220 4 0.160 | 0.248 + 0.167 | 0.561 + 0.132
mRMR 100 0.5654 + 0.092 | 0.290 £ 0.093 | 0.400 + 0.167 | 0.333 4+ 0.118 | 0.405 £ 0.086
Permutation 20 0.643 + 0.000 | 0.500 4 0.000 | 0.500 4 0.000 | 0.500 £+ 0.000 | 0.617 £ 0.000
fSFS 20 0.500 + 0.000 | 0.357 4+ 0.000 | 0.500 4 0.000 | 0.417 £+ 0.000 | 0.517 £ 0.000
Performance KNN
Raw data 6671 0.616 + 0.052 | 0.476 4+ 0.098 | 0.340 4+ 0.049 | 0.392 £+ 0.054 | 0.574 £+ 0.070
LASSO 10 0.580 + 0.063 | 0.405 £ 0.103 | 0.280 4 0.075 | 0.325 + 0.077 | 0.548 £ 0.082
HSIC LASSO 10 0.587 £+ 0.039 | 0.367 £ 0.090 | 0.240 4+ 0.136 | 0.282 + 0.118 | 0.528 + 0.114
mRMR 100 0.566 + 0.088 | 0.328 £ 0.208 | 0.340 4 0.314 | 0.318 + 0.234 | 0.550 + 0.114
Permutation 20 0.679 £ 0.000 | 0.667 £ 0.000 | 0.200 4 0.000 | 0.308 + 0.000 | 0.686 + 0.000
fSFS 20 0.536 £ 0.000 | 0.286 =+ 0.000 | 0.200 4 0.000 | 0.235 + 0.000 | 0.400 + 0.000

A APPENDIX A

34

A.1.3 Male data

Table 19: Performance of feature selection methods with full correlation on male data.

‘ FS Method ‘ Features ‘ Acc ‘ Precision ‘ Sensitivity ‘ F1 ‘ AUC
Performance SVM
Raw data 6671 0.643 + 0.029 | 0.649 + 0.046 | 0.572 4+ 0.062 | 0.605 + 0.037 | 0.695 + 0.018
LASSO 82 0.637 4+ 0.020 | 0.629 4+ 0.036 | 0.606 4+ 0.035 | 0.616 + 0.005 | 0.684 + 0.015
HSIC LASSO 20 0.571 £+ 0.027 | 0.561 £ 0.027 | 0.469 4 0.083 | 0.509 + 0.057 | 0.607 + 0.024
mRMR 100 0.602 £+ 0.025 | 0.596 + 0.022 | 0.522 4+ 0.062 | 0.556 + 0.045 | 0.653 + 0.024
Permutation 20 0.633 £ 0.000 | 0.627 £ 0.000 | 0.583 + 0.000 | 0.604 4+ 0.000 | 0.689 4+ 0.000
fSFS 20 0.680 + 0.000 | 0.671 4 0.000 | 0.653 4 0.000 | 0.662 4 0.000 | 0.688 + 0.000
Performance LogR
Raw data 6671 0.630 £+ 0.031 | 0.613 4 0.030 | 0.623 4+ 0.048 | 0.617 4+ 0.036 | 0.679 + 0.037
LASSO 82 0.629 + 0.007 | 0.613 4+ 0.015 | 0.617 4+ 0.030 | 0.614 + 0.011 | 0.670 + 0.029
HSIC LASSO 20 0.613 £+ 0.030 | 0.610 4 0.040 | 0.544 4+ 0.038 | 0.574 + 0.030 | 0.631 + 0.038
mRMR 100 0.596 + 0.046 | 0.581 4 0.052 | 0.567 4+ 0.054 | 0.574 + 0.053 | 0.614 + 0.041
Permutation 20 0.613 £ 0.000 | 0.595 + 0.000 | 0.611 + 0.000 | 0.603 4+ 0.000 | 0.698 4+ 0.000
fSFS 20 0.620 + 0.000 | 0.600 £ 0.000 | 0.625 4 0.000 | 0.612 4 0.000 | 0.664 + 0.000
Performance Random Forest
Raw data 6671 0.621 + 0.027 | 0.626 4+ 0.043 | 0.528 4+ 0.044 | 0.571 + 0.033 | 0.672 + 0.012
LASSO 82 0.668 4+ 0.022 | 0.667 4+ 0.035 | 0.620 4+ 0.012 | 0.642 + 0.014 | 0.716 £ 0.012
HSIC LASSO 20 0.598 + 0.035 | 0.591 4 0.039 | 0.528 4+ 0.065 | 0.556 + 0.050 | 0.622 + 0.037
mRMR 100 0.564 4+ 0.049 | 0.552 4+ 0.058 | 0.469 + 0.074 | 0.507 + 0.066 | 0.592 + 0.048
Permutation 20 0.680 £ 0.000 | 0.667 £ 0.000 | 0.667 + 0.000 | 0.667 + 0.000 | 0.699 4+ 0.000
fSFS 20 0.667 £+ 0.000 | 0.662 4 0.000 | 0.625 4 0.000 | 0.643 4+ 0.000 | 0.688 + 0.000
Performance LDA
Raw data 6671 0.562 + 0.033 | 0.594 4+ 0.071 | 0.335 4+ 0.195 | 0.390 4+ 0.156 | 0.616 + 0.034
LASSO 82 0.630 £+ 0.015 | 0.618 4+ 0.021 | 0.606 4+ 0.027 | 0.611 + 0.013 | 0.671 £ 0.022
HSIC LASSO 20 0.606 + 0.023 | 0.601 4+ 0.018 | 0.525 4+ 0.079 | 0.558 + 0.052 | 0.629 + 0.036
mRMR 100 0.606 + 0.023 | 0.601 4+ 0.018 | 0.525 4+ 0.079 | 0.558 + 0.052 | 0.629 + 0.036
Permutation 20 0.613 £ 0.000 | 0.595 4 0.000 | 0.611 4 0.000 | 0.603 4 0.000 | 0.699 + 0.000
fSFS 20 0.633 £+ 0.000 | 0.616 4 0.000 | 0.625 4 0.000 | 0.621 4 0.000 | 0.662 + 0.000
Performance KNN
Raw data 6671 0.548 + 0.021 | 0.540 4+ 0.032 | 0.396 + 0.028 | 0.457 + 0.029 | 0.569 + 0.021
LASSO 82 0.583 4+ 0.038 | 0.576 4+ 0.041 | 0.492 4+ 0.068 | 0.529 + 0.053 | 0.629 + 0.028
HSIC LASSO 20 0.563 + 0.029 | 0.556 4 0.033 | 0.436 + 0.053 | 0.488 + 0.044 | 0.563 + 0.038
mRMR 100 0.543 4+ 0.019 | 0.529 + 0.021 | 0.416 4 0.068 | 0.464 + 0.047 | 0.559 + 0.027
Permutation 20 0.607 £ 0.000 | 0.584 4 0.000 | 0.625 4 0.000 | 0.604 4 0.000 | 0.633 & 0.000
fSFS 20 0.580 + 0.000 | 0.562 4 0.000 | 0.569 4 0.000 | 0.566 4+ 0.000 | 0.617 4 0.000

A APPENDIX A 35

A.2
A.2.1 Combined data

Full correlation single site

Table 20: Performance of feature selection methods with full correlation on NYU data.

‘ FS Method ‘ Features ‘ Acc ‘ Precision ‘ Sensitivity ‘ F1 ‘ AUC
Perfomance SVM
Raw data 6671 0.649 + 0.040 | 0.820 4 0.165 | 0.247 4+ 0.072 | 0.370 4 0.088 | 0.703 4 0.077
LASSO 29 0.655 + 0.093 | 0.626 4+ 0.159 | 0.478 £ 0.115 | 0.541 + 0.128 | 0.714 4+ 0.124
HSIC LASSO 17 0.585 4+ 0.053 | 0.547 4+ 0.148 | 0.287 4+ 0.045 | 0.372 + 0.063 | 0.628 + 0.053
mRMR 100 0.638 &+ 0.074 | 0.751 4+ 0.216 | 0.290 4+ 0.161 | 0.382 4 0.182 | 0.567 + 0.140
Permutation 20 0.571 4 0.000 | 0.500 4 0.000 | 0.467 4 0.000 | 0.483 4 0.000 | 0.553 + 0.000
fSFS 20 0.600 £ 0.000 | 0.556 4 0.000 | 0.333 4 0.000 | 0.417 4 0.000 | 0.573 4 0.000
Performance LogR
Raw data 6671 0.631 & 0.067 | 0.575 4+ 0.100 | 0.478 4+ 0.148 | 0.516 + 0.122 | 0.677 £ 0.118
LASSO 29 0.643 £+ 0.119 | 0.587 4+ 0.165 | 0.490 4+ 0.180 | 0.531 + 0.175 | 0.712 + 0.126
HSIC LASSO 40 0.602 £+ 0.081 | 0.527 + 0.117 | 0.435 £+ 0.222 | 0.457 £+ 0.170 | 0.604 + 0.132
mRMR 100 0.644 + 0.093 | 0.600 4 0.117 | 0.573 4+ 0.099 | 0.580 4 0.095 | 0.680 + 0.080
Permutation 30 0.567 £ 0.117 | 0.499 + 0.153 | 0.426 4+ 0.118 | 0.458 £+ 0.131 | 0.562 + 0.121
fSFS 20 0.629 £ 0.000 | 0.571 4 0.000 | 0.533 4 0.000 | 0.552 4 0.000 | 0.597 4 0.000
Performance Random Forest
Raw data 6671 0.648 4+ 0.081 | 0.639 4 0.112 | 0.355 4+ 0.164 | 0.449 + 0.156 | 0.668 =+ 0.109
LASSO 29 0.672 £+ 0.105 | 0.637 4+ 0.158 | 0.490 4+ 0.179 | 0.549 4+ 0.170 | 0.697 + 0.127
HSIC LASSO 31 0.614 4+ 0.059 | 0.591 4+ 0.150 | 0.395 4+ 0.103 | 0.462 + 0.091 | 0.606 + 0.053
mRMR 100 0.614 4+ 0.030 | 0.662 4+ 0.174 | 0.288 4+ 0.115 | 0.374 + 0.101 | 0.590 + 0.065
Permutation 20 0.657 4+ 0.000 | 0.600 4 0.000 | 0.600 4 0.000 | 0.600 4 0.000 | 0.533 4 0.000
fSFS 20 0.543 £ 0.000 | 0.462 £ 0.000 | 0.400 4 0.000 | 0.429 4 0.000 | 0.562 4 0.000
Performance LDA
Raw data 6671 0.667 & 0.037 | 0.636 & 0.070 | 0.547 4 0.087 | 0.581 4 0.052 | 0.688 & 0.040
LASSO 29 0.666 + 0.077 | 0.638 + 0.117 | 0.519 4+ 0.120 | 0.567 + 0.108 | 0.703 + 0.113
HSIC LASSO 16 0.550 + 0.056 | 0.468 4+ 0.083 | 0.383 4+ 0.065 | 0.421 4+ 0.072 | 0.562 4+ 0.100
mRMR 100 0.591 + 0.087 | 0.535 4 0.087 | 0.549 4+ 0.088 | 0.536 4+ 0.066 | 0.587 + 0.067
Permutation 20 0.600 £ 0.000 | 0.538 4 0.000 | 0.467 4 0.000 | 0.500 4 0.000 | 0.563 & 0.000
fSFS 20 0.714 £+ 0.000 | 0.692 4 0.000 | 0.600 4 0.000 | 0.643 4 0.000 | 0.633 4 0.000
Performance KNN
Raw data 6671 0.602 + 0.068 | 0.564 4+ 0.128 | 0.317 4+ 0.148 | 0.391 4+ 0.132 | 0.600 + 0.097
LASSO 29 0.637 + 0.072 | 0.619 4+ 0.144 | 0.382 4+ 0.103 | 0.470 + 0.118 | 0.681 + 0.086
HSIC LASSO 26 0.568 + 0.055 | 0.509 £ 0.070 | 0.423 4+ 0.068 | 0.454 4+ 0.030 | 0.590 + 0.054
mRMR 100 0.573 4+ 0.037 | 0.494 4+ 0.095 | 0.290 4+ 0.139 | 0.348 + 0.123 | 0.562 + 0.059
Permutation 20 0.543 4 0.000 | 0.400 £ 0.000 | 0.133 4 0.000 | 0.200 4 0.000 | 0.450 4 0.000
fSFS 20 0.486 + 0.000 | 0.000 £ 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.625 + 0.000

A APPENDIX A 36

A.2.2 Female data

Table 21: Performance of feature selection methods with full correlation on female NYU
data.

‘ FS Method ‘ Features ‘ Acc ‘ Precision ‘ Sensitivity ‘ F1 ‘ AUC ‘
Performance SVM
Raw data 6671 0.714 £+ 0.090 | 0.000 £ 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.387 4 0.380
LASSO 19 0.800 £ 0.194 | 0.600 4 0.490 | 0.400 4 0.374 | 0.467 + 0.400 | 0.667 + 0.286
HSIC LASSO 42 0.800 £ 0.146 | 0.500 + 0.447 | 0.400 + 0.374 | 0.433 4+ 0.389 | 0.727 4+ 0.176
mRMR 100 0.714 4+ 0.090 | 0.000 4 0.000 | 0.000 4 0.000 | 0.000 + 0.000 | 0.560 + 0.463
Permutation 20 0.743 4+ 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.340 4+ 0.000
fSFS 20 0.714 £ 0.000 | 0.000 £ 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.400 4 0.000
Performance LogR
Raw data 6671 0.743 + 0.167 | 0.400 £ 0.490 | 0.200 4 0.245 | 0.267 4+ 0.327 | 0.807 4+ 0.210
LASSO 20 0.829 + 0.140 | 0.600 4 0.490 | 0.400 4 0.374 | 0.467 4+ 0.400 | 0.760 + 0.224
HSIC LASSO 16 0.657 £ 0.114 | 0.380 £+ 0.371 | 0.400 + 0.374 | 0.348 4+ 0.289 | 0.647 4+ 0.265
mRMR 100 0.743 4+ 0.107 | 0.200 4 0.400 | 0.100 4 0.200 | 0.133 + 0.267 | 0.700 + 0.261
Permutation 20 0.657 4+ 0.000 | 0.167 4+ 0.000 | 0.300 4 0.000 | 0.213 4 0.000 | 0.560 4 0.000
fSFS 20 0.714 £ 0.000 | 0.000 £ 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.600 + 0.000
Performance Random Forest
Raw data 6671 0.771 £+ 0.114 | 0.400 4 0.490 | 0.200 4 0.245 | 0.267 + 0.327 | 0.807 £ 0.219
LASSO 19 0.829 + 0.140 | 0.533 4+ 0.452 | 0.500 4 0.447 | 0.493 + 0.417 | 0.707 £ 0.266
HSIC LASSO 18 0.686 £+ 0.107 | 0.300 £ 0.400 | 0.200 + 0.245 | 0.233 + 0.291 | 0.527 4+ 0.164
mRMR 100 0.800 + 0.146 | 0.400 4 0.490 | 0.300 4 0.400 | 0.333 + 0.422 | 0.680 + 0.299
Permutation 20 0.771 4+ 0.146 | 0.400 4 0.490 | 0.300 4 0.400 | 0.333 + 0.422 | 0.470 + 0.328
fSFS 20 0.714 £ 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.800 4 0.000
Performance LDA
Raw data 6671 0.771 £+ 0.194 | 0.400 4 0.490 | 0.300 4 0.400 | 0.333 + 0.422 | 0.793 + 0.231
LASSO 19 0.771 + 0.114 | 0.600 4 0.389 | 0.500 4+ 0.316 | 0.507 + 0.285 | 0.777 £ 0.282
HSIC LASSO 26 0.686 + 0.107 | 0.367 £ 0.371 | 0.400 £ 0.374 | 0.347 £+ 0.299 | 0.560 + 0.361
mRMR 100 0.743 4+ 0.107 | 0.200 4 0.400 | 0.100 4 0.200 | 0.133 + 0.267 | 0.747 £ 0.165
Permutation 20 0.514 4+ 0.000 | 0.200 4 0.000 | 0.300 4 0.000 | 0.240 4+ 0.000 | 0.467 4+ 0.000
fSFS 20 0.571 4 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.400 4 0.000
Performance KNN
Raw data 6671 0.743 4+ 0.107 | 0.200 4 0.400 | 0.100 4 0.200 | 0.133 + 0.267 | 0.520 + 0.282
LASSO 19 0.771 4+ 0.114 | 0.500 4 0.447 | 0.400 4 0.374 | 0.400 + 0.327 | 0.693 + 0.291
HSIC LASSO 10 0.800 £ 0.146 | 0.500 + 0.447 | 0.400 + 0.374 | 0.433 + 0.389 | 0.777 4+ 0.146
mRMR 100 0.686 + 0.140 | 0.000 4 0.000 | 0.000 4 0.000 | 0.000 + 0.000 | 0.613 + 0.202
Permutation 20 0.714 4+ 0.000 | 0.300 4 0.000 | 0.300 4 0.000 | 0.300 4 0.000 | 0.430 4+ 0.000
fSFS 20 0.714 £ 0.000 | 0.000 £ 0.000 | 0.000 4 0.000 | 0.000 4 0.000 | 0.400 4 0.000

A APPENDIX A 37

A.2.3 Male data

Table 22: Performance of feature selection methods with full correlation on male NYU
data.

‘ FS Method ‘ Features ‘ Acc ‘ Precision ‘ Sensitivity ‘ F1 ‘ AUC ‘
Performance SVM
Raw data 6671 0.618 4+ 0.106 | 0.603 4 0.133 | 0.531 4 0.130 | 0.564 4+ 0.130 | 0.686 + 0.070
LASSO 10 0.581 4+ 0.076 | 0.563 4+ 0.085 | 0.531 4+ 0.120 | 0.541 + 0.083 | 0.650 + 0.091
HSIC LASSO 23 0.611 £ 0.041 | 0.595 + 0.042 | 0.517 + 0.108 | 0.550 4+ 0.080 | 0.687 4+ 0.055
mRMR 100 0.625 4+ 0.025 | 0.617 4 0.042 | 0.531 4 0.051 | 0.570 4+ 0.045 | 0.672 + 0.054
Permutation 30 0.522 4+ 0.080 | 0.475 4+ 0.117 | 0.392 4+ 0.143 | 0.426 + 0.134 | 0.441 + 0.078
fSFS 20 0.571 £+ 0.000 | 0.571 4 0.000 | 0.308 4 0.000 | 0.400 4 0.000 | 0.585 4 0.000
Performance LogR
Raw data 6671 0.589 + 0.072 | 0.570 4+ 0.076 | 0.533 4+ 0.102 | 0.548 + 0.082 | 0.627 + 0.098
LASSO 10 0.597 + 0.107 | 0.570 4+ 0.107 | 0.592 4+ 0.118 | 0.579 + 0.109 | 0.642 + 0.128
HSIC LASSO 25 0.566 £+ 0.073 | 0.536 £+ 0.059 | 0.578 + 0.124 | 0.552 4+ 0.083 | 0.599 4+ 0.058
mRMR 100 0.619 4 0.094 | 0.577 4+ 0.136 | 0.550 4+ 0.211 | 0.555 4+ 0.180 | 0.595 + 0.150
Permutation 30 0.529 4+ 0.065 | 0.505 4+ 0.080 | 0.486 4+ 0.146 | 0.483 + 0.098 | 0.529 + 0.092
fSFS 20 0.536 + 0.000 | 0.500 4 0.000 | 0.538 4 0.000 | 0.519 4 0.000 | 0.538 + 0.000
Performance Random Forest
Raw data 6671 0.654 + 0.058 | 0.657 4+ 0.081 | 0.528 4+ 0.124 | 0.583 + 0.104 | 0.705 + 0.042
LASSO 10 0.647 4+ 0.037 | 0.617 4+ 0.034 | 0.654 4+ 0.133 | 0.629 4+ 0.070 | 0.639 + 0.074
HSIC LASSO 44 0.581 £ 0.126 | 0.545 £+ 0.115 | 0.546 + 0.204 | 0.538 4+ 0.155 | 0.640 4+ 0.139
mRMR 100 0.626 + 0.058 | 0.642 4+ 0.082 | 0.451 4+ 0.167 | 0.517 + 0.116 | 0.669 + 0.075
Permutation 30 0.558 4+ 0.074 | 0.534 4+ 0.103 | 0.467 4+ 0.102 | 0.496 + 0.096 | 0.571 + 0.108
fSFS 20 0.536 £ 0.000 | 0.500 4 0.000 | 0.462 4 0.000 | 0.480 4 0.000 | 0.500 4 0.000
Performance LDA
Raw data 6671 0.640 + 0.079 | 0.613 4+ 0.072 | 0.627 + 0.119 | 0.618 + 0.091 | 0.681 + 0.109
LASSO 10 0.626 + 0.105 | 0.606 4+ 0.112 | 0.608 4 0.104 | 0.605 4+ 0.104 | 0.635 + 0.124
HSIC LASSO 30 0.574 £+ 0.062 | 0.547 £+ 0.078 | 0.483 + 0.119 | 0.511 4+ 0.097 | 0.614 4+ 0.088
mRMR 100 0.412 £+ 0.075 | 0.392 £+ 0.063 | 0.456 4+ 0.129 | 0.417 4+ 0.082 | 0.496 + 0.130
Permutation 30 0.647 4+ 0.081 | 0.647 4+ 0.108 | 0.626 4+ 0.099 | 0.625 + 0.070 | 0.645 + 0.109
fSFS 20 0.536 + 0.000 | 0.500 4 0.000 | 0.538 4 0.000 | 0.519 4 0.000 | 0.544 + 0.000
Performance KNN
Raw data 6671 0.596 + 0.058 | 0.607 4+ 0.092 | 0.373 4+ 0.137 | 0.453 4+ 0.124 | 0.596 + 0.030
LASSO 10 0.640 £ 0.078 | 0.641 4 0.126 | 0.546 + 0.173 | 0.577 + 0.120 | 0.656 £ 0.069
HSIC LASSO 48 0.604 + 0.066 | 0.609 + 0.123 | 0.405 4+ 0.109 | 0.485 + 0.117 | 0.639 + 0.103
mRMR 100 0.470 £+ 0.091 | 0.437 + 0.116 | 0.373 4+ 0.097 | 0.398 + 0.091 | 0.530 £ 0.102
Permutation 30 0.588 + 0.085 | 0.583 4+ 0.118 | 0.453 4+ 0.130 | 0.502 + 0.117 | 0.581 + 0.099
fSFS 20 0.357 4+ 0.000 | 0.273 4+ 0.000 | 0.231 4 0.000 | 0.250 4 0.000 | 0.408 + 0.000

B APPENDIX B 38

B Appendix B — Results

B.1 Graph multisite

Table 23: Performance summary for classifier: KNN

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.549 £+ 0.000 0.508 + 0.000 0.440 4+ 0.000 0.471 4+ 0.000 0.550 £+ 0.000
mutual info forwards SF'S 0.506 £ 0.000 0.456 £ 0.000 0.413 4 0.000 0.434 + 0.000 0.535 £ 0.000
mutual_info HSIC_Lasso 0.533 £ 0.078 0.490 + 0.085 0.463 + 0.094 0.475 4+ 0.087 0.540 £+ 0.088
mutual info Lasso_selection 0.509 £ 0.031 0.459 £ 0.040 0.388 £ 0.046 0.419 £ 0.037 0.511 4 0.054
mutual_info mRMR 0.507 &£ 0.026 0.462 £ 0.030 0.444 £+ 0.028 0.452 £+ 0.027 0.507 £ 0.028
mutual info Permutation 0.512 + 0.034 0.466 + 0.041 0.441 + 0.058 0.452 4+ 0.046 0.519 + 0.030
mutual__info Raw data 0.529 + 0.022 0.484 £ 0.029 0.447 £ 0.064 0.463 £+ 0.045 0.533 £ 0.025
norm_ Laplacian backward SFS 0.585 + 0.000 0.551 £ 0.000 0.507 + 0.000 0.528 4+ 0.000 0.554 + 0.000
norm_ Laplacian forwards SFS 0.488 + 0.000 0.435 £ 0.000 0.400 £ 0.000 0.417 4+ 0.000 0.489 £ 0.000
norm_ Laplacian HSIC Lasso 0.510 £ 0.048 0.463 + 0.057 0.398 + 0.056 0.426 4+ 0.050 0.498 £+ 0.042
norm_ Laplacian Lasso_selection — 0.496 + 0.047 0.448 4+ 0.051 0.428 + 0.057 0.437 £+ 0.054 0.475 4+ 0.052
norm_ Laplacian mRMR 0.497 £ 0.065 0.450 + 0.072 0.420 + 0.065 0.434 4+ 0.068 0.494 £+ 0.075
norm_ Laplacian Permutation 0.507 + 0.033 0.454 £+ 0.042 0.372 £+ 0.039 0.409 4+ 0.039 0.486 + 0.028
norm_ Laplacian Raw data 0.527 &£ 0.051 0.479 £ 0.067 0.353 £ 0.057 0.406 £+ 0.061 0.510 £ 0.070
partial _corr backward SF'S 0.549 4+ 0.000 0.506 £ 0.000 0.520 + 0.000 0.513 4+ 0.000 0.508 + 0.000
partial_corr forwards SF'S 0.549 + 0.000 0.506 £ 0.000 0.520 £ 0.000 0.513 4+ 0.000 0.508 £ 0.000
partial _corr HSIC Lasso 0.522 + 0.014 0.479 £+ 0.016 0.503 + 0.055 0.490 4+ 0.032 0.510 + 0.025
partial__corr Lasso_selection 0.522 4 0.014 0.479 + 0.016 0.503 £ 0.055 0.490 £ 0.032 0.510 £ 0.025
partial corr mRMR 0.522 £ 0.014 0.479 + 0.016 0.503 &+ 0.055 0.490 &+ 0.032 0.510 £+ 0.025
partial__corr Permutation 0.522 £ 0.014 0.479 = 0.016 0.503 £ 0.055 0.490 4+ 0.032 0.510 £ 0.025
partial_corr Raw data 0.522 £ 0.014 0.479 + 0.016 0.503 + 0.055 0.490 4+ 0.032 0.510 £+ 0.025
rlogspect backward SFS 0.470 + 0.000 0.414 £ 0.000 0.387 £ 0.000 0.400 4 0.000 0.481 + 0.000
rlogspect forwards SF'S 0.470 &£ 0.000 0.414 £ 0.000 0.387 £ 0.000 0.400 £+ 0.000 0.481 £ 0.000
rlogspect HSIC Lasso 0.489 + 0.031 0.435 £+ 0.033 0.380 + 0.029 0.405 4+ 0.028 0.461 + 0.035
rlogspect Lasso_selection 0.489 4+ 0.031 0.435 £ 0.033 0.380 £ 0.029 0.405 £+ 0.028 0.461 £ 0.035
rlogspect mRMR 0.489 + 0.031 0.435 £+ 0.033 0.380 + 0.029 0.405 4+ 0.028 0.461 + 0.035
rlogspect Permutation 0.489 + 0.031 0.435 £ 0.033 0.380 £ 0.029 0.405 4+ 0.028 0.461 £ 0.035
rlogspect Raw data 0.489 £+ 0.031 0.435 + 0.033 0.380 + 0.029 0.405 4+ 0.028 0.461 £+ 0.035

B APPENDIX B 39
Table 24: Performance summary for classifier: LDA

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

mutual_info backward SFS 0.494 £+ 0.000 0.423 + 0.000 0.293 4+ 0.000 0.346 4+ 0.000 0.508 £ 0.000
mutual_info forwards SF'S 0.524 £ 0.000 0.471 + 0.000 0.320 4+ 0.000 0.381 4 0.000 0.526 £ 0.000
mutual_info HSIC Lasso 0.521 £+ 0.019 0.470 + 0.027 0.361 + 0.055 0.406 + 0.043 0.516 + 0.023
mutual__info Lasso_selection 0.543 + 0.028 0.498 + 0.052 0.313 4+ 0.064 0.383 4+ 0.064 0.535 £+ 0.021
mutual_info mRMR 0.517 £ 0.025 0.458 &+ 0.041 0.302 + 0.055 0.363 £ 0.050 0.520 £+ 0.030
mutual__info Permutation 0.549 + 0.031 0.507 + 0.038 0.462 4+ 0.056 0.483 4+ 0.047 0.574 £ 0.042
mutual_info Raw data 0.549 £+ 0.034 0.508 + 0.042 0.468 + 0.055 0.486 + 0.049 0.575 £+ 0.037
norm_ Laplacian backward SFS 0.561 £+ 0.000 0.531 = 0.000 0.347 £ 0.000 0.419 4+ 0.000 0.571 £ 0.000
norm_ Laplacian forwards SFS 0.579 £ 0.000 0.558 + 0.000 0.387 4+ 0.000 0.457 4+ 0.000 0.575 £+ 0.000
norm_ Laplacian HSIC_TLasso 0.547 +0.039 0.508 + 0.065 0.350 + 0.044 0.414 4+ 0.052 0.537 £ 0.047
norm__Laplacian Lasso_selection — 0.498 + 0.038 0.406 4+ 0.086 0.190 + 0.044 0.256 £ 0.052 0.478 4+ 0.021
norm_ Laplacian mRMR 0.516 + 0.022 0.446 + 0.043 0.201 + 0.033 0.274 4+ 0.028 0.489 + 0.029
norm_ Laplacian Permutation 0.553 £ 0.023 0.513 £ 0.031 0.420 £ 0.056 0.461 4+ 0.046 0.550 £ 0.036
norm_ Laplacian Raw data 0.549 + 0.035 0.509 + 0.047 0.441 + 0.051 0.472 4+ 0.047 0.550 & 0.037
partial_corr backward SFS 0.537 £ 0.000 0.471 4+ 0.000 0.107 £ 0.000 0.174 £ 0.000 0.567 £+ 0.000
partial_corr forwards SF'S 0.537 £ 0.000 0.471 + 0.000 0.107 & 0.000 0.174 4+ 0.000 0.567 £+ 0.000
partial__corr HSIC Lasso 0.538 £ 0.028 0.503 £ 0.070 0.187 4 0.061 0.265 + 0.057 0.527 £ 0.047
partial__corr Lasso selection 0.538 £ 0.028 0.503 £ 0.070 0.187 4+ 0.061 0.265 + 0.057 0.527 £ 0.047
partial_corr mRMR 0.538 £ 0.028 0.503 &+ 0.070 0.187 £ 0.061 0.265 £ 0.057 0.527 £+ 0.047
partial__corr Permutation 0.538 £ 0.028 0.503 £ 0.070 0.187 £ 0.061 0.265 &+ 0.057 0.527 £ 0.047
partial corr Raw data 0.538 £ 0.028 0.503 &+ 0.070 0.187 £ 0.061 0.265 £ 0.057 0.527 £ 0.047
rlogspect backward SFS 0.506 £+ 0.000 0.250 4+ 0.000 0.040 £ 0.000 0.069 £ 0.000 0.485 £+ 0.000
rlogspect forwards SF'S 0.506 £ 0.000 0.250 + 0.000 0.040 &+ 0.000 0.069 4+ 0.000 0.485 £ 0.000
rlogspect HSIC_ Lasso 0.518 £ 0.022 0.140 + 0.173 0.045 + 0.056 0.068 4+ 0.084 0.458 + 0.037
rlogspect Lasso_selection 0.518 £ 0.022 0.140 + 0.173 0.045 + 0.056 0.068 4+ 0.084 0.458 £+ 0.037
rlogspect mRMR 0.518 +0.022 0.140 + 0.173 0.045 + 0.056 0.068 + 0.084 0.458 + 0.037
rlogspect Permutation 0.518 £ 0.022 0.140 + 0.173 0.045 + 0.056 0.068 4+ 0.084 0.458 £+ 0.037
rlogspect Raw data 0.518 £ 0.022 0.140 &+ 0.173 0.045 £ 0.056 0.068 £+ 0.084 0.458 + 0.037

B APPENDIX B 40
Table 25: Performance summary for classifier: LogR

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

mutual_info backward SF'S 0.488 + 0.000 0.418 £+ 0.000 0.307 + 0.000 0.354 4+ 0.000 0.515 + 0.000
mutual_info forwards SF'S 0.530 & 0.000 0.479 £ 0.000 0.307 £ 0.000 0.374 £+ 0.000 0.502 £ 0.000
mutual_info HSIC Lasso 0.517 + 0.021 0.460 + 0.036 0.339 + 0.067 0.389 4+ 0.057 0.523 + 0.034
mutual info Lasso_selection 0.532 4 0.012 0.476 £ 0.029 0.254 £ 0.056 0.329 £ 0.055 0.528 4 0.012
mutual_info mRMR 0.534 +0.014 0.485 + 0.025 0.273 + 0.050 0.347 4+ 0.044 0.498 + 0.033
mutual__info Permutation 0.543 + 0.031 0.499 £ 0.043 0.406 + 0.066 0.447 4+ 0.056 0.563 £ 0.035
mutual_info Raw data 0.534 £ 0.042 0.491 + 0.055 0.404 + 0.048 0.443 + 0.049 0.554 £+ 0.043
norm_ Laplacian backward SFS 0.573 = 0.000 0.544 = 0.000 0.413 £ 0.000 0.470 4+ 0.000 0.572 £ 0.000
norm_ Laplacian forwards SFS 0.561 £ 0.000 0.524 + 0.000 0.440 4+ 0.000 0.478 4+ 0.000 0.570 £+ 0.000
norm_ Laplacian HSIC_TLasso 0.528 + 0.032 0.477 £+ 0.054 0.324 + 0.047 0.385 4+ 0.050 0.524 + 0.047
norm__Laplacian Lasso_selection — 0.507 £ 0.030 0.425 4+ 0.077 0.214 + 0.056 0.282 £+ 0.061 0.482 4+ 0.029
norm_ Laplacian mRMR 0.510 + 0.025 0.437 + 0.047 0.241 4+ 0.052 0.308 &+ 0.050 0.501 + 0.043
norm_ Laplacian Permutation 0.567 £ 0.032 0.533 £ 0.042 0.441 £ 0.048 0.482 4+ 0.044 0.548 £ 0.035
norm_ Laplacian Raw data 0.565 £+ 0.034 0.531 + 0.047 0.444 4+ 0.043 0.483 + 0.042 0.559 + 0.026
partial_corr backward SFS 0.543 + 0.000 0.000 £ 0.000 0.000 £ 0.000 0.000 £+ 0.000 0.504 £ 0.000
partial_corr forwards SF'S 0.543 £ 0.000 0.000 = 0.000 0.000 & 0.000 0.000 &+ 0.000 0.504 £+ 0.000
partial__corr HSIC Lasso 0.531 £ 0.013 0.307 £ 0.220 0.045 4 0.038 0.078 & 0.063 0.466 £ 0.040
partial__corr Lasso selection 0.531 £ 0.013 0.307 £ 0.220 0.045 4+ 0.038 0.078 + 0.063 0.466 £ 0.040
partial_corr mRMR 0.531 + 0.013 0.307 £ 0.220 0.045 + 0.038 0.078 4 0.063 0.466 + 0.040
partial__corr Permutation 0.531 £ 0.013 0.307 £ 0.220 0.045 £ 0.038 0.078 £ 0.063 0.466 £ 0.040
partial _corr Raw data 0.531 + 0.013 0.307 £+ 0.220 0.045 + 0.038 0.078 4+ 0.063 0.466 + 0.040
rlogspect backward SFS 0.567 & 0.000 0.667 £ 0.000 0.107 £ 0.000 0.184 4+ 0.000 0.648 £ 0.000
rlogspect forwards SF'S 0.567 + 0.000 0.667 &+ 0.000 0.107 + 0.000 0.184 4+ 0.000 0.648 + 0.000
rlogspect HSIC_ Lasso 0.533 £ 0.037 0.489 + 0.083 0.214 4+ 0.053 0.293 4+ 0.061 0.549 + 0.049
rlogspect Lasso_selection 0.533 £ 0.037 0.489 + 0.083 0.214 4+ 0.053 0.293 4+ 0.061 0.549 £ 0.049
rlogspect mRMR 0.533 + 0.037 0.489 £+ 0.083 0.214 + 0.053 0.293 4+ 0.061 0.549 + 0.049
rlogspect Permutation 0.533 £ 0.037 0.489 + 0.083 0.214 + 0.053 0.293 4+ 0.061 0.549 £+ 0.049
rlogspect Raw data 0.533 + 0.037 0.489 £+ 0.083 0.214 + 0.053 0.293 4+ 0.061 0.549 + 0.049

B APPENDIX B 41
Table 26: Performance summary for classifier: RandomForest

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

mutual_info backward SF'S 0.518 £ 0.000 0.466 + 0.000 0.360 &+ 0.000 0.406 4+ 0.000 0.530 £ 0.000
mutual_info forwards SF'S 0.543 &£ 0.000 0.500 £ 0.000 0.373 £ 0.000 0.427 £+ 0.000 0.564 £ 0.000
mutual_info HSIC Lasso 0.540 + 0.053 0.493 + 0.077 0.385 + 0.105 0.430 4+ 0.090 0.536 + 0.065
mutual info Lasso_selection 0.501 4 0.029 0.447 + 0.040 0.391 £ 0.067 0.415 £ 0.054 0.463 4 0.034
mutual_info mRMR 0.504 + 0.042 0.443 £+ 0.065 0.356 + 0.078 0.393 4+ 0.074 0.496 + 0.047
mutual__info Permutation 0.526 + 0.031 0.478 £ 0.038 0.393 £ 0.056 0.431 4+ 0.047 0.506 £ 0.039
mutual_info Raw data 0.543 £ 0.024 0.499 + 0.036 0.393 + 0.067 0.438 + 0.054 0.534 £+ 0.037
norm_ Laplacian backward SFS 0.512 £+ 0.000 0.460 = 0.000 0.387 £ 0.000 0.420 4+ 0.000 0.510 £ 0.000
norm_ Laplacian forwards SFS 0.476 £ 0.000 0.418 + 0.000 0.373 & 0.000 0.394 4+ 0.000 0.489 £ 0.000
norm_ Laplacian HSIC_TLasso 0.518 + 0.021 0.463 + 0.029 0.334 + 0.040 0.388 4+ 0.036 0.511 + 0.028
norm__Laplacian Lasso_selection 0.543 £ 0.015 0.503 4+ 0.021 0.382 + 0.023 0.434 £ 0.016 0.504 4+ 0.021
norm_ Laplacian mRMR 0.505 + 0.030 0.450 £+ 0.039 0.374 + 0.056 0.408 4+ 0.047 0.475 + 0.034
norm_ Laplacian Permutation 0.517 £ 0.024 0.468 = 0.032 0.372 £ 0.029 0.413 4+ 0.025 0.521 £ 0.037
norm_ Laplacian Raw data 0.502 + 0.025 0.441 + 0.040 0.326 + 0.035 0.375 4+ 0.037 0.505 + 0.038
partial_corr backward SFS 0.494 + 0.000 0.444 + 0.000 0.427 4+ 0.000 0.435 4 0.000 0.442 £+ 0.000
partial_corr forwards SF'S 0.506 £ 0.000 0.456 + 0.000 0.413 4+ 0.000 0.434 4+ 0.000 0.462 £+ 0.000
partial__corr HSIC Lasso 0.511 £ 0.022 0.463 £ 0.028 0.430 4 0.045 0.446 + 0.037 0.514 £ 0.027
partial__corr Lasso selection 0.509 £ 0.034 0.461 £ 0.038 0.423 4+ 0.042 0.440 + 0.037 0.510 £ 0.020
partial_corr mRMR 0.521 + 0.041 0.474 + 0.050 0.436 + 0.058 0.454 + 0.054 0.509 + 0.024
partial__corr Permutation 0.516 £ 0.025 0.471 £ 0.028 0.452 £ 0.033 0.461 £+ 0.029 0.501 £ 0.011
partial _corr Raw data 0.516 + 0.030 0.471 + 0.032 0.444 + 0.023 0.457 + 0.026 0.512 £ 0.020
rlogspect backward SFS 0.457 & 0.000 0.400 £ 0.000 0.373 £ 0.000 0.386 &+ 0.000 0.458 £ 0.000
rlogspect forwards SF'S 0.494 + 0.000 0.443 + 0.000 0.413 + 0.000 0.428 4+ 0.000 0.464 + 0.000
rlogspect HSIC_ Lasso 0.469 + 0.010 0.417 + 0.011 0.393 + 0.031 0.404 4+ 0.019 0.444 £+ 0.015
rlogspect Lasso_selection 0.467 £ 0.013 0.413 + 0.016 0.391 4+ 0.046 0.401 4+ 0.030 0.446 £ 0.008
rlogspect mRMR 0472 +0.024 0.418 +0.025 0.382 + 0.044 0.398 4+ 0.027 0.453 + 0.007
rlogspect Permutation 0.494 £+ 0.013 0.443 + 0.015 0.409 + 0.035 0.425 4+ 0.024 0.455 £+ 0.007
rlogspect Raw data 0.474 +0.013 0.424 + 0.012 0.404 + 0.035 0.413 + 0.017 0.459 + 0.007

B APPENDIX B 42
Table 27: Performance summary for classifier: SVM

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

mutual_info backward SFS 0.537 £ 0.000 0.490 + 0.000 0.320 &+ 0.000 0.387 4 0.000 0.528 £ 0.000
mutual_info forwards SF'S 0.543 £ 0.000 0.500 = 0.000 0.293 4 0.000 0.370 4 0.000 0.490 £ 0.000
mutual _info HSIC Lasso 0.533 +£0.018 0.485 + 0.026 0.350 + 0.052 0.406 + 0.044 0.524 + 0.022
mutual__info Lasso_selection 0.496 + 0.050 0.411 + 0.084 0.241 4+ 0.076 0.301 4+ 0.081 0.518 4 0.058
mutual_info mRMR 0.517 £ 0.020 0.444 + 0.049 0.262 4+ 0.080 0.326 + 0.079 0.508 £ 0.025
mutual__info Permutation 0.548 + 0.022 0.514 + 0.042 0.350 + 0.051 0.414 4+ 0.037 0.547 £+ 0.033
mutual_info Raw data 0.569 £+ 0.003 0.545 + 0.006 0.364 + 0.053 0.434 + 0.037 0.558 £+ 0.025
norm_ Laplacian backward SFS 0.518 £+ 0.000 0.463 = 0.000 0.333 £ 0.000 0.388 4+ 0.000 0.516 £ 0.000
norm_ Laplacian forwards SFS 0.524 £ 0.000 0.468 + 0.000 0.293 4+ 0.000 0.361 4+ 0.000 0.510 £ 0.000
norm_ Laplacian HSIC_TLasso 0.497 + 0.038 0.449 + 0.072 0.308 + 0.066 0.356 + 0.037 0.479 + 0.021
norm__Laplacian Lasso_selection — 0.504 £ 0.033 0.440 4+ 0.050 0.259 + 0.032 0.323 £ 0.017 0.482 4+ 0.016
norm_ Laplacian mRMR 0.506 + 0.040 0.442 + 0.069 0.262 4+ 0.062 0.324 4+ 0.055 0.495 + 0.031
norm_ Laplacian Permutation 0.542 £ 0.045 0.507 £ 0.075 0.347 £ 0.053 0.409 £+ 0.049 0.488 £ 0.070
norm_ Laplacian Raw data 0.526 £ 0.053 0.484 + 0.085 0.353 + 0.056 0.405 4+ 0.056 0.472 £+ 0.065
partial_corr backward SFS 0.573 £ 0.000 0.632 &+ 0.000 0.160 £ 0.000 0.255 £ 0.000 0.456 £+ 0.000
partial_corr forwards SF'S 0.573 £ 0.000 0.632 + 0.000 0.160 &+ 0.000 0.255 4+ 0.000 0.456 £+ 0.000
partial__corr HSIC Lasso 0.550 £ 0.009 0.536 £ 0.041 0.131 4 0.027 0.210 &+ 0.037 0.477 £ 0.035
partial__corr Lasso selection 0.550 £ 0.009 0.536 £ 0.041 0.131 & 0.027 0.210 + 0.037 0.466 £ 0.023
partial_corr mRMR 0.550 + 0.009 0.536 + 0.041 0.131 4+ 0.027 0.210 4+ 0.037 0.508 + 0.041
partial__corr Permutation 0.550 £ 0.009 0.536 £ 0.041 0.131 £ 0.027 0.210 £ 0.037 0.489 +£ 0.040
partial corr Raw data 0.550 + 0.009 0.536 + 0.041 0.131 4+ 0.027 0.210 4+ 0.037 0.491 £ 0.040
rlogspect backward SFS 0.524 £ 0.000 0.333 = 0.000 0.040 4 0.000 0.071 4 0.000 0.559 £ 0.000
rlogspect forwards SFS 0.524 £ 0.000 0.333 + 0.000 0.040 & 0.000 0.071 4+ 0.000 0.559 £ 0.000
rlogspect HSIC_ Lasso 0.536 £+ 0.017 0.190 + 0.263 0.016 + 0.021 0.028 4+ 0.037 0.522 + 0.048
rlogspect Lasso_selection ~ 0.536 £ 0.017 0.190 + 0.263 0.016 4+ 0.021 0.028 4+ 0.037 0.549 £+ 0.023
rlogspect mRMR 0.536 + 0.017 0.190 + 0.263 0.016 + 0.021 0.028 + 0.037 0.549 + 0.023
rlogspect Permutation 0.536 £ 0.017 0.190 + 0.263 0.016 4+ 0.021 0.028 4+ 0.037 0.548 £+ 0.023
rlogspect Raw data 0.536 + 0.017 0.190 + 0.263 0.016 + 0.021 0.028 4+ 0.037 0.549 + 0.022

B APPENDIX B 43
B.2 graph NYU
Table 28: Performance summary for classifier: KNN

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

mutual info backward SF'S 0.471 £ 0.000 0.333 £ 0.000 0.200 4 0.000 0.250 &+ 0.000 0.421 + 0.000
mutual_info forwards SF'S 0.500 £ 0.000 0.444 + 0.000 0.533 4+ 0.000 0.485 4+ 0.000 0.546 £+ 0.000
mutual_info HSIC_ Lasso 0.529 + 0.066 0.409 + 0.132 0.293 + 0.137 0.337 &+ 0.138 0.494 + 0.087
mutual info Lasso_selection 0.542 4 0.047 0.444 + 0.104 0.338 £ 0.105 0.381 £ 0.102 0.545 4 0.035
mutual_info mRMR 0.518 +£ 0.071 0.416 + 0.102 0.324 + 0.096 0.363 &+ 0.098 0.478 + 0.053
mutual info Permutation 0.500 £ 0.059 0.390 £ 0.076 0.281 4+ 0.074 0.321 + 0.071 0.466 £ 0.077
mutual_info Raw data 0.494 + 0.048 0.402 + 0.055 0.353 + 0.068 0.372 &+ 0.048 0.466 + 0.054
norm_ Laplacian backward SFS 0.588 + 0.000 0.538 + 0.000 0.467 + 0.000 0.500 + 0.000 0.644 £ 0.000
norm_ Laplacian forwards SFS 0.500 £ 0.000 0.375 + 0.000 0.200 &+ 0.000 0.261 4+ 0.000 0.488 £ 0.000
norm__ Laplacian HSIC_Lasso 0.518 £ 0.100 0.431 £ 0.110 0.339 4 0.107 0.374 & 0.105 0.494 + 0.112
norm__ Laplacian Lasso_selection 0.469 £ 0.069 0.309 4+ 0.167 0.224 + 0.118 0.258 £ 0.136 0.427 4+ 0.089
norm_ Laplacian mRMR 0.464 + 0.044 0.351 + 0.052 0.297 + 0.058 0.320 &+ 0.051 0.432 £ 0.056
norm_ Laplacian Permutation 0.537 £ 0.076 0.465 + 0.112 0.424 £ 0.123 0.435 £ 0.091 0.494 £ 0.095
norm_ Laplacian Raw data 0.506 + 0.018 0.422 + 0.030 0.436 + 0.080 0.427 4+ 0.049 0.494 + 0.041
partial_corr backward SFS 0.471 £ 0.000 0.364 + 0.000 0.267 4+ 0.000 0.308 4+ 0.000 0.461 £ 0.000
partial_corr forwards SFS 0.471 £+ 0.000 0.364 + 0.000 0.267 4+ 0.000 0.308 & 0.000 0.461 £ 0.000
partial_corr HSIC_ Lasso 0.488 + 0.045 0.372 + 0.068 0.296 + 0.071 0.329 4+ 0.070 0.442 + 0.038
partial__corr Lasso_selection 0.488 4+ 0.045 0.372 £+ 0.068 0.296 + 0.071 0.329 4+ 0.070 0.442 + 0.038
partial__corr mRMR 0.488 £ 0.045 0.372 = 0.068 0.296 £ 0.071 0.329 4+ 0.070 0.442 £ 0.038
partial_corr Permutation 0.488 £+ 0.045 0.372 + 0.068 0.296 + 0.071 0.329 4+ 0.070 0.442 £+ 0.038
partial_corr Raw data 0.488 + 0.045 0.372 + 0.068 0.296 + 0.071 0.329 &+ 0.070 0.442 + 0.038

B APPENDIX B 44
Table 29: Performance summary for classifier: LDA

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

mutual_info backward SFS 0.618 £ 0.000 0.571 + 0.000 0.533 &+ 0.000 0.552 4+ 0.000 0.653 £ 0.000
mutual_info forwards SF'S 0.676 £ 0.000 0.667 = 0.000 0.533 & 0.000 0.593 £ 0.000 0.698 £ 0.000
mutual_info HSIC Lasso 0.512 £ 0.078 0.421 4+ 0.098 0.381 £ 0.099 0.399 + 0.098 0.496 + 0.077
mutual__info Lasso_selection 0.506 £ 0.060 0.393 + 0.097 0.268 4+ 0.053 0.318 4+ 0.069 0.486 4 0.068
mutual_info mRMR 0.464 + 0.085 0.356 + 0.107 0.282 4+ 0.064 0.313 + 0.081 0.464 + 0.146
mutual__info Permutation 0.506 £+ 0.071 0.440 + 0.072 0.466 4+ 0.077 0.446 4+ 0.048 0.524 + 0.051
mutual_info Raw data 0.493 £ 0.068 0.428 + 0.069 0.451 + 0.076 0.432 4+ 0.037 0.525 £+ 0.050
norm_ Laplacian backward SFS 0.618 £+ 0.000 0.600 = 0.000 0.400 £ 0.000 0.480 4+ 0.000 0.614 £ 0.000
norm_ Laplacian forwards SFS 0.618 £ 0.000 0.562 + 0.000 0.600 + 0.000 0.581 4+ 0.000 0.663 £ 0.000
norm_ Laplacian HSIC_TLasso 0.596 + 0.097 0.526 + 0.117 0.505 + 0.155 0.510 + 0.129 0.604 + 0.108
norm__Laplacian Lasso_selection — 0.524 £ 0.055 0.420 4+ 0.088 0.294 + 0.075 0.344 £+ 0.079 0.460 4+ 0.064
norm_ Laplacian mRMR 0.518 £ 0.053 0.420 + 0.084 0.338 + 0.083 0.373 &+ 0.079 0.465 £ 0.085
norm_ Laplacian Permutation 0.602 = 0.043 0.540 £ 0.064 0.490 £ 0.103 0.510 4+ 0.069 0.593 £ 0.079
norm_ Laplacian Raw data 0.584 +0.035 0.513 +0.049 0.477 + 0.081 0.493 + 0.061 0.605 + 0.071
partial_corr backward SFS 0.559 £ 0.000 0.000 = 0.000 0.000 & 0.000 0.000 £ 0.000 0.526 £ 0.000
partial corr forwards SF'S 0.559 £ 0.000 0.000 = 0.000 0.000 & 0.000 0.000 4+ 0.000 0.526 £+ 0.000
partial__corr HSIC Lasso 0.524 £ 0.042 0.275 £ 0.174 0.100 4 0.073 0.140 &+ 0.092 0.406 £ 0.059
partial__corr Lasso selection 0.524 £ 0.042 0.275 £ 0.174 0.100 & 0.073 0.140 + 0.092 0.406 £ 0.059
partial_corr mRMR 0.524 + 0.042 0.275 + 0.174 0.100 + 0.073 0.140 4+ 0.092 0.406 + 0.059
partial__corr Permutation 0.524 £ 0.042 0.275 £ 0.174 0.100 £ 0.073 0.140 £ 0.092 0.406 £ 0.059
partial_corr Raw data 0.524 + 0.042 0.275 + 0.174 0.100 + 0.073 0.140 4+ 0.092 0.406 + 0.059

B APPENDIX B 45
Table 30: Performance summary for classifier: LogR

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

mutual__info backward SF'S 0.559 4+ 0.000 0.500 £ 0.000 0.400 + 0.000 0.444 4+ 0.000 0.572 + 0.000
mutual_info forwards SF'S 0.618 & 0.000 0.600 £ 0.000 0.400 £ 0.000 0.480 £ 0.000 0.698 £ 0.000
mutual_info HSIC Lasso 0.518 + 0.067 0.460 £+ 0.150 0.310 + 0.075 0.353 4 0.046 0.453 + 0.090
mutual info Lasso_selection 0.537 4= 0.040 0.422 + 0.067 0.226 £ 0.055 0.292 £ 0.062 0.524 4 0.055
mutual_info mRMR 0.458 + 0.039 0.321 £ 0.037 0.240 + 0.074 0.269 4+ 0.056 0.461 + 0.105
mutual__info Permutation 0.494 + 0.058 0.401 + 0.075 0.411 + 0.143 0.401 4+ 0.105 0.494 + 0.077
mutual_info Raw data 0.482 £ 0.085 0.376 + 0.108 0.397 + 0.192 0.382 + 0.146 0.498 £+ 0.097
norm_ Laplacian backward SFS 0.559 £+ 0.000 0.500 = 0.000 0.400 £ 0.000 0.444 4+ 0.000 0.533 £ 0.000
norm_ Laplacian forwards SFS 0.618 £ 0.000 0.571 + 0.000 0.533 + 0.000 0.552 4+ 0.000 0.653 £ 0.000
norm_ Laplacian HSIC_TLasso 0.548 + 0.064 0.457 £+ 0.118 0.310 + 0.095 0.365 4+ 0.104 0.524 + 0.086
norm__Laplacian Lasso_selection 0.506 £ 0.070 0.405 4+ 0.101 0.296 + 0.055 0.341 £ 0.071 0.453 4+ 0.066
norm_ Laplacian mRMR 0.548 + 0.061 0.457 £+ 0.098 0.352 + 0.101 0.397 4+ 0.100 0.459 + 0.085
norm_ Laplacian Permutation 0.524 £ 0.045 0.429 = 0.067 0.351 £ 0.086 0.383 + 0.076 0.449 +£ 0.064
norm_ Laplacian Raw data 0.530 + 0.041 0.435 £+ 0.066 0.351 + 0.086 0.386 4+ 0.077 0.465 + 0.050
partial_corr backward SFS 0.500 + 0.000 0.375 £ 0.000 0.200 £ 0.000 0.261 4+ 0.000 0.530 £ 0.000
partial corr forwards SF'S 0.500 £ 0.000 0.375 + 0.000 0.200 &+ 0.000 0.261 4+ 0.000 0.530 £ 0.000
partial__corr HSIC Lasso 0.536 £ 0.044 0.424 £ 0.330 0.113 &= 0.073 0.160 &+ 0.091 0.509 + 0.054
partial__corr Lasso selection 0.536 £ 0.044 0.424 £+ 0.330 0.113 &£ 0.073 0.160 & 0.091 0.509 £ 0.054
partial_corr mRMR 0.536 + 0.044 0.424 £+ 0.330 0.113 £ 0.073 0.160 4+ 0.091 0.509 + 0.054
partial__corr Permutation 0.536 = 0.044 0.424 + 0.330 0.113 £ 0.073 0.160 £ 0.091 0.509 £ 0.054
partial _corr Raw data 0.536 + 0.044 0.424 + 0.330 0.113 £+ 0.073 0.160 4+ 0.091 0.509 + 0.054

B APPENDIX B 46
Table 31: Performance summary for classifier: RandomForest

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

mutual_info backward SFS 0.559 £ 0.000 0.500 &+ 0.000 0.267 £ 0.000 0.348 £ 0.000 0.526 £+ 0.000
mutual_info forwards SF'S 0.559 £ 0.000 0.500 = 0.000 0.400 + 0.000 0.444 4+ 0.000 0.449 £+ 0.000
mutual_info HSIC Lasso 0.518 + 0.054 0.400 + 0.093 0.226 + 0.055 0.285 4+ 0.060 0.485 + 0.072
mutual info Lasso_selection 0.506 4 0.074 0.354 & 0.151 0.240 £ 0.148 0.282 £ 0.150 0.508 4 0.028
mutual_info mRMR 0.554 + 0.065 0.458 + 0.122 0.338 + 0.123 0.387 &+ 0.123 0.497 £ 0.089
mutual__info Permutation 0.554 + 0.052 0.508 + 0.131 0.295 + 0.081 0.356 4+ 0.049 0.543 £ 0.050
mutual_info Raw data 0.542 £ 0.036 0.432 + 0.088 0.182 + 0.068 0.247 + 0.080 0.507 £ 0.047
norm_ Laplacian HSIC__Lasso 0.476 £ 0.040 0.277 £ 0.114 0.169 4+ 0.106 0.207 & 0.113 0.430 £ 0.042
norm__ Laplacian Lasso_selection — 0.500 £ 0.033 0.368 4+ 0.058 0.254 + 0.087 0.297 £+ 0.080 0.433 4+ 0.033
norm_ Laplacian mRMR 0.470 + 0.101 0.356 + 0.135 0.310 + 0.134 0.332 4+ 0.134 0.429 + 0.080
norm_ Laplacian Permutation 0.483 £ 0.072 0.321 £ 0.181 0.243 £ 0.132 0.275 £ 0.150 0.426 £ 0.072
norm_ Laplacian Raw data 0.524 +0.080 0.414 + 0.153 0.211 4+ 0.078 0.276 &+ 0.096 0.451 £ 0.090
partial_corr backward SFS 0.500 £ 0.000 0.375 = 0.000 0.200 4+ 0.000 0.261 4+ 0.000 0.439 £ 0.000
partial_corr forwards SFS 0.441 + 0.000 0.300 #+ 0.000 0.200 # 0.000 0.240 4 0.000 0.435 4 0.000
partial_corr HSIC_ Lasso 0.512 + 0.041 0.406 + 0.073 0.367 + 0.139 0.379 4+ 0.109 0.470 £ 0.035
partial_corr Lasso_selection 0.518 4+ 0.047 0.422 4+ 0.070 0.367 £+ 0.096 0.390 £+ 0.083 0.470 £ 0.030
partial__corr mRMR 0.506 = 0.030 0.396 = 0.076 0.367 £ 0.139 0.376 & 0.110 0.453 £ 0.021
partial_corr Permutation 0.512 £+ 0.048 0.426 + 0.076 0.367 + 0.096 0.386 &+ 0.065 0.440 £+ 0.017
partial_corr Raw data 0.506 + 0.026 0.394 + 0.064 0.339 + 0.140 0.356 4 0.104 0.465 + 0.041

B APPENDIX B 47
Table 32: Performance summary for classifier: SVM
Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.471 £ 0.000 0.286 4+ 0.000 0.133 4+ 0.000 0.182 + 0.000 0.481 + 0.000
mutual info forwards SF'S 0.471 £ 0.000 0.200 £+ 0.000 0.067 & 0.000 0.100 £ 0.000 0.533 £ 0.000
mutual_info HSIC_ Lasso 0.500 £+ 0.043 0.303 £+ 0.099 0.139 4+ 0.071 0.187 + 0.083 0.515 + 0.115
mutual info Lasso_selection 0.494 4+ 0.057 0.355 + 0.096 0.227 £+ 0.085 0.273 4+ 0.087 0.453 £ 0.115
mutual _info mRMR 0.518 + 0.043 0.373 £ 0.092 0.183 + 0.056 0.244 + 0.068 0.498 + 0.068
mutual info Permutation 0.524 £ 0.023 0.320 4+ 0.051 0.098 4+ 0.033 0.147 £+ 0.039 0.483 + 0.063
mutual info Raw data 0.542 +£ 0.051 0.413 £ 0.342 0.070 4+ 0.042 0.112 + 0.065 0.532 + 0.054
norm_ Laplacian forwards SFS 0.588 £+ 0.000 0.667 = 0.000 0.133 £ 0.000 0.222 4+ 0.000 0.488 £ 0.000
norm__ Laplacian HSIC_Lasso 0.536 £ 0.049 0.386 £ 0.340 0.085 4+ 0.070 0.126 + 0.092 0.505 + 0.085
norm_ Laplacian Lasso_selection 0.566 + 0.035 0.483 4+ 0.072 0.282 + 0.091 0.351 + 0.087 0.521 + 0.096
norm__Laplacian mRMR 0.530 £ 0.038 0.351 4+ 0.179 0.168 4+ 0.093 0.226 £ 0.121 0.498 + 0.035
norm_ Laplacian Permutation 0.542 £ 0.085 0.450 4+ 0.348 0.112 + 0.072 0.178 £+ 0.118 0.547 £+ 0.076
norm__Laplacian Raw data 0.524 £ 0.056 0.359 4+ 0.141 0.098 4+ 0.033 0.151 £ 0.051 0.493 £ 0.077
partial _corr backward SFS 0.529 + 0.000 0.462 £+ 0.000 0.400 4+ 0.000 0.429 4+ 0.000 0.463 + 0.000
partial__corr forwards SFS 0.529 £+ 0.000 0.462 4+ 0.000 0.400 4+ 0.000 0.429 + 0.000 0.463 + 0.000
partial _corr HSIC Lasso 0.537 £ 0.048 0.380 £+ 0.147 0.213 + 0.129 0.268 + 0.141 0.455 + 0.062
partial__corr Lasso_selection 0.537 4= 0.048 0.380 & 0.147 0.213 £ 0.129 0.268 £ 0.141 0.455 & 0.062
partial__corr mRMR 0.537 £ 0.048 0.380 £+ 0.147 0.213 + 0.129 0.268 + 0.141 0.466 + 0.067
partial corr Permutation 0.537 £ 0.048 0.380 4+ 0.147 0.213 + 0.129 0.268 + 0.141 0.487 £+ 0.075
partial__corr Raw data 0.537 £ 0.048 0.380 £ 0.147 0.213 £ 0.129 0.268 £+ 0.141 0.469 +£ 0.068
B.3 Laplacian NYU
Table 33: Performance summary for classifier: KNN
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 4+ 0.000 0.455 £ 0.000 0.333 & 0.000 0.385 £ 0.000 0.567 & 0.000
forwards SF'S 0.657 & 0.000 0.636 £ 0.000 0.467 & 0.000 0.538 £ 0.000 0.608 & 0.000
HSIC_ Lasso 0.529 4+ 0.068 0.444 £+ 0.114 0.284 4+ 0.049 0.343 £ 0.064 0.489 + 0.038
Lasso selection 0.552 & 0.015 0.481 + 0.016 0.448 + 0.099 0.456 + 0.057 0.512 &+ 0.029
mRMR 0.547 4+ 0.064 0.472 £ 0.099 0.378 4+ 0.107 0.413 £ 0.090 0.549 4= 0.042
Permutation 0.535 4+ 0.071 0.484 £ 0.147 0.285 4= 0.056 0.344 £ 0.045 0.499 4 0.071
Table 34: Performance summary for classifier: LDA
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.629 4+ 0.000 0.600 £ 0.000 0.400 & 0.000 0.480 £ 0.000 0.597 & 0.000
forwards SF'S 0.571 4+ 0.000 0.500 £ 0.000 0.400 & 0.000 0.444 £ 0.000 0.603 & 0.000
HSIC_ Lasso 0.599 4+ 0.086 0.556 £+ 0.139 0.486 4+ 0.041 0.515 £ 0.079 0.610 £ 0.094
Lasso selection 0.663 & 0.045 0.663 4= 0.098 0.472 £ 0.109 0.541 4 0.076 0.676 £ 0.071
mRMR 0.593 4= 0.069 0.564 £ 0.163 0.366 4= 0.094 0.433 £ 0.093 0.600 4= 0.062
Permutation 0.564 4= 0.076 0.485 £ 0.089 0.542 4 0.178 0.505 £ 0.127 0.622 4 0.070
Table 35: Performance summary for classifier: LogR
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.600 &+ 0.000 0.556 £ 0.000 0.333 & 0.000 0.417 £ 0.000 0.607 & 0.000
forwards SF'S 0.571 4+ 0.000 0.500 £ 0.000 0.400 & 0.000 0.444 £ 0.000 0.617 & 0.000
HSIC Lasso 0.570 = 0.060 0.508 & 0.130 0.338 & 0.074 0.402 4+ 0.085 0.617 & 0.091
Lasso selection 0.575 & 0.064 0.552 4= 0.135 0.406 & 0.074 0.450 4= 0.029 0.575 & 0.032
mRMR 0.598 4+ 0.075 0.576 £ 0.170 0.366 4= 0.094 0.437 £ 0.098 0.587 4= 0.069
Permutation 0.575 & 0.073 0.500 & 0.111 0.489 4 0.156 0.488 + 0.125 0.573 4 0.091

B APPENDIX B 48
Table 36: Performance summary for classifier: RandomForest
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 £ 0.000 0.455 £ 0.000 0.333 £ 0.000 0.385 £ 0.000 0.537 £ 0.000
forwards SF'S 0.571 £ 0.000 0.500 £ 0.000 0.400 £ 0.000 0.444 £ 0.000 0.555 % 0.000
HSIC_ Lasso 0.575 £ 0.121 0.533 £ 0.193 0.363 4+ 0.127 0.426 4+ 0.144 0.572 4+ 0.135
Lasso_selection 0.610 £+ 0.117 0.574 4+ 0.141 0.477 £+ 0.165 0.508 4+ 0.131 0.606 + 0.124
mRMR 0.512 £ 0.050 0.427 + 0.068 0.408 £+ 0.106 0.414 £ 0.081 0.590 %+ 0.070
Permutation 0.633 = 0.115 0.607 &= 0.175 0.436 4+ 0.186 0.494 4+ 0.168 0.621 4 0.122
Table 37: Performance summary for classifier: SVM
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.457 £ 0.000 0.333 £ 0.000 0.267 4+ 0.000 0.296 4+ 0.000 0.573 4 0.000
forwards SFS 0.629 £+ 0.000 0.750 & 0.000 0.200 4 0.000 0.316 4+ 0.000 0.260 4 0.000
HSIC_ Lasso 0.599 £ 0.057 0.562 £+ 0.143 0.270 & 0.095 0.362 4+ 0.115 0.545 &+ 0.067
Lasso_selection 0.593 £ 0.038 0.552 4+ 0.100 0.377 £ 0.121 0.435 4+ 0.081 0.514 £ 0.119
mRMR 0.581 + 0.014 0.525 £ 0.047 0.297 & 0.030 0.379 £ 0.032 0.497 & 0.065
Permutation 0.598 £ 0.068 0.573 £ 0.119 0.379 £ 0.039 0.451 4+ 0.049 0.596 &+ 0.102
B.4 Laplacian multisite
Table 38: Performance summary for classifier: KNN
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.537 £ 0.000 0.500 £ 0.000 0.444 4+ 0.000 0.471 4+ 0.000 0.548 4 0.000
forwards SF'S 0.531 £ 0.000 0.492 £+ 0.000 0.383 4+ 0.000 0.431 4+ 0.000 0.540 4 0.000
HSIC_ Lasso 0.512 £ 0.046 0.469 £+ 0.052 0.449 4+ 0.091 0.457 & 0.070 0.506 & 0.046
Lasso_selection 0.512 + 0.019 0.472 + 0.022 0.454 + 0.027 0.463 £+ 0.023 0.524 + 0.034
mRMR 0.548 £ 0.020 0.512 £ 0.021 0.506 4+ 0.051 0.508 4+ 0.030 0.564 &+ 0.038
Permutation 0.504 £ 0.013 0.461 + 0.014 0.432 4+ 0.047 0.445 £ 0.028 0.498 £ 0.033
Table 39: Performance summary for classifier: LDA
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.634 £ 0.000 0.631 £ 0.000 0.506 £+ 0.000 0.562 £+ 0.000 0.630 £+ 0.000
forwards SF'S 0.589 &+ 0.000 0.563 £ 0.000 0.494 4+ 0.000 0.526 £ 0.000 0.579 % 0.000
HSIC_ Lasso 0.543 £ 0.019 0.505 4+ 0.023 0.452 4+ 0.059 0.476 4+ 0.042 0.561 4+ 0.019
Lasso_selection ~ 0.550 + 0.035 0.519 4+ 0.053 0.400 + 0.041 0.451 4+ 0.042 0.544 + 0.046
mRMR 0.542 + 0.020 0.506 £ 0.028 0.397 £ 0.045 0.444 £ 0.037 0.560 % 0.030
Permutation 0.588 £ 0.037 0.552 £ 0.039 0.590 £+ 0.035 0.570 £ 0.032 0.618 &+ 0.029
Table 40: Performance summary for classifier: LogR
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.634 + 0.000 0.631 = 0.000 0.506 + 0.000 0.562 £ 0.000 0.630 £ 0.000
forwards SF'S 0.594 £ 0.000 0.569 £ 0.000 0.506 4+ 0.000 0.536 4+ 0.000 0.579 4 0.000
HSIC_ Lasso 0.557 £ 0.019 0.525 £+ 0.027 0.469 4+ 0.031 0.495 4+ 0.017 0.589 4 0.036
Lasso_selection 0.560 £ 0.048 0.535 4+ 0.073 0.407 £ 0.057 0.461 4+ 0.057 0.581 £ 0.051
mRMR 0.542 £ 0.019 0.507 & 0.027 0.400 4 0.044 0.445 £ 0.034 0.561 £ 0.030
Permutation 0.590 £ 0.043 0.556 £ 0.045 0.566 4+ 0.059 0.560 4+ 0.049 0.615 & 0.040

B APPENDIX B 49
Table 41: Performance summary for classifier: RandomForest
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 £+ 0.000 0.508 4+ 0.000 0.383 4+ 0.000 0.437 4+ 0.000 0.566 4+ 0.000
forwards SF'S 0.577 £ 0.000 0.552 4+ 0.000 0.457 4+ 0.000 0.500 4+ 0.000 0.562 4+ 0.000
HSIC_ Lasso 0.572 £ 0.013 0.545 4+ 0.024 0.471 4+ 0.032 0.504 4+ 0.015 0.592 £+ 0.027
Lasso selection 0.522 4+ 0.024 0.483 £ 0.028 0.439 £ 0.027 0.460 + 0.025 0.529 4+ 0.018
mRMR 0.524 £ 0.025 0.481 + 0.033 0.436 £ 0.066 0.457 + 0.050 0.547 £+ 0.023
Permutation 0.547 £ 0.038 0.514 £+ 0.053 0.409 4+ 0.041 0.455 4+ 0.043 0.564 4+ 0.035
Table 42: Performance summary for classifier: SVM
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.600 £ 0.000 0.571 + 0.000 0.543 4+ 0.000 0.557 £ 0.000 0.601 +£ 0.000
forwards SF'S 0.543 £ 0.000 0.509 + 0.000 0.346 4+ 0.000 0.412 £ 0.000 0.566 + 0.000
HSIC_ Lasso 0.542 £ 0.041 0.509 + 0.057 0.402 4+ 0.043 0.448 4 0.042 0.547 £ 0.031
Lasso_selection 0.553 + 0.030 0.520 + 0.039 0.412 + 0.052 0.459 + 0.047 0.558 + 0.023
mRMR 0.577 £0.032 0.559 + 0.049 0.424 4+ 0.029 0.482 £ 0.033 0.557 £ 0.080
Permutation 0.596 £ 0.030 0.570 & 0.030 0.506 4+ 0.066 0.535 4 0.049 0.634 £ 0.021
B.5 rspect NYU
Table 43: Performance summary for classifier: KNN
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.571 £ 0.000 0.500 £ 0.000 0.133 4+ 0.000 0.211 4+ 0.000 0.542 4 0.000
forwards SF'S 0.514 £ 0.000 0.417 + 0.000 0.333 & 0.000 0.370 £ 0.000 0.513 £ 0.000
HSIC_ Lasso 0.604 £ 0.094 0.582 + 0.154 0.409 4+ 0.164 0.459 £ 0.135 0.588 £ 0.105
Lasso_selection 0.546 + 0.078 0.470 + 0.116 0.310 + 0.078 0.371 £+ 0.085 0.492 + 0.092
mRMR 0.529 £ 0.021 0.431 + 0.045 0.337 & 0.092 0.375 £ 0.077 0.503 £ 0.047
Permutation 0.530 £ 0.067 0.404 + 0.158 0.271 & 0.136 0.320 £ 0.146 0.515 £ 0.057
Table 44: Performance summary for classifier: LDA
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.457 4+ 0.000 0.333 4+ 0.000 0.267 4+ 0.000 0.296 4+ 0.000 0.513 4+ 0.000
forwards SF'S 0.600 £+ 0.000 0.538 4+ 0.000 0.467 4+ 0.000 0.500 4+ 0.000 0.563 + 0.000
HSIC_ Lasso 0.604 £+ 0.052 0.570 4+ 0.100 0.448 4+ 0.123 0.485 4+ 0.082 0.662 4+ 0.043
Lasso_selection 0.581 + 0.097 0.549 4+ 0.184 0.418 + 0.127 0.459 4+ 0.115 0.585 + 0.102
mRMR 0.581 £ 0.086 0.593 4+ 0.230 0.405 4+ 0.144 0.443 4+ 0.115 0.569 &+ 0.094
Permutation 0.575 £ 0.128 0.525 4+ 0.165 0.470 4+ 0.147 0.488 4+ 0.143 0.610 + 0.134
Table 45: Performance summary for classifier: LogR
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.457 £ 0.000 0.300 + 0.000 0.200 £ 0.000 0.240 4+ 0.000 0.517 £ 0.000
forwards SF'S 0.629 £ 0.000 0.583 £+ 0.000 0.467 4+ 0.000 0.519 4+ 0.000 0.567 4 0.000
HSIC_ Lasso 0.605 £ 0.082 0.578 4+ 0.138 0.460 4+ 0.033 0.505 4+ 0.059 0.581 4 0.142
Lasso_selection 0.575 + 0.069 0.535 + 0.132 0.406 + 0.164 0.435 £+ 0.120 0.555 + 0.105
mRMR 0.581 £ 0.086 0.593 + 0.230 0.405 4+ 0.144 0.443 £ 0.115 0.573 £ 0.098
Permutation 0.518 £ 0.097 0.445 + 0.128 0.447 4+ 0.111 0.443 £ 0.114 0.522 £ 0.085

B APPENDIX B 50
Table 46: Performance summary for classifier: RandomForest
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.600 £ 0.000 0.545 4+ 0.000 0.400 4+ 0.000 0.462 4+ 0.000 0.582 4+ 0.000
forwards SF'S 0.686 + 0.000 0.700 4+ 0.000 0.467 4+ 0.000 0.560 4+ 0.000 0.683 4+ 0.000
HSIC_ Lasso 0.564 £+ 0.063 0.503 4+ 0.096 0.326 4+ 0.059 0.391 4+ 0.061 0.550 4+ 0.078
Lasso_selection ~ 0.558 + 0.055 0.467 + 0.133 0.258 + 0.111 0.323 4+ 0.126 0.536 + 0.090
mRMR 0.564 £ 0.092 0.519 £+ 0.182 0.296 4+ 0.106 0.365 4+ 0.117 0.521 4+ 0.062
Permutation 0.541 £+ 0.083 0.481 + 0.183 0.314 4+ 0.138 0.363 = 0.111 0.521 £ 0.161
Table 47: Performance summary for classifier: SVM
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 £ 0.000 0.444 + 0.000 0.267 & 0.000 0.333 £ 0.000 0.537 £ 0.000
forwards SF'S 0.600 £ 0.000 0.667 & 0.000 0.133 4+ 0.000 0.222 £ 0.000 0.310 £ 0.000
HSIC_ Lasso 0.598 £ 0.052 0.579 + 0.102 0.352 & 0.102 0.423 £ 0.085 0.558 £ 0.119
Lasso_ selection 0.586 & 0.074 0.634 £ 0.247 0.310 = 0.130 0.381 & 0.116 0.488 £+ 0.134
mRMR 0.598 £ 0.066 0.678 + 0.264 0.299 4+ 0.114 0.380 £ 0.106 0.554 £ 0.116
Permutation 0.621 £ 0.062 0.608 + 0.148 0.421 &£ 0.177 0.471 £ 0.127 0.618 £ 0.070
B.6 rspect multisite
Table 48: Performance summary for classifier: KNN
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 £ 0.000 0.507 + 0.000 0.457 4+ 0.000 0.481 £ 0.000 0.538 £ 0.000
forwards SF'S 0.560 £ 0.000 0.522 + 0.000 0.593 4 0.000 0.555 £ 0.000 0.542 + 0.000
HSIC_ Lasso 0.519 £ 0.036 0.480 + 0.048 0.402 4+ 0.023 0.437 £ 0.029 0.521 £ 0.037
Lasso_selection 0.520 + 0.036 0.480 + 0.038 0.444 + 0.047 0.461 + 0.039 0.517 + 0.036
mRMR 0.519 £ 0.015 0.478 + 0.018 0.424 4+ 0.039 0.449 £ 0.025 0.523 £ 0.010
Permutation 0.521 £ 0.008 0.478 + 0.011 0.395 & 0.036 0.432 £ 0.025 0.532 £ 0.008
Table 49: Performance summary for classifier: LDA
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.537 £+ 0.000 0.500 4+ 0.000 0.469 4+ 0.000 0.484 4+ 0.000 0.552 4+ 0.000
forwards SF'S 0.560 £+ 0.000 0.525 4+ 0.000 0.519 4+ 0.000 0.522 4+ 0.000 0.587 4+ 0.000
HSIC_ Lasso 0.560 £ 0.030 0.530 4+ 0.036 0.420 4+ 0.072 0.466 4+ 0.054 0.566 + 0.036
Lasso selection 0.542 4+ 0.016 0.506 £ 0.023 0.345 £ 0.057 0.408 + 0.045 0.540 4 0.040
mRMR 0.544 £+ 0.014 0.510 + 0.021 0.350 & 0.038 0.414 £ 0.031 0.531 £ 0.028
Permutation 0.582 £ 0.028 0.551 4+ 0.034 0.513 4+ 0.059 0.531 4+ 0.045 0.603 4 0.040
Table 50: Performance summary for classifier: LogR
Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.520 £ 0.000 0.479 + 0.000 0.432 £ 0.000 0.455 4+ 0.000 0.552 £ 0.000
forwards SF'S 0.566 £+ 0.000 0.532 + 0.000 0.519 4+ 0.000 0.525 £ 0.000 0.587 + 0.000
HSIC Lasso 0.573 £ 0.032 0.544 + 0.038 0.452 4+ 0.066 0.493 £ 0.054 0.592 + 0.025
Lasso_selection 0.543 + 0.024 0.506 + 0.035 0.360 + 0.063 0.419 + 0.053 0.542 + 0.028
mRMR 0.542 £ 0.013 0.507 + 0.019 0.345 4+ 0.035 0.410 £ 0.029 0.531 £ 0.028
Permutation 0.592 £ 0.026 0.560 + 0.028 0.548 4+ 0.053 0.554 £ 0.038 0.625 £ 0.029

B APPENDIX B ol
Table 51: Performance summary for classifier: RandomForest

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

backward SF'S 0.549 + 0.000 0.514 + 0.000 0.444 + 0.000 0.477 + 0.000 0.561 4 0.000
forwards SFS 0.583 £ 0.000 0.551 + 0.000 0.531 + 0.000 0.541 4+ 0.000 0.593 4 0.000
HSIC_ Lasso 0.575 + 0.038 0.548 + 0.051 0.492 + 0.069 0.516 + 0.048 0.577 4+ 0.035
Lasso_selection 0.521 £ 0.040 0.480 + 0.048 0.424 4+ 0.066 0.449 + 0.054 0.520 £ 0.022
mRMR 0.504 + 0.030 0.464 + 0.030 0.409 + 0.041 0.432 + 0.019 0.509 4+ 0.015
Permutation 0.566 + 0.019 0.536 + 0.021 0.462 + 0.039 0.495 + 0.029 0.582 + 0.037

Table 52: Performance summary for classifier: SVM

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC

backward SFS 0.531 £+ 0.000 0.493 + 0.000 0.420 + 0.000 0.453 + 0.000 0.538 4 0.000
forwards SFS 0.571 £ 0.000 0.537 + 0.000 0.531 £ 0.000 0.534 4+ 0.000 0.577 + 0.000
HSIC_ Lasso 0.564 + 0.023 0.536 + 0.031 0.437 + 0.094 0.476 + 0.056 0.577 + 0.034
Lasso selection 0.533 4 0.025 0.495 & 0.033 0.374 £+ 0.064 0.423 + 0.048 0.539 4 0.020
mRMR 0.526 + 0.027 0.485 + 0.037 0.347 + 0.056 0.402 + 0.043 0.519 4+ 0.030
Permutation 0.599 + 0.038 0.575 + 0.049 0.519 + 0.078 0.543 + 0.055 0.626 + 0.049

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

C APPENDIX C 52

C Appendix C — Python Code

C.1 pipeline

import json

import os

import time

import glob

from tqdm import tqdm

from datetime import datetime

from joblib import Parallel, delayed

from classification.src import classifiers as cl

from featureselection.src.feature_selection_methods import *

from Pipeline import load_graph, load_full_corr,
train_and_evaluate, cross_validate_model,
print_selected_features, failsafe_feature_selection, classify,
load_dataframe

from sklearn.metrics import accuracy_score, precision_score,
recall _score, fl_score, roc_auc_score, confusion_matrix

from featureselection.src import cluster

========== CONFIGURATION ==========

classifiers_to_run = ["SVM", "RandomForest", "LogR", "LDA", "KNN"
]

feature_selection_methods = [

("Lasso_selection", Lasso_selection, {"alpha": 0.044984, "
max_iter": 2000}, "cv"), #0.044984 for full corr

("HSIC Lasso", hsiclasso, {"num_feat": 19}, "cv"), #98 for
full corr

("mRMR", mRMR, {"num_features_to_select": 100}, "cv"),

("Permutation", Perm_importance, {}, "cv"),

("forwards_ SFS", forwards_SFS, {"n_features_to_select": 20},
"train"),

("backward_ SFS", backwards_SFS, {"n_features_to_select": 10},

"train")

inf_methods = ["partial_corr", "mutual_info", "norm_laplacian", "
rlogspect"]

#("ReliefF", reliefF_, {"num_ features_to_select": 200}, "cv")

========== SAVE RESULTS ==========

def save_results(classifier, feature_selection_name, inf_method,
results_dict):
os.makedirs(f"results_graph NYU _male/{classifier}/{inf_method
}", exist_ok=True)

Generate timestamp: YYYYMMDD-HHMMSS

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

C APPENDIX C

93

timestamp = datetime.now().strftime ("%Y%m%d-%H%LM%S")

filename = f"results_graph_ NYU_male/{classifier}/{inf_method
}/{feature_selection_namel}_{timestamp}. json"

Helper function to convert numpy types
def convert (o):
if isinstance(o, np.integer):
return int (o)
if isinstance(o, np.floating):
return float (o)
if isinstance (o, np.ndarray):
return o.tolist ()
return o

with open(filename, "w") as f:
json.dump(results_dict, f, indent=4, default=convert)

print (£" uSaved: {filenamel}")
======== MAIN PER CLASSIFIER ========== §#

main_for_classifier(classifier):
print (f"\n\n==========_ Running_ pipeline for,{classifier}

for inf_method in inf_methods:
print (f"\n---_,Using inference method: {inf_method} ,---")

Load data with current inference method
X, y = load_graph(sex=’male’, site_id=’NYU’, method=
inf_method)

Run raw model just for reference
X_train, X_test, y_train, y_test = train_and_evaluate (X,
y, classifier)

Use clustered features for Perm / SFS

X_clustered = cluster.cluster (X_train, y_train, t=3)

X_mRMR = mRMR(X_train, y_train, classifier,
num_features_to_select=50)

Add results for raw data without feature selection

print (f"\n===_Running, ,Raw_ data_ for ,{classifier} ==="
result_raw = {

"classifier": classifier,

"feature_selection": "Raw_data",

"mode": "cv"
}

start_time = time.time ()

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

109

110

111

112

113

114

115

116

117

C APPENDIX C 54

Cross-validation for raw data
selected_features, selected_feature_names, avg_metrics,

fold metrics = cross_validate _model(
X, y, None, classifier, n_splits=5, return_metrics=
True
)
result_raw["selected_features"] = selected_features
result _raw["selected feature names"] = list(
selected_feature_names) if selected_feature_names 1is
not None else []
result_raw["metrics"] = avg_metrics
result _raw["fold metrics"] = fold metrics

Save raw data results

elapsed = time.time() - start_time
result_raw["elapsed_seconds"] = elapsed
save _results(classifier, "Raw_,data", inf method,

result_raw)

Loop over feature selection methods with tqgdm per
classifier

for fs_name, fs_func, fs_kwargs, mode in tqdm(
feature_selection_methods, desc=f"{classifier} pipeline
", position=0, leave=True):

print (f"\n===_ Running, ,{fs_namel} for,{classifier} ==="
)
result = {
"classifier": classifier,
"feature_selection": fs_name,
"mode": mode
}
start_time = time.time ()
if mode == "cv'":
Normal cross-validation capture avg metrics

selected_features, selected_feature_names,
avg_metrics, fold_metrics =
cross_validate_model (
X, y, fs_func, classifier, n_splits=5,

return_metrics=True, **xfs_kwargs

)

print_selected_features(selected_features,
selected_feature_names, print_feat=False)

result["selected _features"] = selected_features
result["selected feature names"] = list(
selected_feature_names) if
selected feature names is not None else []

C APPENDIX C 95

118 result["metrics"] = avg_metrics

119 result["fold metrics"] = fold metrics

120

121 elif mode == "train":

122 # Single run on training data classify

123 if fs_name == "Permutation':

124 select_features = X_clustered

125 elif fs_name == "forwards_ SFS":

126 select_features = X_mRMR

127 elif fs_name == "backwards SFS":

128 select_features = X_mRMR

129 else:

130 select_features = None # fallback

131

132 selected_features = failsafe_feature_selection(

133 fs_func, X_train, y_train, min_features=20,
classifier=classifier, select_features=
select_features, *xxfs_kwargs

134)

135

136 selected_feature_names = classify(

137 X_train, X_test, y_train, y_test,
selected_features, classifier, performance=
True

138)

139 print_selected_features(selected_features,

selected_feature_names, print_feat=False)

140

141 # Prepare data

142 scaler = StandardScaler ()

143 X train_scaled = scaler.fit_transform(X_ train)

144 X_test_scaled = scaler.transform(X_test)

145

146 X_train_sel = X_train_scaled[:, selected_features

]

147 X_test_sel = X_test_scaled[:, selected_features]

148

149 if classifier == "SVM":

150 model = cl.applySVM(X_train_sel, y_train)

151 elif classifier == "RandomForest":

152 model = cl.applyRandForest(X_train_sel,
y_train)

153 elif classifier == "LogR":

154 model = cl.applylLogR(X_train_sel, y_train)

155 elif classifier == "LDA":

156 model = cl.applyLDA(X_train_sel, y_train)

157 elif classifier == "KNN":

158 model = cl.applyKNN(X_train_sel, y_train)

159

160 y_pred = model.predict(X_test_sel)

161 try:

162

164

165

166

167

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187

188

189

190

191

192

193

194

195

196

198

199

200

201

202

203

204

205

206

C APPENDIX C 26

y_proba = model.predict_proba(X_test_sel)[:,
1]
except:
y_proba = None

acc = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
try:

auc = roc_auc_score(y_test, y_proba) if

y_proba is not None else None

except:

auc = None
cm = confusion_matrix(y_test, y_pred)

tn, fp, fn, tp = cm.ravel()
sensitivity = tp / (tp + fn) if (tp + fn) > O

else 0.0
result["selected_features"] = selected_features
result["selected feature names"] = list(

selected_feature_names) if
selected feature names is not None else []

result["metrics"] = {
"num feat": len(selected_features),
"accuracy": acc,
"precision": precision,
"recall": recall,
"fl1 _score": f1,
"auroc": auc,
"sensitivity": semnsitivity
}
Save result after each feature selection run
elapsed = time.time() - start_time
result["elapsed_seconds"] = elapsed

save_results(classifier, fs_name, inf_method, result)

print (£f"\ n _Finished_ {classifier} pipeline!\n")

def gather_and_rank_results(result_dir="

results_graph_total_multisite", metric="fl_score", top_n=5):
results = []
for clf in classifiers_to_run:

for

inf in inf_methods:
path = os.path.join(result_dir, clf, inf, "*.json")
for file in glob.glob(path):
with open(file, "r") as f:
data = json.load(f)

207

208

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

238

239

240

241

242

243

244

245

246

247

248

249

250

C APPENDIX C 57

metrics = data.get("metrics", {})
results.append ({
"classifier": clf,
"inf_method": inf,
"fs_method": data.get("feature_selection"
, "Unknown"),
"metric_value": metrics.get(metric, 0),
B
df = pd.DataFrame(results)
top_results = df.sort_values(by="metric_value", ascending=
False) .head(top_n)
print("\ n uTopuconfigurations based on", metric)

print (top_results)
return top_results

def print_selected_features_from_top_result(result_dir="
results_graph_total_multisite", metric="fl_score"):
top_results = gather_and_rank_results(result_dir=result_dir,
metric=metric, top_n=1)
if top_results.empty:
print (" uNo,top,result found.")
return

top = top_results.iloc[0]
clf top["classifier"]
inf top["inf_method"]
fs = top["fs_method"]

path = os.path. join(result_dir, clf, inf, £"{fs}_x.json")
best_file = max(glob.glob(path), key=os.path.getctime) # get
the most recent

with open(best_file, "r") as f:
data = json.load (f)

selected_feature_names = data.get("selected_feature_names
", [
print(£f"\ n uBestyconfiguration: {clf} + {inf} +,{£fs}")
print (£" uLoaded from:_ {best_filel}")
print (£" uSelected Features_ ({len(selected_feature_names
)P :m)

for feat in selected_feature_names:
print (f" -, {feat}")

__main__":

print (" uStarting parallel pipeline...")

251

252

254

255

256

258

259

260

261

262

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

C APPENDIX C o8

Run all classifiers in parallel
Parallel (n_jobs=len(classifiers_to_run)) (
delayed (main_for_classifier) (clf) for clf in
classifiers_to_run

print("\ n LuAll ,classifiers completed!")

#top_configs = gather_and_rank_results ()
print_selected_features_from_top_result ()

print("\ n uProgram_ finished")

Listing 1: parallel main

from sklearn.metrics import classification_report,
confusion_matrix

import numpy as np

import pandas as pd

import os

from scipy import stats

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split, KFold

from sklearn.metrics import mean_squared_error, accuracy_score,
recall_score, precision_score, fl_score, roc_auc_score,
confusion_matrix, ConfusionMatrixDisplay, roc_curve

from classification.src import classifiers as cl,
basicfeatureextraction

from featureselection.src.feature_selection_methods import *

from featureselection.src import cluster

from featureselection.src import Compute_HSIC_Lasso as hsic_lasso

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import StandardScaler , RobustScaler

from featuredesign.graph_inference.AAL_test import multiset_feats
, load_files, adjacency_df

import glob

import cvxpy as cp

import seaborn as sns

def load_file(sex=’all’, method=’pearson_corr’, alpha=5):
#folder_path = r"C:\Users\guus\Python_map\AutismDetection-
main\abide\female-cpac-filtnoglobal-aal" # Enter your local
ABIDE dataset path
fmri_data, subject_ids, _, _ = load_files(sex=sex, max_files
=800, site="NYU", shuffle=True, var_filt=True, ica=True)

print (f"Final data:_ {len(fmri_data)} subjects")
print (f"Final_ IDs: {len(subject_ids)}")

full_df = adjacency_df (fmri_data, subject_ids, method =

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

C APPENDIX C

29

def

method, alpha = alpha)
print ("Merged feature+label shape:\n", full_df.shape)

#print (full_df)
subject_id_to_plot = 0051044’ # Change this to any valid
subject 1ID

#plot_adjacency _matrix(full_df, subject_id_to_plot)

full _df = full_df.sample(frac=1, random_state=42) .reset_index
(drop=True) # Shuffle the DataFrame

>
|

full_df .drop(columns=[’DX_GROUP’, ’subject_id’, ’SEX’])
full _df [’DX_GROUP’].map({1: 1, 2: 0}) #1 ASD, O ALL

<
I

Making sure the data is numeric

X X.apply(pd.to_numeric, errors=’coerce’)

X X.dropna(axis=1,how=’all’)

non_nan_ratio = X.notna () .mean ()

X X.loc[:, non_nan_ratio > 0.8] # Keep columns with more
than 50% non-NaN values

Making sure there is no 0O var data for the hsic algorithm

X = X.locl[:, X.var() > 1e-6]

NaN values are filled with the median of the column
X= X.fillna(X.median ())

return X, y

load_graph_csv(method, sex=’all’, site_id=None):
Load data
if method == ’laplacian’:
data = pd.read_csv(’cpac_rois-aal_nogsr_filt_norm-
laplacian_direct_20ICA_alpha0.0001_thr0.25.csv’,
encoding="I1S0-8859-1")
elif method == ’rspect’:
data = pd.read_csv(’cpac_rois-
aal_nogsr_filt_rspect_direct_20ICA_alpha0.0001_thr0.10.
csv’, encoding=’IS0-8859-1")
else:

print ("uselaplacian or rspect as method")
data = datal[data[’DX_GROUP’].notna ()]

Separate by sex
fc_female = datal[data[’SEX’] == 2]

fc male = datal[data[’SEX’] == 1]
if sex == ’female’:

fc = fc_female
elif sex == ’male’:

fc = fc_male

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

107

109

110

111

112

113

114

115

116

117

C APPENDIX C 60
elif sex == ’all’:
fc = pd.concat([fc_female, fc_male], axis=0, ignore_index
=True)
else:

print ("Use male, female or all as sex")

if site_id is not None:

fc = fc[fc[’SITE_ID’] == site_id]
fc = fc.sample(frac=1, random_state=42) .reset_index (drop=True
) # Shuffle the DataFrame
fc = fc.dropna(subset=[’DX_GROUP’])

X = fc.drop(columns=[’DX_GROUP’, ’SEX’, ’SITE_ID’, ’
subject_id’, ’AGE_AT_SCAN’])
y = fc[’DX_GROUP’]

Making sure the data is numeric

X = X.apply(pd.to_numeric, errors=’coerce’)

X = X.dropna(axis=1,how=’all’)

non_nan_ratio = X.notna () .mean ()

X = X.loc[:, non_nan_ratio > 0.8] # Keep columns with more
than 50% non-NaN values

Making sure there is no O var data for the hsic algorithm

X = X.loc[:, X.var() > 1le-4]

NaN values are filled with the median of the column

X = X.fillna(X.median ())

Remove extremely correlated features

X = correlation_filter (X, threshold=0.9)
print (f"After outlier removal: {X.shape}")

Remove extreme outliers

X = remove_extreme_outliers (X, threshold=3.5)
#print (f"After outlier removal: {X.shapel}")

Apply feature transformations for better distributions
X = apply_feature_transformations (X)
#print (f"After transformation: {X.shapel}")

Site effect correction
if ’SITE_ID’ in fc.columns:

X = correct_site_effects(X, fc[’SITE_ID’])
#print (f"After site correction: {X.shapel}")

#print (£"X: {X}, y: {y}"™

return X, y

def load_graph(sex=’all’, site_id=None, method="norm_laplacian",

cov="1ledoit"):

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

136

137

138

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

156

157

C APPENDIX C 61
fmri_data_f, subject_ids_f, _, _ = load_files(sex=’Female’,
max_files=800, site=site_id, shuffle=True, var_filt=True,
ica=True)
fmri_data_m, subject_ids_m, _, _ = load_files(sex=’Male’,
max_files=800, site=site_id, shuffle=True, var_filt=True,
ica=True)
fc_female = multiset_feats(fmri_data_f, subject_ids_f,
inf _method=method, cov_method=cov,
thresh=0.1, n_jobs=-1, feats="graph")
fc_male = multiset_feats(fmri_data_m, subject_ids_m,
inf_method=method, cov_method=cov,
thresh=0.1, n_jobs=-1, feats="graph")
if sex == ’female’:
fc = fc_female
elif sex == ’male’:
fc = fc_male
elif sex == ’all’:
fc = pd.concat([fc_female, fc_male], axis=0, ignore_index

=True)
else:
print ("Useymale, female orall as sex")

if site_id is not None:

fc = fcl[fc[’SITE_ID’] == site_id]

fc = fc.sample(frac=1, random_state=42) .reset_index(drop=True
) # Shuffle the DataFrame

fc = fc.dropna(subset=[’DX_GROUP’])

X = fc.drop(columns=[’DX_GROUP’, ’SEX’, ’SITE_ID’, °’
subject_id’])
y = fc[’DX_GROUP’]

if X.empty or X.shape[1l] < 10:
raise ValueError (" uNot enough jusable featuresy
extracted from_ymultiset_feats")

#X.to_csv(’laplacian_prefilter_ledoit.csv’, index=False)

Making sure the data is numeric

X X.apply(pd.to_numeric, errors=’coerce’)

X X.dropna(axis=1,how=’all’)

non _nan _ratio = X.notna().mean()

X X.loc[:, non_nan_ratio > 0.8] # Keep columns with more

than 50% non-NaN values
Making sure there is no O var data for the hsic algorithm
X = X.loc[:, X.var() > le-4]
NaN values are filled with the median of the column
X = X.fillna(X.median ())

158

159

161

162

163

164

166

167

168

169

170

171

172

173

174

175

177

178

179

180

181

182

184

185

186

187

189

190

191

192

194

195

196

197

198

199

200

201

C APPENDIX C 62

def

Remove extremely correlated features

X = correlation_filter (X, threshold=0.9)
print (f"After outlier removal: {X.shape}")

Remove extreme outliers

X = remove_extreme_outliers (X, threshold=3.5)
#print (f"After outlier removal: {X.shapel}")

Apply feature transformations for better distributions
X = apply_feature_transformations (X)
#print (f"After transformation: {X.shapel}")

Site effect correction

if SITE_ID’ in fc.columns:
X = correct_site_effects (X, fc[’SITE_ID’])
#print (f"After site correction: {X.shapel")

#X.to_csv(’laplacian_ledoit.csv’, index=False)
return X, y
load_full _corr(sex=’all’, site_id=None):

fc_female = basicfeatureextraction.extract_fc_features("abide
/female-cpac-filtnoglobal-aal", "abide/
Phenotypic_V1_Ob_preprocessedl.csv")

fc_male = basicfeatureextraction.extract_fc_features("abide/
male-cpac-filtnoglobal-aal", "abide/
Phenotypic_V1_Ob_preprocessedl.csv")

if sex == ’female’:
fc = fc_female
elif sex == ’male’:
fc = fc_male
elif sex == ’all’:
fc = pd.concat([fc_female, fc_male], axis=0, ignore_index

=True)
else:
print ("Useymale, female or all as sex")

if site_id is not None:

fc = fcl[fc[’SITE_ID’] == site_id]
fc = fc.sample(frac=1, random_state=42) .reset_index(drop=True
) # Shuffle the DataFrame
fc = fc.dropna(subset=[’DX_GROUP’])

X = fc.drop(columns=[’DX_GROUP’, ’SEX’, ’SITE_ID’, ~’
subject_id’, ’AGE’])
y = fc[’DX_GROUP’]

Making sure the data is numeric
X = X.apply(pd.to_numeric, errors=’coerce’)

202

203

204

205

206

207

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

239

240

241

C APPENDIX C 63
X = X.dropna(axis=1,how=’all’)
non_nan_ratio = X.notna() .mean()
X = X.loc[:, non_nan_ratio > 0.8] # Keep columns with more
than 50% non-NaN values
Making sure there is no O var data for the hsic algorithm
X = X.loc[:, X.var() > le-4]
NaN values are filled with the median of the column
X = X.fillna(X.median ())
return X, y
def load_dataframe (path=’multi’):
if path ==’uni’:
folder_path = ’Feature_Dataframes/first_run’
if path == ’multi’:
folder_path = ’Feature_Dataframes/second_run’
#file_name = ’cpac_rois-
aal_nogsr_filt_LADMM_direct_20ICA_graph_thr0.3.csv’
file_name = ’cpac_rois-
aal_nogsr_filt_LADMM_var_20ICA_graph_thr0.3.csv’
#file_name = ’cpac_rois-aal_nogsr_filt_norm-
laplacian_direct_20ICA_graph_thr0.3.csv’
#file_name = ’cpac_rois-aal_nogsr_filt_norm-
laplacian_glasso_20ICA_graph_thr0.3.csv’
#file_name = ’cpac_rois-aal_nogsr_filt_norm-
laplacian_ledoit_20ICA_graph_thr0.3.csv’
#file_name = ’cpac_rois-aal_nogsr_filt_norm-
laplacian_var_20ICA_graph_thr0.3.csv’
file_path = os.path.join(folder_path, file_name)
fc = pd.read_csv(file_path)
#fc = pd.concat([pd.read_csv(file) for file in glob.glob(os.
path.join(folder_path, ’*.csv’))], ignore_index=True)
fc = fc.sample(frac=1, random_state=42).reset_index (drop=True

) # Shuffle the DataFrame
#fc = fc.dropna(subset=[’DX_GROUP’])

X = fc.drop(columns=[’DX_GROUP’, ’SEX’, ’SITE_ID’, °’
subject_id’, ’AGE_AT_SCAN’1)
y = fc[’DX_GROUP’]

Making sure the data is numeric

X X.apply(pd.to_numeric, errors=’coerce’)
X X.dropna(axis=1,how=’all’)
non_nan_ratio = X.notna() .mean()

X = X.loc[:, non_nan_ratio > 0.8] # Keep columns with more
than 50% non-NaN values

Making sure there is no O var data for the hsic algorithm

X = X.loc[:, X.var() > le-4]

NaN values are filled with the median of the column

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

259

260

261

262

263

264

265

266

267

268

270

271

272

273

274

275

276

277

278

280

281

282

283

284

286

287

288

289

C APPENDIX C 64

X = X.fillna(X.median ())
print (f"shape dataframe: {X.shapel}")

print (£"X: {X}, y:u{y}™)
return X, y
def evaluate_performance(y_true, y_pred, y_proba=None, show_plots

=False, classifier_name="", fold _idx=None, verbose=True):
Compute basic metrics

acc = accuracy_score(y_true, y_pred)

prec = precision_score(y_true, y_pred)

rec = recall_score(y_true, y_pred)

f1 = f1_score(y_true, y_pred)

auc = roc_auc_score(y_true, y_proba) if y_proba is not None

else None

if verbose==True:
print (f"\nPerformance Metrics,({classifier_name}):")
print (f"Performance Metrics, ({classifier_namel}):")
print (£", Accuracy:,,{acc:.4£f}")
print (f", Precision:_ {prec:.4f}")
print (£",,Recall: ,, {rec:.4£}")
print (£", F1,Score: ,{f1:.4£}")
if auc is not None:
print (£"LAUC: LLuuuuuilauc: . 4£3")

if show_plots:
Confusion matrix

cm = confusion_matrix(y_true, y_pred)
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
display_labels=["Class 0", "Classy1"]l)

disp.plot (cmap="Blues")
plt.title(f"Confusion Matrix -, {classifier_namel}")
plt.show ()

ROC curve (if proba is available)

if y_proba is not None:
fpr, tpr, _ = roc_curve(y_true, y_proba)
plt.plot (fpr, tpr, label=f"AUC,=_{auc:.2f}")
plt.plot ([0, 11, [0, 11, ’k--7)
plt.xlabel ("False Positive Rate")
plt.ylabel ("True Positive Rate")
plt.title (£"ROC_,Curve -, {classifier_namel}")
plt.legend ()
plt.grid ()
plt.show ()

return {
"accuracy": acc,
"precision": prec,

290

291

292

293

294

295

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

C APPENDIX C

65

"recall": rec,
"f1": f1
"auc": auc

def print_selected_features(selected_features,
selected_feature_names, print_feat=False):
num_feat = len(selected_features)
print (f"Selected features,({num_feat}):", selected_features)
#if print_feat==True:
print (f"\nSelected feature names ({len(
selected feature names)}):")
for name in selected_feature_names:
print ("-", name)

def train_and_evaluate(X, y, classifier):
#splitting the data in train and test 0.8:0.2 respecively
X_train, X_test, y_train, y_test = train_test_split(X, vy,
test_size=0.2, random_state=42, stratify=y)

print(f"y_train: {y_train},, y_test: {y_testl}")

#scale the data for the classifier

scaler = RobustScaler ()
X_train_scaled = scaler.fit_transform(X_train)
X test_scaled = scaler.transform(X_test)
if classifier == "SVM":

model_raw = cl.applySVM(X_train_scaled, y_train)
elif classifier == "RandomForest":

model_raw = cl.applyRandForest(X_train_scaled, y_train)
elif classifier == "LogR":

model_raw = cl.applyLogR(X_train_scaled, y_train)
elif classifier == "LDA":

model_raw = cl.applyLDA(X_train_scaled, y_train)
elif classifier == "KNN":

model_raw = cl.applyKNN(X_train_scaled, y_train)

else:
print("Classifiernot supported: choose from ,SVM,
RandomForest , LogR, LDA or ,KNN")
#applying the classifier to the total data
model _raw = cl.applySVM(X_train, y_train)
y_pred_raw = model_raw.predict(X_test)

try:

y_proba_raw = model_raw.predict_proba(X_test_scaled)[:,
1]
except:
y_proba_raw

None

#finding mse and accuracy

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

C APPENDIX C 66

def

perf_raw = evaluate_performance(y_test, y_pred_raw,
y_proba_raw, classifier_name=classifier, verbose=False)

acc_raw = perf_raw["accuracy"]

mse_raw = mean_squared_error (y_test, y_pred_raw)

precision_raw = perf_raw["precision"]

recall_raw = perf_raw["recall"]

Fl_raw = perf_raw["f1"]

AUC_raw = perf_raw["auc"]

#print (classification_report(y_test, y_pred_raw, target_names
=["Class 0", "Class 1"]))

#print (’Confusion matrix:’, confusion_matrix(y_test,
y_pred_raw))

#print (’ Amount of features:’, X_train.shapel[1])

#acc, mse, selected_feature_names = cross_validate_model (X, y

, selected features)

print (f"Train/TestyAccuracyyraw:{acc_raw:.4f}, MSE: {mse_raw
:.4f}, Precision: {precision_raw:.4f}, Recall: {recall_raw
:.4f}, F1:{F1_raw:.4f}, AUC:_ {AUC_raw:.4f}")

return X_train, X_test, y_train, y_test

classify(X_train, X_test, y_train, y_test, selected_features,
classifier, performance=True):

##scale the data for the classifier

scaler = StandardScaler ()

X _train_scaled = X_train #scaler.fit_transform(X_train)
X _test_scaled = X _test #scaler.transform(X test)

if isinstance(X_train_scaled, pd.DataFrame):

If it’s a DataFrame, use ‘.iloc[]‘ for indexing
selected_train x = X _train_scaled.ilocl[:,
selected_features]
selected _test_x = X _test_scaled.iloc[:, selected features
]
else:
If it’s a numpy array, use standard array indexing
selected_train_x = X_train_scaled[:, selected_features]
selected _test _x = X _test_scaled[:, selected features]
if classifier == "SVM":
model = cl.applySVM(selected_train_x, y_train)
elif classifier == "RandomForest":
model = cl.applyRandForest(selected_train_x, y_train)
elif classifier == "LogR":

model = cl.applylLogR(selected_train_x, y_train)
elif classifier == "LDA":

model = cl.applyLDA(selected_train_x, y_train)
elif classifier == "KNN":

model = cl.applyKNN(selected_train_x, y_train)

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

C APPENDIX C 67

else:
print("Classifier_ not supported: choose from ,SVM,
RandomForest , LogR, DecisionTreeor MLP")

#applying the classifier to the selected data

y_pred = model.predict(selected_test_x)

#params=bestSVM_RS(X_train, X_test, y_train, y_test,
svcdefault=SVC())

#finding mse and accuracy

Predict probabilities if supported

try:
y_proba = model.predict(selected_test_x) if hasattr (model
, "predict_proba") else None
if y_proba is not None:
y_proba = model.predict_proba(selected_test_x)[:, 1]
except:

y_proba = None
if performance==True:
evaluate_performance(y_test, y_pred, y_proba,
classifier_name=classifier)
#getting and printing the feature names
feature_names = X_train.columns
selected _feature names = feature names[selected features]

return selected_feature_names

def cross_validate_model (X, y, feature_selection, classifier, raw
=True, return_metrics=False, n_splits=5, x*x*
feature_selection_kwargs):
#K-Fold cross-validation evaluation.
kf = StratifiedKFold(n_splits=n_splits, shuffle=True,
random_state=42) #shuffle=True, random_state=42

acc_scores = []
mse_scores = []
precision_scores = []
recall _scores = []
F1_scores = []
AUC_scores = []
acc_scores_raw = []
mse_scores_raw = []
precision_scores_raw = []
recall_scores_raw = []
F1 _scores_raw = []
AUC_scores_raw= []

fold metrics = []

if classifier is not Perm_importance or backwards_SFS:
Convert inputs to numpy arrays once at the beginning
if isinstance (X, pd.DataFrame):
feature_names = X.columns

C APPENDIX C 68

422 X = X.to_numpy O

123 elif isinstance(X, pd.Series):

424 feature_names = [f"feature_{i}" for i in range(len(X)
)]

425 X = X.to_numpy ()

426 else:

427 feature_names = [f"feature_{i}" for i in range (X.

shape [1])]

428

429 X = np.asarray(X, dtype=np.floaté4)

430

431 # Inside failsafe_feature_selection

432 if isinstance(y, pd.Series) or isinstance(y, pd.DataFrame
)

433 y = y.values

434 y = np.asarray(y, dtype=np.float64).reshape(-1)

435

436 selected_features = None

437 selected_feature_names = None

438

439 for train_idx, test_idx in kf.split(X, y):

440

441 X _train, X_test = X[train_idx], X[test_idx]

142 y_train, y_test = y[train_idx], y[test_idx]

443

444 #Scaling the data

445 scaler = RobustScaler ()

446 X_train_scaled = scaler.fit_transform(X_train)

447 X test_scaled = scaler.transform(X_test)

448

449 if feature_selection is not None:

450 selected_features = failsafe_feature_selection(

feature_selection, X_train_scaled, y_train,
classifier=classifier, **feature_selection_kwargs)

451

452 # Ensure selected_features is a list of valid indices

453 if not isinstance(selected_features, (list, np.
ndarray)) :

454 selected_features = [selected_features] if

selected features is not None else []
455
456 selected _features = [int(idx) for idx in
selected_features if isinstance(idx, (int, np.
integer)) and 0 <= idx < X_train.shape[1]]

457

458 if not selected_features:

459 # Fallback to all features if selection fails

460 selected_features = list(range(X_train.shapel[1]))
461

462 # Select the features based on the selected indices

463 X train_sel = X _train_scaled[:, selected features]

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

C APPENDIX C

69

X _test_sel =
else:

X_train_sel =

X _test_sel

X_test_scaled[:,

selected_features]

X_train_scaled

X _test_scaled

#applying the classifier

if classifier ==

"SYM" :

model = cl.applySVM(X_train_sel, y_train)
model _raw = cl.applySVM(X_train_scaled, y_train)

elif classifier =

"RandomForest":

model = cl.applyRandForest(X_train_sel, y_train)
model_raw = cl.applyRandForest(X_train_scaled,

y_train)

elif classifier ==

"LogR":

model = cl.applyLogR(X_train_sel, y_train)
model _raw = cl.applylLogR(X_train_scaled, y_train)

elif classifier =

IIDTII .

model = cl.applyDT(X_train_sel, y_train)
model_raw = cl.applyDT(X_train_scaled, y_train)

elif classifier ==

"MLP" :

model = cl.applyMLP(X_train_sel, y_train)
model_raw = cl.applyMLP(X_train_scaled, y_train)

elif classifier =

"LDA":

model = cl.applyLDA(X_train_sel, y_train)
model_raw = cl.applyLDA(X_train_scaled, y_train)

elif classifier ==

"KNN" :

model = cl.applyKNN(X_train_sel, y_train)

model_raw = cl.applyKNN(X_train_scaled, y_train)

y_pred = model.predict(X_test_sel)

y_pred_raw = model_raw.predict(X_test_scaled)
try:

y_proba = model.predict_proba(X_test_sel)[:, 1]
except:

y_proba = None

try:
y_proba_raw = model.predict_proba(X_test_scaled)[:,
1]
except:
y_proba_raw = None
perf = evaluate_performance(y_test, y_pred, y_proba,

classifier_name=classifier, fold_idx=len(acc_scores) +

1, verbose=False)

acc_scores.append(perf["accuracy"]
not None else 0.0)

mse_scores.append (mean_squared_error (y_test, y_pred))

precision_scores.append(perf["precision"] if perf["

if perf["accuracy"]

is

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

C APPENDIX C 70

precision"] is not None else 0.0)

recall_scores.append(perf["recall"] if perf["recall"] is

not None else 0.0)

Fl_scores.append(perf["f1"] if perf["f1"] is not None

else 0.0)

AUC_scores.append(perf ["auc"] if perf["auc"] is not None

else 0.0)

fold_metrics.append ({

b

"accuracy": acc_scores,
"precision": precision_scores,
"recall": recall_scores,

"fl score": F1_scores,
"auroc": AUC_scores

print(classifier)
#print(classification_report(y_test, y_pred, target_names

=["Class O", "Class 1"]1))
#print (’Confusion matrix:’, confusion_matrix(y_test,
y_pred))

if raw==True:

perf_raw = evaluate_performance(y_test, y_pred_raw,
y_proba_raw, classifier_name=classifier, fold_idx=
len(acc_scores) + 1, verbose=False)
Raw performance
acc_scores_raw.append(perf_raw["accuracy"])
mse_scores_raw.append(mean_squared_error (y_test,
y_pred))
precision_scores_raw.append(perf_raw["precision"])
recall_scores_raw.append(perf_raw["recall"])
Fl1_scores_raw.append(perf_raw["f1"])
AUC_scores_raw.append(perf_raw["auc"])

avg_acc_raw = np.mean(acc_scores_raw)

avg_mse_raw = np.mean(mse_scores_raw)
avg_precision_raw = np.mean(precision_scores_raw)
avg_recall_raw = np.mean(recall_scores_raw)
avg_Fl_raw = np.mean(F1l_scores_raw)

avg_AUC_raw = np.mean([score for score in

AUC scores_raw if score is not Nonel])

print (f"Average accuracyraw:,{avg_acc_raw}")

print (f"Average mse_ raw: {avg_mse_rawl}")

print (f"Average precisionyraw: ,{avg_precision_raw}")
print (f"Average recall raw:, {avg_recall_rawl}")

print (f"Average Flyraw:_ {avg_F1l_rawl}")

print (f"Average AUC,raw:_ {avg_AUC_rawl}")

Calculate averages (only if we have results)

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

C APPENDIX C

71

if acc_scores:
Get feature names for the last fold’s selection
if selected_features is not None:
selected_feature_names = [feature_names[i] for i in
selected_features
if i < len(feature_names)]
else:
selected_feature_names = list(feature_names)
nwn
selected_features = failsafe_feature_selection(
feature_selection, X, y, classifier=classifier, x*x*
feature_selection_kwargs)
X_selected = X[:, selected_features]

model = select_model(classifier)

acc_scores = cross_val_score(model, X_selected, y, cv=kf,
scoring=’accuracy’)

mse_scores = cross_val_score(model, X_selected, y, cv=kf,
scoring=’neg_mean_squared_error’)

precision_scores = cross_val_score(model, X_selected, y, cv=
kf, scoring=’precision’)

recall_scores = cross_val_score(model, X_selected, y, cv=kf,
scoring=’recall’)

Fl_scores = cross_val_score(model, X_selected, y, cv=kf,

scoring="f1’)
AUC_scores = cross_val_score(model, X_selected, y, cv=kf,

scoring=’roc_auc’)
nmnn

avg_acc = np.mean(acc_scores)

avg_mse np.mean(mse_scores)
avg_precision = np.mean(precision_scores)
avg_recall = np.mean(recall_scores)
avg_F1 = np.mean(F1_scores)

avg_AUC = np.mean (AUC_scores)

avg_metrics = {
"accuracy": avg_acc,
"precision": avg_precision,
"recall": avg_recall,
"fl1_score": avg_F1,
"auroc": avg_AUC,
"sensitivity": avg_recall # sensitivity == recall in

binary classification

print (f"\nMean performance Metrics, ({classifier}), ({
feature_selection}) :")
print (f"Mean performance Metrics,({classifier}), ({

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

C APPENDIX C 72

def

feature_selection}) :")
print (f"yyAccuracy:yy{avg_acc:.4£f}")
print (f" Precision: {avg_precision:.4f}")
print (£" Recall:uu{avg_recall:.4£f}")
print (£", F1,Score: ,{avg_F1:.4f}")
if avg_AUC is not Nomne:
print (£" L AUC: L uuuuu{avg_AUC: .4£f}")

if raw==True:

acc_scores_raw = cross_val_score(model, X, y, cv=kf,
scoring=’accuracy’)

mse_scores_raw = cross_val_score(model, X, y, cv=kf,
scoring=’neg_mean_squared_error’)

precision_scores_raw = cross_val_score(model, X, y, cv=kf
, scoring=’precision’)

recall_scores_raw = cross_val_score(model, X, y, cv=kf,
scoring=’recall’)

Fl_scores_raw = cross_val_score(model, X, y, cv=kf,
scoring="£f1")

AUC_scores_raw = cross_val_score(model, X, y, cv=kf,

scoring=’roc_auc’)

avg_acc_raw = np.mean(acc_scores_raw)

avg_mse_raw = np.mean(mse_scores_raw)
avg_precision_raw = np.mean(precision_scores_raw)
avg_recall_raw = np.mean(recall_scores_raw)
avg_Fl_raw = np.mean(F1l_scores_raw)

avg_AUC_raw = np.mean(AUC_scores_raw)

print (f"\nPerformance Metrics,raw,({classifier}):")
print (f"Performance Metrics_ raw, ,({classifier}):")
print (f" Accuracy:yu{avg_acc_raw:.4£f}")
print (£" Precision: {avg_precision_raw:.4f}")
print (£",,Recall:,,,,{avg_recall _raw:.4f}")
print (£" F1,Score:,{avg_Fl_raw:.4£f}")
if avg_AUC is not None:

print (£"AUC: LLLuuuuuiavg_AUC_raw:.4£f3}")

if return_metrics:
return selected_features, selected_feature_names,
avg_metrics, fold_metrics
else:
selected_features, selected_feature_names

select_model (classifier):
Determine the model based on the classifier name
if classifier == "SVM":

model = SVC(kernel=’linear’)
elif classifier == "RandomForest":

model = RandomForestClassifier(random_state=42)
elif classifier == "LogR":

634

635

636

637

638

639

640

641

642

643

644

645

646

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

C APPENDIX C 73

model = LogisticRegression(random_state=42)
elif classifier == "DT":
model = DecisionTreeClassifier (random_state=42)

elif classifier "MLP":

model = MLPClassifier (random_state=42)
elif classifier "LDA":

model = LinearDiscriminantAnalysis ()
elif classifier == "KNN":

model = KNeighborsClassifier ()
else:

raise ValueError ("Unsupported classifier type,choose SVM
,uRandomForest , DT, MLP,_ LogR,_ LDA or KNN")

return model

Listing 2: Pipeline

C.2 Feature selection methods

from __future__ import division

import numpy as np

import pandas as pd

from sklearn.pipeline import Pipeline

from sklearn.linear_model import Lasso, Lassolars

from sklearn.inspection import permutation_importance

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from sklearn.linear_model import LogisticRegression, Lasso,
LassoCV

from sklearn.tree import DecisionTreeClassifier

from sklearn.neural_network import MLPClassifier

from sklearn.preprocessing import StandardScaler,
KBinsDiscretizer , LabelEncoder

from sklearn.metrics import mutual_info_score

from sklearn.feature_selection import RFE,
SequentialFeatureSelector , VarianceThreshold,
mutual_info_classif, SelectKBest, f_classif, SelectFromModel

from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import cross_val_score,
StratifiedKFold, train_test_split

from skfeature.function.information_theoretical_based import MRMR

from scipy.stats import gamma

from pyHSICLasso import HSICLasso

import time

import warnings

import inspect

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

C APPENDIX C

74

def failsafe_feature_selection(selection_func, X, y, min_features

=10, fallback_method=’mutual_info’, **xkwargs):

Failsafe wrapper for feature selection methods that ensures a

minimum number of features are returned.

Parameters:

- selection_func: The feature selection function to call

- X: Input feature matrix (pandas DataFrame or numpy array)
- y: Target labels (pandas Series or numpy array)

- min_features: Minimum number of features to return (default

10)

- fallback_method: Method to use if primary selection returns

insufficient features
Options: ’mutual_info’, ’f_score’, ’
random_forest’, ’top_variance’
- xxkwargs: Additional arguments to pass to the selection
function

Returns:
- selected_features: List of selected feature indices

Ensure we have enough features to select from
n_total_features = X.shape[1]

min_features = min(min_features, n_total_features)

selected features = []

try:
Try the primary selection method
print (f"Attempting primary feature selection method...")
valid_kwargs = _filter_kwargs_for_function(selection_func

, kwargs)
selected_features = selection_func(X, y, **valid_kwargs)

Handle different return types
if hasattr(selected_features, ’__iter__’) and not
isinstance(selected_features, str):
selected_features = list(selected_features)
else:
selected_features = [selected_features] if
selected_features is not None else []

Remove any invalid indices
selected _features = [idx for idx in selected_features
if isinstance(idx, (int, np.integer))
and 0 <= idx < n_total_ features]

print (f"Primary_ method_ returned_ {len(selected_features)},

features")

66

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

C APPENDIX C 75

except Exception as e:
print (f"Primary_ feature selection failed: {str(e)}")
selected _features = []

Check if we have enough features
if len(selected features) < min_features:
print (f"Insufficient features, from primary_ method,({len(
selected_features)}) . Using fallback...")

Apply fallback feature selection
fallback_features = _apply_fallback_selection(X, vy,
min_features, fallback _method)

Combine primary and fallback features (remove
duplicates)

all_features = list(set(selected_features +
fallback features))

If still not enough, add top variance features
if len(all_features) < min_features:
variance_features = _get_top_variance_features (X,
min_features - len(all_features))
all_features = list(set(all_features +
variance_features))

selected_features = all_features[:min_features]
Final safety check - ensure we have valid indices
selected_features = [idx for idx in selected_features

if isinstance(idx, (int, np.integer)) and
0 <= idx < n_total_features]

If still empty, return first min_features indices
if not selected_features:
print ("All methods_ failed. Returning, ,first,features as
last resort.")
selected_features = list(range(min(min_features,
n_total_features)))

print (f"Final selection: {len(selected_features)} features")
return selected_features

def _apply_fallback_selection(X, y, min_features, method):
"""Apply fallback feature selection method."""

try:
if method == ’mutual_info’:
Use mutual information
selector = SelectKBest(score_func=mutual_info_classif

, k=min features)

107

108

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

140

141

142

143

144

145

146

147

148

149

150

151

152

C APPENDIX C 76

selector.fit (X, y)
return selector.get_support(indices=True).tolist ()

elif method == ’f_score’:
Use F-score
selector = SelectKBest(score_func=f_classif, k=

min features)
selector.fit (X, y)
return selector.get_support(indices=True).tolist ()

elif method == ’random_forest’:
Use Random Forest feature importance
rf = RandomForestClassifier(n_estimators=100,

random_state=42)
rf.fit (X, y)
importances = rf.feature_importances_
indices = np.argsort(importances) [::-1]
return indices[:min_ features].tolist ()

elif method == ’top_variance’:
return _get_top_variance_features (X, min_features)

except Exception as e:
print (f"Fallback_ method_ {method} failed: {str(e)}")

If fallback fails, return top variance features
return _get_top_variance_features(X, min_features)

def _filter_kwargs_for_function (func, kwargs):
"""Filter kwargs to only include parameters that the function

accepts."""
try:
Get function signature
sig = inspect.signature (func)
valid_params = set(sig.parameters.keys())

Filter kwargs to only include valid parameters

filtered_kwargs = {k: v for k, v in kwargs.items() if k
in valid_params}

return filtered_kwargs

except Exception:

If we can’t inspect the function, return empty dict to
be safe

return {}

def _get_top_variance_features(X, min_features):
"""Get features with highest variance as last resort."""
try:
if isinstance (X, pd.DataFrame):
variances = X.var ()
else:

153

154

156

157

158

159

161

162

163

164

166

167

168

169

171

172

173

174

175

177

178

179

180

181

182

183

184

185

186

188

189

190

191

192

193

194

195

196

198

199

APPENDIX C

variances = np.var (X, axis=0)
indices = np.argsort(variances) [::-1]
return indices[:min_features].tolist ()
except:
Ultimate fallback - return first features

return list(range(min(min_features, X.shapel[1])))

def hsiclasso(X, y, classifier, num_feat=None, feature_range=(1,

50), verbose=False):
Perform HSIC Lasso feature selection.
Parameters:
- X: Input feature matrix (numpy array or pandas DataFrame).
- y: Target labels (numpy array or pandas Series).
- alpha: Regularization strength.
- max_iter: Maximum number of iterations for convergence.
- tol: Tolerance for convergence.
Returns:

- Selected feature indices.
nnn

original_X = X
Ensure X is a numpy array for HSICLasso
if isinstance (X, pd.DataFrame):
X = X.values
Ensure y is a 1D numpy array
if isinstance(y, (pd.Series, pd.DataFrame)):
y y.values.ravel ()
else:
y = np.ravel (y)
if verbose==True:
print (f"Final shapes, - X:, {X.shapel}, y: {y.shape}")

if num_feat is not None:
return perform_HSICLasso(X, y, num_feat, original_X)

min_feat, max_feat = feature_range
max_feat = min(max_feat, X.shapel[1l]) #Don’t exceed available
features

best_score = -1
best_features
best_num_feat

None
min_feat

model = select _model(classifier)
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state
=42)

print (f"Testing feature counts, from {min_feat} toy{max_feat

o.M

200

201

202

203

204

205

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

234

235

236

237

238

239

C APPENDIX C 78
for test_num_feat in range(min_feat, max_feat + 1):
try:
selected_features = perform_HSICLasso(X, vy,
test_num_feat, original_X)
if len(selected features) == 0:
continue
X_selected = X[:, selected_features]
scores = cross_val_score(model, X_selected, y, cv=cv,
scoring=’accuracy’)
mean_score = np.mean(scores)

if verbose==True:
print (f"Features_ {test_num_feat}: {mean_score:.4f
}u+-u{np.std(scores):.4f}")
if len(selected features) > O0:
if hasattr(original_X, ’columns’):
Print feature names if DataFrame
feature_names = [original_X.columns[i]
for i in selected features]
print (£",,Selected features: {
selected_featuresl}")
print (f" Feature_ names: {feature_names}"
)
else:
print (f"Selected features: {
selected _featuresl}")
else:
print (£", No ,features selected")

if mean_score > best_score:

best_score = mean_score
best_features = selected_features
best_num_feat = test_num_feat

except Exception as e:
print (f"Error with {test_num_feat} features: {e}")
continue

print (f"\nBest:_ {best_num_feat} features_ with_ score {,
best_score:.4f}")
if best_features is not None and len(best _features) > O:
if hasattr(original_X, ’columns’):
best_feature_names = [original_X.columns[i] for i in
best_features]
print (f"Final selected feature indices:{
best features}")
print (f"Final selected feature names:{
best feature _namesl}")

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

258

259

260

261

262

263

264

265

266

267

268

270

271

272

274

275

276

278

279

280

281

C APPENDIX C 79

else:
print (f"Final selected feature indices:{
best_features}")
else:
print ("No,features were successfully selected")

return best_features

def perform_HSICLasso(X, y, num_feat, original_X):
Perform HSIC Lasso to select features
hsic_lasso = HSICLasso ()
Set parameters for HSIC Lasso

Fit the model
hsic_lasso.input (X, y)
hsic_lasso.classification(num_feat)

selected_features = hsic_lasso.get_features ()

Convert string indices to integers if necessary
if len(selected_features) > 0 and isinstance(
selected features[0], str):
try:
selected_features = [int(feat) for feat in
selected_features]
print (f"Converted tointeger indices:{
selected featuresl}t")
except ValueError as e:
print (£"Could notconvert feature names tointegers:

{e}™)
If conversion fails, try to map to column positions
if hasattr(original_X, ’columns’):

If X is a DataFrame, map feature names to
positions
feature_positions = []
for feat in selected_features:
try:
pos = list(original_X.columns).index(feat
)
feature_positions.append(pos)
except ValueError:
print (f"Feature_ {feat} not,found in
columns")
selected_features = feature_positions
print (f"Mapped, to,column positions: {
selected_featuresl}")

return selected_features

def select_model(classifier):
Determine the model based on the classifier name

282

283

284

285

286

287

289

290

291

292

293

294

295

296

297

298

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

C APPENDIX C 80

if classifier == "SVM":
model = SVC(kernel=’linear’)

elif classifier == "RandomForest":
model = RandomForestClassifier (random_state=42)
elif classifier == "LogR":
model = LogisticRegression(random_state=42, max_iter
=10000)
elif classifier == "DT":
model = DecisionTreeClassifier (random_state=42)

elif classifier "MLP":
model = MLPClassifier (random_state=42)

elif classifier == "LDA":
model = LinearDiscriminantAnalysis ()
elif classifier == "KNN":

model = KNeighborsClassifier ()
else:
raise ValueError ("Unsupported, classifier type")

return model

def mRMR(X, y, classifier, num_features_to_select=None, range
=(1,150), verbose=True):

original_X = X
model = select_model(classifier)
Handle both pandas DataFrame and numpy array inputs
if isinstance (X, pd.DataFrame):
X_array = X.values
else:
X_array = np.asarray(X)

if isinstance(y, (pd.Series, pd.DataFrame)):
y_array = y.values.ravel ()
else:
y_array = np.asarray(y).ravel() # Ensure y is a 1D array

Ensure proper data types
X_array = X_array.astype(np.float64) # Ensure X is float64
for compatibility

Handle categorical target variable
if y_array.dtype == ’object’ or not np.issubdtype(y_array.
dtype, np.number):
le = LabelEncoder ()
y_array = le.fit_transform(y_array)

y_array = y_array.astype(np.int32) # MRMR often expects
integer 1labels

Check for NaN values and handle them
if np.any(np.isnan(X_array)) or np.any(np.isnan(y_array)):

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

C APPENDIX C 81
print ("Warning: ,NaN_,values detected. Consider handling,,
them_ before feature selection.")
Remove rows with NalN
valid_rows = ~(np.isnan(X_array).any(axis=1) | np.isnan(
y_array))
X_array = X_arrayl[valid_rows]
y_array = y_arrayl[valid_rows]
if num_features_to_select is not None:
mRMR_selector = MRMR.mrmr (X_array, y_array)
selected features = mRMR_selector [O:
num_features_to_select]
return selected_features
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state
=42)
min_feat, max_feat = range
max_feat = min(max_feat, X.shape[l1l]) #Don’t exceed available
features
for test_num_feat in range(min_feat, max_feat + 1):
try:
mRMR_selector = MRMR.mrmr (X_array, y_array)
selected_features = mRMR_selector [0:
num_features_to_select]
if len(selected_features) == 0:
continue
X selected = X[:, selected features]
scores = cross_val_score(model, X_selected, y, cv=cv,
scoring=’accuracy’)
mean_score = np.mean(scores)

if verbose==True:
print (f"Features_ {test_num_featl}: {mean_score:.4f
Yu+t-L{np.std(scores) :.4f}")
if len(selected_features) > O:
if hasattr(original_X, ’columns’):
Print feature names if DataFrame
feature_names = [original_X.columns[i]
for i in selected_features]
print (£",Selected features: {
selected_featuresl}")
print (£" Feature_ names: {feature_names}"
)
else:
print (£" Selected features:{
selected_featuresl}")
else:

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

C APPENDIX C

82

print (£", No features selected")

if mean_score > best_score:
best_score = mean_score
best_features = selected_features
best_num_feat test_num_feat

except Exception as e:
print (f"Error with ,{test_num_feat} features: {e}")
continue

print (£"\nBest: ,{best_num_featl} features with score {,
best _score:.4f}")
if best_features is not None and len(best_features) > 0:
if hasattr(original_X, ’columns’):
best_feature_names = [original_X.columns[i] for i in
best_features]
print (f"Final selected feature indices:{
best_features}")
print (f"Final selected feature_ names: {
best_feature_namesl}")
else:
print (f"Final selected feature indices:{
best features}")
else:
print ("Nofeatures were_ successfully selected")

return best_features

def Perm_importance(X, y, classifier, min_features=10,
select _features=None):

Determine the model based on the classifier name
model = select_model(classifier)

Handle both pandas DataFrame and numpy array inputs
if isinstance (X, pd.DataFrame):

X_array = X.values
original_indices = X.columns.tolist ()
else:
X_array = np.asarray(X)
original_indices = list(range(X_array.shapel[1]))

if isinstance(y, (pd.Series, pd.DataFrame)):
y y.values.ravel ()
else:

y

np.asarray(y).ravel () # Ensure y is a 1D array

Ensure proper data types
X_array = X_array.astype(np.float64) # Ensure X is float64
for compatibility

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

C APPENDIX C 83

if select_features is not None:
if isinstance(select_features, list):

if isinstance(select_features[0], int): # Indices-
based selection
X_array = X_arrayl[:, select_features] # Subset
X_array using indices
original_indices = [original_indices[i] for i in
select features]
elif isinstance(select_features[0], str): # Names-
based selection
feature_indices = [original_indices.index(f) for
f in select_features]
X_array = X_array[:, feature_indices] # Subset

X_array using the corresponding indices
original_indices = select_features

model .fit (X_array, y)

Calculate permutation importance
result = permutation_importance (model, X_array, y, n_repeats
=10, random_state=42, n_jobs=-1)

Get the importances and sort them from most to least
important

importances = result.importances_mean

indices = np.argsort (importances) [::-1]

Select features based on importance (threshold: features
that have positive importance)

selected_subset_indices = [i for i in indices if importances/|[
il > 0] # Select features that have positive importance

¢ are returned

Fallback: ensure at least ‘min_features
if len(selected subset_indices) < min_ features:

selected_subset_indices = indices[:min_features].tolist ()

if select_features is not None:
Map selected features back to original indices if
necessary
selected_features = [original_indices[i] for i in
selected _subset_indices]
else:
selected_features = selected_subset_indices

return selected_features

def backwards_SFS(X, y, classifier, select_features=None,
n_features_to_select=20):

Determine the model based on the classifier name

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

C APPENDIX C 84
model = select_model(classifier)
fast_model = LogisticRegression(random_state=42, max_iter
=1000)
Handle both pandas DataFrame and numpy array inputs
if isinstance (X, pd.DataFrame):
X_array = X.values
original_indices = X.columns.tolist ()
else:
X_array = np.asarray (X)
original_indices = list(range(X_array.shapel[1]))
if isinstance(y, (pd.Series, pd.DataFrame)):
y = y.values.ravel ()
else:
y = np.asarray(y).ravel() # Ensure y is a 1D array
Ensure proper data types
X_array = X_array.astype(np.float64) # Ensure X is float64
for compatibility
if select_features is not None:
if isinstance(select_features, list):
if isinstance(select_features[0], int): # Indices-
based selection
X_array = X_array[:, select_features] # Subset
X_array using indices
original_indices = [original_indices[i] for i in
select_features]
elif isinstance(select_features[0], str): # Names-
based selection
feature_indices = [original_indices.index(f) for
f in select_features]
X_array = X_arrayl[:, feature_indices] # Subset
X_array using the corresponding indices
original_indices = select_features

Normalize the data
scaler = StandardScaler ()
X_scaled = scaler.fit_transform(X_array)

model.fit (X_scaled, y)

start_time = time.time ()

Initialize SequentialFeatureSelector with the base model
and the desired number of features to select

sfs = SequentialFeatureSelector (fast_model,
n_features_to_select=n_features_to_select, direction="’
backward’, n_jobs=-1)

Fit SFS
sfs.fit (X, y)
selection_time = time.time() - start_time

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

C APPENDIX C

85

Get the selected feature indices
selected_features = np.where(sfs.get_support ()) [0]

return selected_features

def Lasso_selection(X, y, alpha=None, max_iter=2000,
select_features=None):

nnn

Perform Lasso to select features.

Parameters:

- X: Input feature matrix (numpy array or pandas DataFrame).
- y: Target labels (numpy array or pandas Series).

- alpha: Regularization strength.

- max_iter: Maximum number of iterations for convergence.

Returns:
- Selected feature indices.
nnn
Handle both pandas DataFrame and numpy array inputs
if isinstance (X, pd.DataFrame):

X_array = X.values
original_indices = X.columns.tolist ()
else:
X_array = np.asarray(X)
original_indices = list(range(X_array.shapel[1]))

if isinstance(y, (pd.Series, pd.DataFrame)):
y = y.values.ravel ()
else:

y

np.asarray(y).ravel() # Ensure y is a 1D array

feature_mapping = list(range(X_array.shapel[1])) # Maps from
subset to original indices

if select_features is not None:
if isinstance(select_features, list):
if isinstance(select_features[0], int): # Indices-
based selection

X_array = X_arrayl[:, select_features] # Subset
X_array using indices

feature_mapping = select_features

elif isinstance(select_features[0], str): # Names-
based selection

feature_indices = [original_indices.index(f) for
f in select_features]

X_array = X_array[:, feature_indices] # Subset

X_array using the corresponding indices
feature_mapping = feature_indices

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

C APPENDIX C

86

scaler = StandardScaler ()
X_scaled = scaler.fit_transform(X_array)

if alpha is not None:

model = Lasso(alpha=alpha, random_state=42)
else:
Fit L1 logistic regression model

model = LassoCV(random_state=42)
model.fit(X_scaled, y)

best_alpha = model.alpha_
print (best_alpha)
Get the selected feature indices

selected_mask = model.coef_ != 0
selected_subset_indices = np.where(selected_mask) [0]
selected_features = [feature_mappingl[i] for i in

selected_subset_indices]
return selected_features

def forwards_SFS(X, y, classifier, select_features=None,
n_features_to_select=20):

Determine the model based on the classifier name

model = select_model(classifier)
fast_model = LogisticRegression(random_state=42, max_iter
=1000)

Handle both pandas DataFrame and numpy array inputs
if isinstance (X, pd.DataFrame):

X_array = X.values
original_indices = X.columns.tolist ()
else:
X_array = np.asarray (X)
original_indices = list(range(X_array.shapel[1]))

if isinstance(y, (pd.Series, pd.DataFrame)):
v y.values.ravel ()
else:

y

np.asarray(y).ravel () # Ensure y is a 1D array

Ensure proper data types
X_array = X_array.astype(np.float64) # Ensure X is float64
for compatibility

if select_features is not None:
if isinstance(select_features, list):
if isinstance(select_features[0], int): # Indices-
based selection

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

C

APPENDIX C 87

def

X_array = X_arrayl[:, select_features] # Subset

X_array using indices
elif isinstance(select_features[0], str): # Names-
based selection

feature_indices = [original_indices.index(f) for
f in select_features]

X_array = X_arrayl[:, feature_indices] # Subset
X_array using the corresponding indices

Normalize the data
scaler = StandardScaler ()
X_scaled = scaler.fit_transform(X_array)

model.fit (X_scaled, y)

start_time = time.time ()

Initialize SequentialFeatureSelector with the base model
and the desired number of features to select

sfs = SequentialFeatureSelector (fast_model,
n_features_to_select=n_features_to_select, direction="’
forward’, n_jobs=-1)

Fit SFS
sfs.fit (X, y)

selection_time = time.time() - start_time

Get the selected feature indices
selected_features = np.where(sfs.get_support ()) [0]

return selected_features

without_fs (X, y):
return X, y

Listing 3: Feature selection methods

D APPENDIX D

38

D Appendix D — ROIs

Table 53: Smith et al. (2009) 10/20 Resting-State Networks (RSNs)

Component # Network Name
1 medial visual
occipital pole visual
lateral visual
default mode
cerebellum
sensorimotor
auditory
executive control
right frontoparietal
left frontoparietal

© 00 O U = W N

—_
e}

E APPENDIX E

89

E Appendix E — Features

E.1 Graph Features
E.1.1 Dataset 1
« ROI1
— Closeness Centrality ROI_1
— Clustering Coefficient_ ROI 1

— Degree Centrality ROI 1
Eigenvector Centrality ROI 1

« ROI 2

Closeness Centrality ROI_ 2
Clustering Coefficient_ ROI 2
Degree Centrality ROI_ 2

— Eigenvector Centrality ROI 2

« ROI 3

Closeness Centrality ROI_3
— Clustering Coefficient_ ROI 3
— Degree Centrality ROI 3

— Eigenvector Centrality ROI 3

« ROI 4

— Closeness Centrality ROI 4
— Clustering Coefficient_ ROI_4
— Degree Centrality ROI 4
Eigenvector Centrality ROI 4

« ROI 5

— Closeness Centrality ROI_5
— Clustering Coefficient_ ROI_5
Degree Centrality ROI 5
Eigenvector Centrality ROI_5

« ROI 6

Closeness Centrality ROI 6
Clustering Coefficient ROI 6
— Degree Centrality ROI_6

— Eigenvector Centrality ROI 6

E APPENDIX E

90

ROI 7

— Closeness Centrality ROI 7
— Clustering Coefficient_ ROI 7
— Degree Centrality ROI 7

— Eigenvector Centrality ROI 7

ROI 8

Closeness Centrality ROI 8
— Clustering Coefficient_ ROI_8
— Degree Centrality ROI 8

— Eigenvector Centrality ROI 8

ROI 9

— Closeness Centrality ROI 9
— Clustering Coefficient_ ROI_9
— Degree Centrality ROI_9

— Eigenvector Centrality ROI 9

ROI 10

— Closeness Centrality ROI 10
— Clustering Coefficient_ ROI 10
— Degree Centrality ROI 10

— Eigenvector Centrality ROI 10

ROI 11

— Closeness Centrality ROI 11
— Clustering Coefficient_ ROI__11
— Degree Centrality ROI 11

— Eigenvector Centrality ROI 11

ROI 12

— Closeness Centrality ROI 12
— Clustering Coefficient ROI 12
— Degree Centrality ROI 12

— Eigenvector Centrality ROI 12

ROI 13

— Closeness Centrality ROI 13
— Clustering Coefficient ROI 13

E APPENDIX E

91

— Degree Centrality ROI 13
— Eigenvector Centrality ROI 13

« ROI 14

— Closeness Centrality ROI 14
— Clustering Coefficient_ ROI 14
— Degree Centrality ROI 14

— Eigenvector Centrality ROI 14

« ROI 15

Closeness Centrality ROI__15
— Clustering Coefficient_ ROI 15
— Degree Centrality ROI 15
Eigenvector Centrality ROI 15

« ROI 16

Closeness Centrality ROI 16
Clustering Coefficient._ ROI 16
Degree Centrality ROI 16
Eigenvector Centrality ROI 16

- ROI 17

— Closeness Centrality ROI 17
— Clustering Coefficient_ ROI 17
— Degree Centrality ROI 17

— Eigenvector Centrality ROI 17

« ROI 18

— Closeness Centrality ROI_18
— Clustering Coefficient_ ROI__18
— Degree Centrality ROI 18

— Eigenvector Centrality ROI 18

« ROI 19

Closeness Centrality ROI 19
— Clustering Coefficient ROI 19
— Degree Centrality ROI 19
Eigenvector Centrality ROI 19

« ROI 20

E APPENDIX E

92

— Closeness Centrality ROI 20
— Clustering Coefficient ROI 20
— Degree Centrality ROI_ 20

— Eigenvector Centrality ROI 20

e Global Features

— Average Clustering

— Diameter

— Spectral Entropy

— Mean Laplacian Eigenvalue
— Max Laplacian Eigenvalue

— Frobenius Norm (Laplacian Spectrum)

Algebraic Connectivity (Ao)

Graph Energy

E.1.2 Dataset 2 (tuned parameters)
e Group A_0_*

(@]
W~
>
o
ot
< =
o
o
o &
o

JA 0 13,A 0 14,A 0 1

0.7,A 0 8,
5 A 0 16,

~A10A11,A12A13A14AT15A16A1T7A1S,
A19A110,A 1 11,A 1 120A 1 13,A 1 14, A 1 15 A 1 16,
A1 17,A 1 18, A 1 1

—A 20A21,A22A23A24A25A26A2T7A 28,
A 29 A2 10,A 2 11,A 2 120A 2 13,A 2 14, A 2 15 A 2 16,
A2 17, A 2 18 A 2 1
e Group A_3 *
~A30,A31A32A33A34A35A36A3TA3S,
A 3 9 A 3 10,A 3 11,A 3 12,A 3 13, A 3 14, A 3 15 A 3 16,
A 3 17,A 3 18, A 3 1
e Group A_4 *
A 4 0,A 4 1,A 42 A 43 A4 4A45A46A4T7 A48
A4 9 A 4 10,A 4 11,A 4 12,A 4 13, A 4 14, A 4 15 A 4 16,
A 4 17 A 4 18 A 4 19

e Group A_5 *

E APPENDIX E 93

~A50A51,A52A53A54A55A56A5T7A5S8
A5 9A5 10,A 5 11,A 5 12,A 5 13, A 5 14, A 5 15 A 5 16,
A5 17,A 5 18, A 5 1

6 7,A 6 8,
15, A 6 16,

=
o
S
=
o
w
o
o
=
>
o
o
> =
o
o
o
o

__YV___ __V__ 1™ _Yv__

—-A70AT7T1AT7T2A73AT7T4AT7T5AT7T6ATTATS,
A7 9AT7T10,A 7 11,A 712 A 7 13, A 7 14, A 7 15 A 7 16,
A 7 17, A 7 18 A 7 19
e Group A_8 *
—A 80,A8 1A 82 A8 3A84A85A86A 87 A 8 8,
A 8 9 A 8 10,A 8 11,A 8 12, A 8 13, A 8 14, A 8 15 A 8 16,
A 8 17, A 8 18, A 8 19
e Group A_9 *
“A90,A91,A92A93A94A95A9G6A9TA9S,
A9 9 A9 10,A 9 11,A 9 12.A 9 13, A 9 14 A 9 15 A 9 16,
A 9 17,A 9 18 A 9 19

e Group A_10_*

~ A 10 0,A 10 1,A 10 2,A 10 3,A 10 4, A 10 5 A 10 6,A 10 7,
A 10 8 A 10 9, A 10 10, A 10 11, A 10 12, A 10 13, A 10 14,
A 10 15, A 10 16, A 10 17, A 10 18, A 10 19

e Group A_11_*

— A 11 0,A 11 1,A 11 20A 11 3, A 11 4 A 11 5 A 11 6,A 11 7,
A 11 8 A 11 9, A 11 10, A 11 11, A 11 12, A 11 13, A 11 14,
A 11 15, A 11 16, A 11 17, A 11 18, A 11 19

e Group A_12_*

— A 12 0,A 12 1,A 12 20A 12 3, A 12 4 A 12 5 A 12 6,A 12 7,
A 12 8 A 12 9, A 12 10, A 12 11, A 12 12, A 12 13, A 12 14,
A 12 15, A 12 16, A 12 17, A 12 18, A 12 19

e Group A_13_*

— A 13 0,A 13 1,A 13 2,A 13 3, A 13 4, A 13 5 A 13 6,A 13 7,
A 13 8 A 13 9, A 13 10, A 13 11, A 13 12, A 13 13, A 13 14,
A 13 15 A 13 16, A 13 17, A 13 18, A 13 19

e Group A_14_ *

E APPENDIX E 94

— A 14 0,A 14 1A 14 2, A 14 3,A 14 4 A 14 5 A 14 6,A 14 7,
A 14 8 A 14 9, A 14 10, A 14 11, A 14 12, A 14 13, A 14 14,
A 14 15, A 14 16, A 14 17, A 14 18, A 14 19

e Group A_15_*

— A 15 0,A 15 1,A 15 2, A 15 3, A 15 4 A 15 5/ A 15 6,A 15 7,
A 15 8 A 15 9, A 15 10, A_15 11, A 15 12, A 15 13, A_15_ 14,
A 15 15, A 15 16, A_15 17, A 15 18, A 15 19

e Group A_16_*

— A 16 0,A 16 1,A 16 2,A 16 3,A 16 4,A 16 5 A 16 6,A 16 T,
A 16 8 A 16 9, A 16 10, A 16 11, A 16 12, A 16 13, A 16 14,
A 16 15, A 16 16, A 16 17, A 16 18, A 16 19

e Group A_17_*

- A 17 0,A 17 1,A 17 2,A 17 3,A 17 4 A 17 5 A 17 6,A 17 7,
A 17 8 A 17 9, A 17 10, A_17 11, A 17 12, A 17 13, A_17 14,
A 17 15, A 17 16, A_17 17, A_17 18, A 17 19

e Group A_18 *

— A 18 0,A 18 1,A 18 2,A 18 3 A 18 4, A 18 5 A 18 6,A 18 7,
A 18 8, A 18 9, A 18 10, A 18 11, A 18 12, A 18 13, A 18 14,
A 18 15, A 18 16, A 18 17, A 18 18, A 18 19

e Group A_19_*

— A 19 0,A 19 1,A 19 2,A 19 3,A 19 4 A 19 5 A 19 6,A 19 7,
A 19 8 A 19 9, A 19 10, A 19 11, A 19 12, A 19 13, A 19 14,
A 19 15, A 19 16, A 19 17, A 19 18, A 19 19

	Introduction
	Pre-required knowledge
	ASD in the brain
	MRI data
	ABIDE dataset
	Graph features

	Program of requirements
	Functional requirements
	System requirements

	Feature selection methods
	Feature selection
	Permutation Importance
	Methodology
	Pros and cons

	Lasso
	Methodology
	HSIC Lasso
	Pros and cons

	Sequential Feature Selection
	Methodology
	Pros and cons

	Preprocessing
	mRMR
	Clustering
	Hyperparameter tuning

	Pipeline
	Loading file and pre-processing
	Train and test data
	Feature selection
	Classification and evaluation
	Parallel running

	Results
	Classification methods
	Used data
	Full Correlation
	Graph Data

	Full correlation
	Performance on multisite data
	Performance on single-site data

	Graph results
	Dataset 1
	Dataset 2 (tuned parameters)

	Discussion
	Full correlation
	Sex-specific observations
	Multi- and single site
	Feature selection behavior across subsets

	Graph features
	Future work

	Conclusion
	Appendix A
	Full correlation multisite
	Combined
	Female data
	Male data

	Full correlation single site
	Combined data
	Female data
	Male data

	Appendix B
	Graph multisite
	graph NYU
	Laplacian NYU
	Laplacian multisite
	rspect NYU
	rspect multisite

	Appendix C
	pipeline
	Feature selection methods

	Appendix D
	Appendix E
	Graph Features
	Dataset 1
	Dataset 2 (tuned parameters)

