
BAPTUDelft
ASDdetection

subgroupFeatureSelection
F.Kreté, G.van Wingerden

June 2025

BAP TU Delft ASD detection

subgroup Feature Selection

Author: F.Krete, G.v.Wingerden
Degree Program: BSc Electrical Engineering

Student Number: 5850363, 5603900

Supervisors:
Prof. Geert Leus
Ruben Wijnands

Institution:
Faculty Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Date of Submission:
July 10, 2025

Abstract

In the Netherlands, 3% of people above 4 years old are diagnosed with autism.
Diagnosing is currently done with a psychological assessment, but classifying people
with autism using resting state functional magnetic imaging, or rs-fMRI, has become
promising. The goal of this project was to see if new features could be found, based
on the graph of rs-fMRI data stored in the Autism Brain Imaging Data Exchange
(ABIDE) dataset, that had a significant positive influence on the accuracy of a
predictive model. To do this, several feature selection modules were researched and
coded in Python. Subsequently, these were tested with the features and classification
methods created by our partner subgroups. The best performing model, using all
data, had an accuracy of 74.26% and a sensitivity of 65.35%. The best performing
model using graph features, on all data, had an accuracy of 60.4% and a sensitivity
of 46.6%. This indicates that there were no graph features developed that had a
significant positive influence on classifying whether someone has autism.

Contents
1 Introduction 1

2 Pre-required knowledge 3
2.1 ASD in the brain . 3
2.2 MRI data . 3
2.3 ABIDE dataset . 4
2.4 Graph features . 5

3 Program of requirements 6
3.1 Functional requirements . 6
3.2 System requirements . 6

4 Feature selection methods 7
4.1 Feature selection . 7
4.2 Permutation Importance . 8

4.2.1 Methodology . 8
4.2.2 Pros and cons . 9

4.3 Lasso . 9
4.3.1 Methodology . 9
4.3.2 HSIC Lasso . 10
4.3.3 Pros and cons . 11

4.4 Sequential Feature Selection . 11
4.4.1 Methodology . 11
4.4.2 Pros and cons . 12

5 Preprocessing 13
5.1 mRMR . 13
5.2 Clustering . 14
5.3 Hyperparameter tuning . 14

6 Pipeline 16
6.1 Loading file and pre-processing . 16
6.2 Train and test data . 16
6.3 Feature selection . 16
6.4 Classification and evaluation . 16
6.5 Parallel running . 17

7 Results 18
7.1 Classification methods . 18
7.2 Used data . 18

7.2.1 Full Correlation . 18
7.2.2 Graph Data . 19

7.3 Full correlation . 20
7.3.1 Performance on multisite data . 20
7.3.2 Performance on single-site data . 21

8 Graph results 23
8.1 Dataset 1 . 23
8.2 Dataset 2 (tuned parameters) . 25

9 Discussion 27
9.1 Full correlation . 27

9.1.1 Sex-specific observations . 27
9.1.2 Multi- and single site . 27
9.1.3 Feature selection behavior across subsets 27

9.2 Graph features . 27
9.3 Future work . 28

10 Conclusion 29

A Appendix A 32
A.1 Full correlation multisite . 32

A.1.1 Combined . 32
A.1.2 Female data . 33
A.1.3 Male data . 34

A.2 Full correlation single site . 35
A.2.1 Combined data . 35
A.2.2 Female data . 36
A.2.3 Male data . 37

B Appendix B 38
B.1 Graph multisite . 38
B.2 graph NYU . 43
B.3 Laplacian NYU . 47
B.4 Laplacian multisite . 48
B.5 rspect NYU . 49
B.6 rspect multisite . 50

C Appendix C 52
C.1 pipeline . 52
C.2 Feature selection methods . 73

D Appendix D 88

E Appendix E 89
E.1 Graph Features . 89

E.1.1 Dataset 1 . 89
E.1.2 Dataset 2 (tuned parameters) . 92

1 INTRODUCTION 1

1 Introduction
Autism Spectrum Disorder (ASD), often simply denoted as autism, is a neurodevelop-
mental disorder. It is mainly characterized by challenges in social interactions and com-
munication and by restricted or repetitive behaviors. According to the ’Centraal Bureau
voor de Statistiek’ (CBS), 3% of Dutch people above 4 years of age indicated having ASD
between 2022 and 2024 [1]. This is equivalent to about 280.000 men and 140.000 women
in the Netherlands alone. This statistic can be seen in Figure 1. At this moment, ASD is
diagnosed through a comprehensive psychological assessment. In the Netherlands, this is
done by a psychiatrist, or ’gz-psycholoog’. According to the ’Nederlandse Vereniging voor
Autisme’ (NVA), there is no biomarker for ASD, and diagnosis relies only on identifying
specific behavioral characteristics [2]. The diagnostic process typically involves multiple
interviews and observations to assess aspects such as social interaction, communication,
and repetitive behaviors. According to the ’Zorgstandaard Autisme’, a thorough diagnos-
tic trajectory takes approximately twelve to fourteen hours to complete. It is important
to know if someone has ASD, because they have different needs. In addition to this,
according to CBS, 74% of people with ASD above 12 years of age had suffered depressive
or fearful feelings in the last 4 weeks, compared to 43% of people without ASD.

Figure 1: Reported ASD 2022-2024 CBS [1]

Research has started to try to find
certain biomarkers to classify ASD. The
search for biomarkers could speed up di-
agnosis and make it more reliable. It
could also help deepen our understand-
ing of ASD and how it affects the brain.
To find these biomarkers, rs-fMRI data is
used. The use of machine learning clas-
sifiers on rs-fMRI data has been reported
to be promising. Some results indicate an
overall summary sensitivity and specificity
estimates of 73.8% and 74.8%, respectively
[3]. With the addition of other brain
imaging data or phenotypic data, achiev-
ing even higher sensitivities compared to
rs-fMRI data alone (84.7% versus 72.8%).

Classifying ASD using rs-fMRI data is done by machine learning. Machine learning
is the practice of teaching computers to recognize patterns and make predictions on data
without being explicitly programmed. It works in 4 steps. The first step is data collection,
where samples are collected. Here, the type of data can vary. Second is training, where
the data is fed into an algorithm, and this algorithm should try and learn the patterns.
It then creates a model based on what it has learned, and finally, this model is used to
make predictions on new data. It is important to understand the idea of feature selection.
Here, features are evaluated and only the best features are held on to, in an attempt to
make the model perform better and faster. The exact process will be explained in the
thesis, but is visually illustrated in Figure 4.

It seems that right now, no one has tried to convert the rs-fMRI data to graph features
and use these to predict ASD. These graph features could introduce new information on
how the brain of someone with ASD differs from that of someone without ASD, called
an allistic individual. The goal is to identify new features that have a positive effect on

1 INTRODUCTION 2

the precision of predictive models when trying to classify ASD. To do this, the second
version of the Autism Brain Imaging Data Exchange (ABIDE) [4] was used. All of this
is to hopefully promote further research.

To execute this process, the work was divided among 3 subgroups.

1. Feature design

2. Classification

3. Feature selection

Their relationship can be seen in Figure 2.
Feature design will transfer the rs-fMRI data into a graph and extract graph features,

along with possible other features. They will then push these features to the other sub-
groups. Classification will design several classification methods to try to get the best
performance with the given features. Finally, feature selection will try to eliminate ir-
relevant features and identify the features most important for the performance of the
process. Next to this, it was decided that there should be a GUI for the project. This
task was taken up by the classification subgroup. This thesis will detail the design and
subsequent challenges of the feature selection subgroup. It will talk about which feature
selection methods have been applied and which features, if any, are the most effective,
the design of these features, or the design of the classification methods can be found in
their respective thesis.

The thesis will go through the different feature selection methods, how they work,
and why they were selected. It will show the results gathered from the feature selection
methods and draw a conclusion based on these results.

Feature Design Classification Feature Selection

Figure 2: Overview of the subgroups in the project pipeline.

2 PRE-REQUIRED KNOWLEDGE 3

2 Pre-required knowledge

2.1 ASD in the brain
While the NVA says that there are no biomarkers for ASD [2], there is still significant
research done on the workings of ASD in the brain. This research has been mostly done
using MRI.
Studies show that the brain structure of people with ASD is different than that of allistic
people. In the brain of a person with ASD, high connectivity can be measured within local
regions of interest, or ROIs, while low long-range connectivity is measured between these
different ROIs [5]. ROI pairs with the strongest correlation are shown to be the most
abnormal in people with ASD. Especially negatively correlated ROI pairs showed less
anti-correlation, possibly representing weaker long-range connections between different
regions of interest pairs [6, 7].

Figure 3: Network connectivity in a neuro-typical brain (left) and a brain with ASD
(right) [5]

It is important to know that ASD behaves differently in the brains of females than
in males. ASD is more prevalent in males, with around 70% of diagnosed ASD cases
being described as males [8]. Males with ASD demonstrate more externalizing behavior,
like aggressiveness or hyperactivity, while females with ASD are more likely to experience
internalizing problems, like anxiety and other emotional problems [8]. Female children
are more likely to camouflage their social challenges, having less intense ASD symptoms,
while male children are more likely to play alone, showing clear symptoms of ASD [9, 10].
This shows a clear male bias in our understanding of ASD.

Differences are also found when looking at the brains of males and females with ASD
using MRI. For example, research shows that, relative to allistic peers, females had more
extensive cortical differences than autistic males [11]. This also shows for the classification
process of people with ASD using MRI, where different classifiers have a contrasting
performance based on gender [12].

2.2 MRI data
fMRI is an imaging scan that shows activity in specific areas of the brain. A standard
MRI scan uses an extremely powerful magnet, radio waves, and computer processing
to generate highly detailed 3D pictures of the inside of your body. An fMRI scan uses

2 PRE-REQUIRED KNOWLEDGE 4

the same MRI machine, but tracks blood flow in different parts of your brain. This, in
combination with the fact that brain cells use more oxygen when utilized for certain tasks,
means that the areas of your brain that are working the hardest appear brighter on an
fMRI scan [13].

To investigate brain disorders such as ASD, rs-fMRI has been considered because of
the minimal need for participants’ cooperation, does not rely on cognitive task design,
and eliminates the need for additional equipment during imaging. Using rs-fMRI, it is
possible to examine resting-state network (RSN) abnormalities in individuals with ASD.
The RSNs are a set of brain regions between which there are consistent spatial and tem-
poral fluctuations and provide valuable information about the brain functions in healthy
individuals and those with neurological disorders, such as individuals with ASD. Numer-
ous studies have suggested patterns of abnormalities in RSNs as potential biomarkers for
the diagnosis of ASD [12].

2.3 ABIDE dataset
All data used in this project is from the ABIDE dataset. This is a collection of rs-fMRI
scans from different universities, related to subjects who are either allistic or have ASD.
The use of this dataset makes new research easier and cheaper, because there is no need
for access to subjects, an MRI machine, or professional staff to operate the machine.
Also, since more than 20 international research sites have uploaded their data, the data
is extensive and diverse. Extensiveness means the influence of outliers will be minimized,
and diversity means the result will apply to a broader population. It contains 1112 rs-
fMRI data sets with corresponding structural MRI and phenotypic information from 539
individuals with ASD and 573 age-matched typical controls [14]. While ABIDE is useful
and extensive, there are also things to consider when using the dataset, like the fact that
it uses data from different research sites. This means that there are also differences in the
way the sites did their research. This leads to differences in methods, which can impact
research findings.

1. Data Collection

2. Training

3. Model Creation

4. Prediction
Feature Selection

Figure 4: The machine learning pipeline illustrating the main steps and where most of
the feature selection takes place.

2 PRE-REQUIRED KNOWLEDGE 5

2.4 Graph features
An important term in this project is ’graph features’. A graph is a collection of nodes
that are either connected or not connected to other nodes. A graph and its nodes can
represent a lot of things. In a social network, the nodes might represent people, and in
a computer network, they might represent computers or routers. In the case of rs-fMRI,
the nodes represent ROIs in the brain. The connections between nodes can also have
weights or directions, but do not have to. When imaging a collection of nodes and their
connections, a graph is created as seen in Figure 5. A graph can also be represented as
can be seen in Table 1. Here, the nodes are present on both the x-axis and the y-axis.
A connection is represented as a 1 and no connection is represented as a 0. There are
several graph-specific features. Examples are connectivity, how many different nodes a
node is connected to, centrality, what is the average distance to each node, etc.

Figure 5: Example connectivity graph showing correlations between regions. Red edges
indicate positive correlations, and blue edges indicate negative correlations.

Table 1: Adjacency matrix representing the weighted connections between nodes.

node 0 node 1 node 2 node 3 node 4 node 5
node 0 0.80 -0.60 0.00 0.00 0.00
node 1 0.80 0.00 0.70 0.00 0.00
node 2 -0.60 0.00 0.00 0.00 0.00
node 3 0.00 0.70 0.00 -0.90 0.00
node 4 0.00 0.00 0.00 -0.90 0.50
node 5 0.00 0.00 0.00 0.00 0.50

3 PROGRAM OF REQUIREMENTS 6

3 Program of requirements
For this project, the feature selection process is quite important. First of all, the feature
selection process makes sure only the important features for classification are used in the
classification process. This makes the process less computationally expensive and prevents
overfitting of the model. This way, accuracy can also be improved by this process.

Apart from that, for the purpose of further research, the features most prominent in
the classification process should be shown in the interface. It is the goal of the feature
selection group to find and record these features.

It is important to note that, for a performance indicator, reduced misclassifications
has been used instead of improved accuracy. This is because improved accuracy can be
insensitive to changes if the initial accuracy is already high. Reduced misclassifications
focus on the actual errors reduced, making it an informative indicator of feature selection
performance.

To make sure the end product is in line with the given goals, a program of requirements
was set up. Below the functional requirements, what the system should do, and the system
requirements, how the program should perform, are given.

3.1 Functional requirements
• The system must use the ABIDE dataset

• The system works with different classification methods

• The system works with different graph inference methods

• The system shows which features it selects

• The system selects all features that have a positive effect on the performance of the
program with the current classification method

• The system shows the accuracy of the model

• The system uses a selection method based on the classification method chosen.

3.2 System requirements
• The system reduces the misclassifications by 25%

• The system runs in less than an hour

• The system is scalable to datasets with 500 features and 1000 subjects

4 FEATURE SELECTION METHODS 7

4 Feature selection methods

4.1 Feature selection
An important step in the process of machine learning is the selection of features. By
reducing the features in the dataset to only the most important ones, the system will be
less computationally intensive. This means that the classification process will take less
time to run, which is crucial if this process needs to take a certain amount of time.
Feature selection is also useful because of another problem, called the curse of dimension-
ality. This is a phenomenon that happens when a machine learning program is trained on
extremely high-dimensional data, or a lot of features. At first, the accuracy increases with
higher dimensionality, but as dimensionality rises further, the accuracy can go down [15].
This is because the training model begins to overfit. This overfitting happens when a ma-
chine learning algorithm has been learning from many particular details from a training
set, including noise and outliers. This way, the model performs very well on the training
set, but when it runs on the test data, it performs a lot worse. By only training the
model on the features deemed important, the problem of overfitting will be reduced, and
accuracy goes up, despite using fewer features.

Feature selection can be done in many ways, but the different techniques almost always
fall into three categories: filter, wrapped, and embedded methods [16]. Filter methods
rank features without the use of a classifier. It usually consists of two steps. The first of
which ranks features based on certain criteria. Either in a univariate scheme, indepen-
dently ranking features, or in a multivariate scheme, which evaluates features in a batch.
The second step chooses the highest ranked features [17]. Examples of filter methods
include filtering the features using Pearson correlation between the features and the class
label, or filtering the features by only keeping the features that cross a certain threshold
of variance. Filter methods are usually fast and have a low computational cost, but lack
accuracy. They are useful for pre-processing large amounts of data.

Raw Data Filter Method Selected Features ML Model Prediction

Figure 6: Filter-based feature selection: Independent method applied before model train-
ing.

Wrapper methods utilize the performance of the predictor as a way to select features.
The predictor is wrapped on a search algorithm that tries to find a subset of features that
performs the best. It does this in a couple of steps. It first finds a subset of features, it
then evaluates this subset by the performance of the chosen classifier. It repeats steps 1
and 2 until a desired performance is found [18]. This produces a high accuracy but is very
computationally expensive. The size of the search space for m features is 2m [17]. These
algorithms are very slow to run and scale exponentially with large amounts of features.
Both these methods have their advantages and disadvantages. Filter methods are com-

putationally efficient, but do not take into account the biases of the classifiers. Wrapper
methods generally have a high performance, but have to evaluate the dataset many times
using a classifier, which can take a lot of time. The third sort of feature selection method
has the advantages of both filter and wrapper methods. They incorporate the classifier
into the selection, but are computationally less expensive than wrapper methods [17, 16].

4 FEATURE SELECTION METHODS 8

Raw Data Feature Subsets ML Model

Evaluate Performance

Prediction

Figure 7: Wrapper-based feature selection: Model is trained on various feature subsets,
performance guides selection.

They are called embedded methods. Embedded methods incorporate feature selection as
part of the training process. Like wrapper methods, these methods search for an optimal
subset of features, but try to limit the computational cost by building the feature selection
inside the classifier.

Raw Data ML Model with FS Prediction

Figure 8: Embedded feature selection: Feature selection happens during model training.

To find the best features in the process of this report, several feature selection methods
were developed. Because this process prioritizes performance over computational cost up
until it takes longer than an hour to run, wrapper and embedded methods were chosen
over filter methods. Also, feature selection methods should be compatible with our data,
because the rs-fMRI graph data is very high-dimensional, and the features can be ex-
pected to be nonlinear.

Each method has its upsides and downsides, especially in combination with different clas-
sification methods. The next section will help explain each feature selection method and
why they were chosen. For a quick overview, Table 2 can be referenced.

4.2 Permutation Importance
The first feature selection method evaluated is a wrapped method called Permutation Im-
portance. The method changes every sample of a single feature and evaluates the change
in scoring of the classifier model. It repeats this to give each feature an ’importance’. To
implement this method, the scikit learn library was used in Python [19].

4.2.1 Methodology

Permutation importance is model agnostic, which means that it can work with any classi-
fication model. To implement permutation importance, the model needs to run normally
first. It creates a baseline metric by scoring the model with all features intact. This
scoring method can be in different parameters, but when set to default, it will use the
scoring method of the given model. So it will use accuracy for a classifier, in our case,
this is always. After this is done, it will randomly assign all samples for a given feature
a new value. By randomizing these samples, the connection between the feature and the

4 FEATURE SELECTION METHODS 9

outcome should be broken. After randomizing, the program checks the scorer again to see
how it has changed. It then assigns a feature an importance equal to the amount the score
has dropped. This value is thus negative if the score has increased, indicating a negative
influence on the accuracy of the classification in our case. The model also repeats this
process multiple times per feature. It does this for robustness, by testing multiple times,
it reduces the chance of outliers. The equation for finding the final importance score can
be found in equation 1

ij = s − 1
K

K∑
k=1

sk,j (1)

Here s is the initial score, ⟩| is the importance score for feature j, and K is the number
of repetitions.

4.2.2 Pros and cons

Permutation importance is a very useful method because it works with nonlinear data
and with every classifier. There are, however, downsides; some of them make permutation
importance less useful for certain classifiers.

First of all, permutation importance is computationally expensive. It needs to check every
feature and has to do this repeatedly for a more robust importance score. This means
that when your data is high-dimensional, this method becomes slow. It becomes almost
impossible to use when the classifier also has a high computational training cost or cost
per prediction, like complex neural networks.

The method is not good at handling data that is highly correlated, once again, something
that occurs more often in high-dimensional data. Since permutation importance checks
each feature one by one, it might mark two highly correlated features as unimportant,
since it doesn’t affect the score when only one of the features is missing. However, the
score can still drop when both features are removed. Thus, permutation importance might
miss important features.

Finally, permutation importance does not work well with unstable models or models with
high variance, like single decision trees. Since permutation importance randomly shuffles a
feature’s values, if the score is vastly different each time, then this will lead to inconsistent
importance scores.

4.3 Lasso
The next feature selection method is called the Least Absolute Shrinkage and Selection
Operator (LASSO). The selection method was implemented using the pyHSICLasso
package made by Yamada and Climente [20, 21].

4.3.1 Methodology

Lasso is a modification of the Ordinary Least Squares (OLS) cost function. Lasso adds an
L1 penalty to OLS, minimizing the absolute sum of the coefficients. This penalty shrinks
certain coefficients to zero and effectively performs feature selection [22]. The formula for
Lasso can be found in Equation 2.

4 FEATURE SELECTION METHODS 10

β̂
lasso = arg min

β

1
2

n∑
i=1

yi − β0 −
p∑

j=1
xijβj

2

+ λ
p∑

j=1
|βj|

 (2)

Where y is the vector of the observed target values, X is the matrix of input features,
β is the vector of regression coefficients to be estimated, and λ is the regularization
parameter. The higher this parameter, the more the coefficients shrink to zero. As can
be seen, the equation can be divided into two parts: the first of which is the residual sum
of squares. The second part represents the L1-penalty function.

By shrinking different feature coefficients to zero, the L1-penalty improves the prediction
accuracy and makes the model easily interpretable. It can handle high-dimensionality and
high correlation in features by choosing one feature among a group of highly correlated
features and shrinking the rest to zero.
Lasso is particularly useful when the number of features is larger than the number of
training samples [23]. This is exactly the case with the data of this project, which has a
lot of samples. It also has a relatively low computational cost, making it a good feature
selection method for our data.

4.3.2 HSIC Lasso

While Lasso is a useful feature selection tool and can handle the high-dimensionality
present in our dataset, there is still a critical limitation of Lasso. On its own, Lasso
cannot capture non-linear dependency. Because the dataset can be expected to have non-
linear features, the Lasso method should be modified to capture non-linearity. A good
method that can still handle high-dimensional feature selection uses the Hilbert-Schmidt
Independence Criterion (HSIC) [20]. This feature-wise non-linear Lasso, called HSIC
Lasso, can be seen in Equation 3.

min
β∈Rd

1
2

∥∥∥∥∥L̄ −
d∑

k=1
βkK̄(k)

∥∥∥∥∥
2

Frob
+ λ∥β∥1 (3)

As can be seen, the equation looks like Equation 2, with some notable differences.
|| ∗ ||F rob is the Frobenius norm, which is the square root of the sum of the squares of all
elements in the matrix. L̄ and K̄ are centered Gram Matrices, based on Gram Matrices
Ki,j = K(xk,i, xk,j) and Li,j = L(yi, yj) [20]. d here is the total number of features.

According to Equation 4, the first part of Equation 3 can be rewritten as

1
2

∥∥∥∥∥L̄ −
d∑

k=1
βkK̄(k)

∥∥∥∥∥
2

Frob
= 1

2HSIC(y, y)−
d∑

k=1
βkHSIC(uk, y)+ 1

2

d∑
k,l=1

βkβlHSIC(uk, ul) (4)

HSIC(uk, y), is the Hilbert-Schmidt independence criterion, a kernel-based indepen-
dence measure [20]. uk = [xk,1, ...xk,n]⊺ ∈ Rn is the vector of the kth feature for all sam-
ples. Here, HSIC(y, y) is a constant and can be ignored. When using a kernel such as the
Gaussian kernel, HSIC goes to zero if two variables are statistically independent. This
way, HSIC Lasso is functionally a minimum redundancy maximum relevancy, or mRMR,
based feature selection method, a feature selection method that will be explained later in
the report. Equation 5 is the function that finds the relevancy to the output label, and
Equation 6 is the function that finds the redundancy between every feature.

4 FEATURE SELECTION METHODS 11

d∑
k=1

αkHSIC(uk, y) (5)

1
2

d∑
k,l=1

αkαlHSIC(uk, ul) (6)

The fact that HSIC Lasso is an mRMR-based feature selection method makes it a
filter method, not an embedded method like basic Lasso. Even though it uses an L1
penalty to select a sparse subset of features, like Lasso, it selects features before training
a classifier, like filter methods do. Besides that, HSIC Lasso is still a very useful feature
selection method. It works with non-linear features and, like basic Lasso, it works well
with datasets that have a large number of features and a relatively low number of samples.
This makes it a good feature selection method for our dataset.

4.3.3 Pros and cons

Lasso is a great method because it performs feature selection and regression simultane-
ously. It handles high-dimensional data well, which makes it very efficient. The HSIC
method should be even better, since it works with non-linear data.

However, Lasso may discard all but one arbitrary feature among correlated features. This
can hurt interpretability, making it hard to see which feature influences the classification.

The HSIC lasso has some other specific downsides. It is more complex to implement,
but more importantly, it depends on the choice of kernel and the hyperparameters. This
means that more parameters can differ and have to be taken into account.

4.4 Sequential Feature Selection
Sequential Feature Selection (SFS) is a wrapped feature selection method used. It creates
subsets of features by adding or removing features sequentially based on an estimator. To
implement this method, the scikit learn library was used in Python.

4.4.1 Methodology

SFS has two opposite versions: forwards SFS and backwards SFS. Forward SFS starts
with an empty set. It then runs the program for each feature individually and evaluates
the performance based on a specific indicator. The feature that increases the performance
the most is then added to this set. After this, the program repeats these steps with every
feature not yet added to the set, adding them to the features that have already been
chosen and evaluating their performance. The program only stops when a given number
of features have been added, the performance stops increasing by a given amount, or all
features have been added.

When SFS works backwards, the program starts with a subset containing every feature
and removes each feature individually. It then checks which removed feature drops the
accuracy the least, or even improves it, and removes that feature from the subset perma-
nently. Like with forwards SFS, the program then repeats these steps with the remaining
features. It only stops when a given number of features is left, the performance is not

4 FEATURE SELECTION METHODS 12

incremented by at least a given amount, while this amount can be negative, or when all
features have been removed.

4.4.2 Pros and cons

SFS is an intuitive and powerful method for feature selection because it directly measures
the impact of each feature on model performance, in the context of all other features.
Besides that, it works with any model. There are, however, downsides.

To start, SFS can be computationally expensive. Both methods first have n evaluations
for an amount of chosen features n. The iteration after this becomes n − 1 evaluations.
This leads to O(n2) evaluations, which grow exponentially with more features. Still, the
backwards variation is quite more expensive than the opposite. This is because, while the
forwards variant begins with an empty set, the backward SFS begins its program with
every feature. This makes the first evaluations very expensive. Also, depending on the
chosen amount of selected features n, forward SFS only has n iterations, while backwards
SFS has m − n iterations, where m is the total number of features. This makes backward
feature selection very computationally expensive for high-dimensional data.

Performance-wise, the forward model can be lacking. By adding features iteratively, the
program can select features that contribute significantly in isolation, but may not be as
useful when combined in a set with others. By removing features iteratively, backwards
SFS is much better at handling these features in the context of a set, which can lead to
a better performing model.
Also, the program is not always good at correlated features. The forwards method might
not add features, because on itself they add nothing to the performance of the model, while
they do have a positive effect when combined with other features. The backwards method
handles correlated features better, since it would see a significant drop in performance
when removing one of the two.

Finally, it should be noted that these methods are greedy. When a feature is removed
or added, it is not considered again. In forwards SFS, this means that when a feature is
added, it will never be removed again, even though in combination with other features,
it might not have as much of an effect. In backwards this means that when a feature is
removed, it will never be added again, even though when a different feature is removed,
it might be relevant again.

5 PREPROCESSING 13

5 Preprocessing
Now, all the proposed feature selection methods have been explained, and their pros and
cons have been elaborated on. It seems some cons are shared by multiple methods. The
biggest problem is the high dimensionality, which often results in computationally expen-
sive feature selection and more highly correlated features. To try and remedy this, the
data can be processed, and the features going into the final feature selection method are
reduced before trying to select the most influential features. This has been implemented
in two ways: a filter method called mRMR and clustering.

5.1 mRMR
mRMR is a very useful method of pre-processing large-scale feature selection problems for
more accurate wrapper methods. This method is good for filtering the very large num-
ber of features into the few that are most important, using only these for a much more
computationally expensive wrapper method. This way, both the advantage of faster filter
methods as well as the higher accuracy of a wrapper method are present in the feature
selection. mRMR has been implemented using the scikit feature package [24].

mRMR is based on Mutual Information for its selection, which can define the depen-
dency of variables. The equation for mutual information is given in Equation 7 [25].

I(x; y) =
∫∫

p(x, y) log p(x, y)
p(x)p(y) dx dy (7)

Here, p(x), p(y) and p(x, y) are probabilistic density functions of x and y. mRMR consists
of two different criteria: minimal redundancy and maximal relevance.
First, the algorithm searches for a subset of features S with the maximal relevance to
label y. It does this by using the mean value of all mutual information values between an
individual feature xi and label y. This criterion can be seen in Equation 8 [25].

max D(S, y), D = 1
|S|

∑
xi∈S

I(xi; y) (8)

Equation 8 on its own could already perform feature selection, choosing the set of features
most relevant to the label y. However, this method would not consider the dependency
of features in the subset of features. When two features have a very high dependency,
the subset should not care if one of the features is removed. This is where the minimal
redundancy comes into play. The minimal redundancy part of mRMR also uses mutual
information, but this is used to evaluate how much the features depend on each other.
The minimal redundancy part can be seen in Equation 9 [25].

min R(S), R = 1
|S|2

∑
xi,xj∈S

I(xi, xj) (9)

In equation 10, it can be seen how both equations come together to form an mRMR score.
[25]

max Φ(D, R), Φ = D − R (10)
In reality, this method works with a greedy approach by starting with an empty set.

It first searches for the feature with the most relevance to the label y. After that, it uses

5 PREPROCESSING 14

a forward selection technique with a sequential search strategy to iteratively find new
features with the highest relevancy to the label, while having a low redundancy to the
created subset [26].

Although mRMR is a filter, it balances both relevance and redundancy, making sure
all selected features are not redundant, while being computationally inexpensive. It is,
however, still a filter, which means that it will probably have a lower accuracy than the
more intricate wrapper and embedded methods. At least when it is used alone.
Next to this, the strategy is greedy. It works towards a local optimum and not a global
optimum. The program iteratively chooses the best feature and the next best feature. It
doesn’t check each possible combination, meaning it can miss a global optimum.

5.2 Clustering
Another method for pre-processing is clustering. In this method similar features are
grouped or ’clustered’. This helps, not only because it removes the total amount of fea-
tures, but it also groups highly correlated features, meaning that feature selection methods
that struggle with highly correlated features should work better with clustered features.
An example method for clustering features is provided in the documentation of scikit
learn.

In this method, first the Spearman’s correlation is used. The Spearman correlation be-
tween two variables is equal to the Pearson correlation between the rank values of those
two variables; while Pearson’s correlation assesses linear relationships, Spearman’s cor-
relation assesses monotonic relationships, whether they are linear or not. If two feature
ranks are the same, they get a value of +1, and when they are the exact opposites, they get
a value of -1. The function used to calculate the Pearson correlation is given in equation
11.

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
(11)

The program creates a Spearman correlation matrix, where each feature is related to
each other. Using hierarchical clustering with Ward’s linkage, features are grouped based
on their correlation structure. From each cluster, a representative feature is chosen to
represent the core data. A threshold value is added to determine how far the features
have to be clustered.

To visualize this method of clustering, Figure 9 has been added. In this figure, only 30
features are used and subsequently clustered to make the process clearer. In this figure,
the left subplot shows a hierarchical clustering tree, showing what features are clustered at
what threshold. The features that are used are shown on the x-axis. The y-axis shows the
threshold value. The right graph is a heatmap of the Spearman correlation matrix. Both
axes show the used features. If a spot is bright, then these features are highly correlated;
if the spot is dark, then these features are not correlated or even anti-correlated.

5.3 Hyperparameter tuning
Some feature selection methods have hyperparameters. These are parameters that are
not trained by the model, but set by the user before the program runs. In the context
of feature selection, this is mostly how punishing the method is, like the α in the Lasso

5 PREPROCESSING 15

Figure 9: Visualisation of clustering

Table 2: Overview of Feature Selection Methods
Method Upsides Downsides
Permutation Importance
(Wrapper)

- Model-agnostic (works with any classifier)
- Captures non-linear dependencies
- Robust through repeated testing

- Computationally expensive, especially with
many features
- Struggles with correlated features
- Poor performance with unstable models

mRMR (Filter) - Low computational cost
- Balances relevance and redundancy
- Useful as pre-selection for wrapper methods

- May have lower final accuracy than wrap-
per/embedded methods
- Greedy strategy may miss the global opti-
mum

Lasso (Embedded) - Performs feature selection and regression si-
multaneously
- Handles high-dimensional and correlated
features
- Efficient for large datasets

- Cannot capture non-linear dependencies
- May discard all but one among correlated
features

HSIC Lasso (Filter) - Captures non-linear dependencies
- Handles high-dimensional data well
- Effective with a few samples

- More complex implementation
- Depends on choice of kernel and hyperpa-
rameters

Sequential Feature Selec-
tion (Wrapper)

- Simple and intuitive
- Evaluates feature impact in context
- Works with any classifier

- Very computationally expensive, especially
backward SFS
- May miss correlated features
- Greedy strategy

method, or how many features the method should select. The best accuracy possible can
only be achieved when these hyperparameters are set correctly. Using hyperparameter
tuning, this can be done.
Using hyperparameter tuning, the feature selection method won’t be used only once, but
several times over a certain range of values for a single hyperparameter. Every time, the
tuning checks the accuracy and records the highest accuracy of the entire tuning process.
The hyperparameter value with the highest accuracy gets used in the final feature selection
process.
Lasso has a special function called alpha_ that selects the best alpha for the dataset.
HSIC Lasso needs to be run several times to find the prime alpha.

6 PIPELINE 16

6 Pipeline
To be able to test and run the program, the classification methods and features of the other
subgroups had to be used. For this end, an overarching file was created, called ’pipeline’.
This pipeline would combine both the feature design module and the classification module,
designed by their respective subgroups, with the feature selection module.

6.1 Loading file and pre-processing
The first part of the pipeline is loading and pre-processing the data supplied by the
feature design group. Before loading this data, a choice can be made between the male
and female repository. After this choice is made, the selected data will be loaded. Using
code from the feature design group, features will be computed and stored in a dataframe
per individual. After this, the phenotypic data, which determines if a person has ASD,
are loaded and merged into the dataframe.
The data will then be split into X, which contains the features, and y, which contains
DXGroup, that determines if a person has ASD. After that, the features are preprocessed.
Every feature is made to be numeric. Columns with more than 50% NaN values and
columns without any variation are discarded. Last, every NaN value is filled with the
median value of the column.

6.2 Train and test data
After this, the pipeline can use two methods to train the model using the classifiers made
by the classification group. Splitting the data into train and test data early is very impor-
tant for machine learning, as doing it later might lead to leakage from the test data into
the training data. This leads to a skewed accuracy. These options are splitting the data
into test and train data with an 80-20 split and using cross-validation. For most feature
selection methods, 5-fold cross-validation is used, but for the methods Permutation Im-
portance and backwards Sequential Feature Selection, it is too computationally expensive
to run five times. This is why these methods are run using only a train-test split.

6.3 Feature selection
After this, the training data goes through the selected feature selection process. Some-
times this method is combined with a pre-processing method, like a filter or clustering.
The feature selection module presents a list of features that the method thinks will give
the best result. After the features are selected, the model is run again to see how the set
of selected features affects the accuracy and possibly other performance metrics. Depend-
ing on the feature selection method, the classification method will already be taken into
account. The feature selection part outputs the indices of the selected features, ready for
the last classification process.

6.4 Classification and evaluation
As a last step in the process, the selected features will be used in the classification process.
This process gets trained on features and labels of the training data. It uses this training
to predict new labels for the test data. These predicted labels are then compared to the

6 PIPELINE 17

true labels of the test data.

Performance is evaluated on a couple of factors. The first indicator is the accuracy.
This is the fraction of correct predictions, as can be seen in equation 12.

Accuracy = TP + TN

TP + FP + TN + FN
(12)

This is a good indicator, but can sometimes be misleading. It doesn’t work well when
there is a class imbalance, for example. If the sample group is 95% allistic, then classifying
everyone as allistic will result in a high accuracy of 95%, even though the model has no
true positives. Such a model would not help in finding features that indicate ASD. That
is why other indicators are also considered.
The second factor is precision, or how many of the positives were classified correctly 13.

Precision = TP

TP + FP
(13)

After that, the next factor is sensitivity, or how many positives were caught 14. This is
important when false negatives are costly, like with classifying people with a potential
condition like ASD. This is why we consider sensitivity as an extra important indication.

Sensitivity = TP

TP + FN
(14)

The F1 score combines the precision and sensitivity into a single score 15. This is good
for imbalanced datasets.

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(15)

Last, AUC, or the Area Under ROC Curve, measures how well the classifier ranks
positive vs. negative examples.

After all methods have been evaluated the methods are compared and the best com-
bination of inference method, classifier, and feature selection method is shown alongside
the features selected by that method.

6.5 Parallel running
Because the pipeline needs to run the same code five times, each for every classifier, an
overarching pipeline has been built using joblib that can run this code for each classifier
in parallel on different CPU cores. This significantly speeds up the execution time for
tasks that can be done independently, such as training the different classifiers using all
the feature selection methods. Using this parallelization, the runtime of the program is
reduced to the runtime of the slowest classifier.
The developed pipeline code can be found in Appendix C. This does not include the code
developed by other subgroups.

7 RESULTS 18

7 Results
The goal of this part of the project was to try to find which features were important for
classifying someone with ASD and whether or not graph features improved in classifica-
tion. To do this, all developed feature selection methods were tested with every developed
classification method for both the graph features and the full Pearson correlation features.

7.1 Classification methods
Several classification methods have been developed by the classification subgroup. Al-
though their contents are not the main subject of this thesis, it was decided that a sum-
mary of their methodology was beneficial. The classification methods used are:

• Support Vector Machine

• Logarithmic Regression

• Random Forrest

• Linear Discriminant Analysis

• K-neighbours classifier

A support vector machine (SVM) is a classification method that uses a hyperplane to
separate the data into classes. It tries to find the optimal hyperplane that maximizes the
margin between the classes.
Logistic regression (LogR) is a linear model that predicts the probability of a class using
a logistic function.

A Random Forest (RandForrest) is a machine learning algorithm that combines mul-
tiple decision trees to improve prediction accuracy. It’s like a "forest" of trees, where each
tree makes its prediction, and the final prediction is an average of all the trees’ predictions.

A linear discriminant analysis (LDA) is a classifier with a linear decision boundary, gen-
erated by fitting class conditional densities to the data and using Bayes’ rule [19].
A K-neighbors classifier (KNN) is a classifier implementing the k-nearest neighbors vote
[19].

7.2 Used data
7.2.1 Full Correlation

The non-graph data used as a baseline is called the full-correlation data. Full correlation
is calculated by computing the Pearson correlation coefficient between all pairs of features
in a dataset. In the context of rs-fMRI, this means computing the Pearson correlation
coefficient between every ROI in the brain and using this as a feature. Full correlation
has proven to be a good method for classifying ASD using rs-fMRI data [27]. In the full
correlation dataset used, 115 ROI’s are considered.

7 RESULTS 19

7.2.2 Graph Data

The goal of the project is to determine if graph data can be used to help classify people
with ASD. This graph data is extracted from the rs-fMRI. The pipeline was run for 4
different inference methods. Each of these methods is a unique way to collect graph
features from the rs-fMRI data.

• partial correlation

• mutual info

• normalised Laplacian

• Regularized Logarithmic Spectrum

All of these methods were designed by the feature design subgroup, and their methodology
and the choices behind them should be explained there. Although there were more meth-
ods developed by the feature selection subgroup, only these methods were working within
the pipeline when testing began; thus, it was decided to use them instead of spending
more time trying to get the remaining methods to work within the pipeline. The following
is the list of graph features used in the feature selection process.

• Closeness Centrality ROI X

• CLustering Coefficient ROI X

• Degree Centrality ROI X

• Eigenvector Centrality ROI X

• Average Clustering

• Diameter

• Spectral Entropy

• Mean Laplacian Eigenvalue

• Max Laplacian Eigenvalue

• Frobenius Norm

• Algebraic Connectivity

• Graph Energy

Next to these graph methods, two separate datasets were developed using Regularized
Spectrum and normalized Laplacian. The 20 ROIs were derived from the resting-state
network atlas published in [28]. Only the first 10 have gotten names; these can be found
in Appendix D.

7 RESULTS 20

7.3 Full correlation
In the following sections, an overview of all the results will be provided, both for the full
correlation features, based on Pearson’s correlation, as well as the graph features. First,
a summary of full correlation features results is shown in the following tables; the com-
plete overview can be seen in A. In these results, because of the computational costs of
the methods, the permutation importance and the Sequential Features Selection methods
were evaluated using a train-test split of 0.80 − 0.20 respectively. The rest of the meth-
ods were evaluated using a stratified 5-K fold cross-validation. Permutation importance
is preprocessed with clustered features, using only 56, while forward SFS is tested with
mRMR filtered features, running on 70 remaining features. This is because clustering
reduces correlated groups of features, which is a struggle for permutation importance.
Forward SFS can struggle if it’s adding redundant features frequently, which can hurt
performance. This is why mRMR is chosen, which gets rid of redundant features.
While backwards SFS was tested on full correlation data, the method proved to be too
computationally expensive to be run without the method being fully redundant due to
extensive pre-filtering of harsh clustering or mRMR. This is why backward SFS is not
included in the results.

In results show the feature selection method with the best accuracy for every classi-
fier. It also shows the percentage of reduced misclassifications using the feature selection
method compared to the accuracy of the whole set. This is calculated using Equation 16.
Next to that, sensitivity is shown, which is shown to be extra important in classifying
people with autism. The equation to calculate the improved sensitivity is seen in Equa-
tion 17. The extensive tables covering performances of every feature selection method on
every classifier can be found in Appendix A.

% Reduced Misclassification = (1 − Acc without) − (1 − Acc)
(1 − Acc without) × 100% (16)

%Improved Sensitivity = Sens − Sens raw

Sens raw
× 100% (17)

7.3.1 Performance on multisite data

First, the feature selection methods are considered on the full correlation dataset con-
taining every site available. First, in Table 3, the performance of the combined data is
evaluated. After this, the results are split into only male or female data in Tables 4 and
5.
In Table 3, it is clear that Lasso is a dominant feature selection method with the full cor-
relation dataset, having the best accuracy of all feature selection methods with four out
of five classifiers. Still, the highest accuracy measured is from forward SFS using Random
Forest as a classifier with an accuracy of 0.7426. This is also the highest reduction of
misclassifications, with 28.46%. Another high performer is LDA, with a 23.45% reduction
of misclassifications and a 54.06% improvement of sensitivity.
Low relative performers are SVM and LogR. These methods have a high initial perfor-
mance, but have the worst relative improvement using Lasso feature selection. The lowest
reduction in misclassifications is achieved by LogR with only a reduction of 2.45%.

7 RESULTS 21

Table 3: Best performance per classifier on multisite data

Classifiers Best Acc Acc raw Sens Sens raw Reduced
Misclas. (%)

Improved
sens (%)

SVM Lasso 0.6786 0.6549 0.6027 0.5413 6.87 10.19
LogR Lasso 0.6583 0.6368 0.6272 0.5930 2.45 5.77

RandomForest fSFS 0.7426 0.6345 0.6535 0.4680 28.46 39.64
LDA Lasso 0.6583 0.5701 0.6224 0.4040 23.45 54.06
KNN Lasso 0.6210 0.5475 0.5292 0.4193 16.15 26.21

In Table 4, the female split is evaluated. In the female split, permutation importance
is the most prominent feature selection method. The best relative performers in mis-
classifications are LogR, LDA, and KNN, all using permutation importance, with 8.87%,
12.28%, and 16.22% respectively. With improved sensitivity, the classifiers perform fur-
ther apart, with the top performers being SVM, which uses forward SFS for a 1400%
improvement, and Random Forest, which doubles its sensitivity. The sensitivity of KNN
goes down by 40.12%. Still, all these sensitivities are relatively low, around 0.3. Table 5,
the male split is evaluated. The best feature selection methods are very diverse, with only
Permutation importance being the best twice. The best improvement in the classifier is
LDA using forward SFS with 15.63% reduced misclassifications and 86.45% improvement
in sensitivity. The lowest performer is LogR using Lasso, with a worse sensitivity and a
1.51% reduced misclassification.

Table 4: Best performance per classifier on multisite female data

Classifiers Best Acc Acc raw Sens Sens raw Reduced
Misclas. (%)

Improved
sens (%)

SVM fSFS 0.6428 0.6233 0.3 0.02 5.18 1400
LogR Permutation 0.6378 0.6026 0.3753 0.36 8.87 4.25

RandomForest mRMR 0.6381 0.6309 0.2095 0.1 2.01 109.5
LDA Permutation 0.6429 0.5929 0.5 0.28 12.28 78.57
KNN Permutation 0.6786 0.6164 0.2 0.3340 16.22 -40.12

Table 5: Best performance per classifier on multisite male data

Classifiers Best Acc Acc raw Sens Sens raw Reduced
Misclas. (%)

Improved
sens (%)

SVM fSFS 0.68 0.6435 0.6527 0.5724 10.24 14.03
LogR Lasso 0.6287 0.6230 0.6174 0.6227 1.51 -0.85

RandomForest Permutation 0.68 0.6206 0.6667 0.5278 15.63 26.32
LDA fSFS 0.6333 0.5617 0.625 0.3354 16.34 86.45
KNN Permutation 0.6067 0.5482 0.625 0.3965 12.95 57.64

7.3.2 Performance on single-site data

To eliminate the effect of the difference between site data on the performance of the fea-
ture selection methods, the methods have also been tested on a single site. NYU has been
chosen as the single site, because it has the most samples out of all sites. Like the mul-
tisite results, these results are also first evaluated using the combined data, after which
the results have also been split between male and female samples.

7 RESULTS 22

In Table 6, more variety can be seen in the best-performing feature selection method
per classifier, while Lasso is still the best-performing feature selection method. The best
performing classifiers according to reduced misclassifications are LDA using forward SFS
and KNN using Lasso, with 14.17% and 8.81% respectively. The worst relative performers
are SVM and logR, with only 1.54% and 3.43%.
The raw sensitivities of the classifiers are very low, with the lowest being of SVM with
only 0.2467. All classifiers improve their sensitivity significantly using a feature selection
method.

Table 6: Best performance per classifier using the entire NYU data.

Classifiers Best Acc Acc raw Sens Sens raw Reduced
Misclas. (%)

Improved
Sens (%)

SVM Lasso 0.6546 0.6492 0.4781 0.2467 1.54 93.84
LogR mRMR 0.6440 0.6314 0.5733 0.4781 3.43 19.91

RandForest Lasso 0.6723 0.6482 0.4895 0.3552 6.84 37.78
LDA fSFS 0.7142 0.6669 0.6 0.5467 14.17 9.75
KNN Lasso 0.6373 0.6023 0.3819 0.3171 8.81 20.44

Table 7 shows female performance and has the best accuracies of all, but shows why
only looking at accuracy can give a skewed impression. Looking at SVM, it has a raw
accuracy of 0.7142, while having a sensitivity of 0.0, meaning it got this accuracy by clas-
sifying everyone as allistic. This reflects the limited number of female samples available.
SVM, LogR, and Random Forest have been able to reduce the misclassifications using
Lasso, while improving the sensitivity. LDA and KNN have also improved their sensitiv-
ity, but not reduced their misclassifications, with KNN even increasing by 14.33% using
HSIC Lasso.
Table 8 shows KNN with forward SFS as the best relative performer, reducing misclassifi-
cations by 11.62% and improving sensitivity by 106.19%. The lowest performer based on
misclassifications is Random Forest using Lasso with −2.00%, while SVM using mRMR
does not increase sensitivity at all.

Table 7: Best performance per classifier on females from the NYU data.

Classifiers Best Acc Acc raw Sens Sens raw Reduced
Misclas. (%)

Improved
Sens (%)

SVM Lasso 0.8000 0.7142 0.4 0.0 29.93 –
LogR Lasso 0.8286 0.7429 0.4 0.2 33,26 100.0

RandomForest Lasso 0.8286 0.7714 0.5 0.2 25.07 150.0
LDA Lasso 0.7714 0.7714 0.5 0.3 0.00 66.67
KNN HSIC Lasso 0.7714 0.8000 0.4 0.1 -14.33 300.0

Table 8: Best performance per classifier using the male NYU data.

Classifiers Best Acc Acc raw Sens Sens raw Reduced
Misclas. (%)

Improved
Sens (%)

SVM mRMR 0.6251 0.6177 0.5308 0.5308 1.93 0.0
LogR mRMR 0.6188 0.5891 0.5782 0.5333 7.24 8.42

RandomForest Lasso 0.6471 0.6540 0.6538 0.5282 -2.00 23.68
LDA Permutation 0.6465 0.6397 0.6256 0.6270 1.88 -0.22
KNN fSFS 0.6429 0.5960 0.7693 0.3731 11.62 106.19

8 GRAPH RESULTS 23

8 Graph results
Each set of features was run through each combination of classifiers and feature selection
methods. The complete list of performance metrics will be found in Appendix B. In this
section, only the summary tables will be covered.

8.1 Dataset 1
The program was run for both multi-site as well as single-site. For the same reasons
as noted above. In Table 9, the most selected features for multi-site and single-site are
shown. Their score in this case is the number of times they are selected by a feature
selection method. A full list of used graph features can be found in Appendix E. The top
3 in both cases are: Mean Laplacian Eigenvalue, Spectral Entropy, and Graph Energy.
Although these might have a significant effect, their results are most likely skewed. Some
of the inference methods, when examined more closely, had very little to no difference in
all but 6 features, leaving only these features to be considered:

• Average Clustering

• Diameter

• Spectral Entropy

• Mean Laplacian Eigenvalue

• Max Laplacian Eigenvalue

• Frobenius Norm

• Algebraic Connectivity

• Graph Energy

Considering this, it is the remaining features that are of more interest.

• Eigenvector Centrality ROI 2

• Eigenvector Centrality ROI 4

• Clustering Coefficient ROI 3

Eigenvector centrality and clustering coefficient are graph features. Eigenvector cen-
trality can be calculated with equation 18. It represents not just how many connections
a node has, but whether those connections are to important nodes.

xi = λ1
∑

j∈neighbors(i)
Aijxj (18)

The clustering coefficient can be calculated with equation 19. This represents how inter-
connected a node’s neighbours are.

Ci = 2ei

ki(ki − 1) (19)

8 GRAPH RESULTS 24

Table 10 and Table 12 show the best-performing combinations. The performance
metric here is the F1 score. The main goal was, however, to decrease misclassifications,
which means that a higher accuracy is the most important metric. Tables 10 and 12 show
the best-performing combination in accuracy. Coincidentally, these are the same methods
at the top of our previous tables.

• norm Laplacian, KNN, backwards SFS (for multisite)

• mutual info, LDA, forwards SFS (for single site)

Between these two, the single site has a better reduction in missclassification. It results
in % Reduced Misclassification = (1−0.4934) − (1−0.6765)

(1−0.4934) × 100% = 36.14%. Compared to
% Reduced Misclassification = (1−0.5059) − (1−0.5854)

(1−0.5059) × 100% = 16.09%. Although both
of these methods seem promising, it should be noted that the SFS methods were not
cross-validated, meaning their results may not be replicated and are thus unreliable.

Table 9: Top selected features for Multisite and NYU datasets

Selected Feature (Multisite) Score
Mean Laplacian Eigenvalue 97
Spectral Entropy 95
Graph Energy 79
Eigenvector Centrality_ROI_2 51
Eigenvector Centrality_ROI_4 47

Selected Feature (NYU) Score
Mean Laplacian Eigenvalue 64
Spectral Entropy 56
Graph Energy 50
Clustering Coefficient_ROI_3 47
Frobenius Norm (Laplacian Spectrum) 45

Table 10: Top multisite classifier performance

Classifier Graph Method Feature Selector F1 score
KNN norm_laplacian backward SFS 0.527778
KNN partial_corr forwards SFS 0.513158
KNN partial_corr backward SFS 0.513158
KNN partial_corr mRMR 0.489523
KNN partial_corr Raw data 0.489523

8 GRAPH RESULTS 25

Table 11: Multisite detailed classification metrics for the highest accuracy

Metric Value
Classifier KNN
Graph Method norm_laplacian
Feature Selector backward SFS
Number of Features 20.0
Accuracy 0.585366
Precision 0.550725
sensitivity 0.506667
F1 Score 0.527778
AUROC 0.553708
Sensitivity 0.651685

Table 12: Top NYU classifier performance

Classifier Graph Method Feature Selector F1 score
LDA mutual_info forwards SFS 0.592593
LDA norm_laplacian forwards SFS 0.580645
LDA mutual_info backward SFS 0.551724
LogR norm_laplacian forwards SFS 0.551724
LDA norm_laplacian HSIC_Lasso 0.510297

Table 13: NYU detailed classification metrics for the highest accuracy.

Metric Value
Classifier LDA
Graph Method mutual_info
Feature Selector forwards SFS
Selected Feature Closeness Centrality_ROI_1
Number of Features 20.0
Accuracy 0.676471
Precision 0.666667
sensitivity 0.533333
F1 Score 0.592593
AUROC 0.698246
Sensitivity 0.789474

8.2 Dataset 2 (tuned parameters)
Next to these methods, there were also two datasets designed separately. These datasets
used regularized spectrum and normalised Laplacian inference methods, but had param-
eters that were more specifically tuned, which should lead to better results. The best
overall performing feature selection method for each classifier can be found in Table 14.
Next to this, the feature selection methods with the highest accuracy can be found in
Table 15. As you can see, the best performing feature selection method and classifier
combinations, when setting accuracy as the most important performance metric, are:

8 GRAPH RESULTS 26

• KNN & forwards SFS

• LogR & forwards SFS

• Random forest & forwards SFS

• SVM & Permutation
Only two of these get to 60% accuracy. Which is lower than every result obtained from
the full correlation features. The top 20 most influential features can be found in Table
16. These features correspond to the edge weights between ROIs. There is no feature
with a significantly higher prevalence than the others.

Table 14: Best overall feature selection method per classifier

Classifier Feature Selection Accuracy Precision sensitivity F1_score Auroc Sensitivity
KNN forwards SFS 0.566 ± 0.055 0.517 ± 0.079 0.444 ± 0.098 0.474 ± 0.076 0.551 ± 0.035 0.660 ± 0.095
LDA forwards SFS 0.580 ± 0.015 0.532 ± 0.023 0.470 ± 0.044 0.498 ± 0.033 0.583 ± 0.014 0.666 ± 0.043
LogR forwards SFS 0.590 ± 0.025 0.546 ± 0.033 0.473 ± 0.046 0.506 ± 0.036 0.587 ± 0.018 0.682 ± 0.052
RandomForest forwards SFS 0.604 ± 0.047 0.576 ± 0.075 0.464 ± 0.046 0.511 ± 0.044 0.598 ± 0.051 0.715 ± 0.083
SVM Permutation 0.604 ± 0.010 0.582 ± 0.015 0.456 ± 0.058 0.500 ± 0.040 0.618 ± 0.014 0.456 ± 0.058

Table 15: Best accuracy feature selection method per classifier

Classifier Feature Selection Accuracy Precision sensitivity F1_score Auroc Sensitivity
KNN forwards SFS 0.566 ± 0.055 0.517 ± 0.079 0.444 ± 0.098 0.474 ± 0.076 0.551 ± 0.035 0.660 ± 0.095
LDA Lasso_selection 0.584 ± 0.048 0.559 ± 0.062 0.409 ± 0.045 0.465 ± 0.048 0.586 ± 0.055 0.409 ± 0.045
LogR forwards SFS 0.590 ± 0.025 0.546 ± 0.033 0.473 ± 0.046 0.506 ± 0.036 0.587 ± 0.018 0.682 ± 0.052
RandomForest forwards SFS 0.604 ± 0.047 0.576 ± 0.075 0.464 ± 0.046 0.511 ± 0.044 0.598 ± 0.051 0.715 ± 0.083
SVM Permutation 0.604 ± 0.010 0.582 ± 0.015 0.456 ± 0.058 0.500 ± 0.040 0.618 ± 0.014 0.456 ± 0.058

Table 16: Top selected features across all methods and both datasets

Feature Count
A_0_2 41
A_1_2 40
A_11_18 37
A_0_12 36
A_9_13 35
A_8_10 34
A_12_18 33
A_2_17 32
A_3_10 32
A_0_17 31
A_4_13 31
A_1_11 31
A_18_19 31
A_9_17 30
A_11_17 30
A_3_9 30
A_3_7 30
A_4_9 30
A_5_6 29
A_1_5 28

9 DISCUSSION 27

9 Discussion

9.1 Full correlation
9.1.1 Sex-specific observations

The female sample size is far smaller than the male sample size, only having 138 samples
in the full dataset and 35 in the single-site dataset. This high dimensionality creates
an unstable accuracy and a low sensitivity. Feature selection remedies this problem and
improves performance a lot. This phenomenon is less prevalent in the bigger male dataset.

9.1.2 Multi- and single site

The raw performances are similar in terms of accuracy, while the sensitivity is far lower
in the single-site data. As can also be seen in the female data, the sensitivity can be
improved a lot using feature selection if the sample size is low and the data is high-
dimensional. This improvement in sensitivity is not translated into the misclassifications
because false positives increased. Examining reduced misclassifications, the multisite data
outperforms the single-site data. The number of samples ensures the selection of better
features, outweighing the difference in sites.

9.1.3 Feature selection behavior across subsets

Overall, Lasso, permutation importance, and fSFS are the most prevalent feature selec-
tion methods. HSIC Lasso is far less prevalent, only being the best method once. This
can be explained by HSIC Lasso being a filter method, mostly focused on nonlinear data.
The fact that permutation importance and fSFS are the best-performing feature selection
methods can be explained by the fact that they are wrapper methods, built for high per-
formance, but can also be explained by them not being cross-validated and having a very
fortunate data split.
The classifiers benefiting most from feature selection are LDA, KNN, and Random Forest.
SVM and LogR benefit less from feature selection when looking at misclassifications. The
sensitivity of SVM can improve a lot when feature selection is used.
Overall, apart from a few exceptions, in all datasets, there is at least one feature selec-
tion method that can help classifiers in their performance, especially when looking at
sensitivity.

9.2 Graph features
Looking at the graph features, no significantly high accuracies were achieved. Notably, the
single-site results were better than the multisite results for the first set of graph features,
which was not as clear with the new dataset. This difference in performance may result
from variations in measurements and how they are recorded at different universities.
It is notable that in the top multisite performers, a raw data entry is included. This
means that the program had a higher F1 score when no feature selection was applied.
When looking through further data, it is clear that this is due to a difference in inference
method. As this particular inference method creates a relatively high F1 score overall, it
is only beaten out once in the top 5.
Which feature selection method works best differs wildly between the datasets used. When
looking at specific datasets, Random forest using forwards SFS with the 2nd rspect NYU

9 DISCUSSION 28

dataset does achieve 68.57% accuracy with a sensitivity of 85%. This would outperform
the previous graph datasets and compete with the full correlation datasets. However,
since this method could not be cross-validated due to computational limits, these results
are not trustworthy.

9.3 Future work
For future work, it would be ideal to have a consistent supply of features. The immense
difference in results between datasets and the fluctuation in features made it difficult to
achieve concrete results, and our dependence on their changing code required us to debug
essential elements each time the feature design team introduced new features.
Our reliance on their code meant that we had to wait for them before we could test
and properly evaluate our methods. This caused delays in development and restricted
our ability to create and test more advanced methods. Along with limiting the time to
properly process and evaluate the results.
Finally, it would be beneficial to have additional documentation for each component. This
would facilitate a better understanding of the code developed by the various subgroups, as
well as the meanings of their outputs. Ultimately, making it easier to utilize each other’s
work and build upon it.

10 CONCLUSION 29

10 Conclusion
The constructed pipeline works with the ABIDE dataset along with different classification
methods and graph inference methods. It shows which features it selects and shows the
achieved accuracy. Each method has selected all features that have a positive effect on
the performance of the classifier, according to the selection method. The program does
not select the best feature selection method for each classifier beforehand, because the
best feature selection method changes if the dataset changes. A compromise was made,
where the pipeline now shows the best combination of inference method, classifier, and
feature selection method and shows the chosen features. In some, but not all cases, the
feature selection module can reduce misclassification by 25% or more. In all cases, the
program runs in less than an hour with at least 500 features and 1000 subjects, barring
the cross-validation of SFS. Several sets of combinations have been used to try and see if
graph features have a significant impact on classifying people with ASD. Unfortunately,
most of the classifiers using graph features could not even achieve an accuracy of more
than 60% without decreasing other performance metrics. In general, the sensitivity is very
low, even the highest values do not reach 60%, meaning that there are always more than
40% of people with ASD who are not classified. This seems to indicate that the gathered
graph features do not have a significant impact on classifying whether someone has ASD.
Especially when compared to the full correlation features, they underperform. These
features consistently get accuracies over 60% as well as more consistent sensitivities.

REFERENCES 30

References
[1] Centraal Bureau voor de Statistiek (CBS). 3 Procent van de Bevolking Geeft aan

een Autismespectrumstoornis te Hebben. Geraadpleegd op 27 mei 2025. 2025.
[2] Stichting Autisme Nederland. Diagnose Autisme. Geraadpleegd op 27 mei 2025.

2025.
[3] C. P. Santana et al. “rs-fMRI and machine learning for ASD diagnosis: a systematic

review and meta-analysis”. In: Scientific Reports 12 (2022), p. 6030. doi: 10.1038/
s41598-022-09821-6.

[4] Craddock Cameron et al. “The Neuro Bureau Preprocessing Initiative: open sharing
of preprocessed neuroimaging data and derivatives”. In: Frontiers in Neuroinformat-
ics 7 (Jan. 2013). doi: 10.3389/conf.fninf.2013.09.00041.

[5] Matthew K. Belmonte et al. “Autism and Abnormal Development of Brain Con-
nectivity: Figure 1.” In: Journal of Neuroscience 24.42 (Oct. 2004), pp. 9228–9231.
doi: 10.1523/jneurosci.3340-04.2004.

[6] Jeffrey S. Anderson et al. “Functional connectivity magnetic resonance imaging
classification of autism”. In: Brain 134.12 (Oct. 2011), pp. 3742–3754. doi: 10.
1093/brain/awr263.

[7] M. A. Just. “Cortical activation and synchronization during sentence comprehension
in high-functioning autism: evidence of underconnectivity”. In: Brain 127.8 (June
2004), pp. 1811–1821. doi: 10.1093/brain/awh199.

[8] Antonio Napolitano et al. “Sex Differences in Autism Spectrum Disorder: Diagnos-
tic, Neurobiological, and Behavioral Features”. In: Frontiers in Psychiatry 13 (May
2022). doi: 10.3389/fpsyt.2022.889636.

[9] Michelle Dean, Robin Harwood, and Connie Kasari. “The art of camouflage: Gender
differences in the social behaviors of girls and boys with autism spectrum disorder”.
In: Autism 21.6 (Nov. 2016), pp. 678–689. doi: 10.1177/1362361316671845.

[10] Meng-Chuan Lai and Peter Szatmari. “Sex and gender impacts on the behavioural
presentation and recognition of autism”. In: Current Opinion in Psychiatry 33.2
(Dec. 2019), pp. 117–123. doi: 10.1097/yco.0000000000000575.

[11] Derek S Andrews et al. “Sex differences in trajectories of cortical development in
autistic children from 2–13 years of age”. In: Molecular Psychiatry 29.11 (May 2024),
pp. 3440–3451. doi: 10.1038/s41380-024-02592-8.

[12] Hossein Haghighat. “A sex-dependent functional-effective connectivity model for
diagnostic classification of Autism Spectrum Disorder using resting-state fMRI”.
In: Biomedical Signal Processing and Control 85 (Mar. 2023), p. 104837. doi: 10.
1016/j.bspc.2023.104837.

[13] Cleveland Clinic Medical Professional. “Functional MRI (FMRI)”. In: Cleveland
Clinic (Mar. 2025). Accessed: 2025-06-03.

[14] Adriana Di Martino et al. “The Autism Brain Imaging Data Exchange: Towards a
large-scale evaluation of the intrinsic brain architecture in autism”. In: Molecular
Psychiatry 19.6 (2014), pp. 659–667. doi: 10.1038/mp.2013.78.

[15] Adolfo Crespo Márquez. The Curse of Dimensionality. Springer, Jan. 2022, pp. 67–
86. doi: 10.1007/978-3-030-97660-6\{_}7.

https://doi.org/10.1038/s41598-022-09821-6
https://doi.org/10.1038/s41598-022-09821-6
https://doi.org/10.3389/conf.fninf.2013.09.00041
https://doi.org/10.1523/jneurosci.3340-04.2004
https://doi.org/10.1093/brain/awr263
https://doi.org/10.1093/brain/awr263
https://doi.org/10.1093/brain/awh199
https://doi.org/10.3389/fpsyt.2022.889636
https://doi.org/10.1177/1362361316671845
https://doi.org/10.1097/yco.0000000000000575
https://doi.org/10.1038/s41380-024-02592-8
https://doi.org/10.1016/j.bspc.2023.104837
https://doi.org/10.1016/j.bspc.2023.104837
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1007/978-3-030-97660-6\{_}7

REFERENCES 31

[16] Girish Chandrashekar and Ferat Sahin. “A survey on feature selection methods”.
In: Computers Electrical Engineering 40.1 (Dec. 2013), pp. 16–28. doi: 10.1016/
j.compeleceng.2013.11.024.

[17] Jiliang Tang, Salem Alelyani, and Huan Liu. “Feature selection for classification: A
review”. In: Data classification: Algorithms and applications (2014), p. 37.

[18] Ron Kohavi and George H. John. “Wrappers for feature subset selection”. In: Arti-
ficial Intelligence 97.1-2 (Dec. 1997), pp. 273–324. doi: 10.1016/s0004-3702(97)
00043-x.

[19] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[20] Makoto Yamada et al. “High-dimensional feature selection by feature-wise kernelized
lasso”. In: Neural computation 26.1 (2014), pp. 185–207.

[21] Héctor Climente-González et al. “Block HSIC Lasso: model-free biomarker detection
for ultra-high dimensional data”. In: Bioinformatics 35.14 (2019), pp. i427–i435.

[22] Ramakrishnan Muthukrishnan and R Rohini. “LASSO: A feature selection tech-
nique in predictive modeling for machine learning”. In: 2016 IEEE international
conference on advances in computer applications (ICACA). Ieee. 2016, pp. 18–20.

[23] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”. In: Journal
of the Royal Statistical Society Series B (Statistical Methodology) 58.1 (Jan. 1996),
pp. 267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x.

[24] Jundong Li et al. “Feature selection: A data perspective”. In: ACM Computing
Surveys (CSUR) 50.6 (2018), p. 94.

[25] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-redundancy”.
In: IEEE Transactions on pattern analysis and machine intelligence 27.8 (2005),
pp. 1226–1238.

[26] Mary Walowe Mwadulo. “A review on feature selection methods for classification
tasks”. In: Unknown (2016). Journal name not provided.

[27] Jac Fredo Agastinose Ronicko et al. “Diagnostic classification of autism using resting-
state fMRI data improves with full correlation functional brain connectivity com-
pared to partial correlation”. In: Journal of Neuroscience Methods 345 (July 2020),
p. 108884. doi: 10.1016/j.jneumeth.2020.108884.

[28] Stephen M Smith et al. “Correspondence of the brain’s functional architecture dur-
ing activation and rest”. In: Proceedings of the National Academy of Sciences 106.31
(2009), pp. 13040–13045.

https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1016/s0004-3702(97)00043-x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1016/j.jneumeth.2020.108884

A APPENDIX A 32

A Appendix A — Results
A.1 Full correlation multisite
A.1.1 Combined

Table 17: Performance of feature selection methods with full correlation

FS Method Features Acc Precision Sensitivity F1 AUC
Perfomance SVM

Raw data 6671 0.655 ± 0.040 0.652 ± 0.159 0.541 ± 0.048 0.589 ± 0.069 0.715 ± 0.038
LASSO 945 0.679 ± 0.038 0.669 ± 0.047 0.602 ± 0.050 0.633 ± 0.082 0.719 ± 0.052

HSIC LASSO 98 0.640 ± 0.046 0.631 ± 0.088 0.529 ± 0.057 0.579 ± 0.038 0.686 ± 0.057
mRMR 200 0.6018 ± 0.042 0.5870 ± 0.164 0.4681 ± 0.032 0.5192 ± 0.101 0.6474 ± 0.153

Permutation 20 0.582 ± 0.000 0.571 ± 0.000 0.390 ± 0.000 0.464 ± 0.000 0.640 ± 0.000
fSFS Not feasible

Perfomance LogR
Raw data 6671 0.637 ± 0.033 0.612 ± 0.047 0.593 ± 0.058 0.600 ± 0.038 0.689 ± 0.030
LASSO 36 0.658 ± 0.026 0.631 ± 0.032 0.627 ± 0.058 0.628 ± 0.044 0.714 ± 0.043

HSIC LASSO 98 0.643 ± 0.054 0.616 ± 0.048 0.600 ± 0.033 0.608 ± 0.058 0.679 ± 0.035
mRMR 100 0.587 ± 0.093 0.560 ± 0.113 0.505 ± 0.093 0.530 ± 0.075 0.630 ± 0.092

Permutation 20 0.638 ± 0.000 0.629 ± 0.000 0.537 ± 0.000 0.579 ± 0.000 0.673 ± 0.000
fSFS Not feasible

Perfomance Random Forest
Raw data 6671 0.635 ± 0.084 0.646 ± 0.050 0.468 ± 0.050 0.540 ± 0.050 0.688 ± 0.061
LASSO 36 0.682 ± 0.022 0.670 ± 0.055 0.615 ± 0.057 0.641 ± 0.034 0.732 ± 0.030

HSIC LASSO 98 0.610 ± 0.053 0.606 ± 0.121 0.559 ± 0.102 0.508 ± 0.092 0.648 ± 0.062
mRMR 100 0.593 ± 0.035 0.581 ± 0.182 0.591 ± 0.098 0.521 ± 0.100 0.618 ± 0.048

Permutation 20 0.610 ± 0.000 0.607 ± 0.000 0.549 ± 0.000 0.517 ± 0.000 0.639 ± 0.000
fSFS Not feasible

Perfomance LDA
Raw data 6671 0.570 ± 0.024 0.608 ± 0.088 0.404 ± 0.298 0.385 ± 0.249 0.580 ± 0.065
LASSO 36 0.661 ± 0.029 0.635 ± 0.035 0.622 ± 0.048 0.628 ± 0.041 0.713 ± 0.027

HSIC LASSO 98 0.601 ± 0.052 0.571 ± 0.094 0.549 ± 0.072 0.559 ± 0.065 0.648 ± 0.092
mRMR 200 0.613 ± 0.068 0.587 ± 0.037 0.544 ± 0.102 0.564 ± 0.093 0.637 ± 0.050

Permutation 20 0.644 ± 0.000 0.638 ± 0.000 0.537 ± 0.000 0.582 ± 0.000 0.672 ± 0.000
fSFS Not feasible

Performance KNN
Raw data 6671 0.548 ± 0.024 0.514 ± 0.037 0.419 ± 0.050 0.460 ± 0.034 0.555 ± 0.030
LASSO 36 0.618 ± 0.038 0.599 ± 0.047 0.532 ± 0.054 0.562 ± 0.050 0.645 ± 0.032

HSIC LASSO 98 0.583 ± 0.056 0.565 ± 0.068 0.579 ± 0.053 0.519 ± 0.124 0.579 ± 0.054
mRMR 100 0.546 ± 0.032 0.512 ± 0.086 0.539 ± 0.128 0.517 ± 0.119 0.561 ± 0.049

Permutation 20 0.531 ± 0.000 0.507 ± 0.000 0.537 ± 0.000 0.522 ± 0.000 0.583 ± 0.000
fSFS Not feasible

A APPENDIX A 33

A.1.2 Female data

Table 18: Performance of feature selection methods with full correlation on female data.

FS Method Features Acc Precision Sensitivity F1 AUC
Performance SVM

Raw data 6671 0.623 ± 0.014 0.067 ± 0.133 0.020 ± 0.040 0.031 ± 0.062 0.563 ± 0.161
LASSO 10 0.616 ± 0.037 0.402 ± 0.220 0.240 ± 0.150 0.283 ± 0.151 0.501 ± 0.118

HSIC LASSO 26 0.596 ± 0.087 0.390 ± 0.410 0.100 ± 0.110 0.149 ± 0.157 0.520 ± 0.170
mRMR 100 0.623 ± 0.014 0.100 ± 0.200 0.020 ± 0.040 0.033 ± 0.067 0.493 ± 0.159

Permutation 20 0.645 ± 0.000 0.200 ± 0.000 0.020 ± 0.000 0.036 ± 0.000 0.500 ± 0.000
fSFS 20 0.643 ± 0.000 0.500 ± 0.000 0.300 ± 0.000 0.375 ± 0.000 0.522 ± 0.000

Performance LogR
Raw data 6671 0.603 ± 0.089 0.424 ± 0.183 0.360 ± 0.242 0.372 ± 0.185 0.553 ± 0.123
LASSO 20 0.609 ± 0.031 0.417 ± 0.105 0.380 ± 0.204 0.386 ± 0.162 0.537 ± 0.100

HSIC LASSO 26 0.544 ± 0.047 0.346 ± 0.067 0.280 ± 0.075 0.305 ± 0.064 0.512 ± 0.086
mRMR 100 0.623 ± 0.099 0.507 ± 0.130 0.540 ± 0.120 0.511 ± 0.098 0.585 ± 0.114

Permutation 20 0.638 ± 0.000 0.502 ± 0.000 0.320 ± 0.000 0.375 ± 0.000 0.588 ± 0.000
fSFS 20 0.571 ± 0.000 0.417 ± 0.000 0.500 ± 0.000 0.455 ± 0.000 0.544 ± 0.000

Performance Random Forest
Raw data 6671 0.631 ± 0.044 0.367 ± 0.371 0.100 ± 0.089 0.150 ± 0.133 0.647 ± 0.108
LASSO 10 0.610 ± 0.052 0.296 ± 0.257 0.240 ± 0.224 0.257 ± 0.226 0.555 ± 0.147

HSIC LASSO 32 0.565 ± 0.037 0.232 ± 0.192 0.140 ± 0.120 0.174 ± 0.146 0.545 ± 0.042
mRMR 100 0.638 ± 0.042 0.450 ± 0.245 0.140 ± 0.102 0.210 ± 0.142 0.560 ± 0.060

Permutation 20 0.607 ± 0.000 0.400 ± 0.000 0.200 ± 0.000 0.267 ± 0.000 0.694 ± 0.000
fSFS 20 0.571 ± 0.000 0.333 ± 0.000 0.200 ± 0.000 0.250 ± 0.000 0.528 ± 0.000

Performance LDA
Raw data 6671 0.593 ± 0.120 0.348 ± 0.095 0.720 ± 0.306 0.452 ± 0.129 0.475 ± 0.102
LASSO 10 0.609 ± 0.031 0.425 ± 0.100 0.420 ± 0.194 0.413 ± 0.156 0.535 ± 0.090

HSIC LASSO 16 0.544 ± 0.088 0.306 ± 0.176 0.220 ± 0.160 0.248 ± 0.167 0.561 ± 0.132
mRMR 100 0.5654 ± 0.092 0.290 ± 0.093 0.400 ± 0.167 0.333 ± 0.118 0.405 ± 0.086

Permutation 20 0.643 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000 0.617 ± 0.000
fSFS 20 0.500 ± 0.000 0.357 ± 0.000 0.500 ± 0.000 0.417 ± 0.000 0.517 ± 0.000

Performance KNN
Raw data 6671 0.616 ± 0.052 0.476 ± 0.098 0.340 ± 0.049 0.392 ± 0.054 0.574 ± 0.070
LASSO 10 0.580 ± 0.063 0.405 ± 0.103 0.280 ± 0.075 0.325 ± 0.077 0.548 ± 0.082

HSIC LASSO 10 0.587 ± 0.039 0.367 ± 0.090 0.240 ± 0.136 0.282 ± 0.118 0.528 ± 0.114
mRMR 100 0.566 ± 0.088 0.328 ± 0.208 0.340 ± 0.314 0.318 ± 0.234 0.550 ± 0.114

Permutation 20 0.679 ± 0.000 0.667 ± 0.000 0.200 ± 0.000 0.308 ± 0.000 0.686 ± 0.000
fSFS 20 0.536 ± 0.000 0.286 ± 0.000 0.200 ± 0.000 0.235 ± 0.000 0.400 ± 0.000

A APPENDIX A 34

A.1.3 Male data

Table 19: Performance of feature selection methods with full correlation on male data.

FS Method Features Acc Precision Sensitivity F1 AUC
Performance SVM

Raw data 6671 0.643 ± 0.029 0.649 ± 0.046 0.572 ± 0.062 0.605 ± 0.037 0.695 ± 0.018
LASSO 82 0.637 ± 0.020 0.629 ± 0.036 0.606 ± 0.035 0.616 ± 0.005 0.684 ± 0.015

HSIC LASSO 20 0.571 ± 0.027 0.561 ± 0.027 0.469 ± 0.083 0.509 ± 0.057 0.607 ± 0.024
mRMR 100 0.602 ± 0.025 0.596 ± 0.022 0.522 ± 0.062 0.556 ± 0.045 0.653 ± 0.024

Permutation 20 0.633 ± 0.000 0.627 ± 0.000 0.583 ± 0.000 0.604 ± 0.000 0.689 ± 0.000
fSFS 20 0.680 ± 0.000 0.671 ± 0.000 0.653 ± 0.000 0.662 ± 0.000 0.688 ± 0.000

Performance LogR
Raw data 6671 0.630 ± 0.031 0.613 ± 0.030 0.623 ± 0.048 0.617 ± 0.036 0.679 ± 0.037
LASSO 82 0.629 ± 0.007 0.613 ± 0.015 0.617 ± 0.030 0.614 ± 0.011 0.670 ± 0.029

HSIC LASSO 20 0.613 ± 0.030 0.610 ± 0.040 0.544 ± 0.038 0.574 ± 0.030 0.631 ± 0.038
mRMR 100 0.596 ± 0.046 0.581 ± 0.052 0.567 ± 0.054 0.574 ± 0.053 0.614 ± 0.041

Permutation 20 0.613 ± 0.000 0.595 ± 0.000 0.611 ± 0.000 0.603 ± 0.000 0.698 ± 0.000
fSFS 20 0.620 ± 0.000 0.600 ± 0.000 0.625 ± 0.000 0.612 ± 0.000 0.664 ± 0.000

Performance Random Forest
Raw data 6671 0.621 ± 0.027 0.626 ± 0.043 0.528 ± 0.044 0.571 ± 0.033 0.672 ± 0.012
LASSO 82 0.668 ± 0.022 0.667 ± 0.035 0.620 ± 0.012 0.642 ± 0.014 0.716 ± 0.012

HSIC LASSO 20 0.598 ± 0.035 0.591 ± 0.039 0.528 ± 0.065 0.556 ± 0.050 0.622 ± 0.037
mRMR 100 0.564 ± 0.049 0.552 ± 0.058 0.469 ± 0.074 0.507 ± 0.066 0.592 ± 0.048

Permutation 20 0.680 ± 0.000 0.667 ± 0.000 0.667 ± 0.000 0.667 ± 0.000 0.699 ± 0.000
fSFS 20 0.667 ± 0.000 0.662 ± 0.000 0.625 ± 0.000 0.643 ± 0.000 0.688 ± 0.000

Performance LDA
Raw data 6671 0.562 ± 0.033 0.594 ± 0.071 0.335 ± 0.195 0.390 ± 0.156 0.616 ± 0.034
LASSO 82 0.630 ± 0.015 0.618 ± 0.021 0.606 ± 0.027 0.611 ± 0.013 0.671 ± 0.022

HSIC LASSO 20 0.606 ± 0.023 0.601 ± 0.018 0.525 ± 0.079 0.558 ± 0.052 0.629 ± 0.036
mRMR 100 0.606 ± 0.023 0.601 ± 0.018 0.525 ± 0.079 0.558 ± 0.052 0.629 ± 0.036

Permutation 20 0.613 ± 0.000 0.595 ± 0.000 0.611 ± 0.000 0.603 ± 0.000 0.699 ± 0.000
fSFS 20 0.633 ± 0.000 0.616 ± 0.000 0.625 ± 0.000 0.621 ± 0.000 0.662 ± 0.000

Performance KNN
Raw data 6671 0.548 ± 0.021 0.540 ± 0.032 0.396 ± 0.028 0.457 ± 0.029 0.569 ± 0.021
LASSO 82 0.583 ± 0.038 0.576 ± 0.041 0.492 ± 0.068 0.529 ± 0.053 0.629 ± 0.028

HSIC LASSO 20 0.563 ± 0.029 0.556 ± 0.033 0.436 ± 0.053 0.488 ± 0.044 0.563 ± 0.038
mRMR 100 0.543 ± 0.019 0.529 ± 0.021 0.416 ± 0.068 0.464 ± 0.047 0.559 ± 0.027

Permutation 20 0.607 ± 0.000 0.584 ± 0.000 0.625 ± 0.000 0.604 ± 0.000 0.633 ± 0.000
fSFS 20 0.580 ± 0.000 0.562 ± 0.000 0.569 ± 0.000 0.566 ± 0.000 0.617 ± 0.000

A APPENDIX A 35

A.2 Full correlation single site
A.2.1 Combined data

Table 20: Performance of feature selection methods with full correlation on NYU data.

FS Method Features Acc Precision Sensitivity F1 AUC
Perfomance SVM

Raw data 6671 0.649 ± 0.040 0.820 ± 0.165 0.247 ± 0.072 0.370 ± 0.088 0.703 ± 0.077
LASSO 29 0.655 ± 0.093 0.626 ± 0.159 0.478 ± 0.115 0.541 ± 0.128 0.714 ± 0.124

HSIC LASSO 17 0.585 ± 0.053 0.547 ± 0.148 0.287 ± 0.045 0.372 ± 0.063 0.628 ± 0.053
mRMR 100 0.638 ± 0.074 0.751 ± 0.216 0.290 ± 0.161 0.382 ± 0.182 0.567 ± 0.140

Permutation 20 0.571 ± 0.000 0.500 ± 0.000 0.467 ± 0.000 0.483 ± 0.000 0.553 ± 0.000
fSFS 20 0.600 ± 0.000 0.556 ± 0.000 0.333 ± 0.000 0.417 ± 0.000 0.573 ± 0.000

Performance LogR
Raw data 6671 0.631 ± 0.067 0.575 ± 0.100 0.478 ± 0.148 0.516 ± 0.122 0.677 ± 0.118
LASSO 29 0.643 ± 0.119 0.587 ± 0.165 0.490 ± 0.180 0.531 ± 0.175 0.712 ± 0.126

HSIC LASSO 40 0.602 ± 0.081 0.527 ± 0.117 0.435 ± 0.222 0.457 ± 0.170 0.604 ± 0.132
mRMR 100 0.644 ± 0.093 0.600 ± 0.117 0.573 ± 0.099 0.580 ± 0.095 0.680 ± 0.080

Permutation 30 0.567 ± 0.117 0.499 ± 0.153 0.426 ± 0.118 0.458 ± 0.131 0.562 ± 0.121
fSFS 20 0.629 ± 0.000 0.571 ± 0.000 0.533 ± 0.000 0.552 ± 0.000 0.597 ± 0.000

Performance Random Forest
Raw data 6671 0.648 ± 0.081 0.639 ± 0.112 0.355 ± 0.164 0.449 ± 0.156 0.668 ± 0.109
LASSO 29 0.672 ± 0.105 0.637 ± 0.158 0.490 ± 0.179 0.549 ± 0.170 0.697 ± 0.127

HSIC LASSO 31 0.614 ± 0.059 0.591 ± 0.150 0.395 ± 0.103 0.462 ± 0.091 0.606 ± 0.053
mRMR 100 0.614 ± 0.030 0.662 ± 0.174 0.288 ± 0.115 0.374 ± 0.101 0.590 ± 0.065

Permutation 20 0.657 ± 0.000 0.600 ± 0.000 0.600 ± 0.000 0.600 ± 0.000 0.533 ± 0.000
fSFS 20 0.543 ± 0.000 0.462 ± 0.000 0.400 ± 0.000 0.429 ± 0.000 0.562 ± 0.000

Performance LDA
Raw data 6671 0.667 ± 0.037 0.636 ± 0.070 0.547 ± 0.087 0.581 ± 0.052 0.688 ± 0.040
LASSO 29 0.666 ± 0.077 0.638 ± 0.117 0.519 ± 0.120 0.567 ± 0.108 0.703 ± 0.113

HSIC LASSO 16 0.550 ± 0.056 0.468 ± 0.083 0.383 ± 0.065 0.421 ± 0.072 0.562 ± 0.100
mRMR 100 0.591 ± 0.087 0.535 ± 0.087 0.549 ± 0.088 0.536 ± 0.066 0.587 ± 0.067

Permutation 20 0.600 ± 0.000 0.538 ± 0.000 0.467 ± 0.000 0.500 ± 0.000 0.563 ± 0.000
fSFS 20 0.714 ± 0.000 0.692 ± 0.000 0.600 ± 0.000 0.643 ± 0.000 0.633 ± 0.000

Performance KNN
Raw data 6671 0.602 ± 0.068 0.564 ± 0.128 0.317 ± 0.148 0.391 ± 0.132 0.600 ± 0.097
LASSO 29 0.637 ± 0.072 0.619 ± 0.144 0.382 ± 0.103 0.470 ± 0.118 0.681 ± 0.086

HSIC LASSO 26 0.568 ± 0.055 0.509 ± 0.070 0.423 ± 0.068 0.454 ± 0.030 0.590 ± 0.054
mRMR 100 0.573 ± 0.037 0.494 ± 0.095 0.290 ± 0.139 0.348 ± 0.123 0.562 ± 0.059

Permutation 20 0.543 ± 0.000 0.400 ± 0.000 0.133 ± 0.000 0.200 ± 0.000 0.450 ± 0.000
fSFS 20 0.486 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.625 ± 0.000

A APPENDIX A 36

A.2.2 Female data

Table 21: Performance of feature selection methods with full correlation on female NYU
data.

FS Method Features Acc Precision Sensitivity F1 AUC
Performance SVM

Raw data 6671 0.714 ± 0.090 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.387 ± 0.380
LASSO 19 0.800 ± 0.194 0.600 ± 0.490 0.400 ± 0.374 0.467 ± 0.400 0.667 ± 0.286

HSIC LASSO 42 0.800 ± 0.146 0.500 ± 0.447 0.400 ± 0.374 0.433 ± 0.389 0.727 ± 0.176
mRMR 100 0.714 ± 0.090 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.560 ± 0.463

Permutation 20 0.743 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.340 ± 0.000
fSFS 20 0.714 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.400 ± 0.000

Performance LogR
Raw data 6671 0.743 ± 0.167 0.400 ± 0.490 0.200 ± 0.245 0.267 ± 0.327 0.807 ± 0.210
LASSO 20 0.829 ± 0.140 0.600 ± 0.490 0.400 ± 0.374 0.467 ± 0.400 0.760 ± 0.224

HSIC LASSO 16 0.657 ± 0.114 0.380 ± 0.371 0.400 ± 0.374 0.348 ± 0.289 0.647 ± 0.265
mRMR 100 0.743 ± 0.107 0.200 ± 0.400 0.100 ± 0.200 0.133 ± 0.267 0.700 ± 0.261

Permutation 20 0.657 ± 0.000 0.167 ± 0.000 0.300 ± 0.000 0.213 ± 0.000 0.560 ± 0.000
fSFS 20 0.714 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.600 ± 0.000

Performance Random Forest
Raw data 6671 0.771 ± 0.114 0.400 ± 0.490 0.200 ± 0.245 0.267 ± 0.327 0.807 ± 0.219
LASSO 19 0.829 ± 0.140 0.533 ± 0.452 0.500 ± 0.447 0.493 ± 0.417 0.707 ± 0.266

HSIC LASSO 18 0.686 ± 0.107 0.300 ± 0.400 0.200 ± 0.245 0.233 ± 0.291 0.527 ± 0.164
mRMR 100 0.800 ± 0.146 0.400 ± 0.490 0.300 ± 0.400 0.333 ± 0.422 0.680 ± 0.299

Permutation 20 0.771 ± 0.146 0.400 ± 0.490 0.300 ± 0.400 0.333 ± 0.422 0.470 ± 0.328
fSFS 20 0.714 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.800 ± 0.000

Performance LDA
Raw data 6671 0.771 ± 0.194 0.400 ± 0.490 0.300 ± 0.400 0.333 ± 0.422 0.793 ± 0.231
LASSO 19 0.771 ± 0.114 0.600 ± 0.389 0.500 ± 0.316 0.507 ± 0.285 0.777 ± 0.282

HSIC LASSO 26 0.686 ± 0.107 0.367 ± 0.371 0.400 ± 0.374 0.347 ± 0.299 0.560 ± 0.361
mRMR 100 0.743 ± 0.107 0.200 ± 0.400 0.100 ± 0.200 0.133 ± 0.267 0.747 ± 0.165

Permutation 20 0.514 ± 0.000 0.200 ± 0.000 0.300 ± 0.000 0.240 ± 0.000 0.467 ± 0.000
fSFS 20 0.571 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.400 ± 0.000

Performance KNN
Raw data 6671 0.743 ± 0.107 0.200 ± 0.400 0.100 ± 0.200 0.133 ± 0.267 0.520 ± 0.282
LASSO 19 0.771 ± 0.114 0.500 ± 0.447 0.400 ± 0.374 0.400 ± 0.327 0.693 ± 0.291

HSIC LASSO 10 0.800 ± 0.146 0.500 ± 0.447 0.400 ± 0.374 0.433 ± 0.389 0.777 ± 0.146
mRMR 100 0.686 ± 0.140 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.613 ± 0.202

Permutation 20 0.714 ± 0.000 0.300 ± 0.000 0.300 ± 0.000 0.300 ± 0.000 0.430 ± 0.000
fSFS 20 0.714 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.400 ± 0.000

A APPENDIX A 37

A.2.3 Male data

Table 22: Performance of feature selection methods with full correlation on male NYU
data.

FS Method Features Acc Precision Sensitivity F1 AUC
Performance SVM

Raw data 6671 0.618 ± 0.106 0.603 ± 0.133 0.531 ± 0.130 0.564 ± 0.130 0.686 ± 0.070
LASSO 10 0.581 ± 0.076 0.563 ± 0.085 0.531 ± 0.120 0.541 ± 0.083 0.650 ± 0.091

HSIC LASSO 23 0.611 ± 0.041 0.595 ± 0.042 0.517 ± 0.108 0.550 ± 0.080 0.687 ± 0.055
mRMR 100 0.625 ± 0.025 0.617 ± 0.042 0.531 ± 0.051 0.570 ± 0.045 0.672 ± 0.054

Permutation 30 0.522 ± 0.080 0.475 ± 0.117 0.392 ± 0.143 0.426 ± 0.134 0.441 ± 0.078
fSFS 20 0.571 ± 0.000 0.571 ± 0.000 0.308 ± 0.000 0.400 ± 0.000 0.585 ± 0.000

Performance LogR
Raw data 6671 0.589 ± 0.072 0.570 ± 0.076 0.533 ± 0.102 0.548 ± 0.082 0.627 ± 0.098
LASSO 10 0.597 ± 0.107 0.570 ± 0.107 0.592 ± 0.118 0.579 ± 0.109 0.642 ± 0.128

HSIC LASSO 25 0.566 ± 0.073 0.536 ± 0.059 0.578 ± 0.124 0.552 ± 0.083 0.599 ± 0.058
mRMR 100 0.619 ± 0.094 0.577 ± 0.136 0.550 ± 0.211 0.555 ± 0.180 0.595 ± 0.150

Permutation 30 0.529 ± 0.065 0.505 ± 0.080 0.486 ± 0.146 0.483 ± 0.098 0.529 ± 0.092
fSFS 20 0.536 ± 0.000 0.500 ± 0.000 0.538 ± 0.000 0.519 ± 0.000 0.538 ± 0.000

Performance Random Forest
Raw data 6671 0.654 ± 0.058 0.657 ± 0.081 0.528 ± 0.124 0.583 ± 0.104 0.705 ± 0.042
LASSO 10 0.647 ± 0.037 0.617 ± 0.034 0.654 ± 0.133 0.629 ± 0.070 0.639 ± 0.074

HSIC LASSO 44 0.581 ± 0.126 0.545 ± 0.115 0.546 ± 0.204 0.538 ± 0.155 0.640 ± 0.139
mRMR 100 0.626 ± 0.058 0.642 ± 0.082 0.451 ± 0.167 0.517 ± 0.116 0.669 ± 0.075

Permutation 30 0.558 ± 0.074 0.534 ± 0.103 0.467 ± 0.102 0.496 ± 0.096 0.571 ± 0.108
fSFS 20 0.536 ± 0.000 0.500 ± 0.000 0.462 ± 0.000 0.480 ± 0.000 0.500 ± 0.000

Performance LDA
Raw data 6671 0.640 ± 0.079 0.613 ± 0.072 0.627 ± 0.119 0.618 ± 0.091 0.681 ± 0.109
LASSO 10 0.626 ± 0.105 0.606 ± 0.112 0.608 ± 0.104 0.605 ± 0.104 0.635 ± 0.124

HSIC LASSO 30 0.574 ± 0.062 0.547 ± 0.078 0.483 ± 0.119 0.511 ± 0.097 0.614 ± 0.088
mRMR 100 0.412 ± 0.075 0.392 ± 0.063 0.456 ± 0.129 0.417 ± 0.082 0.496 ± 0.130

Permutation 30 0.647 ± 0.081 0.647 ± 0.108 0.626 ± 0.099 0.625 ± 0.070 0.645 ± 0.109
fSFS 20 0.536 ± 0.000 0.500 ± 0.000 0.538 ± 0.000 0.519 ± 0.000 0.544 ± 0.000

Performance KNN
Raw data 6671 0.596 ± 0.058 0.607 ± 0.092 0.373 ± 0.137 0.453 ± 0.124 0.596 ± 0.030
LASSO 10 0.640 ± 0.078 0.641 ± 0.126 0.546 ± 0.173 0.577 ± 0.120 0.656 ± 0.069

HSIC LASSO 48 0.604 ± 0.066 0.609 ± 0.123 0.405 ± 0.109 0.485 ± 0.117 0.639 ± 0.103
mRMR 100 0.470 ± 0.091 0.437 ± 0.116 0.373 ± 0.097 0.398 ± 0.091 0.530 ± 0.102

Permutation 30 0.588 ± 0.085 0.583 ± 0.118 0.453 ± 0.130 0.502 ± 0.117 0.581 ± 0.099
fSFS 20 0.357 ± 0.000 0.273 ± 0.000 0.231 ± 0.000 0.250 ± 0.000 0.408 ± 0.000

B APPENDIX B 38

B Appendix B — Results
B.1 Graph multisite

Table 23: Performance summary for classifier: KNN

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.549 ± 0.000 0.508 ± 0.000 0.440 ± 0.000 0.471 ± 0.000 0.550 ± 0.000
mutual_info forwards SFS 0.506 ± 0.000 0.456 ± 0.000 0.413 ± 0.000 0.434 ± 0.000 0.535 ± 0.000
mutual_info HSIC_Lasso 0.533 ± 0.078 0.490 ± 0.085 0.463 ± 0.094 0.475 ± 0.087 0.540 ± 0.088
mutual_info Lasso_selection 0.509 ± 0.031 0.459 ± 0.040 0.388 ± 0.046 0.419 ± 0.037 0.511 ± 0.054
mutual_info mRMR 0.507 ± 0.026 0.462 ± 0.030 0.444 ± 0.028 0.452 ± 0.027 0.507 ± 0.028
mutual_info Permutation 0.512 ± 0.034 0.466 ± 0.041 0.441 ± 0.058 0.452 ± 0.046 0.519 ± 0.030
mutual_info Raw data 0.529 ± 0.022 0.484 ± 0.029 0.447 ± 0.064 0.463 ± 0.045 0.533 ± 0.025
norm_Laplacian backward SFS 0.585 ± 0.000 0.551 ± 0.000 0.507 ± 0.000 0.528 ± 0.000 0.554 ± 0.000
norm_Laplacian forwards SFS 0.488 ± 0.000 0.435 ± 0.000 0.400 ± 0.000 0.417 ± 0.000 0.489 ± 0.000
norm_Laplacian HSIC_Lasso 0.510 ± 0.048 0.463 ± 0.057 0.398 ± 0.056 0.426 ± 0.050 0.498 ± 0.042
norm_Laplacian Lasso_selection 0.496 ± 0.047 0.448 ± 0.051 0.428 ± 0.057 0.437 ± 0.054 0.475 ± 0.052
norm_Laplacian mRMR 0.497 ± 0.065 0.450 ± 0.072 0.420 ± 0.065 0.434 ± 0.068 0.494 ± 0.075
norm_Laplacian Permutation 0.507 ± 0.033 0.454 ± 0.042 0.372 ± 0.039 0.409 ± 0.039 0.486 ± 0.028
norm_Laplacian Raw data 0.527 ± 0.051 0.479 ± 0.067 0.353 ± 0.057 0.406 ± 0.061 0.510 ± 0.070
partial_corr backward SFS 0.549 ± 0.000 0.506 ± 0.000 0.520 ± 0.000 0.513 ± 0.000 0.508 ± 0.000
partial_corr forwards SFS 0.549 ± 0.000 0.506 ± 0.000 0.520 ± 0.000 0.513 ± 0.000 0.508 ± 0.000
partial_corr HSIC_Lasso 0.522 ± 0.014 0.479 ± 0.016 0.503 ± 0.055 0.490 ± 0.032 0.510 ± 0.025
partial_corr Lasso_selection 0.522 ± 0.014 0.479 ± 0.016 0.503 ± 0.055 0.490 ± 0.032 0.510 ± 0.025
partial_corr mRMR 0.522 ± 0.014 0.479 ± 0.016 0.503 ± 0.055 0.490 ± 0.032 0.510 ± 0.025
partial_corr Permutation 0.522 ± 0.014 0.479 ± 0.016 0.503 ± 0.055 0.490 ± 0.032 0.510 ± 0.025
partial_corr Raw data 0.522 ± 0.014 0.479 ± 0.016 0.503 ± 0.055 0.490 ± 0.032 0.510 ± 0.025
rlogspect backward SFS 0.470 ± 0.000 0.414 ± 0.000 0.387 ± 0.000 0.400 ± 0.000 0.481 ± 0.000
rlogspect forwards SFS 0.470 ± 0.000 0.414 ± 0.000 0.387 ± 0.000 0.400 ± 0.000 0.481 ± 0.000
rlogspect HSIC_Lasso 0.489 ± 0.031 0.435 ± 0.033 0.380 ± 0.029 0.405 ± 0.028 0.461 ± 0.035
rlogspect Lasso_selection 0.489 ± 0.031 0.435 ± 0.033 0.380 ± 0.029 0.405 ± 0.028 0.461 ± 0.035
rlogspect mRMR 0.489 ± 0.031 0.435 ± 0.033 0.380 ± 0.029 0.405 ± 0.028 0.461 ± 0.035
rlogspect Permutation 0.489 ± 0.031 0.435 ± 0.033 0.380 ± 0.029 0.405 ± 0.028 0.461 ± 0.035
rlogspect Raw data 0.489 ± 0.031 0.435 ± 0.033 0.380 ± 0.029 0.405 ± 0.028 0.461 ± 0.035

B APPENDIX B 39

Table 24: Performance summary for classifier: LDA

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.494 ± 0.000 0.423 ± 0.000 0.293 ± 0.000 0.346 ± 0.000 0.508 ± 0.000
mutual_info forwards SFS 0.524 ± 0.000 0.471 ± 0.000 0.320 ± 0.000 0.381 ± 0.000 0.526 ± 0.000
mutual_info HSIC_Lasso 0.521 ± 0.019 0.470 ± 0.027 0.361 ± 0.055 0.406 ± 0.043 0.516 ± 0.023
mutual_info Lasso_selection 0.543 ± 0.028 0.498 ± 0.052 0.313 ± 0.064 0.383 ± 0.064 0.535 ± 0.021
mutual_info mRMR 0.517 ± 0.025 0.458 ± 0.041 0.302 ± 0.055 0.363 ± 0.050 0.520 ± 0.030
mutual_info Permutation 0.549 ± 0.031 0.507 ± 0.038 0.462 ± 0.056 0.483 ± 0.047 0.574 ± 0.042
mutual_info Raw data 0.549 ± 0.034 0.508 ± 0.042 0.468 ± 0.055 0.486 ± 0.049 0.575 ± 0.037
norm_Laplacian backward SFS 0.561 ± 0.000 0.531 ± 0.000 0.347 ± 0.000 0.419 ± 0.000 0.571 ± 0.000
norm_Laplacian forwards SFS 0.579 ± 0.000 0.558 ± 0.000 0.387 ± 0.000 0.457 ± 0.000 0.575 ± 0.000
norm_Laplacian HSIC_Lasso 0.547 ± 0.039 0.508 ± 0.065 0.350 ± 0.044 0.414 ± 0.052 0.537 ± 0.047
norm_Laplacian Lasso_selection 0.498 ± 0.038 0.406 ± 0.086 0.190 ± 0.044 0.256 ± 0.052 0.478 ± 0.021
norm_Laplacian mRMR 0.516 ± 0.022 0.446 ± 0.043 0.201 ± 0.033 0.274 ± 0.028 0.489 ± 0.029
norm_Laplacian Permutation 0.553 ± 0.023 0.513 ± 0.031 0.420 ± 0.056 0.461 ± 0.046 0.550 ± 0.036
norm_Laplacian Raw data 0.549 ± 0.035 0.509 ± 0.047 0.441 ± 0.051 0.472 ± 0.047 0.550 ± 0.037
partial_corr backward SFS 0.537 ± 0.000 0.471 ± 0.000 0.107 ± 0.000 0.174 ± 0.000 0.567 ± 0.000
partial_corr forwards SFS 0.537 ± 0.000 0.471 ± 0.000 0.107 ± 0.000 0.174 ± 0.000 0.567 ± 0.000
partial_corr HSIC_Lasso 0.538 ± 0.028 0.503 ± 0.070 0.187 ± 0.061 0.265 ± 0.057 0.527 ± 0.047
partial_corr Lasso_selection 0.538 ± 0.028 0.503 ± 0.070 0.187 ± 0.061 0.265 ± 0.057 0.527 ± 0.047
partial_corr mRMR 0.538 ± 0.028 0.503 ± 0.070 0.187 ± 0.061 0.265 ± 0.057 0.527 ± 0.047
partial_corr Permutation 0.538 ± 0.028 0.503 ± 0.070 0.187 ± 0.061 0.265 ± 0.057 0.527 ± 0.047
partial_corr Raw data 0.538 ± 0.028 0.503 ± 0.070 0.187 ± 0.061 0.265 ± 0.057 0.527 ± 0.047
rlogspect backward SFS 0.506 ± 0.000 0.250 ± 0.000 0.040 ± 0.000 0.069 ± 0.000 0.485 ± 0.000
rlogspect forwards SFS 0.506 ± 0.000 0.250 ± 0.000 0.040 ± 0.000 0.069 ± 0.000 0.485 ± 0.000
rlogspect HSIC_Lasso 0.518 ± 0.022 0.140 ± 0.173 0.045 ± 0.056 0.068 ± 0.084 0.458 ± 0.037
rlogspect Lasso_selection 0.518 ± 0.022 0.140 ± 0.173 0.045 ± 0.056 0.068 ± 0.084 0.458 ± 0.037
rlogspect mRMR 0.518 ± 0.022 0.140 ± 0.173 0.045 ± 0.056 0.068 ± 0.084 0.458 ± 0.037
rlogspect Permutation 0.518 ± 0.022 0.140 ± 0.173 0.045 ± 0.056 0.068 ± 0.084 0.458 ± 0.037
rlogspect Raw data 0.518 ± 0.022 0.140 ± 0.173 0.045 ± 0.056 0.068 ± 0.084 0.458 ± 0.037

B APPENDIX B 40

Table 25: Performance summary for classifier: LogR

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.488 ± 0.000 0.418 ± 0.000 0.307 ± 0.000 0.354 ± 0.000 0.515 ± 0.000
mutual_info forwards SFS 0.530 ± 0.000 0.479 ± 0.000 0.307 ± 0.000 0.374 ± 0.000 0.502 ± 0.000
mutual_info HSIC_Lasso 0.517 ± 0.021 0.460 ± 0.036 0.339 ± 0.067 0.389 ± 0.057 0.523 ± 0.034
mutual_info Lasso_selection 0.532 ± 0.012 0.476 ± 0.029 0.254 ± 0.056 0.329 ± 0.055 0.528 ± 0.012
mutual_info mRMR 0.534 ± 0.014 0.485 ± 0.025 0.273 ± 0.050 0.347 ± 0.044 0.498 ± 0.033
mutual_info Permutation 0.543 ± 0.031 0.499 ± 0.043 0.406 ± 0.066 0.447 ± 0.056 0.563 ± 0.035
mutual_info Raw data 0.534 ± 0.042 0.491 ± 0.055 0.404 ± 0.048 0.443 ± 0.049 0.554 ± 0.043
norm_Laplacian backward SFS 0.573 ± 0.000 0.544 ± 0.000 0.413 ± 0.000 0.470 ± 0.000 0.572 ± 0.000
norm_Laplacian forwards SFS 0.561 ± 0.000 0.524 ± 0.000 0.440 ± 0.000 0.478 ± 0.000 0.570 ± 0.000
norm_Laplacian HSIC_Lasso 0.528 ± 0.032 0.477 ± 0.054 0.324 ± 0.047 0.385 ± 0.050 0.524 ± 0.047
norm_Laplacian Lasso_selection 0.507 ± 0.030 0.425 ± 0.077 0.214 ± 0.056 0.282 ± 0.061 0.482 ± 0.029
norm_Laplacian mRMR 0.510 ± 0.025 0.437 ± 0.047 0.241 ± 0.052 0.308 ± 0.050 0.501 ± 0.043
norm_Laplacian Permutation 0.567 ± 0.032 0.533 ± 0.042 0.441 ± 0.048 0.482 ± 0.044 0.548 ± 0.035
norm_Laplacian Raw data 0.565 ± 0.034 0.531 ± 0.047 0.444 ± 0.043 0.483 ± 0.042 0.559 ± 0.026
partial_corr backward SFS 0.543 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.504 ± 0.000
partial_corr forwards SFS 0.543 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.504 ± 0.000
partial_corr HSIC_Lasso 0.531 ± 0.013 0.307 ± 0.220 0.045 ± 0.038 0.078 ± 0.063 0.466 ± 0.040
partial_corr Lasso_selection 0.531 ± 0.013 0.307 ± 0.220 0.045 ± 0.038 0.078 ± 0.063 0.466 ± 0.040
partial_corr mRMR 0.531 ± 0.013 0.307 ± 0.220 0.045 ± 0.038 0.078 ± 0.063 0.466 ± 0.040
partial_corr Permutation 0.531 ± 0.013 0.307 ± 0.220 0.045 ± 0.038 0.078 ± 0.063 0.466 ± 0.040
partial_corr Raw data 0.531 ± 0.013 0.307 ± 0.220 0.045 ± 0.038 0.078 ± 0.063 0.466 ± 0.040
rlogspect backward SFS 0.567 ± 0.000 0.667 ± 0.000 0.107 ± 0.000 0.184 ± 0.000 0.648 ± 0.000
rlogspect forwards SFS 0.567 ± 0.000 0.667 ± 0.000 0.107 ± 0.000 0.184 ± 0.000 0.648 ± 0.000
rlogspect HSIC_Lasso 0.533 ± 0.037 0.489 ± 0.083 0.214 ± 0.053 0.293 ± 0.061 0.549 ± 0.049
rlogspect Lasso_selection 0.533 ± 0.037 0.489 ± 0.083 0.214 ± 0.053 0.293 ± 0.061 0.549 ± 0.049
rlogspect mRMR 0.533 ± 0.037 0.489 ± 0.083 0.214 ± 0.053 0.293 ± 0.061 0.549 ± 0.049
rlogspect Permutation 0.533 ± 0.037 0.489 ± 0.083 0.214 ± 0.053 0.293 ± 0.061 0.549 ± 0.049
rlogspect Raw data 0.533 ± 0.037 0.489 ± 0.083 0.214 ± 0.053 0.293 ± 0.061 0.549 ± 0.049

B APPENDIX B 41

Table 26: Performance summary for classifier: RandomForest

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.518 ± 0.000 0.466 ± 0.000 0.360 ± 0.000 0.406 ± 0.000 0.530 ± 0.000
mutual_info forwards SFS 0.543 ± 0.000 0.500 ± 0.000 0.373 ± 0.000 0.427 ± 0.000 0.564 ± 0.000
mutual_info HSIC_Lasso 0.540 ± 0.053 0.493 ± 0.077 0.385 ± 0.105 0.430 ± 0.090 0.536 ± 0.065
mutual_info Lasso_selection 0.501 ± 0.029 0.447 ± 0.040 0.391 ± 0.067 0.415 ± 0.054 0.463 ± 0.034
mutual_info mRMR 0.504 ± 0.042 0.443 ± 0.065 0.356 ± 0.078 0.393 ± 0.074 0.496 ± 0.047
mutual_info Permutation 0.526 ± 0.031 0.478 ± 0.038 0.393 ± 0.056 0.431 ± 0.047 0.506 ± 0.039
mutual_info Raw data 0.543 ± 0.024 0.499 ± 0.036 0.393 ± 0.067 0.438 ± 0.054 0.534 ± 0.037
norm_Laplacian backward SFS 0.512 ± 0.000 0.460 ± 0.000 0.387 ± 0.000 0.420 ± 0.000 0.510 ± 0.000
norm_Laplacian forwards SFS 0.476 ± 0.000 0.418 ± 0.000 0.373 ± 0.000 0.394 ± 0.000 0.489 ± 0.000
norm_Laplacian HSIC_Lasso 0.518 ± 0.021 0.463 ± 0.029 0.334 ± 0.040 0.388 ± 0.036 0.511 ± 0.028
norm_Laplacian Lasso_selection 0.543 ± 0.015 0.503 ± 0.021 0.382 ± 0.023 0.434 ± 0.016 0.504 ± 0.021
norm_Laplacian mRMR 0.505 ± 0.030 0.450 ± 0.039 0.374 ± 0.056 0.408 ± 0.047 0.475 ± 0.034
norm_Laplacian Permutation 0.517 ± 0.024 0.468 ± 0.032 0.372 ± 0.029 0.413 ± 0.025 0.521 ± 0.037
norm_Laplacian Raw data 0.502 ± 0.025 0.441 ± 0.040 0.326 ± 0.035 0.375 ± 0.037 0.505 ± 0.038
partial_corr backward SFS 0.494 ± 0.000 0.444 ± 0.000 0.427 ± 0.000 0.435 ± 0.000 0.442 ± 0.000
partial_corr forwards SFS 0.506 ± 0.000 0.456 ± 0.000 0.413 ± 0.000 0.434 ± 0.000 0.462 ± 0.000
partial_corr HSIC_Lasso 0.511 ± 0.022 0.463 ± 0.028 0.430 ± 0.045 0.446 ± 0.037 0.514 ± 0.027
partial_corr Lasso_selection 0.509 ± 0.034 0.461 ± 0.038 0.423 ± 0.042 0.440 ± 0.037 0.510 ± 0.020
partial_corr mRMR 0.521 ± 0.041 0.474 ± 0.050 0.436 ± 0.058 0.454 ± 0.054 0.509 ± 0.024
partial_corr Permutation 0.516 ± 0.025 0.471 ± 0.028 0.452 ± 0.033 0.461 ± 0.029 0.501 ± 0.011
partial_corr Raw data 0.516 ± 0.030 0.471 ± 0.032 0.444 ± 0.023 0.457 ± 0.026 0.512 ± 0.020
rlogspect backward SFS 0.457 ± 0.000 0.400 ± 0.000 0.373 ± 0.000 0.386 ± 0.000 0.458 ± 0.000
rlogspect forwards SFS 0.494 ± 0.000 0.443 ± 0.000 0.413 ± 0.000 0.428 ± 0.000 0.464 ± 0.000
rlogspect HSIC_Lasso 0.469 ± 0.010 0.417 ± 0.011 0.393 ± 0.031 0.404 ± 0.019 0.444 ± 0.015
rlogspect Lasso_selection 0.467 ± 0.013 0.413 ± 0.016 0.391 ± 0.046 0.401 ± 0.030 0.446 ± 0.008
rlogspect mRMR 0.472 ± 0.024 0.418 ± 0.025 0.382 ± 0.044 0.398 ± 0.027 0.453 ± 0.007
rlogspect Permutation 0.494 ± 0.013 0.443 ± 0.015 0.409 ± 0.035 0.425 ± 0.024 0.455 ± 0.007
rlogspect Raw data 0.474 ± 0.013 0.424 ± 0.012 0.404 ± 0.035 0.413 ± 0.017 0.459 ± 0.007

B APPENDIX B 42

Table 27: Performance summary for classifier: SVM

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.537 ± 0.000 0.490 ± 0.000 0.320 ± 0.000 0.387 ± 0.000 0.528 ± 0.000
mutual_info forwards SFS 0.543 ± 0.000 0.500 ± 0.000 0.293 ± 0.000 0.370 ± 0.000 0.490 ± 0.000
mutual_info HSIC_Lasso 0.533 ± 0.018 0.485 ± 0.026 0.350 ± 0.052 0.406 ± 0.044 0.524 ± 0.022
mutual_info Lasso_selection 0.496 ± 0.050 0.411 ± 0.084 0.241 ± 0.076 0.301 ± 0.081 0.518 ± 0.058
mutual_info mRMR 0.517 ± 0.020 0.444 ± 0.049 0.262 ± 0.080 0.326 ± 0.079 0.508 ± 0.025
mutual_info Permutation 0.548 ± 0.022 0.514 ± 0.042 0.350 ± 0.051 0.414 ± 0.037 0.547 ± 0.033
mutual_info Raw data 0.569 ± 0.003 0.545 ± 0.006 0.364 ± 0.053 0.434 ± 0.037 0.558 ± 0.025
norm_Laplacian backward SFS 0.518 ± 0.000 0.463 ± 0.000 0.333 ± 0.000 0.388 ± 0.000 0.516 ± 0.000
norm_Laplacian forwards SFS 0.524 ± 0.000 0.468 ± 0.000 0.293 ± 0.000 0.361 ± 0.000 0.510 ± 0.000
norm_Laplacian HSIC_Lasso 0.497 ± 0.038 0.449 ± 0.072 0.308 ± 0.066 0.356 ± 0.037 0.479 ± 0.021
norm_Laplacian Lasso_selection 0.504 ± 0.033 0.440 ± 0.050 0.259 ± 0.032 0.323 ± 0.017 0.482 ± 0.016
norm_Laplacian mRMR 0.506 ± 0.040 0.442 ± 0.069 0.262 ± 0.062 0.324 ± 0.055 0.495 ± 0.031
norm_Laplacian Permutation 0.542 ± 0.045 0.507 ± 0.075 0.347 ± 0.053 0.409 ± 0.049 0.488 ± 0.070
norm_Laplacian Raw data 0.526 ± 0.053 0.484 ± 0.085 0.353 ± 0.056 0.405 ± 0.056 0.472 ± 0.065
partial_corr backward SFS 0.573 ± 0.000 0.632 ± 0.000 0.160 ± 0.000 0.255 ± 0.000 0.456 ± 0.000
partial_corr forwards SFS 0.573 ± 0.000 0.632 ± 0.000 0.160 ± 0.000 0.255 ± 0.000 0.456 ± 0.000
partial_corr HSIC_Lasso 0.550 ± 0.009 0.536 ± 0.041 0.131 ± 0.027 0.210 ± 0.037 0.477 ± 0.035
partial_corr Lasso_selection 0.550 ± 0.009 0.536 ± 0.041 0.131 ± 0.027 0.210 ± 0.037 0.466 ± 0.023
partial_corr mRMR 0.550 ± 0.009 0.536 ± 0.041 0.131 ± 0.027 0.210 ± 0.037 0.508 ± 0.041
partial_corr Permutation 0.550 ± 0.009 0.536 ± 0.041 0.131 ± 0.027 0.210 ± 0.037 0.489 ± 0.040
partial_corr Raw data 0.550 ± 0.009 0.536 ± 0.041 0.131 ± 0.027 0.210 ± 0.037 0.491 ± 0.040
rlogspect backward SFS 0.524 ± 0.000 0.333 ± 0.000 0.040 ± 0.000 0.071 ± 0.000 0.559 ± 0.000
rlogspect forwards SFS 0.524 ± 0.000 0.333 ± 0.000 0.040 ± 0.000 0.071 ± 0.000 0.559 ± 0.000
rlogspect HSIC_Lasso 0.536 ± 0.017 0.190 ± 0.263 0.016 ± 0.021 0.028 ± 0.037 0.522 ± 0.048
rlogspect Lasso_selection 0.536 ± 0.017 0.190 ± 0.263 0.016 ± 0.021 0.028 ± 0.037 0.549 ± 0.023
rlogspect mRMR 0.536 ± 0.017 0.190 ± 0.263 0.016 ± 0.021 0.028 ± 0.037 0.549 ± 0.023
rlogspect Permutation 0.536 ± 0.017 0.190 ± 0.263 0.016 ± 0.021 0.028 ± 0.037 0.548 ± 0.023
rlogspect Raw data 0.536 ± 0.017 0.190 ± 0.263 0.016 ± 0.021 0.028 ± 0.037 0.549 ± 0.022

B APPENDIX B 43

B.2 graph NYU

Table 28: Performance summary for classifier: KNN

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.471 ± 0.000 0.333 ± 0.000 0.200 ± 0.000 0.250 ± 0.000 0.421 ± 0.000
mutual_info forwards SFS 0.500 ± 0.000 0.444 ± 0.000 0.533 ± 0.000 0.485 ± 0.000 0.546 ± 0.000
mutual_info HSIC_Lasso 0.529 ± 0.066 0.409 ± 0.132 0.293 ± 0.137 0.337 ± 0.138 0.494 ± 0.087
mutual_info Lasso_selection 0.542 ± 0.047 0.444 ± 0.104 0.338 ± 0.105 0.381 ± 0.102 0.545 ± 0.035
mutual_info mRMR 0.518 ± 0.071 0.416 ± 0.102 0.324 ± 0.096 0.363 ± 0.098 0.478 ± 0.053
mutual_info Permutation 0.500 ± 0.059 0.390 ± 0.076 0.281 ± 0.074 0.321 ± 0.071 0.466 ± 0.077
mutual_info Raw data 0.494 ± 0.048 0.402 ± 0.055 0.353 ± 0.068 0.372 ± 0.048 0.466 ± 0.054
norm_Laplacian backward SFS 0.588 ± 0.000 0.538 ± 0.000 0.467 ± 0.000 0.500 ± 0.000 0.644 ± 0.000
norm_Laplacian forwards SFS 0.500 ± 0.000 0.375 ± 0.000 0.200 ± 0.000 0.261 ± 0.000 0.488 ± 0.000
norm_Laplacian HSIC_Lasso 0.518 ± 0.100 0.431 ± 0.110 0.339 ± 0.107 0.374 ± 0.105 0.494 ± 0.112
norm_Laplacian Lasso_selection 0.469 ± 0.069 0.309 ± 0.167 0.224 ± 0.118 0.258 ± 0.136 0.427 ± 0.089
norm_Laplacian mRMR 0.464 ± 0.044 0.351 ± 0.052 0.297 ± 0.058 0.320 ± 0.051 0.432 ± 0.056
norm_Laplacian Permutation 0.537 ± 0.076 0.465 ± 0.112 0.424 ± 0.123 0.435 ± 0.091 0.494 ± 0.095
norm_Laplacian Raw data 0.506 ± 0.018 0.422 ± 0.030 0.436 ± 0.080 0.427 ± 0.049 0.494 ± 0.041
partial_corr backward SFS 0.471 ± 0.000 0.364 ± 0.000 0.267 ± 0.000 0.308 ± 0.000 0.461 ± 0.000
partial_corr forwards SFS 0.471 ± 0.000 0.364 ± 0.000 0.267 ± 0.000 0.308 ± 0.000 0.461 ± 0.000
partial_corr HSIC_Lasso 0.488 ± 0.045 0.372 ± 0.068 0.296 ± 0.071 0.329 ± 0.070 0.442 ± 0.038
partial_corr Lasso_selection 0.488 ± 0.045 0.372 ± 0.068 0.296 ± 0.071 0.329 ± 0.070 0.442 ± 0.038
partial_corr mRMR 0.488 ± 0.045 0.372 ± 0.068 0.296 ± 0.071 0.329 ± 0.070 0.442 ± 0.038
partial_corr Permutation 0.488 ± 0.045 0.372 ± 0.068 0.296 ± 0.071 0.329 ± 0.070 0.442 ± 0.038
partial_corr Raw data 0.488 ± 0.045 0.372 ± 0.068 0.296 ± 0.071 0.329 ± 0.070 0.442 ± 0.038

B APPENDIX B 44

Table 29: Performance summary for classifier: LDA

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.618 ± 0.000 0.571 ± 0.000 0.533 ± 0.000 0.552 ± 0.000 0.653 ± 0.000
mutual_info forwards SFS 0.676 ± 0.000 0.667 ± 0.000 0.533 ± 0.000 0.593 ± 0.000 0.698 ± 0.000
mutual_info HSIC_Lasso 0.512 ± 0.078 0.421 ± 0.098 0.381 ± 0.099 0.399 ± 0.098 0.496 ± 0.077
mutual_info Lasso_selection 0.506 ± 0.060 0.393 ± 0.097 0.268 ± 0.053 0.318 ± 0.069 0.486 ± 0.068
mutual_info mRMR 0.464 ± 0.085 0.356 ± 0.107 0.282 ± 0.064 0.313 ± 0.081 0.464 ± 0.146
mutual_info Permutation 0.506 ± 0.071 0.440 ± 0.072 0.466 ± 0.077 0.446 ± 0.048 0.524 ± 0.051
mutual_info Raw data 0.493 ± 0.068 0.428 ± 0.069 0.451 ± 0.076 0.432 ± 0.037 0.525 ± 0.050
norm_Laplacian backward SFS 0.618 ± 0.000 0.600 ± 0.000 0.400 ± 0.000 0.480 ± 0.000 0.614 ± 0.000
norm_Laplacian forwards SFS 0.618 ± 0.000 0.562 ± 0.000 0.600 ± 0.000 0.581 ± 0.000 0.663 ± 0.000
norm_Laplacian HSIC_Lasso 0.596 ± 0.097 0.526 ± 0.117 0.505 ± 0.155 0.510 ± 0.129 0.604 ± 0.108
norm_Laplacian Lasso_selection 0.524 ± 0.055 0.420 ± 0.088 0.294 ± 0.075 0.344 ± 0.079 0.460 ± 0.064
norm_Laplacian mRMR 0.518 ± 0.053 0.420 ± 0.084 0.338 ± 0.083 0.373 ± 0.079 0.465 ± 0.085
norm_Laplacian Permutation 0.602 ± 0.043 0.540 ± 0.064 0.490 ± 0.103 0.510 ± 0.069 0.593 ± 0.079
norm_Laplacian Raw data 0.584 ± 0.035 0.513 ± 0.049 0.477 ± 0.081 0.493 ± 0.061 0.605 ± 0.071
partial_corr backward SFS 0.559 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.526 ± 0.000
partial_corr forwards SFS 0.559 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.526 ± 0.000
partial_corr HSIC_Lasso 0.524 ± 0.042 0.275 ± 0.174 0.100 ± 0.073 0.140 ± 0.092 0.406 ± 0.059
partial_corr Lasso_selection 0.524 ± 0.042 0.275 ± 0.174 0.100 ± 0.073 0.140 ± 0.092 0.406 ± 0.059
partial_corr mRMR 0.524 ± 0.042 0.275 ± 0.174 0.100 ± 0.073 0.140 ± 0.092 0.406 ± 0.059
partial_corr Permutation 0.524 ± 0.042 0.275 ± 0.174 0.100 ± 0.073 0.140 ± 0.092 0.406 ± 0.059
partial_corr Raw data 0.524 ± 0.042 0.275 ± 0.174 0.100 ± 0.073 0.140 ± 0.092 0.406 ± 0.059

B APPENDIX B 45

Table 30: Performance summary for classifier: LogR

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.559 ± 0.000 0.500 ± 0.000 0.400 ± 0.000 0.444 ± 0.000 0.572 ± 0.000
mutual_info forwards SFS 0.618 ± 0.000 0.600 ± 0.000 0.400 ± 0.000 0.480 ± 0.000 0.698 ± 0.000
mutual_info HSIC_Lasso 0.518 ± 0.067 0.460 ± 0.150 0.310 ± 0.075 0.353 ± 0.046 0.453 ± 0.090
mutual_info Lasso_selection 0.537 ± 0.040 0.422 ± 0.067 0.226 ± 0.055 0.292 ± 0.062 0.524 ± 0.055
mutual_info mRMR 0.458 ± 0.039 0.321 ± 0.037 0.240 ± 0.074 0.269 ± 0.056 0.461 ± 0.105
mutual_info Permutation 0.494 ± 0.058 0.401 ± 0.075 0.411 ± 0.143 0.401 ± 0.105 0.494 ± 0.077
mutual_info Raw data 0.482 ± 0.085 0.376 ± 0.108 0.397 ± 0.192 0.382 ± 0.146 0.498 ± 0.097
norm_Laplacian backward SFS 0.559 ± 0.000 0.500 ± 0.000 0.400 ± 0.000 0.444 ± 0.000 0.533 ± 0.000
norm_Laplacian forwards SFS 0.618 ± 0.000 0.571 ± 0.000 0.533 ± 0.000 0.552 ± 0.000 0.653 ± 0.000
norm_Laplacian HSIC_Lasso 0.548 ± 0.064 0.457 ± 0.118 0.310 ± 0.095 0.365 ± 0.104 0.524 ± 0.086
norm_Laplacian Lasso_selection 0.506 ± 0.070 0.405 ± 0.101 0.296 ± 0.055 0.341 ± 0.071 0.453 ± 0.066
norm_Laplacian mRMR 0.548 ± 0.061 0.457 ± 0.098 0.352 ± 0.101 0.397 ± 0.100 0.459 ± 0.085
norm_Laplacian Permutation 0.524 ± 0.045 0.429 ± 0.067 0.351 ± 0.086 0.383 ± 0.076 0.449 ± 0.064
norm_Laplacian Raw data 0.530 ± 0.041 0.435 ± 0.066 0.351 ± 0.086 0.386 ± 0.077 0.465 ± 0.050
partial_corr backward SFS 0.500 ± 0.000 0.375 ± 0.000 0.200 ± 0.000 0.261 ± 0.000 0.530 ± 0.000
partial_corr forwards SFS 0.500 ± 0.000 0.375 ± 0.000 0.200 ± 0.000 0.261 ± 0.000 0.530 ± 0.000
partial_corr HSIC_Lasso 0.536 ± 0.044 0.424 ± 0.330 0.113 ± 0.073 0.160 ± 0.091 0.509 ± 0.054
partial_corr Lasso_selection 0.536 ± 0.044 0.424 ± 0.330 0.113 ± 0.073 0.160 ± 0.091 0.509 ± 0.054
partial_corr mRMR 0.536 ± 0.044 0.424 ± 0.330 0.113 ± 0.073 0.160 ± 0.091 0.509 ± 0.054
partial_corr Permutation 0.536 ± 0.044 0.424 ± 0.330 0.113 ± 0.073 0.160 ± 0.091 0.509 ± 0.054
partial_corr Raw data 0.536 ± 0.044 0.424 ± 0.330 0.113 ± 0.073 0.160 ± 0.091 0.509 ± 0.054

B APPENDIX B 46

Table 31: Performance summary for classifier: RandomForest

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.559 ± 0.000 0.500 ± 0.000 0.267 ± 0.000 0.348 ± 0.000 0.526 ± 0.000
mutual_info forwards SFS 0.559 ± 0.000 0.500 ± 0.000 0.400 ± 0.000 0.444 ± 0.000 0.449 ± 0.000
mutual_info HSIC_Lasso 0.518 ± 0.054 0.400 ± 0.093 0.226 ± 0.055 0.285 ± 0.060 0.485 ± 0.072
mutual_info Lasso_selection 0.506 ± 0.074 0.354 ± 0.151 0.240 ± 0.148 0.282 ± 0.150 0.508 ± 0.028
mutual_info mRMR 0.554 ± 0.065 0.458 ± 0.122 0.338 ± 0.123 0.387 ± 0.123 0.497 ± 0.089
mutual_info Permutation 0.554 ± 0.052 0.508 ± 0.131 0.295 ± 0.081 0.356 ± 0.049 0.543 ± 0.050
mutual_info Raw data 0.542 ± 0.036 0.432 ± 0.088 0.182 ± 0.068 0.247 ± 0.080 0.507 ± 0.047
norm_Laplacian HSIC_Lasso 0.476 ± 0.040 0.277 ± 0.114 0.169 ± 0.106 0.207 ± 0.113 0.430 ± 0.042
norm_Laplacian Lasso_selection 0.500 ± 0.033 0.368 ± 0.058 0.254 ± 0.087 0.297 ± 0.080 0.433 ± 0.033
norm_Laplacian mRMR 0.470 ± 0.101 0.356 ± 0.135 0.310 ± 0.134 0.332 ± 0.134 0.429 ± 0.080
norm_Laplacian Permutation 0.483 ± 0.072 0.321 ± 0.181 0.243 ± 0.132 0.275 ± 0.150 0.426 ± 0.072
norm_Laplacian Raw data 0.524 ± 0.080 0.414 ± 0.153 0.211 ± 0.078 0.276 ± 0.096 0.451 ± 0.090
partial_corr backward SFS 0.500 ± 0.000 0.375 ± 0.000 0.200 ± 0.000 0.261 ± 0.000 0.439 ± 0.000
partial_corr forwards SFS 0.441 ± 0.000 0.300 ± 0.000 0.200 ± 0.000 0.240 ± 0.000 0.435 ± 0.000
partial_corr HSIC_Lasso 0.512 ± 0.041 0.406 ± 0.073 0.367 ± 0.139 0.379 ± 0.109 0.470 ± 0.035
partial_corr Lasso_selection 0.518 ± 0.047 0.422 ± 0.070 0.367 ± 0.096 0.390 ± 0.083 0.470 ± 0.030
partial_corr mRMR 0.506 ± 0.030 0.396 ± 0.076 0.367 ± 0.139 0.376 ± 0.110 0.453 ± 0.021
partial_corr Permutation 0.512 ± 0.048 0.426 ± 0.076 0.367 ± 0.096 0.386 ± 0.065 0.440 ± 0.017
partial_corr Raw data 0.506 ± 0.026 0.394 ± 0.064 0.339 ± 0.140 0.356 ± 0.104 0.465 ± 0.041

B APPENDIX B 47

Table 32: Performance summary for classifier: SVM

Inference Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
mutual_info backward SFS 0.471 ± 0.000 0.286 ± 0.000 0.133 ± 0.000 0.182 ± 0.000 0.481 ± 0.000
mutual_info forwards SFS 0.471 ± 0.000 0.200 ± 0.000 0.067 ± 0.000 0.100 ± 0.000 0.533 ± 0.000
mutual_info HSIC_Lasso 0.500 ± 0.043 0.303 ± 0.099 0.139 ± 0.071 0.187 ± 0.083 0.515 ± 0.115
mutual_info Lasso_selection 0.494 ± 0.057 0.355 ± 0.096 0.227 ± 0.085 0.273 ± 0.087 0.453 ± 0.115
mutual_info mRMR 0.518 ± 0.043 0.373 ± 0.092 0.183 ± 0.056 0.244 ± 0.068 0.498 ± 0.068
mutual_info Permutation 0.524 ± 0.023 0.320 ± 0.051 0.098 ± 0.033 0.147 ± 0.039 0.483 ± 0.063
mutual_info Raw data 0.542 ± 0.051 0.413 ± 0.342 0.070 ± 0.042 0.112 ± 0.065 0.532 ± 0.054
norm_Laplacian forwards SFS 0.588 ± 0.000 0.667 ± 0.000 0.133 ± 0.000 0.222 ± 0.000 0.488 ± 0.000
norm_Laplacian HSIC_Lasso 0.536 ± 0.049 0.386 ± 0.340 0.085 ± 0.070 0.126 ± 0.092 0.505 ± 0.085
norm_Laplacian Lasso_selection 0.566 ± 0.035 0.483 ± 0.072 0.282 ± 0.091 0.351 ± 0.087 0.521 ± 0.096
norm_Laplacian mRMR 0.530 ± 0.038 0.351 ± 0.179 0.168 ± 0.093 0.226 ± 0.121 0.498 ± 0.035
norm_Laplacian Permutation 0.542 ± 0.085 0.450 ± 0.348 0.112 ± 0.072 0.178 ± 0.118 0.547 ± 0.076
norm_Laplacian Raw data 0.524 ± 0.056 0.359 ± 0.141 0.098 ± 0.033 0.151 ± 0.051 0.493 ± 0.077
partial_corr backward SFS 0.529 ± 0.000 0.462 ± 0.000 0.400 ± 0.000 0.429 ± 0.000 0.463 ± 0.000
partial_corr forwards SFS 0.529 ± 0.000 0.462 ± 0.000 0.400 ± 0.000 0.429 ± 0.000 0.463 ± 0.000
partial_corr HSIC_Lasso 0.537 ± 0.048 0.380 ± 0.147 0.213 ± 0.129 0.268 ± 0.141 0.455 ± 0.062
partial_corr Lasso_selection 0.537 ± 0.048 0.380 ± 0.147 0.213 ± 0.129 0.268 ± 0.141 0.455 ± 0.062
partial_corr mRMR 0.537 ± 0.048 0.380 ± 0.147 0.213 ± 0.129 0.268 ± 0.141 0.466 ± 0.067
partial_corr Permutation 0.537 ± 0.048 0.380 ± 0.147 0.213 ± 0.129 0.268 ± 0.141 0.487 ± 0.075
partial_corr Raw data 0.537 ± 0.048 0.380 ± 0.147 0.213 ± 0.129 0.268 ± 0.141 0.469 ± 0.068

B.3 Laplacian NYU

Table 33: Performance summary for classifier: KNN

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 ± 0.000 0.455 ± 0.000 0.333 ± 0.000 0.385 ± 0.000 0.567 ± 0.000
forwards SFS 0.657 ± 0.000 0.636 ± 0.000 0.467 ± 0.000 0.538 ± 0.000 0.608 ± 0.000
HSIC_Lasso 0.529 ± 0.068 0.444 ± 0.114 0.284 ± 0.049 0.343 ± 0.064 0.489 ± 0.038
Lasso_selection 0.552 ± 0.015 0.481 ± 0.016 0.448 ± 0.099 0.456 ± 0.057 0.512 ± 0.029
mRMR 0.547 ± 0.064 0.472 ± 0.099 0.378 ± 0.107 0.413 ± 0.090 0.549 ± 0.042
Permutation 0.535 ± 0.071 0.484 ± 0.147 0.285 ± 0.056 0.344 ± 0.045 0.499 ± 0.071

Table 34: Performance summary for classifier: LDA

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.629 ± 0.000 0.600 ± 0.000 0.400 ± 0.000 0.480 ± 0.000 0.597 ± 0.000
forwards SFS 0.571 ± 0.000 0.500 ± 0.000 0.400 ± 0.000 0.444 ± 0.000 0.603 ± 0.000
HSIC_Lasso 0.599 ± 0.086 0.556 ± 0.139 0.486 ± 0.041 0.515 ± 0.079 0.610 ± 0.094
Lasso_selection 0.663 ± 0.045 0.663 ± 0.098 0.472 ± 0.109 0.541 ± 0.076 0.676 ± 0.071
mRMR 0.593 ± 0.069 0.564 ± 0.163 0.366 ± 0.094 0.433 ± 0.093 0.600 ± 0.062
Permutation 0.564 ± 0.076 0.485 ± 0.089 0.542 ± 0.178 0.505 ± 0.127 0.622 ± 0.070

Table 35: Performance summary for classifier: LogR

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.600 ± 0.000 0.556 ± 0.000 0.333 ± 0.000 0.417 ± 0.000 0.607 ± 0.000
forwards SFS 0.571 ± 0.000 0.500 ± 0.000 0.400 ± 0.000 0.444 ± 0.000 0.617 ± 0.000
HSIC_Lasso 0.570 ± 0.060 0.508 ± 0.130 0.338 ± 0.074 0.402 ± 0.085 0.617 ± 0.091
Lasso_selection 0.575 ± 0.064 0.552 ± 0.135 0.406 ± 0.074 0.450 ± 0.029 0.575 ± 0.032
mRMR 0.598 ± 0.075 0.576 ± 0.170 0.366 ± 0.094 0.437 ± 0.098 0.587 ± 0.069
Permutation 0.575 ± 0.073 0.500 ± 0.111 0.489 ± 0.156 0.488 ± 0.125 0.573 ± 0.091

B APPENDIX B 48

Table 36: Performance summary for classifier: RandomForest

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 ± 0.000 0.455 ± 0.000 0.333 ± 0.000 0.385 ± 0.000 0.537 ± 0.000
forwards SFS 0.571 ± 0.000 0.500 ± 0.000 0.400 ± 0.000 0.444 ± 0.000 0.555 ± 0.000
HSIC_Lasso 0.575 ± 0.121 0.533 ± 0.193 0.363 ± 0.127 0.426 ± 0.144 0.572 ± 0.135
Lasso_selection 0.610 ± 0.117 0.574 ± 0.141 0.477 ± 0.165 0.508 ± 0.131 0.606 ± 0.124
mRMR 0.512 ± 0.050 0.427 ± 0.068 0.408 ± 0.106 0.414 ± 0.081 0.590 ± 0.070
Permutation 0.633 ± 0.115 0.607 ± 0.175 0.436 ± 0.186 0.494 ± 0.168 0.621 ± 0.122

Table 37: Performance summary for classifier: SVM

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.457 ± 0.000 0.333 ± 0.000 0.267 ± 0.000 0.296 ± 0.000 0.573 ± 0.000
forwards SFS 0.629 ± 0.000 0.750 ± 0.000 0.200 ± 0.000 0.316 ± 0.000 0.260 ± 0.000
HSIC_Lasso 0.599 ± 0.057 0.562 ± 0.143 0.270 ± 0.095 0.362 ± 0.115 0.545 ± 0.067
Lasso_selection 0.593 ± 0.038 0.552 ± 0.100 0.377 ± 0.121 0.435 ± 0.081 0.514 ± 0.119
mRMR 0.581 ± 0.014 0.525 ± 0.047 0.297 ± 0.030 0.379 ± 0.032 0.497 ± 0.065
Permutation 0.598 ± 0.068 0.573 ± 0.119 0.379 ± 0.039 0.451 ± 0.049 0.596 ± 0.102

B.4 Laplacian multisite

Table 38: Performance summary for classifier: KNN

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.537 ± 0.000 0.500 ± 0.000 0.444 ± 0.000 0.471 ± 0.000 0.548 ± 0.000
forwards SFS 0.531 ± 0.000 0.492 ± 0.000 0.383 ± 0.000 0.431 ± 0.000 0.540 ± 0.000
HSIC_Lasso 0.512 ± 0.046 0.469 ± 0.052 0.449 ± 0.091 0.457 ± 0.070 0.506 ± 0.046
Lasso_selection 0.512 ± 0.019 0.472 ± 0.022 0.454 ± 0.027 0.463 ± 0.023 0.524 ± 0.034
mRMR 0.548 ± 0.020 0.512 ± 0.021 0.506 ± 0.051 0.508 ± 0.030 0.564 ± 0.038
Permutation 0.504 ± 0.013 0.461 ± 0.014 0.432 ± 0.047 0.445 ± 0.028 0.498 ± 0.033

Table 39: Performance summary for classifier: LDA

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.634 ± 0.000 0.631 ± 0.000 0.506 ± 0.000 0.562 ± 0.000 0.630 ± 0.000
forwards SFS 0.589 ± 0.000 0.563 ± 0.000 0.494 ± 0.000 0.526 ± 0.000 0.579 ± 0.000
HSIC_Lasso 0.543 ± 0.019 0.505 ± 0.023 0.452 ± 0.059 0.476 ± 0.042 0.561 ± 0.019
Lasso_selection 0.550 ± 0.035 0.519 ± 0.053 0.400 ± 0.041 0.451 ± 0.042 0.544 ± 0.046
mRMR 0.542 ± 0.020 0.506 ± 0.028 0.397 ± 0.045 0.444 ± 0.037 0.560 ± 0.030
Permutation 0.588 ± 0.037 0.552 ± 0.039 0.590 ± 0.035 0.570 ± 0.032 0.618 ± 0.029

Table 40: Performance summary for classifier: LogR

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.634 ± 0.000 0.631 ± 0.000 0.506 ± 0.000 0.562 ± 0.000 0.630 ± 0.000
forwards SFS 0.594 ± 0.000 0.569 ± 0.000 0.506 ± 0.000 0.536 ± 0.000 0.579 ± 0.000
HSIC_Lasso 0.557 ± 0.019 0.525 ± 0.027 0.469 ± 0.031 0.495 ± 0.017 0.589 ± 0.036
Lasso_selection 0.560 ± 0.048 0.535 ± 0.073 0.407 ± 0.057 0.461 ± 0.057 0.581 ± 0.051
mRMR 0.542 ± 0.019 0.507 ± 0.027 0.400 ± 0.044 0.445 ± 0.034 0.561 ± 0.030
Permutation 0.590 ± 0.043 0.556 ± 0.045 0.566 ± 0.059 0.560 ± 0.049 0.615 ± 0.040

B APPENDIX B 49

Table 41: Performance summary for classifier: RandomForest

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 ± 0.000 0.508 ± 0.000 0.383 ± 0.000 0.437 ± 0.000 0.566 ± 0.000
forwards SFS 0.577 ± 0.000 0.552 ± 0.000 0.457 ± 0.000 0.500 ± 0.000 0.562 ± 0.000
HSIC_Lasso 0.572 ± 0.013 0.545 ± 0.024 0.471 ± 0.032 0.504 ± 0.015 0.592 ± 0.027
Lasso_selection 0.522 ± 0.024 0.483 ± 0.028 0.439 ± 0.027 0.460 ± 0.025 0.529 ± 0.018
mRMR 0.524 ± 0.025 0.481 ± 0.033 0.436 ± 0.066 0.457 ± 0.050 0.547 ± 0.023
Permutation 0.547 ± 0.038 0.514 ± 0.053 0.409 ± 0.041 0.455 ± 0.043 0.564 ± 0.035

Table 42: Performance summary for classifier: SVM

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.600 ± 0.000 0.571 ± 0.000 0.543 ± 0.000 0.557 ± 0.000 0.601 ± 0.000
forwards SFS 0.543 ± 0.000 0.509 ± 0.000 0.346 ± 0.000 0.412 ± 0.000 0.566 ± 0.000
HSIC_Lasso 0.542 ± 0.041 0.509 ± 0.057 0.402 ± 0.043 0.448 ± 0.042 0.547 ± 0.031
Lasso_selection 0.553 ± 0.030 0.520 ± 0.039 0.412 ± 0.052 0.459 ± 0.047 0.558 ± 0.023
mRMR 0.577 ± 0.032 0.559 ± 0.049 0.424 ± 0.029 0.482 ± 0.033 0.557 ± 0.080
Permutation 0.596 ± 0.030 0.570 ± 0.030 0.506 ± 0.066 0.535 ± 0.049 0.634 ± 0.021

B.5 rspect NYU

Table 43: Performance summary for classifier: KNN

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.571 ± 0.000 0.500 ± 0.000 0.133 ± 0.000 0.211 ± 0.000 0.542 ± 0.000
forwards SFS 0.514 ± 0.000 0.417 ± 0.000 0.333 ± 0.000 0.370 ± 0.000 0.513 ± 0.000
HSIC_Lasso 0.604 ± 0.094 0.582 ± 0.154 0.409 ± 0.164 0.459 ± 0.135 0.588 ± 0.105
Lasso_selection 0.546 ± 0.078 0.470 ± 0.116 0.310 ± 0.078 0.371 ± 0.085 0.492 ± 0.092
mRMR 0.529 ± 0.021 0.431 ± 0.045 0.337 ± 0.092 0.375 ± 0.077 0.503 ± 0.047
Permutation 0.530 ± 0.067 0.404 ± 0.158 0.271 ± 0.136 0.320 ± 0.146 0.515 ± 0.057

Table 44: Performance summary for classifier: LDA

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.457 ± 0.000 0.333 ± 0.000 0.267 ± 0.000 0.296 ± 0.000 0.513 ± 0.000
forwards SFS 0.600 ± 0.000 0.538 ± 0.000 0.467 ± 0.000 0.500 ± 0.000 0.563 ± 0.000
HSIC_Lasso 0.604 ± 0.052 0.570 ± 0.100 0.448 ± 0.123 0.485 ± 0.082 0.662 ± 0.043
Lasso_selection 0.581 ± 0.097 0.549 ± 0.184 0.418 ± 0.127 0.459 ± 0.115 0.585 ± 0.102
mRMR 0.581 ± 0.086 0.593 ± 0.230 0.405 ± 0.144 0.443 ± 0.115 0.569 ± 0.094
Permutation 0.575 ± 0.128 0.525 ± 0.165 0.470 ± 0.147 0.488 ± 0.143 0.610 ± 0.134

Table 45: Performance summary for classifier: LogR

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.457 ± 0.000 0.300 ± 0.000 0.200 ± 0.000 0.240 ± 0.000 0.517 ± 0.000
forwards SFS 0.629 ± 0.000 0.583 ± 0.000 0.467 ± 0.000 0.519 ± 0.000 0.567 ± 0.000
HSIC_Lasso 0.605 ± 0.082 0.578 ± 0.138 0.460 ± 0.033 0.505 ± 0.059 0.581 ± 0.142
Lasso_selection 0.575 ± 0.069 0.535 ± 0.132 0.406 ± 0.164 0.435 ± 0.120 0.555 ± 0.105
mRMR 0.581 ± 0.086 0.593 ± 0.230 0.405 ± 0.144 0.443 ± 0.115 0.573 ± 0.098
Permutation 0.518 ± 0.097 0.445 ± 0.128 0.447 ± 0.111 0.443 ± 0.114 0.522 ± 0.085

B APPENDIX B 50

Table 46: Performance summary for classifier: RandomForest

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.600 ± 0.000 0.545 ± 0.000 0.400 ± 0.000 0.462 ± 0.000 0.582 ± 0.000
forwards SFS 0.686 ± 0.000 0.700 ± 0.000 0.467 ± 0.000 0.560 ± 0.000 0.683 ± 0.000
HSIC_Lasso 0.564 ± 0.063 0.503 ± 0.096 0.326 ± 0.059 0.391 ± 0.061 0.550 ± 0.078
Lasso_selection 0.558 ± 0.055 0.467 ± 0.133 0.258 ± 0.111 0.323 ± 0.126 0.536 ± 0.090
mRMR 0.564 ± 0.092 0.519 ± 0.182 0.296 ± 0.106 0.365 ± 0.117 0.521 ± 0.062
Permutation 0.541 ± 0.083 0.481 ± 0.183 0.314 ± 0.138 0.363 ± 0.111 0.521 ± 0.161

Table 47: Performance summary for classifier: SVM

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 ± 0.000 0.444 ± 0.000 0.267 ± 0.000 0.333 ± 0.000 0.537 ± 0.000
forwards SFS 0.600 ± 0.000 0.667 ± 0.000 0.133 ± 0.000 0.222 ± 0.000 0.310 ± 0.000
HSIC_Lasso 0.598 ± 0.052 0.579 ± 0.102 0.352 ± 0.102 0.423 ± 0.085 0.558 ± 0.119
Lasso_selection 0.586 ± 0.074 0.634 ± 0.247 0.310 ± 0.130 0.381 ± 0.116 0.488 ± 0.134
mRMR 0.598 ± 0.066 0.678 ± 0.264 0.299 ± 0.114 0.380 ± 0.106 0.554 ± 0.116
Permutation 0.621 ± 0.062 0.608 ± 0.148 0.421 ± 0.177 0.471 ± 0.127 0.618 ± 0.070

B.6 rspect multisite

Table 48: Performance summary for classifier: KNN

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.543 ± 0.000 0.507 ± 0.000 0.457 ± 0.000 0.481 ± 0.000 0.538 ± 0.000
forwards SFS 0.560 ± 0.000 0.522 ± 0.000 0.593 ± 0.000 0.555 ± 0.000 0.542 ± 0.000
HSIC_Lasso 0.519 ± 0.036 0.480 ± 0.048 0.402 ± 0.023 0.437 ± 0.029 0.521 ± 0.037
Lasso_selection 0.520 ± 0.036 0.480 ± 0.038 0.444 ± 0.047 0.461 ± 0.039 0.517 ± 0.036
mRMR 0.519 ± 0.015 0.478 ± 0.018 0.424 ± 0.039 0.449 ± 0.025 0.523 ± 0.010
Permutation 0.521 ± 0.008 0.478 ± 0.011 0.395 ± 0.036 0.432 ± 0.025 0.532 ± 0.008

Table 49: Performance summary for classifier: LDA

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.537 ± 0.000 0.500 ± 0.000 0.469 ± 0.000 0.484 ± 0.000 0.552 ± 0.000
forwards SFS 0.560 ± 0.000 0.525 ± 0.000 0.519 ± 0.000 0.522 ± 0.000 0.587 ± 0.000
HSIC_Lasso 0.560 ± 0.030 0.530 ± 0.036 0.420 ± 0.072 0.466 ± 0.054 0.566 ± 0.036
Lasso_selection 0.542 ± 0.016 0.506 ± 0.023 0.345 ± 0.057 0.408 ± 0.045 0.540 ± 0.040
mRMR 0.544 ± 0.014 0.510 ± 0.021 0.350 ± 0.038 0.414 ± 0.031 0.531 ± 0.028
Permutation 0.582 ± 0.028 0.551 ± 0.034 0.513 ± 0.059 0.531 ± 0.045 0.603 ± 0.040

Table 50: Performance summary for classifier: LogR

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.520 ± 0.000 0.479 ± 0.000 0.432 ± 0.000 0.455 ± 0.000 0.552 ± 0.000
forwards SFS 0.566 ± 0.000 0.532 ± 0.000 0.519 ± 0.000 0.525 ± 0.000 0.587 ± 0.000
HSIC_Lasso 0.573 ± 0.032 0.544 ± 0.038 0.452 ± 0.066 0.493 ± 0.054 0.592 ± 0.025
Lasso_selection 0.543 ± 0.024 0.506 ± 0.035 0.360 ± 0.063 0.419 ± 0.053 0.542 ± 0.028
mRMR 0.542 ± 0.013 0.507 ± 0.019 0.345 ± 0.035 0.410 ± 0.029 0.531 ± 0.028
Permutation 0.592 ± 0.026 0.560 ± 0.028 0.548 ± 0.053 0.554 ± 0.038 0.625 ± 0.029

B APPENDIX B 51

Table 51: Performance summary for classifier: RandomForest

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.549 ± 0.000 0.514 ± 0.000 0.444 ± 0.000 0.477 ± 0.000 0.561 ± 0.000
forwards SFS 0.583 ± 0.000 0.551 ± 0.000 0.531 ± 0.000 0.541 ± 0.000 0.593 ± 0.000
HSIC_Lasso 0.575 ± 0.038 0.548 ± 0.051 0.492 ± 0.069 0.516 ± 0.048 0.577 ± 0.035
Lasso_selection 0.521 ± 0.040 0.480 ± 0.048 0.424 ± 0.066 0.449 ± 0.054 0.520 ± 0.022
mRMR 0.504 ± 0.030 0.464 ± 0.030 0.409 ± 0.041 0.432 ± 0.019 0.509 ± 0.015
Permutation 0.566 ± 0.019 0.536 ± 0.021 0.462 ± 0.039 0.495 ± 0.029 0.582 ± 0.037

Table 52: Performance summary for classifier: SVM

Feature Selection Accuracy Precision Sensitivity F1 Score AUROC
backward SFS 0.531 ± 0.000 0.493 ± 0.000 0.420 ± 0.000 0.453 ± 0.000 0.538 ± 0.000
forwards SFS 0.571 ± 0.000 0.537 ± 0.000 0.531 ± 0.000 0.534 ± 0.000 0.577 ± 0.000
HSIC_Lasso 0.564 ± 0.023 0.536 ± 0.031 0.437 ± 0.094 0.476 ± 0.056 0.577 ± 0.034
Lasso_selection 0.533 ± 0.025 0.495 ± 0.033 0.374 ± 0.064 0.423 ± 0.048 0.539 ± 0.020
mRMR 0.526 ± 0.027 0.485 ± 0.037 0.347 ± 0.056 0.402 ± 0.043 0.519 ± 0.030
Permutation 0.599 ± 0.038 0.575 ± 0.049 0.519 ± 0.078 0.543 ± 0.055 0.626 ± 0.049

C APPENDIX C 52

C Appendix C — Python Code
C.1 pipeline

1

2 import json
3 import os
4 import time
5 import glob
6 from tqdm import tqdm
7 from datetime import datetime
8 from joblib import Parallel , delayed
9 from classification.src import classifiers as cl

10 from featureselection.src.feature_selection_methods import *
11 from Pipeline import load_graph , load_full_corr ,

train_and_evaluate , cross_validate_model ,
print_selected_features , failsafe_feature_selection , classify ,
load_dataframe

12 from sklearn.metrics import accuracy_score , precision_score ,
recall_score , f1_score , roc_auc_score , confusion_matrix

13 from featureselection.src import cluster
14

15 # ========== CONFIGURATION ========== #
16

17 classifiers_to_run = ["SVM", "RandomForest", "LogR", "LDA", "KNN"
]

18

19 feature_selection_methods = [
20 ("Lasso_selection", Lasso_selection , {"alpha": 0.044984 , "

max_iter": 2000} , "cv"), #0.044984 for full corr
21 ("HSIC_Lasso", hsiclasso , {"num_feat": 19}, "cv"), #98 for

full corr
22 ("mRMR", mRMR , {"num_features_to_select": 100}, "cv"),
23 ("Permutation", Perm_importance , {}, "cv"),
24 ("forwards␣SFS", forwards_SFS , {"n_features_to_select": 20},

"train"),
25 ("backward␣SFS", backwards_SFS , {"n_features_to_select": 10},

"train")
26]
27

28 inf_methods = ["partial_corr", "mutual_info", "norm_laplacian", "
rlogspect"]

29 #(" ReliefF", reliefF_ , {" num_features_to_select ": 200}, "cv")
30 # ========== SAVE RESULTS ========== #
31

32 def save_results(classifier , feature_selection_name , inf_method ,
results_dict):

33 os.makedirs(f"results_graph_NYU_male /{ classifier }/{ inf_method
}", exist_ok=True)

34

35 # Generate timestamp: YYYYMMDD -HHMMSS

C APPENDIX C 53

36 timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
37

38 filename = f"results_graph_NYU_male /{ classifier }/{ inf_method
}/{ feature_selection_name}_{timestamp }.json"

39

40 # Helper function to convert numpy types
41 def convert(o):
42 if isinstance(o, np.integer):
43 return int(o)
44 if isinstance(o, np.floating):
45 return float(o)
46 if isinstance(o, np.ndarray):
47 return o.tolist ()
48 return o
49

50 with open(filename , "w") as f:
51 json.dump(results_dict , f, indent=4, default=convert)
52

53 print(f" ␣Saved:␣{filename}")
54

55 # ========== MAIN PER CLASSIFIER ========== #
56

57 def main_for_classifier(classifier):
58 print(f"\n\n==========␣Running␣pipeline␣for␣{classifier}␣

==========\n")
59

60 for inf_method in inf_methods:
61 print(f"\n---␣Using␣inference␣method:␣{inf_method}␣---")
62

63 # Load data with current inference method
64 X, y = load_graph(sex=’male’, site_id=’NYU’, method=

inf_method)
65

66 # Run raw model just for reference
67 X_train , X_test , y_train , y_test = train_and_evaluate(X,

y, classifier)
68

69 # Use clustered features for Perm / SFS
70 X_clustered = cluster.cluster(X_train , y_train , t=3)
71 X_mRMR = mRMR(X_train , y_train , classifier ,

num_features_to_select =50)
72

73 # Add results for raw data without feature selection
74 print(f"\n===␣Running␣Raw␣data␣for␣{classifier}␣===")
75 result_raw = {
76 "classifier": classifier ,
77 "feature_selection": "Raw␣data",
78 "mode": "cv"
79 }
80

81 start_time = time.time()

C APPENDIX C 54

82

83 # Cross -validation for raw data
84 selected_features , selected_feature_names , avg_metrics ,

fold_metrics = cross_validate_model(
85 X, y, None , classifier , n_splits=5, return_metrics=

True
86)
87 result_raw["selected_features"] = selected_features
88 result_raw["selected_feature_names"] = list(

selected_feature_names) if selected_feature_names is
not None else []

89 result_raw["metrics"] = avg_metrics
90 result_raw["fold_metrics"] = fold_metrics
91

92 # Save raw data results
93 elapsed = time.time() - start_time
94 result_raw["elapsed_seconds"] = elapsed
95 save_results(classifier , "Raw␣data", inf_method ,

result_raw)
96

97 # Loop over feature selection methods with tqdm per
classifier

98 for fs_name , fs_func , fs_kwargs , mode in tqdm(
feature_selection_methods , desc=f"{classifier}␣pipeline
", position=0, leave=True):

99 print(f"\n===␣Running␣{fs_name}␣for␣{classifier}␣==="
)

100

101 result = {
102 "classifier": classifier ,
103 "feature_selection": fs_name ,
104 "mode": mode
105 }
106

107 start_time = time.time()
108

109 if mode == "cv":
110 # Normal cross -validation capture avg metrics
111 selected_features , selected_feature_names ,

avg_metrics , fold_metrics =
cross_validate_model(

112 X, y, fs_func , classifier , n_splits=5,
return_metrics=True , ** fs_kwargs

113)
114 print_selected_features(selected_features ,

selected_feature_names , print_feat=False)
115

116 result["selected_features"] = selected_features
117 result["selected_feature_names"] = list(

selected_feature_names) if
selected_feature_names is not None else []

C APPENDIX C 55

118 result["metrics"] = avg_metrics
119 result["fold_metrics"] = fold_metrics
120

121 elif mode == "train":
122 # Single run on training data classify
123 if fs_name == "Permutation":
124 select_features = X_clustered
125 elif fs_name == "forwards␣SFS":
126 select_features = X_mRMR
127 elif fs_name == "backwards␣SFS":
128 select_features = X_mRMR
129 else:
130 select_features = None # fallback
131

132 selected_features = failsafe_feature_selection(
133 fs_func , X_train , y_train , min_features =20,

classifier=classifier , select_features=
select_features , ** fs_kwargs

134)
135

136 selected_feature_names = classify(
137 X_train , X_test , y_train , y_test ,

selected_features , classifier , performance=
True

138)
139 print_selected_features(selected_features ,

selected_feature_names , print_feat=False)
140

141 # Prepare data
142 scaler = StandardScaler ()
143 X_train_scaled = scaler.fit_transform(X_train)
144 X_test_scaled = scaler.transform(X_test)
145

146 X_train_sel = X_train_scaled [:, selected_features
]

147 X_test_sel = X_test_scaled [:, selected_features]
148

149 if classifier == "SVM":
150 model = cl.applySVM(X_train_sel , y_train)
151 elif classifier == "RandomForest":
152 model = cl.applyRandForest(X_train_sel ,

y_train)
153 elif classifier == "LogR":
154 model = cl.applyLogR(X_train_sel , y_train)
155 elif classifier == "LDA":
156 model = cl.applyLDA(X_train_sel , y_train)
157 elif classifier == "KNN":
158 model = cl.applyKNN(X_train_sel , y_train)
159

160 y_pred = model.predict(X_test_sel)
161 try:

C APPENDIX C 56

162 y_proba = model.predict_proba(X_test_sel)[:,
1]

163 except:
164 y_proba = None
165

166 acc = accuracy_score(y_test , y_pred)
167 precision = precision_score(y_test , y_pred)
168 recall = recall_score(y_test , y_pred)
169 f1 = f1_score(y_test , y_pred)
170 try:
171 auc = roc_auc_score(y_test , y_proba) if

y_proba is not None else None
172 except:
173 auc = None
174

175 cm = confusion_matrix(y_test , y_pred)
176 tn, fp, fn, tp = cm.ravel ()
177 sensitivity = tp / (tp + fn) if (tp + fn) > 0

else 0.0
178

179 result["selected_features"] = selected_features
180 result["selected_feature_names"] = list(

selected_feature_names) if
selected_feature_names is not None else []

181 result["metrics"] = {
182 "num␣feat": len(selected_features),
183 "accuracy": acc ,
184 "precision": precision ,
185 "recall": recall ,
186 "f1_score": f1,
187 "auroc": auc ,
188 "sensitivity": sensitivity
189 }
190

191 # Save result after each feature selection run
192 elapsed = time.time() - start_time
193 result["elapsed_seconds"] = elapsed
194 save_results(classifier , fs_name , inf_method , result)
195

196 print(f"\ n ␣Finished␣{classifier}␣pipeline !\n")
197

198 def gather_and_rank_results(result_dir="
results_graph_total_multisite", metric="f1_score", top_n =5):

199 results = []
200

201 for clf in classifiers_to_run:
202 for inf in inf_methods:
203 path = os.path.join(result_dir , clf , inf , "*.json")
204 for file in glob.glob(path):
205 with open(file , "r") as f:
206 data = json.load(f)

C APPENDIX C 57

207 metrics = data.get("metrics", {})
208 results.append ({
209 "classifier": clf ,
210 "inf_method": inf ,
211 "fs_method": data.get("feature_selection"

, "Unknown"),
212 "metric_value": metrics.get(metric , 0),
213 })
214

215 df = pd.DataFrame(results)
216 top_results = df.sort_values(by="metric_value", ascending=

False).head(top_n)
217 print("\ n ␣Top␣configurations␣based␣on", metric)
218 print(top_results)
219

220 return top_results
221

222 def print_selected_features_from_top_result(result_dir="
results_graph_total_multisite", metric="f1_score"):

223 top_results = gather_and_rank_results(result_dir=result_dir ,
metric=metric , top_n =1)

224 if top_results.empty:
225 print(" ␣No␣top␣result␣found.")
226 return
227

228 top = top_results.iloc [0]
229 clf = top["classifier"]
230 inf = top["inf_method"]
231 fs = top["fs_method"]
232

233 path = os.path.join(result_dir , clf , inf , f"{fs}_*.json")
234 best_file = max(glob.glob(path), key=os.path.getctime) # get

the most recent
235

236 with open(best_file , "r") as f:
237 data = json.load(f)
238 selected_feature_names = data.get("selected_feature_names

", [])
239

240 print(f"\ n ␣Best␣configuration:␣{clf}␣+␣{inf}␣+␣{fs}")
241 print(f" ␣Loaded␣from:␣{best_file}")
242 print(f" ␣Selected␣Features␣({len(selected_feature_names

)}):")
243 for feat in selected_feature_names:
244 print(f"␣-␣{feat}")
245

246

247 # ========== PARALLEL RUNNER ========== #
248

249 if __name__ == "__main__":
250 print(" ␣Starting␣parallel␣pipeline ...")

C APPENDIX C 58

251

252 # Run all classifiers in parallel
253 Parallel(n_jobs=len(classifiers_to_run))(
254 delayed(main_for_classifier)(clf) for clf in

classifiers_to_run
255)
256

257 print("\ n ␣All␣classifiers␣completed!")
258

259 #top_configs = gather_and_rank_results ()
260 print_selected_features_from_top_result ()
261

262 print("\ n ␣Program␣finished")

Listing 1: parallel_main

1

2 from sklearn.metrics import classification_report ,
confusion_matrix

3 import numpy as np
4 import pandas as pd
5 import os
6 from scipy import stats
7 import matplotlib.pyplot as plt
8 from sklearn.model_selection import train_test_split , KFold
9 from sklearn.metrics import mean_squared_error , accuracy_score ,

recall_score , precision_score , f1_score , roc_auc_score ,
confusion_matrix , ConfusionMatrixDisplay , roc_curve

10 from classification.src import classifiers as cl ,
basicfeatureextraction

11 from featureselection.src.feature_selection_methods import *
12 from featureselection.src import cluster
13 from featureselection.src import Compute_HSIC_Lasso as hsic_lasso
14 from sklearn.impute import SimpleImputer
15 from sklearn.preprocessing import StandardScaler , RobustScaler
16 from featuredesign.graph_inference.AAL_test import multiset_feats

, load_files , adjacency_df
17 import glob
18 import cvxpy as cp
19 import seaborn as sns
20

21 def load_file(sex=’all’, method=’pearson_corr ’, alpha =5):
22 #folder_path = r"C:\Users\guus\Python_map\AutismDetection -

main\abide\female -cpac -filtnoglobal -aal" # Enter your local
ABIDE dataset path

23 fmri_data , subject_ids , _, _ = load_files(sex=sex , max_files
=800, site="NYU", shuffle=True , var_filt=True , ica=True)

24

25 print(f"Final␣data:␣{len(fmri_data)}␣subjects")
26 print(f"Final␣IDs:␣{len(subject_ids)}")
27

28 full_df = adjacency_df(fmri_data , subject_ids , method =

C APPENDIX C 59

method , alpha = alpha)
29 print("Merged␣feature+label␣shape :\n", full_df.shape)
30

31 #print(full_df)
32

33 subject_id_to_plot = ’0051044 ’ # Change this to any valid
subject ID

34 #plot_adjacency_matrix(full_df , subject_id_to_plot)
35

36 full_df = full_df.sample(frac=1, random_state =42).reset_index
(drop=True) # Shuffle the DataFrame

37

38 X = full_df.drop(columns =[’DX_GROUP ’, ’subject_id ’, ’SEX’])
39 y = full_df[’DX_GROUP ’].map ({1: 1, 2: 0}) #1 ASD , 0 ALL
40

41 # Making sure the data is numeric
42 X = X.apply(pd.to_numeric , errors=’coerce ’)
43 X = X.dropna(axis=1,how=’all’)
44 non_nan_ratio = X.notna ().mean()
45 X = X.loc[:, non_nan_ratio > 0.8] # Keep columns with more

than 50% non -NaN values
46 # Making sure there is no 0 var data for the hsic algorithm
47 X = X.loc[:, X.var() > 1e-6]
48

49 # NaN values are filled with the median of the column
50 X= X.fillna(X.median ())
51

52 return X, y
53

54 def load_graph_csv(method , sex=’all’, site_id=None):
55 # Load data
56 if method == ’laplacian ’:
57 data = pd.read_csv(’cpac_rois -aal_nogsr_filt_norm -

laplacian_direct_20ICA_alpha0 .0001 _thr0 .25. csv’,
encoding=’ISO -8859 -1’)

58 elif method == ’rspect ’:
59 data = pd.read_csv(’cpac_rois -

aal_nogsr_filt_rspect_direct_20ICA_alpha0 .0001 _thr0 .10.
csv’, encoding=’ISO -8859 -1’)

60 else:
61 print("use␣laplacian␣or␣rspect␣as␣method")
62 data = data[data[’DX_GROUP ’]. notna()]
63

64 # Separate by sex
65 fc_female = data[data[’SEX’] == 2]
66 fc_male = data[data[’SEX’] == 1]
67

68 if sex == ’female ’:
69 fc = fc_female
70 elif sex == ’male’:
71 fc = fc_male

C APPENDIX C 60

72 elif sex == ’all’:
73 fc = pd.concat ([fc_female , fc_male], axis=0, ignore_index

=True)
74 else:
75 print("Use␣male ,␣female␣or␣all␣as␣sex")
76

77 if site_id is not None:
78 fc = fc[fc[’SITE_ID ’] == site_id]
79

80 fc = fc.sample(frac=1, random_state =42).reset_index(drop=True
) # Shuffle the DataFrame

81 fc = fc.dropna(subset =[’DX_GROUP ’])
82

83 X = fc.drop(columns =[’DX_GROUP ’, ’SEX’, ’SITE_ID ’, ’
subject_id ’, ’AGE_AT_SCAN ’])

84 y = fc[’DX_GROUP ’]
85

86 # Making sure the data is numeric
87 X = X.apply(pd.to_numeric , errors=’coerce ’)
88 X = X.dropna(axis=1,how=’all’)
89 non_nan_ratio = X.notna ().mean()
90 X = X.loc[:, non_nan_ratio > 0.8] # Keep columns with more

than 50% non -NaN values
91 # Making sure there is no 0 var data for the hsic algorithm
92 X = X.loc[:, X.var() > 1e-4]
93 # NaN values are filled with the median of the column
94 X = X.fillna(X.median ())
95

96 # Remove extremely correlated features
97 X = correlation_filter(X, threshold =0.9)
98 print(f"After␣outlier␣removal:␣{X.shape}")
99 # Remove extreme outliers

100 X = remove_extreme_outliers(X, threshold =3.5)
101 #print(f"After outlier removal: {X.shape }")
102

103 # Apply feature transformations for better distributions
104 X = apply_feature_transformations(X)
105 #print(f"After transformation: {X.shape }")
106

107 # Site effect correction
108 if ’SITE_ID ’ in fc.columns:
109 X = correct_site_effects(X, fc[’SITE_ID ’])
110 #print(f"After site correction: {X.shape }")
111

112 #print(f"X: {X}, y: {y}")
113

114 return X, y
115

116 def load_graph(sex=’all’, site_id=None , method="norm_laplacian",
cov="ledoit"):

117

C APPENDIX C 61

118 fmri_data_f , subject_ids_f , _, _ = load_files(sex=’Female ’,
max_files =800, site=site_id , shuffle=True , var_filt=True ,
ica=True)

119 fmri_data_m , subject_ids_m , _, _ = load_files(sex=’Male’,
max_files =800, site=site_id , shuffle=True , var_filt=True ,
ica=True)

120

121 fc_female = multiset_feats(fmri_data_f , subject_ids_f ,
inf_method=method , cov_method=cov ,

122 thresh =0.1, n_jobs=-1, feats="graph")
123 fc_male = multiset_feats(fmri_data_m , subject_ids_m ,

inf_method=method , cov_method=cov ,
124 thresh =0.1, n_jobs=-1, feats="graph")
125 if sex == ’female ’:
126 fc = fc_female
127 elif sex == ’male’:
128 fc = fc_male
129 elif sex == ’all’:
130 fc = pd.concat ([fc_female , fc_male], axis=0, ignore_index

=True)
131 else:
132 print("Use␣male ,␣female␣or␣all␣as␣sex")
133

134 if site_id is not None:
135 fc = fc[fc[’SITE_ID ’] == site_id]
136

137 fc = fc.sample(frac=1, random_state =42).reset_index(drop=True
) # Shuffle the DataFrame

138 fc = fc.dropna(subset =[’DX_GROUP ’])
139

140 X = fc.drop(columns =[’DX_GROUP ’, ’SEX’, ’SITE_ID ’, ’
subject_id ’])

141 y = fc[’DX_GROUP ’]
142

143 if X.empty or X.shape [1] < 10:
144 raise ValueError(" ␣Not␣enough␣usable␣features␣

extracted␣from␣multiset_feats")
145

146 #X.to_csv(’laplacian_prefilter_ledoit.csv ’, index=False)
147

148 # Making sure the data is numeric
149 X = X.apply(pd.to_numeric , errors=’coerce ’)
150 X = X.dropna(axis=1,how=’all’)
151 non_nan_ratio = X.notna ().mean()
152 X = X.loc[:, non_nan_ratio > 0.8] # Keep columns with more

than 50% non -NaN values
153 # Making sure there is no 0 var data for the hsic algorithm
154 X = X.loc[:, X.var() > 1e-4]
155 # NaN values are filled with the median of the column
156 X = X.fillna(X.median ())
157

C APPENDIX C 62

158 # Remove extremely correlated features
159 X = correlation_filter(X, threshold =0.9)
160 print(f"After␣outlier␣removal:␣{X.shape}")
161 # Remove extreme outliers
162 X = remove_extreme_outliers(X, threshold =3.5)
163 #print(f"After outlier removal: {X.shape }")
164

165 # Apply feature transformations for better distributions
166 X = apply_feature_transformations(X)
167 #print(f"After transformation: {X.shape }")
168

169 # Site effect correction
170 if ’SITE_ID ’ in fc.columns:
171 X = correct_site_effects(X, fc[’SITE_ID ’])
172 #print(f"After site correction: {X.shape }")
173

174 #X.to_csv(’laplacian_ledoit.csv ’, index=False)
175

176 return X, y
177

178 def load_full_corr(sex=’all’, site_id=None):
179

180 fc_female = basicfeatureextraction.extract_fc_features("abide
/female -cpac -filtnoglobal -aal", "abide/
Phenotypic_V1_0b_preprocessed1.csv")

181 fc_male = basicfeatureextraction.extract_fc_features("abide/
male -cpac -filtnoglobal -aal", "abide/
Phenotypic_V1_0b_preprocessed1.csv")

182 if sex == ’female ’:
183 fc = fc_female
184 elif sex == ’male’:
185 fc = fc_male
186 elif sex == ’all’:
187 fc = pd.concat ([fc_female , fc_male], axis=0, ignore_index

=True)
188 else:
189 print("Use␣male ,␣female␣or␣all␣as␣sex")
190

191 if site_id is not None:
192 fc = fc[fc[’SITE_ID ’] == site_id]
193

194 fc = fc.sample(frac=1, random_state =42).reset_index(drop=True
) # Shuffle the DataFrame

195 fc = fc.dropna(subset =[’DX_GROUP ’])
196

197 X = fc.drop(columns =[’DX_GROUP ’, ’SEX’, ’SITE_ID ’, ’
subject_id ’, ’AGE’])

198 y = fc[’DX_GROUP ’]
199

200 # Making sure the data is numeric
201 X = X.apply(pd.to_numeric , errors=’coerce ’)

C APPENDIX C 63

202 X = X.dropna(axis=1,how=’all’)
203 non_nan_ratio = X.notna ().mean()
204 X = X.loc[:, non_nan_ratio > 0.8] # Keep columns with more

than 50% non -NaN values
205 # Making sure there is no 0 var data for the hsic algorithm
206 X = X.loc[:, X.var() > 1e-4]
207 # NaN values are filled with the median of the column
208 X = X.fillna(X.median ())
209

210 return X, y
211

212 def load_dataframe(path=’multi’):
213 if path ==’uni’:
214 folder_path = ’Feature_Dataframes/first_run ’
215 if path == ’multi’:
216 folder_path = ’Feature_Dataframes/second_run ’
217 #file_name = ’cpac_rois -

aal_nogsr_filt_LADMM_direct_20ICA_graph_thr0 .3.csv’
218 file_name = ’cpac_rois -

aal_nogsr_filt_LADMM_var_20ICA_graph_thr0 .3. csv’
219 #file_name = ’cpac_rois -aal_nogsr_filt_norm -

laplacian_direct_20ICA_graph_thr0 .3.csv’
220 #file_name = ’cpac_rois -aal_nogsr_filt_norm -

laplacian_glasso_20ICA_graph_thr0 .3.csv’
221 #file_name = ’cpac_rois -aal_nogsr_filt_norm -

laplacian_ledoit_20ICA_graph_thr0 .3.csv’
222 #file_name = ’cpac_rois -aal_nogsr_filt_norm -

laplacian_var_20ICA_graph_thr0 .3.csv’
223

224 file_path = os.path.join(folder_path , file_name)
225 fc = pd.read_csv(file_path)
226 #fc = pd.concat ([pd.read_csv(file) for file in glob.glob(os.

path.join(folder_path , ’*.csv ’))], ignore_index=True)
227

228 fc = fc.sample(frac=1, random_state =42).reset_index(drop=True
) # Shuffle the DataFrame

229 #fc = fc.dropna(subset=[’DX_GROUP ’])
230

231 X = fc.drop(columns =[’DX_GROUP ’, ’SEX’, ’SITE_ID ’, ’
subject_id ’, ’AGE_AT_SCAN ’])

232 y = fc[’DX_GROUP ’]
233

234 # Making sure the data is numeric
235 X = X.apply(pd.to_numeric , errors=’coerce ’)
236 X = X.dropna(axis=1,how=’all’)
237 non_nan_ratio = X.notna ().mean()
238 X = X.loc[:, non_nan_ratio > 0.8] # Keep columns with more

than 50% non -NaN values
239 # Making sure there is no 0 var data for the hsic algorithm
240 X = X.loc[:, X.var() > 1e-4]
241 # NaN values are filled with the median of the column

C APPENDIX C 64

242 X = X.fillna(X.median ())
243 print(f"shape␣dataframe:␣{X.shape}")
244

245 print(f"X:␣{X},␣y:␣{y}")
246

247 return X, y
248

249 def evaluate_performance(y_true , y_pred , y_proba=None , show_plots
=False , classifier_name="", fold_idx=None , verbose=True):

250 # Compute basic metrics
251 acc = accuracy_score(y_true , y_pred)
252 prec = precision_score(y_true , y_pred)
253 rec = recall_score(y_true , y_pred)
254 f1 = f1_score(y_true , y_pred)
255 auc = roc_auc_score(y_true , y_proba) if y_proba is not None

else None
256

257 if verbose ==True:
258 print(f"\nPerformance␣Metrics␣({ classifier_name }):")
259 print(f"Performance␣Metrics␣({ classifier_name }):")
260 print(f"␣␣Accuracy:␣␣{acc:.4f}")
261 print(f"␣␣Precision:␣{prec :.4f}")
262 print(f"␣␣Recall:␣␣␣␣{rec:.4f}")
263 print(f"␣␣F1␣Score:␣␣{f1:.4f}")
264 if auc is not None:
265 print(f"␣␣AUC:␣␣␣␣␣␣␣{auc:.4f}")
266

267 if show_plots:
268 # Confusion matrix
269 cm = confusion_matrix(y_true , y_pred)
270 disp = ConfusionMatrixDisplay(confusion_matrix=cm ,

display_labels =["Class␣0", "Class␣1"])
271 disp.plot(cmap="Blues")
272 plt.title(f"Confusion␣Matrix␣-␣{classifier_name}")
273 plt.show()
274

275 # ROC curve (if proba is available)
276 if y_proba is not None:
277 fpr , tpr , _ = roc_curve(y_true , y_proba)
278 plt.plot(fpr , tpr , label=f"AUC␣=␣{auc:.2f}")
279 plt.plot([0, 1], [0, 1], ’k--’)
280 plt.xlabel("False␣Positive␣Rate")
281 plt.ylabel("True␣Positive␣Rate")
282 plt.title(f"ROC␣Curve␣-␣{classifier_name}")
283 plt.legend ()
284 plt.grid()
285 plt.show()
286

287 return {
288 "accuracy": acc ,
289 "precision": prec ,

C APPENDIX C 65

290 "recall": rec ,
291 "f1": f1,
292 "auc": auc
293 }
294

295 def print_selected_features(selected_features ,
selected_feature_names , print_feat=False):

296 num_feat = len(selected_features)
297 print(f"Selected␣features␣({ num_feat }):", selected_features)
298 #if print_feat ==True:
299 # print(f"\ nSelected feature names ({len(

selected_feature_names)}):")
300 # for name in selected_feature_names:
301 # print("-", name)
302

303 def train_and_evaluate(X, y, classifier):
304 #splitting the data in train and test 0.8:0.2 respecively
305 X_train , X_test , y_train , y_test = train_test_split(X, y,

test_size =0.2, random_state =42, stratify=y)
306

307 print(f"y_train:␣{y_train},␣y_test:␣{y_test}")
308

309 #scale the data for the classifier
310 scaler = RobustScaler ()
311 X_train_scaled = scaler.fit_transform(X_train)
312 X_test_scaled = scaler.transform(X_test)
313

314 if classifier == "SVM":
315 model_raw = cl.applySVM(X_train_scaled , y_train)
316 elif classifier == "RandomForest":
317 model_raw = cl.applyRandForest(X_train_scaled , y_train)
318 elif classifier == "LogR":
319 model_raw = cl.applyLogR(X_train_scaled , y_train)
320 elif classifier == "LDA":
321 model_raw = cl.applyLDA(X_train_scaled , y_train)
322 elif classifier == "KNN":
323 model_raw = cl.applyKNN(X_train_scaled , y_train)
324 else:
325 print("Classifier␣not␣supported:␣choose␣from␣SVM ,␣

RandomForest ,␣LogR ,␣LDA␣or␣KNN")
326 #applying the classifier to the total data
327 model_raw = cl.applySVM(X_train , y_train)
328 y_pred_raw = model_raw.predict(X_test)
329

330 try:
331 y_proba_raw = model_raw.predict_proba(X_test_scaled)[:,

1]
332 except:
333 y_proba_raw = None
334

335 #finding mse and accuracy

C APPENDIX C 66

336 perf_raw = evaluate_performance(y_test , y_pred_raw ,
y_proba_raw , classifier_name=classifier , verbose=False)

337 acc_raw = perf_raw["accuracy"]
338 mse_raw = mean_squared_error(y_test , y_pred_raw)
339 precision_raw = perf_raw["precision"]
340 recall_raw = perf_raw["recall"]
341 F1_raw = perf_raw["f1"]
342 AUC_raw = perf_raw["auc"]
343 #print(classification_report(y_test , y_pred_raw , target_names

=[" Class 0", "Class 1"]))
344 #print(’Confusion matrix:’, confusion_matrix(y_test ,

y_pred_raw))
345 #print(’Amount of features:’, X_train.shape [1])
346

347 #acc , mse , selected_feature_names = cross_validate_model(X, y
, selected_features)

348 print(f"Train/Test␣Accuracy␣raw:␣{acc_raw :.4f},␣MSE:␣{mse_raw
:.4f},␣Precision:␣{precision_raw :.4f},␣Recall:␣{recall_raw
:.4f},␣F1:␣{F1_raw :.4f},␣AUC:␣{AUC_raw :.4f}")

349

350 return X_train , X_test , y_train , y_test
351

352 def classify(X_train , X_test , y_train , y_test , selected_features ,
classifier , performance=True):

353

354 #scale the data for the classifier
355 scaler = StandardScaler ()
356 X_train_scaled = X_train #scaler.fit_transform(X_train)
357 X_test_scaled = X_test #scaler.transform(X_test)
358

359 if isinstance(X_train_scaled , pd.DataFrame):
360 # If it’s a DataFrame , use ‘.iloc[]‘ for indexing
361 selected_train_x = X_train_scaled.iloc[:,

selected_features]
362 selected_test_x = X_test_scaled.iloc[:, selected_features

]
363 else:
364 # If it’s a numpy array , use standard array indexing
365 selected_train_x = X_train_scaled [:, selected_features]
366 selected_test_x = X_test_scaled [:, selected_features]
367

368 if classifier == "SVM":
369 model = cl.applySVM(selected_train_x , y_train)
370 elif classifier == "RandomForest":
371 model = cl.applyRandForest(selected_train_x , y_train)
372 elif classifier == "LogR":
373 model = cl.applyLogR(selected_train_x , y_train)
374 elif classifier == "LDA":
375 model = cl.applyLDA(selected_train_x , y_train)
376 elif classifier == "KNN":
377 model = cl.applyKNN(selected_train_x , y_train)

C APPENDIX C 67

378 else:
379 print("Classifier␣not␣supported:␣choose␣from␣SVM ,␣

RandomForest ,␣LogR ,␣DecisionTree␣or␣MLP")
380

381 #applying the classifier to the selected data
382 y_pred = model.predict(selected_test_x)
383 #params=bestSVM_RS(X_train , X_test , y_train , y_test ,

svcdefault=SVC())
384 #finding mse and accuracy
385

386 # Predict probabilities if supported
387 try:
388 y_proba = model.predict(selected_test_x) if hasattr(model

, "predict_proba") else None
389 if y_proba is not None:
390 y_proba = model.predict_proba(selected_test_x)[:, 1]
391 except:
392 y_proba = None
393 if performance ==True:
394 evaluate_performance(y_test , y_pred , y_proba ,

classifier_name=classifier)
395 #getting and printing the feature names
396 feature_names = X_train.columns
397 selected_feature_names = feature_names[selected_features]
398

399 return selected_feature_names
400

401 def cross_validate_model(X, y, feature_selection , classifier , raw
=True , return_metrics=False , n_splits=5, **
feature_selection_kwargs):

402 #K-Fold cross -validation evaluation.
403 kf = StratifiedKFold(n_splits=n_splits , shuffle=True ,

random_state =42) #shuffle=True , random_state =42
404 acc_scores = []
405 mse_scores = []
406 precision_scores = []
407 recall_scores = []
408 F1_scores = []
409 AUC_scores = []
410 acc_scores_raw = []
411 mse_scores_raw = []
412 precision_scores_raw = []
413 recall_scores_raw = []
414 F1_scores_raw = []
415 AUC_scores_raw= []
416 fold_metrics = []
417

418 if classifier is not Perm_importance or backwards_SFS:
419 # Convert inputs to numpy arrays once at the beginning
420 if isinstance(X, pd.DataFrame):
421 feature_names = X.columns

C APPENDIX C 68

422 X = X.to_numpy ()
423 elif isinstance(X, pd.Series):
424 feature_names = [f"feature_{i}" for i in range(len(X)

)]
425 X = X.to_numpy ()
426 else:
427 feature_names = [f"feature_{i}" for i in range(X.

shape [1])]
428

429 X = np.asarray(X, dtype=np.float64)
430

431 # Inside failsafe_feature_selection
432 if isinstance(y, pd.Series) or isinstance(y, pd.DataFrame

):
433 y = y.values
434 y = np.asarray(y, dtype=np.float64).reshape (-1)
435

436 selected_features = None
437 selected_feature_names = None
438

439 for train_idx , test_idx in kf.split(X, y):
440

441 X_train , X_test = X[train_idx], X[test_idx]
442 y_train , y_test = y[train_idx], y[test_idx]
443

444 #Scaling the data
445 scaler = RobustScaler ()
446 X_train_scaled = scaler.fit_transform(X_train)
447 X_test_scaled = scaler.transform(X_test)
448

449 if feature_selection is not None:
450 selected_features = failsafe_feature_selection(

feature_selection , X_train_scaled , y_train ,
classifier=classifier , ** feature_selection_kwargs)

451

452 # Ensure selected_features is a list of valid indices
453 if not isinstance(selected_features , (list , np.

ndarray)):
454 selected_features = [selected_features] if

selected_features is not None else []
455

456 selected_features = [int(idx) for idx in
selected_features if isinstance(idx , (int , np.
integer)) and 0 <= idx < X_train.shape [1]]

457

458 if not selected_features:
459 # Fallback to all features if selection fails
460 selected_features = list(range(X_train.shape [1]))
461

462 # Select the features based on the selected indices
463 X_train_sel = X_train_scaled [:, selected_features]

C APPENDIX C 69

464 X_test_sel = X_test_scaled [:, selected_features]
465 else:
466 X_train_sel = X_train_scaled
467 X_test_sel = X_test_scaled
468

469 #applying the classifier
470 if classifier == "SVM":
471 model = cl.applySVM(X_train_sel , y_train)
472 model_raw = cl.applySVM(X_train_scaled , y_train)
473 elif classifier == "RandomForest":
474 model = cl.applyRandForest(X_train_sel , y_train)
475 model_raw = cl.applyRandForest(X_train_scaled ,

y_train)
476 elif classifier == "LogR":
477 model = cl.applyLogR(X_train_sel , y_train)
478 model_raw = cl.applyLogR(X_train_scaled , y_train)
479 elif classifier == "DT":
480 model = cl.applyDT(X_train_sel , y_train)
481 model_raw = cl.applyDT(X_train_scaled , y_train)
482 elif classifier == "MLP":
483 model = cl.applyMLP(X_train_sel , y_train)
484 model_raw = cl.applyMLP(X_train_scaled , y_train)
485 elif classifier == "LDA":
486 model = cl.applyLDA(X_train_sel , y_train)
487 model_raw = cl.applyLDA(X_train_scaled , y_train)
488 elif classifier == "KNN":
489 model = cl.applyKNN(X_train_sel , y_train)
490 model_raw = cl.applyKNN(X_train_scaled , y_train)
491

492 y_pred = model.predict(X_test_sel)
493 y_pred_raw = model_raw.predict(X_test_scaled)
494

495 try:
496 y_proba = model.predict_proba(X_test_sel)[:, 1]
497 except:
498 y_proba = None
499

500 try:
501 y_proba_raw = model.predict_proba(X_test_scaled)[:,

1]
502 except:
503 y_proba_raw = None
504

505 perf = evaluate_performance(y_test , y_pred , y_proba ,
classifier_name=classifier , fold_idx=len(acc_scores) +
1, verbose=False)

506

507 acc_scores.append(perf["accuracy"] if perf["accuracy"] is
not None else 0.0)

508 mse_scores.append(mean_squared_error(y_test , y_pred))
509 precision_scores.append(perf["precision"] if perf["

C APPENDIX C 70

precision"] is not None else 0.0)
510 recall_scores.append(perf["recall"] if perf["recall"] is

not None else 0.0)
511 F1_scores.append(perf["f1"] if perf["f1"] is not None

else 0.0)
512 AUC_scores.append(perf["auc"] if perf["auc"] is not None

else 0.0)
513

514 fold_metrics.append ({
515 "accuracy": acc_scores ,
516 "precision": precision_scores ,
517 "recall": recall_scores ,
518 "f1_score": F1_scores ,
519 "auroc": AUC_scores
520 })
521

522 print(classifier)
523 #print(classification_report(y_test , y_pred , target_names

=[" Class 0", "Class 1"]))
524 #print(’Confusion matrix:’, confusion_matrix(y_test ,

y_pred))
525

526 if raw==True:
527 perf_raw = evaluate_performance(y_test , y_pred_raw ,

y_proba_raw , classifier_name=classifier , fold_idx=
len(acc_scores) + 1, verbose=False)

528 # Raw performance
529 acc_scores_raw.append(perf_raw["accuracy"])
530 mse_scores_raw.append(mean_squared_error(y_test ,

y_pred))
531 precision_scores_raw.append(perf_raw["precision"])
532 recall_scores_raw.append(perf_raw["recall"])
533 F1_scores_raw.append(perf_raw["f1"])
534 AUC_scores_raw.append(perf_raw["auc"])
535

536 avg_acc_raw = np.mean(acc_scores_raw)
537 avg_mse_raw = np.mean(mse_scores_raw)
538 avg_precision_raw = np.mean(precision_scores_raw)
539 avg_recall_raw = np.mean(recall_scores_raw)
540 avg_F1_raw = np.mean(F1_scores_raw)
541 avg_AUC_raw = np.mean([score for score in

AUC_scores_raw if score is not None])
542

543 print(f"Average␣accuracy␣raw:␣{avg_acc_raw}")
544 print(f"Average␣mse␣raw:␣{avg_mse_raw}")
545 print(f"Average␣precision␣raw:␣{avg_precision_raw}")
546 print(f"Average␣recall␣raw:␣{avg_recall_raw}")
547 print(f"Average␣F1␣raw:␣{avg_F1_raw}")
548 print(f"Average␣AUC␣raw:␣{avg_AUC_raw}")
549

550 # Calculate averages (only if we have results)

C APPENDIX C 71

551 if acc_scores:
552 # Get feature names for the last fold’s selection
553 if selected_features is not None:
554 selected_feature_names = [feature_names[i] for i in

selected_features
555 if i < len(feature_names)]
556 else:
557 selected_feature_names = list(feature_names)
558 """
559 selected_features = failsafe_feature_selection(

feature_selection , X, y, classifier=classifier , **
feature_selection_kwargs)

560 X_selected = X[:, selected_features]
561

562 model = select_model(classifier)
563

564 acc_scores = cross_val_score(model , X_selected , y, cv=kf,
scoring=’accuracy ’)

565 mse_scores = cross_val_score(model , X_selected , y, cv=kf,
scoring=’neg_mean_squared_error ’)

566 precision_scores = cross_val_score(model , X_selected , y, cv=
kf, scoring=’precision ’)

567 recall_scores = cross_val_score(model , X_selected , y, cv=kf,
scoring=’recall ’)

568 F1_scores = cross_val_score(model , X_selected , y, cv=kf,
scoring=’f1 ’)

569 AUC_scores = cross_val_score(model , X_selected , y, cv=kf,
scoring=’roc_auc ’)

570 """
571

572 avg_acc = np.mean(acc_scores)
573 avg_mse = np.mean(mse_scores)
574 avg_precision = np.mean(precision_scores)
575 avg_recall = np.mean(recall_scores)
576 avg_F1 = np.mean(F1_scores)
577 avg_AUC = np.mean(AUC_scores)
578

579 avg_metrics = {
580 "accuracy": avg_acc ,
581 "precision": avg_precision ,
582 "recall": avg_recall ,
583 "f1_score": avg_F1 ,
584 "auroc": avg_AUC ,
585 "sensitivity": avg_recall # sensitivity == recall in

binary classification
586

587 }
588

589 print(f"\nMean␣performance␣Metrics␣({ classifier }),␣({
feature_selection }):")

590 print(f"Mean␣performance␣Metrics␣({ classifier }),␣({

C APPENDIX C 72

feature_selection }):")
591 print(f"␣␣Accuracy:␣␣{avg_acc :.4f}")
592 print(f"␣␣Precision:␣{avg_precision :.4f}")
593 print(f"␣␣Recall:␣␣␣␣{avg_recall :.4f}")
594 print(f"␣␣F1␣Score:␣␣{avg_F1 :.4f}")
595 if avg_AUC is not None:
596 print(f"␣␣AUC:␣␣␣␣␣␣␣{avg_AUC :.4f}")
597

598 if raw==True:
599 acc_scores_raw = cross_val_score(model , X, y, cv=kf ,

scoring=’accuracy ’)
600 mse_scores_raw = cross_val_score(model , X, y, cv=kf ,

scoring=’neg_mean_squared_error ’)
601 precision_scores_raw = cross_val_score(model , X, y, cv=kf

, scoring=’precision ’)
602 recall_scores_raw = cross_val_score(model , X, y, cv=kf ,

scoring=’recall ’)
603 F1_scores_raw = cross_val_score(model , X, y, cv=kf,

scoring=’f1’)
604 AUC_scores_raw = cross_val_score(model , X, y, cv=kf ,

scoring=’roc_auc ’)
605

606 avg_acc_raw = np.mean(acc_scores_raw)
607 avg_mse_raw = np.mean(mse_scores_raw)
608 avg_precision_raw = np.mean(precision_scores_raw)
609 avg_recall_raw = np.mean(recall_scores_raw)
610 avg_F1_raw = np.mean(F1_scores_raw)
611 avg_AUC_raw = np.mean(AUC_scores_raw)
612

613 print(f"\nPerformance␣Metrics␣raw␣({ classifier }):")
614 print(f"Performance␣Metrics␣raw␣({ classifier }):")
615 print(f"␣␣Accuracy:␣␣{avg_acc_raw :.4f}")
616 print(f"␣␣Precision:␣{avg_precision_raw :.4f}")
617 print(f"␣␣Recall:␣␣␣␣{avg_recall_raw :.4f}")
618 print(f"␣␣F1␣Score:␣␣{avg_F1_raw :.4f}")
619 if avg_AUC is not None:
620 print(f"␣␣AUC:␣␣␣␣␣␣␣{avg_AUC_raw :.4f}")
621

622 if return_metrics:
623 return selected_features , selected_feature_names ,

avg_metrics , fold_metrics
624 else:
625 selected_features , selected_feature_names
626

627 def select_model(classifier):
628 # Determine the model based on the classifier name
629 if classifier == "SVM":
630 model = SVC(kernel=’linear ’)
631 elif classifier == "RandomForest":
632 model = RandomForestClassifier(random_state =42)
633 elif classifier == "LogR":

C APPENDIX C 73

634 model = LogisticRegression(random_state =42)
635 elif classifier == "DT":
636 model = DecisionTreeClassifier(random_state =42)
637 elif classifier == "MLP":
638 model = MLPClassifier(random_state =42)
639 elif classifier == "LDA":
640 model = LinearDiscriminantAnalysis ()
641 elif classifier == "KNN":
642 model = KNeighborsClassifier ()
643 else:
644 raise ValueError("Unsupported␣classifier␣type ,␣choose␣SVM

,␣RandomForest ,␣DT,␣MLP ,␣LogR ,␣LDA␣or␣KNN")
645

646 return model

Listing 2: Pipeline

C.2 Feature selection methods

1

2 from __future__ import division
3 import numpy as np
4 import pandas as pd
5 from sklearn.pipeline import Pipeline
6 from sklearn.linear_model import Lasso , LassoLars
7 from sklearn.inspection import permutation_importance
8 from sklearn.ensemble import RandomForestClassifier
9 from sklearn.svm import SVC

10 from sklearn.linear_model import LogisticRegression , Lasso ,
LassoCV

11 from sklearn.tree import DecisionTreeClassifier
12 from sklearn.neural_network import MLPClassifier
13 from sklearn.preprocessing import StandardScaler ,

KBinsDiscretizer , LabelEncoder
14 from sklearn.metrics import mutual_info_score
15 from sklearn.feature_selection import RFE ,

SequentialFeatureSelector , VarianceThreshold ,
mutual_info_classif , SelectKBest , f_classif , SelectFromModel

16 from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis

17 from sklearn.neighbors import KNeighborsClassifier
18 from sklearn.model_selection import cross_val_score ,

StratifiedKFold , train_test_split
19 from skfeature.function.information_theoretical_based import MRMR
20 from scipy.stats import gamma
21 from pyHSICLasso import HSICLasso
22 import time
23 import warnings
24 import inspect
25

C APPENDIX C 74

26 def failsafe_feature_selection(selection_func , X, y, min_features
=10, fallback_method=’mutual_info ’, ** kwargs):

27 """
28 Failsafe wrapper for feature selection methods that ensures a

minimum number of features are returned.
29

30 Parameters:
31 - selection_func: The feature selection function to call
32 - X: Input feature matrix (pandas DataFrame or numpy array)
33 - y: Target labels (pandas Series or numpy array)
34 - min_features: Minimum number of features to return (default

: 10)
35 - fallback_method: Method to use if primary selection returns

insufficient features
36 Options: ’mutual_info ’, ’f_score ’, ’

random_forest ’, ’top_variance ’
37 - ** kwargs: Additional arguments to pass to the selection

function
38

39 Returns:
40 - selected_features: List of selected feature indices
41 """
42

43 # Ensure we have enough features to select from
44 n_total_features = X.shape [1]
45 min_features = min(min_features , n_total_features)
46

47 selected_features = []
48

49 try:
50 # Try the primary selection method
51 print(f"Attempting␣primary␣feature␣selection␣method ...")
52 valid_kwargs = _filter_kwargs_for_function(selection_func

, kwargs)
53 selected_features = selection_func(X, y, ** valid_kwargs)
54

55 # Handle different return types
56 if hasattr(selected_features , ’__iter__ ’) and not

isinstance(selected_features , str):
57 selected_features = list(selected_features)
58 else:
59 selected_features = [selected_features] if

selected_features is not None else []
60

61 # Remove any invalid indices
62 selected_features = [idx for idx in selected_features
63 if isinstance(idx , (int , np.integer))

and 0 <= idx < n_total_features]
64

65 print(f"Primary␣method␣returned␣{len(selected_features)}␣
features")

C APPENDIX C 75

66

67 except Exception as e:
68 print(f"Primary␣feature␣selection␣failed:␣{str(e)}")
69 selected_features = []
70

71 # Check if we have enough features
72 if len(selected_features) < min_features:
73 print(f"Insufficient␣features␣from␣primary␣method␣({len(

selected_features)}).␣Using␣fallback ...")
74

75 # Apply fallback feature selection
76 fallback_features = _apply_fallback_selection(X, y,

min_features , fallback_method)
77

78 # Combine primary and fallback features (remove
duplicates)

79 all_features = list(set(selected_features +
fallback_features))

80

81 # If still not enough , add top variance features
82 if len(all_features) < min_features:
83 variance_features = _get_top_variance_features(X,

min_features - len(all_features))
84 all_features = list(set(all_features +

variance_features))
85

86 selected_features = all_features [: min_features]
87

88 # Final safety check - ensure we have valid indices
89 selected_features = [idx for idx in selected_features
90 if isinstance(idx , (int , np.integer)) and

0 <= idx < n_total_features]
91

92 # If still empty , return first min_features indices
93 if not selected_features:
94 print("All␣methods␣failed.␣Returning␣first␣features␣as␣

last␣resort.")
95 selected_features = list(range(min(min_features ,

n_total_features)))
96

97 print(f"Final␣selection:␣{len(selected_features)}␣features")
98 return selected_features
99

100 def _apply_fallback_selection(X, y, min_features , method):
101 """ Apply fallback feature selection method."""
102

103 try:
104 if method == ’mutual_info ’:
105 # Use mutual information
106 selector = SelectKBest(score_func=mutual_info_classif

, k=min_features)

C APPENDIX C 76

107 selector.fit(X, y)
108 return selector.get_support(indices=True).tolist ()
109

110 elif method == ’f_score ’:
111 # Use F-score
112 selector = SelectKBest(score_func=f_classif , k=

min_features)
113 selector.fit(X, y)
114 return selector.get_support(indices=True).tolist ()
115

116 elif method == ’random_forest ’:
117 # Use Random Forest feature importance
118 rf = RandomForestClassifier(n_estimators =100,

random_state =42)
119 rf.fit(X, y)
120 importances = rf.feature_importances_
121 indices = np.argsort(importances)[::-1]
122 return indices [: min_features]. tolist ()
123

124 elif method == ’top_variance ’:
125 return _get_top_variance_features(X, min_features)
126

127 except Exception as e:
128 print(f"Fallback␣method␣{method}␣failed:␣{str(e)}")
129

130 # If fallback fails , return top variance features
131 return _get_top_variance_features(X, min_features)
132

133 def _filter_kwargs_for_function(func , kwargs):
134 """ Filter kwargs to only include parameters that the function

accepts."""
135 try:
136 # Get function signature
137 sig = inspect.signature(func)
138 valid_params = set(sig.parameters.keys())
139

140 # Filter kwargs to only include valid parameters
141 filtered_kwargs = {k: v for k, v in kwargs.items () if k

in valid_params}
142 return filtered_kwargs
143 except Exception:
144 # If we can’t inspect the function , return empty dict to

be safe
145 return {}
146

147 def _get_top_variance_features(X, min_features):
148 """Get features with highest variance as last resort."""
149 try:
150 if isinstance(X, pd.DataFrame):
151 variances = X.var()
152 else:

C APPENDIX C 77

153 variances = np.var(X, axis =0)
154

155 indices = np.argsort(variances)[::-1]
156 return indices [: min_features]. tolist ()
157 except:
158 # Ultimate fallback - return first features
159 return list(range(min(min_features , X.shape [1])))
160

161 def hsiclasso(X, y, classifier , num_feat=None , feature_range =(1,
50), verbose=False):

162 """
163 Perform HSIC Lasso feature selection.
164 Parameters:
165 - X: Input feature matrix (numpy array or pandas DataFrame).
166 - y: Target labels (numpy array or pandas Series).
167 - alpha: Regularization strength.
168 - max_iter: Maximum number of iterations for convergence.
169 - tol: Tolerance for convergence.
170 Returns:
171 - Selected feature indices.
172 """
173

174 original_X = X
175 # Ensure X is a numpy array for HSICLasso
176 if isinstance(X, pd.DataFrame):
177 X = X.values
178 # Ensure y is a 1D numpy array
179 if isinstance(y, (pd.Series , pd.DataFrame)):
180 y = y.values.ravel ()
181 else:
182 y = np.ravel(y)
183 if verbose ==True:
184 print(f"Final␣shapes␣-␣X:␣{X.shape},␣y:␣{y.shape}")
185

186 if num_feat is not None:
187 return perform_HSICLasso(X, y, num_feat , original_X)
188

189 min_feat , max_feat = feature_range
190 max_feat = min(max_feat , X.shape [1]) #Don’t exceed available

features
191

192 best_score = -1
193 best_features = None
194 best_num_feat = min_feat
195

196 model = select_model(classifier)
197 cv = StratifiedKFold(n_splits=5, shuffle=True , random_state

=42)
198

199 print(f"Testing␣feature␣counts␣from␣{min_feat}␣to␣{max_feat
}...")

C APPENDIX C 78

200

201 for test_num_feat in range(min_feat , max_feat + 1):
202 try:
203 selected_features = perform_HSICLasso(X, y,

test_num_feat , original_X)
204

205 if len(selected_features) == 0:
206 continue
207

208 X_selected = X[:, selected_features]
209 scores = cross_val_score(model , X_selected , y, cv=cv ,

scoring=’accuracy ’)
210 mean_score = np.mean(scores)
211

212 if verbose ==True:
213 print(f"Features␣{test_num_feat }:␣{mean_score :.4f

}␣+-␣{np.std(scores):.4f}")
214 if len(selected_features) > 0:
215 if hasattr(original_X , ’columns ’):
216 # Print feature names if DataFrame
217 feature_names = [original_X.columns[i]

for i in selected_features]
218 print(f"␣␣Selected␣features:␣{

selected_features}")
219 print(f"␣␣Feature␣names:␣{feature_names}"

)
220 else:
221 print(f"␣␣Selected␣features:␣{

selected_features}")
222 else:
223 print(f"␣␣No␣features␣selected")
224

225 if mean_score > best_score:
226 best_score = mean_score
227 best_features = selected_features
228 best_num_feat = test_num_feat
229

230 except Exception as e:
231 print(f"Error␣with␣{test_num_feat}␣features:␣{e}")
232 continue
233

234 print(f"\nBest:␣{best_num_feat}␣features␣with␣score␣{␣
best_score :.4f}")

235 if best_features is not None and len(best_features) > 0:
236 if hasattr(original_X , ’columns ’):
237 best_feature_names = [original_X.columns[i] for i in

best_features]
238 print(f"Final␣selected␣feature␣indices:␣{

best_features}")
239 print(f"Final␣selected␣feature␣names:␣{

best_feature_names}")

C APPENDIX C 79

240 else:
241 print(f"Final␣selected␣feature␣indices:␣{

best_features}")
242 else:
243 print("No␣features␣were␣successfully␣selected")
244

245 return best_features
246

247 def perform_HSICLasso(X, y, num_feat , original_X):
248 # Perform HSIC Lasso to select features
249 hsic_lasso = HSICLasso ()
250 # Set parameters for HSIC Lasso
251

252 # Fit the model
253 hsic_lasso.input(X, y)
254 hsic_lasso.classification(num_feat)
255

256 selected_features = hsic_lasso.get_features ()
257

258 # Convert string indices to integers if necessary
259 if len(selected_features) > 0 and isinstance(

selected_features [0], str):
260 try:
261 selected_features = [int(feat) for feat in

selected_features]
262 print(f"Converted␣to␣integer␣indices:␣{

selected_features}")
263 except ValueError as e:
264 print(f"Could␣not␣convert␣feature␣names␣to␣integers:␣

{e}")
265 # If conversion fails , try to map to column positions
266 if hasattr(original_X , ’columns ’):
267 # If X is a DataFrame , map feature names to

positions
268 feature_positions = []
269 for feat in selected_features:
270 try:
271 pos = list(original_X.columns).index(feat

)
272 feature_positions.append(pos)
273 except ValueError:
274 print(f"Feature␣{feat}␣not␣found␣in␣

columns")
275 selected_features = feature_positions
276 print(f"Mapped␣to␣column␣positions:␣{

selected_features}")
277

278 return selected_features
279

280 def select_model(classifier):
281 # Determine the model based on the classifier name

C APPENDIX C 80

282 if classifier == "SVM":
283 model = SVC(kernel=’linear ’)
284 elif classifier == "RandomForest":
285 model = RandomForestClassifier(random_state =42)
286 elif classifier == "LogR":
287 model = LogisticRegression(random_state =42, max_iter

=10000)
288 elif classifier == "DT":
289 model = DecisionTreeClassifier(random_state =42)
290 elif classifier == "MLP":
291 model = MLPClassifier(random_state =42)
292 elif classifier == "LDA":
293 model = LinearDiscriminantAnalysis ()
294 elif classifier == "KNN":
295 model = KNeighborsClassifier ()
296 else:
297 raise ValueError("Unsupported␣classifier␣type")
298

299 return model
300

301 def mRMR(X, y, classifier , num_features_to_select=None , range
=(1 ,150), verbose=True):

302

303 original_X = X
304 model = select_model(classifier)
305 # Handle both pandas DataFrame and numpy array inputs
306 if isinstance(X, pd.DataFrame):
307 X_array = X.values
308 else:
309 X_array = np.asarray(X)
310

311 if isinstance(y, (pd.Series , pd.DataFrame)):
312 y_array = y.values.ravel()
313 else:
314 y_array = np.asarray(y).ravel() # Ensure y is a 1D array
315

316 # Ensure proper data types
317 X_array = X_array.astype(np.float64) # Ensure X is float64

for compatibility
318

319 # Handle categorical target variable
320 if y_array.dtype == ’object ’ or not np.issubdtype(y_array.

dtype , np.number):
321 le = LabelEncoder ()
322 y_array = le.fit_transform(y_array)
323

324 y_array = y_array.astype(np.int32) # MRMR often expects
integer labels

325

326 # Check for NaN values and handle them
327 if np.any(np.isnan(X_array)) or np.any(np.isnan(y_array)):

C APPENDIX C 81

328 print("Warning:␣NaN␣values␣detected.␣Consider␣handling␣
them␣before␣feature␣selection.")

329 # Remove rows with NaN
330 valid_rows = ~(np.isnan(X_array).any(axis =1) | np.isnan(

y_array))
331 X_array = X_array[valid_rows]
332 y_array = y_array[valid_rows]
333

334 if num_features_to_select is not None:
335 mRMR_selector = MRMR.mrmr(X_array , y_array)
336 selected_features = mRMR_selector [0:

num_features_to_select]
337 return selected_features
338

339 cv = StratifiedKFold(n_splits=5, shuffle=True , random_state
=42)

340

341 min_feat , max_feat = range
342 max_feat = min(max_feat , X.shape [1]) #Don’t exceed available

features
343

344 for test_num_feat in range(min_feat , max_feat + 1):
345 try:
346 mRMR_selector = MRMR.mrmr(X_array , y_array)
347 selected_features = mRMR_selector [0:

num_features_to_select]
348

349 if len(selected_features) == 0:
350 continue
351

352 X_selected = X[:, selected_features]
353 scores = cross_val_score(model , X_selected , y, cv=cv ,

scoring=’accuracy ’)
354 mean_score = np.mean(scores)
355

356 if verbose ==True:
357 print(f"Features␣{test_num_feat }:␣{mean_score :.4f

}␣+-␣{np.std(scores):.4f}")
358 if len(selected_features) > 0:
359 if hasattr(original_X , ’columns ’):
360 # Print feature names if DataFrame
361 feature_names = [original_X.columns[i]

for i in selected_features]
362 print(f"␣␣Selected␣features:␣{

selected_features}")
363 print(f"␣␣Feature␣names:␣{feature_names}"

)
364 else:
365 print(f"␣␣Selected␣features:␣{

selected_features}")
366 else:

C APPENDIX C 82

367 print(f"␣␣No␣features␣selected")
368

369 if mean_score > best_score:
370 best_score = mean_score
371 best_features = selected_features
372 best_num_feat = test_num_feat
373

374 except Exception as e:
375 print(f"Error␣with␣{test_num_feat}␣features:␣{e}")
376 continue
377

378 print(f"\nBest:␣{best_num_feat}␣features␣with␣score␣{␣
best_score :.4f}")

379 if best_features is not None and len(best_features) > 0:
380 if hasattr(original_X , ’columns ’):
381 best_feature_names = [original_X.columns[i] for i in

best_features]
382 print(f"Final␣selected␣feature␣indices:␣{

best_features}")
383 print(f"Final␣selected␣feature␣names:␣{

best_feature_names}")
384 else:
385 print(f"Final␣selected␣feature␣indices:␣{

best_features}")
386 else:
387 print("No␣features␣were␣successfully␣selected")
388

389 return best_features
390

391 def Perm_importance(X, y, classifier , min_features =10,
select_features=None):

392

393 # Determine the model based on the classifier name
394 model = select_model(classifier)
395

396 # Handle both pandas DataFrame and numpy array inputs
397 if isinstance(X, pd.DataFrame):
398 X_array = X.values
399 original_indices = X.columns.tolist ()
400 else:
401 X_array = np.asarray(X)
402 original_indices = list(range(X_array.shape [1]))
403

404 if isinstance(y, (pd.Series , pd.DataFrame)):
405 y = y.values.ravel ()
406 else:
407 y = np.asarray(y).ravel () # Ensure y is a 1D array
408

409 # Ensure proper data types
410 X_array = X_array.astype(np.float64) # Ensure X is float64

for compatibility

C APPENDIX C 83

411

412 if select_features is not None:
413 if isinstance(select_features , list):
414 if isinstance(select_features [0], int): # Indices -

based selection
415 X_array = X_array[:, select_features] # Subset

X_array using indices
416 original_indices = [original_indices[i] for i in

select_features]
417 elif isinstance(select_features [0], str): # Names -

based selection
418 feature_indices = [original_indices.index(f) for

f in select_features]
419 X_array = X_array[:, feature_indices] # Subset

X_array using the corresponding indices
420 original_indices = select_features
421

422 model.fit(X_array , y)
423

424 # Calculate permutation importance
425 result = permutation_importance(model , X_array , y, n_repeats

=10, random_state =42, n_jobs =-1)
426

427 # Get the importances and sort them from most to least
important

428 importances = result.importances_mean
429 indices = np.argsort(importances)[::-1]
430

431 # Select features based on importance (threshold: features
that have positive importance)

432 selected_subset_indices = [i for i in indices if importances[
i] > 0] # Select features that have positive importance

433

434 # Fallback: ensure at least ‘min_features ‘ are returned
435 if len(selected_subset_indices) < min_features:
436 selected_subset_indices = indices [: min_features]. tolist ()
437

438 if select_features is not None:
439 # Map selected features back to original indices if

necessary
440 selected_features = [original_indices[i] for i in

selected_subset_indices]
441 else:
442 selected_features = selected_subset_indices
443

444 return selected_features
445

446 def backwards_SFS(X, y, classifier , select_features=None ,
n_features_to_select =20):

447

448 # Determine the model based on the classifier name

C APPENDIX C 84

449 model = select_model(classifier)
450 fast_model = LogisticRegression(random_state =42, max_iter

=1000)
451 # Handle both pandas DataFrame and numpy array inputs
452 if isinstance(X, pd.DataFrame):
453 X_array = X.values
454 original_indices = X.columns.tolist ()
455 else:
456 X_array = np.asarray(X)
457 original_indices = list(range(X_array.shape [1]))
458

459 if isinstance(y, (pd.Series , pd.DataFrame)):
460 y = y.values.ravel ()
461 else:
462 y = np.asarray(y).ravel () # Ensure y is a 1D array
463

464 # Ensure proper data types
465 X_array = X_array.astype(np.float64) # Ensure X is float64

for compatibility
466

467 if select_features is not None:
468 if isinstance(select_features , list):
469 if isinstance(select_features [0], int): # Indices -

based selection
470 X_array = X_array[:, select_features] # Subset

X_array using indices
471 original_indices = [original_indices[i] for i in

select_features]
472 elif isinstance(select_features [0], str): # Names -

based selection
473 feature_indices = [original_indices.index(f) for

f in select_features]
474 X_array = X_array[:, feature_indices] # Subset

X_array using the corresponding indices
475 original_indices = select_features
476

477 # Normalize the data
478 scaler = StandardScaler ()
479 X_scaled = scaler.fit_transform(X_array)
480

481 model.fit(X_scaled , y)
482 start_time = time.time()
483 # Initialize SequentialFeatureSelector with the base model

and the desired number of features to select
484 sfs = SequentialFeatureSelector(fast_model ,

n_features_to_select=n_features_to_select , direction=’
backward ’, n_jobs =-1)

485

486 # Fit SFS
487 sfs.fit(X, y)
488 selection_time = time.time() - start_time

C APPENDIX C 85

489

490 # Get the selected feature indices
491 selected_features = np.where(sfs.get_support ())[0]
492

493 return selected_features
494

495 def Lasso_selection(X, y, alpha=None , max_iter =2000 ,
select_features=None):

496

497 """
498 Perform Lasso to select features.
499

500 Parameters:
501 - X: Input feature matrix (numpy array or pandas DataFrame).
502 - y: Target labels (numpy array or pandas Series).
503 - alpha: Regularization strength.
504 - max_iter: Maximum number of iterations for convergence.
505

506 Returns:
507 - Selected feature indices.
508 """
509 # Handle both pandas DataFrame and numpy array inputs
510 if isinstance(X, pd.DataFrame):
511 X_array = X.values
512 original_indices = X.columns.tolist ()
513 else:
514 X_array = np.asarray(X)
515 original_indices = list(range(X_array.shape [1]))
516

517 if isinstance(y, (pd.Series , pd.DataFrame)):
518 y = y.values.ravel ()
519 else:
520 y = np.asarray(y).ravel () # Ensure y is a 1D array
521

522 feature_mapping = list(range(X_array.shape [1])) # Maps from
subset to original indices

523

524 if select_features is not None:
525 if isinstance(select_features , list):
526 if isinstance(select_features [0], int): # Indices -

based selection
527 X_array = X_array[:, select_features] # Subset

X_array using indices
528 feature_mapping = select_features
529 elif isinstance(select_features [0], str): # Names -

based selection
530 feature_indices = [original_indices.index(f) for

f in select_features]
531 X_array = X_array[:, feature_indices] # Subset

X_array using the corresponding indices
532 feature_mapping = feature_indices

C APPENDIX C 86

533

534 scaler = StandardScaler ()
535 X_scaled = scaler.fit_transform(X_array)
536

537 if alpha is not None:
538 model = Lasso(alpha=alpha , random_state =42)
539 else:
540 # Fit L1 logistic regression model
541 model = LassoCV(random_state =42)
542 model.fit(X_scaled , y)
543

544 best_alpha = model.alpha_
545 print(best_alpha)
546 # Get the selected feature indices
547 selected_mask = model.coef_ != 0
548 selected_subset_indices = np.where(selected_mask)[0]
549

550 selected_features = [feature_mapping[i] for i in
selected_subset_indices]

551

552 return selected_features
553

554 def forwards_SFS(X, y, classifier , select_features=None ,
n_features_to_select =20):

555

556 # Determine the model based on the classifier name
557 model = select_model(classifier)
558 fast_model = LogisticRegression(random_state =42, max_iter

=1000)
559 # Handle both pandas DataFrame and numpy array inputs
560 if isinstance(X, pd.DataFrame):
561 X_array = X.values
562 original_indices = X.columns.tolist ()
563 else:
564 X_array = np.asarray(X)
565 original_indices = list(range(X_array.shape [1]))
566

567 if isinstance(y, (pd.Series , pd.DataFrame)):
568 y = y.values.ravel ()
569 else:
570 y = np.asarray(y).ravel () # Ensure y is a 1D array
571

572 # Ensure proper data types
573 X_array = X_array.astype(np.float64) # Ensure X is float64

for compatibility
574

575 if select_features is not None:
576 if isinstance(select_features , list):
577 if isinstance(select_features [0], int): # Indices -

based selection

C APPENDIX C 87

578 X_array = X_array[:, select_features] # Subset
X_array using indices

579 elif isinstance(select_features [0], str): # Names -
based selection

580 feature_indices = [original_indices.index(f) for
f in select_features]

581 X_array = X_array[:, feature_indices] # Subset
X_array using the corresponding indices

582

583 # Normalize the data
584 scaler = StandardScaler ()
585 X_scaled = scaler.fit_transform(X_array)
586

587 model.fit(X_scaled , y)
588 start_time = time.time()
589 # Initialize SequentialFeatureSelector with the base model

and the desired number of features to select
590 sfs = SequentialFeatureSelector(fast_model ,

n_features_to_select=n_features_to_select , direction=’
forward ’, n_jobs =-1)

591

592 # Fit SFS
593 sfs.fit(X, y)
594 selection_time = time.time() - start_time
595

596 # Get the selected feature indices
597 selected_features = np.where(sfs.get_support ())[0]
598

599 return selected_features
600

601 def without_fs(X, y):
602 return X, y

Listing 3: Feature selection methods

D APPENDIX D 88

D Appendix D — ROIs

Table 53: Smith et al. (2009) 10/20 Resting-State Networks (RSNs)

Component # Network Name
1 medial visual
2 occipital pole visual
3 lateral visual
4 default mode
5 cerebellum
6 sensorimotor
7 auditory
8 executive control
9 right frontoparietal
10 left frontoparietal

E APPENDIX E 89

E Appendix E — Features
E.1 Graph Features
E.1.1 Dataset 1

• ROI 1

– Closeness Centrality_ROI_1
– Clustering Coefficient_ROI_1
– Degree Centrality_ROI_1
– Eigenvector Centrality_ROI_1

• ROI 2

– Closeness Centrality_ROI_2
– Clustering Coefficient_ROI_2
– Degree Centrality_ROI_2
– Eigenvector Centrality_ROI_2

• ROI 3

– Closeness Centrality_ROI_3
– Clustering Coefficient_ROI_3
– Degree Centrality_ROI_3
– Eigenvector Centrality_ROI_3

• ROI 4

– Closeness Centrality_ROI_4
– Clustering Coefficient_ROI_4
– Degree Centrality_ROI_4
– Eigenvector Centrality_ROI_4

• ROI 5

– Closeness Centrality_ROI_5
– Clustering Coefficient_ROI_5
– Degree Centrality_ROI_5
– Eigenvector Centrality_ROI_5

• ROI 6

– Closeness Centrality_ROI_6
– Clustering Coefficient_ROI_6
– Degree Centrality_ROI_6
– Eigenvector Centrality_ROI_6

E APPENDIX E 90

• ROI 7

– Closeness Centrality_ROI_7
– Clustering Coefficient_ROI_7
– Degree Centrality_ROI_7
– Eigenvector Centrality_ROI_7

• ROI 8

– Closeness Centrality_ROI_8
– Clustering Coefficient_ROI_8
– Degree Centrality_ROI_8
– Eigenvector Centrality_ROI_8

• ROI 9

– Closeness Centrality_ROI_9
– Clustering Coefficient_ROI_9
– Degree Centrality_ROI_9
– Eigenvector Centrality_ROI_9

• ROI 10

– Closeness Centrality_ROI_10
– Clustering Coefficient_ROI_10
– Degree Centrality_ROI_10
– Eigenvector Centrality_ROI_10

• ROI 11

– Closeness Centrality_ROI_11
– Clustering Coefficient_ROI_11
– Degree Centrality_ROI_11
– Eigenvector Centrality_ROI_11

• ROI 12

– Closeness Centrality_ROI_12
– Clustering Coefficient_ROI_12
– Degree Centrality_ROI_12
– Eigenvector Centrality_ROI_12

• ROI 13

– Closeness Centrality_ROI_13
– Clustering Coefficient_ROI_13

E APPENDIX E 91

– Degree Centrality_ROI_13
– Eigenvector Centrality_ROI_13

• ROI 14

– Closeness Centrality_ROI_14
– Clustering Coefficient_ROI_14
– Degree Centrality_ROI_14
– Eigenvector Centrality_ROI_14

• ROI 15

– Closeness Centrality_ROI_15
– Clustering Coefficient_ROI_15
– Degree Centrality_ROI_15
– Eigenvector Centrality_ROI_15

• ROI 16

– Closeness Centrality_ROI_16
– Clustering Coefficient_ROI_16
– Degree Centrality_ROI_16
– Eigenvector Centrality_ROI_16

• ROI 17

– Closeness Centrality_ROI_17
– Clustering Coefficient_ROI_17
– Degree Centrality_ROI_17
– Eigenvector Centrality_ROI_17

• ROI 18

– Closeness Centrality_ROI_18
– Clustering Coefficient_ROI_18
– Degree Centrality_ROI_18
– Eigenvector Centrality_ROI_18

• ROI 19

– Closeness Centrality_ROI_19
– Clustering Coefficient_ROI_19
– Degree Centrality_ROI_19
– Eigenvector Centrality_ROI_19

• ROI 20

E APPENDIX E 92

– Closeness Centrality_ROI_20
– Clustering Coefficient_ROI_20
– Degree Centrality_ROI_20
– Eigenvector Centrality_ROI_20

• Global Features

– Average Clustering
– Diameter
– Spectral Entropy
– Mean Laplacian Eigenvalue
– Max Laplacian Eigenvalue
– Frobenius Norm (Laplacian Spectrum)
– Algebraic Connectivity (λ2)
– Graph Energy

E.1.2 Dataset 2 (tuned parameters)

• Group A_0_*

– A_0_0, A_0_1, A_0_2, A_0_3, A_0_4, A_0_5, A_0_6, A_0_7, A_0_8,
A_0_9, A_0_10, A_0_11, A_0_12, A_0_13, A_0_14, A_0_15, A_0_16,
A_0_17, A_0_18, A_0_19

• Group A_1_*

– A_1_0, A_1_1, A_1_2, A_1_3, A_1_4, A_1_5, A_1_6, A_1_7, A_1_8,
A_1_9, A_1_10, A_1_11, A_1_12, A_1_13, A_1_14, A_1_15, A_1_16,
A_1_17, A_1_18, A_1_19

• Group A_2_*

– A_2_0, A_2_1, A_2_2, A_2_3, A_2_4, A_2_5, A_2_6, A_2_7, A_2_8,
A_2_9, A_2_10, A_2_11, A_2_12, A_2_13, A_2_14, A_2_15, A_2_16,
A_2_17, A_2_18, A_2_19

• Group A_3_*

– A_3_0, A_3_1, A_3_2, A_3_3, A_3_4, A_3_5, A_3_6, A_3_7, A_3_8,
A_3_9, A_3_10, A_3_11, A_3_12, A_3_13, A_3_14, A_3_15, A_3_16,
A_3_17, A_3_18, A_3_19

• Group A_4_*

– A_4_0, A_4_1, A_4_2, A_4_3, A_4_4, A_4_5, A_4_6, A_4_7, A_4_8,
A_4_9, A_4_10, A_4_11, A_4_12, A_4_13, A_4_14, A_4_15, A_4_16,
A_4_17, A_4_18, A_4_19

• Group A_5_*

E APPENDIX E 93

– A_5_0, A_5_1, A_5_2, A_5_3, A_5_4, A_5_5, A_5_6, A_5_7, A_5_8,
A_5_9, A_5_10, A_5_11, A_5_12, A_5_13, A_5_14, A_5_15, A_5_16,
A_5_17, A_5_18, A_5_19

• Group A_6_*

– A_6_0, A_6_1, A_6_2, A_6_3, A_6_4, A_6_5, A_6_6, A_6_7, A_6_8,
A_6_9, A_6_10, A_6_11, A_6_12, A_6_13, A_6_14, A_6_15, A_6_16,
A_6_17, A_6_18, A_6_19

• Group A_7_*

– A_7_0, A_7_1, A_7_2, A_7_3, A_7_4, A_7_5, A_7_6, A_7_7, A_7_8,
A_7_9, A_7_10, A_7_11, A_7_12, A_7_13, A_7_14, A_7_15, A_7_16,
A_7_17, A_7_18, A_7_19

• Group A_8_*

– A_8_0, A_8_1, A_8_2, A_8_3, A_8_4, A_8_5, A_8_6, A_8_7, A_8_8,
A_8_9, A_8_10, A_8_11, A_8_12, A_8_13, A_8_14, A_8_15, A_8_16,
A_8_17, A_8_18, A_8_19

• Group A_9_*

– A_9_0, A_9_1, A_9_2, A_9_3, A_9_4, A_9_5, A_9_6, A_9_7, A_9_8,
A_9_9, A_9_10, A_9_11, A_9_12, A_9_13, A_9_14, A_9_15, A_9_16,
A_9_17, A_9_18, A_9_19

• Group A_10_*

– A_10_0, A_10_1, A_10_2, A_10_3, A_10_4, A_10_5, A_10_6, A_10_7,
A_10_8, A_10_9, A_10_10, A_10_11, A_10_12, A_10_13, A_10_14,
A_10_15, A_10_16, A_10_17, A_10_18, A_10_19

• Group A_11_*

– A_11_0, A_11_1, A_11_2, A_11_3, A_11_4, A_11_5, A_11_6, A_11_7,
A_11_8, A_11_9, A_11_10, A_11_11, A_11_12, A_11_13, A_11_14,
A_11_15, A_11_16, A_11_17, A_11_18, A_11_19

• Group A_12_*

– A_12_0, A_12_1, A_12_2, A_12_3, A_12_4, A_12_5, A_12_6, A_12_7,
A_12_8, A_12_9, A_12_10, A_12_11, A_12_12, A_12_13, A_12_14,
A_12_15, A_12_16, A_12_17, A_12_18, A_12_19

• Group A_13_*

– A_13_0, A_13_1, A_13_2, A_13_3, A_13_4, A_13_5, A_13_6, A_13_7,
A_13_8, A_13_9, A_13_10, A_13_11, A_13_12, A_13_13, A_13_14,
A_13_15, A_13_16, A_13_17, A_13_18, A_13_19

• Group A_14_*

E APPENDIX E 94

– A_14_0, A_14_1, A_14_2, A_14_3, A_14_4, A_14_5, A_14_6, A_14_7,
A_14_8, A_14_9, A_14_10, A_14_11, A_14_12, A_14_13, A_14_14,
A_14_15, A_14_16, A_14_17, A_14_18, A_14_19

• Group A_15_*

– A_15_0, A_15_1, A_15_2, A_15_3, A_15_4, A_15_5, A_15_6, A_15_7,
A_15_8, A_15_9, A_15_10, A_15_11, A_15_12, A_15_13, A_15_14,
A_15_15, A_15_16, A_15_17, A_15_18, A_15_19

• Group A_16_*

– A_16_0, A_16_1, A_16_2, A_16_3, A_16_4, A_16_5, A_16_6, A_16_7,
A_16_8, A_16_9, A_16_10, A_16_11, A_16_12, A_16_13, A_16_14,
A_16_15, A_16_16, A_16_17, A_16_18, A_16_19

• Group A_17_*

– A_17_0, A_17_1, A_17_2, A_17_3, A_17_4, A_17_5, A_17_6, A_17_7,
A_17_8, A_17_9, A_17_10, A_17_11, A_17_12, A_17_13, A_17_14,
A_17_15, A_17_16, A_17_17, A_17_18, A_17_19

• Group A_18_*

– A_18_0, A_18_1, A_18_2, A_18_3, A_18_4, A_18_5, A_18_6, A_18_7,
A_18_8, A_18_9, A_18_10, A_18_11, A_18_12, A_18_13, A_18_14,
A_18_15, A_18_16, A_18_17, A_18_18, A_18_19

• Group A_19_*

– A_19_0, A_19_1, A_19_2, A_19_3, A_19_4, A_19_5, A_19_6, A_19_7,
A_19_8, A_19_9, A_19_10, A_19_11, A_19_12, A_19_13, A_19_14,
A_19_15, A_19_16, A_19_17, A_19_18, A_19_19

	Introduction
	Pre-required knowledge
	ASD in the brain
	MRI data
	ABIDE dataset
	Graph features

	Program of requirements
	Functional requirements
	System requirements

	Feature selection methods
	Feature selection
	Permutation Importance
	Methodology
	Pros and cons

	Lasso
	Methodology
	HSIC Lasso
	Pros and cons

	Sequential Feature Selection
	Methodology
	Pros and cons

	Preprocessing
	mRMR
	Clustering
	Hyperparameter tuning

	Pipeline
	Loading file and pre-processing
	Train and test data
	Feature selection
	Classification and evaluation
	Parallel running

	Results
	Classification methods
	Used data
	Full Correlation
	Graph Data

	Full correlation
	Performance on multisite data
	Performance on single-site data

	Graph results
	Dataset 1
	Dataset 2 (tuned parameters)

	Discussion
	Full correlation
	Sex-specific observations
	Multi- and single site
	Feature selection behavior across subsets

	Graph features
	Future work

	Conclusion
	Appendix A
	Full correlation multisite
	Combined
	Female data
	Male data

	Full correlation single site
	Combined data
	Female data
	Male data

	Appendix B
	Graph multisite
	graph NYU
	Laplacian NYU
	Laplacian multisite
	rspect NYU
	rspect multisite

	Appendix C
	pipeline
	Feature selection methods

	Appendix D
	Appendix E
	Graph Features
	Dataset 1
	Dataset 2 (tuned parameters)

