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Abstract. In this article we give an overview of recent developments in error estima-
tion and in residual-based and goal-oriented (adjoint-based) adaptation for Discontinuous
Galerkin discretizations of sub- and supersonic viscous compressible flows. We also give
an outlook on the planned continuation of this research in the EU project ADIGMA.

1 INTRODUCTION

In aerodynamical computations like compressible flows around airfoils, much emphasis
is placed on the accurate approximation of specific target quantities J(·), in particular,
the aerodynamical force coefficients like the pressure induced as well as the viscous stress
induced drag, lift and moment coefficients, respectively. While local mesh refinement is
required for obtaining reasonably accurate results in applications, the goal of the adap-
tive refinement is either to compute these coefficients as accurate as possible within given
computing resources or to compute these coefficients up to a given tolerance with the min-
imum computing resources required. In both cases a goal-oriented refinement is needed,
i.e. an adaptive refinement strategy specifically targeted to the efficient computation of
the quantities of interest. Furthermore, in the latter case, an estimate is required of
how accurate the force coefficients are approximated, i.e. an a posteriori error estimate
is required of the error of the numerical solution measured in terms of the quantity of
interest.

This error can be represented by the element and face residuals of the primal (flow)
solution multiplied by the solution of a dual (adjoint) problem with data coupling to
the specific target quantity. By approximating the solution to the dual problem nu-
merically, the resulting approximate error representation gives an estimate of the true
error. Furthermore, the approximate error representation can be decomposed as a sum
over all elements of adjoint-based (also called dual-weighted residual) indicators which can
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be used for goal-oriented (adjoint-based) refinement specifically tailored to the efficient
computation of the quantities of interest.

The approach of a posteriori error estimation and adaptivity in finite element meth-
ods has been developed in [1] and applied to various kinds of problems, see the survey
article [2]. In [4], this approach has been developed for the discontinuous Galerkin dis-
cretization of scalar hyperbolic problems. Then, in the series of publications, [5, 7, 8], it
has been extended to the two–dimensional compressible Euler equations, where a variety
of problems have been considered, including the Ringleb flow problem, supersonic flow
past a wedge, inviscid flows through a nozzle, and inviscid sub-, trans- and supersonic
flows around different airfoil geometries; finally, in [9] and [10], this approach has been
extended to the two–dimensional compressible Navier-Stokes equations and applied to
subsonic viscous compressible flows around simple airfoil geometries. [6] gives the exten-
sion of this approach to viscous compressible flows including shocks, like supersonic flows,
for example.

In this publication we give an overview of recent developments in the a posteriori
error estimation as well as residual-based and goal-oriented (adjoint-based) adaptation for
Discontinuous Galerkin discretizations of sub- and supersonic compressible flows. First
we present an overview of the general theoretical framework of duality-based (adjoint-
based) a posteriori error estimation in Section 2. Then, we introduce the Discontinuous
Galerkin (DG) discretization of the compressible Euler equations in Section 3 and the
Interior Penalty DG discretization of the compressible Navier-Stokes equations in Section
4 and give the corresponding residual-based and adjoint-based refinement indicators used
for adaptive mesh refinement. Then, in Section 5 we present some numerical examples
highlighting the quality of the a posteriori error estimation and the advantage of using
adjoint-based mesh refinement over residual-based mesh refinement. In the concluding
Section 6 we give an outlook on the further development of these algorithms for the use
in aerodynamical applications as planned in the EU project ADIGMA.

2 A POSTERIORI ERROR ESTIMATION

In this section we give an overview of the general theoretical framework of duality-based
(adjoint-based) a posteriori error estimation developed by C. Johnson and R. Rannacher
and their collaborators, [1, 2, 3] and the references cited therein.

Let V be a Hilbert space. Further, we write N (·, ·) to denote a semi-linear form
(nonlinear in its first argument, but linear in its second), with derivative N ′

u(·; ·, ·). We
suppose that u is the unique solution to the variational problem: find u in V such that

N (u,v) = 0 ∀v ∈ V. (1)

In order to construct a Galerkin approximation to this problem, we consider a sequence of
finite–dimensional spaces {Vh}, parameterized by the positive discretization parameter
h; for the sake of simplicity we suppose that Vh ⊂ V for each h. For the purposes of this
paper, Vh can be thought of as finite element spaces consisting of piecewise polynomial
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functions on a partition, of granularity h, of the computational domain. The Galerkin
approximation uh of u is then sought in Vh as the solution of the finite–dimensional
problem

N (uh,vh) = 0 ∀vh ∈ Vh. (2)

For simplicity of presentation, we assume that Vh is a suitably chosen finite element
space to ensure the existence of a unique solution uh to (2). Furthermore, we assume that
the discretization (2) is consistent, i.e. the exact solution u of (1) satisfies the discrete
problem, i.e.

N (u,vh) = 0 ∀vh ∈ Vh. (3)

Combining (2) and (3) we obtain the so-called Galerkin orthogonality of the discretization:

N (u,vh)−N (uh,vh) = 0 ∀vh ∈ Vh, (4)

which will be a key ingredient in the following a posteriori error analysis.
Assuming that the functional of interest J(·) is differentiable with derivative J ′[w](·)

at some w in V, we write J̄(u,uh; ·) to denote the mean value linearization of J(·) defined
by

J̄(u,uh;u− uh) = J(u)− J(uh) =

∫ 1

0

J ′[θu + (1− θ)uh](u− uh) dθ, (5)

Analogously, we writeM(u,uh; ·, ·) to denote the mean–value linearization ofN (·, ·) given
by

M(u,uh;u− uh,v) = N (u,v)−N (uh,v)

=

∫ 1

0

N ′
u[θu + (1− θ)uh](u− uh,v) dθ (6)

for all v in V. We now introduce the following dual problem (or adjoint problem): find
z ∈ V such that

M(u,uh;w, z) = J̄(u,uh;w) ∀w ∈ V. (7)

For the proceeding error analysis, we assume that the dual problem (7) is well–posed.
Under this assumption, employing the Galerkin orthogonality property (4) we deduce the
following error representation formula:

J(u)− J(uh) = J̄(u,uh;u− uh)

= M(u,uh;u− uh, z)

= M(u,uh;u− uh, z− zh)

= −N (uh, z− zh) (8)
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for all zh in the finite element space Vh. Let us now decompose the right–hand side of
(8) as a summation of local error indicators ηκ over the elements κ in the computational
mesh Th, i.e. we write

J(u)− J(uh) =−N (uh, z− zh) ≡
∑
κ∈Th

ηκ

=
∑
κ∈Th

{∫
κ

R(uh)(z− zh) dx +

∫
∂κ

r(uh)(z− zh) ds

}
,

(9)

where R(uh) and r(uh) are element and face residuals of the discretization (2).
As in most cases the exact solution z to the dual problem (7) is not known, it is

approximated numerically. However, (7) includes the unkown exact solution u to the
primal problem. Thus, in order to approximate the dual solution z, we must replace
u in (7) by a suitable approximations. The linearizations leading to M(u,uh; ·, ·) and
J̄(u,uh; ·) are performed about uh, resulting in N ′

u[uh](·, ·) and J ′[uh](·), respectively.
The linearized dual problem: find ẑ ∈ V such that

N ′
u[uh](w, ẑ) = J ′[uh](w) ∀w ∈ V, (10)

is then discretized to yield following approximate dual problem: find ẑh ∈ V̂h such that

N̂ ′
u[uh](wh, ẑh) = J ′[uh](wh) ∀wh ∈ V̂h. (11)

Replacing the dual solution z in (9) by its approximation ẑh results in following approxi-
mate error representation formula

J(u)− J(uh) ≈ −N (uh, ẑh − zh) ≡
∑
κ∈Th

η̂κ. (12)

We note that the error introduced into the error representation through this replacement
consists of the linearization and the discretization error of the dual problem, see [6] for
a more detailed discussion. Furthermore, we note that the indicators η̂κ are used for
goal-oriented (adjoint-based) refinement. Finally, based on the error representation (9)
given in terms of element and face residuals, R(uh) and r(uh), respectively, we can derive
residual-based indicators, which do not require the solution of the adjoint problem (11).

In the following two Sections 3 and 4, we introduce the Discontinuous Galerkin (DG)
discretization of the compressible Euler equations and the Interior Penalty DG discretiza-
tion of the compressible Navier-Stokes equations and give the corresponding residual-
based and adjoint-based refinement indicators which will be used in Section 5 for adaptive
mesh refinement.
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3 THE COMPRESSIBLE EULER EQUATIONS

We consider the two-dimensional steady state compressible Euler equations of gas
dynamics given by

∇ · F c(u) = 0 in Ω, (13)

where Ω ∈ R2 is an open bounded domain, F c(u) = (f c
1(u), f c

2(u)), and the vector of
conservative variables u and the convective fluxes f c

i , i = 1, 2, are defined by

u =


ρ
ρv1

ρv2

ρE

 , f c
1(u) =


ρv1

ρv2
1 + p
ρv1v2

ρHv1

 and f c
2(u) =


ρv2

ρv1v2

ρv2
2 + p
ρHv2

 , (14)

where ρ, v = (v1, v2)
T , p and E denote the density, velocity vector, pressure and specific

total energy, respectively. Additionally, H is the total enthalpy given by

H = E +
p

ρ
= e+ 1

2
v2 +

p

ρ
, (15)

where e is the specific static internal energy, and the pressure is determined by the equation
of state of an ideal gas, p = (γ−1)ρe, where γ = cp/cv is the ratio of specific heat capacities
at constant pressure, cp, and constant volume, cv; for dry air, γ = 1.4.

Given a subdivision of Ω into shape-regular meshes Th = {κ} consisting of quadrilateral
elements κ, and mappings σκ, κ ∈ Th with κ = σκ(κ̂) where κ̂ is the reference (unit) square,
we define the finite element space Vp

h of discontinuous piecewise vector-valued polynomial
functions of degree p ≥ 0 by

Vp
h = {vh ∈ [L2(Ω)]m : vh|κ ◦ σκ ∈ [Qp(κ̂)]

m}, (16)

where Qp(κ̂) denotes the space of tensor product polynomials of degree p ≥ 0. Suppose
that v|κ ∈ [H1(κ)]

m
for each κ ∈ Th. Given an element κ ∈ Th and neighoring element

κ′ ∈ Th with e = ∂κ∩κ′ 6= 0, by v±κ (or v± for short) we denote the traces of v taken from
within the interior of κ and κ′, respectively. The discontinuous Galerkin discretization of
degree p ≥ 0 of problem (13) is given by: Find uh ∈ Vp

h such that

N (uh,vh) ≡
∑
κ∈Th

{
−

∫
κ

F c(uh) : ∇vh dx +

∫
∂κ

H(u+
h ,u

−
h ,n)v+

h ds

}
= 0 (17)

for all vh ∈ Vp
h, where H(·, ·, ·) is a consistent and conservative numerical flux function,

see [8] for more details. Substituting the semilinear form N (uh,vh) given in (17) into the
error representation formula (9) and using integration by parts, we see that the adjoint-
based indicators ηκ in (9) are defined by

ηκ = −
∫

κ

(∇ · F c(uh))·(z− zh) dx+

∫
∂κ

(
F c(u+

h ) · n−H(u+
h ,u

−
h ,n)

)
·(z− zh) ds, (18)
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and the element and face residuals in (9) are given by

R(uh) = −∇ · F c(uh), r(uh) = F c(u+
h ) · n−H(u+

h ,u
−
h ,n), (19)

respectively. Finally, supposing that z ∈ [H1(Ω)]
4
, and there is a constant Cstab such that

‖z‖H1(Ω) ≤ Cstab, we can derive, see [8, 11], following residual-based indicators

ηres

κ = ‖hR(uh)‖L2(κ) + ‖h1/2r(uh)‖L2(∂κ) . (20)

4 THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

We consider the two–dimensional steady state compressible Navier-Stokes equations.
Like in Section 3, ρ, v = (v1, v2)

T , p and E denote the density, velocity vector, pressure
and specific total energy, respectively. Furthermore, T denotes the temperature. The
equations of motion are given by

∇ · (F c(u)−Fv(u,∇u)) ≡ ∂

∂xi

f c
i (u)− ∂

∂xi

fv
i (u,∇u) = 0 in Ω. (21)

The vector of conservative variables u and the convective fluxes f c
i , i = 1, 2, are given by

(14). Furthermore, the viscous fluxes fv
i , i = 1, 2, are defined by

fv
1 (u,∇u) =


0
τ11

τ21

τ1jvj +KTx1

 and fv
2 (u,∇u) =


0
τ12
τ22

τ2jvj +KTx2

 , (22)

respectively, where K is the thermal conductivity coefficient. Finally, the viscous stress
tensor is defined by

τ = µ
(
∇v + (∇v)T − 2

3
(∇ · v)I

)
, (23)

where µ is the dynamic viscosity coefficient, and the temperature T is given by e = cvT ;
thus

KT = µγ
Pr

(
E − 1

2
v2

)
, (24)

where Pr = 0.72 is the Prandtl number. Finally, we note that the viscous flux Fv(u,∇u)
is homogeneous with respect to the gradient of conservative variables∇u, i.e. fv

i (u,∇u) =
Gij(u)∂u/∂xj, i = 1, 2, where G denotes the homogeneity tensor and is given by Gij(u) =
∂fv

i (u,∇u)/∂uxj
, for i, j = 1, 2.

In addition to the notation introduced in Section 3, we now define average and jump
operators. To this end, let κ+ and κ− be two adjacent elements of Th and x be an
arbitrary point on the interior edge e = ∂κ+ ∩ ∂κ− ⊂ ΓI , where ΓI denotes the union
of all interior edges of Th. Moreover, let v and τ be vector- and matrix-valued functions,
respectively, that are smooth inside each element κ±. By (v±, τ±) we denote the traces of
(v, τ) on e taken from within the interior of κ±, respectively. Then, we define the averages
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at x ∈ e by {{v}} = (v+ + v−)/2 and {{τ}} = (τ+ + τ−)/2. Similarly, the jump at x ∈ e
is given by [[v]] = v+ ⊗ nκ+ + v− ⊗ nκ− . On a boundary edge e ⊂ Γ, we set {{v}} = v,

{{τ}} = τ and [[v]] = v ⊗ n. For matrices σ, τ ∈ Rm×n, m,n ≥ 1, we use the standard

notation σ : τ =
∑m

k=1

∑n
l=1 σklτkl; additionally, for vectors v ∈ Rm,w ∈ Rn, the matrix

v ⊗w ∈ Rm×n is defined by (v ⊗w)kl = vk wl.
The interior penalty discontinuous Galerkin discretization of the compressible Navier-

Stokes equations is given, [9], by

N (uh,vh) ≡−
∫

Ω

F c(uh) : ∇hvh dx +
∑
κ∈Th

∫
∂κ\Γ

H(u+
h ,u

−
h ,nκ) · v+

h ds

+

∫
Ω

Fv(uh,∇huh) : ∇hvh dx−
∫

ΓI

{{Fv(uh,∇huh)}} : [[vh]] ds

−
∫

ΓI

{{
(
GT

i1∂hvh/∂xi, G
T
i2∂hvh/∂xi

)
}} : [[uh]] ds

+

∫
ΓI

δ[[uh]] : [[vh]] ds+NΓ(uh,vh),

(25)

where NΓ(uh,vh) includes all boundary terms, see [9] for more details.
Substituting the semilinear form N (uh,vh) given in (25) into the error representation

formula (9) and, again, using integration by parts, we see that the adjoint-based indicators
ηκ in (9) are given by

ηκ =

∫
κ

(−∇ · F c(uh) +∇ · Fv(uh,∇uh)) · (z− zh) dx

+

∫
∂κ\Γ

(F c(uh) · nκ −H(u+
h ,u

−
h ,nκ)) · (z− zh)

+ ds

+
1

2

∫
∂κ\Γ

(
G>

i1∂h(z− zh)/∂xi, G
>
i2∂h(z− zh)/∂xi

)
: [[uh]] ds

− 1

2

∫
∂κ\Γ

[[[[[[Fv(uh,∇uh)]]]]]] · (z− zh)
+ ds−

∫
∂κ\Γ

δ[[uh]] : (z− zh)
+ ⊗ nκ ds+ η∂κ∩Γ,

where η∂κ∩Γ includes the residual contributions of the boundary terms NΓ(uh,vh), see [10]
for more detail. Finally, supposing that z ∈ [Hs(Ω)]4, 2 ≤ s ≤ p + 1, and that there is a
constant Cstab such that ‖z‖Hs(Ω) ≤ Cstab, we can derive, cf. [10], following residual-based
indicators

ηres

κ =‖hs
κR(uh)‖L2(κ) + ‖hs−1/2

κ (F c(uh) · nκ −H(u+
h ,u

−
h ,nκ))‖L2(∂κ\Γ)

+ ‖hs−3/2
κ G·j[[uh]]

j
‖L2(∂κ\Γ) + ‖hs−1/2

κ [[[[[[Fv(uh,∇uh)]]]]]]‖L2(∂κ\Γ)

+ ‖hs−1/2
κ δ

(
u+

h − u−
h

)
‖L2(∂κ\Γ) + ηres

∂κ∩Γ,

(26)

where R(uh) = −∇ · F c(uh) +∇ · Fv(uh,∇uh) denotes the element residual, and ηres
∂κ∩Γ

includes the contributions of boundary residual terms to the indicator.
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Figure 1: Mach isolines of the M = 0.5,Re = 5000, α = 0◦ flow around the NACA0012 airfoil.

5 NUMERICAL EXAMPLES

In this Section we give two numerical examples demonstrating that the approximate
error representation −N (uh, ẑh − zh) =

∑
κ∈Th

η̂κ, cf. (12), which was derived from the
(exact) error representation (9) by replacing the dual solution z by an approximate dual
solution ẑh, gives a good approximation to the true error measured in terms of the specific
target quantity J(u). Furthermore, we show that using the approximate error represen-
tation, an improved value of the target functional, namely, J̃(uh) = J(uh) +

∑
κ∈Th

η̂κ

can be obtained. Finally, we highlight the advantages of designing an adaptive finite ele-
ment algorithm based on the adjoint-based indicators η̂κ, in comparison to residual-based
indicators ηres

κ , which do not require the solution of an adjoint problem.
First, we consider the example, see [10], of a subsonic viscous flow (M = 0.5,Re =

5000, α = 0◦) around the NACA0012 airfoil with an adiabatic no-slip boundary condition
imposed on the profile, see Figure 1. In Table 1 we demonstrate the performance of
the adaptive algorithm for the numerical approximation of the viscous drag coefficient
J(u) = Jcdf

(u) = 2
l̄ρ̄|v̄|2

∫
S
(τ n) · ψd ds with ψd = (1, 0)>, when employing the adjoint-

based indicators η̂κ. Here, we show the number of elements and degrees of freedom
(DoF) in Vh, the true error in the functional J(u) − J(uh) based on a reference value
Jcdf

(u) ≈ 0.032535, the computed error representation formula and its effectivity index
θ =

∑
κ∈Th

η̂κ/(J(u)− J(uh)). We see that initially on very coarse meshes the quality of
the computed error representation formula

∑
κ∈Th

η̂κ is rather poor, in the sense that θ
noticeably differs from one; however, as the mesh is refined, we observe that the effectivity
indices θ slowly tend towards unity.

In Figure 2 we compare the true error in the computed target functional Jcdf
(·) using a

mesh refinement strategy based on the residual-based indicators ηres
κ and a mesh refinement

strategy based on the adjoint-based indicators η̂κ. Here, we clearly observe the superiority
of employing the adjoint-based indicator; on the final mesh, the true error in the computed
target functional is almost 2 orders of magnitude smaller than |Jcdf

(u)−Jcdf
(uh)| computed

on the sequence of meshes produced using ηres
κ . Moreover, here we also show the error in

the improved value of the viscous drag coefficient, i.e. |Jcdf
(u)− J̃cdf

(uh)|; in this case, we
clearly see that this error is of higher–order than the baseline error |Jcdf

(u) − Jcdf
(uh)|.

Indeed, on the finest mesh the error in the improved target functional is over an order
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Table 1: M = 0.5,Re = 5000, α = 0◦ flow around the NACA0012 airfoil: Adaptive algorithm for the
numerical approximation of cdf based on employing adjoint-based indicator η̂κ.

Elements DoF J(u)− J(uh)
∑

κ∈Th
η̂κ θ

3072 49152 -1.839e-02 -1.274e-02 0.69
4962 79392 -3.680e-03 -3.239e-03 0.88
8028 128448 -8.246e-04 -7.596e-04 0.92
13446 215136 -1.773e-04 -1.680e-04 0.95
21750 348000 -4.444e-05 -4.258e-05 0.96
35118 561888 -1.624e-05 -1.626e-05 1.00

0.032

0.034
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0.038

0.04

0.042

0.044

0.046
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0.05

0.052

3000 10000 30000

cd
f

cells

reference cdf = 0.032535
cdf value for ref. by ind. eta^(II)
cdf value for ref. by ind. eta^(I)

improved cdf value for ref. by ind. eta^(I)

1e-06

1e-05

0.0001

0.001

0.01

3000 10000 30000

er
ro

r i
n 

cd
f

cells

error of cdf value for ref. by ind. eta^(II)
error of cdf value for ref. by ind. eta^(I)

error of improved cdf value for ref. by ind. eta^(I)

(a) (b)

Figure 2: M = 0.5,Re = 5000, α = 0◦ flow around the NACA0012 airfoil: (a) Computed values of
cdf based on employing the adjoint-based indicator (eta(I)) and the residual-based indicator (eta(II)),
together with the improved value; (b) Convergence of the error in these quantities.

of magnitude smaller than the corresponding quantity computed with the adjoint-based
indicator. We also point out that after just one mesh refinement step, the improved value
J̃cdf

(uh) computed on the mesh refined using the adjoint-based indicator is more accurate
than the corresponding value Jcdf

(uh) computed on the finest mesh designed on the basis
of employing the residual-based indicator.

In a second example, cf. [6], we consider a supersonic horizontal viscous flow at M =
1.2 and Re = 1000 around the NACA0012 airfoil, with an adiabatic no-slip boundary
condition imposed on the profile, see Figure 3. In order to avoid overshoots near the bow
shock, we add a consistent shock-capturing term, see [6], to the discretization (25). In
this example, we now consider the approximation of the pressure induced drag, cdp, i.e.
the target quantity is J(u) = Jcdp

(u) = 2
l̄ρ̄|v̄|2

∫
S
p (n · ψd) ds, with ψd = (1, 0)>.

In Table 2 we collect the data of the adaptive refinement algorithm when the adjoint-
based indicators are employed. Again, we see that from the second mesh onwards, the
approximate error representation

∑
κ η̂κ is very close to the true error J(u)−J(uh) based

on the reference value Jcdp
(u) ≈ 0.10109.
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(a) (b)

Figure 3: M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil: (a) Mach isolines and (b)
density isolines.

# el. # DoFs J(u)− J(uh)
∑

κ η̂κ θ

768 12288 -1.363e-02 -6.312e-03 0.46
1260 20160 -3.203e-03 -2.995e-03 0.94
2154 34464 -4.844e-04 -5.368e-04 1.11
3570 57120 -3.474e-04 -3.333e-04 0.96
6021 96336 -1.835e-04 -1.856e-04 1.01

10038 160608 -1.644e-04 -1.653e-04 1.01

Table 2: Viscous M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil: Adaptive algorithm for
the accurate approximation of cdp.
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0.102

0.104

0.106

0.108

0.11

0.112

0.114

0.116

1000 10000

cd
p

cells

cdp value for ref. by ind. eta^(II)
cdp value for ref. by ind. eta^(I)

improved cdp value for ref. by ind. eta^(I)
reference cd = 0.10109

1e-05

0.0001

0.001

0.01

0.1

1000 10000

er
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r i
n 

cd
p

cells

error of cdp value for ref. by ind. eta^(II)
error of cdp value for ref. by ind. eta^(I)

error of improved cdp value for ref. by ind. eta^(I)

(a) (b)

Figure 4: M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil: (a) Computed values of
cdf based on employing the adjoint-based indicator (eta(I)) and the residual-based indicator (eta(II)),
together with the improved value; (b) Convergence of the error in these quantities.
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Figure 5: M = 1.2,Re = 1000, α = 0◦ flow around the NACA0012 airfoil: (a) residual-based refined mesh
of 17670 elements with 282720 degrees of freedom and |Jcdp(u)−Jcdp(uh)| = 1.9 ·10−3 ; (b) adjoint-based
refined mesh for cdp: mesh of 10038 elements with 160608 degrees of freedom and |Jcdp(u)− Jcdp(uh)| =
1.6 · 10−4.

In Figure 4 we compare the true error in the target quantity for the two mesh refinement
strategies based on the adjoint-based indicator η̂κ and on the residual-based indicator ηres

κ ,
respectively. We see, that on the first three refinement steps when employing the residual-
based indicator the accuracy in the target quantity is hardly improved. In contrast to
that, when using adjoint-based indicators, the error decreases significantly faster, being
a factor of more than three smaller already after the second refinement step than the
error on the finest residual-based refined mesh. Furthermore, in Figure 4 we see, that the
improved values, J̃(uh), are significantly more accurate than the (baseline) J(uh) values,
and even show a higher rate of convergence, see [6] for a more detailed discussion.

The large difference in the performance, see Figure 4, of the adjoint-based indicators
and the residual-based indicators in producing adaptively refined meshes for the accurate
approximation of the target quantity cdp, is due to the very different parts of the com-
putational meshes being marked for refinement by the two types of indicators. Figure 5
(a) shows the finest mesh produced by employing the residual-based indicator. We see,
that this refinement criterion aims at resolving all flow features: the extensive bow shock,
the wake of the flow behind the airfoil as well as the weak shocks emanating from the
trailing edge of the airfoil. In contrast to that, the refinement of the mesh produced by
employing the adjoint-based indicator, see Figures 5 (b), is very concentrated close to the
airfoil. In particular, the bow shock is mainly resolved in a small region upstream of the
profile only, and there is no refinement at the position of the bow shock beyond six chord
lengths above and below the profile. Furthermore, the weak shocks emanating from the
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Figure 6: Viscous flow at M = 1.2,Re = 1000, α = 0◦ around the NACA0012 airfoil: (a) Sonic isolines
of the flow solution; (b) isolines of the ẑ1 component of the computed adjoint solution ẑ.

trailing edge are not resolved and there is no refinement in the wake of the flow beyond
three chord lengths behind the profile. Instead, the refinement of the mesh is concen-
trated near the leading edge of the profile and in the boundary layer of the flow. All other
parts of the computational domain are recognized by the adjoint-based indicator to be of
minor importance for the accuracy of the cdp target quantity. In fact, the dual (adjoint)
solution, see Figure 6, includes the crucial information concerning which local residuals
contribute to the error in the target quantity and to what extent. Herewith, it offers
all necessary information of error transport and accumulation. Finally, the adjoint-based
indicators mark only those parts of the domain for refinement where residuals of the flow
solution significantly contribute to the error of the target quantity, i.e. all parts which
are important for the accurate approximation of the target quantity.

6 CONCLUSION AND OUTLOOK

In this article, we have given an overview of recent developments in error estima-
tion as well as in residual-based and goal-oriented (adjoint-based) adaptation for Discon-
tinuous Galerkin discretizations of sub- and supersonic viscous compressible flows. In
particular, after presenting an overview of the general theoretical framework of duality-
based (adjoint-based) a posteriori error estimation, we have introduced the Discontinuous
Galerkin (DG) discretization of the compressible Euler equations and the Interior Penalty
DG discretization of the compressible Navier-Stokes equations and have given the corre-
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sponding residual-based and adjoint-based refinement indicators used for adaptive mesh
refinement. We have demonstrated for a subsonic and a supersonic viscous compressible
flow that a reliable error estimation is obtained with respect to specific target quantities
like aerodynamical force coefficients. Furthermore, we have shown that the error estima-
tion can be used to obtain improved values (of higher order convergence) for the target
quantities. Finally, we demonstrated that mesh refinement using adjoint-based indicators
produces meshes which are specifically tailored to the efficient computation of the quan-
tities of interest. It has been shown for a sub- and a supersonic viscous compressible flow
that the adjoint-based mesh refinement leads to a several orders of magnitude improved
accuracy compared to residual-based mesh refinement for the same number of points.

The results show that there is an enormous potential in the presented methods for im-
proving the efficiency and reliability of aerodynamical simulations. However, significant
effort will be required to make these methods usable in large-scale aerodynamical applica-
tions. To this end, in the context of the EU project ADIGMA (“Adaptive Higher-Order
Variational Methods for Aerodynamic Applications in Industry”) it is planned to extend
these methods to turbulent compressible high Reynolds flows on complex 3d geometries,
as is required for exploitation in industrial applications.

7 ACKNOWLEGMENTS

This work has been supported by the President’s Initiative and Networking Fund of
the Helmholtz Association of German Research Centres.

REFERENCES

[1] R. Becker and R. Rannacher. A feed-back approach to error control in finite element
methods: Basic analysis and examples. East–West J. Numer. Math., 4:237–264,
1996.

[2] R. Becker and R. Rannacher. An optimal control approach to error estimation and
mesh adaptation in finite element methods. Acta Numerica, 10:1–102, 2001.

[3] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods
for differential equations. Acta Numerica, pages 105–158, 1995.

[4] R. Hartmann. Adaptive FE Methods for Conservation Equations. In H. Freistühler
and G. Warnecke, editors, Hyperbolic Problems: theory, numerics, applications:
eighth international conference in Magdeburg, February, March 2000, volume 141
of International series of numerical mathematics, pages 495–503. Birkhäuser, Basel,
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