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Abstract

Applying Large Language Models (LLMs) to
high-stakes classification tasks like systematic
review screening is challenged by prompt sen-
sitivity and a lack of transparency. We intro-
duce IMAPR (Iterative Multi-signal Adaptive
Prompt Refinement), a novel framework where
a single LLM uses its own internal signals to
iteratively refine its prompts, improving clas-
sification robustness and reliability. Unlike
black-box optimizers that tune the prompts us-
ing only external scores, IMAPR is a white-box
approach that diagnoses why a prediction failed
using three internal signals: model confidence,
a rationale, and a knowledge alignment score
that checks whether the evidence cited in the
rationale actually covers the user-defined inclu-
sion criteria. We evaluate IMAPR on a real-
world biomedical screening task, comparing
it against strong baselines including GPO and
StraGo. IMAPR outperforms the best baseline
(GPO) by 8.8% in Macro-F; while maintaining
high, stable recall across runs. Across seven
LLMs, IMAPR yields an average 9.2% im-
provement in Macro-F;. An ablation shows that
knowledge-alignment acts as a recall safeguard:
removing it leaves Macro-F; similar but de-
grades recall, reducing reliability for screening.
These results suggest that diagnostic, signal-
driven prompt refinement is a practical alterna-
tive to black-box optimization for transparent,
dependable LLM screening systems.

1 Introduction

Systematic reviews are essential for rigorous re-
search across numerous fields. In high-stakes do-
mains like evidence-based medicine, they are par-
ticularly critical as they form the foundation for
clinical guidelines and healthcare policy (Moos-
apour et al., 2021). However, their early-stage
screening process remains a major bottleneck. Re-
viewers manually inspect thousands of titles and
abstracts to identify studies that satisfy strict inclu-
sion criteria. This task is time-consuming, prone

to error, and increasingly difficult to scale as the
volume of biomedical literature continues to grow.
As aresult, the screening phase is labor-intensive,
yet yields only a small fraction of relevant studies.
For example, in a recent systematic review con-
ducted at Erasmus Medical Center, 5,730 PubMed
records were screened to select just 179 studies for
inclusion.

Large language models (LLMs) present an ap-
pealing opportunity to automate this screening by
framing it as a binary classification task (Khraisha
et al., 2024; Blaizot et al., 2022). In this task, the
model must predict whether each study is 'Rel-
evant’ for inclusion or ’Irrelevant’ for exclusion
based on its title and abstract. While promising, us-
ing LLMs for this high-stakes classification faces
several challenges. First, predictions are highly
sensitive to prompt phrasing, with small changes
often resulting in large differences in model behav-
ior (Sclar et al., 2024). Second, LLM decisions
are not inherently explainable, making it difficult
to assess whether classifications are based on the
correct evidence (Bruynseels et al., 2025). This
creates a risk of shortcut learning (Du et al., 2023):
the model can latch onto superficial cues and even
echo phrases from the prompt, rather than ground-
ing its predictions in the content. Finally, inclusion
criteria in medical screening tasks, such as whether
a study is ’double-blinded’ or *placebo controlled’,
can be expressed in subtle, domain-specific ways
that general-purpose models often miss. These
challenges highlight the need for a new approach
beyond simple prompt tuning, one that can instill
and verify domain-specific reasoning.

In this paper, we introduce IMAPR, a modular
framework that makes LL.M-based classification
more robust and interpretable. The core of IMAPR
is its ability to function as a white-box optimizer
around a single, fixed LLM (no fine-tuning), diag-
nosing the root cause of its own reasoning failures
instead of merely observing a drop in performance.



To accomplish this sophisticated self-diagnosis, the
framework leverages a trio of internal signals gener-
ated with each prediction: the model’s confidence,
arationale (a model-generated natural-language ex-
planation), and a knowledge alignment score that
validates the rationale against domain-specific in-
clusion criteria. This process allows IMAPR to gen-
erate targeted, corrective edits to its own prompt.

Furthermore, we address the challenge of adap-
tation in a real-world, label-scarce environment.
A key contribution of our design is a novel exten-
sion where the system trains a ’correctness oracle’
on its own performance during the training phase.
This oracle, a gradient-boosted model trained with
gold labels on the training split using the internal-
signal tuples as features, is used to predict whether
the LLM’s classification is likely flawed. This en-
ables IMAPR to continue its refinement process
during test-time, adapting to new data without re-
quiring any additional human-provided labels. Our
approach marks a significant shift from the domi-
nant paradigm of Automatic Prompt Optimization
(APO) (Pryzant et al., 2023). Most APO frame-
works operate as black-box systems, using a single
external performance score to guide refinement;
IMAPR’s diagnostic, signal-driven process pro-
vides a more transparent and targeted method for
improvement.

We evaluate our method on a biomedical screen-
ing task using the Erasmus MC dataset introduced
in §1. Our experiments include an ablation study to
assess the contribution of our knowledge alignment
component. Results show that IMAPR outperforms
state-of-the-art black-box optimizers (Zhou et al.,
2023; Tang et al., 2025; Wu et al., 2024) in overall
Macro-F; score while maintaining high and stable
recall, which is critical for reducing manual review
load in a screening environment.

Our main contributions are:

* We introduce a diagnostic, white-box prompt-
refinement method: a lightweight framework
that uses multi-signal diagnostics around a
single, fixed LLM (no fine-tuning) to apply
targeted prompt edits.

* We present a learned correctness oracle, a
gradient-boosted error predictor trained with
gold labels at train-time on internal signal fea-
tures, which at test-time uses its predicted er-
ror probability to gate when a rewrite is at-
tempted, enabling label-free refinement.

* We introduce a knowledge alignment module
and show via ablation that it acts as a recall
safeguard: removing it keeps Macro-F1 sim-
ilar but reduces recall from 0.962 + 0.012 to
0.861 £ 0.231.

* We provide empirical validation and label ef-
ficiency: IMAPR outperforms strong APO
baselines while maintaining high, stable re-
call (> 0.94) even with limited training data
(see §4.3).

2 Related work

2.1 Automating Systematic Reviews with Al

Researchers have explored automating different
stages of the review pipeline using artificial intel-
ligence (Al). Early tools such as Rayyan, Covi-
dence, and EPPI-Reviewer applied classical ma-
chine learning to prioritize records for manual
screening. For instance, Rayyan uses support vec-
tor machines to rank abstracts based on reviewer
feedback, reducing workload but often failing to
fully capture complex inclusion criteria from lim-
ited training data (Valizadeh et al., 2022).

Building on these efforts, systems such as Re-
search Screener (Chai et al., 2021) use deep learn-
ing with user-provided seed articles to rank ab-
stracts and iteratively re-order the queue as more
feedback arrives. While the tool achieves substan-
tial workload reductions across multiple reviews, it
remains a black-box ranking system that offers no
explanations, depends on seed selection, and stops
short of full-document classification.

More recently, large language models (LLMs)
have been proposed as flexible alternatives due to
their strong generalization capabilities. (Khraisha
et al., 2024) investigated fine-tuned LLMs for
abstract screening and found that performance
was highly sensitive to prompt wording, highlight-
ing the need for careful task-specific prompting.
(Gartlehner et al., 2023) applied generative LLMs
to data extraction, reporting competitive results
with human annotators, but also noting issues with
transparency and reliability.

Therefore, a key challenge remains: verifying
whether LLM predictions are based on relevant ev-
idence. (Smirnova et al., 2024) demonstrated that
explanation techniques (XAI), paired with human
rationales, can expose gaps in model reasoning.
Inspired by this, our work addresses this gap by
making the model’s reasoning process transparent.



Its use of self-generated rationales and a knowl-
edge alignment check provides a verifiable audit
trail for each classification, which is essential for
building trust in high-stakes medical applications.
This entire classification and refinement process
is achieved with a fixed LLM, which does not re-
quire model fine-tuning, ranking heuristics, or user-
curated seed examples.

2.2 Prompt Engineering

Prompt design plays a critical role in the perfor-
mance of large language models (LLMs), particu-
larly in zero- and few-shot settings. Minor changes
in phrasing, formatting, or task description can
lead to large shifts in model behavior (Zhao et al.,
2021; Lu et al., 2022). To improve robustness, sev-
eral studies explore structured prompting strategies,
including instruction tuning (Wang et al., 2022).
Chain-of-thought prompting has also shown bene-
fits for complex reasoning by decomposing tasks
into intermediate steps (Wei et al., 2023).

Recent surveys have begun to frame these efforts
within the broader discipline of Context Engineer-
ing (Mei et al., 2025), which distinguishes the art
of prompt design from the science of building sys-
tems to optimize an LLM’s inputs. This approach is
characterized by its emphasis on the optimization
process itself. While this can involve managing
various inputs like retrieved knowledge or memory,
a primary focus remains on engineering the sys-
tem instructions themselves. Our work, IMAPR,
contributes a novel engineering process for this in-
structional component, standing in contrast to the
black-box methods described below.

To move beyond manually crafted static prompts,
the dominant paradigm is Automatic Prompt Opti-
mization (APO), where an LLM itself is employed
as a black-box optimizer to refine prompts based
on performance on a validation set. Early meth-
ods like Automatic Prompt Engineer (APE) (Zhou
et al., 2023) perform a one-shot search, generat-
ing a pool of candidate prompts and selecting the
single best performer. More recently, state-of-the-
art frameworks use an iterative approach. GPO
(Tang et al., 2025), for instance, draws an anal-
ogy to gradient-based optimization, using a trajec-
tory of past prompts and their external performance
scores to guide the refinement process. Addressing
the common issue of prompt drifting, StraGo (Wu
et al., 2024) analyzes both successful and failed
examples from a validation set to generate an ex-
plicit, actionable strategy for the optimizer LLM.

Despite their increasing sophistication, these meth-
ods fundamentally treat the task LLLM as an opaque
system, using a single external performance score
as the sole signal for improvement.

Our work takes a different approach from this
black-box paradigm. We introduce IMAPR, an
interpretable, white-box framework that refines
prompts by diagnosing why the prompt itself is
failing. Instead of relying on an external perfor-
mance metric, the evidence for IMAPR’s diagnosis
comes from a trio of internal signals generated
alongside an incorrect prediction: the model’s con-
fidence score, a generated textual explanation, and
a domain-specific knowledge alignment score. This
allows for targeted, self-correcting prompt revi-
sions that directly address flaws in the model’s
decision-making, rather than optimizing for an ag-
gregate score.

2.3 Explanation and Feedback Loops in
LLMs

Recent work explores frameworks where LLMs
iteratively critique and refine their own outputs.
ReAct combines chain-of-thought reasoning with
action steps so an agent can revise earlier decisions
during a multi-turn interaction (Yao et al., 2023).
Reflexion adds a short memory of self-critiques
that guides future turns and reduces repeated errors
(Shinn et al., 2023). Self-Refine shows that even
in single-turn tasks a model can answer, critique
the answer, and rewrite it; two or three such cycles
raise scores on summarisation, question-answering,
and extraction without extra training data (Madaan
et al., 2023). Skill-set optimisation variants push
the same idea to few-shot domains, selecting trans-
ferable tools on the basis of prior errors (Notting-
ham et al., 2024).

These feedback loops focus on open-ended gen-
eration and assume either a running dialogue or
a black-box reward signal, conditions that do not
hold for single-turn, high-precision screening tasks.
Closer to our setting, XCrowd uses per-instance
crowd-sourced rationales to diagnose feature mis-
use and predict errors in relation extraction models
(Smirnova et al., 2024). It does not automatically
revise the model or prompts; improvements are left
to future work.

In contrast, IMAPR adapts iterative refinement
to explicitly target the system prompt for single-
pass binary screening, where each document is
considered independently. Instead of relying on ex-
ternal memory or reward models, IMAPR updates



the prompt solely based on transparent domain-
specific feedback signals derived directly from the
model’s predictions. By keeping the language-
model weights fixed, IMAPR offers a transpar-
ent and lightweight refinement loop, generalizable
across diverse systematic review domains.

3 IMAPR: Iterative Multi-signal
Adaptive Prompt Refinement

We present IMAPR, a modular framework that
improves LLM-based abstract screening through
iterative prompt refinement. The process is trig-
gered when a correctness oracle flags a predic-
tion as incorrect. Once an error is identified, the
framework diagnoses the failing prompt by pro-
viding the refiner module with three internal sig-
nals from the decision-making process: (1) the
model’s confidence score, (2) a generated rationale
(natural-language explanation), and (3) a knowl-
edge alignment score. This score is calculated by
comparing user-supplied inclusion terms (should-
know) against the evidence tokens the model cites
in its rationale (really-know). Adapting to a new
review topic only requires updating the inclusion-
criteria list and replacing the initial prompt; no code
changes are needed. Based on this diagnostic infor-
mation, a new candidate prompt is generated and
accepted only if it raises macro-F; and preserves re-
call on relevant abstracts. Throughout this process,
all model weights remain fixed. The framework
consists of four modules described below: Classi-
fier (§3.1), Explainer (§3.2), Assessor (§3.3), and
Prompt Refiner (§3.4). A complete overview of
this framework and its components is illustrated in
Figure 1.

3.1 Classifier

We use an LLM model as the screening classifier.
Given the current prompt plus the title and abstract
of the article, the model produces a binary label
Relevant, Irrelevant. The log-probability assigned
to the chosen label serves as a confidence score
(Kauf et al., 2024) and is later fed to the assessor.
When no refinement loop is applied, this single
LLM call defines our baseline screening system.

3.2 Explainer

After the classification step, we issue a second,
separately prompted call to the same LLLM model.
The call returns:

* Free-text rationale — short text explaining

why the paper was judged relevant or irrele-
vant.

* Evidence tokens — the exact word pieces from
the title or abstract that the model cites as
evidence for its decision. We call this list the
really-know.

To avoid “prompt echo” the evidence list is fil-
tered to tokens that actually occur in the input. Any
phrase that appears only in the prompt is discarded.

The rationale text is forwarded to the Prompt
Refiner, while the really-know are passed to the
alignment check in the Assessor.

3.3 Assessor

The assessor produces two signals, one for knowl-
edge alignment and one for prediction correctness.
The overall logic of this module during the training
phase is summarized in Algorithm 1.

For knowledge alignment, the Assessor veri-
fies if the model’s reasoning is grounded in the
required domain criteria. This is achieved with
a single, structured LLM call that compares the
evidence tokens from the Explainer (really-know)
against a fixed set of user-defined inclusion criteria
(should-know). These criteria are embedded within
a system prompt that instructs the LLM to act as
a "domain checker." The LLM receives the list of
really-know as evidence and, in a single forward
pass, evaluates whether each criterion is supported
by that evidence. The model’s output is a struc-
tured JSON object containing a boolean flag for
each criterion, which directly serves as the align-
ment vector. The vector informs the Prompt Refiner
of any specific criteria that were missed. The sys-
tem prompt for this alignment task is provided in
Appendix A.3.

For correctness, the system operates in two
modes. During training, we use the available gold
labels to determine if each classification is correct
or incorrect. As we process the training data, we
log the outcome of every decision, creating a new
dataset where each entry consists of a feature vector
and a ground-truth label. The feature vector com-
bines numerical signals (e.g., model confidence,
the alignment vector) with sentence-transformer
embeddings of both the input text (title and ab-
stract) and the prompt itself. The label for this
vector is 1 if the LLM’s classification was correct
and O otherwise.

After the training phase is complete, this logged
dataset is used to train a gradient-boosted tree
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Figure 1: An overview of the IMAPR framework. The flowchart illustrates the iterative refinement loop. For each
abstract, the system generates a prediction and internal signals. A correctness check (using a gold label during
training or a learned oracle at test-time) determines the path: correct predictions continue to the next sample (green

Validate &
Accept/Reject

path), while incorrect predictions trigger a prompt refinement cycle (red path).

Algorithm 1 Assessor (train-time)

Algorithm 2 Prompt Refiner (acceptance policy)

1: procedure ASSESS
Inputs: ¢ (prediction), y (gold), ¢ (confidence), r
(rationale), E (really-knows), S (should-knows)
3 if § # y then
4 a < ALIGN(E, S)
5 m < MISSING(a)
6: d < SUMMARIZE(c, T, m)
7
8
9

»

TRIGGERREFINE(d)
end if
: end procedure

model to act as a correctness oracle. We selected
this class of models for its strong performance in
tabular data that combines diverse features (i.e.,
numerical scores and dense embeddings) and its
computational efficiency. At test-time, this trained
model replaces the need for gold labels. For each
new abstract, it predicts the probability of the main
classifier’s decision being flawed. If this predicted
error probability exceeds a threshold (0.5), the in-
stance is deemed "likely-incorrect," and the prompt-
refinement step is invoked.

3.4 Prompt refiner

When the assessor labels a prediction incorrect
(training) or likely incorrect (test), the Prompt Re-
finer is activated. The distinction between these
two trigger mechanisms is illustrated in Figure 2.
This module provides the LLM with a meta-prompt
containing the faulty prompt and the full error di-
agnosis (the confidence score, rationale, and align-
ment vector). The meta-prompt instructs the model
to make a minimal, targeted edit to the prompt to
address the specific failure identified by the diagno-
sis. The full meta-prompt for this refinement task
is detailed in Appendix A.5.

The resulting candidate prompt is then evalu-
ated on a rolling window of the last 50 abstracts

1: procedure REFINE(p)

2: Inputs: rolling window W, diagnosis d, current
prompt p

3: p’ < LLMREFINE(p, d)

4: (F1,Rec) « EVAL(p, W);

5: (F1',Rec’) < EVAL(p', W);

6: if F1’ > F1 and Rec’ > Rec then

7: return p’ > accept

8: else

9: return p > reject

10: end if

11: end procedure

screened, a window size chosen to balance a sta-
ble performance estimate with responsiveness to
recent prompt changes. During training, the edit
is accepted only if it increases the macro-F; score
and preserves or improves recall for the Relevant
class; otherwise, the edit is discarded and the previ-
ous prompt is restored. This acceptance policy is
detailed in Algorithm 2.

At test-time, gold labels are unavailable, so the
edit is kept when it reduces the fraction of instances
that the correctness oracle flags as likely-incorrect.

This selective procedure allows IMAPR to con-
tinually refine its prompt while maintaining overall
accuracy and stability.

4 Experiments

In this section, we describe the full experimen-
tal methodology used to evaluate our framework,
IMAPR. Our evaluation is designed to answer the
following research questions:

RQ1. How does IMAPR perform compared
to relevant state-of-the-art baselines? To answer
this, we compare IMAPR, which is refined on
the training set using gold-label feedback, against
black-box prompt-optimization methods that select
prompts on a 500-abstract validation subset. All
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Figure 2: A comparison of the refinement trigger logic
for training and test-time. (A) During training, the trig-
ger is a direct mismatch between the model’s prediction
and the gold label. (B) During test-time, the trigger is a
learned correctness oracle’s predicted error probability
exceeding a threshold (7).

methods are then evaluated on the held-out test set.

RQ2. What is the data efficiency of the IMAPR
framework? To answer this question, we evaluate
IMAPR’s performance in simulated low-resource
settings with varying amounts of training data.

RQ3. What is the contribution of the knowl-
edge alignment component to the performance of
IMAPR? To answer this question, we conduct a
targeted ablation study where we deactivate the
knowledge alignment module to isolate its specific
impact on the behavior of the framework.

RQ4. How generalizable is IMAPR across dif-
ferent models? We replicate our key experiments
using several distinct Large Language Models to as-
sess the framework’s model-agnostic capabilities.

4.1 Experimental Setup

Dataset We evaluate IMAPR on a real-world
biomedical corpus from a systematic review on
placebo-controlled migraine trials, conducted at the
Erasmus Medical Center (Erasmus MC). The cor-
pus consists of 5,730 titles and abstracts retrieved
from the PubMed database. The data set includes
two sets of labels: initial "Stage 1" labels from the
abstract screening and final "Stage 2" gold stan-
dard labels determined after a full-text review. For
all experiments, we use the definitive Stage 2 la-
bels as our ground truth. This choice is crucial as
it tasks the model with predicting the final, cor-
rect outcome of the review, rather than mimicking
the potentially noisy and error-prone intermediate
screening process. Each record was annotated by
human domain experts, resulting in 179 studies la-
beled Relevant and 5,551 labeled Irrelevant after
screening. The 3.2% proportion of relevant stud-
ies reflects the significant class imbalance typically

found in systematic review tasks.

For our experiments, we create a single, static
50/50 split of the data, stratified by label, to form
a training set of 2,865 abstracts and a held-out test
set of 2,865 abstracts. To evaluate data efficiency
(RQ2), we create training subsets by randomly sam-
pling 5%, 10%, 20%, 40%, and 100% of the full
training set.

Large Language Models (LLMs) For our pri-
mary experiments, including the data efficiency and
baseline comparisons, we use Meta’s Llama 3.1 8B
as the backbone model. This model was executed
locally to ensure full control over the experimental
environment. For all text generation steps, we set
the temperature parameter to 0.0 to ensure deter-
ministic outputs and support full reproducibility of
these core results.

To assess the generalizability of our frame-
work (RQ4), we then conduct comparative experi-
ments with a diverse range of widely adopted mod-
els accessed via APIL This includes other mod-
els from Meta’s Llama family at various scales
(LLaMA-3.2 3B, LLaMA-3.1 70B, LLaMA-3.3
70B, and LLaMA-3.1 405B), as well as models
from other developers such as OpenAl’s GPT-40
and DeepSeek-V3. For these API-based experi-
ments, we also set temperature to 0.0 to minimize
variance, though we note that full determinism can-
not be guaranteed by API providers. This allows
us to evaluate the method’s transferability across
diverse model architectures and capabilities.

Evaluation Protocol and Metrics. To measure
the impact of our framework, we evaluate the per-
formance of all comparison methods on a fixed,
held-out test set. To ensure the stability and ro-
bustness of our findings, all reported results are the
mean and standard deviation over five runs with
different random seeds. Following best practices
for high-stakes information retrieval tasks like med-
ical screening, we select two primary evaluation
metrics. Our most critical metric is Recall on the
Relevant class (recallre)), as failing to identify a
relevant study is significantly more costly than in-
cluding an irrelevant one. For overall performance,
we use the Macro-averaged F; score (Macro-F)),
which is well-suited for imbalanced datasets as it
gives equal weight to both classes.

Implementation Details. Our IMAPR frame-
work was configured with a rolling validation win-
dow of 50 abstracts and an error buffer of 30. Once



the error buffer’s threshold was met, the refinement
was triggered using the diagnostic signals from
the most recent error. These values were chosen
empirically to ensure prompt updates are driven
by stable error patterns rather than isolated mis-
takes. For the test-time refinement experiments, the
correctness oracle was an LightGBM model, using
features from the all-MiniLM-L6-v2 Sentence-
BERT model. All prompts used for IMAPR’s mod-
ules are available in Appendix A and for the base-
lines in Appendix E.

4.2 Comparison Methods

To evaluate the effectiveness of our framework, we
compare IMAPR against a hierarchy of baselines
representing different levels of sophistication. We
also analyze different variants of our own method
to measure the impact of its learning stages.

Static Prompt Our primary baseline is the ini-
tial, human-engineered prompt. This prompt is
fixed throughout the experiment and represents a
standard zero-shot approach, measuring the raw
capability of the LLM without any automated re-
finement.

APE (Automatic Prompt Engineer) As a repre-
sentative one-shot optimization method discussed
in Section 2.2, we implemented Automatic Prompt
Engineer (APE) (Zhou et al., 2023). For our imple-
mentation, we prompted our local Llama 3.1 8B
model with a meta-prompt containing three rele-
vant and three irrelevant examples from the training
set. We set the decoding temperature to 0.9 to gen-
erate a diverse pool of 50 candidate instructions.
Each candidate was then scored on a fixed vali-
dation set of 500 abstracts, and the single prompt
with the highest Macro-F; score was selected for
the final comparison.

GPO (Gradient-inspired Prompt Optimizer)
We compare IMAPR against GPO (Tang et al.,
2025), a state-of-the-art iterative optimizer that
uses a trajectory of past prompts and scores to guide
refinement. In our implementation, we ran GPO
for 12 iterations, generating 8 candidate prompts
per iteration with a temperature of 0.9. To find the
best prompt at each step, candidates were scored
on a fixed validation set of 500 abstracts randomly
sampled from the training data.

StraGo (Strategic-Guided Optimization) We
also include StraGo (Wu et al., 2024), an advanced
baseline designed to mitigate prompt drifting by

generating explicit strategies from both successful
and failed examples. For our faithful implementa-
tion, we ran the optimization for 5 iterations. At
each step, we sampled 3 successful and 3 failed ex-
amples from a fixed 500-sample validation set. For
each sampled example, the model generated multi-
ple experiences (M = 3) to diagnose performance.
Subsequently, a pool of candidate strategies (N =
3) was generated for each experience, with the best
selected through a 5-pass LLM voting mechanism
to guide the final prompt rewrite. The temperature
for creative steps like strategy generation was set
to 0.7.

IMAPR Variants. Finally, we evaluate two vari-
ants of our own method:

* Train-refined: This represents our core
method and the primary configuration used
for comparison against external baselines.
The prompt is generated by running the full
IMAPR refinement loop on the training set,
using gold labels as the oracle.

* Test-refined: This represents an exploratory
extension of our framework. It takes the fi-
nal Train-refined prompt and allows IMAPR
to continue adapting on the test set, using its
trained correctness oracle for feedback to sim-
ulate a label-free deployment scenario.

4.3 Results

In this section, we present the empirical results
of our experiments, which were designed to an-
swer our four research questions. To ensure a fair
and controlled comparison with our single-model
framework, we configured all baselines to use the
same Llama 3.1 8B instance for all their internal op-
erations, including both task execution and prompt
optimization. This choice isolates the effectiveness
of the refinement methodology itself as the primary
variable. We first analyze the data efficiency and
generalizability of IMAPR, then compare its per-
formance against our selected baselines.

Comparison with Baselines (RQ1) We com-
pare the performance of our Train-refined IMAPR
prompt against the hierarchy of external baselines
in Table 1, with all results except the static prompt
averaged over five runs. The results show that
IMAPR significantly outperforms all baselines on
the primary metric of Macro-F; score.

The automated baselines exhibit distinct and
informative performance profiles. APE, despite



slightly improving the Macro-F; score over the
static prompt to 0.496 (£0.019), proves to be an un-
suitable method for this task. Its recall for relevant
studies is low (0.279) and unstable (£0.196), mak-
ing it unreliable for a high-stakes screening environ-
ment. In contrast, StraGo successfully optimizes
for the opposite objective, achieving a near-perfect
and stable recall of 0.996 (+0.006). Howeyver, this
comes at the expense of precision, resulting in a
lower overall Macro-F; score of 0.458 (£0.024).
GPO offers a more balanced improvement, increas-
ing the Macro-F; score to 0.535 (+£0.042) while
maintaining a high, although less stable, recall of
0.937 (20.097).

IMAPR distinguishes itself by achieving a state-
of-the-art Macro-F; score of 0.582 (£0.018), a sub-
stantial improvement over the next best baseline
(GPO). Importantly, it achieves this while main-
taining a high and stable recall of 0.962 (£0.012).
This demonstrates that by using a trio of internal,
interpretable signals, IMAPR is able to navigate
the precision-recall trade-off more effectively than
black-box optimizers, delivering a solution that is
both highly accurate and reliable for the critical
task of systematic review screening.

Method Macro-F; Recallge
Static Prompt 0.439 0.989
APE 0.496 00199  0.279 (20.19)
GPO 0.535 0.042)  0.937 (+0.097)
StraGo 0.458 0024y 0.996 (20.006)
IMAPR (Train-refined) 0.582 z0.018y 0.962 (0012

Table 1: Performance comparison of IMAPR against
all external baselines on the full test set. All results
except for the static prompt are the mean and standard
deviation over five runs.

Data Efficiency and Stability (RQ2) To evalu-
ate IMAPR’s data efficiency, we refined prompts
using subsets of the training data ranging from 5%
to 100%. Table 2 summarizes the performance of
these prompts (mean £ SD over five runs for each
subset).

The results indicate two key findings. First,
for train-refined prompts, the framework consis-
tently learns a policy that prioritizes high recall,
with mean Recge > 0.94 across all data subsets.
This high-recall policy is especially evident at low
data percentages, where the model learns a lenient,
“safe” prompt. As more data is introduced, we ob-
serve a slight controlled decrease in mean recall,
from 0.987 (5%) to 0.962 (100%), while Macro-

F; increases (from 0.511 to 0.582). This reflects
the system learning a more sophisticated trade-off
between precision and recall: it proposes stricter
prompts that improve precision at a small cost to re-
call, yielding better overall Macro-F;. The process
is most unstable at the 40% subset (SD £0.079),
suggesting that calibration of this trade-off is most
sensitive to training-set composition at mid label
budgets before stabilizing again on the full dataset.
For completeness, test-refined prompts can have
slightly lower recall (e.g., 0.939 at 100%) because
label-free updates optimize a proxy objective rather
than ground-truth recall.

Analysis of IMAPR Framework Properties To
better understand the contributions of IMAPR’s
architectural components and its behavior in a sim-
ulated deployment setting, we conducted two tar-
geted analyses.

The Role of Knowledge Alignment. To iso-
late the contribution of knowledge alignment, we
conducted an ablation study that compared our en-
tire framework against a variant with the knowl-
edge alignment mechanism disabled. The study
was performed on the full 100% training dataset,
with results averaged over five runs.

As shown in Table 3, the impact on the overall
Macro-F; score was minimal, with both configura-
tions performing almost identically. However, the
analysis reveals a difference in the recall on the rel-
evant class. The full IMAPR framework maintains
a stable and high recall of 0.962 (£0.01), while the
ablated version’s recall degrades substantially to a
mean of 0.861 and exhibits high variance (+£0.22).
This finding indicates that the knowledge align-
ment score functions as a safeguard, preventing the
model from sacrificing recall for precision, which
is essential for the reliability of the system in a
high-stakes screening environment.

Performance of Test-Time Refinement. Sec-
ond, we evaluated the performance of IMAPR’s
test-time refinement mechanism, where the system
adapts on the test set using its trained correctness
oracle instead of gold labels. This label-free pro-
cess generally improves the Macro-F; score across
all data subsets, a trend visually summarized in Fig-
ure 3. However, a closer look at the individual runs
reveals that the magnitude of this improvement is
not uniform, which highlights that the efficacy of
this process is conditional on the quality of the or-
acle. Full results, including the recall scores and



Data (%) Train-Refined

Test-Refined

F; Recge Fi Recge
5% 0.511 0.033)  0.987 0.005) 0.512 0032 0.987 (+0.005)
10% 0.512 +0.038)  0.984 x0.010) 0.520 0.036)  0.984 (x0.010)
20% 0.487 +0.013)  0.991 0.005) 0.520 00259y 0.984 (+0.006)
40% 0.556 (+0.043)  0.948 +0.079)  0.576 00220  0.942 (x0.072)
100% 0.582 20018  0.962 z0.012)  0.596 z0.023)  0.939 (20.035)

Table 2: Macro-F; and Recallge on the fixed test set for prompts refined on varying amounts of training data.
Results are the mean and standard deviation over five runs. The ‘Test-Refined‘ columns show the final performance
after allowing the trained oracle-guided refinement on the test set.

Configuration (100 % Data) Macro-F; Recallgq
Full IMAPR 0.582 0.018)  0.962 (x0.012)
w/o Knowledge Alignment 0.583 0018)  0.861 z0.231)

Table 3: Ablation study on the full training set (n=2,865).
Removing the knowledge alignment component has
a minimal impact on the overall Macro-F; score but
severely degrades recall on the relevant class. Results
are averaged over five runs.

standard deviations, are available in Table 2.

To validate this, we analyzed the oracle’s perfor-
mance on its primary task: correctly identifying
the main classifier’s errors. Across our five runs,
we observed a strong positive correlation between
the oracle’s recall on this error class and the perfor-
mance gain from test-time refinement. (A detailed
run-by-run breakdown is available in Appendix D).

Critically, even in runs where the oracle was less
effective, the framework demonstrated high robust-
ness. The system did not suffer severe performance
degradation, indicating that the selective valida-
tion mechanism for new prompts effectively pre-
vents the model from accepting harmful changes.
Therefore, we conclude that IMAPR’s test-time re-
finement is a robust mechanism whose success is
directly coupled with the performance of its cor-
rectness oracle.

Generalizability Across Models (RQ4) To as-
sess whether our framework is model-agnostic, we
evaluated IMAPR against a static prompt using a di-
verse set of seven LLMs. The results, averaged over
multiple runs, are presented in Table 4. For the ma-
jority of capable models (DeepSeek, and LLaMA
models 70B and larger), IMAPR provides a clear
and consistent improvement in Macro-F; over the
static baseline while maintaining high recall. The
final optimized prompts for the best-performing
run of each model are provided in Appendix C
to illustrate the concrete outputs of the refinement

0.60
B Train-Refined
Bl Test-Refined

©
wn
v}

Macro-Fi1

0.50

10% 20% 40%
Percentage of Training Data

Figure 3: Macro-F; vs. label budget. Bars show mean
performance over five runs for train-refined and test-
refined prompts. Test-time refinement increases Macro-
F; at every budget (largest at 20-40%). Exact values
and recall appear in Table 2.

process. For instance, it improved the F; score
of DeepSeek-V3 by +0.063. We also observe two
interesting boundary cases. For the state-of-the-
art GPT-40, which already achieved a very high
baseline, the gains were negligible, suggesting a
ceiling effect. Conversely, the small LLaMA-3.2
3B model performed poorly in both conditions, in-
dicating a floor of reasoning capability required for
the framework to be effective.

4.4 Observed Prompt Edit Patterns

Beyond aggregate metrics, we analyse how
prompts change during refinement. The edits do
not merely rephrase instructions; they increase
specificity and add verification logic that reduces
ambiguity and unsupported inferences. Table ??
summarises recurring behaviours with examples;
full before/after prompts are in Appendix C, and a
step-by-step trace appears in Appendix B.

5 Discussion

The empirical results demonstrate that IMAPR’s
white-box, signal-driven approach to prompt re-



Static prompt

Train-refined prompt (IMAPR)

LLM F, Recre F, Recrel Abs. Macro-F; Gain % Macro-F; Gain
LLaMA-3.2 3B 0.115 =0.008)  1.000 z0.0000 0.119 0.060)  1.000 (x0.000) +0.004 +3.5%
LLaMA-3.1 8B* 0.439 0.0000  0.989 00000 0.582 x0.018)  0.962 (x0.012) +0.143 +32.6 %
LLaMA-3.1 70B 0.559 =0.008)  0.995 0004y 0.568 +0.0100  0.959 (+0.050) +0.009 +1.6%
LLaMA-3.3 70B 0.571 0.006)  0.995 z0.004)  0.598 00269  0.980 (20.022) +0.027 +4.7%
LLaMA-3.1405B 0.561 0034 0.995 0004y 0.627 0014  0.933 0.081) +0.066 +11.8%
DeepSeek-V3 0.549 0004y  0.991 0004y  0.612 0.010)  0.959 (x0.020) +0.063 +11.5%
GPT-40 0.661 =0.003) 0.951 00359 0.652 0015  0.980 (x0.018) -0.009 -1.4%

Table 4: LLM-agnostic evaluation of the IMAPR framework. The table compares the Macro-F; and relevant-class
recall of the static prompt against the IMAPR-refined prompt. All results are the mean and standard deviation over
five runs. (*) The LLaMA-3.1 8B results are from local, deterministic runs, while its static baseline is from a single

run. Refinement was performed on the full training set (n=2,865).

Emerging behaviour Example

Specificity to limit ambi-
guity

“Does the abstract explicitly
mention randomisation or allo-
cation ratio?”

Domain heuristics / phras-  “Check for terms like ‘double-
ing blind’ or ‘masked outcome as-
sessor’.”

“If ‘placebo’ is omitted, look for
‘sham treatment’ or ‘vehicle con-
trol’; otherwise mark NO.”
“Ensure migraine is the primary
outcome” (repeated in checklist
and final note).

Rules for missing infor-
mation

Redundant emphasis on
key checks

Table 5: How prompts evolve through refinement. Each
behaviour is illustrated with an excerpt from a refined
prompt.

finement is more effective and reliable for system-
atic review screening than state-of-the-art black-
box methods. Our framework achieved a superior
Macro-F; score without compromising the high,
stable recall that is non-negotiable in this high-
stakes domain. This success is particularly note-
worthy as our methodology used definitive Stage
2 gold-standard labels for training; a choice which
avoided the detrimental optimizations that could
arise from noisy intermediate data and instead chal-
lenged the framework to find the true signals of a
study’s final value from its abstract alone. This dis-
cussion interprets these findings, highlighting the
mechanisms behind IMAPR’s performance and sit-
uating its contribution within the broader research
landscape.

The primary advantage of IMAPR stems from
its ability to diagnose the reasoning process rather
than only observing the final result. Black-box opti-
mizers treat the language model as an opaque func-
tion, using a single, scalar performance score as
the sole signal for improvement. This provides in-
formation that a prompt has failed, but not why. In
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contrast, IMAPR’s trio of internal signals provides
multifaceted diagnostic evidence. While model
confidence helps flag uncertainty, we hypothesize
the primary corrective power comes from the gen-
erated explanation and the knowledge alignment
vector. Together, these signals provide rich, ac-
tionable insights into how the prompt’s logic was
flawed, enabling targeted revisions that directly ad-
dress the reasoning failure. A detailed case study
of this diagnostic and correction process, including
a visual walkthrough of the framework in action, is
provided in Appendix B.

The results of the ablation study for RQ3 clearly
isolate the function of the knowledge alignment
module as a critical "recall safeguard." Although
removal had a negligible impact on the overall
Macro-F; score, it caused the recall to degrade sub-
stantially and become unstable. This suggests that
without an explicit mechanism to verify its reason-
ing against domain criteria, the optimizer is prone
to sacrificing recall for precision. In applications
like medical screening, where false negatives have
severe consequences, such a safeguard is essential
for building trustworthy and reliable systems.

Our generalizability analysis (RQ4) revealed the
operational boundaries of the IMAPR framework.
The lack of improvement on a 3B parameter model
suggests a "floor" of reasoning ability is required
for a model to successfully self-diagnose and refine.
Conversely, the negligible gains on GPT-40 point to
a potential "ceiling effect," where extremely large
or highly-aligned models may benefit less from this
type of self-correction. This positions IMAPR as a
particularly valuable tool for enhancing the vast and
growing ecosystem of powerful, moderately sized
open-source models (e.g., in the 7B-70B class),
which possess strong foundational capabilities but
can still be significantly improved with targeted



refinement.

Furthermore, our exploration of label-free test-
time refinement provided insights into the limits
of automated adaptation. The framework proved
robust, as the selective validation mechanism pre-
vented large performance drops even when oracle
guidance was weak. Nevertheless, the effective-
ness of this unsupervised loop is strongly depen-
dent on oracle quality. This highlights a funda-
mental bottleneck for the field, because learning
reliable proxies for ground-truth feedback remains
difficult in high-stakes settings. A pragmatic path
forward is a hybrid, human-in-the-loop workflow.
This would involve using IMAPR’s internal signals
to drive active learning by flagging uncertain or
low-alignment cases for review, periodically recal-
ibrating the oracle, and falling back to the static
prompt under high uncertainty. Such a system bal-
ances automation with expert oversight and sup-
ports continuous, auditable improvement.

Finally, this work contributes to the emerging
discipline of Context Engineering, which moves
beyond simple prompt design to the systematic
optimization of an LLM’s informational context.
While other systems like Retrieval-Augmented
Generation (RAG) engineer the external knowl-
edge component of the context, IMAPR presents a
novel, process-oriented system for engineering the
LLM’s internal instructional context. This white-
box paradigm of self-diagnosis and correction rep-
resents a promising step towards building more
robust, interpretable, and reliable LLM-based sys-
tems.

6 Limitations and Future Work

While our findings demonstrate the effectiveness of
the IMAPR framework, this study has several limi-
tations that present clear paths for future research.
First, the scope of our empirical evaluation was
focused on a single, albeit high-impact, domain of
biomedical abstract screening. While this provides
a strong case study, future work should validate the
generalizability of IMAPR to screening tasks in
other knowledge-intensive domains where success
depends on a clear set of inclusion criteria.
Second, the framework has several methodologi-
cal dependencies. The knowledge alignment mod-
ule, which proved crucial as a recall safeguard,
requires a manually curated list of should-know
from a domain expert for each new task. This semi-
manual setup could be addressed in future work by
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exploring methods to automatically extract these
key criteria from research protocols, moving to-
wards a more fully autonomous system. Addition-
ally, as discussed, the performance of the label-free,
test-time refinement is entirely dependent on the
quality of its correctness oracle. A promising di-
rection for future research is to leverage the inter-
nal signals more directly in a human-in-the-loop
system. For instance, predictions made with low
confidence could be automatically flagged for hu-
man review, creating an efficient active learning
workflow that optimally balances automation with
expert oversight.

Our evaluation of the baselines was constrained
to a single-model setup to ensure a fair compar-
ison with IMAPR. The original publications for
some of these methods (e.g., GPO, StraGo) utilize
a more powerful model like GPT-4 as the prompt
optimizer, and their performance might be higher
under that configuration.

Finally, our core analysis was conducted on a
capable 8B parameter model. While our generaliz-
ability study confirmed the framework’s effective-
ness across a range of model sizes, the dynamics
of self-correction are likely dependent on model
scale. As our results suggest, very small models
may lack the requisite reasoning capacity for the
diagnostic loop to be effective, while very large
models may see diminishing returns from this type
of refinement. A valuable direction for future re-
search would be to systematically investigate how
the quality of the diagnostic signals and the efficacy
of the self-correction process scale with model size,
which would help identify the optimal conditions
for applying frameworks like IMAPR.

7 Conclusion

In this paper, we introduce IMAPR, a novel frame-
work for iterative self-correcting prompt refinement
designed to improve the reliability of LLM in the
high-stakes task of systematic review screening.
Unlike traditional black-box optimization methods
that rely on external performance metrics, IMAPR
operates as an interpretable, white-box system. Us-
ing a trio of internal signals, model confidence, a
generated explanation, and a knowledge alignment
score, the framework diagnoses and corrects flaws
in its own reasoning process. Our experiments
demonstrated that this signal-driven approach sig-
nificantly outperforms strong baselines, achieving
a superior balance between overall performance



and the high, stable recall essential for the task.
This work highlights the value of diagnostic, self-
correcting mechanisms and represents a step to-
wards building more transparent, robust, and ef-
fective LLM systems for critical, domain-specific
applications.
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A IMAPR Framework Meta-Prompts

This appendix contains the full text of the initial
(static) prompt and the key meta-prompts used by
the IMAPR framework’s modules.

A.1 Initial (Static) Prompt

This is the human-engineered prompt used as the
starting point for refinement and as the "Static
Prompt" baseline in our experiments.

You are an expert research assistant evaluating
medical papers about placebo-controlled,
blinded, randomized clinical trials for
migraine.

*xClassification Instructionsxx*

1. For each paper, evaluate the Title and

Abstract according to the following five

criteria:

Is it an *xoriginal study**? (Yes/No)

Is it **placebo-controlled**? (Yes/No)

Is it **double-blinded or
triple-blinded**? (Yes/No)

Is it a **randomized clinical trial
(RCT)*x? (Yes/No)

Is the **main focus on migrainex*? (Yes/No)

. xxClassification Rule:*x
- If *xall five answers are "Yes"xx,
classify the paper as *x"Relevant"xx.
- If xxany answer is "No"x*x, classify the
paper as xx"Irrelevant'xx.
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3. **Return Format:** Return only one word:
‘"Relevant”¢ or ‘"Irrelevant”*‘.
Do not explain. Do not justify. Do not

output anything else.

Listing 1: The initial system prompt for classification.

A.2 Explainer Meta-Prompt

The following template is used to construct the
user message for the Explainer module. The place-
holders in (* @<blue text>@*) are filled in by the
system at runtime.

Using these criteria: <Full text of the system’s
classification prompt>

And this input; TITLE:
<Title of the paper being classified>

ABSTRACT :
<Abstract of the paper being classified>

You decided the paper is <Model’s prediction
(e.g., ’Relevant’)>.

Please explain your decision using EXACT
phrases and words from the text.

Listing 2: Template for the Explainer prompt.

A.3 Assessor (Knowledge Alignment)
Meta-Prompt

The Assessor module uses the following system
prompt to act as a "domain checker." It takes a list
of ‘really-know* tokens from the user message and
evaluates them against the should-know defined by
the domain expert. In this case the should-know
are related to the medical domain.

You are a domain checker.

Given a comma-separated list of evidence
words/phrases (verbatim from the paper),

decide whether each of the five criteria is
PRESENT or ABSENT in that evidence.

Criteria:
1. Original study (PRESENT if evidence
indicates the paper is a primary trial)

2. Placebo-controlled (PRESENT if ’placebo’ or
synonyms appear)

3. Double / triple blinded (PRESENT if
’double-blind’, ’masked’, etc.)

4. Randomized RCT (PRESENT if ’randomized’,
"RCT’, etc.)

5. About migraine treatment (PRESENT if

’migraine’ or synonym appears)
Return exactly this JSON schema:

{
"original_study"”: true/false,
"placebo_controlled”: true/false,
"blinded”: true/false,


https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2410.08601
https://arxiv.org/abs/2410.08601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910

"randomized”: true/false,
"migraine”: true/false,

3

Return ONLY JSON schema

Listing 3: The system prompt for the knowledge
alignment task.

A.4 Refiner Meta-Prompts

The Prompt Refiner module uses a two-step pro-
cess. First, an ’Interpreter’ prompt synthesizes the
raw diagnostic signals into a coherent paragraph.
Second, a ’Refiner’ prompt uses this paragraph to
generate the patched prompt.

A.4.1 Step 1: Interpreter System Prompt

This prompt instructs the LLM to summarize the
raw signals from the ‘Assessor® into a natural lan-
guage paragraph.

You are an assessment interpreter.

Write one concise paragraph (approx. 3-5
sentences) that:

- States whether the last prediction was
**Correct*x or **Incorrectx*, and
whether the models confidence was *xHigh**
or xxLowx* (use those words).
- Mentions the alignment score (xx.xx) and
whether you consider it High
(>= 0.6) or Low (< 0.6).
- Lists every domain cue whose value is
**xfalsex* in the domain_match dict,
introduced with: Missing cues: followed by
the comma-separated list.
- Ends with a brief consequence, e.g. These
missing cues likely explain the
incorrect high-confidence prediction.

Return only that paragraphno bullet points, no
JSON.

Listing 4:
Interpreter.

System prompt for the Assessment

A.4.2 Step 2: Refiner System and User
Prompts

The main ’Refiner’ system prompt sets the rules for
editing, while the user message provides the spe-
cific context for the edit, including the paragraph
generated in Step 1.

migraine RCT abstracts) but corrects the
specific weaknesses reported in the

assessment and explanation. Always modify the
original prompt.

[+] Clarify or add one-line reminders about any
cue missing in *domain_matchx.

[-] Do **NOT** add new endpoints, output
formats, or numerical calculations.

[-] Do **NOT** alter the one-word output
requirement ("Relevant” or "Irrelevant”).

OUTPUT FORMAT

Return *xonlyxx the final patched prompt textno
commentary, no Markdown

fences and not the same prompt as the original.

Listing 5: System prompt for the Prompt Refiner.

ORIGINAL PROMPT:
<L

<The original, failing prompt text>
>>>

ASSESSMENT PARAGRAPH:
<The assessment paragraph generated by the
interpreter>

LLM Explanation (raw):
<The raw rationale from the Explainer module>

PATCH NOW:

Listing 6: Template for the Refiner user message.

B Case Study of a Single Refinement
Cycle

This appendix provides a detailed, step-by-step ex-
ample of a single IMAPR refinement cycle. Fig-
ure 4 offers a visual walkthrough of this process,
illustrating how the core modules interact. Table ??
then breaks down the specific internal signals and
reasoning at each stage of the same example, show-
ing how the framework diagnoses a sophisticated
error and applies a targeted correction.

C Final Optimized Prompts per LLM

This appendix shows the final optimized prompt for
each LLM from our generalizability study (RQ4).
As the optimal outcome requires balancing both
performance and safety, we present the prompt
from the run that achieved the highest Macro-F;
score while maintaining a Recallge of at least 0.95.

You are a prompt refiner.

TASK

Take the ORIGINAL prompt shown below and
produce a PATCHED version that

*still performs the same taskx (binary Relevant
vs Irrelevant screening of
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You are an expert research assistant evaluating
medical papers about placebo-controlled,
blinded, randomized clinical trials for
migraine.

**Classification Instructions*x
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Input: Prediction, Ground Truth,
Should-know, Really-know

X
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v
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»|  "..produce a PATCHED version that

. . [ Refined prompt ]
Meta-prompt: Interpret diagnosis 7

Meta-prompt:
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"The last prediction was Incorrect with High
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if F1 and Recall relevant is
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Evidence (really-know):
['ITT data set", "efficacy”, "patients", ...]

old prompt refined prompt

l Reject: continue with ] Accept: Use ]

Figure 4: An overview of the IMAPR framework, illustrating its two-level structure. (Top) The high-level flowchart
shows the main iterative loop connecting the four core modules: Classifier, Explainer, Assessor, and Refiner.
(Bottom) The detailed panels walk through a concrete example of a single refinement cycle.

1. For each paper, evaluate the Title and
Abstract according to the following five
criteria:

- Is it an **original study**? (Yes/No)

- Is it x*placebo-controlled**? (Yes/No)

- Is it x*double-blinded or
triple-blinded**? (Yes/No)

- Is it a **randomized clinical trial
(RCT)*x? (Yes/No)

- Is the **main focus on migraine**? (Yes/No)

2. x*Classification Rule:xx*
- If *xall five answers are "Yes"xx*,
classify the paper as **"Relevant'xx*.
- If *xany answer is "No"#x, classify the
paper as xx"Irrelevant”"x*.

3. **Return Format:#**
Return only one word:
‘"Irrelevant”‘.
Do not explain. Do not justify. Do not
output anything else.

‘"Relevant”‘ or

**Additional Clarification:** Please ensure
that the title clearly states "blinded” to
accurately assess the presence of this
criterion.

**Clarification for "Randomized"” Criterion:**

Ensure that the title clearly states
"randomized” to accurately assess the
presence of this criterion.

**Clarification for "Placebo-Controlled”
Criterion:*x Please note that the term
"placebo-controlled” implies the presence
of this criterion.

**Clarification for "Double-Blinded"
Criterion:*x Note that "double-blinded” and
"triple-blinded” are equivalent conditions.

>>>

**xDomain Match Clarification:*x Note that the
term "blinded” implies both
"double-blinded” and "triple-blinded”
conditions.

>>>

*xClassification Criteria Clarification:x*x
Ensure that the title clearly states
"randomized” to accurately assess the
presence of this criterion.

>>>

**x0ne-Line Reminder:*x Ensure that the title
clearly states "randomized” to accurately

assess the presence of this criterion.
>>>

15



Stage Details & Analysis

1. Initial Error An abstract for a study that was not explicitly blinded or randomized was **incor-

rectly classified as ‘Relevant‘** with high confidence (0.81).

2. Flawed Rationale The LLM generated a rationale where it **incorrectly inferred** the presence of
the missing criteria, stating: "Although the abstract does not explicitly mention
blinding, it does mention ’ITT data set’... This suggests that the study is likely

double-blinded."

3. IMAPR’s Diagnosis = The framework’s internal signals correctly identified the reasoning failure:

* Alignment Vector: The Assessor flagged the missing criteria, returning:
{"blinded"”: False, "randomized": False}.

* Diagnosis Summary: The system concluded: "Missing cues: blinded, ran-
domized. These missing cues likely explain the incorrect high-confidence
prediction."

4. The Refined Prompt  Based on the diagnosis, the Refiner generated a new prompt with a more constrained
instruction, adding a crucial final note (in **bold**):
"...®**Note:** When evaluating the criteria, please ensure that the abstract explicitly

mentions the following: blinded, randomized..."

5. The Outcome The refined prompt correctly classified the original abstract as ‘Irrelevant’. When

evaluated on the rolling validation window, this new prompt was accepted.

Table 6: A case study of IMAPR diagnosing and correcting a reasoning failure. The initial prompt caused the LLM
to incorrectly infer criteria that were not explicitly present in the abstract. IMAPR diagnosed this failure using the

knowledge alignment signal and generated a more constrained prompt that resolved the error.

**0ne-Line Reminder for "Original Study”
Criterion:x* Ensure that the title clearly
states "original” to accurately assess the
presence of this criterion.

>>>

**0ne-Line Reminder for "Double-Blinded”
Criterion:*x Note that "double-blinded” and
"triple-blinded” are equivalent conditions.

>>>

*x0Qutput Format:** Return only the final
patched prompt textno commentary, no
Markdown fences and not the same prompt as
the original.

Listing 7: Best prompt for Llama 3.2 3B (Macro-F7:

0.224, Recallg,;: 1.0).

You are an expert research assistant evaluating
medical papers about placebo-controlled,
blinded, randomized clinical trials for
migraine.

**Classification Instructionsxx

1. For each paper, evaluate the Title and
Abstract according to the following five
criteria:

- Is it an **original investigation*x?
(Yes/No) (Note: Assume new investigation
unless explicitly stated otherwise, and
explicitly look for phrases like "new
investigation” or "investigation of"”, or
phrases like "comparative effectiveness
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- Is

- Is

- Is

study” which implies a new
investigation, and also verify the
presence of a specific study design or
methodology section in the Abstract,
including explicit mention of study
design, methodology, or research methods)
it **placebo-controlled**? (Yes/No)
(Note: Look for phrases like
"placebo-controlled study” or "placebo
group” in the Title and Abstract, and
specifically verify the presence of
"placebo” in both the Title and
Abstract, and also verify the presence
of "placebo” in the Abstract to confirm
it is placebo-controlled)

it **double-blinded or
triple-blinded**? (Yes/No) (Note:
Explicitly look for phrases like
"double-blind” or "triple-blind” in the
Title and Abstract)

it a **randomized clinical trial
(RCT)*x? (Yes/No) (Note: Look for
phrases like "randomized” or "randomized
controlled trial” in the Title and
Abstract, and specifically verify the
presence of "randomized” in both the
Title and Abstract, or phrases like
"phase 3 PREEMPT trials” which imply a
randomized controlled trial, and also
verify the presence of "randomized” in
the Abstract to confirm it is a
randomized clinical trial)

the *xmain focus on migrainexx?
(Yes/No) (Note: Look for phrases like
"acute migraine therapy” or "migraine
treatment” in the Title and Abstract,
and specifically verify the presence of



"migraine” in both the Title and
Abstract)

. *xClassification Rule:x*

- If xxall five answers are "Yes"xx,
classify the paper as *x"Relevant'xx.

- If *xany answer is "No"#x, classify the
paper as xx"Irrelevant”**.

. **Return Format:xx
Return only one word:
‘"Irrelevant”‘.

‘"Relevant”‘ or

. *xAdditional Reminder:*x Specifically verify
the presence of the word "randomized” in
both the Title and Abstract for the paper
to be classified as a randomized clinical
trial, and also verify the presence of
"placebo” in both the Title and Abstract
for the paper to be classified as
placebo-controlled, and check if the study
design or methodology section in the
Abstract explicitly mentions "placebo” to
confirm it is placebo-controlled.

Listing 8: Best prompt for Llama 3.1 8B (Macro-F7:
0.612, Recallg;: 0.955).

Here is the patched prompt:

You are an expert research assistant evaluating

medical papers about placebo-controlled,
blinded, randomized clinical trials for
migraine.

**Classification Instructionsxx

. For each paper, evaluate the Title and
Abstract according to the following five
criteria:

- Is it an **original study**, i.e., not a
review, meta-analysis, or secondary
analysis of existing data? Check for
phrases like "randomized controlled
trial”, "clinical trial”, "original
research”, or "primary study”. Ensure
that the study presents new data or
findings. Verify that the study
explicitly states its novelty. (Yes/No)

- Is it *x*placebo-controlled**, meaning that
it includes a group receiving a placebo
treatment? Look for phrases like
"placebo-controlled”, "placebo group”,
"sham treatment”, or "control group
receiving placebo”. (Yes/No)

- Is it **double-blinded or
triple-blinded**, meaning that both the
researchers and participants are unaware
of group assignments? Check for phrases
like "double-blind"”, "triple-blind",
"masked”, "blinded”, or
"investigator-masked”. Ensure that the
study explicitly mentions that both
researchers and participants are unaware
of group assignments. Verify that the
blinding is not only mentioned but also
clearly described. Also, check if the
study mentions any exceptions or
limitations to the blinding. (Yes/No)
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- Does the study design explicitly mention
**randomization** (e.g., "randomized”,
"randomly assigned”, "random
allocation”, etc.)? Ensure that the
randomization is clearly described and
not just mentioned. Verify that the
study explicitly states the method of
randomization. *xRemember to check for
phrases like "randomized clinical trial”
or "RCT" to confirm randomization*x.
(Yes/No)

- Is the **main focus specifically on
migraine*x, rather than a broader
category of headaches or other
conditions? Check for phrases like
"migraine”, "migraine treatment”,
"migraine prevention”, or "migraine
management”. Ensure that the study’s
primary objective is to investigate
migraine and not just mention it as a
secondary aspect. Also, verify that the
study does not focus on a different
condition that happens to have migraine
as a symptom or comorbidity.
Additionally, check if the study’s
population is specifically defined as
having migraine. Verify that the study
explicitly states its focus on migraine.
(Yes/No)

. *xClassification Rule:=xx

= iv w
If *xall five answers are "Yes"x,
classify the paper as **"Relevant”xx*.
= wer i i
If **xany answer is "No"**, classify the
paper as *x"Irrelevant”xx.

. **%Return Format:**

Return only one word: ‘"Relevant”‘ or
‘"Irrelevant”‘.
Do not explain. Do not justify. Do not

output anything else.

*xReminder:*x When evaluating the blinding

criterion, ensure that the study explicitly
mentions that both researchers and
participants are unaware of group
assignments and that the blinding is
clearly described. Additionally, verify
that the study’s primary objective is to
investigate migraine and not just mention
it as a secondary aspect, and that the
study does not focus on a different
condition that happens to have migraine as
a symptom or comorbidity. Also, ensure that
the study explicitly states its novelty,
method of randomization, and focus on
migraine.

Listing 9: Best prompt for Llama 3.1 70B (Macro-F:
0.570, Recallg;: 0.966).

You are an expert research assistant evaluating

medical papers about placebo-controlled,
blinded, randomized clinical trials for
migraine, remembering to check for explicit
mentions of original study, indicated by
phrases like "we conducted a trial” or
"this study aimed to”, and noting that
implied or suggested characteristics may



not suffice for a "Relevant”
classification, also considering the
following key aspects: is the study clearly
an original study, as indicated by phrases
like "original research” or "new study”, is
the study clearly placebo-controlled, with
explicit comparison to a placebo, is the
blinding method explicitly stated as
double-blinded or triple-blinded, is the
study clearly a randomized clinical trial
(RCT), with explicit mention of
randomization, and is the main focus
explicitly on migraine, demonstrated by
clear statements like "this study
investigates migraine treatment” or
"migraine patients were enrolled”, and
noting that the study must explicitly state
its design as an original study, clearly
mention placebo control, specify
double-blinded or triple-blinded
methodology, explicitly mention
randomization, and have a primary focus
explicitly stated as migraine, with
reminders that original study means newly
conducted research, placebo-controlled
means compared to a placebo, blinded means
double-blinded or triple-blinded,
randomized means explicitly mentioning
randomization, and migraine focus means
explicitly stating migraine as the primary
condition, and also remembering to verify
that the text explicitly mentions the key
terms "original study”,
"placebo-controlled”, "blinded”,
"randomized”, and "migraine” to ensure
accurate classification.

**Classification Instructions*x

. For each paper, evaluate the Title and
Abstract according to the following five
criteria:

- Is the study **explicitly stated as an
original studyxx, with clear wording
indicating it is not just an analysis or
review of existing data, such as phrases
like "we conducted a trial” or "this
study aimed to”, and does it clearly
indicate that it is a new study, not a
secondary analysis, with explicit
phrases like "original research” or
study”, and is the study design
explicitly mentioned as original, with
the key term "original study” explicitly
mentioned? (Yes/No)

- Is the study *xclearly
placebo-controlled**, with explicit
comparison to a placebo mentioned in the
text, such as "patients received either
the treatment or a placebo”, and is the
placebo control explicitly mentioned as
part of the study design, using phrases
like "placebo-controlled trial”, and is
the comparison to placebo clearly
stated, with the key term
"placebo-controlled” explicitly
mentioned? (Yes/No)

- Does the study *x*explicitly state its
blinding method as double-blinded or
triple-blinded**, with clear

n

new
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descriptions like "double-blind,
placebo-controlled trial” or
"triple-blinded randomized trial”, and
is the blinding method clearly described
as double-blinded or triple-blinded,
with specific mention of blinding, and
is the blinding method explicitly
stated, with the key term "blinded”
explicitly mentioned? (Yes/No)

- Is the study **clearly a randomized
clinical trial (RCT)*x, with explicit
mention of randomization, such as
"patients were randomized to treatment
groups” or "random assignment to
treatment arms”, and does the text
clearly state that the study is
randomized, using phrases like
"randomized trial” or "randomized
study”, and is the randomization
explicitly mentioned, with the key term
"randomized” explicitly mentioned?
(Yes/No)

- Is the *xmain focus explicitly on
migrainex*, with migraine clearly stated
as the primary condition studied or
treated, such as "this study
investigates migraine treatment” or
"migraine patients were enrolled”, and
is migraine explicitly mentioned as the
primary focus of the study, with clear
statements like "migraine research” or
"migraine study”, and is the focus on
migraine clearly stated, with the key
term "migraine” explicitly mentioned?
(Yes/No)

2. x*Classification Rule:x*x*
- If x*xall five answers are "Yes"x*,
classify the paper as *x"Relevant”xx*.
- If x*xany answer is "No"*x*, classify the
paper as **"Irrelevant*x.

3. *xReturn Format:**
Return only one word: ‘"Relevant
‘"Irrelevant”‘.

"¢

or

Listing 10: Best prompt for Llama 3.3 70B (Macro-F:
0.631, Recallg;: 0.955).

You are an expert research assistant evaluating
medical papers about placebo-controlled,
blinded, randomized clinical trials for
migraine.

**Classification Instructions*x

1. For each paper, evaluate the Title and
Abstract according to the following five
criteria:

- Is it an #*xoriginal study*x (i.e., a new
investigation, not a review or
meta-analysis, and not a secondary
analysis of existing data, with a clear
statement of a research question or
hypothesis, and not a study that only
presents a new analysis or
interpretation of existing data)?
(Yes/No)

- Is it **placebo-controlled** (i.e.,



includes a placebo arm as a control
group, and the placebo is not used as an
active comparator, with explicit mention
of placebo control, and the placebo
control is used throughout the entire
study)? (Yes/No)

- Is it *xdouble-blinded or triple-blinded**
(i.e., both participants and
investigators are blinded to treatment
assignments throughout the entire study,
with x*explicit mention of blinding
method*x, such as "double-blind”,
"triple-blind”, "participant-blind”, or
"investigator-blind”, and the blinding
method is clearly described)? **Implicit
suggestions of blinding are
insufficient; explicit mention is
required.** (Yes/No)

- Is it a **randomized clinical trial
(RCT)** (i.e., participants are randomly
assigned to treatment groups using a
clear randomization method, such as a
random number generator or a
computer-generated randomization
schedule, and the randomization is
explicitly stated)? *xVerify that the
randomization method is explicitly
described.** (Yes/No)

- Is the **main focus on migraine*x (i.e.,
migraine is the primary condition being
studied, and not just a secondary
outcome or subgroup analysis, with clear
mention of migraine as the primary
endpoint, and the study is primarily
designed to investigate migraine)?
**Ensure migraine is the central focus,
not a peripheral aspect, and that the
study aims to investigate migraine
specifically.xx (Yes/No)

. *xClassification Rule:*x

- If xxall five answers are "Yes"xx,
classify the paper as *x"Relevant'xx.

- If xxany answer is "No"x*x, classify the
paper as *x"Irrelevant”**.

. **Return Format:xx

"

Return only one word: ‘"Relevant
‘"Irrelevant”‘.

Do not explain. Do not justify. Do not
output anything else.

or

Listing 11: Best prompt for Llama 3.1 405B (Macro-F:
0.636, Recallge;: 0.978).

You are an expert research assistant evaluating

medical papers about placebo-controlled,
blinded, randomized clinical trials for
migraine.

**Classification Instructionsxx

. For each paper, evaluate the Title and
Abstract according to the following five
criteria:

- Is it an **original study**? (Must
describe new prospective data collection
with explicit methods section. Require
terms like "prospective,” "clinical
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trial,"” or "study protocol” - must show
evidence of original data collection,
not pooled/combined analysis. Verify
explicit description of data collection
methods in abstract.)

- Is it *xplacebo-controlled**? (Requires
explicit "placebo group” or
"placebo-controlled” terminology in
abstract, not just "control group” or
active comparators. Must appear verbatim
- no inferences. Cross-check for placebo
mentioned in both methods and results
sections of abstract.)

- Is it **double-blinded or
triple-blinded*x? (Must specify
"double-blind” or "triple-blind” in
abstract, not just "blinded” or implied
by RCT status. No assumptions allowed -
exact phrasing required. Verify blinding
method is explicitly stated in both
title and abstract.)

- Is it a **randomized clinical trial
(RCT)*x? (Must describe randomization
procedure in abstract, not just use
"randomized” without details. Requires
explicit method description - check for
randomization methodology in abstract.
Ensure proper randomization technique
mentioned verbatim.)

- Is the **main focus on migrainex*?
(Primary outcome/study population must
specifically mention "migraine”
diagnosis in title/abstract, not just
headache disorders generally. Must
appear verbatim - no broader headache
terms accepted. Confirm migraine is
primary focus by checking all sections
of abstract.)

2. x*Classification Rule:*x*

- If xxall five answers are "Yes"xx based on
explicit evidence in the text, classify
the paper as **"Relevant"xx.

- If **any answer is "No"” or cannot be
confirmed**, classify the paper as
*x"Irrelevant”**.

3. *xReturn Format:#**
Return only one word: ‘"Relevant”‘ or
‘"Irrelevant”‘.
Do not explain. Do not justify. Do not
output anything else.

Listing 12: Best prompt for Deepseek V3 (Macro-F:
0.615, Recallge;: 0.978).

You are an expert research assistant evaluating
medical papers about placebo-controlled,
blinded, randomized clinical trials for
migraine.

*xClassification Instructionsxx

1. For each paper, evaluate the Title and
Abstract according to the following five
criteria:

- Is it an **original study*x? (Yes/No)
Ensure the study presents new research
findings and is not a secondary analysis



or review.

Is it **placebo-controlled**? (Yes/No)
Confirm the study includes a placebo
group.

Is it **double-blinded or
triple-blinded*x? (Yes/No) Verify the
study explicitly mentions blinding.

Is it a **randomized clinical trial
(RCT)*x? (Yes/No) Check for explicit
mention of randomization.

Is the **main focus on migraine*x?
(Yes/No) Ensure the study primarily
addresses migraine.

. xxClassification Rule:*x
- If *xall five answers are "Yes"xx,
classify the paper as *x"Relevant'xx.
- If xxany answer is "No"x*x, classify the
paper as xx"Irrelevant'xx.

. **Return Format:** Return only one word:
‘"Relevant”‘ or ‘"Irrelevant”*‘.

Do not explain. Do not justify. Do not
output anything else.

Ensure that all criteria are strictly
evaluated based on the information
provided in the Title and Abstract only.

Pay close attention to the explicit mention
of each criterion to avoid
misclassification.

Be aware of implicit information that may
not be explicitly stated but is crucial
for accurate classification.

Double-check each criterion to ensure no
oversight in the evaluation process.

Remember to consider the context and nuances
in the language used in the Title and
Abstract to accurately determine the
presence of each criterion.

Listing 13: Best prompt for GPT-40 (Macro-Fy: 0.671,
Recallg.;: 0.989).

D Correctness Oracle Performance

Table 7 presents the run-by-run performance of
the correctness oracle (trained on the full 100%
dataset). This data provides the evidence for the
claim made in the main text that the success of the
test-time refinement mechanism is directly corre-
lated with the oracle’s performance in that specific
run.

E Baseline Meta-Prompts

This appendix contains the meta-prompts used to
run the external baselines in our experiments.

E.1 APE (Automatic Prompt Engineer)

The following template was used to generate candi-
date prompts for the APE baseline. The model is
given a set of input-output examples and asked to
infer the instruction that produced them.
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Table 7: Run-by-run oracle performance and its impact
on the 100% dataset. Oracle Recg,.. is the oracle’s
recall on the error class (class 0). Fj gain is the final
gain in Macro-F} from test-time refinement.

Run Oracle Recg,» Oracle Macro-F; Fi gain
1 0.748 0.766 +0.066
2 0.733 0.775 +0.028
3 0.475 0.712 -0.021

4 0.000 0.456 +0.000
5 0.000 0.449 +0.000
Mean 0.391 0.632 +0.015

gave a friend an instruction and six inputs.
The friend read the instruction and wrote
an output for every one of the inputs.
Here are the input-output pairs:

Input: <Title 1>
<Abstract 1>
Output: <Label 1>
Input: <Title 2>
<Abstract 2>
Output: <Label 2>

... (and so on for all 6 examples) ...

The detailed instruction was:

Listing 14: Meta-prompt for APE candidate generation.

E.2 GPO (Gradient-inspired Prompt

Optimizer)

The GPO baseline uses the following meta-prompt
to iteratively refine its prompt. It provides the opti-
mizer LLM with the current best prompt and a list
of other relevant prompts from its history to guide
the generation of a new candidate.

Your task is to write a new, improved prompt.
You are allowed to change up to <current
edit cap> words from the current best
prompt. You are NOT allowed to change the

return format.

—--- CURRENT BEST PROMPT ---
Prompt: <current best prompt text>
Score: <current best score>/100

--- RELEVANT PREVIOUS PROMPTS (higher scores
are better) ---

<List of relevant previous prompts and their
scores>

Listing 15: Meta-prompt for the GPO baseline.

E.3 StraGo (Strategic-Guided Optimization)

The StraGo baseline uses a multi-step refinement
process involving experience analysis, strategy gen-



eration, and prompt optimization. The following
prompts are used at each stage of the process.

As a logician, you excel at breaking down
reasoning step by step.

<prompt>
<Current prompt text>
</prompt>

<examples>
<Correctly answered examples>
</examples>

TASK ---
Summarise the **<Number of
reasons> most valuable reasonsx* this
prompt produced the correct answers above.
Return a JSON list of length <Number of
reasons>; each element must contain:
- "reason”: one concise sentence.

Listing 16: StraGo prompt for generating positive
experiences from success cases.

As a logician, you excel at breaking down
reasoning step by step.

<prompt>
<Current prompt text>
</prompt>

<examples>
<Incorrectly answered examples>
</examples>

TASK ---
Identify the x*<Number of
flaws> primary flaws*x in the prompt that
caused the wrong answers.
Return a JSON list of length <Number of
flaws>; each element must contain:
- "error"”: one concise sentence.

Listing 17: StraGo prompt for generating negative
experiences from failure cases.

You are an expert prompt engineer. Craft a
step-by-step strategy that

fixes the issue while preserving successful
behaviour.

# Demos (few-shot)
<Few-shot examples of experience-to-strategy
generation>

<prompt>
<Current prompt text>
</prompt>

<example>
<Specific example case>
</example>

<experience>
<A single positive or negative experience>
</experience>

OUTPUT ---
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Return a x*numbered list*x (3-6 steps). Each
step must start with an imperative verb.
Return only the list.

Listing 18: StraGo prompt for generating a corrective
strategy.

You are the Optimizer.

Current instruction:
<prompt>

<Current prompt text>
</prompt>

Task data (for context, may be empty):
<example>

<Specific example case>

</example>

Guidance:

<experience>

<The experience being addressed>
</experience>

Strategy to apply:

<strategy>

<The strategy generated in the previous step>
</strategy>

Rewrite the instruction **once** so that it:
- Implements every step of the strategy.

- Retains original intent and style.

- Fits within 400 tokens.

Return only the revised instruction --- no
explanations.

Listing 19: StraGo prompt for rewriting the main
prompt based on the generated strategy.

F Full Run-by-Run Results

This appendix provides the detailed, run-by-run
data that supports the aggregated results presented
in the main paper.

F.1 Train vs Test refined results

Table 8 contains the complete performance scores
for the data efficiency experiments (RQ2), showing
the Macro-F% and Recallg,; for both the ‘Train-
Refined* and ‘Test-Refined* configurations for ev-
ery run and data subset with Llama 3.1 8B.

F.2 Model Generalizability Results (RQ4)

Table 9 provides the detailed, run-by-run scores for
the model generalizability experiments. For each
LLM, it compares the performance of the static
prompt against the IMAPR-refined prompt. The
aggregated mean and standard deviation for each
model correspond to the values presented in Table
4 in the main paper.



Table 8: Full run-by-run results for data efficiency experiments, showing Macro-F} and Recallg,; scores.

Train-Refined Test-Refined
Run ID Macro-F; Recallg.; Macro-F Recallg.;
5% Training Data
Run 1 0.526 0.989 0.531 0.989
Run 2 0.558 0.989 0.558 0.989
Run 3 0.484 0.989 0.484 0.989
Run 4 0.476 0.989 0.476 0.989
Run 5 0.510 0.978 0.510 0.978

Mean (#SD)  0.511 (£0.033)  0.987 (0.005) 0.512 (+0.032)  0.987 (+0.005)
10% Training Data

Run 1 0.568 0.966 0.573 0.966
Run 2 0.535 0.989 0.535 0.989
Run 3 0.484 0.989 0.519 0.989
Run 4 0.478 0.989 0.478 0.989
Run 5 0.495 0.989 0.495 0.989

Mean (#SD)  0.512 (+0.038) 0.984 (+0.010)  0.520 (+0.036) 0.984 (+0.010)
20% Training Data

Run 1 0.486 0.989 0.486 0.989
Run 2 0.484 0.989 0.543 0.989
Run 3 0.507 0.989 0.543 0.989
Run 4 0.472 0.989 0.531 0.978
Run 5 0.485 1.000 0.500 0.978

Mean (+SD)  0.487 (0.013)  0.991 (x0.005)  0.520 (+0.025) 0.984 (+0.006)
40% Training Data

Run 1 0.566 0.966 0.583 0.944
Run 2 0.526 0.978 0.550 0.989
Run 3 0.574 0.989 0.574 0.989
Run 4 0.612 0.809 0.612 0.809
Run 5 0.500 1.000 0.563 0.978

Mean (+#SD)  0.556 (£0.043)  0.948 (0.079)  0.576 (x0.022) 0.942 (+0.072)
100% Training Data

Run 1 0.569 0.978 0.635 0.876
Run 2 0.570 0.966 0.598 0.978
Run 3 0.612 0.955 0.591 0.933
Run 4 0.586 0.944 0.586 0.944
Run 5 0.571 0.966 0.571 0.966

Mean (#SD)  0.582 (£0.018)  0.962 (£0.012)  0.596 (x0.023) 0.939 (+0.035)
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Table 9: Full run-by-run results for the model generalizability study (RQ4).

Static Prompt IMAPR (Train-Refined)
LLM Run ID Macro- F Recallg,; Macro-F} Recallg,;
GPT-40
Run 1 0.660 0.978 0.642 0.966
Run 2 0.661 0.989 0.661 1.000
Run 3 0.655 0.978 0.671 0.989
Run 4 0.664 0.900 0.631 0.989
Run 5 0.664 0.911 0.656 0.955
Mean (xSD)  0.661 (£0.003)  0.951 (£0.035) 0.652 (£0.015) 0.980 (+0.018)
DeepSeek-V3
Run 1 0.552 0.989 0.631 0.944
Run 2 0.552 0.989 0.600 0.966
Run 3 0.552 0.989 0.615 0.978
Run 4 0.542 0.989 0.613 0.944
Run 5 0.549 1.000 0.604 0.966
Mean (xSD)  0.549 (£0.004) 0.991 (£0.004) 0.612 (£0.010) 0.959 (£0.020)
Llama3.1-405B
Run 1 0.590 1.000 0.636 0.978
Run 2 0.590 1.000 0.612 1.000
Run 3 0.590 1.000 0.628 0.787
Run 4 0.516 0.989 0.649 0.921
Run 5 0.518 0.989 0.612 0.978
Mean (xSD)  0.561 (£0.034) 0.995 (£0.004) 0.627 (£0.014) 0.933 (+0.081)
Llama3.3-70B
Run 1 0.565 1.000 0.575 1.000
Run 2 0.564 1.000 0.631 0.955
Run 3 0.567 1.000 0.568 1.000
Run 4 0.579 0.989 0.600 0.989
Run 5 0.579 0.989 0.617 0.955
Mean (#SD)  0.571 (£0.006)  0.995 (+0.004) 0.598 (+0.026) 0.980 (+0.022)
Llama3.1-70B
Run 1 0.552 1.000 0.576 0.876
Run 2 0.552 1.000 0.570 0.966
Run 3 0.552 1.000 0.560 0.966
Run 4 0.569 0.989 0.568 0.989
Run 5 0.569 0.989 0.567 1.000
Mean (£SD)  0.559 (£0.008)  0.995 (+0.004) 0.568 (+0.010) 0.959 (+0.050)
Llama3.2-3B
Run 1 0.122 1.000 0.224 1.000
Run 2 0.122 1.000 0.096 1.000
Run 3 0.122 1.000 0.074 1.000
Run 4 0.105 1.000 0.121 1.000
Run 5 0.105 1.000 0.079 1.000
Mean (xSD)  0.115 (£0.008)  1.000 (£0.000) 0.119 (£0.060) 1.000 (=0.000)
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