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Abstract—An algorithm is described which properly h.
points in a yield surface. Koiter’s requirements for

andles integration of stress—strain laws at singular
such points are incorporated exactly within the

proposed algorithm. The conditions for which the stress, after correction for plastic flow, exactly satisfies
the yield function are discussed. The algorithm is elaborated for the Mohr-Coulomb and Tresca yield

criteria and an explicit expression is provided to decide
surface or not.

1. INTRODUCTION

The predictive capability of a nonlinear analysis
depends on a considerable number of factors such as
the spatial discretization, the iterative solution
procedure, the constitutive models, the integration of
the differential stress—strain law over the loading step
and so on, The impact of each of the aforementioned
aspects on the accuracy should be assessed carefully
in order to gain some insight in the reliability of
a nonlinear analysis. A particular aspect which has
received considerable attention over the past decade
is the integration of the stress—strain law over the
loading step, albeit that most considerations pertain
to elasto-plastic solids [4, 8-16, 18].

In some respect, the history of integrators for
elasto-plastic models parallels the evolution of plas-
ticity theory, since in the literature on integrators for
elasto-plasticity we also first encounter developments
in metal plasticity [8, 14, 15], while contributions on
frictional materials and non-associated flow rules
have emerged only recently [9, 10, 13, 16).

An aspect of integration of elasto-plastic constitu-
tive relations which so far has received only moderate
attention is the treatment of singularities in a yield
surface. Some popular yield functions such as the
Mohr-Coulomb and the Tresca criteria possess such
‘so-called’ corners where the yield function is no
longer continuously differentiable. Although Koiter
[7] has provided a rigorous generalization of plasticity
theory to accommodate such singularities, early at-
tempts to incorporate corners in a computer program
did not use Koiter’s theory as a starting point, but
rather aimed at rounding off the corners when the
stress point was in the vicinity of a singularity [11].
However, this approach whereby the Mohr—Coulomb
criterion is replaced by the Drucker—Prager criterion

+ On leave from TNO Institute for Building Materials and
Structures, P.O. Box 49, 2600 AA Delft, The Netherlands.

823

whether the current regime is a corner of the yield

in the neighborhood of the corner (or alternatively
the von Mises criterion is substituted for the Tresca
criterion) effectively introduces new corners at the
intersection of the Mohr—Coulomb and the Drucker—
Prager surface. A better approach is to place a small
cone in the corner such that a smooth transition
between the regular part of the yield surface and this
cone is obtained. However, the accuracy and stability
characteristics of such a procedure where we locally
have a large curvature in the yield surface are prob-
ably not good since Ortiz and Popov[12] have
recently shown that a strongly curved part of the
yield surface deteriorates the accuracy and stability
properties.

In this paper a procedure for handling corner
points in a yield surface is described which is based
on Koiter’s[7] generalization of the theory of the
plastic potential for singular yield surfaces [}, 3]. The
algorithm is rather general in the sense that non-
associated flow rules are incorporated and the
pressure-dependent yield functions do not pose
special problems.

It is not so straightforward to classify the advocated
algorithm within the framework for elasto-plastic
integrators as recently developed by Ortiz and Popov
(12]. This is because the algorithm essentially deploys
a single-point numerical integration rule, while pres-
ently no iterations are added thereafter. Nevertheless,
exact satisfaction of the yield function at the end of
the loading step can be achieved for any singularity
within a yield surface when a linear hardening rule is
employed. Moreover, a rigorous return to the yield
surface is also obtained at smooth parts of a number
of commonly employed yield criteria such as Tresca,
Mohr—Coulomb and von Mises, again subject to the
restriction of linear hardening rules. When iterations
are added, satisfaction of the yield function is
also possible for more complex hardening rules and
arbitrary yield functions. The algorithm may then be
conceived as an Euler backward algorithm,
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2. SMOOTH PARTS OF THE YIELD SURFACE

A basic notion of small-deformation elasto-
plasticity is the resolution of the total strain rate é
into an elastic component é¢, and a plastic component
ér,

E=et 4 en, )

When we consider a material like concrete which
exhibits fracture, we also have to include a fracturing
strain rate ¢/ owing to (micro)-cracking[3]. The
elastic strain rate ¢ is assumed to be related to the
stress rate ¢ via the elasticity matrix D¢,

¢ = Deés, @)

The plastic strain rate ¢ is assumed to be derivable
from a plastic potential function g = g (e, x) with x
some hardening parameter which is a functional of
the plastic strain history, such that
og
&= A= 3
e ©)
Plastic flow occurs if the yield function f=f (g, k)
and its derivative both vanish (f=0 and f=0).
Elaboration of the consistency condition f=0

results in
T
(l) 6 —hi=0 C))]
oe
with A, the hardening parameter, given by
of (0x\Tog
h=— o (ﬁ) e (5)

The superscript T'in eqns (4) and (5) is used to denote
a transpose. Combining eqns (1)-(4) yields the tan-
gential relation between stress rates and strain rates

_[ . D*(9g/20)/(9f/0a)"D*
&'[D h+(af/50)TD’(ag/6a):|é' ©

It is noted that explicit distinction is made between a
yield function f and a plastic potential function g.
This implies that non-associated flow rules may be
included.

Integrating eqn (6) we obtain for a finite stress
increment

— ! . D¢(8g/06)/(0f|0cY D*
Ao = J:—A. [D h+ (5f/3d)TD‘(6g/aa)}d" )

All algorithms for handling the integral of eqn (7)
basically consist of two parts. In the first part, a trial
stress increment As’' is computed, while a correction
for inelastic behavior is made in a corrector phase.
Since the material is assumed to behave fully elas-
tically in the predictor phase, we have the identities

D=4 ®)
af\T P
(5;) ¢'=f ©)
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so that we can write eqn (7) as

t
Ac = J [&’
t—Ar

BLICTD
h

Introducing the notation

+ (6f/6a)TD"(6g/6a):| dr. (10)

a'=0%+Ac'

an
with o° either the contact stress at the intersection of
the stress path and the yield surface or the stress at
the beginning of the loading step (Fig. 1), we obtain,
with a single-point numerical integration rule,
t 5.0

f(a', k%) D,a_g, 12)
h+(8f/d6) D*(0g|0e) da
since by definition we have f (¢°, x°) = 0. Numerically,
the condition f(0%x%) =0 need not be satisfied
because the stresses resulting from a previous loading
step may violate the yield function slightly. By
putting f (6% k°) =0 we strive to satisfy the yield
criterion at any stage of the loading process, so that
inaccuracies from previous loading steps are not
carried along.

The approach becomes very simple if the gradients
to the yield function f and the plastic potential g
are evaluated for ¢ =o', Then, there is no need to
determine the intersection point of the stress path
with the yield function. Especially with complicated
yield functions, or when fracturing of concrete or
rock is also included in the analysis, evaluation of the
gradients at ¢ = ¢' may simplify the computer code
significantly. Here, it is appropriate to remark that
simplicity is of paramount importance to large,
general purpose finite element codes, and it may
sometimes be justifiable to sacrifice accuracy (but
not, of course, stability and robustness!) to keep the
computer code relatively simple.

It is also interesting to note that for the particular
case that the gradients are evaluated at ¢ =a' the
approach reduces to the elastic predictor-radial
return scheme for an associated von Mises plasticity
model [3]. Also, the implicit Euler backward algor-
ithm for a Drucker—Prager yield function described
recently by Loret and Prévost[9] is contained in

Ao =As'—

Fig. 1. Stress correction for plasticity,
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egn (12) since when we substitute that yield function
in eqn (12) we recover their equations. The above
observations support the assertion that the approach
described in the preceding is probably very competi-
tive amongst the single-point integrators, since for a
von Mises solid [, 15] and for a Drucker-Prager
solid [9] this scheme has been shown to be highly
accurate,

3. SINGULARITIES IN THE YIELD SURFACE

A major advantage of the scheme discussed in the
preceding section is the ease with which singularities
which occur in Mohr—Coulomb type yield functions
can be dealt. These singularities occur when two
principal stresses become equal. Koiter [7] has shown
that when, in fact, two yield functions are active, the
plastic strain rate can be written as
g, 08
3 + 4, %’ (13)
where g, and g, are the plastic potential functions
which belong to the yield functions which are active
(f, and f;, Fig. 2). We observe that we now have two
non-negative multipliers (4, and 1,) instead of only
one non-negative plastic multiplier.

We suppose that during an infinitesimally small
increment the stress point remains in the corner of
the yield surface. It will be shown in the next section
for the Mohr—Coulomb criterion how it can be
determined whether this condition indeed holds for
finite increments. When the stress point remains in a
singular point of the yield surface the consistency
condition for the first as well as for the second yield
function must be satisfied.

/=0 and f,=0 (14)

Using eqn (13) these conditions can be elaborated as

Ny .  of 3gn 98,
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Fig. 2. Plastic flow at a singularity in the yield surface.
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We next combine the flow rule at a singularity (13),
the resolution of strain rates (1) and the elasticity
relation (2). This results in:
0
-4 gz)

Premultiplying eqn (17) with the gradients to f; and
/> and invoking eqns (15) and (16) yields

d =D‘( A,Z (17)

“l’ll'l"NZAZ“(f) (18)
a T
#331+#422=(’é) D*é (19)
da
where u,, p;, U, p4 are defined as
of, dx 271\ og, ‘
=] ——— e e 2
# ( et 2% ) 0 @
ofy dx 0£i\T 0g,
= 5 esl) 22 21
Ha ( dk de? D*5s ) %e @n
6f2 ok 25, \ g,
- e d2) 220 22
#s ( K de? b da ) Oo @2)
_[ _0fox L0h\ 0g,
e r i) o

Solving the set of eqns (18) and (19) for 4, and 4,
gives

#4(0£1/00)" D¢ — 1, (3, /30 ) D¢

A= 24
: Mg — oy @)
Tres T e;g
1, = 1108 D% — (@i fda) DY
Hifa — Py

so that we obtain for the rate equation

|, 08 (0 9, (0/; ‘
D,_D [“ do (60) * “aa(aa °

Ry — Mol

0g: (0L\" | 08 ()
o] (Ge) + e Ge) I
+ Y30 \ da do | & 26)

Hyfa — Bally

=

For integration to finite strain and stress increments
we again utilize the trial stress rate ¢’ from eqn (8)
and the relations

()

which are valid during the calculation of the test stress
increment Ag’ because no plastic flow is assumed to
occur during this phase. Inserting eqns (27) and (28)

@n

(28)
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in eqn (26) and integrating over a finite load step
yields

A J’ ‘ { (tafy — ta./2) D* (081 /00)
G = é'—
1= A1 Hilg — Pa s

_ (ﬂlfz - ﬂ;f})D‘(@gzlﬁa)
Py — ol

or with a single-point numerical integration rule

_ #4fl (als ’Co) - Mz/ﬁ(""s xO)Dg%
Hitta — Haly Oa

}dr (29)

Aag = Ac’

_ l"l,fl(al, ’CO) - #Sfl (al3 KO) D¢ a_g_l_ (30)
By Mg — Ha sy do

Another way of looking at the above procedure is
that after the calculation of the test stress increment
Ac' a correction must be applied such that the final
stress state ¢ ' complies with both yield functions, i.e.
file, k) =0 and fy(e',x')=0. Using the notion
that

'z g’ — DA€’ 3D
and using the flow rule at a singularity then yields

. g g
f,(a —/11-5;1—-/12—5;2,x1>=0 (32)

ﬁ(d’—ll%%—lza;?,x‘>=0 (33)

whereupon expansion in a Taylor series around
o =o', k =x° and discarding the quadratic and
higher-order terms precisely yields eqn (30).

In this expansion only the linear terms have been
retained. With respect to the yield surface this is no
limitation, since any yield function may be linearized
around a singularity without loss of generality
(Fig. 2). With respect to the dependence of the yield
function on the hardening parameter x, neglecting
higher-order terms means that the treatment is only
exact for linear-hardening solids. Furthermore, the
assumption has been made implicitly that € is a linear
function of the plastic strain rate ¢7, which is not valid
for a number of important hardening hypotheses
like, for instance, the strain-hardening hypothesis.

" For regular parts of the yield surface, the nonlinear
dependence of ¥ on ¢7 does not entail errors, but for
the corner regimes an additional error is introduced.
If these errors cannot be tolerated, the stress o' =
a° 4 Aa, with the stress increment following from eqn
(30), can be used as a first estimate in an iterative
procedure which yields an improved estimate for o',

It is noted that the above limitations also hold
for regular parts of the yield surface. In fact, the
restrictions may then be more stringent since the yield
function generally shows a nonlinear dependence on
the stresses. Consequently, an iterative procedure
is necessary but for yield functions which linearly
depend on stress (Mohr—-Coulomb and Tresca),
and some special cases of the Drucker-Prager yield
function (see e.g. [9]).

Most approaches which are currently used for
handling singularities in yield surfaces are based on
rounding off the corners (e.g. [11]). Another proce-
dure based on Koiter’s generalization [7] has been
proposed by Marques {10]. There are some major
differences between Marques’ approach and the
algorithm presented here. First, Marques’ approach
is of an explicit nature while the method advocated
here is implicit. This has definite advantages with
regard to satisfying the yield function. More serious,
however, is that Marques’ elaboration of the consist-
ency conditions at a singularity is not correct and
definitely does not coincide with eqns (15) and (16)
derived here.

4, MOHR-COULOMB TYPE YIELD FUNCTIONS
The Mohr-Coulomb yield function is defined by
f=Xoy—0)+io;+a)sind,—c,, (34)
where
0,2 0,2 0y, 35)

¢,, is the mobilized friction angle which may be
some function of the hardening parameter «, and c,,
is the mobilized cohesion which may also be a
function of x. A plastic potential function g can be
defined in a similar fashion as the yield function f but
for replacement of the mobilized friction angle ¢,, by
a mobilized dilatancy angle ¥, [17):

g =3(03—0)) +3(6;+ o)) sin Y, ~c,. (36)

For a three-dimensional stress state, the principal
stresses can be found as the roots of the cubic
equation

6*~nNLoy+hLo—L=0 (37

with I}, I, and I, the stress invariants (e.g. [6]). Using
the deviatoric stress invariants J, and J, [6], we may
replace eqn (37) by:

Pedys~Jy=0 (38)

as the first deviatoric stress invariant vanishes by
definition. The notation s is employed to denote
deviatoric stresses. Equation (38) can be solved using
Cardano’s formulae. For the case of three real roots
(which holds true because of the symmetry of the
stress tensor), they read:

5 sin(a — 27)

= L .
8 |= 2\/(312) sing , 39)
A sin(a + %x)

where « follows from

sin(3a) = —1,/3 5 Js R (40)
2:/— 2
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Hence, we obtain for the total principal stresses:

g, sin (o —%7) 1
0 | =2/CJ,) | sine +pl1 (41)
0, sin(a +3n) 1

with p =11,.

We next assume that we have the situation in which
the strict inequality signs of eqns (35) hold. Then, we
may substitute the expressions (41) for o, and o, in
eqn (34). This yields:

f=Jheosa —[2/G%) —plsin ¢p—c, (42)

so that we have for the gradient to the yield surface:

%=sin¢mg§+(a+b§%>%§+b§%%é 43)
with the scalars a and b given by

a= 5&72 [cos & — /4 sin a sin ¢,,] (44)
and

b=—/Lsino +./icosasing,].  (45)

The manner in which the gradient to the plastic
potential function g is computed, is essentially similar
to the computation of the gradient to the yield
function f, but for replacement of the mobilized
friction angle ¢,, by the mobilized dilatancy angle y,,.

When the strict inequality signs of eqn (35) do not
hold, i.e. if two principal stresses become equal, the
stress point is in a ridge of the Mohr—Coulomb yield
surface (Fig. 3). In such a point, the yield function f
is continuous, but not continuously differentiable
and the plastic strain rate is determined via Koiter’s
generalization (13). For the Mohr—Coulomb surface,
Fig. 4 shows that we essentially have two yield
corners when we order the principal stresses accord-
ing to eqn (35). Furthermore, the yield function (34)
is active for all cases, either at a smooth part of the
yield surface, or at a singularity. Hence, one of the

Fig. 3. Mohr-Coulomb surface in three-dimensional stress '
space,
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Fig. 4. Active part of Mohr—Coulomb surface in the
n~-plane.

two required gradients to the yield surface is given by
eqns (43)-(45).

Let us first suppose that we have the case in which
g, = g,, so that the yield function

f=3%0y-0)+3(0s+06))sind, —c,  (46)

is also active. Substituting eqn (41) for the principal
stresses, and differentiating again results in eqn (43)
for the gradient df/da, but now the scalars a and b
are given by:

1
- —/3si
@ =gy, (cose —/3sina
+[/isina +cosalsin¢,} @7
3

and

=i /1 {—sina —/3cosa
+[/icosa —sinalsin ¢, }. (48)

Similarly, for o, = 03, we obtain

a =3717;{sina +./3cosa

+[/isina —cosa]sin ¢,,} (49)
and
b=i/J{~sina +\/3 cosa
+[/Lcos e + sinalsin @, ). (50)

The gradients to the plastic potential are again
determined in a similar fashion, by substituting
the mobilized dilatancy angle y,, for the mobilized
friction angle ¢,,.

Finally, it has to be determined whether the trial
stress is such that we have a corner regime or whether
the stress correction can be calculated for a regular
part of the yield surface. Figure 4 shows two trial
stress points, A and B. It is evident that for point A
a flow rule in the sense of eqn (3) can be used, but
that for point B, application of such a rule would lead
to a final stress lying outside of the yield surface,
so that in the latter case we have to apply Koiter’s
generalization for the flow rule. The selection of the
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precise flow equation might be made on basis of trial
and error, but a more simple and elegant procedure
has been adopted in the present study. If we have
perfect plasticity, the yield surface remains fixed, so
that the position of the corner point is uniquely
determined in stress space. It is then easy to analyti-
cally determine a plane which passes through the
corner points and which has the direction

og

D¢ —.

oo
The projections of these vectors on the n-plane are
plotted in Fig. 4. The derivation of an analytical

expression for these planes is straightforward and it
can be derived that if

hy<0 and k<0 (51)

we are on a regular part of the yield surface. In it, #,
and h, are defined as

hy=f(o' k")
1 —2v +sin ¢, sin y,,
1 —2v —(1 4 2v)siny,

(0,—03) (52)
and
=1 (o' x")
1 —2v +sin ¢, siny,,
T1—2v = (1 +2v)siny,,
If we have the situation

(0,— ). (53)

h>0 and hy<0 (54)
we are in a corner regime for o, = g, whereas
hy<0 and h,>0 (5%)

defines a corner regime for o, = o,. For hardening
plasticity, this procedure can not rigorously predict
the correct regime, because the position of the
yield surface is unknown. In particular, we may
erroneously arrive at the conclusion that we have
a corner regime for hardening plasticity or that we
have a smooth regime when we have softening.
Mostly, the prediction on basis of eqns (51)~(55) will
be adequate, but if necessary an a posteriori check
may be performed so that the erroneous assumption
can be corrected.

A particular problem is sometimes said to arise
if two principal stresses of the trial stress become
exactly equal, since the derivatives do/3J; and 0o /05
would then become indeterminate, However, in
practice no difficulties are encountered, as even when
two principal stresses are exactly equal, the entire
expression (43) for the gradient remains determinate.
Actually, the gradient to the Mohr—Coulomb yield
surface becomes identical to the gradient to the
Drucker-Prager yield surface for this limiting case.
Consider for instance the case that « =im. Then

a'l "'2 l
o |=/G&R)| 1|+p|1 (56)
0'3 1 1
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which upon substitution in the yield function (34)
gives

f= 3_3‘2#“1’"‘\/@12) +psing,. (57)

Differentiation then results in
af ép 3—sing,, dJ,

PRy vy cy AN
which is precisely the gradient which is obtained when
we differentiate the Drucker—Prager yield function,

It is finally remarked that another singularity in
the Mohr-Coulomb yield surface occurs at the apex
of the yield cone. In fact, the numerical algorithm
should check whether the stress is beyond the apex.
If this happens to be the case, an additional correc-
tion should be applied to bring the stress point back
to the apex of the yield cone. This problem only arises
for cohesionless materials such as sand, because for
cohesive materials, a fracture criterion should bound
the allowable tensile stresses.

(58)

5. EXAMPLE

As an example problem we will consider axi-
symmetric indentation of a subsoil which is governed
by a non-hardening Mohr—-Coulomb elasto-plastic
model (Fig. 5). The soil has been modeled as weight-
less and has been assumed to possess both cohesion
and friction.

Analytical plasticity solutions for axisymmetric
problems are usually obtained with use of the Haar~
von Kéarmain hypothesis which postulates that at
failure two principal stresses are equal[S]. If this
hypothesis is valid for the present example, the
problem is rather critical with regard to singularities
in the yield surface.

The results in Fig. 5, which have been obtained
for an associated (¢ = =20°) as well as a non-
associated flow rule (¢ = 20° ¢ = 0°), show a close
agreement with the analytical limit load by Cox
et al. [5). Moreover, the numerically calculated stress
distribution at failure underneath the footing [1] also
agreed closely with the analytical calculations [5]
based on the Haar—von Karmén hypothesis. Indeed,
the numerical calculations showed that at failure, two
principal stresses were equal in virtually all integra-
tion points in which plastic deformations occurred.
Consequently, the stress point was in a corner of the
Mohr—Coulomb surface for a considerable number of
integration points. It appeared that in all of these
sampling points both active yield functions were
identically satisfied.

It is perhaps somewhat surprising that the calcu-
lations for the non-associated flow rule also yielded
the analytical failure load. The present problem
however is not critical with regard to non-uniqueness
of the limit load because of the small number of
kinematic constraints and the moderate degree of
non-normality (2, 3]. ’
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p/c .
slip-line solution by Cox et al.
25 +
associated flow
20 L. L . — T
non-associated
15} = 20°, P= 0°
i)
10 |- non-associated
©= 20°, p=0° bLf
initial horizontal
5 stress: G, =G,, = -2N/mm?
Il . 1 [} i
0 0.05 0.1 0.15 0.2 0.25

w/D

Fig. 5. Load-settlement curve for a circular footing on a cohesive-frictional soil. Two calculations have
been started from a stress-free state while the third calculation was started from a non-zero horizontal

stress field.

6. CONCLUSIONS

An algorithm has been proposed which properly
handles corners in a yield surface [1, 3]. Unlike some
previous approaches it is based on Koiter’s formu-
lation for such singularities [7]. It is general in the
sense that non-associated flow rules and pressure-
dependent yield functions can be handled in a
straightforward fashion.

The algorithm is simple which has advantages
when nonlinear phenomena other than plasticity have
to be included in the analysis as well. Nevertheless,
under some restrictions both yield functions which
are active at such a singularity are exactly satisfied
after stress correction. The restrictions for which this
favorable property holds have been discussed.

The algorithm has been elaborated for the Mohr—
Coulomb and the Tresca yield functions. A simple
function has been introduced wifich determines
whether a trial stress is in a corner regime or not.
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