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Summary

The tail rotor of conventional helicopters has always been considered a necessary
‘evil’. It is necessary to counteract the reaction torque of the engine and to control
the helicopter in yaw but it consumes substantial power, has only marginal control
authority under unfavourable wind conditions, and it is noisy, vulnerable and dangerous.
A solution to all these problems would be a helicopter concept that eliminates the need
for a tail rotor. The so-called ‘Ornicopter’, a helicopter with flapping blades, is such a
concept.

The mechanism of the Ornicopter is inspired by bird flight. When birds flap their
wings they are able to generate both a lifting force and a propelling force from this single
movement. Instead of propelling a helicopter blade by spinning it around and deriving
lift from this rotating movement, as is done in conventional helicopter configurations,
the Ornicopter flaps its blades like a bird and derives both lift and a propulsive force
from this movement. In this case the blades propel themselves and there is no longer a
need for a direct torque supplied by the engine to rotate the blades. The Ornicopter’s
rotor, therefore, will not cause a reaction torque on the fuselage, which makes the tail
rotor’s anti-torque function redundant.

The goal of the present thesis is to develop a thorough understanding of the Orni-
copter concept and its feasibility throughout a realistic flight envelope. The first part
presents the analysis of the Ornicopter’s main characteristics regarding performance,
stability, controllability, handling qualities, as well as an exploratory vibratory analysis.
In the second part a preliminary design and sizing thereof are presented based on the
conclusions obtained in the first part.

The basis for the Ornicopter’s study is an analytically-derived flight mechanics
model. The model is based on the blade element theory (BET) and considers 6 rigid
body degrees of freedom (DoF), 3 DoF blade flapping dynamics and 3 DoF Pitt-Peters
inflow dynamics. Previous mathematical models developed as a proof of the Ornicopter
concept have concentrated mainly on hovering flight. The model developed in this thesis
is capable of representing the Ornicopter’s dynamics well within its entire operational
flight envelope. As a benchmark for the Ornicopter’s specifications, the Bölkow Bo-105
helicopter is used. The Bo-105 helicopter is a light twin-engine, multi-purpose helicopter
developed in Germany in the 1970s. For the initial values of the design parameters of
the Ornicopter (such as rotor radius, blade loading, rotor tip velocity, vertical fin size)
the Bo-105 helicopter design is used. A 2×2 anti-symmetric rotor flapping configura-
tion (with two opposite blades flapping in the same direction) is used for the Ornicopter
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in order to eliminate the necessity for a tail rotor. Using these design parameters it is
demonstrated that the Ornicopter rotor can generate enough propulsive torque to rotate
the blades with modest flapping amplitudes (maximum less than 9 deg). The present
thesis demonstrates that, compared to the Bo-105 helicopter, the Ornicopter concept
suffers from higher required power, a smaller flight envelope (mainly due to the larger
rotor stall area) and lower yaw stability. All these drawbacks are attributed to the large
rotor blade angle of attack variation introduced by the forced flapping mechanism and
the absence of a tail rotor.

In the second part of this thesis, the Ornicopter concept is optimized for perfor-
mance. Keeping the performance specifications of the Bo-105 as the objectives, the
design values (blade radius, blade loading etc) are turned to fit the Ornicopter con-
cept and no longer use the Bo-105 design values. The design optimization is formulated
through minimization of the required power, while satisfying the stall area requirement.
The thesis proves that the optimal design for the Ornicopter as compared to the Bo-105
benchmark is characterized by a lower blade loading, increased rotor tip velocity and
larger vertical fin size. This optimal design results in an enlarged flight envelope due to
the reduced rotor stall area and improved yaw stability in forward flight. Nevertheless,
despite these improvements in the Ornicopter’s flight envelope, there is a slight increase
in required power when compared with the Bo-105 specification (approximately 5% at
150 knots). To compensate for the higher profile power needed for the Ornicopter’s
optimal design, a larger rotor radius is required in order to reduce the induced power
and keep the increase in the total required power to a minimum.

This thesis may be considered as a first step in rationalizing the expectations regard-
ing the Ornicopter’s tailless helicopter design. The thesis proved that this new concept
shows a slightly poorer performance than that of conventional helicopters regarding
power consumption in forward flight and service ceiling. This is disappointing since one
of the assumptions was that the elimination of the tail rotor would also eliminate the
power consumption associated with a tail rotor. Further analyses of the Ornicopter’s
performance (such as endurance, payloads, climbing performance, and environmental
performance related to safety and noise), costs or maintenance should be performed for
a comprehensive understanding of the advantages and disadvantages of this helicopter
concept.
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Latin Symbols

c Blade chord [m]

dD Drag force generated on the blade element [N/m]

dL Lift force generated on the blade element [N/m]

ef Nondimensional flapping hinge offset
kθ1 Pitch flap angle coupling
kθ2 Pitch flap rate coupling
kl Tip loss factor
kp Power margin factor

kr Blade root cut factor
maero Non-dimensional aerodynamic flapping moment on the rotor blade
mff Non-dimensional flapping moment on the blade generated by the forced

flapping mechanism
m̂ff Amplitude of the non-dimensional forced flapping moment
p, q, r Rotational velocity components of the helicopter along the fuselage x−,

y− and z−axes. Positive when roll to right, pitch up and yaw to right
[rad/s]

p̄, q̄, r̄ Rotational velocity components of the helicopter along the fuselage x−,
y− and z−axes, normalized by Ω

re Radius position of the blade element [m]

u, v, w Translational velocity components of the helicopter along the fuselage
x−, y− and z−axes. Positive for flight forward, right-hand side and
downward [m/s]

vi Induced velocity [m/s]

vi0, vis1, vic1 Rotor uniform and first harmonic inflow velocity [m/s]

vp Perpendicular velocity component on the blade element [m/s]

xvii
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xviii Nomenclature

vt Tangent velocity component on the blade element [m/s]

wf Weight factor for the required power in forward flight

x, y, z Component position in the body reference [m]

A,B The state and control matrices of a linear system

A,B,C Sine, cosine and constant coefficients of the mff

C1, C2 Non-denominational lateral and longitudinal aerodynamic moments on
the rotor

Cd Drag coefficient of aerofoil= Cd0 + Cd2α
2

CH Rotor horizontal force coefficient

Cl Lift coefficient of the aerofoil

Clα Aerofoil lift curve slope [rad−1]

CQ Rotor shaft torque coefficient

CS Rotor side force coefficient

CT Rotor thrust coefficient

CTb
Thrust coefficient calculated using blade element theory

CTλ
Thrust coefficient calculated from momentum theory

Iβ Flap moment of inertia [kg ·m2]

Ix, Iy, Iz Moments of inertia of the helicopter about the x−, y− and z−axes[kg·m2]

Ixz Product of inertia of the helicopter about the x− and z−axes [kg ·m2]

K SCAS gain matrix

Kβ Flapping stiffness [N ·m/rad]

L̂−1 Inflow gain matrix for Pitt-Peters inflow model

L Lift force on aerofoil [N ]

L,M,N Moment components on the helicopter along the fuselage x−, y− and
z−axes. Positive for roll right, pitch up and yaw right [N ·m]

M Apparent mass matrix for Pitt-Peters inflow model

M1,M2 Lateral and longitudinal aerodynamic moments on rotor disc [N ·m]

Ma Mass of a helicopter [kg]

Maero Aerodynamic flapping moment on the rotor blade [N ·m]

Mb Mass of rotor blade [kg]

Mβ First moment of mass of the rotor blade [kg ·m]

Mff Flapping moment on the blade generated by the forced flapping mecha-
nism [N ·m]

MQ Rotor aerodynamic torque [N ·m]

Mx,My Lateral and longitudinal rotor hub moments [N ·m]

Mz Rotor shaft torque [N ·m]

Nb Number of blades
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Nomenclature xix

P̄ Non-dimensional required power, normalized by the required power of
the Bo-105

Pdyn Dynamic pressure [kg/(m · s2)]

Pe Available engine power [W ]

Pe0
Available engine power at sea level [W ]

Pff Power consumed by the forced flapping mechanism [W ]

Pi Rotor induced power [W ]

Pideal Ideal rotor power [W ]

Pp Rotor profile power [W ]

Psh Rotor shaft power [W ]

Qi Generalized force

R Rotor radius [m]

Ref Blade hinge offset [m]

S̄ Non-dimensional stall area on the main rotor

S̄max Maximum allowable non-dimensional stall area on the main rotor

Sβ Blade flapping stiffness number
λ2

β −1

γ/8

Se Equivalent vertical fin area [m3 · rad]

S̄f Stall design constraint in forward flight

S̄hs Stall design constraint at the hovering ceiling

Sstall Total stall area on the main rotor [m2]

S̄vs Non-dimensional vertical fin size, normalized by the fin size of the Bo-105

TA2B Transformation matrix between reference frame A and B

T,H, S Rotor thrust, horizontal (forward positive) and sidewards (right side pos-
itive) hub forces [N ]

Tk Total kinetic energy [W ]

U Control input vector

Ueff Effective air flow velocity [m/s]

U∞ Incoming air flow velocity [m/s]

V Velocity vector [m/s]

Vt Blade tip velocity [m/s]

V̄t Non-dimensional rotor tip velocity, normalized by the tip velocity of the
Bo-105

X Model state vector

X,Y, Z Force components on the helicopter along the fuselage x−, y− and z−axes
[N ]



✐

✐

“thesis” — 2014/6/3 — 14:15 — page xx — #20
✐

✐

✐

✐

✐

✐

xx Nomenclature

Greek Symbols

α Angle of attack [rad]

αeff Aerofoil effective angle of attack [rad]

αsh Rotor shaft tilt angle [rad]

β Flapping angle of the blades [rad]

β̇ Flapping rate of the blades [rad/s]

β̂ Amplitude of the blade flapping motion [rad]

β0, βs1, βc1 Rotor blade coning, lateral and longitudinal flapping angles. Positive
when coning upward, tilting left or forward [rad]

β̄, βave Average flapping motion of all blades [rad]

~β Flapping state vector [rad]

γ Lock number= ρcClαR
4

Iβ

η Flapping angle of the forced flapping mechanism [rad]

η̇ Flapping rate of the forced flapping mechanism [rad/s]

η̂ Amplitude of the forced flapping mechanism motion [rad]

ηs1, ηc1 Lateral and longitudinal flapping angles of the forced flapping mechanism
[rad]

η̄s1, η̄c1 Average lateral and longitudinal flapping angles of the forced flapping
mechanism for all blades [rad]

θ Blade pitch angle [rad]

θ0, θs1, θc1 Collective, longitudinal (positive for pitch up) and lateral (positive for
roll left) cyclic control [rad]

θtw Blade twist angle [rad]

λ0, λs1, λc1 Rotor uniform and first harmonic inflow velocities (normalized by ΩR)

λβ Flap frequency ratio λ2
β = 1 +

Kβ

Iβ Ω2

λi Inflow ratio= vi

Vt

µ Advance ratio V/ΩR

µx, µy, µz Translational velocity components of the helicopter along the fuselage
x−, y− and z−axes, normalized by ΩR

ρ Air density [kg/m3]

σ Rotor solidity= Nbc
πR

σs Blade solidity= c
πR

τ Time constant of the actuator [s]

τp System phase delay [deg]

ϕ Induced angle [rad]

ψ Blade azimuth angle [rad]
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Nomenclature xxi

ωBW System bandwidth [rad/s]

Ψ,Θ,Φ Helicopter heading, pitch and roll angles [rad]

Ω Rotational velocity of the rotor [rad/s]

Subscripts

fus,vs,hs Fuselage, vertical stabilizer, horizontal stabilizer

h,hc,f Hovering, hovering ceiling and forward flight conditions

hub Main rotor hub

mr,tr Main rotor, tail rotor

s1,c1 The first order sine and cosine harmonic component

s For a single blade

Superscripts

(k) For the kth blade

Abbreviations

DoF Degree of freedom
EoM Equation of motion
HHC High harmonic control
HQR Handling qualities rating
HQs Handling qualities
IBC Individual blade control
RPM Revolution per minute
TPP Tip-path plane

Other Symbols

u̇ = du
dt Differentiation with respect to time t

β′ = dβ
dψ Differentiation with respect to the azimuth angle ψ
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1
Introduction

1.1 General Background

Human interest in vertical flight can be traced back to more than 2000 years ago. The
Chinese toy top, also know as the bamboo-copter, first invented around 400 BC [21],
is still popular today. Despite the long history of this small toy, manned, powered
vertical flight, mainly the helicopter, dates back only to the last century, i.e. the 1930s.
Development since then, however, has been fast and today’s helicopters are relatively
safe, reliable and versatile. They play an indispensable role in modern civilian and
military life.

Among the large number of helicopters, the single main rotor/tail rotor (conven-
tional) configuration is the main configuration in use today. The configuration of a
helicopter is, to a large extent, determined by the manner in which the reaction torque
of the main rotor is counteracted. For conventional helicopters, the tail rotor is used
for this purpose, as well as for generating yaw control.

Although the tail rotor gives the helicopter extreme manoeuvrability, it also has
many unfavourable characteristics: it consumes power, and has only marginal control
authority under unfavourable wind conditions; it is noisy, vulnerable and dangerous.
Research has shown that about 50% of U.S. civil helicopter accidents related to airframe
failure or malfunction between 1963 and 1997 are connected to the tail rotor system
(including the drive train, control system, tailboom and tail rotor) [14].

Different solutions have been proposed in an attempt to solve the shortcomings of
the classical tail rotor system. Some configurations have been successfully developed
and implemented, such as: the Fenestron system, the NOTAR system (NO TAil Rotor),
the tandem helicopter, the coaxial helicopter and the synchropter (intermeshing rotors)
configuration.

The Fenestron system (sometimes called the fantail or fan-in-fin) is one of the most

1
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2 1 Introduction

well-known solutions. It is a ducted fan with a shrouded design in the tail skin [23].
Another successful solution was developed by McDonnell Douglas and is the NOTAR
system which uses a variable pitch fan located internally in the tail boom to blow the air
out [21]. Although both the above solutions have been successfully applied in modern
helicopters to replace the tail rotor, they have considerable disadvantages, such as the
loss of control effectiveness in forward flight [21, p. 324]. Besides the two conventional
tail rotor alternatives mentioned above, the other three tailless helicopter configurations
mentioned (the tandem, the coaxial and the synchropter configuration) share the same
basic principle and use a second main rotor in order to counteract the reaction toque
of the main rotor.

In 2002, Delft University of Technology proposed the ‘Ornicopter’ configuration as
an alternative manner to eliminate the tail rotor. The main idea behind the Ornicopter
is that, instead of counteracting the rotor torque, it is better to use a rotor concept that
does not generate a torque.

The name ‘Ornicopter’ came from the combination of ‘Orni-thopter’ and ‘Heli-
copter’. As its name suggests, the Ornicopter can be considered as a helicopter version
of the Ornithopter, the aircraft that flies like a bird by flapping its wings [8].

Figure 1.1 [25] presents the general principle of deriving propulsion from flapping
wings. When birds flap their wings, they are able to derive both a lifting force and a
propelling force. This effect was discussed in 1909 by Knoller [19] and three years later
independently by Betz [5], and was demonstrated in 1922 in a wind tunnel experiment
by Katzmayr [18]. It is also known as the Knoller-Betz or Katzmayr effect. It represents
the ability of a sinusoidally plunging airfoil to produce thrust, as illustrated in Fig. 1.1.

Figure 1.1: Propulsion from a flapping wing [25]

The figure represents the forces on the airfoil during the up and down movement
of a flapping wing (the so-called up and down stroke). During the down stroke, the
blade plunges with a distance z(t), i.e. z(t) = h sin(kt), defined as a function of the
nondimensional plunge amplitude h and flapping frequency k. This creates a vertical
air flow relative to the airfoil (−ż(t) = ∂z/∂t). Combining it with the horizontal
incoming air flow (U∞) results in an effective airfoil angle of attack (αeff ). In this way,
a net aerodynamic force (L) is generated on the airfoil which can be decomposed into
a vertical lift force component (L1) and a positive horizontal thrust force component
(T ) in the direction of flying. During the up stroke, the rising of the wing results once
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1.2 Aim of the Thesis 3

1

more in a positive thrust component T (see Fig. 1.1.b). This yields to a time-averaged
positive thrust force on the flapping wing for one complete up and down motion.

In conventional helicopters, the rotor blades are driven by the shaft torque to rotate,
and they generate lift from this rotating motion. This will cause a reaction torque on
the fuselage that needs to be compensated for by an anti-torque device. In the case of
the Ornicopter, the blades flap in the same manner as a bird and derive both lift and
propulsive force from this movement. Thus, the Ornicopter combines the flapping wing
principle with the helicopter principle. As the blades propel (i.e. rotate) themselves,
there is no longer a need for a direct torque supplied by the engine to rotate the blades.
Therefore, the Ornicopter rotor will not generate a reaction torque on its fuselage. This
makes the anti-torque device redundant.

1.2 Aim of the Thesis

A helicopter is a complex system and the concept evaluation involves multidisciplinary
analyses. Figure 1.2 shows an example of different aspects, such as flight characteristics
(e.g. performance), financial respective (e.g. the life cycle cost) and environmental ef-
fects (noise and emission). Different helicopter configurations will affect the helicopter
from different respects, and each configuration has its own advantages and disadvan-
tages. In this sense, the Ornicopter concept should be compared with conventional
helicopters in order to pinpoint its pros and cons.

Figure 1.2: Example of helicopter evaluation aspects

Meanwhile, it is also important to understand the physical reasons that cause these



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 4 — #26
✐

✐

✐

✐

✐

✐

1

4 1 Introduction

advantages or disadvantages. With this fundamental understanding, the Ornicopter
concept can be improved.

The goal of the present thesis is to develop a thorough understanding of the Orni-
copter concept and its feasibility throughout its operational flight envelope. Specifically,
the following questions will be answered:

As compared to a conventional helicopter,
1. what are the characteristics of the Ornicopter regarding
performance, stability, controllability, and handling qualities,
2. and how can an Ornicopter with comparable or improved
flight performance be designed?

To give a better view of the thesis scope, the following terms are defined:
Performance

The helicopter performance considered in this thesis relates to three aspects: the
required power, the main rotor stall area and the flight envelope (altitude vs speed) as
defined by the power and stall criteria. The performance analysis investigates whether
the Ornicopter requires more power than conventional helicopters, and if its flight en-
velope is comparable to that of a conventional helicopter.
Stability and Controllability

The stability and controllability refer to the stability derivatives, control derivatives
and the natural modes of the helicopter body motion DoF. Comparisons present values
of the derivatives and mode characteristics of Ornicopter and a benchmark helicopter.
The physical reasons causing the differences between them are discussed.
Handling Qualities

The handling qualities analyses in this thesis are based on ADS-33 criteria [4]. The
analyses are concerned with quantifiable handling qualities matrices, such as bandwidth
and phase delay, attitude quickness, lateral-directional oscillation and the yaw control
in sideslip.
Design

The design of the Ornicopter refers to the design parameter values as shown in
Appendix B. The initial Ornicopter design is the same as the benchmark helicopter
Bo-105. Afterwards, based on performance analyses, the Ornicopter design is unfrozen
and some Ornicopter design parameters are optimized.
The Benchmark Helicopter

The Bölkow Bo-105 is selected as the benchmark helicopter in this thesis. It is
used for the model validation and comparisons with the Ornicopter for the above men-
tioned aspects. Its performance data will be considered as design requirements for the
Ornicopter design.

The following limitations apply to this thesis:

1. The Ornicopter research mainly relates to the fields of performance, stability,
controllability, and handling qualities. Other disciplines, such as safety and cost,
should be considered in future research.
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2. The flight mechanics model developed in this thesis has the assumptions and
simplifications presented in Section 3.2.1.

3. Only one benchmark helicopter is used in this thesis. Possible size (different
weight categories) effects on the Ornicopter are not studied.

4. The practical implementation of the Ornicopter concept is not studied, such as
the detailed design of the forced flapping mechanism and the mechanism imple-
mentation of pitch flapping rate coupling.

5. The Ornicopter’s weight breakdown is not considered in this thesis. It is assumed
that the Ornicotper’s forced flapping mechanism has the same weight as the tail
rotor system, i.e. the Ornicopter has the same gross weight as the Bo-105.

1.3 Thesis Outline

The outline for this thesis is defined as follows, and Figure 1.3 presents the structure of
this thesis.

Figure 1.3: Thesis flow chart

Chapter 2 presents the Ornicopter concept. Preliminary analyses are performed for
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6 1 Introduction

basic concept understanding, such as generating the propulsive torque and controlling
the yawing moment.

Chapter 3 develops first a flight mechanics model for conventional helicopters. This
model is based on the blade element theory (BET) and considers 6 degrees of freedom
(DoF) rigid body dynamics, 3 DoF blade flapping dynamics, 3 DoF main rotor inflow
dynamics and 1 DoF tail rotor inflow dynamics. After validation, the model is adapted
to the Ornicopter concept.

Chapter 4 conducts the analyses of the performance, stability, controllability, and
handling qualities for the Ornicopter concept. The Ornicopter is compared with the
conventional Bo-105 helicopter. Comparisons in this chapter show the Ornicopter’s
advantages and disadvantages.

Chapter 5 unfreezes the Ornicopter design. First, sensitivity analyses are per-
formed to find the most influential design parameters for the Ornicopter performance.
Afterwards, a design database is derived for the Ornicopter. Based on this, the Orni-
copter design is optimized. The ‘optimal’ Ornicopter is compared again with the Bo-105
helicopter.

Chapter 6 gives conclusions and recommendations.
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The Ornicopter Concept

In 2002, Delft University of Technology proposed the Ornicopter concept [32]. By
actively flapping its blades, a single rotor/tailless Ornicopter configuration can be de-
veloped. In this chapter, the basic concept of this configuration will be explained.
Afterwards, some preliminary theoretical analyses for the Ornicopter concept will be
presented. At the end, some practical implementation issues will be briefly discussed.

2.1 Introduction

2.1.1 The Flapping Blade Concepts

Inspired by birds, efforts have been made to invent a flapping wing aircraft (also known
as an ornithopter). The flapping wing concept can also be applied to the rotary-wing
aircraft. A flapping blade concept was first proposed by Passat in 1921. It was called
the ‘Helithopter’ and had a rotor with four blades forced to flap simultaneously [20].

In the 1930s, two devices were patented by Hans Georg Küssner, a German aerody-
namicist, at the ‘Gottingen Aerodynamic Test Establishment’ [11, 12]. His invention,
the so-called ‘Flapping Propulsion Rotor’, was based on the flapping blades concept.
In his patent, the flapping actuation device was based on an oil-hydraulic pump system
to simultaneously flap up and down a pair of centrally hinged rotor blades [11]. Figure
2.1 shows a sketch of the blade motion in Küssner’s design. The blade is forced to flap,
and hence the tip-path plane (TPP) tilts into a certain direction.

In order to demonstrate his concept, Küssner also developed a wind tunnel model,
see Fig. 2.2 [11], and showed experimentally that the reaction torque could be completely
compensated for by the rotating flapping blades in such a concept.

At the end of the 1990s, Dr. Vladimir Savov from the Bulgarian Air Force Academy
proposed the so-called ‘Rotopter’ concept, using the same principle of the forced flapping

7



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 8 — #30
✐

✐

✐

✐

✐

✐

2

8 2 The Ornicopter Concept

Figure 2.1: Sketch of blade movement [12]

Figure 2.2: The windtunnel model developed by Küssner [11]

blades in order to eliminate the tail rotor. A mechanism was designed and patented
by Savov, the so-called ‘freewheeling flapping wing’, as shown in Fig. 2.3 [2]. The
blades can rotate freely and are forced to flap around the flapping hinge (component 7
in Fig. 2.3) by the crank-rod mechanism (1 and 2) and slide shaft (3). This flapping
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motion generates the propulsion force to drive the rotor to rotate.

Figure 2.3: Sketch of the freewheeling flapping wing [2]

2.1.2 The Ornicopter Concept

The Ornicopter concept is also based on the flapping blade concept. Figure 2.4 shows
a possible sketch of the Ornicopter concept with 2 × 2 anti-symmetrical configuration
(see Section2.4.3). It is based on the design optimization which will be performed in
Chapter 5.

At Delft University of Technology, some research related to the Ornicopter has been
performed. Initially, the basic Ornicopter principle was proposed, followed by feasibility
analyses using a rotor model in hovering [32]. The principle of how to achieve the forced
flapping motion on the Ornicopter was also defined later on [30, 37].

In 2004 flapping mechanisms were developed in practice [34] and tested on a small
wind tunnel test model, as well as an Ornicopter demonstrator model (see Section 2.5 for
more details). A new mechanism was patented by Prof. Theo van Holten [33] in 2004 as
shown in Fig. 2.5. The second swashplate, the so-called ‘force-flapping swashplate’ was
added to the Ornicopter rotor. The rotating push rod will be driven by this swashplate
to move up and down when the rotor is rotating, and hence drives the blade to flap.
This design differs from Savov’s invention as the forced flapping motions of the blades
are synchronized with the rotor rotation. More details on this mechanism will be given
later in Section 2.5.

2.2 The Benchmark Helicopter

For the model validation and further analyses/comparisons of the Ornicopter, a ref-
erence helicopter is needed. The Bölkov Bo-105 helicopter has been selected for this
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Figure 2.4: Sketch of a possible Ornicopter design

Figure 2.5: Principle of a forced flap mechanism using a push-pull rod and swashplate
[33]
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purpose, see Fig. 2.6.

Figure 2.6: Three-view drawing of the Bo-105

As a widely used baseline helicopter in the rotorcraft community, the Bo-105 is a
light, twin-engine, multi-purpose utility helicopter developed successfully in the 1970s
in Germany. It has multiple variants, such as the Bo-105C (the initial version) and Bo-
105S (the search and rescue version). Based on the DLR (German Aerospace Center)
research helicopter Bo-105 S123 [10], a generic light Bo-105 configuration is used in this
thesis. Some main design parameters are presented in Tab. 2.1. More detailed design
parameters can be found in Appendix. B.

Table 2.1: Main design parameters of the Bo-105

Rotor radius 4.91 m Blade chord 0.27 m

Solidity 0.07 Disk loading 29.05 kg/m2

Tip velocity 218 m/s Rotor RPM 424

Number of blades 4 Mass of helicopter 2200 kg

Tail rotor radius 0.95 m Length (incl rotors) 11.86 m

Flight test data of the Bo-105 will be used to validate the flight mechanics model
developed in Chapter 3. In Chapter 4, the Ornicopter using the same design as the
Bo-105 will be compared with the Bo-105 from different respects.
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Instead of the actual Bo-105 performance data, performance specifications from
model prediction will be used in this thesis. The Bo-105 performance is determined
using the following approach. The maximum speed (sea level) of the Bo-105 is assumed
to be 150 knots. This is slightly higher than the real Bo-105 specification (145 knots
[28]) due to the lower total weight. Based on the stall area and required power at 150
knots, the flight envelope of the Bo-105 is predicted. More detailed discussion can be
found in Section 4.4. The main Bo-105 performance data from the Delcopter model
(developed in Chapter 3) prediction is summarized in Tab. 2.2. These performance data
will be used as the design requirement for the Ornicopter design in Chapter 5.

Table 2.2: Bo-105 performance predicted by Delcopter

Hovering ceiling Service ceiling Max. velocity

2815 m 5725 m 150 knots

2.3 The Basic Ornicopter Principle

2.3.1 The Vanished Reaction Torque

As stated previously, the Ornicopter flaps its blades like a bird. When a bird is flying,
both a propulsive force - that pushes the bird to fly through the air - and a lift force
- that will keep the bird airborne - are generated by its flapping wings (see Fig. 1.1 in
the Introduction). Similarly, when the blades of a rotating rotor are actively flapping,
both a lift force and a propulsive force are generated. In this case, the propulsive force
will drive the rotor to rotate.

A very useful and simple understanding of how one can generate propulsive force
with an Ornicopter blade is obtained by applying a constant pitch angle to the flapping
blade. The movement of an Ornicopter blade during one revolution is illustrated in
Fig. 2.7. During one revolution of the rotation, the blade will be forced to flap both up
and down once, resulting in the undulating path shown in Fig. 2.7.

At 0o azimuth angle (ψ), the blade element passes through the neutral position
with maximum upwards velocity. Due to the upwards flapping velocity, the overall
speed (V ) will rotate upwards, and hence the angle of attack of the blade element will
decrease, resulting in relatively low lift force (L). At the same time, the lift force, which
is perpendicular to the relative air flow vector, will follow the change of the incoming
wind direction. Therefore, it tilts backwards with regard to the blade element.

After 90 degrees the blade reaches the maximum flapping deflection, where the
flapping velocity is zero. The total velocity of the blade element is parallel to the flow
direction in the case without flapping, i.e. as a normal helicopter blade. A similar
situation can also be found when the blade reaches 270o. On the contrary, the blade
reaches negative maximum flapping deflection at 270o azimuth angle.

Between 90o and 270o, the blade flaps downwards. In contrast to the upwards
flapping discussed above, when the blade flaps down, the angle of attack of the blade
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element will increase, and the increased lift force will tilt forward with regard to the
blade element. This results in a positive thrust force, by which the blade is propelled.

Figure 2.7: Lift and drag forces acting on an Ornicopter blade during one revolution
when a constant pitch angle is applied

When a constant pitch angle is applied, the lift forces during one revolution will (av-
eraged over one revolution) result in an upwards force and an average propulsive force.
This average propulsive force is achieved because the forward horizontal component
of the lift force that occurs when the blade is flapping downwards (from 90o to 270o)
is much larger than the backwards horizontal component of the lift force that occurs
when the blade is flapping upwards (from 0o to 90o and 270o to 360o). Thus, by setting
all the Ornicopter blades at a constant pitch angle and flapping them up and down,
a propulsive force is created that will rotate the blades around the rotor hub and an
upwards force is created that will counteract gravity. The amount of propulsion force
and the total thrust generated by the rotor are determined by the amplitude of flapping
motion and the blade collective pitch. By choosing a proper combination of these two
parameters, the desired forces can be achieved for trimmed flight or necessary control.

When the blades are propelled by a flapping motion one can demonstrate that the
reaction torque acting on the fuselage will no longer exist. This can be explained by
comparing a conventional helicopter to an Ornicopter, see Fig. 2.8 [30]. In a conventional
helicopter the drag that acts on the rotor blades is counteracted by the shaft torque,
which drives the rotor to rotate (see Fig. 2.8.a). As a result, there will also be a
reaction torque from the rotor on the fuselage, and this reaction torque will have to be
counteracted by an anti-torque device. For the Ornicopter configuration, the drag that
acts on the rotor blades is counteracted by the propelling force produced by the forced
flapping motion of the blades (see Fig. 2.8.b). There is thus no direct torque transferred



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 14 — #36
✐

✐

✐

✐

✐

✐

2

14 2 The Ornicopter Concept

from the fuselage to the rotor to rotate the blades. As a consequence, there will not
be a reaction torque from the rotor on the fuselage. Hence, an anti-torque device is no
longer necessary.

Figure 2.8: The forces and moments acting on a conventional helicopter and the Orni-
copter [30]

It should also be mentioned that, for the Ornicopter design, the blade flapping
motion has to be synchronized with the rotational speed of the rotor. In this manner,
the forced flapping frequency can be kept close to the natural frequency of the blade
flapping motion. Due to the resonance effect, the forced flapping motion can reach the
maximum amplitude. In other words, in this situation, the minimum driving moment
is needed for the forced flapping.

2.3.2 Controlling the Ornicopter

Yaw Control

In a conventional helicopter, yaw control is realized by the tail rotor. By increasing or
decreasing the thrust of the tail rotor, the total yawing moment on the fuselage can be
controlled. Since the Ornicopter obviously does not have a tail rotor, a different means
for yaw control is needed.

By introducing a small amount of change in the forced flapping amplitude, the
propelling force generated by the Ornicopter rotor can be controlled in order to achieve
the desired yaw control moment. From Fig. 1.1, it can be seen that the propelling force
is related to the amplitude of the plunge motion. By increasing the amplitude of the
plunge motion (increasing h), the velocity of the vertical motion can be increased, which
causes a higher effective angle of attack and larger thrust force. Similarly, the propelling
forced generated by the Ornicopter rotor can also be decreased when lower amplitude
of the forced flapping is applied. In this manner, the Ornicopter can be controlled in
the yaw direction, as shown in Fig. 2.9.

Figure 2.9.a presents the case when no yaw movement is desired (the flapping mech-
anism will be explained later). In this case the blades of the Ornicopter will be entirely
propelled by blades flapping, and there will thus be no reaction torque acting on the
fuselage. To realize this reactionless situation, a particular amplitude of the forced flap-
ping motion will be necessary. All the engine power will be converted into the flapping
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Figure 2.9: Schematic representation of yaw control by introducing a reaction torque

of the blades.
When, for the same situation, a small reduction of the flapping amplitude is chosen

(Fig. 2.9.b), the propelling force generated by the active flapping will also be reduced.
This implies that the flapping of the blades will not be sufficient to keep the rotor at
its required rotational speed (the rotor will tend to slow down), and therefore some
additional shaft torque will be needed. The same engine power is now used both for
flapping of the blades and for applying some additional shaft torque. Since in this the
case shaft torque is directly transmitted from the fuselage to the rotor, there will also
be a reaction torque acting on the fuselage. This reaction torque will cause yawing.

To yaw in the opposite direction, a larger amplitude of forced flapping motion of
blades needs to be applied (Fig. 2.9.c). As a result of the larger flapping motion of the
blades, the propelling force will increase and as a result the rotor will tend to speed
up. In order to keep the rotor at its desired rotational speed, the rotor will have to be
slowed down. The reaction torque caused by this is acting in the opposite direction as
is the situation in Fig. 2.9.b, and will therefore cause a yaw movement in the opposite
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direction, as shown in Fig. 2.9.c.
For a conventional helicopter, its tail rotor is loaded especially in hovering and low

speed flight. In forward flight, the vertical fin, usually with a cambered airfoil and
sometimes with a controllable surface, i.e. a rudder, provides almost all the yaw and
sideslip controls. Hence, in forward flight the tail rotor of a conventional helicopter is
usually unloaded. In the case of the Ornicopter, a rudder can also be used in forward
flight. However, for simplicity, in this thesis it is assumed that the vertical fin is a fixed
lift surface without only moveable parts. The yaw control for the Ornicopter is then
achieved by changing the amplitude of the forced flapping motion on the blade.

Cyclic and Collective Control

The cyclic and collective controls for the Ornicopter are the same as those for conven-
tional helicopters. A normal swashplate is used in the Ornicopter drive train. Using
this conventional swashplate, the pitch angle of the blades can be controlled as per a
conventional helicopter.

As each blade is forced to flap, their tip-path planes will be tilted in a certain
direction according to the forced flapping moment. To minimise additional hub shears
and moments, the average tip-path plane of all the blades should not be changed by
the forced flapping motion. One possible way is to drive blades anti-symmetrically,
as shown in Fig. 2.10.a [37]. These two tip-path planes tilt in opposite directions to
maintain the average tip-path plane level. When the cyclic pitch control is applied, the
tip-path planes of all the blades will tilt in the same way, as shown in Fig. 2.10.b. This
is true for both the Ornicopter and normal helicopters.

Figure 2.10: Cyclic control of Ornicopter [37]

It can thus be seen that each swashplate has a different effect on the tip-path planes
of the blades. The combination of these two effects results in the total effect, as depicted
in Fig. 2.10.c. Increasing the forced flapping angle and applying cyclic control are two
effects that can be superimposed. Cyclic control can be achieved on top of the forced
flapping motion and independent of the magnitude of this forced flapping motion. The
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required cyclic control is thus not influenced by the forced flap and subsequently not
influenced by the yaw control. In other words, there is a complete mutual decoupling
of the cyclic and yaw control. In this manner, longitudinal and lateral control of the
Ornicopter can be achieved.

As in conventional helicopters, a coupling does exist between collective control and
yaw movement. If collective control is applied, the pitch angle of all the blades will
increase, thereby providing more lift and also more drag. This increase in drag will
tend to slow the rotor down, and thus some additional engine power will have to be
transferred directly to the shaft. This causes a reaction torque which will cause the
fuselage of the Ornicopter to yaw. This problem can be solved in exactly the same
way as in conventional helicopters by applying yaw control in the opposite direction;
however, instead of requiring a change in pitch angle of the tail rotor blades when the
collective is used, in the Ornicopter configuration a change in the forced flapping angle
is required. As a result the rotor will remain reactionless.

In conclusion, the Ornicopter changes the means of yaw axis control when compared
to a conventional helicopter. In this new configuration, control of all axes is achieved
through the main rotor.

2.3.3 Basic Flapping Configurations

For a fixed-wing Ornithopter, the optional flapping patterns are limited. Normally both
sides of the flapping wing have to flap simultaneously. For a rotary wing Ornicopter, the
flapping configuration can be designed, especially for a rotor that has a higher number
of blades.

Some severe vibrations might occur due to the fact that within the rotor of an
Ornicopter, blades (and thus masses) are moving up and down, and the magnitude of
the lift vector is fluctuating and tilting backwards and forward. However, by choosing an
appropriate number of blades and an appropriate flapping sequence of the blades most
of these vibrations can be cancelled. Three rotor configurations for the Ornicopter have
been proposed [34], including the double-teeter configuration, the 2×2 anti-symmetrical
configuration (referred as 2×2 AS in what follows), and the third one, the so-called the
3-in-1-plane configuration, which generates high vibration loads. Therefore, the third
configuration has never been used.

The Double Teeter Configuration

The principle of the double teeter configuration is depicted in Fig. 2.11 [34]. As indicated
by its name, the rotor consists of two teetering rotors: the two opposite blades are
connected like a see-saw, which means that if one blade is flapping upwards, the opposite
blade is flapping downwards. All four of the blades are forced to flap with a 1/rev (once-
per-revolution) frequency, which means the flapping motion achieves its maximum and
minimum value once every rotor revolution. At the moment that one of the two teeters
is at its maximum flapping angle, the other teeter will be in the neutral position, as
shown in Fig. 2.11. The tip-path planes of the two teeters are anti-symmetrically tilted
with respect to the shaft.
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Figure 2.11: Principle of the four bladed double teeter rotor [34]

2 × 2 Anti-symmetrical Configuration

The rotor in the 2 × 2 AS configuration also consists of four blades. However, now the
two opposite blades are flapping in the same direction. Consequently, (with reference
to Fig. 2.12 [34]) when blade (k = 0) is flapping upwards, the opposite blade (k = 2) is
flapping upwards as well, while at the same time the two other blades will be flapping
downwards, and vice versa. The blades will pass through the neutral position at the
same moment in time.

Figure 2.12: Principle of the 2 × 2 AS configuration [34]

Three Bladed 1-plane Configuration

For this three-bladed configuration, the three blades are always in one plane although
each blade rotates in a different tip-path plane (see Fig. 2.13 [34]). The principle of 3-
in-1-plane configuration is that when the first blade (k = 0) is at its maximum flapping
angle, the other two blades (k = 1, 2) are at the 1/3 negative maximum flapping angle.
At this moment, the second blade is flapping upwards and the last one is flapping
downwards.

The double teeter and 3-in-1-plane configurations have been chosen as concepts due
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Figure 2.13: Principle of the three-bladed 1-plane rotor [34]

to their relative simplicity in the forced flapping mechanism. The double teeter was
used for a wind tunnel test model [37]. However, the drawback of the first 2 mentioned
configurations is that they will generate more vibratory loads on the rotor hub than
the 2 × 2 AS configuration (more details about the vibratory loads will be discussed
later, see Section 2.4.5). In this sense, although the forced flapping mechanism of the
2 × 2 AS configuration is more complicated, due to its expected favourable vibration
characteristics, the 2 × 2 AS is used as the baseline configuration for further
Ornicopter analyses.

2.4 Preliminary Theoretical Analyses

In this section, preliminary analytical calculations for Ornicopter will be introduced.
The analyses for the required power, flapping moment and flapping amplitude performed
in Ref [37] will be reviewed first. Afterwards, the theoretical analysis for Ornicopter
is extended. The mathematical representations of flapping configurations will be ex-
plained, followed by analyses regarding Ornicopter control. At the end, vibratory loads
[34] and effect of blade flexibility [35] will be briefly discussed.

A rotor model in hovering flight is developed for the above mentioned analyses.
Chapter 3 develops a flight mechanics model for the Ornicopter in order to study its
forward flight characteristics.

In this hovering rotor model, the blade flapping motion, rotor hub forces and mo-
ments are derived. The model is based on BET. It should be emphasized that the
main purpose of developing this hovering model is to understand the basic principle of
the Ornicopter concept. Therefore, some typical assumptions for the helicopter flight
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dynamics modelling are used as follows:

1. The blades are rigid and centrally hinged;

2. The blades have uniform mass distribution;

3. The airfoil has a constant lift coefficient gradient and drag coefficient;

4. The inflow angle and blade flapping angle are small;

5. The stall effect is not considered;

6. The inflow is uniform.

A centrally-hinged rotor is considered in this model, as shown in Fig. 2.14. The
Ornicopter blade is connected to the forced flapping mechanism through a spring. In
this thesis, the stiffness of this spring is chosen to be the same as the equivalent flapping
stiffness of the hingeless Bo-105 main rotor.

β

Rotor Shaft

Central Hinge Spring

Blade
dT

Ω

η Mff

Forced flapping 

mechanism 

Figure 2.14: Blade configuration for the rotor model

The forced flapping mechanism moves at 1/rev frequency. Its motion (η) can be
expressed similarly as the flapping motion of blades (β):

η =ηs1 sinψ + ηc1 cosψ

β =β0 + βs1 sinψ + βc1 cosψ
(2.1)

where β0, βs1 and βc1 are the blade coning, lateral and longitudinal flapping angles,
ηs1 and ηc1 are the lateral and longitudinal flapping coefficients of the forced flapping
mechanism, and ψ is the azimuth angle of blade. More detail on the derivation of the
model can be found in Appendix A.

2.4.1 Power Requirement in Hover

One of the first questions that needs to be answered is related to the power consumption
of the Ornicopter. Therefore, the average shaft power (Psh) that is necessary to drive
the rotor is derived. For this, the power needed to drive the blade element lactated
at re radius position (see Fig. 2.15) is calculated, and integrated over the entire rotor
blade.
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Figure 2.15: Aerodynamic environment at a typical blade element

In hovering, for a blade element shown in Fig. 2.15, the local tangential (vt) and
perpendicular (vp) velocities can be expressed as:

vp = β̇re + vi

vt = Ωre
(2.2)

where β̇ is the flapping velocity of blade, re is the radius location of the blade element,
vi is the induced velocity, and Ω is the rotational velocity of the rotor.

The induced angle at the blade element will be (see Fig. 2.15)

ϕ = tan−1

(

vp
vt

)

(2.3)

The average required shaft power per blade can be calculated as:

Pshs
=

1

2π

∫ 2π

0

dψ

∫ R

0

(dL sinϕ+ dD cosϕ)Ωredre (2.4)

where dL and dD are the lift and profile drag force generated by a unit length of the
blade element.

Assuming the induced angle is small and applying the small angle approximation
results in

ϕ ≈ vp
vt

(2.5)

Pshs
≈ 1

2π

∫ 2π

0

dψ

∫ R

0

(dLϕ+ dD)Ωredre (2.6)

Substituting Eq. 2.2 and 2.5 into Eq. 2.6 results in:

Pshs
=

1

2π

∫ 2π

0

dψ

∫ R

0

(dLvi + dLβ̇re + dDΩre)dre

=Pis + Pps
+

1

2π

∫ 2π

0

Maeroβ̇dψ

(2.7)
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where Pis is the blade induced power

Pis =
1

2π

∫ 2π

0

dψ

∫ R

0

dLvidre (2.8)

Pps
is the blade profile power

Pps
=

1

2π

∫ 2π

0

dψ

∫ R

0

dDΩredre (2.9)

and Maero is the flapping moment generated by the lift force, as:

Maero =

∫ R

0

dLredre (2.10)

Equation 2.6 is a power equation that can be used for conventional helicopters,
but note that the flapping angle (β) is negligible for a simple conventional helicopter
rotor model during hover. To be able to add the mechanical flapping power to the shaft
power, the equation of flapping motion for an Ornicopter blade is considered, i.e. with a
mechanical flapping moment (Mff) applied to the blade. The equation of blade motion
in the hover can be expressed as:

Iβ β̈ = Maero +Mff − Ω2βIβ (2.11)

where β̈ is the flapping acceleration, Iβ is the flap moment of inertia, as:

Iβ =

∫ R

0

ρrr
2
edr (2.12)

and Ω2βIβ is the flapping moment caused by the centrifugal force.
The flapping rate (β̇) and acceleration (β̈) can be derived from Eq. 2.1, as:

β̇ = βs1Ω cosψ − βc1Ω sinψ

β̈ = −βs1Ω2 sinψ − βc1Ω2 cosψ
(2.13)

Combining Eq. 2.11 and Eq. 2.13, the relationship between Maero and Mff can be
derived as:

Maero = Ω2β0Iβ −Mff (2.14)

It should be noted that the Maero and Mff are functions of the blade flapping
motion (β). They vary among the blade azimuth angle (ψ). Equation 2.14 is valid for
all azimuth angles and it is used to derive the flapping coefficients of blades (β0, βs1 and
βc1) in App. A. In this section, the main interest is the required power of the Ornicopter
concept, i.e. the average effects of the Maero and Mff in one rotation revolution.
Therefore, the detailed expression of these two moments will not be considered at this
moment.
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Substituting Eq. 2.14 into Eq. 2.7 for blade shaft power gives:

Pshs
= Pis + Pps

+
1

2π

∫ 2π

0

(

Ω2β0Iβ −Mff

)

β̇dψ

= Pis + Pps
+

1

2π

∫ 2π

0

Ω2β0β̇dψ − 1

2π

∫ 2π

0

Mff β̇dψ

= Pis + Pps
− Pffs

(2.15)

where Pffs
denotes the flapping power, i.e. the average power per revolution exerted

by the forced flap mechanism on the blade:

Pffs
=

1

2π

∫ 2π

0

Mff β̇dψ (2.16)

Summing the shaft power for all the blades, the Ornicopter rotor shaft power is:

Psh =
∑

k=1

NbP
(k)
shs

=
∑

k=1

NbP
(k)
is

+
∑

k=1

NbP
(k)
ps

−
∑

k=1

NbP
(k)
ffs

= Pi + Pp − Pff

(2.17)

where Pi, Pp and Pff are the total rotor induced power, profile power and flapping
power.

Equation 2.17 shows that if the flapping power (Pff ) is chosen to be sufficiently large,
the shaft power can be reduced to zero. This means that if the rotor is driven by the
forced flap mechanism, no additional shaft power will be needed (engine power, however,
will still be needed to flap the blades). Moreover, the shaft power, in other words, the
shaft torque, can be controlled by applying different flapping power. Therefore zero,
positive and negative shaft torques can be achieved for yaw control.

It can also be seen that the flapping power just replaces the shaft power. In the
torqueless condition (Psh = 0), the flapping power will be the same as the sum of
induced power and profile power (Pff = Pi + Pp). The flapping power will thus not be
larger than the power that is transferred to the rotor in conventional helicopters. As a
matter of fact, the total power needed will be less for an Ornicopter than a conventional
helicopter since the tail rotor, which normally consumes 5 − 10% of the total power, is
no longer present.

2.4.2 Forced Flapping Moment and Angle

Integrating the lift force along the radial direction, the aerodynamic flapping moment
can be expressed as (see Eq. A.22):

Maero =
γIβ
2

Ω2

(

θ

4
− λi

3
− β′

4

)

(2.18)
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where

β′ =
∂β

∂ψ

= βs1 cosψ − βc1 sinψ

(2.19)

Defining the non-dimensional aerodynamic flapping moment (maero) and the non-
dimensional mechanical flapping moment (mff ) as:

maero =
Maero

Ω2Iβ

mff =
Mff

Ω2Iβ

(2.20)

and substituting Eq. 2.18 into Eq. 2.14 gives the relation between the flapping angle
(β) and the mechanical flapping moment (mff ) as:

γ

2

(

θ

4
− λi

3
− β′

4

)

= β0 −mff (2.21)

Assuming:
mff = C +A sinψ +B cosψ (2.22)

results in Eq. 2.21 to be rewritten as:

γ

2

(

θ

4
− λi

3
− β0

)

− γ

8
(βs1 cosψ − βc1 sinψ) + C +A sinψ +B cosψ = 0 (2.23)

Collecting coefficients for constant and harmonic terms in Eq. 2.23 results in:

γ

2

(

θ

4
− λi

3
− β0

)

+ C +
(γ

8
βc1 +A

)

sinψ −
(γ

8
βs1 −B

)

cosψ = 0 (2.24)

The solution of the non-dimensional coefficients of mechanical flapping moment can
be obtained by equating the constant and the harmonic coefficients of Eq. 2.24 to zero.
This results in:

A = −γ

8
βc1

B =
γ

8
βs1

C = −γ

2

(

θ

4
− λi

3
− β0

)

(2.25)

From Eq. 2.25 the relation can be found between the amplitude of the flapping angle
(β̂) and the amplitude of the non-dimensional flapping moment (m̂ff ) is:

m̂ff =
√

A2 +B2 =
γ

8
β̂ (2.26)
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Finally, substituting the flapping motion (Eq. 2.1) and the mechanical flapping mo-
ment (Eq. 2.22 and 2.25) into the expression of the flapping power (Eq. 2.16) gives:

Pffs
=

1

2π

∫ 2π

0

(

C − γ

8
βc1 sinψ +

γ

8
βs1 cosψ

)

Ω2Iβ

× (βs1Ω cosψ − βc1Ω sinψ) dψ

=
IβΩ3

2

γ

8
β̂2

=
IβΩ3

2

8

γ
m̂2
ff

(2.27)

For the Ornicopter, Pi and Pp can be calculated using BET (blade element theory)
in the same way they are calculated for conventional helicopters. Therefore, the Pff
needed to reach the torqueless condition is known. Then Eq. 2.27 can be used to
calculate the required amplitude of the flapping angle and mechanical flapping moment.

From Fig. 2.14, one can see that the forced flapping moment (Mff ) is:

Mff = (η − β)Kβ (2.28)

where Kβ is the stiffness of the spring which connects the forced flapping mechanism
and the blade.

Substituting β and η (Eq. 2.1) into Eq. 2.28 and converting it into the non-dimensional
form, one can get:

mff =
Kβ

Ω2Iβ
[−β0 + (ηs1 − βs1) sinψ + (ηc1 − βc1) cosψ] (2.29)

Comparing Eq. 2.29 and 2.22, it can be found that:

A =
Kβ

Ω2Iβ
(ηs1 − βs1) = −γ

8
βc1

B =
Kβ

Ω2Iβ
(ηc1 − βc1) =

γ

8
βs1

(2.30)

Defining the blade flap frequency ratio (λβ) and stiffness number (Sβ) as:

λ2
β = 1 +

Kβ

IβΩ2

Sβ =
λ2
β − 1

γ/8

(2.31)

the motion of the forced flapping mechanism can be derived from Eq. 2.30 as:

ηs1 = − 1

Sβ
βc1 + βs1

ηc1 =
1

Sβ
βs1 + βc1

(2.32)
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The required motion amplitude of the forced flapping mechanism (η̂) can be calcu-
lated as:

η̂2 = η2
s1 + η2

c1

=
1 + S2

β

S2
β

β̂2
(2.33)

As an example of realistic values for the flapping angle and flapping moment, the Bo-
105 helicopter is used. Calculating the amplitude of the dimensional flapping moment
and the amplitude of the flapping angle gives:

M̂ff = 34141 Nm

β̂ = 6.59 deg

η̂ = 18.1 deg

(2.34)

The amplitude of the forced flapping angle is thus very modest. It does not exceed
the flapping angle limitation. For example, the lateral flapping limitation for most
modern helicopters is about 10 deg [27, p. 154]. For the Bo-105 rotor (rotor radius is
4.91 m), the maximum flapping displacement at the blade tip is approximately 0.565
m corresponding to the flapping angle calculated above.

Regarding the forced flapping mechanism, the required motion amplitude is higher
than that of the blades. This is due to the fact the mechanism is connected with
the blade through a spring with limited stiffness. The motion of the forced flapping
mechanism and the blade flapping motion will be identical if the spring is replaced by
a rigid link, i.e. a spring with infinite stiffness. From the above example, one can see
that for the Ornicopter rotor has the same flap stiffness as a hinge-less rotor, i.e. the
Bo-105 rotor, the required motion amplitude of the forced flapping mechanism is also
modest.

2.4.3 Flapping Configuration

The three proposed Ornicopter flapping configurations have been introduced in the
previous section (see 2.3.3). For further analyses, a more detailed mathematical repre-
sentation for flapping configurations is needed, which will be discussed in this section.

The motion of the forced flapping mechanism is similar to the flapping motion of
blades:

η = ηs1 sin(ψ) + ηc1 cos(ψ) (2.35)

Different coefficients (ηs1 and ηc1) will be applied to each blade to form the desired
flapping configuration, and these coefficients can be used as the parameter representing
the flapping configuration. However, in this manner, too many parameters will be
introduced, i.e. 8 coefficients for a rotor with 4 blades, and those coefficients do not
directly represent the most important characteristics of the flapping motion, namely
the amplitude and phase angle of the flapping motion.
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In this sense, Eq. 2.35 is next rewritten as:

η = η̂ cos (ψ − ψη) (2.36)

where the η̂ is the amplitude of the flapping motion and the ψη is the azimuth angle
where the flapping motion reaches the positive maximum displacement.

In this form, the physical meaning of parameters (η̂ and ψη) is more clear. Mean-
while, as the flapping amplitude of the forced flapping mechanism is the same among all
the blades, the number of parameters needed to describe the motion of forced flapping
mechanism reduces to Nb+ 1, i.e. Nb phase angles (ψ(k)

η ) and the flapping amplitude η̂.
Moreover, the design of the flapping configuration (ψη) and the working condition

(η̂) can be separated. A series of ψη (one for each blade) will define the flapping
configuration, as shown in Tab. 2.3. As discussed before, the amplitude of the forced
flapping affects the rotor torque of the Ornicopter. Therefore, the flapping amplitude
of forced flapping mechanism (η̂) is the yaw control input for the Ornicopter. Its effects
will be demonstrated by an hovering Ornicopter rotor model in the following discussions.

Table 2.3: Flapping sets for different configurations

Configration Nb
ψ

(k)
η (π)

1 2 3 4

Double Teeter 4 0 1 0 1

2 × 2 AS 4 0 3/2 1 1/2

3 bladed 1-plane 3 0 4/3 2/3 /

The coefficients (ηs1 and ηc1) as used in the blade flapping EoM can be calculated
with:

ηs1 = η̂ sin (ψη)

ηc1 = η̂ cos (ψη)
(2.37)

2.4.4 Controlling the Ornicopter

In the previous section (see 2.3.2), control of the Ornicopter was generally discussed and
some conclusions were drawn. In this section, with the Ornicopter model in hovering,
those conclusions will be theoretically proved.

Average Tip Path Plane

From the hovering rotor model derived in Appendix A, one can see that the blade
flapping motion is the superposition of forced flapping motion and the ‘conventional’
flapping motion (see Eq. A.32). Combining the flapping motion of all the blades, the
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average tip-path plane of the Ornicopter rotor can be derived as (see Eq. A.35):

~βave = ~βθ +
(

λ2
β − 1

)

A−1 × [0, η̄s1, η̄c1]
⊤

= ~βθ + ~βff
(2.38)

where A is the coefficients matrix of the blade flapping EoM, as shown in Eq. A.28, η̄s1
and η̄c1 are the average flapping coefficients of the forced flapping mechanism:

η̄s1 =

Nb
∑

k=1

η
(k)
s1

η̄c1 =

Nb
∑

k=1

η
(k)
c1

(2.39)

From Eq. 2.38 one can see that the average TPP of Ornicopter rotor is a linear
combination of ‘conventional’ flapping (~βθ) and forced flapping (~βff ).

The rotor hub pitch and roll moments are correlated with the average TPP. To min-
imise the impacts of forced flapping on these hub moments, the average TPP should not
be affected by the active flapping. This can be achieved by choosing a certain flapping
configuration, i.e. keeping the average flapping coefficients of forced flapping mechanism
at zero (η̄s1 = 0 and η̄c1 = 0). In this manner, the average TPP of Ornicopter rotor will
be the same as a conventional helicopter as shown in Fig. 2.10. This introduces one of
the requirements of the flapping configuration design, namely the average flapping
coefficients of forced flapping mechanism should be zero (referred to as the zero
average flapping requirement in the following).

Recalling the three flapping configurations proposed in Section 2.3.3, one can see
from Tab. 2.3 and Eq. 2.37 that all these three configurations satisfy the zero average
flapping requirement proposed above.

Yaw Control

The yaw control of Ornicopter is one of the fundamental characteristics of this new
concept. The relation between the amplitude of active flapping and the main rotor
torque was discussed in Section 2.3.2. The theoretical analyses based on the Ornicopter
hovering model will show the same result.

For a flapping configuration that matches the zero average flapping requirement
(η̄s1 = 0 and η̄c1 = 0), the main rotor torque can be derived as (see Eq. A.44):

CQ = CTλi + CQ0 − 1

16
σCLα

c17η̂
2 (2.40)

where c17 is a constant coefficient determined by the rotor design (see Appendix A for
more details).

One can see from Eq. 2.40 that the main rotor torque of the Ornicopter consists of
three parts: the induced torque caused by rotor thrust and induced velocity (CTλi), the
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profile torque caused by profile drag (CQ0) and the propulsive torque generated by active
flapping ( 1

16σCLα
c17η̂

2). The former two parts are the same as those for conventional
helicopters. The propulsive torque is proportional to the amplitude of flapping motion
of the forced flapping mechanism (η̂). In this sense, the η̂ is the necessary yaw control
input for the Ornicopter.

As the CT and CQ0 are not affected by the cyclic pitch control (see Eq. A.13), the
main rotor torque is not correlated with the cyclic pitch control. This indicates that the
Ornicopter will not have an additional yaw coupling response to lateral and longitudinal
control as discussed before.

The η̂ is the yaw control input for the Ornicopter, as the tail rotor collective pitch
(θtr) is in the case of conventional helicopters. In order to keep the consistency of control
input notation, in this thesis the θff will be used while discussing the Ornicopter yaw
control.

Cyclic and Collective Pitch Control

The total hub forces and pitch/roll moments are also derived in Appendix A. Similarly
to the yaw control, if the flapping configuration has η̄s1 = 0 and η̄c1 = 0, the rotor hub
forces and pitch/roll moments will be uncoupled with the yaw control input and they
will be the same as conventional helicopters, i.e.:

CT =
1

2
σCLα

(

θ0

3
− λi

2

)

(2.41)

CH =
1

2
σCLα

(c11θs1 + c12θc1) (2.42)

CS =
1

2
σCLα

(−c12θs1 + c11θc1) (2.43)

CL = −1

2

λ2
β − 1

γ
σCLα

(c5θs1 + c3θc1) (2.44)

CM = −1

2

λ2
β − 1

γ
σCLα

(−c3θs1 + c5θc1) (2.45)

where θ0, θs1 and θc1 are the collective, longitudinal and lateral cyclic control input
respectively, and c11, c12, c3 and c5 are the coefficients derived in Appendix A, which
are correlated to the rotor design, inflow ratio and collective pitch control.

Overall, for the Ornicopter concept, the η̂ will be used as the yaw control input.
By choosing a proper flapping configuration (η̄s1 = 0 and η̄c1 = 0), the yaw and
cyclic/collective pitch controls of the Ornicopter can be decoupled, i.e. this revolu-
tionary yaw control method will not affect the cyclic/collective pitch control of the
Ornicopter, and they will be the same as those used in conventional helicopters.
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2.4.5 Vibratory Loads

One may have noticed from Fig. 2.7 that the lift generated by the blade element varies
during one revolution. This will likely cause vibratory loads on the rotor hub.

This kind of variation can cause both a 1/rev fluctuation and a 2/rev fluctuation on
the hub forces and moments generated by a single blade. This will be explained below.

For example, the propelling force generated by the forced flap is equal to the lift
times the inflow angle, while both the lift and inflow angle consist of a constant part
and a 1/rev fluctuation. The 1/rev fluctuation on the propelling force is thus caused
by the constant part of the lift multiplied by the fluctuating part of the inflow angle
and by the constant part of the inflow angle multiplied by the fluctuating part of the
lift. The 2/rev fluctuation on the propelling force occurs due to the multiplication of
the fluctuating part of the lift with the fluctuating part of the inflow angle. This occurs
in the case of hovering flight without cyclic control. In more realistic flight conditions,
both flight velocity and cyclic control will introduce more harmonic components.

By choosing an appropriate number of blades and an appropriate flapping sequence
between the different blades, the vibratory loads on the Ornicopter’s rotor can be min-
imized. In order to determine the configuration that causes the least vibrations, an
exploratory study was performed for hovering using a rigid rotor model (see Ref [34]).
All three Ornicopter configurations mentioned above were investigated from the vibra-
tory point of view.

The vibratory characteristics of the three configurations are summarized in Tab. 2.4.
One can see for example that the double teeter configuration has 2/rev harmonic com-
ponents in horizontal (H) and sidewards (S) in-plane hub forces, as well as 2/rev
components in pitch (M) and roll (L) hub moments.

Table 2.4: Harmonic components on the rotor hub

Forces(1/rev) Moments(1/rev)

T H S L M N

Configuration
Double teeter 2 2 2 2

2 × 2 AS 2

3 bladed 1-plane 2 2 1,2 1,2

Apparently, the 2×2 AS configuration is the one that generates the fewest harmonic
forces and moments. In the meanwhile, taking into account the order of the magnitude
of the vibration [34], it is concluded that the 2×2 AS configuration is the best choice for
the Ornicopter from a vibratory point of view. Therefore, the 2×2 AS configuration
is used as the baseline configuration of the Ornicopter.

2.4.6 The Effect of Blade Flexibility

The theory and the calculations performed so far are all based on the assumption of
rigid rotor blades. A question that could arise is whether the introduction of flexible
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blades will have an effect on any of the key characteristics of the Ornicopter, including
the flapping power requirement, flapping angle, flapping moment, rotor torque, blade
bending or rotor thrust.

The equations of motion for a flexible blade in forced vibration by the forced flapping
mechanism were derived [35]. Subsequently, these equations were used to derive key
characteristics of the Ornicopter with flexible blades. With one mode (rigid) and two
mode (flexible) approximations, calculations have shown that the flexibility of the blades
does not affect the key characteristics of the Ornicopter mentioned above, except for
the flapping angle and flapping moment [35].

It was demonstrated that, despite the flexibility, it is still possible to achieve a
propelling and lifting force by forced flapping of the blades, and it is thus still possible
to realize a single rotor without reaction torque. Calculations show that the Ornicopter
rotor with flexible blades requires the same power as a rotor with rigid blades, which
means that no power is lost due to the flexibility of the blades.

The major influence of the flexible blades concerns the flapping angle at the blade
root. Due to the flexibility, the flapping angle at the blade root of the flexible blade is
larger than that of a rigid blade, as shown in Fig. 2.16 [35]. Different lines in Fig. 2.16
present the bending of a flexible blade at different azimuth angles during one revolution.
An azimuth angle difference of π/4 occurs between two successive lines. One can see
from Fig. 2.16 that due to deformation of the blade, the displacement of the outer part
of the flexible blade is smaller than that of a rigid blade. On the contrary, at the inner
part of the flexible blade, the displacement is higher than that of a rigid blade and a
higher root flapping angle can be found for the flexible blade.

Figure 2.16: Bending of a flexible blade and a rigid blade for a given flapping power
[35]

As a consequence of the larger blade root angle, the angular velocity of the flapping
motion at the blade root will also be larger for a flexible blade. It appeared that, for
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the same amount of power, a smaller flapping moment will be necessary for a flexible
blade when compared to a rigid blade.

2.5 Practical Implementation and Test

2.5.1 Forced Flapping Mechanisms

Between 2002 and 2008, different forced flapping mechanisms have been proposed and
tested in order to actively flap the Ornicopter’s blades [36]. All the flapping mechanisms
are designed with the same basic principle, i.e. to generate an extra forced flapping
moment on the blades. This moment needs to be adjustable for yaw control. The
following flapping mechanisms were designed: 1) the swashplate mechanism, 2) the
gearwheel mechanism, 3) the eccentric mechanism, and 4) the multiple disc mechanism.

The Swashplate Mechanism

Figure 2.5 shows the principle of the Ornicopter’s swash plate mechanism, which was
patented by the TU Delft [33], including a force-flapping swashplate and a normal
swashplate. When the rotor is rotating, the push rod will move up and down because
of the force-flapping swashplate and hence the blades will be forced to flap. Since the
push rod is driven by the swashplate, the frequency of its motion is the same as the
rotation frequency of the rotor. Therefore, the forced flapping motion is synchronized
with the rotation of the rotor.

The amplitude of the periodic vertical movement of the push rod depends on the tilt
angle of the non-rotating swash plate. Therefore the amplitude of the forced flapping
motion of the blades can be controlled by this forced flapping swashplate.

This mechanism was used for the wind tunnel tests see Fig. 2.17 [36]. For practical
reasons, a modification was made to this mechanism, namely: the force-flapping swash-
plate was replaced by two thin section bearings. These two bearings have different
diameters: one bearing fits within the other bearing. Looking at Fig. 2.17, one can
see that each Ornicopter blade is connected to one of the bearings by a flapping link.
When the swashplate has an inclination, the flapping link will glide along an inclined
plane, thus forcing the blade, which it is connected to, to flap up and down with a 1/rev
frequency.

The drawback of this modification is that the adjustment of the flapping mechanism
is laborious and the orientation of the swashplates (to achieve larger or smaller flapping
angles) can only be changed when the blades are not rotating [36]. However, the flapping
mechanism in itself is relatively simple.

Incorporating a mechanism capable of adjusting the orientation of the swashplates
while the blades are rotating would make the swashplate mechanism useful for a realistic
application, although it would be more complicated.
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Figure 2.17: The windtunnel test model with swashplate mechanisms [36]

The Gearwheel Mechanism

The gearwheel mechanism was introduced and used for the Ornicopter demonstrator.
The gearwheel mechanism was specifically designed for a four-blade rotor. However,
the basic concept of this mechanism could be applied to a rotor with a different number
of blades.

This mechanism has one or two sets of gearwheels, and each set consists of five
gearwheels in a planetary system, as shown in Fig. 2.18 (only one rotating gearwheel
is presented for clearance). This means that four of the gearwheels move around the
middle gearwheel. A more detailed design is presented in Fig. 2.19 [16].

From Fig. 2.19 it can be seen that the middle gearwheel is attached to a solid shaft
(the inner shaft) that is connected to the hull of the demonstrator model. The middle
gearwheel will stay locked in the same position with respect to the hull. The outer four
gearwheels are connected to the structure of the rotor head by smaller shafts. This
structure is connected to a main shaft (the outer shaft) that rotates at the same speed
as the normal rotor. This shaft is hollow, which allows the fixed shaft to run through.
The rotor head therefore rotates with a normal RPM. This means that the rotor head
structure and the four shafts of the outer gearwheels rotate around the fixed shaft with
a certain RPM, thereby forcing the outer gearwheels to rotate around the fixed, middle
gearwheel [36].

While the rotor is rotating, the rotating gearwheel will be driven by the fixed gear-
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Figure 2.18: Sketch of the gearwheel mechanism

Figure 2.19: Detailed design of the gearwheel mechanism [16]

wheel to rotate. This rotational motion is converted to a reciprocal motion by the
push-pull rod connected to the rotating gearwheel, and hence the blade will be forced
to flap, see Fig. 2.19. The entire upper structure of the mechanism is moveable along
the vertical axis. With this design, the vertical distance between the push -pull rod and
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the flapping hinge can be adjusted to get a desired forced flapping angle. The higher
the upper plate is, the smaller forced flapping angle will be generated.

The Eccentric Mechanism

The eccentric mechanism is designed for the double teeter configuration. As the name
suggests, this mechanism is placed at a certain distance from the rotor axis (the eccen-
tricity ‘e’), see Fig. 2.20. This mechanism consists of a cross, which can rotate around
its own axis. All the blades are attached to the cross through a spring.

Figure 2.20: Principle of the eccentric mechanism [16]

From Fig. 2.20 one can see that during one revolution, the spring will be stretched
(k=1) and compressed (k=3), and thus the blade will be forced to flap. Meanwhile,
the magnitude of the forced flapping can be controlled by adjusting the eccentricity (e).
Increasing the eccentricity will result in a larger forced flapping.

To apply this mechanism to the double teeter configuration, the two teeters are
mounted on top of each other, and the eccentric mechanism is added in between, as
shown in Fig. 2.21.

In Fig. 2.21, a spring will be stretched when the corresponding blade moves to the
right-hand side of the rotor shaft. This will generate a downwards flapping moment
on the top teeter, or a upwards flapping moment on the lower teeter. In this manner,
the two teeters will be forced to flap in opposite directions and form a double teeter
configuration.
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Figure 2.21: The eccentric mechanism for the double teeter configuration [16]

The Multiple Disc Mechanism

Similarly to the eccentric mechanism, this multiple disc mechanism also uses an eccen-
tricity, however in a slightly different way. Recalling Fig. 2.21, it can be found that in
the eccentric mechanism, two blades at opposite positions will be forced to flap in the
same TPP as a teeter rotor. To achieve the 2 × 2 AS configuration, multiple eccentric
mechanisms (multiple discs) are used as shown in Fig. 2.22.

Figure 2.22: Principle of the multiple disc mechanism [16]

In this mechanism, those discs will be separated into two groups, and the eccentric-
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ities of the two groups are in the opposite directions. In this manner, those two blades
shown in Fig. 2.22 will flap ant-symmetrically.

To obtain the actual 2 × 2 AS configuration which consists of four blades, a second
blade pair is connected to the first one by a diamond shaped frame, see Fig. 2.23. When
the first blade pair (blade 1 and 3) is pushed to flap up, the frame will pull the second
blade pair (blade 2 and 4) and force them to flap downwards. Thus the 2 × 2 AS
configuration can be formed.

Figure 2.23: Multiple disc mechanism for 2 × 2 AS configuration [16]

2.5.2 Insight of the Shaft Torque

In Section 2.4, the theoretical analyses show that the Ornicopter rotor can drive itself
to rotate by active flapping. However, for the flapping mechanisms introduced above,
the engine still provides torque on the rotor shaft, which causes a reaction torque on
the fuselage. This seems different from the fundamental of the Ornicopter concept. As
a matter of fact, the forced flapping mechanism will generate a torque on the fuselage
to counteract the reaction torque caused by the engine. Therefore the Ornicopter can
reach a torque-less state.

The swashplate mechanism (Fig. 2.5) can be used as an example, as shown in
Fig. 2.24. The push-pull rod slides on the force-flapping swash plate and drives the
blades to flap. The total force (N) between the swash plat and the rod is perpendicular
to the swash plat (friction is neglected). This force can be decomposed into a vertical
force (F1) and a horizontal force (F2). The F1 is the force that drives the blades to flap.
The F2 is the one that causes a torque on the forced flapping mechanism, and hence a
torque on the fuselage.
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Figure 2.24: Forces on the forced-flapping swash plate

It should be emphasized that the push-pull rod can move only within the force-
flapping swash plate, i.e. there is a bilateral constraint between the force-flapping
swash plate and the push-pull rod. For clarity of the figure, the detailed mechanism
designed to satisfy this bilateral constraint is not shown in Fig. 2.24.

These moments on the flapping mechanism and fuselage are internal moments for
the whole Ornicopter system. In the following, they will be discussed in a general
situation (see Fig. 2.25), in which the detailed design of the forced flapping mechanisms
is not relevant.

The Ornicopter rotor system includes three sections as shown in Fig. 2.25. There
are three external moments (only the rotation axis is considered) on the rotor system,
namely: the aerodynamic moment on the blades (MQ), the moment on flapping mech-
anism from the fuselage (MF2FM ), and the moment on the engine from the fuselage
(MF2Eng). Their positive directions are the same as the rotor rotation direction.

In the equilibrium condition, the following equation is valid:

MQ +MF2FM +MF2Eng = 0 (2.46)

The reaction moment on the fuselage (Mra) generated by the rotor system will be:

Mra = MFM2F +MEng2F

= −MF2FM −MF2Eng

= MQ

(2.47)

where MFM2F is the moment on the fuselage caused by the flapping mechanism and
MEng2F is the moment on the fuselage generated by the engine.

Equation 2.47 shows that the total moment on the fuselage (generated by the rotor
system) is the same as the aerodynamic moment on the rotor blades. As discussed
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Figure 2.25: Sketch of the Ornicopter rotor components

before, by active flapping, the Ornicopter rotor can drive itself to rotate, i.e. the aero-
dynamic moment on the rotor (in the rotation direction) is zero (MQ = 0). Therefore,
the whole Ornicopter rotor system will not generate a reaction moment (torque) on the
fuselage.

In the condition that MQ = 0, Eq. 2.46 can be rewritten as:

MF2FM = −MF2Eng (2.48)

This indicates that the forced flapping mechanism will generate a moment on the fuse-
lage in the opposite direction of the moment generated by the engine. In other words,
in the Ornicopter concept, the engine still provides a shaft torque and hence creates
a reaction torque on the fuselage (MEng2F ). This shaft torque (and hence the shaft
power) is converted into a flapping moment (flapping power) to drive the blades to
flap by the force flapping mechanism. During this conversion, a torque (MFM2F ) in
the opposite direction is generated on the fuselage to counteract the reaction torque
(MEng2F ).

While applying yaw control input in the Ornicopter (changing the flapping ampli-
tude), the MFM2F will be changed. Using Fig. 2.24 as an example, to increase the
forced flapping amplitude, the tilting angle (θ) should be increased. The larger flapping
amplitude also requires higher F1 to drive the blade. The combined effect will be a
higher F2 (F2 = F1 tan θ). This will change the total reaction torque on the fuselage
and create the desired yawing moment.

These moments, such as MF2FM and MF2Eng, are internal moments. They will
not affect the Ornicopter body motion dynamics. Therefore, the internal forces and
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moments in the Ornicopter rotor system will not be studied in this thesis. The external
forces and moments, i.e. the aerodynamic forces and moments on the Ornicopter rotor
will be the main interest. They will be derived in the next chapter for the flight
mechanics model.

2.5.3 Windtunnel Test

To prove his concept, in the 1930s Küssner conducted some windtunnel tests using the
model shown in Fig. 2.2. The test section is shown in Fig. 2.26.

Figure 2.26: Side-view of the test section of Küssner’s windtunnel test [11]

In his test, five different blade designs (such as the blade twist and airfoil) were tested
in hovering for different RPMs (revolutions per minute) and collective pitch angles. The
test results for blade design number five (V) will be presented in this section. This blade
design is based on the cambered Joukowski airfoil Gö-541 with 10% thickness and 5%
camber. The radius of the rotor is 0.5 m and the blade chord is 0.05 m.

Figure. 2.27 presents the rotor torque and engine torque as a function of the forced
flapping angle. It proves the feasibility of designing a single rotor without torque. The
torqueless condition is achieved at the forced flapping angle between 9 deg and 10.5 deg
(depending on RPM and collective pitch angle).

Windtunnel tests were also performed in 2004 at Delft University of Technology with
an Ornicopter model, depicted in Fig. 2.28 [32]. To simplify the model development, the
Vario Silence radio controlled helicopter was used as a starting point (rotor diameter:
1.5 m, number of blades: 2 (teeter rotor)) [3]. The forced flapping mechanism has been
added to this helicopter. The swashplate mechanism as seen in Fig. 2.17 was used for
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Figure 2.27: Variation of the rotor torque Ma and engine torque Mi with respect to the
forced flapping angle [11]

this wind tunnel test. In the double teeter configuration, the modified Ornicopter rotor
consists of four Vario blades with a rotor diameter equal to 1.65 m and a chord length
of 0.53 m.

Since the windtunnel model does not contain vibration absorbers or dampers, in
order to minimize the expected vibrations, the rotational speed of the rotor was kept
low during the tests (with blade tip Mach numbers varying from 0.0397 to 0.132).

Using this windtunnel model, a series of tests in hovering were performed for dif-
ferent collective pitch and forced flapping angles. The rotor thrust, torque and power
consumption were measured proving that the Ornicopter concept works.

Figure 2.29 [32] shows the relationship between the collective pitch input and the
torque on the fuselage (Mz) and thrust (T ). The flapping angle during this measurement
was set at 12 degrees (at the blade root) in the hover configuration. It can be seen that
the torque increases with absolute pitch, and, most importantly, that the torque on the
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Figure 2.28: The Ornicopter windtunnel model [32]

Ornicopter’s fuselage equals zero at -2.7 degrees and 3.5 degrees pitch. This shows that
it is possible to construct a single rotor without reaction torque. It also proves that both
positive and negative reaction torque on the fuselage can be achieved. This confirms
that the new means of helicopter yaw control is feasible, i.e. changing the main rotor
torque directly in both a positive and negative direction.

Figure 2.29: Rotor torque (Mz) and rotor thrust (T ) as a function of collective pitch
for a double teeter Ornicopter with twelve degrees of flapping [32]
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Figure 2.30 [32] shows the comparison between the rotor thrust with and without
the forced flapping. No noticeable impact can be found. The thrust response to the
collective pitch input of the Ornicopter is the same as in conventional helicopters.

Figure 2.30: Rotor thrust as a function of the collective pitch for the Ornicopter with
and without twelve degrees of flapping [32]

Figure 2.31 from reference [32] compares different forced flapping angles (i.e. maxi-
mum flapping angles). The figure shows that an increase in the flapping angle decreases
the torque on the fuselage. At the same time, for certain collective pitch angles, by ap-
plying different forced flapping angles, positive, negative and zero shaft torque can be
achieved. This is how the Ornicopter can be controlled in the yaw direction without a
tail rotor.

When the active flapping is set to zero, the windtunnel model can be used as a
conventional helicopter rotor. In this manner, the power consumptions of both the
Ornicopter and conventional helicopter configurations were measured and compared,
see Ref [32]. Figure 2.32 [32] shows the electric power input as a function of collective
pitch input, for a conventional helicopter and for Ornicopter configuration. It should
be noted that both curves differ by a constant value of 5 w.

This higher required power is partially caused by the friction in the flapping mecha-
nism. The windtunnel model has not been optimized for friction in the forced flapping
mechanism. A simple calibration showed that this friction consumed approximately 3
w to 5 w power [32]. Recalling Küssner’s test as shown in Fig. 2.27, it also shows an
increasing engine torque (i.e. engine power) with increasing forced flapping angle. Al-
though the preliminary theoretical analyses showed the Ornicopter concept requires the
same power as conventional helicopter rotors, windtunnel tests suggest this conclusion
may not be solid.

In conclusion, the windtunnel tests have shown that a single rotor without reaction
torque can be designed and that both a negative and positive reaction torque can
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Figure 2.31: Rotor torque as a function of the collective pitch for various flapping values
[32]

Figure 2.32: Power curves for a conventional helicopter and Ornicopter [32]

be deliberately introduced to provide yaw control. The tests also proved that the
thrust achieved by the Ornicopter is equal to the thrust achieved by a conventional
helicopter under the same circumstances. Additionally the tests demonstrated that only
modest flapping angles are needed to arrive at a torqueless state. Regarding the power
consumption, the windtunnel test showed higher required power for the Ornicopter.
In the next chapter, more detailed analyses will be performed regarding the power
efficiency of the Ornicopter.
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2.5.4 The Demonstrator Model

A demonstrator model was developed and tested in 2006 to further prove the Ornicopter
concept [15].

The Vario X-Treme [1] economic (max RPM 1500, rotor diameter 1.5 m, number
of blades 2) helicopter kit was chosen to be rebuilt as a Ornicopter demonstrator, see
Fig. 2.33 [15]. In this demonstrator, the gearwheel mechanism was applied, as shown
in Fig. 2.19. The two-bladed Vario rotor was replaced by the four bladed Ornicopter
rotor in the 2 × 2 AS configuration. The demonstrator model was tested on a 2 DoF
base (vertical and yaw motion freedom) [17, 31].

Figure 2.33: The Ornicopter demonstrator model [15]

The main goal of the demonstrator was to determine the lowest tip speed at which
the Ornicopter could be operated properly in hover conditions. A low tip speed is
important in order to limit the blade loads due to forced flapping. Proper operation in
this respect implies that the demonstrator model can generate an amount of thrust that
is at least sufficient for hover, and that the yaw motion can be fully controlled at this
thrust level. Unfortunately, due to some mechanism failures and financial difficulties,
the main goal of this test was not accomplished.

A secondary goal was to assess the yaw control response, in other words whether the
Ornicopter had a good control authority. The tests proved again that the Ornicopter’s
principle was valid. The stable torqueless state could be reached and the demonstrator
had good control authority in yaw in the test conditions. However, this conclusion was
mostly based on a qualitative assessment and visual observations of the yaw motion.



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 46 — #68
✐

✐

✐

✐

✐

✐

2

46 2 The Ornicopter Concept

2.6 Conclusion

In this chapter, the basic Ornicopter concept was first explained. The Ornicopter rotor
will not generate the reaction torque on the fuselage by actively flapping its blades,
and hence the anti-torque device is no longer needed. While longitudinal and lateral
cyclic control and collective control are achieved in exactly the same manner as in
a conventional helicopter, the Ornicopter’s yaw control authority can be achieved by
changing the amplitude of the active flapping.

Using a hovering rotor model, the feasibility of Ornicopter concept was proved.
Calculations have shown that the required flapping moment and flapping angle are
moderate, and this concept will not increase the required power of the helicopter ro-
tor. By choosing a proper flapping configuration, the active flapping can be decoupled
with the cyclic control. Therefore no additional control coupling will be introduced by
the Ornicopter concept. Besides the theoretical research, the windtunnel test and the
Ornicopter demonstrator model also confirmed that it is possible to reach a torqueless
state for the Ornicopter rotor and both positive and negative yaw control moment can
be generated.
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In the previous chapter, the Ornicopter concept was analysed using a hovering rotor
model. Analyses have been done for this concept regarding the required forced flapping
angle and moment, required power, controlling the Ornicopter and vibratory loads.

To extend the analyses for the Ornicopter to the entire flight envelope, a mathe-
matical model for the Ornicopter will be developed. For this purpose, in this chapter
a model for conventional helicopters is developed first and validated. Afterwards, it is
adapted for the Ornicopter concept.

This flight mechanics model is based on BET, as was the hovering rotor model
used in previous chapter. Moreover, it considers more details of the rotor and all the
components of the helicopter, such as the fuselage and stabilisers, and it can be used
for all flight conditions instead of only for hovering.

3.1 The Level of Modelling

The main rotor is the most important component of a helicopter, and the most difficult
one for modelling. The momentum theory can provide a basic understanding for the
rotor thrust and induced power. However, many details of the rotor are missing from
this method. The state of art CFD (computational fluid dynamics) program can predict
the flow field around the rotor, but demands high computational power. Between the
above two methods, the BET and wake analysis (prescribed or free) are more common
for flight mechanics models. Based on the different rotor complexity, three levels of
modelling can be defined for different application areas, as shown in Tab. 3.1 [10].

The main applications of the helicopter flight mechanics model in this thesis cor-
respond to the performance and handling qualities analyses within the flight envelope.
From Tab. 3.1, one can see that the Level 1 model is sufficient for this purpose. Al-
though its accuracy is inadequate for detailed rotor design, it is ideal for establishing a

47
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Table 3.1: Levels of rotor modelling [10]

Level 1 Level 2 Level 3
Aerodynamics linear 2-D dynamic inflow, lo-

cal momentum theory, ana-
lytically integrated loads

nonlinear (limited 3-D) dynamic
inflow, local momentum the-
ory, local effects of blade vor-
tex interaction, unsteady 2-D
compressibility, numerically inte-
grated loads

nonlinear 3-D full wake
analysis (free or prescribed),
unsteady 2-D compressibil-
ity, numerically integrated
loads

Dynamics rigid blades
(1) quasi-steady motion
(2) 3 DoF flap
(3) 6 DoF flap + lag
(4) 6 DoF flap + lag + quasi-
steady torsion

(1) rigid blades with options as in
Level 1
(2) limited number of blade elas-
tic modes

detailed structural represen-
tation as elastic modes or fi-
nite elements

Applications parametric trends for fly-
ing qualities and performance
studies, well within opera-
tional flight envelope, low
bandwidth control

parametric trends for flying qual-
ities and performance studies up
to operational flight envelope,
medium bandwidth, appropriate
to high gain active flight control

rotor design, rotor limit
loads prediction, vibration
analysis, rotor stability
analysis, up to safe flight
envelope
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fundamental understanding of the Ornicopter concept at this stage.
In this sense, a Level 1 classical 13 degrees of freedom (DoF) model will be first

developed for conventional helicopters. It is developed in-house and is based on blade
element theory. The model includes 6 DoFs for body motion, 3 DoFs for blade flapping
motion, 3 DoFs for the Pitt-Peters dynamic inflow model and 1 DoF for the tail rotor
inflow. In the following sections, this model will be referred as the DelCopter model.

3.2 The Generic Helicopter Flight Mechanics Model

- Delcopter

3.2.1 Assumptions

To simplify the DelCopter model and keep focus on the main problem at this stage,
some widely used assumptions and simplifications are implemented. The main assump-
tions and simplifications for different components of the helicopter are as follows:

For the main rotor:

1. Aerodynamic forces and moments are calculated using blade element theory;

2. The stall, compressibility effects and reversed flow effects are not considered;

3. The steady 2-D aerofoil model is adequate for the flight mechanics model. The
aerofoil lift force is a linear function of the local blade angle of attack (α) and the
drag force is a simple quadratic function of α, as:

CL = CLα
α

CD = CD0 + CD2 · α2
(3.1)

4. The blades are rectangular;

5. The blades are assumed to be rigid;

6. The blade lead-lag motion is neglected;

7. A constant tip loss factor is used (0.97);

8. The blade gravitational forces are small compared to the aerodynamic, inertial
and centrifugal forces;

9. Only the first order flapping motion is considered, i.e. the flapping angle is:

β = β0 + βs1 sin (ψ) + βc1 cos (ψ) (3.2)

10. The rotor blade has a uniform mass distribution;

11. The body motion acceleration is neglected in the blade flapping equation of mo-
tion;



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 50 — #72
✐

✐

✐

✐

✐

✐

3

50 3 The Ornicopter Model

12. The flapping and flow angles are small. Therefore, small angle approximations
can be applied, such as sinβ ≈ β and cosβ ≈ 1;

13. The rotor angular velocity is constant and is anticlockwise;

For the tail rotor:

1. A simplified rotor model is used for the tail rotor.

2. The flapping motion of the tail rotor blades is not considered.

3. A uniform inflow model is used for the tail rotor.

4. The torque generated by the tail rotor is neglected in the helicopter equations of
motion.

For the other components:

1. From the aerodynamic aspect, the fuselage is considered as an equivalent plate
that only generates drag force.

2. The pressure centre of the fuselage is assumed to be at the c.g., therefore the
fuselage will not generate any moment on the c.g..

3. The horizontal stabilizer and vertical fin are considered as lifting plates with a
constant lift coefficient slope. Drag forces generated by stabilizers are neglected.

4. The horizontal stabilizer and vertical fin are stationary. They do not have any
control surface for either conventional helicopters or Ornicopter.

5. Interactions between different helicopter components are not taken into account.

3.2.2 Reference Frame

To derive the helicopter flight mechanic model, several reference frames are defined,
including the body reference (b), non-rotating reference (nr), rotating reference (r),
flapping reference (β) and non-rotating reference of the tail rotor (tnr).

The body reference is the basic reference frame on the helicopter, which is fixed
in the helicopter. Its origin is at the c.g. of the helicopter. The orientation of its
coordinate axes is depicted in Fig. 3.1. The positive direction of the xb axis towards the
fuselage nose, and the positive zb directed downward. The positive yb axis is oriented
towards the right side of the helicopter.

The non-rotating references for both the main rotor and tail rotor are also defined,
see Fig. 3.1. Their origins are coincident with the centre of the main rotor and tail rotor
respectively. For the main rotor non-rotating reference, its znr axis is aligned with the
main rotor shaft and the xnr axis is in the shaft plane and towards forward. The ynr
axis is perpendicular with the yb axis. The tail rotator non-rotating reference is defined
in the same way, except that the ytnr axis is perpendicular to the zb axis.

The main rotor non-rotating frame can be obtained from the body frame by rotating
the body frame about the yb axis through the shaft tilt angle (αsh, positive for tilting
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Figure 3.1: Forces and moments on helicopters
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backwards). Similarly, rotating the body frame about the xb axis through π/2 results
in the tail rotor non-rotating frame. The transformation matrix can be written as:

Tb2nr =







cos (αsh) 0 − sin (αsh)

0 1 0

sin (αsh) 0 cos (αsh)







Tb2tnr =







1 0 0

0 0 −1

0 1 0







(3.3)

The main rotor rotating reference and flapping reference are defined as shown in
Fig. 3.2. As its name suggested, the rotating frame rotates with the main rotor. The
positive rotation direction is counter-clockwise (top view). It can be obtained by ro-
tating the non-rotating frame about the znr axis for (π − ψ). Afterwards, by rotating
this reference frame about the yr through the flapping angle (β, positive for flapping
upwards), one can get the flapping reference, which is fixed on the blade.

Znr

Xnr

Ynr

Yr

Xr

Zr

Xflap

Yflap

Zflap

Figure 3.2: The rotor hub reference

The transformation matrix between the different rotor references are as follows:

Tnr2r =







− cos (ψ) sin (ψ) 0

− sin (ψ) − cos (ψ) 0

0 0 1







Tr2β =







cos (β) 0 − sin (β)

0 1 0

sin (β) 0 cos (β)







(3.4)
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To distinguish between the vectors in the different reference frames, the notation
{V }{r} is defined. It indicates that the vector V is defined in the reference r. The
following notations are used for reference frames defined in this thesis:

• {b}: the body reference frame

• {nr}: the non-rotating reference frame

• {r}: the rotating reference frame

• {β}: the flapping reference frame

The coordinates of a vector in one reference frame can be converted into the coor-
dinates in another one by left-multiplying the transformation matrix. For example, to
convert the coordinate of V in the non-rotating reference ({V }{nr}) into the rotating
reference ({V }{r}), one can use:

{V }{r} = Tnr2r × {V }{nr} (3.5)

3.2.3 The Component Models

In order to develop the flight mechanics model for helicopters, different helicopter com-
ponents are first modelled, such as the main rotor, stabilizers and the inflow model.
The detailed derivations for all the components are presented in Appendix D.

The derivation includes the following two main parts. Firstly, the forces (X , Y ,
Z) and moments (L, M , N) generated by different components on helicopter c.g. are
derived. They will be used for the equation of body motion in the next section. Secondly,
the component dynamics are derived, including: the flapping dynamics (Eq. D.45),
the main rotor dynamics inflow model (Eq. D.66) and the tail rotor inflow dynamics
(Eq. D.67).

3.2.4 The System of Equations of Motion

With the forces and moments generated by the different components derived, the total
force and moment can be summed as:

X = Xmr +Xfus +Xg

Y = Ymr +Ytr +Yfus +Yfin +Yg

Z = Zmr +Zfus +Zhs +Zg

L = Lmr +Ltr +Lfin

M = Mmr +Mhs

N = Nmr +Ntr +Nfin

(3.6)

For the subscripts used in the above equation, mr refers to the main rotor, tr refers to
the tail rotor, fus refers to the fuselage, hs refers to the horizontal stabiliser, fin refers
to the vertical fin and g refers to the gravity.
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Those total forces and moments will be used for the Euler equations of the rigid-body
motion [10]:

u̇ =
X

Ma
+ rv − qw

v̇ =
Y

Ma
+ pw − ru

ẇ =
Z

Ma
+ qu− pv

(3.7)

ṗ =
Iz
I1
L+

Ixz
I1
N +

I2

I1
pq +

I3

I1
qr

q̇ =
M

Iy
+
Iz − Ix
Iy

pr +
Ixz
Iy

(

r2 − p2
)

ṙ =
Ixz
I1
L+

Ix
I1
N +

I4

I1
pq − I2

I1
qr

(3.8)

where u, v and w are transitional velocities of the helicopter, p, q and r are rotational
velocities of the helicopter, Ma is the mass of the helicopter, Ix, Iy and Iz are moments
of inertia of the helicopter, Ixz is the product of inertia of the helicopter, and I1 to I4

are defined as:

I1 = IxIz − I2
xz

I2 = Ixz (Ix − Iy + Iz)

I3 = IyIz − I2
z − I2

xz

I4 = I2
x − IxIy + I2

xz

(3.9)

Besides the equations above, the relationship between the change rate of the Euler
angles and the fuselage angular velocities in the body axis system is also needed. For
the specific rotation sequence used in this thesis, i.e. rotating through yaw, pitch and
roll in sequence, it has been derived as (p. 181 in Ref [10]):

p = Φ̇ − Ψ̇ sin(Θ)

q = Θ̇ cos Φ + Ψ̇ sin(Φ) cos(Θ)

r = −Θ̇ sin(Φ) + Ψ̇ cos(Φ) cos(Θ)

(3.10)

where Ψ is the yaw angle, Θ is the pitch angle and Φ is the roll angle. From Eq. 3.10,
the change rate of attitude angles can be derived as:

Ψ̇ = r
cos(Φ)

cos(Θ)
+ q

sin(Φ)

cos(Θ)

Θ̇ = q cos(Φ) − r sin(Φ)

Φ̇ = p+ r tan(Θ) cos(Φ) + q tan(Θ) sin(Φ)

(3.11)
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Combining the body motion dynamics (Eq. 3.7, 3.8 and 3.11) with flapping and
inflow dynamics (Eq. D.45, D.66 and D.67), the mathematical model for conventional
helicopters can be built in the form of a non-linear differential equation set, as:

Ẋ = F(X,U) (3.12)

where X is the state vector and U is the control input vector, as:

X = [Xb,Xλ,Xβ]
⊤

Xb = [u, v, w, p, q, r,Ψ,Θ,Φ]
⊤

Xλ = [λ0, λs1, λc1, λtr]
⊤

Xβ = [β0, βs1, βc1]
⊤

U = [θ0, θs1, θc1, θtr]
⊤

(3.13)

It should be noted that in a flight dynamics model, the flapping motion as seen from
the reference frame rotating with the blade should be represented in the non-rotating
reference frame which is fixed to the body. It is therefore essential to transform the
blade flapping equations to the body frame. This will result in 3 rotor states in the
non-rotating frame ([β0, βs1, βc1]

⊤) instead of 1 (β) in the rotating frame.

3.2.5 Model Linearisation

Thus far, a non-linear system of equations for a conventional helicopter has been de-
veloped. This will be used for further analyses, such as performance calculations and
flight simulations.

At a certain trim point, the non-linear model can be linearised based on Taylor
expansion. The linearised model has lower fidelity when compared with the non-linear
model. However, it provides a more fundamental understanding of the behaviour of the
helicopter, such as the stability derivatives and the natural modes of motion. In this
sense, the linearised model has been developed for stability analyses of the Ornicopter
concept. Using computer algebra software, derivatives of the complex non-linear
equations can be derived analytically. Thus a numerical differential algorithm is not
needed in this thesis.

The linearisation of the model with 6 body DoFs will be discussed in this section,
and the same method can be applied to a model with more DoFs.

For the model only including the body DoFs, the non-linear system EoM can be
written in the vector form as:

Ẋ = F (X,U) (3.14)

where:

X = [u, v, w, p, q, r,Ψ,Θ,Φ]
⊤

U = [θ0, θs1, θc1, θyaw]
⊤

(3.15)
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Using the first order Taylor expansion, the above non-linear system can be rewritten
in the perturbation form as:

Ẋ = F (X0,U0) +
∂F

∂X
(X − X0) +

∂F

∂U
(U − U0) + ∆ (3.16)

where X0 and U0 is the initial condition and ∆ is the approximation error.
Choosing a equilibrium condition as the linearisation condition, i.e. F (Xe,Ue) = 0

and neglecting the approximation error, one can get the linearised model as:

Ẋ = AδX + BδU (3.17)

where δX and δU is the perturbation of the state and control from the equilibrium
condition, and the state matrix A and control matrix B is given by

A =

(

∂F

∂X

)

X=Xe,U=Ue

B =

(

∂F

∂U

)

X=Xe,U=Ue

(3.18)

The elements in matrix A and B are calculated as

Aij =
∂Fi
∂Xj

Bij =
∂Fi
∂Uj

(3.19)

Recalling the system EoMs derived before (Eq. 3.7, 3.8 and 3.11), the state matrix
A and control matrix B can be derived, see Eq. 3.20 and 3.21.
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A =





































































































Xu Xv Xw Xp Xq − we Xr + ve 0 −g cos Θe 0

Yu Yv Yw Yp + we Yq Yr − ue 0
− g sin Φe

· cos Θe

g cos Φe

· cos Θe

Zu Zv Zw Zp − ve Zq + ue Zr 0
− g cos Φe

· sin Θe

− g sin Φe

· cos Θe

k1Lu

+ k2Nu

k1Lv

+ k2Nv

k1Lw

+ k2Nw

k1Lp

+ k2Np

k1Lq

+ k2Nq

k1Lr

+ k2Nr
0 0 0

Mu Mv Mw Mp Mq Mr 0 0 0

k3Lu

+ k1Nu

k3Lv

+ k1Nv

k3Lw

+ k1Nw

k3Lp

+ k1Np

k3Lq

+ k1Nq

k3Lr

+ k1Nr
0 0 0

0 0 0 0 sin Φe

cos Θe

cos Φe

cos Θe
0 0 0

0 0 0 0 cos Φe − sin Φe 0 0 0

0 0 0 1 tan Θe sin Φe tan Θe cos Φe 0 0 0





































































































(3.20)
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B =



































































































Xθ0
Xθs1

Xθc1
Xθyaw

Yθ0
Yθs1

Yθc1
Yθyaw

Zθ0
Zθs1

Zθc1
Zθyaw

k1Lθ0

+ k2Nθ0

k1Lθs1

+ k2Nθs1

k1Lθc1

+ k2Nθc1

k1Lθyaw

+ k2Nθyaw

Mθ0
Mθs1

Mθc1
Mθyaw

k3Lθ0

+ k1Nθ0

k3Lθs1

+ k1Nθs1

k3Lθc1

+ k1Nθc1

k3Lθyaw

+ k1Nθyaw

0 0 0 0

0 0 0 0

0 0 0 0



































































































(3.21)

where

k1 =
IxIz

IxIz − I2
xz

k2 =
IzIxz

IxIz − I2
xz

k3 =
IxIxz

IxIz − I2
xz

(3.22)

The derivatives of the forces and moments in the equations above can be expressed
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in semi-normalized form as follows:

Xx =
∂X/∂x

Ma
(
1

s
,

m

rad · s or
m

rad · s2
)

Yx =
∂Y/∂x

Ma
(
1

s
,

m

rad · s or
m

rad · s2
)

Zx =
∂Z/∂x

Ma
(
1

s
,

m

rad · s or
m

rad · s2
)

Lx =
∂L/∂x

Ix
(
rad

m · s,
1

s
or

1

s2
)

Mx =
∂M/∂x

Iy
(
rad

m · s ,
1

s
or

1

s2
)

Nx =
∂N/∂x

Iz
(
rad

m · s ,
1

s
or

1

s2
)

(3.23)

where x ∈ {u,w, v}, {p, q, r} or {Ψ,Θ,Φ, θ0, θs1, θc1, θyaw}.

3.2.6 The Control System

The Stability and Control Augmentation System

A stability and control augmentation system (SCAS) can be used to improve the heli-
copter handling qualities characteristics and reduce pilot workload. To investigate the
impact of a SCAS system on handling qualities, a generic SCAS model is added to the
DelCopter model.

The simple attitude and rate feedback algorithm is used in the longitudinal, lateral
and yaw axes. This SCAS system can be written as follows:

θ0 = θin0

θs1 = θins1 +Kqq +KΘδΘ

θc1 = θinc1 +Kpp+KΦδΦ

θyaw = θinyaw +Krr +Kvδv

(3.24)

where: θin0 , θins1 , θinc1 and θinyaw are the control input from the pilot, Kq, Kp, and Kv are
the rate/velocity feedback gains, KΘ and KΦ are the attitude feedback gains, and δΘ,
δΦ and δv are perturbations of the pitch/roll attitude and side-slip velocity.

This SCAS system can also be written in the matrix format as:

U = Uin + KX (3.25)

This SCAS model will be added to the linearised helicopter model (Eq. 3.17) together
with an actuator model described in the following section.
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The Actuator Model

Equation 3.25 defines the control signal generated by the SCAS system. These controls
will be sent to the actuation system to finally apply the desired controls to the main
rotor, as well as to the tail rotor for conventional helicopters.

The response of the actuation system is fast and it should be negligible for low
frequency or smooth control input. However, for high frequency or rapid control input,
such as a step input, the dynamic characteristics of actuators should be taken into
account. Therefore, a first order actuator model is added to the DelCopter model.

The first order actuator model is defined as:

τU̇act = U − Uact (3.26)

where: U is a certain control input to the actuator system, τ is the corresponding time
constant of the actuator, Uact is the output of the actuator (which is the final control
applied to the main rotor or tail rotor), and U̇act is the actuator motion rate.

In matrix form, the actuator model can be written as:

U̇act = AactUact + BactU

Bact =















1
τcol

0
1

τlong

1
τlat

0 1
τyaw















Aact = −Bact

(3.27)

where τcol, τlong, τlat and τyaw are time constant of actuators for collective pitch, lon-
gitudinal cyclic, lateral cyclic and yaw control respectively. The time constants values
used in this thesis are shown in Table 3.2.

Table 3.2: Time constants of the actuator

Actuator time constants (sec)

τcol τlong τlat τyaw

Bo-105 0.04 0.04 0.04 0.02

Ornicopter 0.04 0.04 0.04 0.04

Since the actuator model introduces new dynamics into the system, the state-space
model needs to be extended. Combining the bare model (Eq. 3.17) and Eq. 3.27, one
can get:

Ẋ = AX + BUact

U̇act = AactUact + BactU
(3.28)
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Substituting Eq. 3.25 into Eq. 3.28, the extended state-space model can be derived
as:

Ẋ = AX + BUact

U̇act = AactUact + Bact

(

Uin + KX
) (3.29)

X∗ =

[

A B

BactK Aact

][

X

Uact

]

+

[

0

Bact

]

Uin (3.30)

where X∗ is the extended state vector as

X∗ =

[

Ẋ

U̇act

]

(3.31)

Time Delay

So far, the new linearised model with a simple SCAS system and the first order actuator
model have been derived.

Between the pilot control input and the control signal received by the SCAS, a time
delay also exists. To simplify the model, constant time delays are applied, and it is
assumed that all the control channels have the same time delay.

To model this time delay, the state-space model (Eq. 3.30) is transferred into the
transfer functions as:

X∗(s) = H(s)Uin(s) (3.32)

where H(s) is the transfer function matrix.
By multiplying one term for the time delay, the system with a constant time delay

is
X∗(s) = H(s)e−τsUin(s) (3.33)

where τ is the time delay. In this thesis, a common value (200 ms [29]) is used for all
the controls of both the Ornicopter and Bo-105 helicopters.

3.3 Validation for the Generic Helicopter Model

3.3.1 The Trim

Trim values at different flight velocities are calculated using the DelCopter model and
compared with flight test data. The results are shown in Fig. 3.3.

Figure 3.3 shows a comparison between a flight test and the theoretical model for
four control inputs and two attitude angles for the Bo-105. It can be found that the
model developed in this thesis has good accuracy with regard to collective pitch and
longitudinal direction.

In the low speed region (forward velocity lower than 50 knots), the inflow increases
the left cyclic control required, revealing a failing in the simple trapezoidal model of
longitudinal inflow [10], as shown in Fig. 3.3. Also, the roll angle (Φ) is underestimated
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Figure 3.3: Trim values for the Bo-105

by the model, possibly caused by the fact that in this Level 1 model, the cross coupling
between pitch and roll cannot be predicted very well. The tail rotor pitch is also usually
under-predicted as a combined result of missing tail rotor losses and under-predicted
main rotor torque, most noticeably at high speed [10].
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3.3.2 The Main Rotor Torque

Figure. 3.4 shows the main shaft torque of the Bo-105, which has the characteristic
bucket profile as a function of forward speed. At high speed, non-linear rotor aerody-
namic terms have a large effect on the collective pitch and power required, leading to
gross errors with the simplified Level 1 modelling [10].
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Figure 3.4: Main rotor torque of the Bo-105

3.3.3 The Dynamic Response

Besides the trim values and the shaft torque, in this thesis, the dynamic response of the
helicopter to different control inputs are also used for model validation. Comparisons
between test data and simulation for one test case are presented in Fig. 3.5. More
comparisons for different test cases can be found in Appendix B:

Flight tests were conducted for all four control inputs of the helicopter. From the
comparisons between the flight test and the numerical simulation, one can find that
the theoretical model can predict the primary responses of the helicopter with good
accuracy, especially in the yaw axis and the vertical direction. The longitudinal response
to collective pitch input and lateral response to yaw input can be captured by the model.
However, the pitch-roll cross coupling is missing from the simulation result, which is
also a well known problem for the Level 1 model.

Comparisons in this section show that the DelCopter model can present the main
characteristics of the helicopter. In the trim calculation, the main controls (collective
and longitudinal inputs) can be captured with good accuracy. The main rotor shaft
torque is underestimated with acceptable errors for concept analyses and conceptual
design. Regarding the dynamic characteristics of the helicopter, the primary responses
of the helicopter to different control inputs are well predicted by the model.

In the next chapter, this model will be used for different analyses. The main tasks
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Figure 3.5: Flight test No. 9: positive longitudinal 3-2-1-1 input

will be the flight envelope prediction (which requires the trim calculation and power
estimation), as well as the stability, controllability and handling qualities analyses (cor-
responding to the dynamic characteristics of the helicopter). the above comparison
showed that the DelCopter model is valid for the research of this thesis.

3.4 Adaptations of the Delcopter to the Ornicopter

Model

The DelCopter model was developed and validated in sections 3.2 and 3.3. This section
will present the adaptations needed to develop the Ornicopter concept model, the so-
called ‘ORNIcopter’ model.
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3.4.1 The Forced Flapping Mechanism

The Ornicopter blades are driven by the forced flapping mechanism, as shown in Fig. 3.6,
which is similar to the hovering rotor model for the Ornicopter used in Chapter 2 (see
Fig. 2.14). In the Ornicopter flight mechanics model, the hinge offset is considered for
a more generic blade configuration.

β

Force Flapping 

Mechanism
Rotor Shaft

Offset Hinge

Spring

Blade
dT

Ω η Mff

Figure 3.6: The blade hinge configuration of the Ornicopter

The flapping moment about the hinge generated by the forced flapping mechanism
is:

Mff (ψ) = Kβ (η (ψ) − β (ψ)) (3.34)

This moment will be used in the flapping EoM of the blade to calculate the blade
motion, as well as the pitch and roll hub moments.

3.4.2 The Flapping Equation of Motion

The forced flapping mechanism generates a flapping moment on each Ornicopter blade,
and hence, additional terms need to be added to the flapping equation of motion.

Recalling the Lagrangian equation (Eq. D.32), the generalized force for the Orni-
copter is:

Qβ = Maero +Mff (3.35)

and the kinetic energy of the blade for the Ornicopter is the same as that for conventional
helicopters.

Substituting the forced flapping moment into the Lagrangian equation, one can
derive three flapping equations for the Ornicopter, which is similar to those of a con-
ventional helicopter model:

Mβ
~̇β + Aβ

~β + Nβ + bβ + bβff = 0 (3.36)

where Mβ , Aβ , Nβ and bβ are the same as those for a conventional helicopter (see
Eq. D.45), and bβff is the additional term introduced by the forced flapping moment,
as:

bβff = −K̄β

γ
[0, ηs1, ηc1]

⊤ (3.37)
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where K̄β is the normalized flapping, as:

K̄β =
Kβ

Ω2Iβ
(3.38)

Similarly to the hub forces and moments mentioned above, flapping equations are
identical for each blade in conventional helicopter models. In the case of the Orni-
copter, different equations can be derived for different blades, and the calculation for
the flapping motion needs to be done Nb times in each interval.

The total number of flapping states and flapping equations of motion increase to
3 ×Nb for the Ornicopter. The flapping state vector is therefore:

Xβ,Orni =
[

β
(1)
0 , β

(1)
s1 , β

(1)
c1 , . . . , β

(Nb)
0 , β

(Nb)
s1 , β

(Nb)
c1

]⊤

(3.39)

3.4.3 The Forces and Moments Generated by One Blade

For the DelCopter model, the forces and moments generated by one blade are derived,
including: three hub forces (Ts, Hs, Ss), three hub moments (Mxs, Mys, Mzs), two
aerodynamic moments for inflow model (M1s, M2s) and the first order harmonic com-
ponents of thrust force (Tss1, Tsc1) (see Eq. D.68 to D.75).

These forces and moments in the case of the Ornicopter are the same as for con-
ventional helicopters, with the exceptions of pitch/roll hub moments (Mxs, Mys). This
does not mean that the Ornicopter rotor will have the same characteristics as con-
ventional helicopter rotors. The impacts of the Ornicopter concept on hub forces and
aerodynamic moments are embedded in the flapping motion of the blades (~β).

Due to the flapping moment generated by the forced flapping mechanism, the hub
moments generated by the Ornicopter blades are different from those of conventional
helicopters. Additional terms need to be added, as:

M
(k)
xs,Orni = M (k)

xs +
1

2
Kβη

(k)
s1

M
(k)
ys,Orni = M (k)

ys +
1

2
Kβη

(k)
c1

(3.40)

where M (k)
xs and M

(k)
ys are hub moments derived for conventional helicopters as shown

in Eq. D.26, with the flapping motion of the blade replaced by the coefficients for the
kth blade of the Ornicopter.

3.4.4 The Total Hub Forces and Moments

It is assumed that all the blades of a conventional helicopter work identically and hence
generate the same hub forces and moments. In the case of the Ornicopter, each blade
is forced to flap differently, as discussed in Chapter 2. In this sense, each blade should
be calculated separately with respect to the flapping motion, aerodynamic forces and
moments, and hub forces and moments. Afterwards, these forces and moments can be
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summed up for the total hub forces and moments, i.e.:

Tmr =

Nb
∑

k=1

Ts(~β
(k)) (3.41)

Similarly, calculating the roll hub moment of the Ornicopter rotor, one can obtain:

Mx,Orni =

Nb
∑

k=1

M
(k)
x,Orni

=

Nb
∑

k=1

M (k)
x +

1

2
Kβ

Nb
∑

k=1

η
(k)
s1

=

Nb
∑

k=1

M (k)
x +

Nb
2
Kβ η̄s1

=

Nb
∑

k=1

M (k)
x

(3.42)

Recalling Eq. A.35 and the discussions in Section 2.4.4, the average flapping coeffi-
cients of the forced flapping mechanism (η̄s1 and η̄c1) should be zero to avoid introducing
an additional titling angle of the average tip-path plane. In this sense, the motion of the
forced flapping mechanism will not generate rotor hub moments, as shown in Eq. 3.42.

3.4.5 The Tail Rotor and Yaw Control

As the tail rotor is not needed for the Ornicopter, the force and moments generated by
the tail rotor are removed from the generic flight mechanics model, as well as the inflow
model for the tail rotor shown in Eq. D.67. The inflow state vector becomes:

Xλ,Orni = [λ0, λs1, λc1]
⊤ (3.43)

The yaw control of the Ornicopter is achieved by varying the amplitude of the
forced flapping motion. Therefore, the amplitude of the forced flapping mechanism
motion (θff ) replaces the pitch control of the tail rotor in the control input vector U,
as:

UOrni = [θ0, θs1, θc1, θff ]
⊤ (3.44)

3.5 Validation of the Ornicopter Model

To prove that the assumptions made are correct at this stage of design, the ORNIcopter
model discussed above is validated against the test conducted by Küssner, which has
been described in Section 2.5.3. Two test cases using the blade design number five (V)
are used for the model validation. The rotor was tested in the hovering condition with
different RPMs.
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The propulsive shaft torque is extracted from the rotor torque data (Ma in Fig. 2.27).
This is done by subtracting the rotor torque without active flapping (β̂ = 0) from all
the rotor torque data. Afterwards, the processed data is compared with the theoretical
prediction, as shown in Fig. 3.7.

Figure 3.7: Propulsive torque as a function of the amplitude of flapping motion

From Fig. 3.7, it can be found that the theoretical prediction can match the test data
with reasonable accuracy, especially for the test with high RPM. Decreasing the RPM
reduces the accuracy of the model. The general trend of the propulsive shaft torque
can be predicted. However, the propulsive torque is underestimated by the theoretical
model and the difference between the test data and model prediction increases while
a higher amplitude of flapping motion is applied. In the low RPM test condition, the
test rotor encounters a low Re number close to the region where the lift enhancement
caused by the LEV is essential for flapping wings [25]. This might be the reason causing
the under-predicted propulsive torque.

3.6 Conclusion

In conclusion, in this chapter, a Level 1 flight mechanics model is developed for con-
ventional helicopters (the DelCopter model). It is an in-house classical 13 DoF flight
mechanics model, including 6 DoF rigid body dynamics, 3 DoF blade flapping dynam-
ics, 3 DoF main rotor inflow dynamics and 1 DoF tail rotor inflow dynamics. It also
includes a simple SCAS, actuator model and control time delay. The model is validated
against flight test data. Comparisons show that the model has good accuracy as a Level
1 model. After validation, the model is adapted for the Ornicopter concept to develop
the Ornicopter flight mechanics model. The ORNIcopter model is compared with the
windtunnel test in hovering condition. This shows that for the high RPM test case, the
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ORNIcopter model can predict the propulsive torque (generated by the active flapping)
with good accuracy.
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4
Concept Analyses and

Comparisons

4.1 Introduction

In Chapter 2, preliminary analyses for the Ornicopter concept were performed regarding
the required forced flapping amplitude and flapping moment, as well as rotor hub forces
and moments. Those analyses are limited to hovering using a simple Ornicopter rotor
model.

In this chapter, the Ornicopter research is extended to various aspects in the forward
flight condition. Using the Ornicopter flight mechanics model developed in Chapter 3,
the Ornicopter concept will be analysed and compared with the conventional Bo-105
helicopter with respect to trim values, required power, flight envelope, autorotation,
stability and controllability, handling qualities and vibrations. The comparisons will
pinpoint the advantages and disadvantages of this concept. The reasons for these dif-
ferences between the Ornicopter and conventional helicopters will be explored to provide
further understanding of the Ornicopter concept.

In this chapter, all the Ornicopter design parameters will be kept the same as the
baseline helicopter. As mentioned before, the conventional helicopter used as the base-
line design is the Bölkow Bo-105.

4.2 The Trim Analysis

Using flight mechanics models, numerical algorithms can be applied to search the re-
quired control inputs and fuselage attitude angles (the trim values) to reach an equilib-
rium state in certain flight conditions. In this section, the trim values of the Ornicopter

71
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and Bo-105 in level forward flight (standard sea level conditions) are calculated and
compared. Figure 4.1 presents the trim values (four control inputs and two attitude
angles) of the Ornicopter and Bo-105 as a function of forward flight speed.
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Figure 4.1: Trim values of the Ornicopter and Bo-105 in forward flight

From Fig. 4.1, one can see that the Ornicopter and Bo-105 have very similar trim
values for collective pitch control, cyclic pitch controls and the fuselage pitch angle,
which indicates similar characteristics for the Ornicopter rotor and conventional heli-
copter rotor with respect to generating thrust and hub moments. The main differences
in the trim values between the Ornicopter and Bo-105 appear at the yaw control input
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and the roll attitude angle.
The yaw control of the Ornicopter refers to the forced flapping mechanism motion,

which is different from conventional helicopters. Despite this, the yaw control of the
Ornicopter has a similar trend to that of the Bo-105. Both helicopters have a typical
bucket shape for the yaw control due to the bucket-shaped collective pitch control input,
i.e. the rotor shaft torque. At high forward speed, the required tail rotor collective pitch
angle increases more gently than the Ornicopter yaw control. This is caused by the fact
that the increasing air speed also increases the thrust generated by the tail rotor (see
Eq. D.46). In the case of the Ornicopter, the forward flight speed is less influential on
the propulsive moment generated by the Ornicopter rotor. In this sense, the Ornicopter
yaw control needs to increase faster than the Bo-105 yaw control when the flight velocity
is increasing.

The roll angle of the Ornicopter in trimmed flight is smaller than that of the Bo-105.
This is caused by the absence of the tail rotor. The tail rotor generates a side force
that needs to be balanced by tilting the thrust of the main rotor to the left (the main
rotor rotates counter-clockwise), and hence causes a negative roll angle. Because the
tail rotor, and hence the side force, no longer exists for the Ornicopter, the Ornicopter
main rotor does not need to tilt to the left. Therefore, the roll angle of the Ornicopter
is smaller than that of conventional helicopters, which is a favourable change caused by
the Ornicopter concept. For the same reason, the lateral cyclic control of the Ornicopter
in trimmed flight is also lower than that of the Bo-105.

For the collective pitch control, longitudinal cyclic control and pitch attitude angle,
the Ornicopter has almost identical trim values as those of the Bo-105 at low fight
velocity. Increasing the flight speed results in slightly increasing differences between the
Ornicopter and Bo-105. The reason for this is the higher hub horizontal force (H) in
the case of the Ornicopter. To balance this higher hub force, slightly higher rotor thrust
is required, and the rotor needs to tilt further forward, resulting in a higher collective
pitch, longitudinal cyclic control and nose-down pitch angle for the Ornicopter.

One simple example can be used to explain the higher horizontal force (H) of the
Ornicopter, see Fig. 4.2. Two blades are considered in this case, of which one is tilting
forward (TPP 1) and the other backward (TPP 2). As they are not in the shaft plane,
their thrust forces (T1 and T2) can be decomposed into horizontal forces (H1 and H2).

The inflow conditions for the two blades are different due to the different tilting
directions. As the blade 1 tilts forward, the incoming airflow (U∞) has a larger impact
on its thrust (T1) due to the higher air flow perpendicular to the tip-path plane (ui).
In this sense, the thrust generated by blade 1 is smaller than that of blade 2, and hence
blade 2 generates a higher horizontal force (H2 > H1).

This effect becomes stronger with increasing amplitude of the forced flapping. This
additional horizontal force will not be generated if the active flapping is not applied,
i.e. for a conventional helicopter. Therefore, the Ornicopter rotor generates a higher
horizontal hub force (H) than in a conventional helicopter rotor.

The amplitude of the flapping motion of the Ornicopter blades required for steady
forward flight is also calculated using the Ornicopter flight mechanics model, as shown
in Fig. 4.3. The curve shows the bucket shape typical for the required power curve for
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Figure 4.2: Hub horizontal force (H) of the Ornicopter in forward flight

helicopters in forward flight. This is caused by the fact that the required flapping am-
plitude is associated with the shaft torque, which is proportional to the required power
(assuming the rotor RPM is constant). This calculation confirms that the Ornicopter
only requires a modest flapping motion (less than 9o) to generate enough propulsive
torque (in order to compensate for the shaft torque).
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Figure 4.3: Average flapping amplitude of the Ornicopter blades as a function of forward
velocity

One may have noticed that the flapping amplitude predicted by the hovering rotor
model (see Eq. 2.34 in Section 2.4.2) is lower than the result from the Ornicopter flight
mechanics model. This is caused by the relatively simple aerodynamic model used for
the aerofoil in hovering, which has lower fidelity than the Ornicopter flight mechanics
model. (In the hovering rotor model of the Ornicopter, a constant Cd is used for the
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blade element, while a quadratic function is used for the flight mechanics model as
shown in Eq. 3.1.)

As discussed before, the active flapping of Ornicopter blades introduces a large
variation in the blade element angle of attack. As in the flight mechanics model, the
aerofoil profile drag is non-linear with regard to the AoA, and increasing the AoA
variation will also increase the average profile drag of the blade element, as shown in
Fig. 4.4. Therefore, the profile power of the Ornicopter rotor in hovering predicted by
the flight mechanics model is higher than the values obtained with the hovering model.
In this sense, a slightly higher amplitude of forced flapping (about 0.50) is required to
generate enough propulsive force (see Fig. 4.3 and Eq. 2.34).

Figure 4.4: Higher average Cd with a larger AoA variation

4.3 Efficiency and Required Power

In this section the efficiency and the required power of the Ornicopter will be analysed
and compared with the Bo-105 helicopter.

4.3.1 Power Calculation

The required power for conventional helicopters can be calculated as:

P = QmrΩmr +QtrΩtr

= Pmr + Ptr
(4.1)

where Qmr is the main rotor shaft torque, Ωmr is the main rotor rotational velocity,
Qtr is the tail rotor shaft torque, Ωtr is the tail rotor rotational velocity, Pmr is the
main rotor power consumption, and Ptr is the tail rotor power consumption.
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For the Ornicopter, blades are forced to flap and drive themselves to rotate. There-
fore, the required power is consumed by the forced flapping mechanism. Recalling
Eq. 3.34 and Fig. D.1, the moment required to drive the forced flapping mechanism
will be the same as the forced flapping moment on the blade (Mff ), if the mass of
the forced flapping mechanism is neglected. The instantaneous power consumed by the
mechanism will be:

Pff (ψ) = Mff (ψ)η̇(ψ) (4.2)

where η̇(ψ) is the angular velocity of the forced flapping mechanism:

η̇(ψ) =
dη(ψ)

dt
= ηs1Ω cos(ψ) − ηc1Ω sin(ψ)

(4.3)

Substituting Eq. 3.2 and 3.34 into Eq. 4.2 results in:

Pff (ψ) =Kβ [(ηs1 sin (ψ) + ηc1 cos (ψ)) − (β0 + βs1 sin (ψ) + βc1 cos (ψ))]

× (ηs1Ω cos (ψ) − ηc1Ω sin (ψ))

=
1

2
KβΩ[βc1ηs1 − βc1ηs1 + 2β0 (ηc1 sin (ψ) − ηs1 cos (ψ))

+
(

η2
s1 − η2

c1 − βs1ηs1 + βs1ηc1
)

sin (2ψ)

+ (ηs1ηc1 − βs1ηc1 + βc1ηs1) cos (2ψ)]

(4.4)

The average power consumption can be calculated by integrating through the az-
imuth angle:

P̄ff =
1

2π

∫ 2π

0

Pff (ψ) dψ

=
1

2
KβΩ (βc1ηs1 − βc1ηs1)

(4.5)

As introduced before, the Ornicopter rotor can propel itself (to rotate). In other
words, the propelling force generated by the active flapping motion can compensate for
the resistant torque on the rotor (induced torque and profile torque).

In hovering, the total rotor torque should be zero to reach the equilibrium state.
This indicates that no addition power is required to rotate the rotor except for the
forced flapping power derived above. However, this is not necessarily true in forward
flight. In forward flight, especially at high speed, the vertical fin can generate a yaw
moment to compensate for a part of the main rotor torque. In this sense, the main rotor
torque does not need to be zero. Due to the nonzero rotor torque, additional power is
required to rotate the rotor, as:

Pr = QOrnimr Ωmr (4.6)

where Pr is the power consumed by the rotor torque and QOrnimr is the main rotor torque
of the Ornicopter rotor.
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Similarly to the rotor hub forces, the active flapping power should be calculated for
each Ornicopter blade separately, resulting in the required power for the Ornicopter as:

P (Orni) =

Nb
∑

k=1

P̄
(k)
ff + Pr (4.7)

where P̄ (k)
ff is the average flapping power consumption for the kth blade.

4.3.2 The Figure of Merit

The Figure of Merit (FM) is defined as the ratio of the ideal power required to the
actual power required of a hovering rotor, as shown in Eq. 4.8 [21]. It can be used as
an indicator for how efficient the rotor is.

FM =
Ideal power required to hover

Actual power required to hover
< 1 (4.8)

The ideal power is given by the momentum theory as [21]:

Pideal =
C

3/2
T√
2

(4.9)

and the actual required power is calculated by the DelCopter model using Eq. 4.1 (for
the Bo-105) or the Ornicopter flight mechanics model using Eq. 4.7 (for the Ornicopter).

Figure 4.5 shows the Figure of Merit for the Bo-105 and the Ornicopter rotor as
a function of thrust coefficient. It should be mentioned that the Ornicopter rotor
is trimmed first for the nought shaft torque condition before the Figure of Merit is
calculated.

One can find out that the Figure of Merit of the Ornicopter is lower than that of
the Bo-105 (around 8% lower when CT = 0.01), i.e. the Ornicopter rotor is less efficient
than the Bo-105 rotor. With increasing thrust coefficient, the difference between the
two rotors increases.

The ideal power required for the Bo-105 and Ornicopter are identical for the same
thrust coefficient. The lower efficiency of the Ornicopter rotor is caused by the higher
blade profile power consumption.

As discussed before, the active flapping of the Ornicopter blades increases the av-
erage Cd of the blade elements. Therefore, the Ornicopter rotor consumes more profile
power than a conventional helicopter rotor. Increasing the thrust coefficient results in
a higher flapping amplitude needed to compensate for the higher shaft torque. Hence,
a larger variation of AoA is introduced, which further increases the profile power con-
sumption of the Ornicopter rotor. This causes the increasing difference between the
Bo-105 main rotor and Ornicopter main rotor in terms of hovering efficiency.

4.3.3 Required Power

The calculation performed above shows the Ornicopter is less efficient than the Bo-
105. However, the Figure of Merit does not take the tail rotor power consumption into
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Figure 4.5: Figure of Merit predictions for the Bo-105 and Ornicopter rotor

account. The power consumed by the tail rotor is a relatively large portion of the total
required power for conventional helicopters, especially in hovering. For the Figure of
Merit calculation, the Ornicopter rotor has been trimmed for the nought shaft torque
condition, and therefore no additional power is required for the Ornicopter.

For a more comprehensive comparison of the required power between the Ornicopter
concept and the Bo-15, more detailed analyses are performed. The required power for
the Ornicopter and Bo-105 helicopters is calculated as a function of the forward velocity,
see Fig. 4.6. The required power is normalized by the Bo-105 total power requirement
(power requirement for both main rotor and tail rotor), in order to have a more clear
view of the different required power between the two helicopters.

While looking at the power required by the main rotor (curves a and b in Fig. 4.6),
one can find that the Bo-105 main rotor is more efficient and needs less power than the
Ornicopter rotor, as the Figure of Merit shows. This is the penalty that comes with
flapping the blades in the Ornicopter concept. However, the tail rotor also consumes
power in the case of conventional helicopters. The overall efficiency of the Ornicopter
is slightly lower than that of the Bo-105. At low velocity, the total required power is
slightly higher for the Ornicopter than the Bo-105 (about 1%). With increasing flight
speed, the difference in power requirement between the Ornicopter and Bo-105 also
increases slightly, and reaches approximately 3% at the maximum speed. Therefore,
overall, there will not be a large increase in required power for the Ornicopter.

The statement has been made that the Ornicopter is more efficient than conventional
helicopters due to the absence of a tail rotor [37]. The above calculation indicates
different results. This is caused by the different aerofoil models, as mentioned in the
trim analyses (Section 4.2).

In forward flight, the required power of helicopters consists of three parts: the in-



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 79 — #101
✐

✐

✐

✐

✐

✐

4.4 The Flight Envelope 79

4

Figure 4.6: Power required of the Ornicopter and Bo-105

duced power, the profile power and the parasite power. The induced power is associated
with the rotor thrust and the induced velocity, while the parasite power is only affected
by the fuselage. As the Ornicopter is using the same design as the Bo-105, these two
power components of both helicopters should be similar. The main reason for the
higher required rotor power in the case of the Ornicopter is therefore related mainly to
an increasing profile power.

Graphs c and d in Fig. 4.6 show the effect of the non-linearity of the CD as a function
of α. The rotor power requirements of the Ornicopter and Bo-105 with constant CD
were calculated. It can be found that, with constant CD, the rotor power requirements
of the Ornicopter and Bo-105 are almost identical. This confirms that the higher profile
power of the Ornicopter rotor is caused by the non-linear drag coefficient and larger
variation of the aerofoil AoA. As the profile power is a relatively small portion of the
total power consumption, the total required power for the Ornicopter is only slightly
increased.

4.4 The Flight Envelope

The flight envelope is the closed area in the altitude-velocity diagram, in which steady
state flight is possible. It is determined by a large number of factors, such as weight,
aerodynamics, engine system, structural dynamics and atmospheric conditions [9]. In
this section, the flight envelopes of the Ornicopter and Bo-105 will be determined and
compared. For this preliminary flight envelope prediction, simplified criteria are used,



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 80 — #102
✐

✐

✐

✐

✐

✐

4

80 4 Concept Analyses and Comparisons

including the power requirement and stall area.

4.4.1 The Calculation Criteria

Available Engine Power

To analyse the altitude performance of the Ornicopter, an engine model is required
to predict the available engine power at different altitudes. As the main purpose of
this analysis is to compare the performance of the Ornicopter and Bo-105 instead of to
acquire accurate performance data, a simply engine model is used, [9]:

Pe ≈ Pe0
σ1.35
ρ (4.10)

where Pe is the available engine power, Pe0
is the available engine power at sea level

and σρ is the relative air density.

Power Criterion

Inside the flight envelope, the engine should provide not only the required power for
steady flight, but also some power margin for manoeuvrability. Therefore, the power
criterion for each flight condition can be defined as:

P0 ≤ kpPe (4.11)

where Pe is the maximum continuous power available from the engine in each flight
condition, P0 is the total required power of helicopters and kp is the power margin
factor considering the manoeuvrability margin and transmission loss.

In this thesis, the kp is determined through an empirical way based on the Bo-105
specifications and model calculations. The required power of the Bo-105 at maximum
velocity (sea level) is calculated using the DelCopter model and compared with the
available engine power to determine the kp, as:

kp =
P0|Vmax

Pe0

≈ 0.846 (4.12)

Stall Criterion

The effects of stall affect the performance of helicopters, e.g. the increase control loads
and decrease control authority. For the preliminary Ornicopter analyses, a relatively
simple criterion is defined based on the nondimensional total stall area (S̄):

S̄ =
Sstall
πR2

≤ S̄max (4.13)

where Sstall is the average stall area of all the blades, R is the rotor radius and S̄max is
the non-dimensional stall area boundary.

Similarly to the kp, the stall boundary (S̄max) is also determined through the stall
area prediction of the Bo-105 at maximum speed using the DelCopter model, as:

S̄max =
Sstall|Vmax

πR2
≈ 8.93% (4.14)
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4.4.2 Flight Envelopes of the Ornicopter and Bo-105

With the criteria defined above (Eq. 4.11 and 4.13), the flight envelopes (altitude vs.
velocity) of the Ornicopter and Bo-105 are calculated and presented in Fig. 4.7. Two
boundaries are drawn separately to show more details about the different characteristics
of the Ornicopter and Bo-105.
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Figure 4.7: Flight envelope of the Ornicopter and Bo-105 defined by different criteria

From Fig. 4.7 one can see that the boundaries determined by the power requirement
for the Ornicopter and Bo-105 are very close to each other, due to the similar power
required by both helicopters. The Ornicopter needs slightly more power than the Bo-
105 (see Fig. 4.6), and therefore the power boundary of the Ornicopter is slightly smaller
than that of the Bo-105.

The interesting difference corresponds to the stall boundaries. It can be found that
the Ornicopter has a much smaller flyable region when compared to the Bo-105. This
is due to the high stall area in both hovering and forward flight. The stall area of the
Ornicopter and Bo-105 rotors at two altitudes (sea level and 2000 m) is presented in
Fig. 4.8.

In forward flight, due to the blade longitudinal flapping and the longitudinal cyclic
pitch control, stall occurs on the retreating side of the rotor, as shown in Fig. 4.9.

In the Ornicopter case, the additional active flapping motion enlarges the stall area
of the Ornicopter rotor. Therefore, stall reaches the stall boundary earlier (around 65
knots) on the Ornicopter rotor than the Bo-105, as shown in Fig. 4.8. More details of
the stall area on different Ornicopter blades are shown in Fig. 4.10.

Due to the fact that different blades are forced to flap in different phase angles,
the stall area varies among blades. For different blades, the maximum AoA arises at
different azimuth angles, where the blade flaps downwards. The blades No. 1 and 3
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Figure 4.8: The rotor stall area of the Ornicopter and Bo-105 versus velocity
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Figure 4.9: The angle of attack distribution on the Bo-105 rotor at 150 knots

are forced to flap laterally. Therefore, the impact of forced flapping on the stall area is
relatively small, i.e. only slightly increased. In the case of blades No.2 and 4, which are
forced to flap longitudinally, the stall area on blade changes dramatically. The blade
No. 2 flaps up on the retreating side, which results in a large reduction of stall area,
i.e. no stall occurs on this blade (the stall in the reversed area in not considered). On
the contrary, the blade No. 4 encounters severe stalls.

One can see from Fig. 4.10 that the stall situation on the Ornicopter rotor is more
complex than that of conventional helicopters. This should be considered in a more
detailed research phase for the Ornicopter concept. In this thesis, only the average stall
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Figure 4.10: The angle of attack distribution on the Ornicopter rotor at 150 knots

area of all Ornicopter blades will be considered.
Figure. 4.7 also shows that in hovering, the Bo-105 hovering ceiling is decided by the

required power, while in the case of the Ornicopter, the stall effect is the most limiting
factor. The stall area on the Ornicopter rotor is higher than the stall limitation in
hovering at sea level, and increases with increasing altitude, as shown in Fig. 4.8.

In hovering flight, when the altitude is increasing, the air density decreases, and
hence the induced velocity increases for the same rotor thrust. In this sense, higher
collective pitch is needed, since higher induced velocity results in a lower angle of attack
of the blade element and higher induced power. However, the total effect on the blade
elements is only a slightly higher AoA. The AoA, and hence stall area, increase slowly
with increasing altitude of the conventional helicopter rotor. Therefore, for conventional
helicopters, the stall area will not reach the stall limitation in hovering until a very high
altitude.

For the Ornicopter, some parts of its rotor encounter stall in hovering due to active
flapping. The stall area is correlated with the amplitude of forced flapping motion.
Recalling the trim values of the Ornicopter presented before, the yaw control input has
a typical bucket shape. This results in similar bucket shape curves for the Ornicopter
stall area as a function of velocity, as shown in Fig. 4.8.

To conclude, due to the active flapping, the blade angle of attack varies in a large
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range for the Ornicopter rotor, and hence causes a large stall on the rotor of Ornicopter.
This stall effect degrades the Ornicopter performance dramatically in terms of the flight
envelope.

4.5 Autorotation

The autorotation performance of a helicopter depends on several factors, such as the
rotor disk loading and the inertia of the rotor. To help the design process of a helicopter,
the autorotation index (AI) is often used. One of the commonly used definitions is [21]:

AI =
IRΩ2

2MaDL
(4.15)

where IR is the rotor mass moment of inertia about the rotor shaft, Ma is the mass of
the helicopter, and DL is the disc loading of the rotor.

For conceptual design, the Ornicopter’s blade is assumed to have uniform mass
distribution. The inertia of the rotor can be calculated as:

IR = Nb

∫ R

0

dm · r2

= Nb

∫ R

0

ρbSac
2dr · r2

=
1

3
NbρbSac

2R3

(4.16)

where ρb is the density of blade, and Sa is the area of aerofoil with unit chord length.
Substituting Eq. 4.16 into the expression of autorotation index (Eq. 4.15) results in:

AI =
1
3NbρbSac

2R3Ω2

2Ma
Mag
πR2

=
πgρbSaV

2
t R

6NbBL2

(4.17)

where BL is the blade loading as BL = (Mag)/(NbRc) and Vt is the tip velocity as
Vt = ΩR.

In this chapter, the Ornicopter is using the same design parameters as Bo-105.
Therefore, they have the same AI. Equation 4.17 will be used again in the next chapter
for the modified Ornicopter design.

It should be mentioned that in autorotation, the rotor works similarly to a wind
turbine. It absorbs energy from the incoming airflow to drive itself to rotate. The main
rotor torque is zero in autorotation and no reaction torque will be generated on the
fuselage.

In this sense, the active flapping is not needed in the autorotation condition on
the Ornicopter rotor. The amplitude of the forced flapping mechanism (η̂) should be
reduced to zero. For example, considering the swashplate mechanism (see Fig. 2.5), the
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force flapping swashplate should be moved to the horizontal position in the autorota-
tion. This requirement should be considered in the detailed mechanism design of the
Ornicopter.

4.6 Stability and Controllability

From the full non-linear flight mechanics model, the linearized state-space model can
be derived at trim points, as shown in Section 3.2.5.

The system matrix A contains the derivatives of linear and angular accelerations of
the body motion with regard to each state, such as ∂ẇ/∂u, which indicates the effect
of the perturbation of forward velocity (u) on the vertical acceleration (ẇ).

These derivatives can be calculated based on the system equations of motion (see
Eq. 3.20 and 3.21), such as:

∂u̇

∂r
= Xr + ve

∂ṗ

∂r
= k1Lr + k2Nr

(4.18)

where Xr, Lr and Nr are derivatives of the force and moment as defined in Eq. 3.23,
ve is the trim value of v, and k1 and k2 are inertial coefficients defined in Eq. 3.22.

It can be found that some of these derivatives, such as ∂u̇/∂r, consist of trim values
of certain states, while other derivatives, such as ∂ṗ/∂r, are affected by more than one
total force or moment on a helicopter.

To get a more direct view of changes of forces and moments on the Ornicopter, the
derivatives of total forces and moments with regard to all the states are used in the
following comparisons. The force derivatives are normalized by the aircraft mass, and
the moment derivatives are normalized by the moments of inertia (see Eq. 3.23), i.e.:

Xr ≡ ∂X/∂r

Ma

Lr ≡ ∂L/∂r

Ix

(4.19)

These derivatives contain contributions from different components of the helicopter,
including the main rotor, the tail rotor, fuselage and stabilizers. Since the Ornicopter
has exactly the same design as the Bo-105 for the fuselage and stabilizers, these differ-
ences between the Ornicopter and Bo-105 are mainly generated by the new main rotor
or the absence of a tail rotor.

To distinguish between the different contributions of the main and tail rotors to
the derivatives, the derivatives for the Bo-105 helicopter have been calculated without
the contribution of the tail rotor, the so-called Bo-105* configuration. In this way,
differences between the derivatives of the Bo-105* and Ornicopter indicate only the
effects of their different main rotors.

The 6 DoF body motion includes 9 states (6 states for body transitional and rota-
tional velocities, 3 states for body Euler angles) and 4 control inputs (collective pitch,
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longitudinal and lateral cyclic pitch and yaw control). The state matrix A is a 9-by-9
matrix and the control matrix B is 9-by-4, as shown in Eq. 3.20 and 3.21. Among these
stability and control derivatives, some important derivatives of the Ornicopter and Bo-
105/Bo-105* will be discussed, emphasizing the differences in behaviour between these
two different helicopters.

4.6.1 Stability Derivatives

Force/Translational velocity derivatives Xu, Yu, Xv, Yv

The direct (Xu, Yv) and the coupling force/velocity derivatives (Xv, Yu) are presented
in Fig. 4.11 as a function of forward flight velocity variation. The direct derivatives
Xu and Yv are due to the disc tilts aft and to the right (for a counter-clockwise rotor
helicopter), following perturbations in u and v.
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Figure 4.11: Direct and coupling force derivatives as a function of flight velocity

It can be found that in these derivatives of the X force - Xu and Xv, the values of the
Ornicopter are nearly the same as in the case of the Bo-105, and the difference increases
a little for high flight velocity. The tail rotor does not contribute to the X force and
the curves for the Bo-105 and Bo-105* (the Bo-105 without a tail rotor) coincide.

However, for the Y force derivatives, the situation is different. Looking at Fig. 4.11,
one can see that the Y force derivatives for the Ornicopter and Bo-105 have similar
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trends, but their values are different. However, subtracting the tail rotor impact from
the Y -derivative shows that the Y -derivatives for the Ornicopter and Bo-105* are almost
identical. This indicates that the tail rotor is mainly responsible for the changes in the
side force derivatives between the Ornicopter and Bo-105. It also indicates that the
new main rotor configuration for the Ornicopter has the same lateral characteristics in
the Y -forces as the Bo-105 rotor.

The speed and incidence static stability derivatives Mu and Mw

The speed and incidence stability derivatives Mu and Mw give the static stability char-
acteristics of the aircraft. The derivative Mu represents the change in pitching moment
about the aircraft’s centre of mass when the aircraft is subjected to a perturbation in
longitudinal velocity u. Figure 4.12 shows these two derivatives as a function of flight
velocity.
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Figure 4.12: Variation of Mu and Mw with forward speed

Looking at this figure, only a slight difference can be found between the Ornicopter
and Bo-105 static derivatives at high flight speed. The speed static derivative Mu of
both helicopters exhibit static speed stability. An increase in forward speed causes
the rotor disc to tilt back, as well as a higher lift force (downwards) on the horizontal
stabilizer. This effect results in a nose-up pitching moment and a tendency to reduce
speed. According to Padfield [10], this positive (apparent) speed stability is important
for good handling qualities in forward flight but can degrade dynamic stability in both
hover and forward flight.

Concerning the incidence static stability Mw, a negative Mw corresponds to a stat-
ically stable aircraft (a positive normal velocity perturbation results in a pitch-down
moment). Looking at Fig. 4.12, one can see that Mw is positive for a large range of for-
ward speeds. This is characteristic of most helicopters, as they are inherently unstable
in pitch.
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The heave damping derivative Zw

The heave damping derivative Zw gives the vertical response characteristics of a he-
licopter in response to a vertical gust. In the case of the heave damping derivative
Zw, the Ornicopter has the same damping as the Bo-105, as shown in Fig. 4.13. For
hover, the value of Zw is about −0.33/s, giving a heave motion time constant of about
3 seconds (this is a typical heave time constant for most helicopters in hover). With
such a long time constant, the helicopter vertical response of both the Ornicopter and
Bo-105 would seem more like an acceleration-control response than a velocity-control
response, thus requiring more anticipation from the pilot’s point of view.
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Figure 4.13: Variation of Zw with forward speed

The sideslip derivatives Lv and Nv

The sideslip derivatives, i.e. the dihedral effect derivative Lv and the weathercock
stability Nv, are significant for the lateral/directional DoFs. Figure 4.14 shows the
variation of these two derivatives with forward speed for both the Bo-105/Bo-105* and
the Ornicopter.
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Figure 4.14: Variation of Lv and Nv with forward speed

Since the tail rotor contributes strongly to both derivatives, there are large discrep-
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ancies in their values between the Ornicopter and Bo-105. The main reason for this
is the tail rotor thrust. Once the tail rotor effect has been removed from the Bo-105
derivatives, the resulting Bo-105* configuration behaves very similar to the Ornicopter.
In general, a positive value of Nv is stabilizing, while a negative value of Lv is stabiliz-
ing. Looking at Fig. 4.14, one can see that the Ornicopter has lower lateral/directional
static stability.

The angular velocity derivatives

Figure 4.15 and Figure 4.16 shows the force/angular velocity derivatives Xq and Yp,
and the moment/angular velocities Mq, Lp, Mp and Lq for both the Ornicopter and
Bo-105 helicopters. All these derivatives are contributed mainly by the main rotor. The
Mq, Lp, Mp and Lq derivatives are also called direct and coupled damping derivatives.
According to Padfield [10], the direct damping derivatives reflect short-term, small and
moderate amplitude handling characteristics, while cross-damping derivatives play a
dominant role in the level of pitch-roll and roll-pitch couplings. ‘They are the most
potent derivatives in handling qualities terms, yet because of their close association
with short-term rotor stability and response, they can also be unreliable as handling
parameters.’ [10]
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Figure 4.15: Xq and Yp as a function of flight speed

Looking at Fig. 4.15 and Fig. 4.16, it appears again that the Ornicopter rotor has
almost the same characteristics as a classical rotor system.

The derivatives Nr, Lr and Np have a primary influence on the characteristics of
the lateral/directional stability and control characteristics of the helicopter. As shown
in Fig. 4.17, these three derivatives are also dominated by the tail rotor, which causes
relatively large differences between the Ornicopter and Bo-105, especially in the yaw
damping.

To conclude, there are major discrepancies between the stability characteristics of
the Ornicopter and conventional helicopters. These differences can be attributed to
the absence of the tail rotor on the Ornicopter. Its main rotor shows almost identical
behaviour to that of the normal helicopter rotor. Derivatives dominated by the tail rotor
are very different for the Ornicopter, including Lv, Nv, Nr, Lr and Np. They will all



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 90 — #112
✐

✐

✐

✐

✐

✐

4

90 4 Concept Analyses and Comparisons

 

 

M
q

V(knots)

M
p

V(knots)

Bo-105*
Bo-105
Ornicopter

L
q

V(knots)

L
p

V(knots)

0 50 100 1500 50 100 150

0 50 100 1500 50 100 150

−6

−5.5

−5

−4.5

−2

−1.5

−1

−0.5

2

3

4

5

6

7

−18

−16

−14

−12

−10

Figure 4.16: Variations of the direct and coupled damping derivatives

influence the lateral/directional stability and control characteristics of the Ornicopter.
They will be further discussed in the handling qualities analyses (see Section 4.7).

4.6.2 The Natural Modes

The natural modes of motion for a helicopter can be calculated through the system
matrix. Figure 4.18 shows the root loci of the Ornicopter and Bo-105 at different flight
velocities (only for body motion DoFs). It can be found that the loci of the Ornicopter
and Bo-105 are almost identical except for the Dutch roll mode.

Looking at this figure one can see that, assuming the same input data, the phugoid
mode characteristics are almost identical for both helicopters, i.e. in hovering, the time
to double the amplitude for Ornicopter is in the order of 2.8 seconds and 2.7 seconds
for the Bo-105. An unstable phugoid mode is characteristic for most helicopters, and
usually a horizontal stabilizer needs to be added to stabilize the mode. Also, the
longitudinal pitch, heave subsidence and the lateral roll subsidence are very similar for
both helicopters. The modes mentioned above are dominated by the characteristics of
the main rotor in terms of generating thrust and pitch/roll moments. Similar modes
show that the active flapping has very little impact on the main rotor thrust and hub
moments.

As the Ornicopter is a tailless helicopter, the stability derivatives and natural modes
dominated by the tail rotor change dramatically. This is mainly caused by the differ-
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Figure 4.17: Nr, Lr and Np as a function of flight speed

ence in yaw damping. For example, the combined roll-yaw motion of the Ornicopter
represented by the Dutch role mode is different from that of the Bo-105.

The Ornicopter’s Dutch roll mode is closer to the imaginary axis than that of the Bo-
105. This indicates a lower Dutch roll damping. As is known, a low-damped Dutch roll
is uncomfortable for passengers and is associated with high pilot workload especially
in gusty conditions when trying to keep tracking a target. This shows that one will
need to improve the Ornicopter’s Dutch roll characteristics either through redesign
(incorporating for example endplate fins to the tail plane as in the MBB/Kawasaki
BK117) or through the flight control system.

The time to half amplitude of the Dutch roll motion t1/2 and the period of this
periodic mode T can be calculated though the eigenvalues, as shown in Fig. 4.19.

It shows that the Ornicopter has a much higher half time than the Bo-105, espe-
cially at high velocity. This is due to the Ornicopter’s lower Dutch roll damping. The
disturbances will need much more time to be damped off in the case of the Ornicopter,
and this is not a favourable characteristic. This needs to be improved in the Ornicopter
design. Solutions such as a bigger stabilizer or additional damping through controller
design might be applied.

Meanwhile, the Ornicopter has a higher Dutch roll period (lower frequency) than
the Bo-105. This longer period can reduce the number of oscillation cycles and may
decrease pilot workload.

The eigenvectors of the system matrix also offer some useful information for the
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Figure 4.18: Loci of the Ornicopter and Bo-105 eigenvalues as a function of forward
speed

amplitudes and phase angles of oscillations of each state. Table 4.1 presents the major
part of the eigenvector for the Dutch roll mode at 80 knots. From this one can find
that the phase angles for different motions are almost the same for the Ornicopter
and Bo-105. However, the ratio of roll to yaw velocity is smaller in the case of the
Ornicopter. Since the Ornicopter has a lower oscillation frequency, the roll attitude of
the Ornicopter will reach a higher amplitude.

For the spiral mode, which is also a mode combined with roll and yaw motions, the
Ornicopter and Bo-105 are surprisingly similar. This is caused by the fact that besides
the yaw damping (Nr), the directional stability (Nv), the roll-to-sideslip derivative
(Lv), the yaw-to-roll derivative (Np) and the roll damping (Lp) also contribute to the
spiral mode. The Ornicopter has different values for these derivatives (except the Lp)
compared with the Bo-105. However, the combined effect of all the derivatives results
in a similar spiral mode for both helicopters.
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Figure 4.19: t1/2 and T for Dutch roll

Table 4.1: Eigenvector for Dutch roll mode (partial)

states

v p r Φ

Bo-105
amplitude 1.0 m/s 1.1 deg/s 3.9 deg/s 0.40 deg

phase(deg) 0 174 -79.7 68.8

Ornicopter
amplitude 1.0 m/s 0.94 deg/s 2.0 deg/s 0.61 deg

phase(deg) 0 174 -83.4 74.8

4.6.3 Control Derivatives

Of the 24 control derivatives, characteristic of the 6 DoF model, 11 have been selected
to be discussed in more detail in the following.

Figure 4.20 presents the first set of control derivatives corresponding to the deriva-
tives of thrust with the main rotor collective θ0 and longitudinal cyclic θs1, and the
pitch and roll moments generated by the application of main rotor collective. The first
two derivatives are primarily influenced by the blade loading and tip speed.

Figure 4.21 presents the second group of derivatives corresponding to the direct and
coupled response for cyclic pith control, including Lθs1

, Lθc1
, Mθs1

and Mθc1
.

Since these two sets of derivatives are contributed primarily by the main rotor, no
significant differences between the Ornicopter and Bo-105 helicopters can be found.
These small differences are probably caused by the slightly different trim values of the
Ornicopter.

Figure 4.22 presents the third set of control derivatives corresponding to the yaw
control generated by applying collective pitch control of the tail rotor for the Bo-105,
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Figure 4.20: First set of control derivatives a function of flight speed

or in the case of the Ornicopter changing the amplitude of forced flapping motion. As
the Ornicopter has a fundamental new method of yaw control, these control derivatives
are very different from the Bo-105.

Looking at Fig. 4.22, it can be found that the Ornicopter’s coupled response for yaw
control input is different from that of conventional helicopters. For the Bo-105, the yaw
control causes relatively high side force and roll moment (Yyaw and Lyaw), while these
two coupling terms are nearly zero for the Ornicopter. This is caused by the fact that
the Ornicopter yaw control is achieved by controlling the propulsive torque generated
by the blade forced flapping motion. In this manner, the side force and the roll moment
on the Ornicopter will not be affected while applying the yaw control.

At the same time, there are some additional coupling terms for the Ornicopter,
i.e. Xyaw, Zyaw and Myaw. The additional terms are caused by the impacts of active
flapping on the rotor thrust and horizontal force.

As discussed before (see Section 4.2), the active flapping increases the horizontal
force (H) generated by the rotor in forward flight. While applying a perturbation (pos-
itive) on the Ornicopter yaw control, the amplitude of active flapping will be increased,
and hence a larger hub horizontal force (H) will be generated. This additional force
is in the negative direction of the x-axis, and therefore the Ornicopter has a negative
Xyaw. The variation of the horizontal force will also cause a nose-up pitch moment
(dM > 0). For this reason, a positive Myaw can be found for the Ornicopter.

With increasing flight velocity, the additional horizontal hub force becomes higher
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Figure 4.21: Variation of direct and coupling moment derivatives

due to the higher amplitude of the active flapping. Therefore, the values of Xyaw and
Myaw also increase when the flight velocity is increasing.

The coupled vertical acceleration (Zyaw) is caused by the reduction of the main
rotor thrust while applying yaw control. For a simple hovering example, considering
one blade flapping with the amplitude of β̂, the effective thrust (Ts) is:

Ts = Ls cos(β̂) (4.20)

where Ls is the lift force of the blade perpendicular to the TPP. The effect of the flapping
amplitude on the lift Ls is negligible. The variation of thrust while yaw control is applied
will be:

dTs

dβ̂
= −Ls sin(β̂) (4.21)

Recalling the relation between the blade flapping amplitude β̂ and the yaw control
input of Ornicopter, i.e. the motion amplitude of the forced flapping mechanism η̂ (see
Eq. 2.33), one can get:

dTs
dη̂

=
dTs

dβ̂
· dβ̂
dη̂

= −Ls sin(β̂)

√

S2
β

1 + S2
β

(4.22)
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Figure 4.22: Yaw control derivatives as a function of flight speed

One can see from the above equation that increasing the yaw control of the Orni-
copter will increase the amplitude of the active flapping, and hence decrease the total
thrust generated by the Ornicopter rotor. This reduction is related to the amplitude
of active flapping in trimmed flight. In this sense, the Zyaw has a similar bucket shape
similar to the flapping amplitude presented in Fig. 4.3.

Although the Ornicopter has some additional coupling responses to yaw control
input, the derivatives are relatively small compared with the coupling terms of the Bo-
105. In this sense, the Ornicopter has a lower coupling response to yaw control input
and this is a positive characteristic of the Ornicopter as it reduces the workload of the
pilot.

For the on-axis characteristics, since different yaw control mechanisms are used for
the Ornicopter and Bo-105, the values of Nyaw derivatives cannot be compared directly.
In the next section, handling qualities analyses will be performed, such as quickness and
bandwidth parameters, to compare the yaw dynamic characteristics of Ornicopter and
Bo-105.
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Based on the comparisons in this section, some conclusions can be drawn. The
Ornicopter rotor has stability and control characteristics very close to those of a con-
ventional helicopter rotor in pitch and roll axes. Since the Ornicopter does not have
a tail rotor, the stability derivatives dominated by the tail rotor change dramatically.
This results in lower yaw damping and stability. These derivatives are significant for
lateral/direction stability properties, and cause a large difference in the Ornicopter
Dutch roll mode as compared to the Bo-105. Regarding yaw control, the Ornicopter
has different coupling responses. However, those couplings are relatively small, and this
is one of the favourable changes introduced by the Ornicopter concept.

4.7 Handling Qualities

In order to assess the handling qualities of the Ornicopter and Bo-105, the ADS-33
(Aeronautical Design Standard [4]) criterion is used. It is a widely used criteria in ro-
torcraft community, and defines different handling qualities parameters for helicopters,
such as the bandwidth and phase delay. This thesis is concerned with those handling
qualities that can be quantified, i.e. they can be calculated through theoretical analyses.

Using the Ornicopter flight mechanics model, simulation programs are developed for
the attitude quickness calculation. The linearised model is used for bandwidth/phase
delay and natural mode analyses.

The Bo-105 and Ornicopter are considered utility helicopters, and therefore the
criteria for general mission task elements (MTEs) defined by the ADS-33 are used in
this section, rather than target acquisition tasks or tracking tasks.

4.7.1 Yaw Control Power

The Ornicopter concept changes the helicopter yaw control method. Before further
handling qualities analyses, the Ornicopter yaw control power is analysed to prove that
this new concept is controllable.

In the ADS-33, the level of helicopters yaw control power is defined by the maximum
achievable yaw rate in different flight conditions [4, p. 68]. To predict the maximum
achievable yaw rate of helicopters, some details should be considered, such as the tail
rotor stall and the mechanic limitations of control, which are not modelled in this
thesis. The prediction for maximum achievable yaw rate may not be accurate enough
for comparison.

Therefore, in this section, step yaw control inputs with different amplitudes are
applied to both the Ornicopter and Bo-105 models. The maximum yaw rate caused by
the yaw control is presented in Fig. 4.23 (curve a and b) as a function of the amplitude
of the step input.

Comparing curve a and b in Fig. 4.23, one can see that the Ornicopter has a higher
maximum yaw rate than the Bo-105 for the same yaw control input. It should also be
considered that the yaw control input of the Ornicopter varies the motion amplitude
of forced flapping mechanism (η̂). The corresponding amplitude variation of the blade
flapping motion is actually much smaller than the control input.
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Figure 4.23: Maximum yaw rate for different yaw control inputs (40 knots)

In order to show this, the variation in the blade flapping amplitude caused by the
yaw control input is also calculated, and plotted with the corresponding maximum yaw
rate (curve c in Fig. 4.23). One can see that, to reach the same yaw rate, the change
of blade flapping amplitude for the Ornicopter is less than 20% of the tail rotor cyclic
variation in the case of the Bo-015.

Figure 4.23 indicates that the Ornicopter has higher yaw control power than the
Bo-105. This is caused by the fact that the Ornicopter controls the main rotor torque
directly instead of controlling the tail rotor thrust. In this sense, the Ornicopter can
generate higher yaw moment on the fuselage than the Bo-105. It can also be considered
from the power aspect point. With conventional helicopters, the tail rotor power con-
sumption is less than 10% of the main rotor power. Therefore, by controlling the main
rotor directly, the Ornicopter should have more control ‘power’ in the yaw direction.
From this power aspect, it can also be concluded that for different helicopter weight
catalogues, the Ornicopter will also have this advantage.

4.7.2 Bandwidth and Phase Delay

Parameter Definition

The bandwidth and phase delay is defined for short-term and small-amplitude attitude
changes. It is based on the frequency response of the attitude angles (Ψ, Φ and Θ)
to pilot control input. The Bode plot of the helicopter is used to determine these
parameters, as shown in Fig. 4.24.

Some characteristic points (A to E in Fig. 4.24) are defined on the Bode plot to
determine the bandwidth and phase delay of a helicopter. They are explained as follows:

• Point A is on the phase curve where the phase angle is −180o. The frequency at
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Figure 4.24: Bandwidth and phase delay definition

this point is defined as ω180.

• Point B is on the phase curve where the phase angle is −135o. The frequency at
this point is defined as ωBWphase

(bandwidth for phase margin).

• Point C is on the magnitude curve, and corresponds to the same frequency as
point A (ω180).

• Point D is on the magnitude curve, and has a 6 dB higher magnitude response
than point C. The frequency as point D is defined as ωBWgain

(bandwidth for gain
margin).

• Point E is on the phase curve, and corresponds to the frequency of 2ω180. The
phase difference between A and E is defined as ∆Φ2ω180

.

Since only a simple SCAS is implemented in the flight mechanics model to provide
additional damping and stability, the helicopter analysed in this thesis can be considered
as a rate response type. Based on the ADS-33, the bandwidth and phase are defined
as:

ωBW = min(ωBWgain
, ωBWphase

)

τp =
∆Φ2ω180

57.3(2ω180)

(4.23)
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The Pitch and Roll Axes

It has been demonstrated that the values of the stability and controllability derivatives
for the Ornicopter have almost identical characteristics in longitudinal and lateral di-
rections when compared to the ones of the Bo-105 (with the assumption that the two
helicopters are similar in dimensions). The bandwidth and phase delay calculations
lead to the same conclusion, as seen in Fig. 4.25. For this calculation, all the SCAS
gains are set to zero, while the actuator model and control time delay are applied.

Figure 4.25: Bandwidth and phase delay in pitch and roll directions (5 knots)

Since the pitch and roll handling qualities of the Ornicopter and Bo-105 are very
similar, they will not be discussed in detail in this thesis.

The Yaw Axis

Recalling the stability and controllability derivatives calculated in Section 4.6, the con-
clusion was that the main differences between the Ornicopter and Bo-105 appeared in
the yaw direction (Nr) and lateral-yaw coupling terms (Nv and Lr). Therefore, differ-
ences between the Ornicopter and Bo-105 are expected in directional handling qualities.

For yaw direction, the bandwidth and phase delay without a SCAS are calculated
between 1 knot and 90 knots flight velocity, as shown in Fig. 4.26 and 4.27.

It can be found that with increasing forward velocity, the bandwidth of both the
Ornicopter and Bo-105 increases and the level of yaw handling quality follows an upward
trend. However, the Ornicopter has a higher phase delay and lower bandwidth than the
Bo-105 and hence it corresponds to one level lower for most of the velocities (10 knots
to 90 knots with the interval of 10 knots), as seen in Fig. 4.27.
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Figure 4.26: Bandwidth and phase delay in the yaw direction (hover and low speed)

Figure 4.27: Bandwidth and phase delay in the yaw direction (forward flight)

To understand the reason for this drawback of the Ornicopter, flight mechanics
models with different fidelities are extracted from the full mechanics model. Bode plots



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 102 — #124
✐

✐

✐

✐

✐

✐

4

102 4 Concept Analyses and Comparisons

for these models are made to show the impacts of different parts of the ORNIcopter
model, as shown in Fig. 4.28.

Figure 4.28: Magnitude and phase responses of different ORNIcopter models in the yaw
direction (80 knots)

For the ‘baseline model’ used in Fig. 4.28, only the body motion degree-of-freedom
is considered. The flapping dynamics and the inflow dynamics are not included. In
other words, it is assumed that the flapping motion of the blades and induced velocities
respond to the control input or changes in the body motion instantly. Moreover, time
delay and the actuator model are also neglected in this baseline configuration. Obvi-
ously, this model cannot represent all the characteristics of Ornicopter with sufficient
accuracy. However, it provides a reference for more detailed models.

Based on this âĂŸbaseline modelâĂŹ, the flapping dynamics, the actuator dynamics
and the control time delay are added to the baseline model separately. All these models
are analysed and plotted in Fig. 4.28.

By comparing the different models, the impacts of each part mentioned above on the
yaw bandwidth and phase delay can be determined qualitatively and some conclusions
can be drawn.

Firstly, for all frequencies, the response magnitudes for all models are almost iden-
tical.

Secondly, at low frequencies (<2 rad/s), additional dynamics and control time delay
have very small impacts on phase angle. Therefore, the baseline model can predict the
bandwidth for phase delay with good accuracy. The difference between bandwidths
predicted by the baseline and the full model is less than 5% in the case shown in
Fig. 4.28. This is caused by the fact that the time lags between the response of the
helicopter and the control input (which are introduced by flapping dynamics, actuator
dynamics or time delay) are relatively small when compared with the period of control
input (>3 s) at low frequency. Hereby, their impacts on the phase angle are negligible.

Thirdly, increasing the control frequency results in a higher impact of the additional
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dynamics and control time delay on the phase response. Moreover, since the actuator
model time constants are very small, the actuator dynamics have little impact on the
phase angle response when compared with the control time delay and flapping dynamics.
Comparing the ‘full model’ and the simplified model including only time delay, one can
see that the control time delay has the highest impact on phase delay, and the flapping
dynamics are of secondary importance.

Impact of the SCAS

In this section, the SCAS defined in Section 3.2.6 will be used. Its impacts on the
Ornicopter yaw bandwidth and phase delay will be investigated.

As discussed above, the Ornicopter yaw direction bandwidth and phase delay is
mainly impacted by the characteristics of the body motion DoFs, the control time delay
and the flapping dynamics.

Since the yaw control of the Ornicopter is achieved by varying the amplitude of its
active flapping blades, additional dynamics needs to be introduced in the yaw direction
in comparison with the conventional helicopters. This is the inherent characteristic
of the Ornicopter concept. It is not easy to reduce the impact of flapping dynamics
on the phase delay, however it is less important when comparing with other dynamics
affecting the yaw HQs characteristics. In order to improve yaw handling qualities of
the Ornicopter with regard to bandwidth and phase delay, efforts should be made to
reduce the control time delay and change the dynamic characteristics of body motion,
i.e. the yaw damping.

The values for the control time delays for the Ornicopter and Bo-105 are considered
the same in this thesis. They should be reduced in order to improve the Ornicopter’s
handling qualities. This issue is more related to the detailed design of the control system
and is out of the scope of this thesis. Therefore, it will not be discussed.

By changing the design parameters of the Ornicopter, the stability derivatives can
be tuned. However, it is more efficient to use the SCAS and tune the gains to investigate
the influence of different dynamic characteristics of the body motion DoF on the yaw
handling qualities at this stage. Therefore, the bandwidth and phase delay of Ornicopter
are recalculated with different SCAS settings, in which only the gains for the yaw
channel are set while all other gains are zero.

One of the bode plots is presented as Fig. 4.29, in which Kr is 0.15 and Kv is -0.015.
It can be found that by applying yaw gains in the SCAS, the phase angle response of the
Ornicopter can be improved considerably, especially at low frequency. The bandwidth
for both the phase margin and phase delay can also be improved for the Ornicopter.
However, at high frequency, the improvement caused by the SCAS is limited, since the
high frequency response is dominated by the flapping dynamic and control time delay.

It should be noticed that the magnitude response of the Ornicopter reduces dramat-
ically (about 10 dB) at low frequency. The bandwidth for gain margin in this case is
not available. Hereby, the overall effects of using the SCAS to improve handling quali-
ties for Ornicopter and more advanced SCAS algorithm design should be considered in
further research.

To better understand the impacts of the SCAS on Ornicopter handling qualities,
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Figure 4.29: Magnitude and phase responses of the Bo-105 and Ornicopter in the yaw
direction (80 knots)

the bandwidth and phase delay parameters are calculated for different SCAS gains and
plotted in Fig. 4.30.

Figure 4.30: Bandwidth and phase delay in the yaw direction with different SCAS gains
(80 knots)

Looking at this figure, one can see that the bandwidth of the Ornicopter can be
improved from Level 3 to Level 2 handing qualities by using the SCAS, as the band-
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width is determined by the low frequency response. Meanwhile, the SCAS only slightly
influences the phase delay, which is dominated by a high frequency response by the
system.

4.7.3 Attitude Quickness

Parameter Definition

For moderate-amplitude attitude changes, the ratio of the peak rotational rate (pitch,
roll or yaw) to the maximum change of attitude angle should meet the limits specified
by the ADS-33.

This quickness parameter (qpk/∆Θpk) is defined based on the time response of the
helicopter to a rectangular step input. One example for the pitch axis is shown in
Fig. 4.31.

The dynamic response of the helicopter will change with different control input
settings, i.e. the amplitude and length of the step input. Therefore, multiple attitude
quickness results can be obtained. In the following analysis, the length of the step input
will vary from 1 s to 3 s , and an amplitude of 1o and 2o will be applied.

Figure 4.31: Attitude quickness definition

The Pitch Axis

As expected, in longitudinal and lateral directions, the attitude quickness of the Orni-
copter and Bo-105 are very similar. Calculation results for the pitch channel at 30 knots
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are presented in Fig. 4.32, from which one can see that the Ornicopter and Bo-105 have
almost identical pitch attitude quickness. In this sense, the pitch and roll quickness will
not be further discussed and the following section will focus on the yaw direction.
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Figure 4.32: Pitch attitude quickness of the Bo-105 and Ornicopter (30 knots)

The Yaw Axis

Applying the same control input, the yaw attitude quickness of the Ornicopter and Bo-
105 are also calculated, as shown in Fig. 4.33. This shows that the attitude quickness
of the Ornicopter is lower than that of the Bo-105, especially for short control input.
However, they are still graded as the same level of HQs for most cases, and the Orni-
copter even reaches Level one for large yaw control input (2 deg input, longer than 2
s).

The attitude quickness and the minimum heading change of the Ornicopter follow
the same trend as those of the Bo-105 when the control input is varying. However, the
reduction of attitude quickness of the Ornicopter is smaller than that of the Bo-105.
This leads to the result that the Bo-105 has much a higher yaw quickness than the
Ornicopter for short control input, whereas they are close in quickness when longer
controls are applied.

The yaw response of the Ornicopter and Bo-105 are presented in Fig. 4.34 in order
to investigate the reason that causes the attitude quickness differences.

From the yaw rate response, one can see that after the yaw control is applied, the



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 107 — #129
✐

✐

✐

✐

✐

✐

4.7 Handling Qualities 107

4 

 

2deg yaw control input
1deg yaw control input
Ornicopter
BO-105

r p
k
/
∆

Ψ
p
k

(1
/s

ec
)

∆Ψmin(deg)

3s

1s

3s

1s

3s

1s

3s

1s

Level 3

Level 2

Level 1

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 4.33: Yaw attitude quickness of Bo-105 and Ornicopter (30 knots)

Bo-105 can reach the maximum yaw rate very quickly (around 0.5 seconds), because
of the relatively high yaw damping when compared with the Ornicopter. Afterwards,
increasing the yaw angle further results in higher corresponding sideslip. This sideslip
generates a counter yawing moment (Nv), and thus the helicopter intends to yaw back
to the neutral position. This effect leads to the deceleration of yaw rate of the Bo-
105 after the maximum yaw rate has been reached, and it lasts until the end of the
step control input. After the yaw control returns to the trim position, the yaw rate
decelerates and reverses very quickly, and meanwhile the yaw attitude reaches the peak
heading change.

From the comparison of stability derivatives, the yaw damping (Nr) and sideslip
derivative (Nv) of the Ornicopter are found to be lower than those of the Bo-105. Due
to the Ornicopter’s low yaw damping and directional stability, its yaw rate will continue
accelerating with an approximately constant gradient after the yaw control is applied.
For the same reason, the yaw motion is slowly decelerated after the step input. In this
sense, the peak heading change of the Ornicopter is much higher than that of the Bo-
105. Despite the higher yaw peak rate, the high heading change peak results in lower
attitude quickness for the Ornicopter, as well as higher minimum heading change.

From Fig. 4.34, it can also be found that the Ornicopter can be roughly considered
as a acceleration control system in the yaw direction, whereas the Bo-105 is more close
to a rate control system. Therefore, while step controls with the same amplitude and
different time duration are given, the maximum yaw rate will keep constant for the
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Figure 4.34: Yaw responses of the Bo-105 and Ornicopter for rectangular step control
input

Bo-105, as long as the control input duration is longer than the rise time of the yaw
response (which is about 0.5 seconds in the case shown in Fig. 4.34). At the same
time, the peak and minimum heading changes will increase with an increase of the
control input duration. Hence, the attitude quickness of the Bo-105 decreases greatly
with the increasing of control input, see Fig. 4.33. In the case of the Ornicopter, since
its characteristics correspond to an acceleration control system, the peak yaw rate,
the peak and the minimum heading change will increase simultaneously. Therefore,
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the attitude quickness of the Ornicopter declines only slightly in comparison with the
Bo-105 helicopter.

Impact of the SCAS

The yaw attitude quickness of the Ornicopter can also be improved by applying the
SCAS. The yaw response of the Ornicopter with the SCAS is calculated and shown in
Fig. 4.35, in which Kr is 0.15 and Kv is -0.015.
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Figure 4.35: Yaw attitude quickness of the Bo-105 and Ornicopter with the SCAS (30
knots)

With the SCAS, the dynamic characteristics of the Ornicopter change rapidly. In
this case, the Ornicopter has a very similar yaw response to the Bo-105 except a lower
amplitude of the response (see Fig. 4.34). This is caused by the higher equivalent yaw
damping and directional stability improved by the SCAS.

By using the SCAS, it is demonstrated that the Ornicopter’s yaw attitude quickness
can be improved. Meanwhile, the effect of the SCAS on the yaw response corresponds
with an amplitude reduction as shown in Fig. 4.34. This influence on attitude quickness
is shown in Fig. 4.35. One can see that the yaw quickness of the Ornicopter is improved
by the SCAS and it is even higher than that of the Bo-105. Moreover, the yaw attitude
quickness curves move to the left, indicating lower attitude changes for the same control
input.



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 110 — #132
✐

✐

✐

✐

✐

✐

4

110 4 Concept Analyses and Comparisons

4.7.4 Lateral-directional Oscillatory Requirement

The Dutch roll modes of the Ornicopter and Bo-105 are calculated and compared in
Section 4.6.2. In this section, the impact of the SCAS on lateral-directional HQs as
defined in ADS-33 are calculated, as presented in Fig. 4.36. As described before, the
Dutch roll mode of the Ornicopter has lower damping and frequency than the Bo-105.
From Fig. 4.36, one can see that with respect to the lateral-directional oscillation, the
Ornicopter has poorer HQs than the Bo-105, while the locus of the Ornicopter is very
close to the boundary between Level 2 and 3 (for other MTEs).
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Figure 4.36: Lateral-directional oscillation grading

To improve the handling qualities of the Ornicopter, the SCAS is used. It can
be found from Fig. 4.36 that by increasing the yaw damping through the SCAS, the
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Ornicopter’s lateral-directional handling qualities can be improved from Level 2 to Level
1 handling qualities. Meanwhile, when the sideslip feedback is present, the frequency
of the Dutch roll mode of the Ornicopter will increase. This effect is not beneficial for
the handling qualities, as the locus moves towards the lower HQs regions. As discussed
above, a higher directional stability is desired for bandwidth and attitude quickness.
Therefore, detailed analyses should be done in further research to acquire an optimal
control system design for the Ornicopter.

4.7.5 Yaw Control in Sideslip

In trimmed sideslip flight, the yaw control varies with the sideslip angle or sideslip
velocity. A linear variation is desired for better handling qualities, since it is more
predictable for the pilot.

As the yaw control method of the Ornicopter is completely different from that of a
conventional helicopter, the yaw control in sideslip also changes, especially in sideward
flight, as shown in Fig. 4.37 and Fig. 4.38.

Figure 4.37 shows the yaw controls of the Ornicopter and Bo-105 in pure sideward
flight (no forward velocity). It can be found that the yaw control of the Bo-105 is
almost a linear function of the sideward speed, whereas the Ornicopter requires highly
non-linear yaw control, which has the same sign for both left and right sideward flight.

 

 

Ornicopter
BO-105

Y
aw

co
nt

ro
l

(d
eg

)

Sideslip velocity (m/s)
−10 −5 0 5 10

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.37: Yaw control deflection as a function of sideslip velocity (u=0 knot)

The reason for this non-linearity is that the variation in the main rotor torque is the
dominating factor for the yaw control input of the Ornicopter in sideward flight.
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From hovering, with the increasing of forward flight velocity, the main rotor torque
reduces because of the reduction in induced torque, as shown in Fig. 3.4. This reduction
is caused by the lower induced velocity due to the increasing inflow velocity. As the
flight direction is not relevant, the same phenomenon can be found in sideward flight,
i.e. in both directions of sideward flight (up to modest velocity), the main rotor torque
will be lower than the torque corresponding to hovering.

For the Bo-105, in sideward flight, the inflow condition of the tail rotor changes
dramatically, and hence is the main reason for the variation in yaw control. The relative
airflow reduces the tail rotor thrust in right sideward flight, which results in a large tail
rotor collective pitch. The opposite situation can be found in left sideward flight. In
this case, the yaw control of the Bo-105 has the same sign as the sideward flight speed
and is almost linear with the speed.

In the case of the Ornicopter, which does not have a tail rotor, the main rotor torque
is the dominating factor for yaw control, and hence the same direction of yaw control
deflections is needed for both sides of sideward flight. Since the main rotor torque is
not linear with the flight velocity, the yaw control of the Ornicopter in sideward flight
is also non-linear with regard to the sideward flight speed.

Figure 4.38 shows the yaw control deflections for different sideslip angles in forward
flight. The forward flight velocity is kept constant (80 knots). In this case, the vertical
fin can generate a relatively large yaw moment in sideslip (due to the high dynamic
pressure), and the sideward velocity is less influential on the tail rotor thrust in fast
forward flight. Hereby, the Ornicopter has a similar yaw control deflection with different
sideslip angles to the Bo-105.

In conclusion, for the yaw control in the sideslip condition, high non-linearity can
be found for the Ornicopter at hovering and low flight velocity, which will change the
pilot’s control strategy. This should be considered in the control system design in order
to keep the yaw control deflection the same sign as the sideslip angle. In forward flight,
this effect does not appear since the vertical fin is more effective. Moreover, in the flight
conditions discussed above (50 to 90 knots), the yaw control of the Ornicopter is less
than that of the Bo-105. This is beneficial for Ornicopter as this new concept may have
more control margin in the yaw direction.

4.8 Vibratory Loads and Preliminary Solutions

In Chapter 2, the vibratory problem of the Ornicopter was briefly analysed in hovering
flight. Based on the harmonic components on the rotor hub, the three basic flapping
configurations were compared, i.e. double teeter configuration, 2 × 2 AS configuration
and 3-in-1-plane configuration. Some unfavourable harmonic forces and moments were
found for all of these configurations. Based on this, the 2 × 2 AS configuration was
found to be the best one with regard to vibration [34].

This section will investigate the cause of the Ornicopter’s vibratory problem and
extend the previous hovering case analysis to trimmed forward flight. In order to
reduce the Ornicopter’s vibratory loads, new flapping configurations will be proposed.
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Figure 4.38: Yaw control deflection as a function of the sideslip angle (u=80 knots)

4.8.1 The Cause of Vibratory Loads

In the development of the Ornicopter flight mechanics model, the hub forces and mo-
ments generated by one blade were derived (see Eq. D.28), which can be written in the
form of a Fourier series. For instance, the thrust of the kth blade can be written as (for
constant and 1/rev component):

T (k)
s (ψ) = T

(k)
s0 + T

(k)
ss1 sin

(

ψ(k)
)

+ T
(k)
sc1 cos

(

ψ(k)
)

(4.24)

Using the azimuth angle of the first blade as reference, the total thrust is:

T (ψ) =

Nb
∑

k=1

T
(k)
s0 +

Nb
∑

k=1

T
(k)
ss1 sin

(

ψ(1) +
2 (k − 1)

Nb
π

)

+

Nb
∑

k=1

T
(k)
sc1 cos

(

ψ(1) +
2 (k − 1)

Nb
π

)

(4.25)

Equation 4.25 can be simplified when Nb is known, which is 4 for the Bo-105 heli-
copter and Ornicopter. Therefore, for a 4-blade helicopter, it becomes

T (ψ) = T0 + Ts1 sin
(

ψ(1)
)

+ Tc1 cos
(

ψ(1)
)

(4.26)
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where:

T0 =

4
∑

k=1

T
(k)
s0

Ts1 = T
(1)
ss1 − T

(2)
sc1 − T

(3)
ss1 + T

(4)
sc1

Tc1 = T
(1)
sc1 + T

(2)
ss1 − T

(3)
sc1 − T

(4)
ss1

(4.27)

For higher order components, similar equations can be derived, except the Nb/rev
component. For the 4-blade helicopter, the coefficients are:

Ts4 = T
(1)
ss4 + T

(2)
ss4 + T

(3)
ss4 + T

(4)
ss4

Tc4 = T
(1)
sc4 + T

(2)
sc4 + T

(3)
sc4 + T

(4)
sc4

(4.28)

Thus far, all the harmonic components for rotor thrust from 1/rev to Nb/rev are
derived. Similar derivations can be applied to other hub forces and moments, i.e. H ,
S, Mx, My and Mz.

For conventional helicopters, it is assumed that all the blades are working in an
identical condition, i.e. coefficients (such as Tssn and Tscn) are constant among blades.
Therefore, except for the Nb/rev component, harmonic components generated by dif-
ferent blades can cancel each other out (see Eq. 4.27). For the Ornicopter, the situation
is more complex because each blade is forced to flap individually. As the coefficients
vary with blades, they cannot be cancelled and they cause harmonic vibratory loads
starting from 1/rev to Nb/rev.

The Ornicopter’s harmonic forces and moments are derived analytically above. Nu-
merical results will be presented below in order to get the feeling of their order.

Figure 4.39 and 4.40 show the amplitudes of the periodical components of rotor
thrust and shaft moment as a function of flight velocity for the 2 × 2 AS configuration.

Looking at Fig. 4.39 and 4.40, it can be found that, for the Ornicopter, there are
harmonic components from 1/rev to 4/rev, while normally only a 4/rev component
exists for a conventional helicopter with 4 blades. Meanwhile most of the components
rise dramatically with increasing flight velocity.

4.8.2 New Configurations

As demonstrated in Figs. 4.39 and 4.40, periodical forces and moments on the hub are
relatively large and therefore need attention during design. One possible solution is to
design new hub configurations that are different from the three configurations proposed
in Section 2.4.3.

One simple solution is to increase the number of blades to reduce vibration. More-
over, having more blades denotes that it is possible to design more forced flapping
patterns for the Ornicopter, which may be favourable with regard to vibration.

In order to solve the vibratory problem, 4 new configurations with an increased
number of blades are proposed. These are: 3×Teeter (3×T), 3×2 AS, 4×Teeter (4×T)
and 4 × 2 AS configuration. The flapping motion of each configuration is presented in
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Figure 4.39: Amplitudes of harmonic components of the Ornicopter rotor thrust
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Figure 4.40: Amplitudes of harmonic components of the Ornicopter rotor torque

Tab. 4.2. In this table, the flapping configuration is defined by the azimuth angles where
the forced flapping mechanism reaches the maximum flapping angle for each blade, as
discussed in Section 2.4.3.

The proposed configurations are similar, as the 2 × 2 AS and the double teeter
configuration explained in Section 2.4.3. Each of them has several pairs of blades which
are at opposite azimuth positions. In the n × 2 AS configurations, two blades in each
pair flap anti-symmetrically, while they flap as a teeter in the n×Teeter configurations.
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Table 4.2: Flapping sets for different configurations

Configration Nb
ψ

(k)
η (π)

1 2 3 4 5 6 7 8

2 × 2 AS 4 0 3/2 1 1/2 / / / /

3×T 6 0 4/3 2/3 0 4/3 2/3 / /

3 × 2 AS 6 0 1 0 1 0 1 / /

4 × 2 AS 8 0 5/4 1/2 7/4 1 1/4 3/2 4/3

4×T 8 0 1 0 1 0 1 0 1

Vibratory Level

In order to compare different flapping configuration designs, the coefficients for har-
monic forces and moments need to be transformed into a simple form. A parameter for
vibratory level needs to be defined for this purpose. As a detailed vibratory analysis
is not the main task of this thesis, this parameter is defined by using a simple form
similarly as in Ref [13]. In this thesis, all the hub force and moment components from
1/rev to Nb/rev are taken into account, while only the Nb/rev oscillatory hub shears
and moments are considered in Ref [13]. The vibratory level is defined as:

vl =

Nb
∑

n=1

(

wf

(

T̂n + Ĥn + Ŝn

)

+ wmxL̂n + wmyM̂n + wmzN̂n

)

(4.29)

where wf , wmx, wmy, wmz are weighting factors for amplitudes of hub forces and
moments. They are chosen with regard to the total weight and inertial moment of the
Ornicopter, as:

wf ≡ 1

Ma

wmx ≡ 1

Ix

wmy ≡ 1

Iy

wmz ≡ 1

Iz

(4.30)

Impacts of Flapping Configurations

Considering that the Ornicopter’s vibration is caused by the active forced flapping
motion, the flapping configuration should be a crucial factor for the vibration. Figure
4.41 shows the vibratory level for five configurations as a function of forward flight
velocity.

It is clear that the number of blades and the flapping configuration have a large
impact on the Ornicopter vibratory level. By using more blades and different flapping
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Figure 4.41: Vibratory level of the Ornicopter as a function of velocity and configura-
tions

configurations, the vibration of the Ornicopter can be reduced to a similar level as
the Bo-105. As shown in Fig. 4.41, regarding the 4×Teeter configuration, which has 8
blades, the vibratory level is O(0.5), while the value for the Bo-105 predicted by the
same model is O(0.3).

In addition, Figure 4.41 also shows an interesting conclusion, namely that by in-
creasing the flight velocity, the vibratory level does not simply rise up. For the 2 × 2
AS, the 3×T and 4 × 2 AS configurations, the vibratory level first decreases with the
increasing of flight speed and reaches the minimum vibratory level around 80 knot be-
fore it starts increasing. Although the 4 × 2 AS configuration has a higher number of
blades than the 3×T configuration, it generates higher vibratory loads than the 3×T
configuration, especially in hovering.

Recalling the discussion about autorotation (see Section 4.5), using a higher number
of blade will reduce the autorotation index of the Ornicopter rotor (see Eq. 4.17). In
this sense, the AI of the Ornicopter rotor should be checked while increasing the number
of blades.

4.9 Conclusion

In this chapter the Ornicopter was analysed and compared with the Bo-105 helicopter
for various aspects. It was demonstrated that the Ornicopter has similar trim values and
required power as the Bo-105. The current Ornicopter rotor needs slightly more power
than a conventional helicopter rotor due to the increased profile power caused by the
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forced flapping motion. Regarding the dynamic characteristics (stability, controllability
and handling qualities), the Ornicopter is very similar to the Bo-105 in pitch, roll and
heave axes.

Comparisons showed that the Ornicopter has two major deficiencies, namely a higher
stall area of main rotor and worse yaw stability and handling qualities.

The active flapping of the Ornicopter rotor blades increases the stall area in forward
flight and introduces stall even in hovering. This effect is the strongest limitation of
the Ornicopter performance, and sharply reduces the flyable region of the Ornicopter.
Different characteristics of this concept should be considered in the design process in
order to extend the flight envelope of the Ornicopter.

Since the Ornicopter does not have a tail rotor, the stability derivatives dominated
by a tail rotor change dramatically. This results in lower yaw damping and directional
stability of the Ornicopter, and hence degrades the handling qualities of the Ornicopter
in the yaw direction with regard to bandwidth and phase delay, attitude quickness,
lateral-directional oscillation and yaw control in steady sideslip.

Two favourable changes found in the Ornicopter are that it has higher yaw control
power and lower coupling responses while applying yaw control as compared to the
Bo-105. This is due to the fact that the yaw control is achieved by controlling the main
rotor torque directly on the Ornicopter.

Due to the stall effect, the fidelity of the ORNIcopter model is degraded for some
flight conditions. This may result in a lower accuracy for the Ornicopter analyses and
comparisons, such as the power calculation, the stability and controllability, and the
handling qualities. However, these analyses still provide some fundamental understand-
ings of the characteristics of the Ornicopter concept and the corresponding physical
reasons, which is the main interest of this chapter.
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In Chapter 4, the Ornicopter concept was analysed and compared with the Bo-105
conventional helicopter. The comparisons provided more details of the characteristics
of this new concept. These showed that the Ornicopter has a very small flight envelope
compared with Bo-105 when it uses the same design parameters as the Bo-105.

One of the reasons causing these drawbacks of the Ornicopter is that the design pa-
rameters are not optimized for the Ornicopter concept. Based on the new understand-
ing, in this chapter, some design parameters of the Ornicopter will next be unfrozen and
optimized to improve the Ornicopter’s performance. Afterwards, the optimized design
will be compared with the Bo-105 to answer the main research question, i.e. how can an
Ornicopter with comparable or improved flight performance be designed as compared
to the Bo-105.

5.1 Design Requirements and Method

Due to the active flapping and the absence of a tail rotor, two major drawbacks of
the Ornicopter are found in the previous chapter, including a small flight envelope and
low yaw stability and handling qualities. Because it is a first attempt to optimize the
Ornicopter design, the handling qualities will not be considered as design requirements
in this thesis.

As mentioned in the research questions, the performance is the main interest of
the Ornicopter design process. In this sense, the flight envelope of the Bo-105 (as
predicted in Fig. 4.7) will be used as the design requirements of the Ornicopter. The
main performance specifications are summarized in Tab. 2.2.

To predict the flight envelope of a helicopter, a numerical method needs to be used
to search the boundaries of flyable region in the altitude-velocity diagram, i.e. analyses
need to be performed at multiple altitudes and velocities. This requires high computa-

119
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tional power, especially in the optimization process.
To reduce the calculation cost, not the entire flight envelope boundary of the Or-

nicopter will be calculated for the design optimization. Two specifications will be con-
sidered as shown in Tab. 2.2, including the hovering ceiling and the maximum velocity.
First, the Ornicopter design will be optimized based on this simplified requirement.
Afterwards, the entire flight envelope of the new Ornicopter design will be calculated
and compared with the Bo-105 to verify if the design matches the design requirement.

The following procedure will be used for the Ornicopter design:

1. A sensitivity analysis will be performed with regard to design parameters. This
is done in order to pinpoint important parameters for the Ornicopter design and
their influences on Ornicopter performance.

2. Based on the parameters selected, a design database will be created which contains
a large number of Ornicopter designs. Using the database, the general trend of a
feasible Ornicopter design will be analysed.

3. The optimization problem for the Ornicopter will be defined and optimal designs
will be attained.

4. The optimized design of the Ornicopter will be compared with the Bo-105 design
to verify if it matches the design requirements and answer the main research
questions.

The detailed design of the forced flapping mechanism for full-scale helicopters has
not been considered. It is very difficult to estimate the weight of these mechanisms
accurately at this stage. Therefore, it is assumed that the forced flapping mechanism
has the same weight as the tail rotor system, i.e. the Ornicopter has the same gross
weight as the Bo-105. This assumption introduces some error for the weight of the
Ornicopter. However, it is considered to be negligible.

It should be mentioned that the Ornicopter design in this thesis is the initial concept
design. This design process is based on the initial estimation of the total weight of the
Ornicopter, which is the same as the Bo-105 helicopter. After a new Ornicopter design
has been obtained, the weight of Ornicopter should be re-calculated to verify whether
all the design requirements are satisfied. Multiple iterations of the design process might
be needed before the final converged design result is acquired.

The main purpose of the Ornicopter design research in this thesis is to unmask the
general design trends of this new concept and further understand its characteristics
compared with a conventional helicopter. The initial design process can provide a
relatively good result for this purpose. In this sense, the following design process will
not be looped for the final converged result. The weight estimation for the Ornicopter
is not considered in this thesis. The influence of varying design parameters on the
gross weight of the Ornicopter is neglected, i.e. the Ornicopter total weight is assumed
constant.



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 121 — #143
✐

✐

✐

✐

✐

✐

5.2 The Design Parameters 121

5

5.2 The Design Parameters

5.2.1 Rotor Sizing

The main rotor is the most important component of the helicopter. Proper design of
the rotor is critical to meet the performance requirements for the helicopter as a whole.
The Ornicopter introduces the additional flapping motion to the rotor, and hence leads
to different characteristics for the Ornicopter as discussed before. In this sense, the
main rotor design will be the main concern of the Ornicopter design research in this
chapter.

The conceptual and preliminary design of the main rotor generally encompasses the
following parts [21]:

1. The general sizing, i.e. the rotor diameter and the rotor tip velocity.

2. The geometric platform of the blade which includes the chord, solidity, number
of blades, blade twist and tip shape.

3. The choice of airfoil(s).

In this thesis, only the general sizing and the blade chord will be discussed as this is
decisive for the performance. Other main rotor design elements will be kept constant,
such as the number of blades and blade twist.

It should be mentioned that some parameters for the helicopter rotor are correlated
to each other. Two sets of them will be presented before the sensitivity analysis, and
these are:

1. Rotor radius, tip velocity and rotor rotational speed, as:

Vt = RΩ (5.1)

2. Rotor radius, solidity and blade area, as:

σ =
Ab
πR2

(5.2)

In the following research, the rotor radius R, tip velocity Vt and blade area Ab are
chosen as design variables. In this sense, the rotational speed Ω and solidity σ will not
be constant and vary according to the three chosen design variables.

5.2.2 Vertical Fin

In Chapter 4, the performances of the Ornicopter and Bo-105 were compared, which
showed some drawbacks of the Ornicopter due to stall (this was directly related to the
average AoA and the variation of the AoA). In forward flight, the vertical fin design
can be modified to reduce the rotor stall area, and hence improve the performance of
the Ornicopter.
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The oscillation amplitude of the AoA is determined by both ‘conventional’ flapping
and the forced flapping motion. When a larger fin size (Svs) and/or a higher incidence
angle (βfin0 ) is used, the fin can generate higher yaw moment in forward flight to balance
a part of the shaft torque, especially at high velocity. In this case, the active flapping
motion needs to compensate for a smaller partition of the shaft torque, and hence the
forced flapping motion can be reduced. In this manner, the Ornicopter performance
can be improved.

In the steady forward flight condition, the sidewards velocity (v) is very small and
the rotational velocities (p, q, r) are zero. Therefore, the yaw moment generated by the
vertical fin (Eq. D.59) can be simplified as:

Nfin =
1

2
ρu2SfinC

fin
lα

βfin0 xfin (5.3)

Defining the equivalent fin area, as:

Se = Sfinβ
fin
0 xfin (5.4)

gives the yaw moment generated by the vertical fin as:

Nfin = PdynSeC
fin
lα

(5.5)

where Pdyn is the dynamic pressure (Pdyn = 1
2ρu

2).
One can see that in steady forward flight the moment generated by the vertical fin is

proportional to the equivalent fin area. For different fin designs which have a different
fin size (Svs), incidence angle (βfin0 ) or fin location (xfin), the yaw moment generated
will be the same in steady forward flight, as long as they have the same equivalent fin
area.

In this chapter, the purpose of changing the vertical fin design is to partially com-
pensate for the rotor torque, and hence to reduce the amplitude needed for the blade
forced flapping motion. The ability to generate a yaw moment is the main point of
interest in this context. In this sense, the equivalent fin area will be considered as a
main design parameter in the sensitivity analysis. To keep it simple, only the fin area
will be varied next.

5.2.3 Pitch Flap Coupling

As discussed in Section 2.3, the Ornicopter blades are forced to flap with a constant
pitch angle. Meanwhile, all the examples of flapping-wing propulsion in nature combine
pitching and flapping motions. The combined pitch-plunge flapping wing has been stud-
ied in the flapping wing community and research shown that the flapping wing thrust
efficiency can be increased by using a combined pitch-plunge motion [26]. Therefore,
pitch-flap coupling should also be considered for the Ornicopter concept. It is modelled
by two coupling terms as shown in Eq. D.20, and their effects on the Ornicopter design
will be analysed next.

Figure 5.1 shows the impacts of pitch flap coupling terms on the blade pitch angle
(assuming cyclic control is not applied). The pitch flap angle coupling is common for
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conventional helicopters. The flapping motion of the blade will slightly change the blade
pitch angle if the pitch control rod is not located on the flapping axis. A positive kθ1

indicates that the pitch angle will be increased when the flapping angle (β) is positive,
as shown in Fig. 5.1.b. In the case of pitch flap rate coupling, the change in the pitch
angle is associated with the blade flapping rate. A positive kθ2 indicates that the pitch
angle will be increased when the blade is flapping upwards (β̇ > 0), see Fig. 5.1.c.

Figure 5.1: Sketch for blade pitch flap coupling

5.3 Sensitivity Analyses

The following design parameters will be investigated in the following sensitivity analyses:
the rotor radius, blade area, rotor tip velocity, the fin size and the pitch-flap coupling.

The sensitivities of the required power and the stall area with respect to the above
chosen design parameters will be investigated. Calculations will be performed for two
flight conditions, including hovering and fast forward flight at 120 knots.

In the following figures, the required power is normalized by the maximum continu-
ous engine power, and the stall area is normalized by the rotor disk area. All the design
parameters are normalized by their values in the baseline design (Bo-105) respectively,
except the pitch flapping coupling parameters (both kθ1 and kθ2) (their values in the
baseline design are zero).

5.3.1 The Rotor Radius

The effects of changing the rotor radius on the Ornicopter’s performance are shown in
Fig. 5.2 with regard to the non-dimensional stall area S̄ and the required power P̄ .

One can see the large improvements in the Ornicopter performance with the increase
in the rotor radius in hovering. When a larger rotor is used, lower power is required
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and a smaller rotor area encounters stall (in percentage). In forward flight, the required
power can also be reduced by using a larger rotor, while the stall area will be slightly
increased.
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Figure 5.2: Impact of the rotor radius on the stall area and required power

By increasing the rotor radius, the induced velocity can by reduced, and hence lower
induced power is required. As the induced power is the major part of the required power
of helicopters in hovering, using a larger rotor can dramatically reduce the total required
power of the Ornicopter. In forward flight, it is less beneficial to increase the rotor radius
as the parasitic power is the dominant factor at high speed.

From the preliminary analyses, one can see that the amplitude of active flapping is
associated with the forced flapping power (see Eq. 2.27). By reducing the required power
i.e. the forced flapping power, the amplitude of the active flapping can be reduced.

The simple Ornicopter rotor model in hovering (see Appendix A) can be used for
more detailed analyses. In the trimmed hovering condition, the shaft torque coeffi-
cient should be zero. Equation. A.13 can be rewritten as (cyclic pitch control is not
considered):

0 =
1

2
σsClααeλi +

1

8
σsCd0 − 1

16
σsClα β̂

2 (5.6)

in which the effective angle of attack αe is :

αe =
θ0

3
− λi

2
(5.7)

The required flapping amplitude can be calculated as:

β̂2 = 8αeλi + 2
Cd0

Clα
(5.8)
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Rewriting the main rotor thrust (see Eq. A.7) gives:

T =
1

6
ρ (NbcR)Clα (ΩR)2 θ0 − 1

4
ρ (NbcR)Clα (ΩR)2 vi

ΩR

=
1

6
ρAbClαV

2
t θ0 − 1

4
ρAbClαV

2
t

vi
Vt

=
1

2
ρAbV

2
t Clα

(

θ0

3
− λi

2

)

=
1

2
ρAbV

2
t Clααe

(5.9)

In hovering, the thrust of the main rotor equals the total weight, which is assumed
to be constant. Therefore, the αe will keep constant as the blade area and tip velocity
are constant while the rotor radius is varying. Meanwhile, the inflow ratio (λi) will
decrease with the increase in the rotor radius. Combining these effects, one can find
that increasing the rotor radius will decrease both the collective pitch (see Eq. 5.7) and
the active flapping amplitude (see Eq. 5.8) in hovering, as shown in Fig. 5.3.
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Figure 5.3: Flapping amplitude and collective pitch as a function of the rotor radius

As discussed before, the reason why the Ornicopter’s rotor encounters stall in hov-
ering is that the active flapping introduces an additional variation of the blade angle
of attack. By reducing the active flapping and collective pitch, both the mean angle of
attack and the variation of the angle of attack can be reduced, and hence the stall area
can also be reduced. Hereby, with regard to stall, the Ornicopter performance can be
improved by increasing the rotor radius.

In forward flight, the numerical calculations can show the effects of varying rotor
radius on the active flapping and collective pitch control. Figure 5.3 shows that changing
the rotor radius has less effect on the amplitude of active flapping and collective pitch
control in forward flight than in hovering. As the induced power is a small part of
the total required power in forward flight, the active flapping is almost constant while
varying rotor radius. Due to the slightly reduced induced velocity, the collective pitch
control also reduces slightly.
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The increasing rotor radius also changes the flapping dynamics of the Ornicopter
rotor. With a larger rotor, a higher negative longitudinal cyclic pitch control (θs1)
is required for trimmed forward flight, which increases the blade pitch angle on the
retreating side. This will increase the stall on the retreating blades. Therefore, the stall
area will increase with an increase in the rotor radius in forward flight.

5.3.2 The Blade Area

Figure 5.4 shows the impact of the blade area on the Ornicopter performance. As the
rotor radius is constant in this case, the rotor solidity will also change proportionally
with the blade area.

The blade area is directly related to the blade loading (Mag/Ab). By increasing the
blade area, the blade loading will be smaller, and the local blade element angle of attack
can be reduced for both hovering and forward flight. Recalling Eq. 5.9, the equivalent
angle of attack (αe) is inversely proportional to the blade area, i.e. it will decrease with
an increase in the blade area. The blade area will not affect the induced velocity, i.e.
the inflow ratio is constant. In this sense, the required collective pitch angle reduces in
line with an increase in the blade area (see Eq. 5.7). From Eq. 5.8, one can see that
the amplitude of the flapping motion also drops off for a lower equivalent blade angle
of attack (αe). The variation in the active flapping amplitude and collective pitch with
the blade area is presented in Fig. 5.5. Due to the effects discussed above, increasing
the blade area results in the stall area dropping off dramatically.
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Figure 5.4: Impact of the blade area on the stall area and required power

This is accompanied by higher power consumption due to the higher profile power,
which is proportional to the blade area. In forward flight, more additional profile power
is required because of higher local velocity on the blade element.

5.3.3 The Tip Velocity

In the case of tip velocity, its effect on performance is similar to that of the blade
area. The higher the tip velocity is, the more dramatically the stall area drops and the
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Figure 5.5: Impact of the blade area on the flapping amplitude and collective pitch

required power increases, see Fig. 5.6.
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Figure 5.6: Impact of the tip velocity on the stall area and required power

The reduction of the stall area with increasing tip velocity is also caused by the
lower flapping amplitude and collective pitch, similarly to the case of the blade area.
However, varying the tip velocity has a greater effect on the Ornicopter’s performance
than changing the blade area. This is due to the fact that aerodynamic forces are
affected by the square of velocity (V 2

t ). In hovering, using about a 10% higher tip
velocity can eliminate the stall area, while it requires about a 20% larger blade area to
obtain the same effect.

5.3.4 The Fin Size

The yaw moment generated by the vertical fin is negligible at low speed. In this sense,
the vertical fin will only affect the performance of the Ornicopter in forward flight, as
shown in Fig. 5.7 and 5.8.
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Figure 5.7: Impact of the fin size on the stall area and required power
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Figure 5.8: Impact of the fin size on the flapping amplitude and collective pitch

By using the vertical fin to compensate for a part of the shaft torque, less propulsive
torque generated by the active flapping is required, and hence the amplitude of the
forced flapping motion can be reduced, as shown in Fig. 5.8. In this way, the stall
area in forward flight can be limited and the flight envelope of the Ornicopter can be
extended. By reducing the active flapping, the rotor profile power can be reduced. As
the profile power is not the main part of the total power in forward flight, a modest
reduction in the required power can be found while increasing the fin size.

In the trim value comparison (see Fig. 4.1), it has been discussed that the Ornicopter
rotor requires a higher collective pitch input than the Bo-105 in forward flight, which
is caused by the higher horizontal hub force (H). Since a larger vertical fin can reduce
the amplitude of active flapping (in other words the Ornicopter can fly more ‘like’ a
conventional helicopter), the additional collective pitch control for the Ornicopter can
be reduced. This results in a lower collective pitch when the fin size is increasing, as
shown in Fig. 5.8.
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5.3.5 The Pitch Flap Coupling

As shown in Eq. D.20, two pitch flap couplings are considered in the flight mechanics
model developed in this thesis, including the pitch flap angle coupling (kθ1) and the
pitch flap rate coupling (kθ2).

The Pitch Flap Angle Coupling

Figure 5.9 presents the impacts of the pitch flap angle coupling on the stall area and the
required power of the Ornicopter. One can see that this coupling term has a relatively
small effect on the stall area (it only varies by around 3%) and it will not noticeably
affect the Ornicopter’s required power either in hovering or forward flight.
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Figure 5.9: Impact of the pitch flap angle coupling on the stall area and required power

As mentioned above, the pitch flap angle coupling will change the blade pitch angle
when the blade is not at the neutral position (in the flapping direction). This additional
pitch angle will slightly enlarge the the angle of attack variation amplitude on the blade
elements. For example, considering a hovering Ornicopter rotor without cyclic control,
the angle of attack of a blade element is:

α = θ − ϕ (5.10)

Substituting the pitch angle (Eq. D.20) and the induced angle (Eq. 2.5) into Eq. 5.10,
one can get:

α =θ0 + θtw r̄ +
λi
r̄

+ kθ1β0

+ (kθ1βs1 + βc1) sin (ψ) + (kθ1βc1 − βs1) cos (ψ)
(5.11)

The angle of attack variation amplitude is then:

α̂ =

√

(kθ1βs1 + βc1)
2

+ (kθ1βc1 − βs1)
2

=
√

k2
θ1 + 1

√

β2
s1 + β2

c1

(5.12)
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From Eq. 5.12 one can see that the variation of the blade angle of attack will be
enlarged by both the positive and negative values of the pitch flap angle coupling, as-
suming that the flapping motion is not affected by kθ1. Calculations also show that this
coupling term has no influence on the active flapping amplitude, as shown in Fig. 5.10.
In this sense, when the kθ1 is zero, the stall area has its minimum value, and increases
for both positive and negative kθ1.
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Figure 5.10: Impact of the pitch flap angle coupling on the flapping amplitude and
collective pitch

In forward flight, similar impacts of kθ1 as in hover can be found. However, due to
the unsymmetrical airflow, positive and negative kθ1 have slightly different impacts on
the stall area. The stall area will reach its minimum value when kθ1 is around −0.05.

The Pitch Flap Rate Coupling

Recalling the basic concept of the Ornicopter (Chapter 2), while the blade is flapping
downwards, the blade element angle of attack will be increased due to the flapping
motion. This higher angle of attack will increase the stall area of the Ornicopter rotor.
By using a positive pitch flap rate coupling, the blade angle of attack can be reduced
as the pitch angle is reduced by the pitch flap rate coupling term.

In hovering, this effect can reduce the angle of attack variation on blade elements,
as well as the maximum angle of attack. Therefore, the stall area can be reduced (see
Fig. 5.11). Due to the lower local angle of attack, the average profile drag will also be
lower. In this sense, the required power in hovering reduces slightly in line with the
increasing kθ2.

This coupling effect also reduces the propulsive force generated by the active flap-
ping. During the down stroke, where the propulsive force is produced, the pitch angle
is reduced by the pitch flap rate coupling, and hence less lift and propulsive fore are
generated. On the other hand, the drag force increases in the upstroke due to the
higher pitch angle. Therefore, the average propulsive force drops off, which requires the
amplitude of active flapping to be increased, as shown in Fig. 5.12.
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Figure 5.11: Impact of the pitch flap rate coupling on the stall area and required power
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Figure 5.12: Impact of the pitch flap rate coupling on the flapping amplitude and
collective pitch

It should be mentioned that though the amplitude of active flapping increases while
higher kθ2 is used, the local angle of attack on the blade element will increase more
gradually. A higher flapping amplitude also indicates a higher flapping rate. As the
change of pitch angle due to the pitch flapping rate coupling is proportional to the
flapping rate, a higher flapping amplitude also means a larger reduction of pitch angle
when the blade is flapping downwards (kθ2 > 0).

It can also be found that the collective pitch control will not be affected by this
coupling effect in hovering, as shown in Fig. 5.12. In hovering, as there is no unsym-
metrical incoming airflow, the average impact of the coupling on the rotor thrust in one
revolution is zero. Hereby, the collective pitch control will be kept constant for different
kθ2 in hovering.

Overall, the total effect of a positive kθ2 is a strong reduction of the stall area in
hovering, as shown in Fig. 5.11.

For forward flight, the situation is different. The amplitude of active flapping will
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increase while increasing kθ2, similar to in hovering. However, the collective pitch
control will increase in this case.

From Fig. 5.12, one can see that when negative kθ2 is used, the collective pitch
is increasing slowly with increasing kθ2. Meanwhile, the gradient of the curve also
increases, resulting in a rapidly increasing collective pitch when kθ2 is close to 0.5.

As discussed in the previous chapter (see Section 4.2), the blades’ active flapping will
cause a higher negative horizontal hub force (H), and hence a larger nose-down pitch
angle and collective pitch control. This effect becomes stronger as a higher amplitude
of active flapping is required. Therefore, increasing kθ2 increases the collective pitch in
forward flight.

Combining the two effects from above, the variation in the stall area in forward
flight as a function of kθ2 is characterised by a bucket shape. While kθ2 is negative, the
stall area can be reduced by increasing kθ2, similar to in hovering. When kθ2 is positive,
increasing collective pitch becomes the dominant effect, and causes a higher stall area.

5.3.6 Conclusion

From the above analyses, some conclusions can be made:

1. By increasing the rotor radius, the performance of the Ornicopter in hovering can
be improved. In forward flight, the required power can also be reduced, while a
smaller rotor will have better stall characteristics.

2. Using a higher blade area and tip velocity can reduce the stall area dramatically,
but consumes more profile power.

3. By using a larger vertical fin, both the stall area and the required power of the
Ornicopter in forward flight can be improved. This parameter should be used as
the main approach to improve the Ornicopter performance in forward flight.

4. The pitch flap angle coupling will degrade the performance of the Ornicopter, and
it should be kept at zero.

5. The pitch flap rate coupling has different effects on the Ornicopter in hovering as
compared to forward flight. This parameter can be used to tune the performance
of the Ornicopter for overall optimal design.

The impacts of different design parameters on the Ornicopter are summarized in
Tab. 5.1. The rotor radius, blade area, tip velocity and fin size will be considered as
the main design variables in the next section. Different combinations will be analysed,
in order to form a design database.

5.4 The Design Database

In the previous section, analyses were performed that varied only one design param-
eter at one time. Analyses for combinations of multiple design parameters can show
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Table 5.1: Impacts of the design parameters on the Ornicopter stall area and required
power

Design
variation

Stall Power

Hovering
Forward

flight
Hovering

Forward
flight

R
ր ↓ ր ↓ ց
ց ↑ → ↑ ր

Ab
ր ⇓ ↓ ր ↑
ց ⇑ ↑ ց ↓

Vt
ր ⇓ ↓ ր ↑
ց ⇑ ↑ ց ↓

Svs
ր → ↓ → ց
ց → ↑ → ր

kθ1
ր ր ր → ր
ց ր ր → ր

kθ2
ր ⇓ ր ց ց
ց ⇑ ր ց ց

ր, ↑, ⇑= small, modest, large increase

ց, ↓, ⇓= small, modest, large decrease

→= not affected

more information regarding the Ornicopter characteristics. In this sense, a database
consisting of a large number of different Ornicopter designs is desired.

As mentioned above, four parameters were chosen for the design database, and
their values are shown in Tab. 5.2. Most of the design combinations from Tab. 5.2 are
included in the database, resulting in more than 1 × 104 designs.

Table 5.2: Variation of the design parameters

Parameter
Baseline Minimum Maximum Number

Unit
design value % value % of designs

R 4.91 3.68 75 6.63 135 13 m

Ab 5.30 3.98 75 7.95 150 16 m2

Vt 218 164 75 283 130 12 m/s

Svs 0.710 0.710 100 3.55 500 6 m2
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For each design, different performance and handling qualities analyses are carried
out, including:

1. Trim process for different flight velocities (hovering to 150 knots) and altitudes (0
m to 5000 m) combinations;

2. Required power calculation for each trim point;

3. Stall area analyses for fast forward flight (130 knots to 160 knots) at sea level and
hovering at different altitudes (0 m to 4000 m);

4. Linearised models derived for handling qualities analyses;

5. Bandwidth and attitude quickness calculations for sea level forward flight (40
knots).

The calculation flow chart for one design case is shown in Fig. 5.13. For each
Ornicopter design, the non-linear flight mechanics model will be linearised using Maple,
from which corresponding Matlab code files will be generated. For these code files, all
the design parameters are embedded into the codes, i.e. these files will not take the
Ornicopter design parameters as input data, and they are only valid for one specific
Ornicopter design. In this manner, the calculation cost of the code file can be reduced
dramatically, which is beneficial for the large amount of analyses desired in the database.
Using this code, an analysis program can perform the analyses mentioned above, and
save all the data into the database.

Figure 5.13: Flow chart for the design database

5.5 The Design Process

5.5.1 Design Space

Using the design database, more analyses can be performed for the Ornicopter concept.
One of the important applications is to find a feasible design space for certain design
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requirements. In this section, the feasible design space for the Ornicopter based on the
Bo-105 performance shown in Tab. 2.2 will be investigated.

Defining the Design Criteria

The design requirements are defined based on the performance specification in Tab. 2.2,
i.e. the hovering ceiling and maximum velocity. They can be converted into the required
power and stall area limitations in certain flight conditions to reduce the calculation
cost.

For example, to predict the maximum speed of a helicopter limited by the stall
area, numerical methods will be used to search for the velocity at which the rotor
stall area reaches the maximum value allowed. This means that analyses need to be
performed for several velocities. The stall area increases with increasing flight velocity.
Therefore, if the stall area of one design does not reach the maximum stall allowed at
the maximum speed requirement (V reqmax), it can fly faster than V reqmax, i.e. it satisfies the
design requirement. In this way, the stall analysis only needs to be performed once, and
the computation cost can be reduced dramatically.

To get more understanding of the influences of different designs on the Ornicopter
performance, the sea level hovering condition is also considered in this section. In this
sense, three flight conditions are chosen for the analyses: hovering at sea level (referred
to as hovering in the following), maximum speed forward flight (150 knots) at sea level,
and hovering ceiling (2815 m).

The required power and stall area will be analysed for each condition and the analysis
results for the Bo-105 helicopter will be used as design requirements for the Ornicopter
design. In other words, the Ornicopter design should have the same or lower power
consumption and stall area than the Bo-105 helicopter.

It should be noticed that the Bo-105 rotor does not encounter stall in hovering, while
the Ornicopter concept introduces stall in hovering due to active flapping. The same
stall area requirement will be applied to the Ornicopter in hovering conditions (both
sea level and hovering ceiling) as for forward flight.

All the design requirements with regard to stall and power (in non-dimensional form)
are summarized in Table. 5.3.

Table 5.3: Design requirements

Flight Velocity 0 0 150 knots

condition Altitude 0 2815 m 0

Maximum stall 0.0893 0.0893 0.0893

Maximum power 0.543 0.584 0.846

Results from the Design Database

Based on these design requirements discussed above, a feasible design space for the
Ornicopter can be determined. As the four design parameters vary, the feasible design
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space will be a four-dimensional space, which is difficult to visualise. To have a better
view of the design space and the impacts of varying parameters on it, the feasible
rotor sizing (i.e. rotor radius and blade area) is presented for different tip velocities
and vertical fin size. Besides the stall and power requirements mentioned above, the
allowable blade aspect ratio (R/c) is also limited, for example by the blade structure
design. In the following figures, the aspect ratio limitation is also presented (14 <
R/c < 20).

Figure 5.14 shows the feasible rotor design boundary for different tip velocities based
on the sea level hovering requirements.

For the stall requirement, the feasible design space is on the top-right side of the
boundary, due to the fact that a higher rotor radius and blade area can reduce the stall
area. In the case of the required power, a higher rotor radius and lower blade area will
be beneficial. Therefore, the feasible design space is on the bottom-right side of the
boundary.

Figure 5.14: Design space with different tip velocities for hovering (S̄vs = 5)

Increasing the tip velocity, both the boundaries for stall and power will shift. As
increasing the tip velocity dramatically reduces the stall area, a lower blade area and
rotor radius are required to keep the stall area lower than the design requirement. The
stall boundary moves towards the bottom-left side and the feasible design area for stall
requirement is enlarged. Meanwhile, the higher the tip velocity is, the larger the profile
power required. To maintain the same total power consumption, a higher rotor radius
should be used to reduce the induced power or the blade area should be lower to reduce
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the profile power. This effect moves the power boundary towards the right-hand side
and reduces the feasible design space.

The design boundaries change with the variation in the tip velocity. For all the tip
velocities presented in Fig. 5.14, a design space can be found that fulfils both the stall
and power requirements. This feasible design space moves from the top-right corner to
bottom-right when the tip velocity is increasing.

Similar results can be found for the hovering ceiling requirement, as shown in
Fig. 5.15. Two major differences can be found when comparing this to the sea level
hovering condition.

Figure 5.15: Design space with different tip velocities for the hovering ceiling condition
(S̄vs = 5)

First, the stall boundary shifts to the top-right corner of the plot. This is caused by
a higher stall area with an increased altitude. At high altitude, the air density becomes
lower. To generate the same thrust, the rotor needs to accelerate more air (in volume),
in other words, the induced velocity and inflow ratio will be higher. Meanwhile, the
thinner air will also increase the required equivalent blade angle of attack, see Eq. 5.9.
Recalling Eq. 5.8, the increasing αe and inflow ratio will require a higher amplitude
of active flapping for the same thrust. Combining these effects, the stall area of the
Ornicopter rotor will increase with increasing altitude. Because of the higher stall area,
a higher blade area and rotor radius are needed to match the stall design requirement,
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and hence the stall boundary moves.
Secondly, the power boundary slightly rotates and is more close to a vertical line

when compared with the sea level hovering condition. The impact of tip velocity on
the power constraint becomes smaller. This is caused by the fact that with increasing
altitude, the profile power becomes a smaller part of the total required power. As the
tip velocity only affects the profile power, it has less impact on the power constraint.
Similarly, the blade area also has a small effect on the total required power. The rotor
radius is the dominant factor for power requirement in this flight condition.

In fast forward flight, the design boundaries are different from hovering, as shown
in Fig. 5.16

Figure 5.16: Design space with different tip velocities for forward flight (S̄vs = 5)

For the power requirement, the feasible design space is still on the bottom-right side
of the boundary, which indicates that a smaller blade area and smaller rotor radius are
preferable with regard to power consumption. In forward flight, the parasite power is
the main part of the required power and it is determined by the fuselage design. The
profile power is secondary and the induced power is the smallest proportion of the total
required power. In this sense, the power boundary is relatively flat, i.e., the required
power is more sensitive to the blade area than to the rotor radius.

Some major changes can be found on the stall boundaries. In the forward flight
condition, the feasible design space is located on the top-left side of the stall boundary
instead of the top-right side, which indicates the trend to use a smaller rotor. This can
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also be found from the sensitivity analysis, as Fig. 5.2 shows a slightly increase in the
stall area with an increase in rotor radius in forward flight.

One may have noticed that there is no intersection between the feasible design spaces
defined by stall and power requirement respectively. This demonstrates that no feasible
design space can be found for the Ornicopter in forward flight. While the tip velocity
is increasing, both stall and power boundaries are shifting to the bottom-right side of
the graph. The feasible design cannot be achieved by changing rotor tip velocity.

As discussed in the previous chapter, the Ornicopter active flapping blade will in-
crease the stall area and the profile power of the main rotor. To reduce the stall area,
a larger blade area or higher tip velocity should be used. However, those solutions will
further increase the rotor profile power. In hovering, while the induced power is the ma-
jor part of the total required power, by using a larger rotor radius, the required power
can be reduced. At a certain point, the reduction in induced power can overcome the
increasing of the profile power necessary for the stall requirement, resulting in a feasible
Ornicopter design. In forward flight, the impact of the rotor radius on the required
power is very small. Therefore, the power and stall requirements cannot be satisfied at
the same time.

So far, the impacts of vertical fin size on the feasible design space have not been
discussed. As the vertical fin does not generate any force or moment in hovering, it
will not affect the Ornicopter performance in hovering. In this sense, only the design
boundaries in the forward flight condition will be shown, see Fig. 5.17.

The general shape of the stall boundaries is similar to those boundaries drawn while
changing tip velocity. By increasing the fin size, the Ornicopter’s feasible design space
can be greatly enlarged.

For the power boundary, the vertical fin size is less influential. However, increasing
the vertical fin size is beneficial for the power boundary. Though a feasible design space
cannot be found for the fin designs shown in Fig. 5.17, the stall and power boundaries
are moving towards each other. At a certain point, when the vertical fin is large enough,
a feasible design will be found. This will happen when the vertical fin compensates for
all the main rotor shaft torque. The active flapping will not be needed. In this case,
the Ornicopter rotor will work as a conventional helicopter rotor. The stall area and
required power should be very close to those of a conventional helicopter. Meanwhile,
the tail rotor does not exist on the Ornicopter. The Ornicopter total required power
can be smaller than that of the Bo-105 helicopter. This results in a feasible design space
for the Ornicopter in the forward flight condition.

However, this will require a large equivalent fin area (Se), which will cause other
drawbacks. One of them is a lack of yaw control. If the vertical fin compensates for
all the shaft torque and the amplitude of the active flapping is zero, the Ornicopter
rotor will work as a conventional helicopter rotor, and hence it will not be able to
generate a yaw control moment in both directions. An additional yaw control method
is needed, such as the use of a rudder. Meanwhile, a large vertical fin may also cause
some problems regarding the structure or weight. More research should be carried out
for a proper fin design in future work.
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Figure 5.17: Design space with different vertical fin sizes for forward flight (V̄t = 1.1)

Compromised Design Requirements

As shown above, a design space for the Ornicopter that fulfils the requirements for all
three flight conditions cannot be found. The most critical condition is at the maximum
forward flight velocity. This indicates that the final Ornicopter design will have a higher
power consumption and/or smaller flight envelope.

In this sense, the design requirements should be modified. Some requirements have
to be compromised to achieve a satisfactory design.

For the power requirement, the allowed power consumption can be increased for
each flight condition. This results in an Ornicopter design that has higher required
power than the Bo-105 helicopter. Figure 5.18 shows all the design boundaries in all
three flight conditions. The maximum power consumption in this case is increased by
10%. A feasible design space can now be found.

It can be found that the feasible Ornicopter design will have a higher blade area
and tip velocity to reduce the stall area. This will also increase the profile power of the
rotor. Therefore, the rotor radius will also be increased to reduce the induced power.
However, reducing the induced power cannot compensate for all the additional profile
power, resulting in a higher total required power for the Ornicopter.

In the case of the stall requirements, a similar calculation as for the power require-
ment is performed, as shown in Fig. 5.19. In this case the stall area limitations are
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5Figure 5.18: Feasible design space (10% higher power, V̄t = 1.1, S̄vs = 5.0)

increased by 20%.
From Fig. 5.19 one can see that with the higher allowable stall area, the design

boundaries for the stall requirements shift only slightly. Hence, no feasible design space
can be found in this case.

Comparing Fig. 5.18 and 5.19, it can be found that the design boundaries of the
power requirements are significantly more sensitive to the design requirements than the
stall boundaries.

This is caused by the fact that these design parameters have higher impacts on the
stall area than on the required power. For example, recalling the sensitivity analyses
shown in Fig. 5.4, the stall area varies by about 100% of the initial value in forward
flight, while the variation in required power is only about 20%.

In this sense, while changing the stall design requirements, the stall design bound-
aries only move slightly. Therefore, no feasible design space can be found when increas-
ing the allowed stall area by 20%.

In order to obtain a feasible design, the stall requirements need to be further re-
laxed, which means a very small flight envelope. In this way, the required power of the
Ornicopter can be kept the same as the Bo-105. However, the small flight envelope will
be a major drawback for this design.

In conclusion, from the above analyses, it appears that the power requirements
should be relaxed to enable a feasible Ornicopter design, and the stall requirements
can be kept the same as proposed before. The resulting Ornicopter design will have a
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Figure 5.19: Feasible design space (20% larger stall area, V̄t = 1.1, S̄vs = 5)

similar flight envelope as the Bo-105 helicopter but a higher power consumption.

5.5.2 Design Optimization

From the design database, the general trend of a feasible Ornicopter design can be
found. However, the design variation is limited by the computational cost, and it cannot
provide an optimal design of the Ornicopter. In this sense, the design optimization will
be performed in this section to obtain the optimal Ornicopter design.

Four design parameters are chosen for the design database, including the rotor ra-
dius, the blade area, the tip velocity and the vertical fin size. Out of these parameters,
increasing the vertical fin size is the most efficient way to improve the Ornicopter per-
formance. In the Ornicopter flight mechanics model, the vertical fin is only considered
as a lifting plate. Possible drawbacks of using a larger vertical fin, such as the higher
weight, are not modelled. If the vertical fin size is chosen as a design variable, the
optimization result will reach the upper limit of the optimization boundary. Therefore,
the vertical fin size will be kept constant, i.e. the maximum value used in the design
database (S̄vs = 5.0), for the following design optimization.

Looking at the feasible design space presented in Fig. 5.18, one can see that the
feasible design space is determined by the power requirements of hovering ceiling and
forward flight conditions, the stall requirements at the hovering ceiling, as well as the
maximum blade aspect ratio. The stall design boundary for the forward flight is still
relatively far away from the feasible design space. This indicates that there is a stall
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margin for forward flight condition, which can be traded for the hovering performance.
In this sense, if a certain design can reduce the Ornicopter stall area in hovering and in-
crease the stall area in forward flight, it can be used to tune the Ornicopter performance
in different flight conditions, and may improve the overall performance.

From the sensitivity analyses for the different design parameters, it was found that
the pitch flap rate coupling (kθ2) has the desired impacts on the Ornicopter. Therefore,
it will be included in the design variables used for optimization.

Hereby, the design variables which will be optimized include the rotor radius, blade
area, tip velocity and the pitch flap rate coupling. The boundaries of these design
parameters are shown in Tab. 5.4. In the following part, the optimization problem will
be defined and the optimization results will be presented.

Table 5.4: Boundaries of the design parameters

R(m) Vt(m/s) Ab(m
2) kθ2

Minimum 4.0 200 4 -0.2

Maximum 9.0 260 10 1.2

Defining Cost Function and Constraints

From the analyses of the design space, it was concluded that to maintain the same
required power as the Bo-105 helicopter, the Ornicopter has to compromise its flight
envelope. It will be a better option to design an Ornicopter with a similar flight envelope
to the Bo-105, while requiring slightly more power. Therefore, the stall requirement
will be considered as design constraints and the required power will be used as the
optimization objective.

As discussed before, the stall area on the Ornicopter rotor in hovering will increase
with increasing altitude. Therefore, for a certain design, the stall area in the hovering
ceiling condition will always be larger than that of sea level hovering. The maximum
allowed stall areas are the same for all flight conditions. Therefore, a design will be
satisfactory with regard to the stall requirement at sea level if it satisfies the stall
requirement at high altitude. It is not necessary to include the stall requirement in
hovering at sea level as design constraints of the optimization.

In this sense, the main constraints of the design include the stall area at the hovering
ceiling and in forward flight ( 150 knots), as well as the blade aspect ratio limitation,
as:

S̄hc < 0.0893

S̄f < 0.0893

14 ≤ R/c ≤ 20

(5.13)

The optimization objective is the Ornicopter’s required power in the three flight
conditions used before. As there are multiple flight conditions, the results should be
combined to form one scalar objective function. The following weight factor is used for
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this purpose:

F = wf P̄f +
1 − wf

2

(

P̄h + P̄hc
)

(5.14)

where wf is the weight factor for required power in forward flight, P̄f , P̄h and P̄hc
are the normalized required power in three flight conditions (forward flight, sea level
hovering and hovering ceiling respectively), which represent the ratio of the required
power of the Ornicopter to that of the Bo-105 helicopter, as:

P̄f ≡
P

(Orni)
f

P
(Bo)
f

P̄h ≡ P
(Orni)
h

P
(Bo)
h

P̄hc ≡ P
(Orni)
hc

P
(Bo)
hc

(5.15)

By tuning the weight factor, optimal designs can be obtained for different flight
conditions. The value of the weight factor will depend on the desired Ornicopter ap-
plications. For example, the Ornicopter designed for troop transportation will mainly
fly at high velocity, and hence a large wf should be considered (0.5 < wf < 1.0). To
investigate the impacts of the weight factor on the final Ornicopter design, different
values are tested. The optimization results will be presented in the following section.

Optimized Designs

The optimization tool provided by Matlab (fmincon) is used for the design optimiza-
tion. This can find the minimum value of the constrained non-linear multi-variable
function. The interior point algorithm provided by fmincon is used for the following
optimization. It will not be further discussed in detail as it is a standard method. More
details of the algorithm were discussed in Ref [6, 7].

The design optimizations are performed with different weight factors wf , ranging
from 0 to 1.0. In this sense, a series of optimal designs are obtained.

Before presenting all the optimization results, the optimization history data for one
case (wf = 0.5) is presented. Figure. 5.20 shows the history of design parameters with
their upper (UL) and lower limits (LL). In Fig. 5.21, the design constraints (blade aspect
ratio and rotor stall area) are presented.

The optimization starts with the Bo-105 design. It is not satisfactory due to the
high stall area. The optimization algorithm first searches for a feasible design, resulting
in a very high tip velocity. From this design, the search direction follows the trend of
using a larger rotor radius and blade area, lower tip velocity and a small negative kθ2.

From Fig. 5.20 and 5.21, one can see that the design parameters do not reach the
limitations, and the active constraints for this optimization case are the blade aspect
ratio and stall area in forward flight.
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Figure 5.20: Design parameter history for wf = 0.5
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Figure 5.21: Design constraints for wf = 0.5

To understand the trend of the optimized Ornicopter design and the active con-
straints, all the optimization results (0.0 6 wf 6 1.0) are analysed together. The
physical reasons causing these results will be investigated.

Figure 5.22 presents the normalized power requirement of the optimal Ornicopter
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designs with different wf . It clearly shows that the required power in the hovering
condition and forward flight are contradictory.

With a low weight factor, the Ornicopter design can be optimized mainly for hov-
ering, resulting in approximately 7% less required power in hovering and 15% power
requirement reduction at the hovering ceiling, when compared to the Bo-105. The
drawback that comes with this design is the higher required power in forward flight,
which is about 11% higher than that of the Bo-105 helicopter.
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Figure 5.22: Normalised required power of the optimal Ornicopter design as a function
of wf

Similar results can be found for the high wf cases, in which the forward flight per-
formance is the main optimization objective. However, the optimal Ornicopter design
will still have higher required power than the Bo-105 in forward flight (approximately
1%), and the required power in hovering will be increased dramatically (close to 8%).
In other words, to reduce the Ornicopter power consumption in forward flight, the
hovering performance needs to be compromised to a large extent.

From Fig. 5.22, one can also find that the impact of wf on the hovering performance
is much higher than in the forward flight condition. The change of normalized power
requirement at the hovering ceiling is nearly 25%, while the required power in forward
flight varies by only around 10%.

This is caused by the fact that the induced power is the dominant part in the total
required power in hovering, and it is very sensitive to the design parameters considered
in the above optimization, especially the rotor radius. In forward flight, the fuselage
parasitic power is the main part of the total required power, which is not affected by
the rotor design parameters.
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Figure 5.22 also shows that the optimal design is not affected for low and high
weight factors, i.e. the wf is influential mainly in the range of 0.4 to 0.8. For a better
understanding of Ornicopter’s the optimization results, the variations in the optimal
design parameters (as a function of wf ) are presented in Fig. 5.23, and Fig. 5.24 shows
the blade aspect ratio and rotor stall area of the optimal designs.
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Figure 5.23: Optimal designs for different wf
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From Fig. 5.23 and 5.24, one can see that the optimal design reaches the boundary
(boundary for design parameters or stall boundary) when wf is lower than 0.4 or higher
than 0.8.

When wf is low, the design is optimized mainly for hovering, where a higher rotor
radius is desired to reduce the induced power. Due to the design constraint of the
maximum blade aspect ratio, the blade chord length also needs to be increased. At the
point where wf is 0.4, the blade area reaches the maximum value allowed. In this sense,
the required power in hovering cannot be further reduced when lowering wf .

Increasing wf (between 0.4 and 0.8), the required power for forward flight becomes
a larger part of the optimization objective. To reduce the forward flight power con-
sumption, the blade area needs to be reduced, in order to minimize the profile power.
Due to the blade aspect ratio constraint, the rotor radius should also be reduced. This
will increase the induced power consumption. However, the induced power is very small
in forward flight, and thus the total required power can be reduced by using a smaller
rotor. Meanwhile, as shown before, a lower blade area also means a higher stall area.
Therefore, the rotor tip velocity should be increased to delay the stall.

For the low wf cases, due to the high blade area and rotor radius, the stall will
not occur in the hovering ceiling condition (see Fig. 5.24). Increasing wf , the optimal
rotor radius and blade area decrease. This causes more stall in hovering. Therefore,
the optimal pitch-flapping coupling will also increase, as this can reduce the stall area
in hovering (see Fig. 5.11).

After wf reaches 0.8, its effect on the optimal Ornicopter design becomes very
small. This is due to the fact that the stall area reaches the design requirements in
both hovering and forward flight conditions. In this situation, any design variation
which can reduce the forward flight power consumption, such as a smaller rotor or a
lower tip velocity, will increase the stall area and results in an unsatisfactory design.

Overall, the weighing factor wf will affect the final optimal Ornicopter design, and
this plays an important role between the range of 0.4 and 0.8. The higher wf is, the
better the forward flight performance, which requires a smaller rotor size and blade
area, as well as a higher tip velocity and pitch flapping rate coupling to reduce the stall
area.

The final optimal Ornicopter design will depend on the potential applications of the
helicopter. In this sense, it is not the intention of this thesis to determine the ‘best’
Ornicopter design.

In this thesis, the purpose of the Ornicopter design process is to find a design that
has a similar performance to the reference helicopter Bo-105 and to investigate the
potential of this new concept. Therefore, the optimization results which have similar
required power to the Bo-105 for both hovering and forward flight should be considered
as the Ornicopter design candidates.

Recalling Fig. 5.22, this shows that the Ornicopter concept is not a good solution
for fast forward flight. Its minimum required power in forward flight is still higher
than the power consumption of the Bo-105, while the cost to reduce it is very high (i.e.
the required power in hovering increases dramatically). Meanwhile, to reduce the stall
area, the rotor tip velocity should be increased, see Fig. 5.23. This will also degrade
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the Ornicopter high speed performance due to compressibility effects on the advancing
side.

Overall, the optimal Ornicopter design corresponding to wf = 0.7 has been chosen.
The design parameters are presented in Tab. 5.5. The Ornicopter design has almost
identical required power in hovering as the Bo-105 (P̄h = 0.9911) and lower required
power at the hovering ceiling (P̄hc = 0.9598). As discussed before, the required power
of the Ornicopter will be higher than that of the Bo-105. For the chosen Ornicopter
design, it requires about 4% more power at 150 knots forward flight (P̄f = 1.038).

Table 5.5: Optimized Ornicopter rotor design

Design parameters

R Ab Vt kθ2
c Ω

(m) (m2) (m/s) (m) (rad/s)

Ornicopter 5.50 6.06 230.7 0.168 0.275 41.9

Bo-105 4.91 5.30 218.0 0 0.270 44.4

It should be mentioned that the vertical fin size used in the optimization is relatively
high (S̄vs), in order to increase the equivalent vertical fin size (Se). To limit the vertical
fin size to a practical value, while keeping the same equivalent vertical fin size, the
vertical fin size and the incidence angle are both increased for the following comparisons.
The incidence angle (βfin0 ) is increased to 8o (β̄fin0 = 1.72) and the S̄vs equals 2.91.

5.6 Comparisons with the Bo-105

In this section, the new optimized Ornicopter design will be compared with the Bo-105
helicopter. The comparisons will be done for the flight envelope, the natural modes and
handling qualities.

5.6.1 The Flight Envelope

The flight envelope of the new Ornicopter design as compared with the Bo-105 is pre-
sented in Fig. 5.25. The same criteria used in the previous chapter are applied to the
calculation.

It can be found that the Ornicopter stall boundary is greatly extended when com-
pared to the baseline design. For this new Ornicopter design, the flight envelope will
be similar to that of the Bo-105 helicopter.

Looking at the stall boundary, one can see that the stall effect still has a large impact
on the Ornicopter hovering performance when compared with the Bo-105. However, this
optimized Ornicopter has dramatically increased the hovering ceiling defined by the stall
effect.

Increasing the air speed, the stall service altitude of the Ornicopter will increase first
until it reaches the maximum altitude at around 50 knots flight speed. Afterwards, it
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Figure 5.25: The flight envelope of the optimal Ornicopter and Bo-105

will decrease with the increase in speed. In the Bo-105 case, the stall service altitude
will keep decreasing as the velocity increases.

This is caused by the fact that the stall area on the Ornicopter rotor consists of
two parts: 1) the ‘conventional’ stall area caused by the blades’ longitudinal flapping,
the longitudinal cyclic control and the unsymmetrical local air flow, and 2) the stall
introduced by the active flapping.

The amplitude of the active flapping has a bucket shape as the required power for
helicopters (see Fig. 4.3). This indicates that the stall caused by the active flapping
will also have a bucket shape, which makes the stall boundary of the Ornicopter have
a ‘reversed’ bucket shape as seen in Fig. 5.25.

One can also see that at high forward speed (around 130 knots), the Ornicopter has
a higher stall service altitude than the Bo-105 helicopter. This shows that, in forward
flight, the stall area on the Ornicopter rotor is less sensitive to altitude compared with
a conventional helicopter main rotor.

For the same flight speed, increasing the altitude will increase the ‘conventional’
stall area on both the Ornicopter rotor and conventional helicopter rotor. For the
Ornicopter, the stall area caused by the active flapping is associated with the required
power. In fast forward flight, increasing the altitude decreases the air density, and hence
the power required by the Ornicopter reduces (as the parasite power is the major part of
the total required power). In this sense, the amplitude of active flapping will decrease
as the altitude increases, as well as the stall area. Combining these two effects, the
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development of the stall area on the Ornicopter rotor is more gradual than that of the
Bo-105 while the altitude is increasing. Therefore, in forward flight, the Ornicopter has
a slightly higher service altitude than that of the Bo-105.

In hovering, the situation is reversed. Now the induced power is the main part of the
required power. Increasing the induced power at higher altitude requires an increase
in the amplitude of active flapping which causes a larger stall area. In this sense,
the Ornicopter rotor stall area in hovering will increase very fast when the altitude is
increasing resulting in much lower stall hovering ceiling than the Bo-105.

For the power boundaries, the Ornicopter shows a similar trend to conventional
helicopters. At low and modest speed, the Ornicopter has a slightly higher service
altitude than the Bo-105, while its maximum speed which is limited by the available
power is lower.

This is also caused by the different compositions of required power in hovering and
forward flight. Due to the stall effect, the Ornicopter needs a rotor with a higher
radius, blade area and tip velocity. This design modification will reduce the induced
power, while increasing the profile power. In this sense, compared with the Bo-105, the
Ornicopter has lower required power in hovering, when induced power is the dominant
part of the total required power, and higher required power in forward flight, when the
profile power is higher than the induced power.

Combining stall and power boundaries, one can see that the Ornicopter will have a
slightly better performance in hovering and low speed. Due to the higher stall area, the
Ornicopter has a lower service ceiling when compared to the Bo-105. For high speed
flight, the Ornicopter performance is worse than the Bo-105 due to the higher required
power.

5.6.2 Autorotation

In Chapter 4, the autorotation index (AI) of a helicopter main rotor was derived as:

AI =
πgρbSaV

2
t R

6NbBL2
(5.16)

From the design research for the Ornicopter above, it is showed that the stall effect
is the most critical issue for the Ornicopter concept. To reduce the stall area, the Orni-
copter’s blade loading should be reduced, and a higher rotor tip velocity is preferable.
Meanwhile, a larger rotor disk size (larger radius) is required to reduce the induced
power. All the design modifications will increase the AI of the Ornicopter rotor. As
the ρb and Sa are assumed to be constant at the preliminary stage, the optimized
Ornicopter rotor will have a higher AI as compared to the Bo-105. Substituting the
optimized design of the Ornicopter (see Tab. 5.5) into Eq. 5.16, one can get that the
AI of the Ornicopter is 67.6% higher than that of the Bo-105.

5.6.3 Natural Modes of Motion

The new Ornicopter design also changes the flight dynamics of the helicopter. Those
impacts can be found from the natural modes of the body motion DoF. Figure 5.26(a)
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presents the eigenvalues of this new Ornicopter design, together with the eigenvalues of
the Bo-105.

(a) The optimized Ornicopter design and the Bo-105

(b) The baseline Ornicopter design and the Bo-105

Figure 5.26: Comparisons of natural modes for the Ornicopter and the Bo-105
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The figure shows that the general trends of the modes are kept the same for the
new Ornicopter design. The main differences between the new and baseline Ornicopter
design corresponds to pitch/roll subsidence and the Dutch roll modes (see Fig. 5.26(b)).

Comparisons in Chapter 4 showed that the baseline Ornicopter design has almost
identical dynamic characteristics as the Bo-105 in the pitch and roll axes, since they
have the same design. For the new design, the pitch and roll subsidence modes shift to
the left hand side, indicating higher pitch and roll dampings. These higher dampings
will make the Ornicopter more stable and may improve its handling qualities.

This change is caused by the larger (and heavier) blades used for the new design.
With the heavier blades, this new rotor can generate higher hub moments, and hence
the new Ornicopter design has higher pitch and roll damping.

The most interesting change is related to the Dutch roll mode. The baseline Orni-
copter has a very different Dutch roll mode when compared to the Bo-105. Both the
Dutch roll damping and frequency of the baseline Ornicopter are lower than that of the
Bo-105. This is caused by the low Ornicopter yaw damping and directional stability.

The new design uses a bigger vertical fin to compensate for part of the shaft torque.
Meanwhile, the bigger vertical fin also improves the yaw damping and the directional
stability, especially at high velocities. Therefore, the Dutch roll mode of the new Orni-
copter design is similar to that of the Bo-105.

For a clearer view, the Dutch roll modes of the Ornicopter and Bo-105 are also
presented with the handling qualities rating defined in ADS-33 [4], see Fig. 5.27.

From Fig. 5.27 one can see that for the new design, the Ornicopter has the same
handling qualities rating as the Bo-105. The differences between them are very small.
As for the baseline design, the SCAS system can be used to improve the Ornicopter
handling qualities. the calculation shows that for the new design, the improvements
with regard to the Dutch-roll mode achieved by using the SCAS system is less than
that for the baseline design.

5.6.4 Handling Qualities

The changes in the Ornicopter dynamic characteristics also affect handling qualities. In
the following, the attitude quickness and the bandwidth/phase delay will be presented
for pitch and yaw directions.

The Pitch Axis

Since the impacts of the new Ornicopter design on pitch and roll axes are similar, only
the pitch axis is analysed and presented in this thesis, as shown in Figs. 5.28 and 5.29.

According to the discussion for the yaw handling qualities in the previous chapter,
higher damping can improve the Ornicopter’s yaw handling qualities. Similar effects
can also be found in the pitch axis.

The new Ornicopter design increases the pitch and roll damping of the helicopter,
as shown in Fig. 5.26(a), resulting in a higher pitch bandwidth and better attitude
quickness response.

The pitch bandwidth and delay is affected by pitch damping, as well as by flapping
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Figure 5.27: Dutch roll mode with the handling qualities rating

Figure 5.28: The pitch bandwidth and phase delay
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Figure 5.29: The pitch attitude quickness

dynamics and inflow dynamics. Therefore, though the pitch damping of the new Or-
nicopter design is greatly increased, the improvement in pitch bandwidth and delay is
relatively small.

For pitch attitude quickness, the improvement is also limited. This new Ornicopter
design has almost identical pitch quickness as the Bo-105 and slightly higher minimum
attitude change (∆Θmin). The calculation results shift slightly towards the Level 1
region. However, the Ornicopter and Bo-105 still have the same level of handling
qualities with regard to quickness.

The Yaw Axis

Due to the additional yaw damping and directional stability provided by the larger
vertical fin, the new Ornicopter design has better yaw handling qualities, as shown in
Fig. 5.30 to 5.32.

From Fig. 5.30, one can see that the general trend in the yaw bandwidth and delay
of the new Ornicopter design is the same as the baseline Ornicopter and Bo-105. The
bandwidth of the Ornicopter is improved by the new design, especially at a high velocity.
This is caused by the fact that the vertical fin is more influential at higher air speed.
At fast forward flight (130 knots), the Ornicopter has almost the same yaw bandwidth
as the Bo-105.

However, the larger vertical fin affects only the dynamics of the body motion DoF.
The higher phase delay of the Ornicopter, which is mainly caused by the control time
delay and flapping dynamics, cannot be improved in this new Ornicopter design. This
is the inherent characteristic of the Ornicopter concept, and cannot be easily overcome.
The flight control system should be considered to solve this drawback of the Ornicopter.

Figure 5.32 shows the yaw attitude quickness of the new Ornicopter and the Bo-105.
One can see that the new design has similar quickness parameters as Bo-105, while the
minimum heading change is smaller. This change causes the curve for the Ornicopter
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Figure 5.30: The yaw bandwidth (hovering and low speed)

Figure 5.31: The yaw bandwidth (forward flight)

to move a little away from the Level 1 boundary when compared with the baseline
Ornicopter design, which indicates slightly worse handling qualities. However, the yaw
response of this new design should be more similar to conventional helicopters, which
is favourable for the pilot workload.
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Figure 5.32: The yaw altitude quickness

5.7 Discussion

5.7.1 Weight Prediction

During the design process, the weight of the Ornicopter is assumed to be the same as
that of the Bo-105. From the design database and design optimization, one can see that
the optimal Ornicopter tends to use aarger blades and a bigger vertical fin.

As previously discussed, the design process in this thesis does not include a weight
analysis. The reason for this is that the main focus of the research relates to the
Ornicopter’s performance with the additional consideration of rotor design parameters
that can improve this performance. The design modifications identified in the present
thesis will increase the weight of the Ornicopter when the rest of the parameters remain
unchanged.

With a higher weight, the Ornicopter performance will be degraded, i.e. higher
required power and stall area. In forward flight, the fuselage parasite power is the
dominant factor for helicopter performance. Consequently, the forward flight of the
Ornicopter will be less influenced by the increased weight compared to the hovering
performance.

5.7.2 Influence of the Helicopter Size

In this thesis, only one benchmark helicopter is considered. Possible influences of the
gross weight on the Ornicopter are not considered.

The gross weight does not affect the stall characteristics of helicopters directly. The
blade loading coefficient (CT /σ) combining the helicopter’s weight and rotor design
parameters is more representative regarding rotor stall. It can be calculated as (in
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hovering):

CT /σ =
T

ρV 2
T πR

2

πR2

Ab

=
Mag

ρV 2
TAb

(5.17)

The statistic data shows that most helicopters have a blade loading coefficient (in
hovering) of about 0.08 at their MGTOW (maximum gross takeoff weight) [22], as
shown in Fig. 5.33. A stall margin is required for the rotor to produce enough thrust
force in forward flight and to conduct flight manoeuvres.

Figure 5.33: Trends of blade loading coefficient versus MGTOW [22]

As the Ornicopter enlarges the rotor stall due to active flapping, the stall margin
needed for the Ornicopter is higher than that of conventional helicopters, i.e. the
Ornicopter should have lower blade loading coefficient. The design optimization has
shown this trend.

As one can see in Fig. 5.33, the blade loading coefficient is very similar for helicopters
with different weights. The Ornicopter design should also have the same trend, i.e. the
weight of the helicopter will not be the main factor for the differences between the
optimized Ornicopter design and conventional helicopter designs.

Regarding the required power, the Ornicopter only increases the rotor profile power,
which is a relatively small portion of the total required power. Increasing the gross
weight increases the required power of the helicopter. However, the composition of the
required power (induced power, profile power and parasite power) should be similar for
different sizes of helicopter. In this sense, using different benchmark helicopters should
result in a similar increase of required power for the Ornicopter (in percentage terms).
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5.7.3 Different Design Requirements

In this thesis, the flight envelope of the benchmark helicopter (Bo-105) is used as the
design requirements of the Ornicopter. Design optimization showed the Ornicopter has
worse performance than the Bo-105. Using a different benchmark helicopter (and hence
different design requirements) might affect the final conclusion. Different kinds of flight
envelope should be considered in future research.

To reduce the rotor stall, the Ornicopter design tends to increase the main rotor
profile power. In fast forward flight, the parasite power is the dominant part of the total
required power, and it increases very fast with increasing air speed. The profile power
becomes a smaller proportion of the total required power at higher speed. In this sense,
the additional profile power on the Ornicopter will be less detrimental while a higher
maximum velocity is required, i.e. the difference of the Ornicopter and conventional
helicopters will be smaller (in percentage) regarding the required power in forward
flight. It should be considered that at higher speed, the compressibility effects on the
advancing side of the rotor become stronger. Therefore, a higher maximum velocity
requirement might be favourable for the Ornicopter concept before the compressibility
effects become the main limitation of the maximum speed.

In hovering, as the helicopter performance is more sensitive to the main rotor design
than in forward flight, the Ornicopter design can be optimized and have the same or
even better performance than the Bo-105. In this sense, the hovering ceiling requirement
is less influential for the differences between the Bo-105 and optimized Ornicopter.

From the flight envelope calculations, as shown in Fig. 5.26(a), one interesting result
can be found that the general shape of the Ornicopter flight envelope is different from
that of the Bo-105. The service ceiling of Bo-105 (5725 m) is much higher than its
hovering ceiling (2815 m). This results in a parabolic top of the Bo-105 flight envelope.
In the case of the Ornicopter, its flight envelope has a more flat top. These different
shapes are correlated to the different characteristics of the two helicopters. Similar
requirements for the hovering ceiling and the maximum service might be favourable for
the Ornicopter concept, as they fit the characteristics of the Ornicopter better.

5.8 Conclusion

In this chapter, some design parameters of the Ornicopter are modified based on its
characteristics. The new optimized Ornicopter design is determined.

Sensitivity analyses are performed first to investigate the impacts of different design
parameters on the Ornicopter performance. Based on the analyses results, four param-
eters are chosen to build a design database, including: the rotor radius, the blade area,
the tip velocity and the vertical fin size.

Combining the different values of these four parameters, a design database is formed.
From the database, it can be found that no feasible design can be found for the Orni-
copter to satisfy both the design requirements, i.e. the stall area requirements and the
required power requirements.

Using the optimization method, the optimal Ornicopter designs concerning different
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flight conditions (hovering or forward flight) are identified. The results show that the
hovering performance of Ornicopter can be better than that of the Bo-105, with the cost
of poorer forward flight performance. However, the optimal forward flight performance
of the Ornicopter is always inferior to that of the Bo-105 due to the active flapping. This
indicates that the Ornicopter concept might be more suitable for low and mid-range
velocity applications.

From the series of optimal Ornicopter designs, the one with similar hovering perfor-
mance to the Bo-105 is chosen as an example design, and compared with the Bo-105 in
means of the flight envelope and handling qualities.

Comparisons show that the new Ornicopter design can greatly improve the limited
flight envelope of the baseline Ornicopter design. The new design has a better altitude
performance at low speed and fast forward flight, while having lower maximum speed
due to the higher required power.

This new Ornicopter design also improves the handling qualities, and it has better
handling qualities in pitch and roll axes than the Bo-105. Although its yaw handling
qualities are improved, this new design is still slightly worse than the Bo-105 in a few
of its handling qualities.
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Conclusions and

Recommendations

The goal of the present dissertation was to understand how and why the Ornicopter
concept behaves differently when compared with conventional helicopters, and to inves-
tigate the feasibility of the Ornicopter design.

In this context, the Ornicopter concept was first mathematically modelled and anal-
ysed. Comparisons with the Bo-105 helicopter using the same design parameters were
performed. the main characteristics of the Ornicopter, such as required power, flight
envelope and handling qualities, were found and served as an important guide for the
following Ornicopter design. Based on sensitivity analyses and a design database, some
important design parameters for the Ornicopter were pinpointed and optimized. The
optimized Ornicopter was again compared with the Bo-105 to answer the research ques-
tions of the thesis.

6.1 Conclusions

6.1.1 Impacts of the Ornicopter Concept

Question 1:
As compared to a conventional helicopter, what are the char-
acteristics of the Ornicopter regarding performance, stability,
controllability, and handling qualities?

The Ornicopter concept introduces two fundamental changes to conventional heli-
copters. They are active flapping blades and the absence of a tail rotor. Based on
comparisons between the baseline Ornicopter design (the same as the Bo-105) and the
Bo-105, those two changes will affect the Ornicopter in the following ways.

161
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The active flapping blades mainly affect the Ornicopter performance. This is due to
a large variation in the blade angle of attack. This large variation will increase the stall
area on the Ornicopter rotor, as well as the profile power. The increased stall area of
the Ornicopter is the major drawback of the Ornicopter concept, especially when the
Ornicopter is using the same design as the Bo-105. The flight envelope of the Ornicopter
is strongly limited by the stall effect. The maximum velocity and service ceiling of the
Ornicopter reduce dramatically because of the stall, i.e. the Ornicopter maximum speed
is 50% lower than that of the Bo-105 helicopter, and the Ornicopter service ceiling is
about 500 m.

The active flapping causes higher profile power which reduces the efficiency of the
Ornicopter rotor. Approximately 6% more power than of a conventional helicopter
rotor is required. As the Ornicopter does not need the tail rotor, the total required
power of the Ornicopter will be similar to the Bo-105 in hovering, and about 5% more
than that of the Bo-105 in forward flight. It should be mentioned that the above
power calculations were done with the assumption that the stall effects are neglected.
Considering the large stall area on the Ornicopter rotor, the actual required power of
the baseline Ornicopter will be higher. The power comparisons between the optimized
Ornicopter (stall area is limited) and Bo-105 is more accurate.

The active flapping also generates higher hub vibratory loads. As all blades are
forced to flap in sequence, the harmonic components of hub forces and moments gen-
erated by different blades cannot cancel each other, resulting in vibratory loads in the
range of 1/rev to Nb/rev. The most efficient way to reduce the Ornicopter’s vibratory
problem is by using a higher number of blades and new flapping configurations, such
as the 3 × 2 AS configuration or the 4×Teeter configuration.

The absence of the tail rotor affects the stability and the handling qualities of the
Ornicopter in the yaw direction. The Ornicopter does not have the yaw damping or the
directional stability offered by a conventional tail rotor. Therefore, the Ornicopter yaw
handling qualities are inferior to conventional helicopters, with respect to bandwidth
and delay, attitude quickness and lateral-directional oscillation. Without a tail rotor,
the Ornicopter yaw control is achieved by controlling the main rotor torque directly.
Two advantages can be found for this yaw control method, namely the higher yaw
control power and the lower coupling responses for yaw control input.

6.1.2 Ornicopter Design

Question 2:
As compared to a conventional helicopter, how can an Orni-
copter with comparable or improved flight performance be
designed?

The comparisons between the Ornicopter concept and conventional helicopters have
shown some drawbacks of the Ornicopter concept. Some of them can be overcome by
modifying the Ornicopter design.

The sensitivity analyses showed the impacts of different design parameters on the
Ornicopter concept. Most of these parameters have contradictory effects on the stall
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area and required power.
One exception is the vertical fin size. In forward flight, by using the vertical fin to

compensate for the main rotor torque, the amplitude of the forced flapping can be re-
duced. In this way, both the stall area and required power can be reduced. Considering
that a larger vertical fin also improves the yaw stability and handling qualities, the Or-
nicopter design will tend to have a larger vertical fin when compared with conventional
helicopters.

To have a better view on the different combinations of design parameters, a design
database was created with more than 104 Ornicopter designs. Analyses showed that no
Ornicopter design can be found in the database that has the same or lower stall area
and required power as Bo-105 helicopter.

This is caused by the fact that the stall area and required power are contradictory
requirements. Trying to reduce the stall area will most probably increase the power
consumption. Recalling that the Ornicopter concept will increase both the stall and
required power of the main rotor, it will be difficult to reduce both of them by changing
some design parameters. In this sense, the Ornicopter design was optimized for the
power consumption, the stall area being used as design a constraint.

The design optimization showed the general trend in the design parameters for differ-
ent optimization objectives. For the Ornicopter having a similar hovering performance
as the Bo-105, it was found that it requires about 4% more power in forward flight. This
design has a larger blade area (Ab) and tip velocity (Vt) to reduce the stall area and
a larger rotor radius (R) to reduce the required power in hovering. It uses a positive
pitch flap rate coupling (kθ2) to improve the hovering performance and a larger vertical
fin to improve the forward flight performance.

The new Ornicopter design was compared with the Bo-105 for the flight envelope and
handling qualities. The calculations showed a large improvement for the Ornicopter’s
flight envelope compared with the baseline design, as well as better handling qualities.

From all the analyses and comparisons that have been done, the different char-
acteristics of the Ornicopter concept when compared with conventional helicopters
can be summarized, as shown in Tab. 6.1. It should be emphasised that the advan-
tages/disadvantages are based on an Ornicopter design which is similar to the Bo-105.
Some of them will vary with the design trade off.

Overall, this thesis extended the research for the Ornicopter concept to a more
detailed stage. Multidisciplinary analyses have been performed, such as performance,
stability and handling qualities analysis, and the thesis gives a more comprehensive
understanding of the characteristics of this concept. The research in this thesis showed
that the Ornicopter has worse performance (smaller flight envelope and higher required
power) due to its inherent characteristics, i.e. the active flapping blades. The thesis
also investigated the application of a design database and design optimization in the
conceptual design phase of a new configuration. The design method applied in the
thesis has shown its effectiveness to unmask the general design trend of a new concept
and its potential to be a tool for general conceptual design applications.
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Table 6.1: Characteristics of the Ornicopter concept

Advantages Disadvantages

Power Lower required power in
hovering

Higher required power in
forward flight

Stall Higher stall area, stall in
hovering flight

Flight enve-
lope

Lower maximum service
ceiling

Stability Lower yaw damping and
directional stability

Controllability Higher yaw control power

Handling qual-
ities

Lower coupling responses
for yaw control input

Slightly worse yaw han-
dling qualities

Other Higher autorotation index Higher vibratory loads

6.2 Recommendations

6.2.1 Improving the Model

The flight mechanics model developed in this thesis is a classical Level 1 [10] model
using blade element theory. Some assumptions (Section 3.2.1) and simplifications were
made while developing the model. Improving this model will provide more fundamental
understanding of the Ornicopter.

Some preliminary analyses have been done for the effects of elastic blades on the
Ornicopter. However, those analyses were only done for hovering. Those analyses
showed a relatively large deformation of the blades due to the active flapping. These
elastic effects will change the local air flow condition on blade elements, which may
change the characteristics of the Ornicopter. The elastic blade model throughout the
flight envelope should be considered in further research.

One of the major impacts of the active flapping of blades is the larger angle of attack
variation. In this sense, unsteady aerodynamics and a dynamic stall model should be
considered to improve the hub forces and moments prediction.

In the design process, the total weight of the Ornicopter is assumed to be constant.
The weight of additional forced flapping mechanics should be estimated, as well as the
weight reduction caused by the absence of the tail rotor. Meanwhile, the impacts of
design parameters, such as a larger rotor and vertical fin, on the weight of the Ornicopter
should be also considered.
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6.2.2 Analyses for More Disciplines

Research has been done in this thesis mainly in the field of performance and flight
dynamics. For the Ornicopter, its main propose is to eliminate the tail rotor from the
helicopter. As mentioned before, the tail rotor has some drawbacks with respect to
safety, noise, and control authority. In this sense, the Ornicopter concept should also
be studied with regard to other disciplines, such as safety, reliability, lifecycle cost and
environmental impacts.

One of the critical issues for the Ornicopter is, as in the case of any helicopters,
related to safety. Eliminating the tail rotor results in the increasing reliability of a
helicopter. However, the Ornicopter concept introduces additional complexities on the
main rotor. The effect of this revolutionary rotor concept on the helicopter’s reliability
requires a more detailed rotor hub design and should be considered in further analyses.
Likewise, the Ornicopter’s behaviour after the failure of the forced flapping mechanism
should also be investigated.

6.2.3 Hybrid Concept

Some drawbacks have been found with the Ornicopter in this thesis. By design optimiza-
tion, the performance of the Ornicopter can be improved. However, the improvement
is limited by the inherent characteristics of this concept. By combining the Ornicopter
concept with other new technologies, some disadvantages of the Ornicopter might be
overcome.

One promising configuration is to use the vertical fin to compensate for all the shaft
torque in forward flight. In this case, the active flapping will not be needed in forward
flight and the Ornicopter rotor will work as a conventional helicopter rotor. The yaw
control will be achieved by using a rudder, like a fix-wing aircraft. At low speed, the
blades will be forced to flap again like the original Ornicopter concept.

Besides the above configuration, some other new technologies, such as the HHC
(high harmonic control), IBC (individual blade control) and variable RPM rotor, may
also improve the Ornicopter concept, and should be considered in future research.
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A
The Ornicopter Rotor Model

in Hovering

In this appendix, a simple rotor model for the Ornicopter in hovering will be derived
using blade element theory. A central hinged rotor is considered in this model, as shown
in Fig. A.1.

β

Rotor Shaft

Central Hinge Spring

Blade
dT

Ω

η Mff

Forced flapping 

mechanism 

Figure A.1: Blade configuration for the rotor model

A.1 Hub Force and Moment for One Blade

The lift and drag forces on the blade element shown in Fig. A.2 are:

167
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Figure A.2: Aerodynamic environment at a typical blade element

dL =
1

2
ρ
(

v2
p + v2

t

)

Clcdr

≈ 1

2
ρv2
tClcdr

dD =
1

2
ρ
(

v2
p + v2

t

)

Cdcdr

≈ 1

2
ρv2
tCdcdr

(A.1)

in which:

Cl =Clαα

=Clα (θ − ϕ)

Cd =Cd0

(A.2)

where θ is the pitch angle of the blade defined as:

θ = θ0 + θs1 sinψ + θc1 cosψ (A.3)

The blade twist is not considered in this model.
The lift and drag forces can be expanded as;

dL =
1

2
ρCLα

c
(

θΩ2r2
e − Ωre

(

β̇re + vi
))

dre

dD =
1

2
ρΩ2r2

eCd0cdre

(A.4)

Assuming that the induced angle is small, one can obtain:

dFy ≈ dD + dLϕ

dFz ≈ −dL (A.5)
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A

Similarly, these forces can be transformed into the rotor shaft reference, thus in
order to calculate the total hub force and moment generated by the rotor:

dT ≈ dL

dH = −dFy sinψ + dFzβ cosψ

dS = −dFy cosψ − dFzβ sinψ

dN ≈ dFyr

(A.6)

where T is the rotor thrust, H is the horizontal hub force, S is the sidewards hub force
and N is the shaft torque.

Integrating through the blade radius and rotor azimuth angle gives the total hub
forces and torque generated by one blade. The blade thrust is then:

Ts =
1

2π

∫ 2π

0

∫ R

0

dT

=
1

6
ρcClαΩ2R3θ0 − 1

4
ρcClαΩR2vi

(A.7)

It can also be written in non-dimensional form as:

CTs
=

Ts

ρ (ΩR)2 πR2

=
1

2
σsClα

(

θ0

3
− λi

2

) (A.8)

where σs is the solidity of a single blade, i.e.:

σs =
c

πR
(A.9)

and λi is the inflow ratio:

λi =
vi

ΩR
(A.10)

The Ornicopter’s horizontal hub force, sidewards hub force and shaft torque coeffi-
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cients can be derived in the same way, and this gives:

CHs
=

1

2
σsClα

(

θ0

3
− λi

2

)

βc1 − 1

8
σsClαλi (θs1 + βc1)

+
1

12
σsClαβ0 (θc1 − βs1)

=CTs
βc1 − 1

8
σsClαλi (θs1 + βc1) +

1

12
σsClαβ0 (θc1 − βs1)

(A.11)

CSs
= − 1

2
σsClα

(

θ0

3
− λi

2

)

βs1 − 1

8
σsClαλi (θc1 − βs1)

− 1

12
σsClαβ0 (θs1 + βc1)

= − CTs
βs1 − 1

8
σsClαλi (θc1 − βs1) − 1

12
σsClαβ0 (θs1 + βc1)

(A.12)

CQs
=

1

2
σsClα

(

θ0

3
− λi

2

)

λi +
1

8
σsCd0

− 1

16
σsClα

(

β2
s1 + β2

c1 + βc1θs1 − βs1θc1
)

=CTs
λi + CQ0s

− 1

16
σsClα

(

β̂2 + βc1θs1 − βs1θc1

)

(A.13)

As the blade is centrally hinged, the pitch and roll moments are generated only by
the flapping spring, which connects the blade and the forced flapping mechanism as
shown in Fig. 2.14). Therefore, the pitch and roll moments generated by one blade are:

dLs =Mff sinψ

dMs =Mff cosψ
(A.14)

where Mff is the flapping moment generated by the forced flapping mechanism on the
blade:

Mff = (η − β)Kβ (A.15)

Substituting the forced flapping mechanism motion (η) and the blade flapping mo-
tion (β) (see Eq. 2.1) into Eq. A.15 and integrating through the azimuth angle results
in the average roll hub moment:

Ls =
1

2π

∫ 2π

0

((ηs1 sinψ + ηc1 cosψ) − (β0 + βs1 sinψ + βc1 cosψ))Kβ sinψdψ

=
1

2
Kβηs1 − 1

2
Kββs1

(A.16)

Similarly, the pitch hub moment is:

Ms =
1

2
Kβηc1 − 1

2
Kββc1 (A.17)
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The non-dimensional pitch and roll moments coefficients can also be derived as:

CLs
=

Ls

ρ (ΩR)
2
πR3

=
1

2

λ2
β − 1

γ
σsClα (ηs1 − βs1)

CMs
=

Ms

ρ (ΩR)
2
πR3

=
1

2

λ2
β − 1

γ
σsClα (ηc1 − βc1)

(A.18)

where λβ is the flapping natural frequency ratio and γ is the blade Lock number. They
are defined as:

λ2
β = 1 +

Kβ

IβΩ2

γ =
ρcCLα

R4

Iβ

(A.19)

A.2 Forced Flapping Motion

For a rotor in hovering, the flapping blade equation of motion is [10]:

Iβ β̈ + IβΩ2β = Mflap (A.20)

For conventional helicopters, the flapping moment on one blade (Mflap) contains
only the aerodynamic moment (the gravity of blade is neglected). In the case of the
Ornicopter, an additional forced flapping moment is applied. Therefore, the flapping
moment is:

Mflap = Maero +Mff (A.21)

Using Eq. A.4, the aerodynamic flapping moment Maero can be derived as:

Maero =

∫ R

0

dLre

=
1

2
ρCLα

cΩ2R4

(

θ

4
− β̇

4Ω
− vi

3ΩR

)

=
1

2
γIβΩ2

(

θ

4
− β′

4
− λi

3

)

(A.22)

where

β′ =
dβ

dψ

= βs1 cosψ − βc1 sinψ

=
β̇

Ω

(A.23)
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Substituting the flapping moment into the flapping equation of motion gives:

β0 =
1

2
γ

(

θ

4
− β′

4
− λi

3

)

+ (η − β)(λ2
β − 1) (A.24)

Expanding Eq. A.24 and collecting terms for the constant and first harmonic coef-
ficients (which should be zero), three equations can be derived for the three flapping
coefficients (β0, βs1 and βc1):

−β0 +
1

8
γθ0 − 1

6
λi − β0(λ2

β − 1) = 0

1

8
γθs1 +

1

8
γβc1 + (ηs1 − βs1)(λ2

β − 1) = 0

1

8
γθc1 − 1

8
γβs1 + (ηc1 − βc1)(λ2

β − 1) = 0

(A.25)

The flapping equations of motion (A.25) can also be written in matrix form as:

A × ~β = b (A.26)

where:

~β = [β0, βs1, βc1]⊤ (A.27)

A =









λ2
β 0 0

0 λ2
β − 1 − 1

8γ

0 1
8γ λ2

β − 1









(A.28)

b =









(

θ0

8 − λi

6

)

γ
θs1

8 γ +
(

λ2
β − 1

)

ηs1

θc1

8 γ +
(

λ2
β − 1

)

ηc1









=







θ0 − 4λi

3

θs1

θc1







γ

8
+







0

ηs1

ηc1







(

λ2
β − 1

)

=
γ

8
~θ +

(

λ2
β − 1

)

~η

(A.29)

~θ =

[

θ0 − 4λi
3
, θs1, θc1

]⊤

(A.30)

~η = [0, ηs1, ηc1]
⊤ (A.31)

The blade flapping motion can be calculated as:

~β =A−1 × b

=
γ

8
A−1 × ~θ +

(

λ2
β − 1

)

A−1 × ~η

=~βθ + ~βff

(A.32)
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where ~βθ is the flapping angle caused by the pitch control input and the inflow, which is
the same for both the Ornicopter and conventional helicopters, and ~βff is the flapping
motion introduced by the forced flapping mechanism.

Substituting Eq. A.27 to A.31 into Eq. A.32, the flapping coefficients become:

β0 = c1 + c2θ0

βs1 = c5θs1 + c3θc1 + c4ηs1 + c5ηc1

βc1 = −c3θs1 + c5θc1 − c5ηs1 + c4ηc1

(A.33)

where:

c1 = − γ

2λ2
β

λi
3

c2 =
γ

8λ2
β

c3 =
γ2

64
(

λ2
β − 1

)2

+ γ2

c4 =
64
(

λ2
β − 1

)2

64
(

λ2
β − 1

)2

+ γ2

c5 =
8
(

λ2
β − 1

)

γ

64
(

λ2
β − 1

)2

+ γ2

(A.34)

The average flapping motion of all the Ornicopter’s blades are then:

~βave =
1

Nb

Nb
∑

k=1

(

~β
(k)
θ + ~β

(k)
ff

)

=~βθ +
1

Nb

Nb
∑

k=1

~β
(k)
ff

=~βθ +
1

Nb

(

λ2
β − 1

)

A−1 ×
[

0,

Nb
∑

k=1

η
(k)
s1 ,

Nb
∑

k=1

η
(k)
c1

]T

=~βθ +
(

λ2
β − 1

)

A−1 × [0, η̄s1, η̄c1]⊤

(A.35)

A.3 The Total Hub Forces and Moments

Substituting the flapping coefficients (Eq. A.33) into the hub forces and moments for
a single blade (Eq. A.8, A.11 to A.13 and A.18) results in the total hub forces and
moments on a hovering Ornicopter rotor.
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As the thrust (thrust coefficient) is not affected by the active flapping and cyclic
pitch controls, the total Ornicopter rotor thrust coefficient will be the same as that of
conventional helicopters, i.e.:

CT =

Nb
∑

k=1

C
(k)
Ts

=NbCTs

=
1

2
NbσsClα

(

θ0

3
− λi

2

)

=
1

2
σClα

(

θ0

3
− λi

2

)

(A.36)

The Ornicopter’s in-plane hub forces and moments will vary among each blade due
to the different flapping motions of blades, i.e. ηs1 and ηc1 will vary on each blade, while
the collective and cyclic pitch control will be the same for all the blades. In this sense,
the hub forces and moments generated by the different blades should be calculated
separately and summed up for the total rotor hub forces and moments.

Substituting Eq. A.33 into the horizontal force coefficient (Eq. A.11) results in:

CHs
=

1

2
σsClα (c11θs1 + c12θc1 + c13ηs1 + c14ηc1) (A.37)

where:

αef =
θ0

3
− λi

2

c11 = −1

6
c1c5 − 1

6
c2c5θ0 −

(

αef − 1

4
λi

)

c3 − 1

4
λi

c12 =
1

6
(1 − c3) (c1 + c2θ0) +

(

αef − 1

4
λi

)

c5

c13 = −1

6
c4 (c1 + c2θ0) −

(

αef − 1

4
λi

)

c5

c14 = −1

6
c5 (c1 + c2θ0) +

(

αef − 1

4
λi

)

c4

(A.38)
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Then the Ornicopter’s rotor horizontal force can be derived as:

CH =

Nb
∑

k=1

C
(k)
Hs

=
1

2
σsClα

Nb
∑

k=1

(c11θs1 + c12θc1 + c13ηs1 + c14ηc1)

=
1

2
σsClα

(

c11θs1Nb + c12θc1Nb + c13

Nb
∑

k=1

η
(k)
s1 + c14

Nb
∑

k=1

η
(k)
c1

)

=
1

2
σsClα (c11θs1Nb + c12θc1Nb + c13Nbη̄s1 + c14Nbη̄c1)

=
1

2
σClα (c11θs1 + c12θc1 + c13η̄s1 + c14η̄c1)

(A.39)

As mentioned before (see Section 2.4.4), to avoid the effect of forced flapping motion
on the average tip-path plane of the rotor, the average forced flapping coefficient (η̄s1,
η̄c1) should be zero. In this sense, the horizontal force generated by the Ornicopter rotor
will not be affected by the active flapping, and the rotor horizontal force coefficient will
be a function of cyclic pitch control, i.e.:

CH =
1

2
σClα (c11θs1 + c12θc1) (A.40)

Similarly, the rotor side hub force (CS), the pitch and roll hub moments (CM and
CL) and the shaft torque (CQ) can be derived as:

CS =
1

2
σClα (−c12θs1 + c11θc1 − c14η̄s1 + c13η̄c1)

=
1

2
σClα (−c12θs1 + c11θc1)

(A.41)

CL =
1

2

λ2
β − 1

γ
σClα (η̄s1 − c5θs1 − c3θc1 − c4η̄s1 − c5η̄c1)

= −1

2

λ2
β − 1

γ
σClα (c5θs1 + c3θc1)

(A.42)

CM =
1

2

λ2
β − 1

γ
σClα (η̄c1 + c3θs1 − c5θc1 + c5η̄s1 − c4η̄c1)

= −1

2

λ2
β − 1

γ
σClα (−c3θs1 + c5θc1)

(A.43)

CQ = CTλi + CQ0 − 1

16
σClα ((c15θs1 + c16θc1) η̄s1

+ (−c16θs1 + c15θc1) η̄c1 + c17η̂)

= CTλi + CQ0 − 1

16
σClαc17η̂

2

(A.44)



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 176 — #198
✐

✐

✐

✐

✐

✐

A

176 A The Ornicopter Rotor Model in Hovering

where:

c15 = 2c3c5 + 2c4c5 − c5

c16 = 2c3c4 − 2c2
5 − c4

c17 = c2
4 + c2

5

(A.45)
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Bo-105 Data

B.1 Bo-105 Design Data

Bo-105 data according to Ref [10].

Table B.1: Bo-105 data

Notation Description Value Unit

R Radius of the main rotor 4.91 m

c Blade chord 0.27 m

Nb Number of blades 4

σ Main rotor solidity 0.07

θtw Blade twist -0.14 rad

kr Radius location of the first aero-
dynamic section on the blade
(nondimensional)

0.224

kl Tip loss factor 0.97

ef Nondimensional flapping hinge
offset

0.02

Iβ Flapping moment of inertia 142 kg ·m2

Mβ First moment of mass of blade 51.1 kg ·m
Kβ Flapping stiffness 94025 Nm/rad

Continued on next page
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Table B.1 – continued from previous page

Notation Description Value Unit

γ Lock number of blade 8.47

λβ Flapping natural frequency ratio 1.112

Ω Rotation speed of the main rotor 44.4 rad/s

Clα Airfoil lift coefficient slope 6.24 rad−1

Cd0 Airfoil drag coefficient 0.0103

Cd2 Airfoil drag coefficient 0.147 rad−2

αsh Main rotor shaft tilt angle -0.0524 rad

xmr
Main rotor position in the body
reference

-0.03
mymr 0

zmr -1.48

kθ1 Pitch flap angle coupling 0

kθ2 Pitch flap rate coupling 0

F0 Equivalent drag area of the fuse-
lage

1.3 m2

Ma Mass of the helicopter 2200 kg

Ix Moments of inertia of the heli-
copter about the x-, y- and z-
axes

1433
kg ·m2

Iy 4973

Iz 4099

Ixz Product of inertia of the heli-
copter about the x- and z-axes

660 kg ·m2

Chslα Lift coefficient slope of the hori-
zontal stabilizer

3.16 rad−1

αhs0 Incidence angle of the horizontal
stabilizer

0.0698 rad

Shs Size of the horizontal stabilizer 0.8 m2

xhs
Horizontal stabilizer position in
the body reference

-4.59
myhs 0

zhs -0.6

Cvslα Lift coefficient slope of the verti-
cal fin

2.29 rad−1

xvs
Vertical fin position in the body
reference

-5.45
myvs 0

zvs -0.6

Continued on next page
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Table B.1 – continued from previous page

Notation Description Value Unit

βvs0 Incidence angle of the vertical fin 0.08816 rad

Svs Size of the vertical fin 0.8 m2

Rtr Radius of the tail rotor 0.95 m

ctr Tail rotor blade chord 0.179 m

N tr
b Number of blades of the tail rotor 2

krtr
Tail rotor nondimensional root
cut

0.2

Ωtr Rotation speed of the tail rotor 233 rad/s

Ctrlα Airfoil lift coefficient slope of the
tail rotor

6.16 rad−1

Ctrd0 Airfoil drag coefficient of the tail
rotor

0.0069

Ctrd2 Airfoil drag coefficient of the tail
rotor

0.2062 rad−2

xtr
Tail rotor position in the body
reference

-6.03
mytr -0.32

ztr -1.72

B.2 Flight Test Data

The flight tests were conducted in 1987 using the DLR research helicopter Bo-105
S123 for system identification and simulation validation purposes. The initial trimmed
condition for flight tests was a steady level flight at 80 knots and at a density altitude
of 3000 feet standard atmosphere. The flight tests consist of:

1. Positive and negative doublet inputs for each of the four controls (Tests No. 1 to
8)

2. Positive and negative modified 3-2-1-1 inputs for each of the four controls (Tests
No. 9 to 16)

3. Pilot generated frequency sweeps for each of the four controls (Tests No. 17 to
20)

Among these tests, four tests applying 3-2-1-1 input are chosen for the model vali-
dation, as shown in Fig. 3.5 and Figs. B.1 to B.3.
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Figure B.1: Flight test No. 11: positive lateral 3-2-1-1 input
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Figure B.2: Flight test No. 13: positive collective 3-2-1-1 input
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Figure B.3: Flight test No. 15: positive pedal 3-2-1-1 input
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C
An Ordering Scheme for

Model Simplification

While developing the conventional helicopter flight mechanics model, the question
was raised of how to simplify the model while keeping it as accurate as possible. Some
assumptions and simplifications have been applied to the model, such as the small angle
assumption for the blade flapping angle. However, analytical expressions in the flight
mechanics model were still complex and needed to be simplified without harming the
accuracy.

In this dissertation, the symbolic algebra software Maple is used for the flight me-
chanics model development. Maple is capable of handling extremely long expressions
(i.e. a polynomial having more than 105 terms can be processed using Maple on a regular
personal computer). However, to extend the flight mechanics model to such complexity
is not always beneficial as this will increase the computational cost dramatically and
the improvements might be limited.

To balance the complexity and accuracy of the model, a simplification scheme was
developed based on an ordering scheme of all variables involved in the model. It is
applied to the developments of the DelCopter and Ornicopter flight mechanics model
in this thesis.

C.1 Simplification Method

The basic principle of the simplification scheme is to determine the order of all the
terms in the polynomial expressions (such as Eq. D.11 and D.12) and neglect the small
terms.
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To do so, the O notation is defined first. One can say that:

y(X) = O(ǫn), 0 < ǫ < 1 (C.1)

if and only if there exists a positive number δ that:

|y(X)|≤ ǫn while |X − X0|< δ (C.2)

When the condition (C.2) is satisfied, one can say that the y(X) is in the order of n
(with the basis ǫ).

In the case of the flight mechanics model, y can be any variable in the model. X
is the flight condition and X0 is the trimmed condition. For the model variables, their
ranges correspond to the trimmed states. For example, the amplitude of forced flapping
motion of the Ornicopter blade has been proven to be modest (see Eq. 2.34). One can
obtain:

β ≤ 0.2

< 0.52

= O(ǫ2) (ǫ = 0.5)

(C.3)

As the basis ǫ is less than 1, the higher the order is, the smaller the variable will be.
In this sense, some higher order terms in a polynomial can be neglected. It should be
noticed that the order of the variable also depends on the choice of ǫ. In this thesis, 0.5
is used for model simplification. The orders of the different model variables are shown
in Tab. C.1.

Table C.1: Ordering scheme

Variable Min Max Order

Normalized helicopter transi-
tional velocities

µx -0.1 0.4 O(ǫ)

µy -0.1 0.1 O(ǫ3)

µz -0.1 0.1 O(ǫ3)

Normalized helicopter rotational
velocities

p̄ -0.02 0.02 O(ǫ5)

q̄ -0.02 0.02 O(ǫ5)

r̄ -0.02 0.02 O(ǫ5)

Inflow ratio
λ0 0.01 0.06 O(ǫ4)

λs1 -0.02 0.02 O(ǫ5)

λc1 -0.02 0.03 O(ǫ5)

Blade flapping angle β -0.25 0.35 O(ǫ)

Blade coning, lateral and longi-
tudinal flapping angles

β0 0 0.1 O(ǫ3)

βs1 -0.25 0.25 O(ǫ2)

βc1 -0.25 0.25 O(ǫ2)

Continued on next page
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Table C.1 – continued from previous page

Variable Min Max Order

Collective, longitudinal and lat-
eral cyclic control

θ0 0 0.25 O(ǫ2)

θs1 -0.2 0.2 O(ǫ2)

θc1 -0.2 0.2 O(ǫ2)

Normalized air foil drag coeffi-
cients

C̄d0 0.001 0.0025 O(ǫ8)

C̄d2 0.02 0.03 O(ǫ5)

Flap hinge offset ef 0 0.1 O(ǫ3)

Pitch flap coupling coefficients
kθ1 -0.4 0.4 O(ǫ)

kθ2 -0.4 0.4 O(ǫ)

Blade root cut ratio rc 0 0.2 O(ǫ2)

Tip loss factor kl 0.95 1 O(ǫ0)

Blade twist angle θtw -0.2 0 O(ǫ2)

When the order of each variable is known, the order of the different terms in a
polynomial expression can be calculated. For a general term, its order can be derived
as (assuming that the basis ǫ is consistent):

Y (X) =
∏

ypi

i

≤
∏

(ǫni)
pi

≤ ǫ
∑

nipi

= O(ǫ
∑

nipi)

(C.4)

For example, based on Tab. C.1, one can get:

1

2
β2

0µz = O(ǫ)O(ǫ3·2)O(ǫ)

= O(ǫ8)
(C.5)

Applying the above calculation to all the flight mechanics model terms, one can
obtain the distribution of orders in the range between the minimum (largest terms) and
maximum order (smallest terms). Based on this, one can decide up to which order the
terms should be kept in the flight model model. In general, with ǫ = 0.5, terms which
are 5 orders higher than the minimum order are very small compared with the largest
ones (less than 4%), and they are negligible.

It should also be mentioned than the number of orders that should be kept in a model
is not fixed. This will depend on the acceptable computation cost and the desired model
accuracy.
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C.2 Demonstration

To demonstrate the method, one example is used, which is the perpendicular velocity
(vp) on the blade element, see Eq. D.11.

Substituting the blades flapping motion (Eq. 3.2) into Eq. D.11, the non-dimensional
perpendicular velocity can be derived as:

v̄p =
1

2
β2

0µz − 1

2
β0βc1λc1r̄e − µz − 1

2
βs1µy − 1

4
λ0β

2
c1

+ λ0 +
1

4
β2
s1µz − 1

4
λ0β

2
s1 +

1

4
β2
c1µz +

1

2
βc1µx − 1

2
λ0β

2
0

+

(

−p̄r̄e+β0βs1µz− 1

4
βs1βc1λc1r̄e+efβc1 −βc1r̄e−β0µy−λ0β0βs1 +λs1r̄e

)

sin (ψ)

+

(

βs1r̄e + λc1r̄e − 1

8
β2
s1λc1r̄e − λ0β0βc1 + β0βc1µz − 3

8
β2
c1λc1r̄e − efβs1 + β0µx

− 1

2
β2

0λc1r̄e − q̄r̄e

)

cos (ψ)

+

(

−1

2
βc1µy +

1

2
βs1µx +

1

2
βs1βc1µz − 1

2
β0βs1λc1r̄e − 1

2
λ0βs1βc1

)

sin (2ψ)

+

(

1

4
λ0β

2
s1 +

1

4
β2
c1µz +

1

2
βc1µx − 1

4
β2
s1µz +

1

2
βs1µy − 1

4
λ0β

2
c1

− 1

2
β0βc1λc1r̄e

)

cos (2ψ)

− 1

4
βs1βc1λc1r̄e sin (3ψ) +

(

−1

8
β2
c1λc1r̄e +

1

8
β2
s1λc1r̄e

)

cos (3ψ)

(C.6)

One can see from Eq. C.6 that it consists of 24 terms, among which the lowest order
is 2 and the highest order is 10.

To investigate the impacts of simplification up to different orders, 7 simplified ex-
pressions are extracted from the complete vp expression, as shown in Tab. C.2. For
example, the expression including the lowest 4 orders (from the order of 2 to 5) will
consist of 16 terms, and other 8 terms in higher orders will be neglected. All simplified
expressions are compared with the full expression in a coordinated turning condition
(flight velocity 80 knots, load factor 1.5).

Since the vp is a function of the azimuth angle ψ and the blade element radius
position re, the root-mean-square error (RMSE) during one revolution at 0.7R radius
position is calculated to show the impacts of simplification on model accuracy. In order
to investigate the impacts of model simplification on computational cost, the calculation
time of each expression (normalized by the calculation time of the full expression) is
also shown in Tab. C.2.
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Table C.2: Results of simplifications with different highest orders

Order
Terms in

Terms kept RMSE (m/s)
Calculation

this order time (%)

2 2 2 5.23 9.037

3 3 5 4.38 22.93

4 2 7 1.63 27.42

5 9 16 1.28 × 10−2 67.50

6 1 17 1.25 × 10−3 72.98

7 1 18 1.23 × 10−3 81.97

8 5 23 3.72 × 10−4 99.95

9 0 23 3.72 × 10−4 99.95

10 1 24 0.00 100.0

One can see that increasing the highest order kept after simplification results in an
increase of model accuracy, as well as the computational cost. The simplification error
(in logarithmic scale) is approximately linear with regard to the computational cost, as
shown in Fig. C.1. It indicates that, for the same amount of accuracy improvement, the
additional calculation cost to be needed will increase dramatically as the model fidelity
increases.

Figure C.1: RMSE as a function of calculation time

Based on the accuracy and calculation cost, the expression consists of the lowest
4 orders can be chosen as the required final result of the simplification, as shown in
Eq. C.7.
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It should be mentioned that the simplification performed in this appendix is only a
demonstration of the simplification method. During the model development, the model
was not simplified during the intermediate steps. This simplification scheme was applied
only to the final output, such as the rotor hub forces (T , H , S), in order to minimize
the error introduced by the simplification. The terms in the lowest 7 orders are kept
during the model simplification.

(C.7)

v̄p =
1

2
β2

0µz + λ0 − µz +
1

4
β2
c1µz +

1

4
β2
s1µz +

1

2
βc1µx − 1

2
βs1µy

+ (efβc1 + β0βs1µz − β0µy + λs1 r̄e − p̄r̄e − βc1r̄e) sin (ψ)

+ (β0βc1µz + β0µx − efβs1 + βs1r̄e + λc1r̄e − q̄r̄e) cos (ψ)

+

(

−1

2
βc1µy +

1

2
βs1βc1µz +

1

2
βs1µx

)

sin (2ψ)

+

(

−1

4
β2
s1µz +

1

4
β2
c1µz +

1

2
βs1µy +

1

2
βc1µx

)

cos (2ψ)
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D
Development of the Generic

Flight Mechanics Model

In this appendix, different components of the generic flight mechanics model will be
developed. They are used to form the helicopter system EoM as discussed in Chapter
3.

D.1 Generic Model Components

D.1.1 The Main Rotor Model

In this thesis, the main rotor blade is considered as an offset hinged blade with a spring,
as shown in Fig. D.1. While the blade is flapping, a moment will be generated by the
spring as:

Mk (ψ) = −Kββ (ψ) (D.1)

Mk

β

Rotor Shaft

Offset Hinge

Spring

Blade
dT

Ω

Figure D.1: Blade hinge configuration
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Forces and Moments

The location of the blade element in the flapping reference can be expressed as:

{re}{β} =
{

[re −Ref (1 − cosβ) , 0, Ref sin β]⊤
}

{β}
(D.2)

Considering the flapping angle and hinge offset are relatively small, the equation
above can be simplified as:

{re}{β} ≈
{

[re, 0, 0]
⊤
}

{β}
(D.3)

Transforming the coordinates into the non-rotating and rotating reference results in:

{re}{r} = T−1
r2β {re}{β}

= re

















cos (β)

0

− sin (β)

















{r}

(D.4)

{re}{nr} = T−1
nr2r {re}{r}

= re

















− cos (ψ) cos (β)

sin (ψ) cos (β)

− sin (β)

















{nr}

(D.5)

The relative air flow velocity at the blade element consists of contributions from
four parts: the motion of the rotor hub (u, v, w, p, q, r), the rotation of the blade among
the rotor shaft (Ω), the flapping motion of the blade (β̇) and the inflow (vi), as:

{Vair}{β} = −
(

{Vm}{β} + {VΩ}{β} + {Vflap}{β}

)

+ {Vλ}{β} (D.6)

The {Vm}{β} is caused by the motion of the rotor hub, which is affected by both the
translation and rotation of the hub. It can be calculated in the non-rotating reference
first and transformed into the flapping reference, as:

{Vm}{β} = Tr2βTnr2r {Vm}{nr}

= Tr2βTnr2r

(

{Vhub}{nr} + {~ωhub}{nr} × {re}{nr}

) (D.7)

where {Vhub}{nr} is the translational velocity of the rotor hub ({VT }{nr} =
{

[u, v, w]⊤
}

{nr}
)

and {~ωhub}{nr} is the rotational velocity of the rotor ({~ωhub}{nr} =
{

[p, q, r]⊤
}

{nr}
).

The {VΩ}{β} is caused by the rotation of the blade (Ω), as:

{VΩ}{β} = Tr2β {VΩ}{r}

= Tr2β

(

{~ωΩ}{r} × {re}{r}

)

= Tr2β

(

{

[0, 0,Ω]⊤
}

{r}
× {re}{r}

)

(D.8)
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The {Vflap}{β} is the velocity introduced by the flapping motion of the blade, and
the {Vλ}{β} is the induced velocity at the blade element:

{Vflap}{β} =
{

[0, 0, β̇ (re −Ref )]⊤
}

{β}

{Vλ}{β} =
{

[0, 0, vi]
⊤
}

{β}

(D.9)

where vi is the induced velocity, and it has the form of:

vi = vi0 + vis1
re
R

sinψ + vic1
re
R

cosψ (D.10)

Combining all parts of the local air flow velocity, the total velocity {Vair}{β} can
be derived. The effect of span-wise air flow is neglected in this thesis, and therefore
only the components among the y- and the z-axes are used in the following model
development. Using the small angle assumption, the velocity can be simplified and
result in the perpendicular and tangent velocity as:

vp =uβ cosψ − vβ sinψ − w

(

1 − β2

2

)

− (p sinψ − q cosψ) re + β̇(re − Ref )

+ vi0 + vis1
re
R

sinψ + vic1
re
R

cosψ

(D.11)

vt =u sinψ − v cosψ

+ (pβ cosψ − qβ sinψ) re

+ (Ω − r) (1 − β2

2
)re

(D.12)

With the local velocity derived above, the aerodynamic force generated by the blade
element can be calculated using a 2-D static airfoil model. Assuming that the inflow
angle is small, it can be calculated as:

ϕ = arctan

(

vp
vt

)

≈ vp
vt

(D.13)
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from which the blade element lift and drag forces can be derived:

α = θ − ϕ (D.14)

Cl = Clαα (D.15)

Cd = Cd0 + Cd2α
2 (D.16)

dL =
1

2
ρ
(

v2
p + v2

t

)

Clcdr

≈ 1

2
ρv2
tClcdr

(D.17)

dD =
1

2
ρ
(

v2
p + v2

t

)

Cdcdr

≈ 1

2
ρv2
tCdcdr

(D.18)

The pitch angle of the blade element (θ) can be classically expressed as:

θ = θ0 + θs1 sinψ + θc1 cosψ + θtw
re
R

(D.19)

where θ0, θs1 and θc1 are the collective, longitudinal and lateral cyclic controls respec-
tively, and θtw is the twist angle of the blade. To analyse the impact of flapping-pitch
coupling on the Ornicopter, two coupling terms are added to the model:

θ = θ0 + θs1 sinψ + θc1 cosψ + θtw
re
R

+ kθ1β + kθ2
β̇

Ω
(D.20)

where kθ1 is the pitch flap angle coupling coefficient and kθ2 is the pitch flap rate
coupling coefficient. The two coupling terms introduce the effects of flapping motion
on the blade pitch angle. A positive kθ1 indicates that the pitch angle of the blade will
be increased when the blade is above the shaft plane, i.e. β > 0. Meanwhile, the kθ2

is associated with the flapping rate of the blade (β̇). A positive kθ2 will increase the
blade pitch angle while the blade is flapping upwards (β̇ > 0).

Substituting the velocities (Eqs. D.11 and D.12) and the pitch angle (Eq. D.20) into
Eqs. D.17 and D.18 gives the expressions of lift (dL) and drag (dD) forces on the blade
element.

The forces and moments in the flapping reference can be derived similarly as Eq. A.5
(see Fig. 2.15):

dF βx = 0

dF βy ≈ dD + dLϕ

dF βz ≈ −dL
dMβ

x = 0

dMβ
y = −dF βz re

dMβ
z = dF βy re

(D.21)
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Transforming these forces and moments into the non-rotating reference and applying
the small angle assumption, one can get:

{dF}{nr} = T−1
nr2rT

−1
r2β {dF}{β}

=

















−dF βz β cosψ − dF βy sinψ

dF βz β sinψ − dF βy cosψ

dF βz
(

1 − 1
2β

2
)

















{nr}

(D.22)

{dM}{nr} = T−1
nr2rT

−1
r2β {dM}{β}

= re

















dF βz sinψ − dF βy β cosψ

dF βz cosψ + dF βy β sinψ

dF βy
(

1 − 1
2β

2
)

















{nr}

(D.23)

The total aerodynamic forces and moments generated by one blade can be derived
by integrating the above equations through the radius and azimuth angle. During the
integration, the blade root cut effect and tip loss are considered through the limits of
integration, as:

{Fs}{nr} =
1

2π

∫ 2π

0

dψ

∫ klR

krR

{dF}{nr}

{Ms}{nr} =
1

2π

∫ 2π

0

dψ

∫ klR

krR

{dM}{nr}

(D.24)

where kr is the root cut ratio, which is determined by the blade design, and kl is the
tip loss factor, for which a constant value (0.97) is used in this thesis.

From the integration, one can obtain three forces and three aerodynamic moments
generated by one blade, as:

{Fs}{nr} =
{

[Hs, Ss,−Ts]⊤
}

{nr}

{Ms}{nr} =
{

[M1s,M2s,Mzs]
⊤
}

{nr}

(D.25)

where Ts, Hs and Ss are the blade thrust, horizontal and sidewards hub forces respec-
tively, M1s and M2s are the lateral and longitudinal aerodynamic moments generated
by the blade (they will be used for the Pitt-Peters dynamic inflow model), and Mzs is
the shaft torque generated by one blade.

The hub pitch (Mxs) and roll (Mys) moments can be calculated based on the flapping
motion of the blade. For the kth blade, one can derive:

M (k)
xs =

1

2
Ref

(

T
(k)
ss1 − Ω2Mβ sin(β

(k)
s1 ) + 2qΩMβ1

)

− 1

2
Kββ

(k)
s1

M (k)
ys =

1

2
Ref

(

T
(k)
sc1 − Ω2Mβ sin(β

(k)
c1 ) − 2pΩMβ1

)

− 1

2
Kββ

(k)
c1

(D.26)

where
Mβ1 = (Mβ +RefMb) (D.27)
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and T
(k)
ss1 and T

(k)
sc1 are first order harmonic components of the blade thrust. They can

be derived as:

T (k)
s (ψ) =

∫ klR

krR

dF βz

(

1 − 1

2
β2

)

= T
(k)
s0 + T

(k)
ss1 sinψ + T

(k)
sc1 cosψ + higher order components

(D.28)

Similarly, all the hub forces and moments generated by one blade as a function of the
azimuth angle can be derived, including T (k)

s (ψ), H(k)
s (ψ), S(k)

s (ψ), M (k)
xs (ψ), M (k)

ys (ψ)

and M (k)
zs (ψ). They will be used in the vibratory analyses in Section 4.8.

For the forces and moments derived above (Eq. D.24 to D.28), i.e. Hs, Ss, Ts, M1s,
M2s, Mzs, Tss1 and Tsc1, their expressions are very long and complex. In this sense, a
simplification method based on an ordering scheme is used to simplify the model. The
method is described in Appendix C. The simplified final expressions for these forces
and moments are presented in Section D.2 (in non-dimensional form).

The forces and moments derived above are derived for a single blade. For the con-
ventional helicopter, all the blades are considered to be working in identical condition.
Therefore, the total hub forces and moments can be calculated by multiplying the for-
mulas for a single blade and the number of blades (Nb), i.e.

Tmr = TsNb (D.29)

So far, the three hub forces (Tmr, Hmr, Smr) and three hub moments (Mx, My,
Mz) are derived in the non-rotating reference. They need to be rotated through the
y-axis due to the tilt angle of the rotor shaft (αsh in Fig. 3.1) and transformed to the
helicopter c.g. position. Using the small angle assumption gives the total forces and
moments generated by the main rotor as:

Xmr ≈ Hmr − αshTmr

Ymr = Smr

Zmr ≈ −Tmr
(D.30)

and

Lmr ≈ Mx + αshMz + ymrZmr − zmrYmr

Mmr = My + zmrXmr − xmrZmr

Nmr ≈ Mz + xmrYmr − ymrXmr

(D.31)

Flapping Equation

The blade flapping motion is modelled using the Lagrangian equation, which has the
general form as:

Qi =
d

dt

(

∂Tk
∂q̇i

)

− ∂Tk
∂qi

(D.32)

where Qi is the generalized force, Tk is the total kinetic energy of the blade, and qi is
the generalized coordinate.
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In blade flapping dynamics, the generalized coordinate is the flapping angle (β),
and the generalized force is the flapping moment on the blade, which consists of the
aerodynamic flapping moment and the moment generated by the flapping spring as
shown in Eq. D.1. The aerodynamic moment can be calculated by integrating the lift
force on the blade element as:

Maero =

∫ klR

krR

dMaero

=

∫ klR

krR

dL (re −Ref )

(D.33)

The generalized force for a conventional helicopter model is:

Qβ = Maero +Mk (D.34)

Other forces, such as the centrifugal or Coriolis forces, are embedded in the derivatives
of the Tk, i.e. the right-hand side of Eq. D.32.

To derive the kinetic energy of the blade, the velocity of a blade element in the
non-rotating reference is first derived. Similar to the Eq. D.6, the velocity on the blade
element includes the effects of different motions, including the motion of the rotor hub,
the rotation of blade and the flapping motion of blade, as:

{Ve}{nr} = {Vm}{nr} + T−1
nr2r {VΩ}{r} + T−1

nr2rT
−1
r2β {Vflap}{β} (D.35)

Substituting all the velocities and using the transformation matrices (Tnr2r and Tr2β)
results in the velocity on the blade element as:

{Ve}{nr} =









































u− βq (re −Ref ) + (Ω − r) re sin (ψ)

+ ββ̇ (re −Ref ) cos (ψ)

v + βp (re −Ref ) − ββ̇ (re −Ref ) sin (ψ)

+ (Ω − r) re cos (ψ)

w − β̇ (re −Ref ) + pre sin (ψ) + qre cos (ψ)









































{nr}

(D.36)

With the velocity derived above, the total kinetic energy of the blade (T ) can be
derived:

Tk =

∫ R

Rr

1

2
ρrdr|{Ve}{nr} |2 (D.37)

Substituting Eq. D.37 into the right side of Eq. D.32 results in:

d

dt

(

∂Tk

∂β̇

)

− ∂Tk
∂β

=Iβ
(

β2 + 1
)

β̈ + (uq − vp)Mβ −
(

p2 + q2 − β̇2
)

βIβ

+
(

Iβ1 (2Ω − r) q + IβΩqβ2 −MβΩuβ
)

sin (ψ)

−
(

Iβ1 (2Ω − r) p+ IβΩpβ2 +MβΩvβ
)

cos (ψ)

(D.38)
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where:

Iβ =

∫ R

Ref

ρrdr (re −Ref )2

Mβ =

∫ R

Ref

ρrdr (re −Ref )

Iβ1 =Iβ +MβRef

(D.39)

The flapping rate (β̇) and flapping acceleration (β̈) can be derived from Eq. 3.2, as:

β̇ = β̇0 + β̇s1 sinψ + β̇c1 cosψ + βs1Ω cosψ − βc1Ω sinψ (D.40)

β̈ = β̈0 + β̈s1 sinψ + β̈c1 cosψ + β̇s1Ω cosψ − β̇c1Ω sinψ

+ β̇s1Ω cosψ − β̇c1Ω sinψ − βs1Ω2 sinψ − βc1Ω2 cosψ
(D.41)

In this thesis, the second order flapping dynamics (β̈0, β̈s1 and β̈c1) are neglected.
Therefore, Eq. D.41 can be simplified as:

β̈ = 2β̇s1Ω cosψ − 2β̇c1Ω sinψ − βs1Ω2 sinψ − βc1Ω2 cosψ (D.42)

Combining the equations derived above (Eq. D.34, D.38, D.40 and D.42), and col-
lecting coefficients for the constant and harmonic components, the flapping equation of
motion can be rewritten in the form of a Fourier series, as:

(D.43)
d

dt

(

∂Tk
∂q̇i

)

− ∂Tk
∂qi

−Qi = Fβ0(~β, ~̇β) + Fβs1(~β, ~̇β) sinψ + Fβc1(~β, ~̇β) cosψ + . . .

where ~β = [β0, βs1, βc1]⊤ and ~̇β = [β̇0, β̇s1, β̇c1]⊤.
In this thesis, only the first order harmonic components of flapping motion are

considered, i.e. Fβ0, Fβs1 and Fβc1, and higher order components are neglected. To
conclude, three equations can be formed for the flapping dynamics:











Fβ0(~β, ~̇β) = 0

Fβs1(~β, ~̇β) = 0

Fβc1(~β, ~̇β) = 0

(D.44)

Collecting coefficients of the above equations with regard to ~β and ~̇β, they can be
rewritten in the matrix form as:

Mβ
~̇β + Aβ

~β + Nβ + bβ = 0 (D.45)

where Mβ and Aβ are linear coefficients of ~̇β and ~β, Nβ is the nonlinear combination

of ~̇β and ~β, and bβ is the constant part with regard to ~̇β and ~β. The final expressions
of the coefficients (Mβ , Aβ , Nβ and bβ) can be found in the next section (see D.2).



✐

✐

“thesis” — 2014/6/3 — 14:15 — page 197 — #219
✐

✐

✐

✐

✐

✐

D.1 Generic Model Components 197

D

D.1.2 The Tail Rotor Model

As mentioned before, the tail rotor model is adapted from the main rotor model. The
main simplifications applied to the tail rotor are described at the beginning of this
section. After simplifications, the non-dimensional thrust and torque coefficients for
the tail rotor can be calculated using relatively simple formulas as follows:

CTtr
= CtrLα

σtr

((

1

2
µ2k1 − Ω̄2

ek3

)

θ0 + Ω̄ek2λ+
1

2
(ūp̄+ v̄q̄) k2

)

(D.46)

where:

µ =ū2 + v̄2

λ =w̄ − λi

Ω̄e =1 − r̄

k1 =kl − krtr

k2 =
1

2

(

k2
l − k2

rtr

)

k3 =
1

3

(

k3
l − k3

rtr

)

(D.47)

and

(D.48)

CQtr
= σtrC

tr
Lα

(

C̄trd0k2

(

1

2
µ2 + 2k1Ω̄e

)

+ C̄trd2

(

k2θ
2
0

(

1

2
µ2 + 2k1Ω̄e

)

+ k3θ0

(

c1 + 2λΩ̄e
)

+ k2

(

c2k1 + λ2
)

)

−
(

k3θ0

(

1

2
c1 + λΩ̄e

)

+ k2

(

c2k1 + λ2
)

))

where:

k1 =
1

4

(

k2
l + k2

rtr

)

k2 =
1

4

(

k2
l − k2

rtr

)

k3 =
1

6

(

k3
l − k3

rtr

)

c1 =ūp̄+ v̄q̄

c2 =p̄2 + q̄2

(D.49)

Afterwards, the rotor thrust is transformed into the helicopter body reference as:

Xtr = 0

Ytr = −Ttr
Ztr = 0

(D.50)
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and

Ltr = −ztrYtr
Mtr ≈ 0

Ntr = xtrYtr

(D.51)

The tail rotor torque is neglected in this transformation, since it is relatively small
compared with the pitch moment generated by the main rotor. This torque is only
used for the power calculations.

D.1.3 Velocity Transformation

It should be noted that in the development of the above model, the velocities used
([u, v, w, p, q, r]) are velocities of the rotor hub or tail rotor hub. Since the hubs are not
located at the c.g. of the helicopter, their velocities as a function of the helicopter body
motion should be derived and substituted into the model developed above.

For the main rotor, the hub motion velocity is:

{Vhub}{nr} =Tb2nr

(

{Vb}{b} + {~ωb}{b} × {rhub}{b}

)

{~ωhub}{nr} =Tb2nr {~ωb}{b}

(D.52)

Expanding the equations above, one can get all the velocities that need to be substituted
into the main rotor model:

u ≡ cos (αsh) (u+ qzmr − rymr) − sin (αsh) (w + pymr − qxmr)

v ≡ v + rxmr − pzmr

w ≡ sin (αsh) (u+ qzmr − rymr) + cos (αsh) (w + pymr − qxmr)

p ≡ cos (αsh) p− sin (αsh) r

q ≡ q

r ≡ sin (αsh) p+ cos (αsh) r

(D.53)

For the tail rotor, s similar derivation can be done, resulting in:

u ≡ u+ qztr − rytr

v ≡ w + pytr − qxtr

w ≡ − (v + rxtr − pztr)

p ≡ p

q ≡ r

r ≡ −q

(D.54)
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D.1.4 Other Components

Fuselage

The aerodynamic force on the fuselage is calculated through an equivalent drag area
F0, which is considered to be constant for all flight conditions. The total drag force is:

Rfus =
1

2
ρV 2F0 (D.55)

where:
V 2 = u2 + v2 + w2 (D.56)

The projections of the drag force on three axes are:

Xfus = −Rfus
V

u

Yfus = −Rfus
V

v

Zfus = −Rfus
V

w

(D.57)

Stabilizer

For the horizontal and the vertical stabilizer, only the lift forces and moments coursed
by them are considered, as:

Zhs ≈ −1

2
ρV 2

hsShsC
hs
Lααhs

Mhs = −Zhs · xhs
(D.58)

Yfin ≈ −1

2
ρV 2

finSfinC
fin
Lα βfin

Lfin = −Yfin · zfin
Nfin = −Yfin · xfin

(D.59)

with the horizontal stabilizer local angle of attack:

αhs = αhs0
+ arctan

(

w − q · xhs
u

)

(D.60)

and velocity:
V 2
hs = u2 + (w − q · xhs)2 (D.61)

The angle of attack of the fin is:

βfin = βfin0
+ arctan

(

v + r · xfin − p · zfin
u

)

(D.62)

and the local velocity:

V 2
fin = u2 + (v + r · xfin − p · zfin)2 (D.63)
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Inertia Force

The projections of inertia force in the helicopter body reference can be calculated based
on the pitch and roll attitude angle of the helicopter, as:

Xg = −Mag sin(Θ)

Yg = Mag cos(Θ) sin(Φ)

Zg = Ma cos(Θ) cos(Φ)

(D.64)

and the inertia force will not generate any moments on the c.g..

Inflow Model

For the main rotor, the classical Pitt-Peters dynamic inflow model is used. First order
harmonic component of the inflow is considered as:

λi = λ0 + λs1
re
R

sinψ + λc1
re
R

cosψ (D.65)

where λ0, λs1 and λc1 are the rotor uniform and first harmonic inflow velocities (nor-
malized by ΩR).

The dynamics of the inflow is represented by following the first-order differential
equation [24]:

[M]







λ̇0

λ̇s1

λ̇c1






+
[

L̂
]−1







λ0

λs1

λc1






=







CT

−C1

C2







aero

(D.66)

where M is the constant apparent mass matrix, and L̂−1 is the inflow gain matrix
corresponding to the flight condition. Their detailed expressions can be found in Ref.
[24]. CT is the thrust coefficient of the main rotor. C1 and C2 are non-denominational
lateral and longitudinal aerodynamic moments on the rotor, which can be calculated
by integrating the lift force on the blade elements throughout the rotor disk plane, as
shown in Eq. D.22 to D.24.

For the tail rotor of the conventional helicopter model, a similar first-order differ-
ential equation is used. Since the uniform inflow model is used for the tail rotor, the
dynamic model contains only one equation as:

τiλ̇tr = CTb
− CTλ

(D.67)

where τi is the time constant of the inflow dynamics, CTb
is the thrust coefficient

calculated using blade element theory and CTλ
is the thrust coefficient from momentum

theory.

D.2 Expressions of the Generic Flight Mechanics

Model

This section presents the expressions derived for the generic flight mechanics model (in
non-dimensional form) before the velocity transformation discussed in Section D.1.3.
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This includes: the hub forces (Ts, Hs, Ss), the aerodynamic moments (M1s, M2s, Mzs),
the first order harmonic components of blade thrust (Tss1, Tsc1) and the coefficients of
the flapping equation.

D.2.1 Rotor Hub Forces and Moments

Thrust

The thrust coefficient of a single blade is:

(D.68)CTs = σsClα (t1 + t2θc1 + t3θs1 + t4θ0)

where:

t1 = t11 + t12µz + t13µx + t14µy +
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Horizontal Force

The horizontal force coefficient of a single blade is:

(D.69)CHs = σsClα

(
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where:
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Side Force

The side force coefficient of a single blade is:
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Lateral Aerodynamic Moment

The lateral aerodynamic moment coefficient generated by a single blade is:
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Longitudinal Aerodynamic Moment

The longitudinal aerodynamic moment coefficient generated by a single blade is:
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Harmonic Components of Thrust

The first order harmonic thrust components generated by one blade are:

(D.74)CTss = σsClα (t1 + t2θc1 + t3θs1 + t4θ0)
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(D.75)CTsc = σsClα (t1 + t2θc1 + t3θs1 + t4θ0)
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D.2.2 Flapping Equation

The flapping equation of motion can be derived in the matrix form as (see Equ. D.45):

Mβ
~̇β + Aβ

~β + Nβ + bβ = 0 (D.76)

Those coefficients matrices/vectors are as following.
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Samenvatting

De staartrotor van conventionele helikopters wordt altijd al als een noodzakelijk
kwaad beschouwd. De rotor is noodzakelijk om het reactiekoppel van de motor tegen
te gaan en om de helikopter te controleren in de gierbeweging. Echter, hij verbruikt
een substantieel vermogen, heeft enkel een marginaal controlevermogen in ongunstige
windcondities, en hij is lawaaierig, kwetsbaar en gevaarlijk. Een oplossing voor deze
problemen zou een helikopterconcept zijn dat de nood voor een staartrotor elimineert.
De zogenoemde ‘Ornicopter’, een helikopter met flapperende rotorbladen is zo’n con-
cept.

Het mechanisme van de Ornicopter is geÃŕnspireerd door de manier waarop vogels
vliegen. Vogels creÃńren met het flappen van hun vleugels zowel een opstijgende als een
voortstuwende kracht in ÃľÃľn beweging. In het geval van een conventionele helikopter,
worden de rotorbladen aangedreven in een roterende wijze, en wordt er lift gegenereerd
door de roterende rotorbladen. Echter, de Ornicopter drijft de rotorbladen enkel aan
op een flappende wijze, zoals een vogel, en genereerd op deze manier zowel lift als
een voortstuwende kracht. In dit geval roteren de rotorbladen van zichzelf door de
flappende beweging en niet meer doordat er een koppel direct doorgegeven wordt aan
de rotorbladen. Daarom zal de Ornicopter’s rotor geen reactiekoppel genereren op de
romp zodat een staartrotor overbodig wordt.

Het doel van dit proefschrift is het ontwikkelen van een grondig inzicht in het Or-
nicopter concept en de haalbaarheid van het concept voor een realistisch bereik in het
vluchtregime. Het proefschrift bestaat uit twee delen. Het eerste deel beschrijft de anal-
yse van de voornaamste karakteristieken van de Ornicopter met betrekking tot vlucht-
prestaties, stabiliteit, controleerbaarheid, bestuurbaarheid, alsook een onderzoekende
trillingsanalyse. In het tweede deel wordt een voorlopig ontwerp beschreven gebaseerd
op de conclusies van het eerste deel.

De basis voor de studie over de Ornicopter is een model van de vliegdynamica dat
analytisch is afgeleid. Het model is gebaseerd op de bladelement theorie (BET) en
gebruikt zes bewegingsvrijheden voor starre lichamen, drie voor de dynamica van de
flappende rotorbladen en drie voor de Pitt-Peters instroming dynamica. Vorige math-
ematische modellen die ontwikkeld waren voor het analyseren van het Ornicopter con-
cept waren vooral gericht op stil hangende vlucht. Het model dat in dit proefschrift
is ontwikkeld kan de vliegdynamica van de Ornicopter over het gehele operationele
vluchtregime beschrijven. Als referentiepunt voor de specificaties van de Ornicopter
is de Bölkow Bo-105 gebruikt. De Bo-105 helikopter is een lichte, tweemotorige, mul-
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tifunctionele helikopter die ontwikkeld is in Duitsland in de jaren 1970. De initiÃńle
parameters voor het ontwerp van de Ornicopter (zoals de rotorblad diameter, de ro-
torbladbelasting, de snelheid van de rotorbladuiteinden, de grootte van het verticale
staarvlak) zijn gebaseerd op het ontwerp van de Bo-105. Er is gekozen voor een 2×2 an-
tisymmetrische flappende rotorblad configuratie (d.w.z. tegenovergestelde rotorbladen
flappen in dezelfde richting) voor de Ornicopter zodat de noodzaak voor een staartrotor
wordt geÃńlimineerd. Gebruik makende van deze ontwerpparameters wordt aangetoond
dat de rotor van de Ornicopter genoeg koppel kan genereren om de rotorbladen te doen
roteren met bescheiden flapamplitudes (met een maximum van minder dan 9o). Dit
proefschrift toont ook de nadelen van het Ornicopter concept in vergelijking met de
Bo-105 helikopter aan. Deze nadelen zijn een hoger benodigd vermogen, een kleiner
bereik in het vluchtregime (vooral door een groter gebied in het vluchtregime waarin
liftverlies bij de rotorbladen kan optreden) en een lagere gierstabiliteit. Deze nadelen
kunnen worden toegeschreven aan de grote invalshoek variatie van de rotorbladen die
ontstaat door de geforceerde flappende beweging en de afwezigheid van een staartrotor.

In het tweede deel van dit proefschrift wordt het concept van de Ornicopter geopti-
maliseerd in termen van vluchtprestaties. In dit geval geldt als ontwerpdoel de vlucht-
prestaties van de Bo-105 en worden de ontwerpparameters (rotorbladdiameter, rotor-
bladbelasting, enz.) aangepast aan het Ornicopter concept. De ontwerpoptimalisatie is
gebaseerd op het minimaliseren van het benodigd vermogen, terwijl er voldaan wordt
aan de liftverliesgebied eis. Dit proefschrift bewijst dat het optimaal ontwerp voor
de Ornicopter gekarakteriseerd is door een lagere rotorbladbelasting, een hogere rotor-
bladtipsnelheid en een groter verticaal staartvlak in vergelijking met de Bo-105. Dit
optimaal ontwerp resulteert in een vergroot bereik in het vluchtregime door een kleiner
gebied waarin liftverlies bij de rotorbladen optreed en een verbeterde gierstabiliteit in
voorwaartse vlucht. Echter, niettegenstaande deze verbeteringen in het vluchtregime
van de Ornicopter, is er een hoger benodigd vermogen in vergelijking met de Bo-105
specificatie (ongeveer 5% bij 150 knopen). Ter compensatie voor het hoger benodigd
vermogen van het optimale ontwerp van de Ornicopter, is een grotere rotorbladdiame-
ter nodig zodat het geÃŕnduceerde vermogen kan verminderd worden zodanig dat het
totale benodigde vermogen tot een minimum kan behouden blijven.

Dit proefschrift kan als een eerste stap in het rationaliseren van de verwachtin-
gen van de Ornicopter’s staartloze helikopter ontwerp beschouwd worden. Er wordt
aangetoond dat dit nieuw concept licht verminderde prestaties heeft in vergelijking
met conventionele helikopters op vlak van vermogensverbruik in voorwaartse vlucht
en dienstplafond. Dit is teleurstellend aangezien ÃľÃľn van de aannames was dat het
elimineren van de staartrotor ook het vermogensverbruik van de staartrotor zou elim-
ineren. Verdere analyse van de prestaties van het Ornicopter concept (zoals vliegbereik,
laadvermogen, klimprestaties, duurzaamheid met betrekking tot veiligheid en geluid-
sproductie), de kosten en het onderhoud zijn nodig voor een volledig begrip van de voor-
en nadelen van dit helikopter concept.
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