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ABSTRACT
In this paper we address the problem of 3D shape reconstruction from sparse X-ray projections. We present a correspon-
dence free method to fit a statistical shape model to two X-ray projections, and illustrate its performance in 3D shape
reconstruction of the femur. The method alternates between 2D segmentation and 3D shaoe reconstruction, where 2D
segmentation is guided by dynamic programming along the model projection on the X-ray plane. 3D reconstruction is
based on the iterative minimization of the 3D distance between a set of support points and the back-projected silhouette
with respect to the pose and model parameters. We show robustness of the reconstruction on simulated X-ray projection
data of the femur, varying the field of view; and in a pilot study on cadaveric femora.
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1. INTRODUCTION
Three dimensional shape reconstruction from a sparse set of 2D projection images is important for a range of medical
applications. Recently, image guided intervention systems were introduced in e.g. orthopedic surgery. These systems
often require a patient specific 3D anatomical model, which should be related to the intra-operative situation. If a 3D CT
dataset is not available, an alternative is to generate a 3D model from calibrated X-ray projections. In this case, since
only small number of projections is available, integration of prior knowledge is required for successful 3D reconstruction,
e.g. through the use of statistical shape models (SSM).1–5

Prior work on bony anatomy reconstruction based on sparse data can be arranged in two main groups according to
SSM type: 1) statistical deformation models and 2) Point Distribution Models (PDM). Deformation models are based on
statistics of the deformation fields converting one subject to the mean. They have been mainly applied for cross-sectional,
or point based sparsity scenarios.6, 7 In case projection information is available, such as X-Rays, point distribution models
are favored.1–5 In the rest of this paper the names SSM and PDM are used as synonyms. The first 2D/3D non-rigid PDM
fitting mechanism was introduced by Lavallee8 casting the problem to 3D point cloud fitting to PDMs. The 3D position
of a 2D edge point is defined as the point on the ray, which is closest to the model surface. A follow up work consisted of
3D point correspondence establishment for determining the point-to-surface distance.4 Another approach employing 3D
distances relies on prior 2D correspondence building between edges of the X-Ray, and the projected mean model. This
2D correspondence is mapped to 3D by selecting the closest ray point to the corresponding model point.9

Purely 2D similarity metrics were applied in1 and.2 A scheme was suggested to derive edge potentials from the X-ray
images, and subsequently calculate the distance function by averaging the edge potentials along the projected contour
lines.1 A similar approach is presented for silhouettes , and applied to hip images.2 A recently published method employs
rigid registration inspired by the physical movement model of a rigid object described by local forces and moments. For
non-rigid fitting the similarity measure calculated from the distance between the 2D segmentation and the projected
model silhouette is minimized with respect to the model parameters.5

Generally, 2D based similarity metrics have the advantage of enabling correspondence free matching1, 2, 5 , but have the
disadvantage that projection distortion resulting from the 3D nature of the original shape, and perspective projection,
cannot be corrected for. On the other hand approaches based on 3D distances eliminate the projective distortion, however
both4, 9 require a computationally expensive point correspondence calculation.
Furthermore, in the methods mentioned above only the part of the bone is modeled that is present in the imaging Field
of View (FOV), e.g. proximal or distal part of the femur. Often separate models are required to model subparts of the
femur for different clinical applications.

Medical Imaging 2010: Image Processing, edited by Benoit M. Dawant, David R. Haynor, 
Proc. of SPIE Vol. 7623, 76230D · © 2010 SPIE · CCC code: 1605-7422/10/$18 · doi: 10.1117/12.840935

Proc. of SPIE Vol. 7623  76230D-1

Downloaded from SPIE Digital Library on 19 Mar 2010 to 131.180.130.114. Terms of Use:  http://spiedl.org/terms



In this work we focus on shape reconstruction from uni-planar stereo X-rays of femora for pre-operative planning of
orthopedic surgery. Such a reconstruction from stereo X-rays could possibly replace the pre-operative CT scan. The
technical contribution of this work is twofold:

1. We develop a 3D correspondence free reconstruction method. This method recovers projective distortion, and
eliminates the ambiguous and computation intensive correspondence building step. We furthermore reduce the
overall number of cost-intensive silhouette calculations.

2. We demonstrate robustness of the method to partially missing data. In many situations only part of the shape is
visible due to image size restrictions. We evaluate the effect of different field of views (FOV) using a femur model.

The paper is organized as follows. Section 2 gives a detailed explanation of the proposed algorithm. The data used for
evaluation is presented in Section 3, followed by the description of the experimental setup in Section 4. Results and
discussion is given in Section 5. Finally, Section 6 concludes the paper.

2. METHODS
Method Overview The presented method relies on the known geometry of X-ray sources and projection planes, i.e.
we assume a calibrated imaging setup. Prior knowledge of the shape is described by a PDM.10 The aim of the method
is 2D segmentation as well as 3D reconstruction. Correspondingly, the algorithm consists of two main building blocks:
the 2D segmentation given the 3D shape model, and the 3D reconstruction given the 2D segmentations on the X-Ray
images. These two blocks are applied in an iterative manner. The description of the full cycle according to Figure 1 is as
follows. After manual initialization of the 3D model (stage 1), the model is projected on the X-ray images (stage 2). By
applying dynamic programming (stage 3), we derive an updated silhouette (stage 4) for each view separately. Using the
pre-calculated measures (stage 5), 3D distances per view are efficiently calculated (stage 6). A 3D registration criterion
based on these distances is minimized with regard to pose and shape (stage 7), resulting in a new shape estimate (stage
1). This loop is iterated either over a fixed number of iterations, or until convergence.

Model building In this work we use aPDM as prior information.10 The statistical shape model is built from N
3-dimensional training shapes. Shapes are segmentations of training images. Subsequently, the GAMES algorithm11 is
applied to represent each shape with the same number n of corresponding landmarks. The landmarks are interconnected
to form triangulated surface patches. In order to retain solely shape variations, the shapes are priorly aligned with
Procrustes analysis. Each shape can be represented as a point x in the n ∗ d dimensional shape space. The set of training
shapes X = x1, x2, ..., xN forms a point cloud in this space. Dimension reduction techniques like PCA are now applied
resulting in a model of the form

x = x̄ + Φb + ε −→ x̃ = x̄ + Φb , (1)

where x̄ is the mean shape, Φ is the matrix of the main modes of variation, b is the representation of the shape in
parameter space (where b << n), and ε is a small error due to the dimension reduction.

2D Segmentation The current 3D model is projected on each X-ray image. The resulting silhouette is sampled
equi-distantly at positions Pj (j ∈ [1, k]). Scan lines normal to the silhouette are used to compute the gradient magnitude
vectors fj . In practice these vectors might lead outside the field of view (FOV). In such cases the vector is completed
by filling the missing elements with a uniform value d, which is chosen such that dynamic programming will not favor
positions outside the FOV. The feature matrix F = [f1| . . . |fk] is constructed containing the feature vectors in the columns,
representing the straightened shape and the directional derivative values in a given proximity to the contour. The correct
edges in the X-Ray are characterized by high absolute derivative values, and a negative sign. The optimal contours are
found via dynamic programming with side-step costs controlling the stiffness of the contour. Dynamic programming solves
effectively the min cost path problem.12 For a wider capture range, multiple scales can be adapted.
Finally, a likelihood η is attached to each pixel of the updated silhouette, derived from the corresponding gradient
magnitude of the image.

3D reconstruction Support point selection from a single view. Support points are 3D model landmarks that are
being used in the fitting process. These points are selected according to a 2D similarity criterion based on surface normal
and distance. Points close to the back-projected contour with high similarity between detected 2D contour normal and
projected 3D surface normal are selected as support points. Similarity is bounded by a maximum distance Dmax and a
maximum angle Θmax as follows (see Fig. 2):
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Figure 1. Iterative 2D segmentation and 3D reconstruction

1. The angle Θi between the normal vector �Vi at each landmark point i and the estimated normal �Wi at the projected
landmark position is calculated. The estimated normal vectors are defined on the plane as the steepest gradient of
the 2D distance transform of the silhouette at a particular pixel position (∇DT(xi, yi)), and out of plane such that
it is perpendicular to the ray connecting the source and the particular pixel in plane (ri):

�Wi = ∇DT(xi, yi) +
∇DT(xi, yi) · �ri

−�ez · �ri
�ez , (2)

Θi = acos(
ViWi

|Vi||Wi| ) . (3)

The landmark point i is selected, if Θi < Θmax.
2. The 3D distance di of a selected landmark point to the closest silhouette ray is restricted by parameter Dmax,

increasing robustness with respect to outliers.
3. In the ideal case all landmark points fall inside the silhouette. Therefore, landmarks outside the silhouette are

penalized by multiplying the distance with a factor ρ > 1. For inside points, ρ = 1.
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Figure 2. Support point selection: All landmark points are projected on the plane; subsequently landmarks are selected
based on angle, and threshold criteria. Landmarks marked with yellow are selected as model support points. Landmark
A, B and E have angles of approximately 90◦, 90◦and 180◦, are thus not selected. Landmark D is not selected as it is too
far from the silhouette.

4. Unreliable parts of the silhouette could mislead the match. For that reason all distances from silhouette positions
p ∈ Silhouette p are weighted with the underlying image gradient magnitude η at p.

Criterion Function and Minimization Scheme. The step from single projection to multiple projections is achieved by
combining the support point sets of each of the projections. If a landmark i is a supported point in several projections,
its distance Di is the mean of the individual distances from all projections where it was selected.
The registration criterion function is defined as the mean square error over the set of support points. To favor statistically
plausible deformations the Mahalanobis distance of the shape parameter vector to the mean shape is included in the final
energy penalizing large deviations from the mean shape.

EPDM(Dmax, Θmax, ρ) =
1

n

n∑

i=1

D2
i + α(p − μ)T Σ−1(p − μ)

, where i ∈ Lsupport, α is a weighting factor, p is the shape parameter vector, μ and Σ are the mean and covariance matrix
of the SSM.
Fitting proceeds as follows: After manual initialization, rigid parameters are optimized first. Further refinement includes
optimizing shape parameters as well. Initially Θmax and Dmax are assigned large values, resulting in a large support
point set and a coarse registration with a wider convergence radius. By gradually decreasing Θmax and Dmax, accuracy
of the fit increases.Minimization of the error function is performed using conjugated gradients.
An example fit with a small field of view is shown in Figure 3. The figure shows three stages of the algorithm: initialization,
affine fit, and final shape fit. The light blue area denotes the silhouette on the projection images, the model projection
on the plane is drawn dark blue, and the overlap of these two is colored yellow. Selected points for a given angle and
threshold are shown as red stars. The upper left image pair depicting the initial position illustrates well the need of a
large angle and threshold for the landmark selection mechanism for the first iterations. A too small angle, and threshold
may result in too few selected landmarks. In the example of Figure 3, only one landmark gets selected in the lateral
projection at a maximal angle of 30◦, and threshold of 20mm.

3. DATA
Model construction. The model was constructed using a semi-automatic segmentation method from CT Angiog-
raphy scans of the lower extremities of 30 patients. Segmentations were obtained from 15 mirrored right, and 15 left
femora. The population contained 23 male and 7 female subjects aging between 23 and 66 years. Patients were scanned
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Figure 3. An example of point selection (red stars) for a model
(dark blue) fitting to the femoral head (light blue). The three
subimages all consist of two views. From left to right, and
up to down: Initial position, affine fit, non-rigid fit. Yellow
color marks the overlap between silhouette on the plane and
projected model.

on different scanners with voxel sizes ranging from 0.625 x 0.625 x 0.8mm3 to 0.782 x 0.782 x 0.8mm3. Landmark points
on the training shapes were calculated using the GAMES algorithm11 with an average landmark distance of 3mm, yielding
931 landmarks for the entire femur. Retaining 95% variance resulted in 23 modes of variation.

Cadaver study. Uni-planar stereo X-rays of 2 cadaver femora with metal markers were acquired using a Roentgen
Stereophotogrammetric Analysis (RSA) setup. The cadaver femora were placed on a calibration box, which enabled the
computation of the exact acquisition geometry.13 Two views of the femur were acquired simultaneously, with an angle of
35◦containing approximately 50-60% of an average length femur. Each cadaver proximal femur was scanned 4 times, with
different orientations (natural, endo, epi, back). For validation purposes the same cadaver femora (including the metallic
markers) have been segmented from CT, to be used as ground truth.

4. EXPERIMENTAL SETUP
Experiments. We performed experiments to 1) determine the effect of the FOV on the reconstruction accuracy, and
to 2) determine how well the 3D femur shape can be predicted in a clinically more realistic setup.
For the first experiment we performed tests on simulated biplane projections (90◦) to evaluate performance under con-
trolled conditions. A set of 100 plausible femora were randomly generated by sampling shape instances from the statistical
shape model of the femur; parameters were varied following a normal shape-, and uniform pose-distribution (translation:
±15mm, rotation: ±15◦, scaling: 0.9 − 1.1). The initial pose was zero translation and rotation, unit scaling, and mean
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shape. The reconstruction error of different regions was tested after fitting the whole femur model to the available in-
formation. Available information included 3 FOV sizes: the entire femur (100%), the femoral head and part of the shaft
(proximal 60%), and the femoral head (proximal 30%).
Secondly, a cadaver study of fitting the 3D model to calibrated uni-planar stereo Xrays (subsampled to pixel size
0.48x0.48mm2) was repeated 30 times for each acquisition direction, with an initial pose randomly selected in a radius of
10mm translation, 10◦rotation, and 0.9− 1.1 scaling around the true position. Optimization was performed in three rigid
optimization loops, followed by three cycles of shape optimization with decreasing angle and distance thresholds.

Error metrics. The 3D reconstruction accuracy was evaluated using the average point-to-surface (P2S) error for the
whole femur, the partial femur inside the FOV, and the femoral head. Matching convergence was defined as a mean P2S
error smaller than 3mm inside the FOV.
The 2D segmentation accuracy was defined by the average silhouette error, which is the sum of all false negative and false
positive pixels divided by the silhouette length of the desired segmentation. Two types of average silhouette errors were
calculated. The Average 2D error is calculated between the projected final 3D shape, and the automatic segmentation.
This indicates the ability of the 3D reconstruction to deduct a shape from the 2D contours. Secondly, the Segmentation
error is given, which evaluates the 2D segmentation part of the algorithm, and is measured between the gold standard
contours, and the automatic segmentation.

5. RESULTS
Quantitative results of the simulated experiments are given in Table 1. P2S errors of the 100% FOV illustrate the
performance of the reconstruction when data support for the entire model is available. Errors mainly occur in occluded
areas, as shown in Fig. 4. We see that the smaller the FOV, the higher overall P2S errors occur. Generally, when an
entire subpart of the femur is missing, reconstruction becomes ambiguous. There is no information e.g. about the length
of the bone, leading to translation uncertainties, as translation is defined by the position of the mid-point of the shape.
Ambiguities arise also from rotation vs shear in the shape. It is thus not surprising, that the missing distal part of the
femur was not reconstructed properly. However, the performance inside the FOV is comparable for all FOV sizes, showing
the robustness of the presented algorithm to missing data.

Figure 4. P2S error distributions along the femur, an average of all experiments. FOV sizes from left to right are 100%,
60%, and 30%.
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Table 1. Results of the simulated experiments. First column indicates the FOV size used for fitting the entire femur
model. All errors are given in mm.

Exp Conv P2S whole P2S FOV P2S Head Average 2D Segmentation
100% 100/100 0.75±0.28 0.75±0.28 0.6±0.11 0.63±0.22 -
60% 100/100 2.25±0.95 0.69±0.1 0.7±0.1 0.6±0.12 -
30% 98/100 4.13±1.45 0.76±0.21 0.82±0.42 0.63±0.25 -

Table 2. Results of the cadaver experiments. All errors are given in mm.The average 2D error shows the error between pro-
jected 3D reconstruction and the final segmentation derived from the dynamic programming. The column ”Segmentation”
denotes the error between final dynamic programming and projected ground truth femur.

Exp Conv P2S whole P2S FOV P2S Head Average 2D Segmentation
Cadaver1

natural 30/30 7.48±1.41 1.61±0.25 2.15±1.63 1.02±0.14 1.19±0.08
epi 30/30 6.55±1.11 1.51±0.13 1.51±1.16 1.26±0.23 1±0.09

endo 30/30 6.56±2.0 2±0.29 1.8±1.24 1.1±0.14 1.17±0.09
back 30/30 7.47±1.49 2.2±0.97 1.55±1.16 1.42±0.58 0.64±0.05

Cadaver2
natural 30/30 6.6±1.62 1.4±0.15 1.56±1.15 0.85±0.12 0.75±0.02

epi 30/30 6.35±2.18 1.22±0.12 1.44±1.05 0.86±0.09 0.97±0.18
endo 30/30 8.92±1.5 2.5±0.22 2.42±2.1 1.27±0.48 1.04±0.23
back 30/30 7.00±1.6 1.78±0.34 2.15±1.74 1.35±0.27 0.93±0.15

Figure 5 illustrates a fit of the model to a cadaver bone, showing the two uni-planar stereo X-Ray images overlayed with
the initial position, affine registration result, and final fit result. Quantitative evaluation is given in Table 2. Compared
to the simulation experiments, the accuracy of the cadaver studies decreased due to three factors: 1) the cadaver femora
were from a different population than the model femora; 2) the angle between the projection planes was smaller than in
the simulation experiments; 3) in the cadaver case, also segmentation errors contribute to the P2S reconstruction error
(whereas in the simulation experiments, the perfect silhouette was employed for reconstruction).
Computing times ranged between 2 and 3 minutes in an unoptimized Matlab implementation. First results are promising,
however further refinements are still necessary before clinical application is feasible.
The above evaluation was done using the model defined in Section 3, having the property of uniform landmark distribution
along the surface. The landmark sampling can be optimized for this application, by making it curvature dependent. High
curvature areas should be sampled at a denser landmark distribution than low curvature ones ensuring a balanced support
point selection even at small maximal angles. A further way to improve the results is an overall denser sampling of the
femur, and expansion of the training set.

6. CONCLUSIONS
Numerous publications tackle the problem of 3D bone reconstruction from biplane X-ray images.1–5 However, these meth-
ods model only part of the bone visible in the imaging FOV (e.g. proximal, or distal). Often separate models are required
to model subparts of the femur for different clinical applications. Furthermore, 2D based similarity metrics enabling
correspondence free matching, do not correct for projection distortion.1, 2, 5 Approaches based on 3D distances on the
other hand eliminate the projective distortion, however both4, 9 require a computationally expensive point correspondence
calculation.
Therefore, the contribution of our work is twofold: 1) we presented a new correspondence free 3D PDM fitting approach
for surface reconstruction from a variable number of X-ray projections (> 1); 2) we demonstrate robustness of the algo-
rithm with respect to reduced FOV. We evaluated our approach on simulated data using two projections with a femur
model, and on cadaveric femora. The first experimental results are promising, further steps towards usage of the method
in pre-operative planning of orthopaedic surgery will follow. Future work will focus on optimized model building for
more accurate results. Also, the current 3D reconstruction method requires a connected silhouette segmentation on the
projection images. In order to apply the same method on a wider range of shapes, we also consider adding inside edges
to the fitting.
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Figure 5. Cadaver2 neutral position. Top: initialization; Middle: rigid registration result; Bottom: Non-rigid matching
result
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