
Sparse Transformers are (in)Efficient Learners
Comparing Sparse Feedforward Layers in Small Transformers

Yijun Wu

Supervisor(s): Maliheh Izadi, Arie van Deursen, Aral de Moor

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Yijun Wu
Final project course: CSE3000 Research Project
Thesis committee: dr. Thomas Abeel, dr. Maliheh Izadi, prof. dr. Arie van Deursen, Aral de Moor

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Although transformers are state-of-the-art models
for natural language tasks, obtaining reasonable
performance still often requires large transformers
which are expensive to train and deploy. Fortu-
nately, there are techniques to increase the size of
transformers without extra computing costs. One
such technique is sparsity. However, it remains
unclear whether sparse architecture is intrinsically
more efficient than its dense counterpart. In this
paper, we investigate whether replacing the feed-
forward networks in small transformers with sparse
alternatives results in better predictions and faster
inference. We found that although inference speed
does not increase due to software and hardware
limitations, certain sparse alternatives do result in
better language understanding. Our research con-
tributes to smarter architectural decision making
when designing small language models.

1 Introduction
Transformers are state-of-the-art models for natural language
tasks such as next word prediction, text summarisation, and
sentiment analysis. They are the backbones of tools includ-
ing ChatGPT1 and GitHub Copilot2. Although performance
tends to scale with model size for transformers, bigger trans-
formers are also slower to train and occupy more space. For-
tunately, an array of techniques exists to improve a trans-
former’s efficiency [24]. Sparsity is one such technique.
Sparse transformers are transformer models that only acti-
vate a portion of their parameters when processing an in-
put. This allows the model to contain more parameters, and
thus greater learning capacities, without extra computational
costs. Sparse models such as GLaM [5], Switch Transformer
[7], and Scaling Transformer [9] have been shown to outper-
form archetypal dense transformers including GPT-3 [3], T5
[21], and Pegasus [34].

The architectural reason for the sparse transformer’s suc-
cess remains unclear. While the number of learnable param-
eters certainly plays a role, current research is inconclusive
on whether sparsity is intrinsically related to performance, in
the sense of a more efficient utilization of parameters. This is
indeed plausible as earlier works on network pruning demon-
strated that it is possible to achieve better [1] or at least com-
parable performance [13] to the original model with a sparsi-
fied network.

This question calls for controlled and comprehensive ex-
periments. Controlled in terms of the model size, as the
sparse model needs to have a comparable size as the dense
model to negate the higher capacity gained from the addi-
tional parameters. Comprehensive with respect to the imple-
mentations of sparsity. There are many ways to sparsify both
the attention and the feedforward layer of the transformer.
This paper investigates only the feedforward layer to reduce
the search space.

1https://openai.com/chatgpt/
2https://github.com/features/copilot

We restrict our attention to small transformers, that is,
transformers with less than 10M parameters and 256 em-
bedding dimensions as defined by Eldan and Li [6]. The
choice to focus on small transformers is based on two ratio-
nales. Firstly, small transformers can be pretrained and fine-
tuned within reasonable time using commercial hardware. In
practice, it means they can be deployed locally to perform
domain-specific tasks rather than being hosted on the cloud,
thereby circumventing privacy and security issues. Secondly,
current research in large language models is approaching a
bottleneck as large language models are predicted to require
more training data than what is available in the world by 2032
[27]. Thus, small, sample-efficient transformers are becom-
ing a promising research direction. When model size is a
limiting factor, architectural decisions are all the more impor-
tant.

This paper explores a new avenue to improve small trans-
formers via alternate architectures. More specifically, we em-
pirically investigate whether sparsifying the feedforward lay-
ers in small transformers, without increasing the number of
learnable parameters, improves language understanding and
inference speed. Our contribution is as follows:

• We found, through empirical study, that inference speed
does not increase with sparse feedforward layers be-
cause current machine learning frameworks do not have
good support for sparse models and sparsity does not re-
ceive as many benefits on a single device compared to
distributed training in the small language model setting.

• We found that sparse feedforward layers under the right
configurations are better at language understanding than
dense feedforward networks.

• We contribute to a unified understanding of sparse feed-
forward layers by deriving a mixture of experts interpre-
tation of the controller feedforward layer.

• A replication package3 for reproducing our findings, and
our models4 published on HuggingFace.

2 Background
This section elaborates on the transformer model and dis-
cusses related works on efficient transformers.

2.1 Transformer
Transformers [26] are composed of blocks of attention layers
and feedforward layers. The attention layer represents a to-
ken, for instance, a word, a subword, or a character, in terms
of its relation with other tokens in the input sequence. The
feedforward layer applies a non-linear transformation to the
features learned by the previous attention layer. The original
transformer [26] consists of an encoder and a decoder. For
missing token prediction tasks, which are the focus of this
paper, encoder or decoder alone suffices. This paper investi-
gates two baseline architectures, GPT-2 [19] and BERT [4].

The transformer output’s interpretation depends on the pre-
training objective. GPT-2, when pretrained under a causal

3https://github.com/AISE-TUDelft/tiny-transformers
4https://huggingface.co/collections/AISE-TUDelft/brp-tiny-

transformers-666c352b3b570f44d7d2a519



language modelling objective, outputs a sequence of logit ar-
rays, one for each input token. Each logit array represents
the predicted probability distribution of the next token given
the previous tokens. For BERT, two objectives were orig-
inally proposed: masked language modelling and next sen-
tence prediction. This paper is only concerned with the for-
mer for the ease of assessing the model’s language under-
standing. This means the model is given an input sequence
containing masked tokens and is pretrained to uncover those
masked tokens.

2.2 Related Works
There exist various paradigms for efficient transformers
[24]. The majority focuses on reducing the attention layer’s
quadratic space and time complexities. However, since feed-
forward layers make up two-thirds of the total parameters in a
transformer [18], this paper focuses on efficient feedforward
techniques, of which there are two main approaches: low-
rankness and sparsity.

Low-rank techniques factorize the weight matrix Wm×n

in the feedforward layer as a product of lower-rank matri-
ces Um×l × Vl×n. This leads to computational speedups if
l < mn

m+n [11]. In the context of transformers, [33] demon-
strated that with the same number of model parameters, low-
rank feedforward layers perform favourably to their full-rank
counterparts.

Sparse techniques mask the weight matrices so only a frac-
tion of their entries are used in computations. Unlike low-
rank techniques, it is currently uncertain if sparse models can
outperform dense models of the same size.

3 Approach
This section describes the feedforward layer along with its
main sparse variants and derives their sizes. This is followed
by new insights into a unified view of sparse feedforward lay-
ers.

3.1 Feedforward Network (FFN)
In baseline transformer architectures, the feedforward layer is
simply a feedforward network (FFN), defined as:

FFN(x) = σ(xW1 + b1)W2 + b2 (1)

where σ is the activation function, typically ReLU.
Suppose the dimensionality of the input token embedding

is din and that the intermediate size is dm = Mdin, then the
total number of parameters is:

TFFN = 2Md2in + (M + 1)din (2)

Note that because all models share the same tokenizer, din is
fixed.

Sparsely Gated Mixture of Experts (MoE)
Sparely gated mixture of experts (MoE), originally pro-
posed in [23] for recurrent models was adapted into trans-
formers such as GLaM [5], GShard [14], Switch Trans-
former [7], and Mixtral of Experts [10]. MoE consists of
an ensemble of small feedforward networks called experts

FFN1,FFN2, ...,FFNn and a routing function G, such that
the output is a linear combination of expert outputs:

MoE(x) =
n∑

i=1

G(x)iFFNi(x) (3)

Sparsity is created when G(x) is zero for all but the top k
experts (typically k = 2). In [23], G(x) is defined as:

G(x) = Softmax(Topk(xWg + Z ⊙ Softplus(xWϵ))) (4)

where Z is a standard normal vector.
Assuming an expert ensemble of size Nexperts, where each

expert has intermediate size M , then the total number of pa-
rameters across the expert ensemble is Nexpertsdin(2Mdin +
M+1). In addition, the routing function requires 2Nexpertsdin
parameters. The total number of parameters in MoE is thus:

TMoE = Nexpertsdin(2Mdin +M + 3) (5)

The number of active parameters for top k expert activation
is:

T active
MoE = k(2dmdin + dm + din) + 2Nexpertsdin (6)

Controller Feedforward (CNT)
The controller feedforward layer (CNT) implements sparsity
by applying a learned mask (called the controller) on the
weight matrix [9, 8, 25]. Using the Scaling Transformer [9]
as a representative, this feedforward layer can be defined as:

CNT(x) = σ(xW1 + b1)⊙ Controller(x)W2 + b2 (7)

In this case, the controller masks out all but k entries of the
activation vector, effectively activating only k rows of W2.

In the sparse feedforward model from [9], the controller
is implemented as a linear map followed by argmax activa-
tions over Nblocks blocks. The linear map is factorized into
the product of two rank din

Nblocks
matrices. The total number of

CNT parameters is:

TCNT = 2(M +
M + 1

2Nblocks
)d2in (8)

The number of active parameters is:

T active
CNT = 2Nblocksdin +Nblocks + din +

d2in
Nblocks

+
dmdin

Nblocks
(9)

Product Key Memory (PKM)
The product key memory layer (PKM) [12, 30, 20] is an al-
ternative to the vanilla feedforward network. The weight ma-
trices are replaced by learned query matrix Q, key matrix K,
and value matrix V . Under this architecture, the input is first
converted to the query vector:

q(x) = xQ (10)

Only the values corresponding to best matching keys under
dot product similarity are activated. The output is given by:

PKM(x) = Softmax(Topk(q(x)K
T ))V (11)

Each row in K is a key corresponding to a row in the value
matrix V . The similarity between the query q(x) and a key



is measured by their dot product. The output is a linear com-
bination of the top k values weighed by the softmax of the
query-key similarity.

In product key memory, the query matrix has shape din×dq .
The key table K is a Cartesian product of two subkey tables,
each of shape Nsubkeys × dsubkey, where 2dsubkey = dq . The
value table, therefore, has shape N2

subkeys × din. Instead of
having a single query matrix and a pair of subkey tables, [12]
proposes a multi-head approach, with Nheads query matrices
and pairs of subkey tables, but a shared value table. Under
this approach, the total number of parameters is:

TPKM = 2dindsubkey(Nheads+
N2

subkeys

2dsubkey
+
NheadsNsubkeys

din
) (12)

With multiple heads, the number of active parameters de-
pends on the input (as multiple heads can select the same
value), but the lower bound given top k key activation is:

T active
PKM ≥ Nheads(dqdin +Nsubkeysdq) + kdin (13)

3.2 A Unified View of Sparse Feedforward Layers
We demonstrate that CNT is the same as MoE with best ex-
pert activation and weight sharing. This transitively means
that FFN, MoE, CNT, and PKM can all be viewed as neural
memories. A unified view of sparse feedforward layers sim-
plifies theoretical analysis and allows a generalized explain-
ability technique to be developed for all sparse feedforward
layers.

Previous works proved that FFN, MoE, and PKM can be
interpreted as neural memories [16]. A neural memory with
n memory cells is a function of the form:

y =

n−1∑
i=0

αi(x)vi (14)

The output of neural memory is a linear combination of value
vectors v0, ..., vn−1 weighed by the input-dependent memory
coefficients α0, ..., αn−1.

PKM can be trivially expressed in this form. The value
vectors are the rows of the value matrix V and the memory
coefficients are the dot product between the query vector and
the keys.

As for MoE, assume it has routing function G and Ne ex-
perts, each defined as a FFN with intermediate size dm and
no biases, FFNi(x) = σ(xUi)Vi. It can be expressed in the
form of neural memory with Nedm memory cells as:

MoE(x) =
Nedm−1∑

l=0

αl(x)V⌊ l
dm

⌋[l mod dm, :]

αl(x) = G(x)⌊ l
dm

⌋σ(xU⌊ l
dm

⌋)[l mod dm]

(15)

The mixture of experts interpretation of CNT is based on
Equation (7). Assuming the controller is in Nblocks blocks
and has intermediate size dm, an equivalent MoE can be con-
structed. This MoE has

(
dm

Nblocks

)
experts, each with interme-

diate size Nblocks. The controller can be seen as a routing
function that only selects the top expert. The experts are the
combinations of every Nblocks row in the weight matrices. To

be precise, every size Nblocks subset, s, of {0, ..., dm − 1} de-
fines an expert:

FFNs(x) = σ(xW [:, s] + b1[s])W2[s, :] + b2 (16)

When viewed as a neural memory, the CNT has(
dm

Nblocks

)
Nblocks memory cells. However, due to weight shar-

ing, there are at most dm unique value vectors.

4 Experimental Setup
This section reports the research questions answered by the
experiments, the dataset used in pretraining, the evaluation
metrics, and the hyperparameters5.

4.1 Research Questions
The experiments address the following questions:

1. Can sparse feedforward layers offer better language un-
derstanding than a dense feedforward layer of the same
size? We compare the performance of vanilla GPT-Neo
and RoBERTa against their sparse variants augmented
with MoE, CNT, and PKM as feedforward layers while
keeping the number of parameters as close as possible.

2. Is there a direct relationship between the degree of spar-
sity in the feedforward layer and the model perfor-
mance? For each sparse variant, we evaluate several
configurations corresponding to different levels of spar-
sity.

3. How does the type of sparse feedforward layer affect in-
ference speed? We measure the forward pass time for
MoE, CNT, and PKM.

4.2 TinyStories
All models investigated in this paper are pretrained on the
TinyStories dataset. This is a collection of short stories gen-
erated by GPT-3.5 and GPT-4 tailored to match the cognitive
level of a 3-4 year-old [6]. It is a suitable dataset for pre-
training small generative language models because it covers
a wide range of grammatically correct stories without forcing
the model to learn a vast amount of domain knowledge.

4.3 BabyLM Pipeline
A model’s language understanding is measured in this paper
by the performance metrics from BabyLM6, namely BLiMP
and (Super)GLUE. BablyLM is a challenge on sample-
efficient pretraining of small language models [31]. We
used a modified implementation of the BabyLM evaluation
pipeline to accommodate the custom feedforward layers.

BLiMP originally consisted of 67000 pairs of sentences,
where the sentences in each pair are minimally different,
but one contains one of twelve types of grammar error [32].
For BabyLM, this dataset set was extended with supplement
tasks, covering a wider range of grammar errors. Perfor-
mance is measured as classification accuracy, where a model

5Our implementation can be found at: github.com/AISE-
TUDelft/tiny-transformers

6The official evaluation pipeline can be found at:
https://github.com/babylm/evaluation-pipeline-2023



classifies a pair correctly if it assigns the grammatically cor-
rect sentence a higher likelihood.

GLUE is a collection of causal reasoning, question answer-
ing, word sense disambiguation, and coreference resolution
tasks [28]. It is designed to test a model’s general linguistic
knowledge and offers a difficult human baseline for language
models to compete against. Like GLUE, SuperGLUE is also
designed to assess a model’s language understanding, albeit
through harder tasks [29]. BabyLM uses a mixture of GLUE
and SuperGLUE tasks.

4.4 Hyperparameters
The baseline for all experiments are GPT-Neo [2], which
is an implementation of GPT-2, and RoBERTa [15], which
is an implementation of BERT. The number of transformer
blocks is fixed to 2. Token embedding dimensionality is set
to din = 256 and the context length is kept at 512. For
the baseline feedforward network, the intermediate size is
dm = 4096. Sparse transformers are constructed by replac-
ing all the feedforward layers with their sparse variants.

For MoE, the number of experts is limited to Nexperts =
4 and each expert has intermediate size dm = 1023. We
experiment with activating top k = 1, 2, 3 experts.

For CNT, we experiment with block counts Nblocks =
64, 32, 16, and associated intermediate size dm =
4032, 4032, 3968.

As for PKM, all models have Nhead = 4 heads, Nsubkeys =
56 subkeys, and query dimensionality dq = 1024. Models
with top k = 14, 28, 42 (approximately top 25%, 50%, 75%)
key activation are investigated. Table 1 summarizes the model
size.

We pretrain all models for 2 epochs using the AdamW opti-
mizer with an initial learning rate of 0.0005 and linear learn-
ing rate decay. The batch size and the gradient accumula-
tion steps are set to 16. All pretraining is accelerated by an
NVIDIA A100 GPU.

To measure the average inference time of each type of feed-
forward layer, we measure the inference time on a batch of 16
input sequences, each of length 256 and embedding dimen-
sionality of 256. This is measured across 1000 batches. Prior
to the experiment, the GPU is warmed up for 100 batches.

5 Results
5.1 Pretraining
The evaluation loss curves during pretraining are displayed in
Figure 1. This figure shows that although no sparse models
achieved lower evaluation loss than their respective baselines,
at least one configuration from every sparse RoBERTa-based-
models reached a similar loss as the baseline after one epoch,
despite starting at a higher initial loss. Even among the GPT-
Neo-based models, the MoE variant achieved a similar eval-
uation loss as the baseline.

5.2 Evaluation
Table 2 demonstrates that all types of sparse feedforward lay-
ers can offer better performance for GPT-Neo and RoBERTa
than FFN on (Super)GLUE tasks. As for BLiMP tasks,
the PKM variant is unable to outperform the baseline for

Table 1: Models involved in our experiments and their number of
learnable parameters and the lower bound sparsity ratio (ratio be-
tween the number of active and total parameters) in their feedfor-
ward layers. While these models have various sparsity ratios, their
total parameter count is approximately the same.

Model Parameter Count Sparsity Ratio

GPT-Neo 7421440 1.00
GPT-Neo MoE (k = 1) 7422968 0.25
GPT-Neo MoE (k = 2) 7422968 0.50
GPT-Neo MoE (k = 3) 7422968 0.75
GPT-Neo CNT (Nblocks = 16) 7425280 0.04
GPT-Neo CNT (Nblocks = 32) 7424384 0.02
GPT-Neo CNT (Nblocks = 64) 7390080 0.02
GPT-Neo PKM (k = 14) 7396352 0.61
GPT-Neo PKM (k = 28) 7396352 0.62
GPT-Neo PKM (k = 42) 7396352 0.62

RoBERTa 7500048 1.00
RoBERTa MoE (k = 1) 7501576 0.25
RoBERTa MoE (k = 2) 7501576 0.50
RoBERTa MoE (k = 3) 7501576 0.75
RoBERTa CNT (Nblocks = 16) 7503888 0.04
RoBERTa CNT (Nblocks = 32) 7502992 0.02
RoBERTa CNT (Nblocks = 64) 7468688 0.02
RoBERTa PKM (k = 14) 7474960 0.61
RoBERTa PKM (k = 28) 7474960 0.62
RoBERTa PKM (k = 42) 7474960 0.62

RoBERTa. The same applies to the MoE and PKM variants
for GPT-Neo. On the other hand, the MoE variant performs
consistently best on (Super)GLUE, while the CNT variant
is the best on BLiMP. Detailed task scores for BLiMP and
(Super)GLUE are reported by Table 5 and Table 4 in Ap-
pendix A.

Figure 2 and Figure 3 illustrate the relationship between the
proportion of activate parameters (sparsity ratio) in the feed-
forward layer and the model performance on (Super)GLUE
and BLiMP tasks respectively. The trend lines suggest that
performance tends to increase with the sparsity ratio. How-
ever, this is not always the case, as the trend is reversed for
RoBERTa-based models on (Super)GLUE tasks. Further-
more, the positive correlation between the sparsity ratio and
performance is only moderate as indicated by the Pearson co-
efficients (0.3 < r < 0.5).

5.3 Inference Speed
Table 3 reports the average inference time per batch for each
feedforward layer investigated. FFN is by far the fastest. This
is followed by MoE, which is around 20% slower. In compar-
ison, CNT is more than twice as slow as MoE. PKM is much
slower than all other kinds of feedforward layers.

6 Discussion
6.1 Performance of Sparse Feedforward Layers
Whether sparse feedforward layers can achieve comparable
performance as the vanilla FFN depends on the baseline ar-
chitecture and type of sparse feedforward layer as Figures 2
and 3 demonstrate. Regardless, sparse models seem to be fast
learners since the loss difference between the sparse models
and the baseline is much smaller by the end of pretraining
than at the start. This is likely because sparse feedforward
layers approximate a larger network than an FFN of the same
size. Sparse feedforward layers are more flexible learners.
In terms of neural memories, although MoE, CNT, and PKM



Figure 1: Evaluation loss for GPT-Neo (top), RoBERTa (bottom),
and their sparse variants during pretraining. Many sparse models
reached a similar loss as the baseline by the end.

do not have as many unique value vectors as FFN, their mem-
ory coefficients are computed from more complex, non-linear
functions.

6.2 Role of Sparsity Ratio
There is inconclusive evidence on the number of active pa-
rameters directly affecting performance. Even when con-
sidering a sparse variant such as MoE in isolation, it is not
guaranteed for performance to decrease or increase with the
sparsity ratio. A plausible explanation is that the feedfor-
ward architecture is far more important to language under-
standing than the proportion of active parameters. In other
words, how parameters are activated is far more crucial than
the amount of active parameters. This hypothesis is corrobo-
rated by the CNT results. CNT outperformed the baselines on
both BLiMP and (Super)GLUE tasks despite having less than
5% parameter activation in the feedforward layer. In contrast,

Figure 2: Sparsity ratio (percentage of active parameters in the
feedforward layer) of the feedforward layers for GPT-Neo (top),
RoBERTa (bottom) and their sparse variants vs. their respective
overall (Super)GLUE scores. There is no strong correlation between
the sparsity ratio and the (Super)GLUE score.

PKM cannot compete with the BLiMP baselines even when
more than 60% of its parameters are active because it is not
as architecturally efficient as CNT.

6.3 Inference Cost of Sparse Models
Despite the theoretical speedups sparsity and conditional
computation bring, sparse feedforward layers are slowed
down by software limitations and the small transformer set-
ting. All models are implemented with PyTorch [17], which,
at time the of writing, lacks support for various essential fea-
tures on sparse tensors, such as reshapes and automatic differ-
entiation, resulting in inefficient implementations. Further-
more, the speedups of conditional computation often manifest
in a distributed setting, as is the case in [7], where an MoE
model is scaled up by distributing the experts across multi-



Figure 3: Sparsity ratio (percentage of active parameters in the
feedforward layer) of the feedforward layers for GPT-Neo (top),
RoBERTa (bottom) and their sparse variants vs. their respective
overall BLiMP scores. There is no strong correlation between the
sparsity ratio and the BLiMP score.

ple devices. Small transformers do not enjoy this advantage
because all training happens on one GPU.

6.4 Threats to Validity
Threats to the validity of this work can be categorized into
three categories: threats to internal validity, which are the
confounders of the experiment, threats to external validity,
which are the issues surrounding the generalizability of the
experiment, and threats to construct validity, which concerns
the soundness of the research questions.

Internal Validity
While the sizes of the sparse feedforward layers are set to be
as close as possible to their dense counterparts in the exper-
iments, it is not possible for them to be identical. Nonethe-
less, the relative difference is insignificant so it is unlikely to

Table 2: BLiMP and (Super)GLUE scores for GPT-Neo, RoBERTa,
and their sparse variants. The CNT variant is the best on BLiMP
while the MoE variant is the best on (Super)GLUE.

Name BLiMP (Super)GLUE

GPT-Neo 0.589 0.503
GPT-Neo CNT (N = 16) 0.544 0.487
GPT-Neo CNT (N = 64) 0.538 0.496
GPT-Neo CNT (N = 32) 0.589 0.506
GPT-Neo MoE (k = 1) 0.531 0.515
GPT-Neo MoE (k = 3) 0.567 0.503
GPT-Neo MoE (k = 2) 0.552 0.510
GPT-Neo PKM (k = 14) 0.570 0.514
GPT-Neo PKM (k = 42) 0.552 0.514
GPT-Neo PKM (k = 28) 0.584 0.508
RoBERTa 0.484 0.446
RoBERTa CNT (N = 16) 0.524 0.456
RoBERTa CNT (N = 64) 0.505 0.444
RoBERTa CNT (N = 32) 0.530 0.440
RoBERTa MoE (k = 1) 0.507 0.458
RoBERTa MoE (k = 3) 0.501 0.472
RoBERTa MoE (k = 2) 0.510 0.467
RoBERTa PKM (k = 14) 0.470 0.468
RoBERTa PKM (k = 42) 0.463 0.465
RoBERTa PKM (k = 28) 0.469 0.469

Table 3: Batch inference speed of vanilla and sparse feedforward
networks measured in milliseconds. FFN is faster than the sparse
feedforward layers.

Model Mean (ms) Standard Deviation (ms)

FFN 12.83 0.10
MoE (k = 1) 16.14 0.07
MoE (k = 2) 16.24 0.08
MoE (k = 3) 16.45 0.17
CNT (N = 16) 34.42 0.09
CNT (N = 32) 33.92 0.09
CNT (N = 64) 34.06 0.25
PKM (k = 14) 43.79 1.30
PKM (k = 28) 77.35 3.00
PKM (k = 42) 117.48 0.04

result in a huge change in learning capacity. Other hyperpa-
rameters may have a significant influence on the experiment
result. For example, we hypothesize based on Figure 1 that
all sparse models will converge to the same evaluation loss as
that of the baselines given more epochs. However, this would
require more computing budget than what is available for this
research.

External Validity

It must be emphasized that the model configurations inves-
tigated in the experiments are by no means exhaustive. As
showcased by Table 1, despite considering different configu-
rations for each type of sparse feedforward layer, the sparsity
ratio is in some cases almost identical. This is because for
some models, such as PKM, a noticeable change in sparsity
ratio requires a huge increase in parameter count.

All experiments are conducted on a single GPU. While this
is unlikely to affect pretraining and evaluation, changing the
hardware setup will alter the inference speed of sparse trans-
formers, especially if the models are distributed over multiple
devices.



Construct Validity
There is no universal measure of sparsity. In this research,
our measure of sparsity differs per model. For MoE, the de-
gree of sparsity is defined as the number of experts selected.
For, CNT, the degree of sparsity is measured in the number
of blocks the activation vector is split into. For PKM, the
degree of sparsity is defined as the number of keys selected.
These definitions do not always correspond to the sparsity ra-
tio well. Although the sparsity ratio appears to be a universal
definition of sparsity, it too has shortcomings. As an example,
PKM’s sparsity ratio is challenging to measure as it depends
on the input. Even under the neural memory framework, the
number of active memory cells is not guaranteed to be static,
so it too is a difficult sparsity measure to implement.

6.5 Future Work
Table 2 shows that CNT is an efficient architecture. It outper-
forms the baselines on both BLiMP and (Super)GLUE while
using the lowest percentage of parameters. This paper in-
vestigated CNT under a very low sparsity ratio. For future
research, we recommend studying the performance of CNT
with more active parameters. For other models, we recom-
mend reducing the intermediate size, and instead increasing
the number of experts for MoE or keys for PKM. We con-
jecture that a very small intermediate size does not neces-
sarily lead to worse performance, as shown by CNT under
the mixture of experts interpretation. Lastly, we recommend
adding more layers and controllers to CNT to mimic hierar-
chical MoE. Weight sharing the MoE and PKM is also a good
direction for further research.

7 Conclusions
This paper investigates whether sparse feedforward layers in
small transformers result in better language understanding
and faster inference than the standard feedforward network.
We found that inference speed does not increase due to soft-
ware and hardware limitations associated with our small lan-
guage model setting. Some sparse feedforward layers, such
as the controller feedforward layer, in the right configura-
tions, achieves better language understanding than the stan-
dard feedforward network while activating just a fraction of
their parameters. We hypothesize that this is because the
sparse feedforward layers more efficiently utilize their pa-
rameters by approximating larger networks. We recommend
future research exploring more configurations of different
sparse feedforward architectures.

8 Responsible Research
Deep learning, among other fields, faces a reproducibility cri-
sis [22]. We combated this issue in our research by provid-
ing a replication package containing all the source code and
instructions to reproduce the results presented in this paper.
Furthermore, we reported our hyperparameters and hardware
in Section 4. All our models were pretrained and evaluated
with fixed seeds. These techniques together ensure that our
experiments and findings can be replicated exactly.

In accordance with the Netherlands Code of Conduct for
Research Integrity, we reported all our experiment results in

this paper under the principles of honesty and transparency.
In addition, following the standards for good research prac-
tices (chapter 3), we refrained from data fabrication and ma-
nipulation. For example, our pretraining and evaluation sets
are separate and all models were given to the same data.

Our work raises ethical concerns as it is related to language
models. Language models may be trained on copyrighted or
private texts. In addition, when trained with domain knowl-
edge, language models can be misused by malicious actors.
To mitigate these issues, all our models were pretrained on a
synthetic dataset. The dataset contains no knowledge of any
specific domain.

References
[1] Luis Balderas, Miguel Lastra, and José M. Benı́tez.

Optimizing dense feed-forward neural networks. Neu-
ral Networks, 171:229–241, March 2024. ISSN
0893-6080. doi: 10.1016/j.neunet.2023.12.015.
URL https://www.sciencedirect.com/science/article/pii/
S0893608023007219.

[2] Sid Black, Gao Leo, Phil Wang, Connor Leahy, and
Stella Biderman. GPT-Neo: Large Scale Autoregres-
sive Language Modeling with Mesh-Tensorflow, March
2021. URL https://zenodo.org/record/5297715.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models
are Few-Shot Learners, 2020. URL https://arxiv.org/
abs/2005.14165. Version Number: 4.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understand-
ing, May 2019. URL http://arxiv.org/abs/1810.04805.
arXiv:1810.04805 [cs].

[5] Nan Du, Yanping Huang, Andrew M. Dai, Simon
Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph,
Liam Fedus, Maarten Bosma, Zongwei Zhou, Tao
Wang, Yu Emma Wang, Kellie Webster, Marie Pel-
lat, Kevin Robinson, Kathleen Meier-Hellstern, Toju
Duke, Lucas Dixon, Kun Zhang, Quoc V. Le, Yonghui
Wu, Zhifeng Chen, and Claire Cui. GLaM: Efficient
Scaling of Language Models with Mixture-of-Experts,
August 2022. URL http://arxiv.org/abs/2112.06905.
arXiv:2112.06905 [cs].

[6] Ronen Eldan and Yuanzhi Li. TinyStories: How Small
Can Language Models Be and Still Speak Coherent
English?, May 2023. URL http://arxiv.org/abs/2305.
07759. arXiv:2305.07759 [cs].

https://www.sciencedirect.com/science/article/pii/S0893608023007219
https://www.sciencedirect.com/science/article/pii/S0893608023007219
https://zenodo.org/record/5297715
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2112.06905
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759


[7] William Fedus, Barret Zoph, and Noam Shazeer. Switch
Transformers: Scaling to Trillion Parameter Models
with Simple and Efficient Sparsity, June 2022. URL
http://arxiv.org/abs/2101.03961. arXiv:2101.03961
[cs].

[8] Matt Gorbett, Hossein Shirazi, and Indrakshi Ray.
Sparse Binary Transformers for Multivariate Time Se-
ries Modeling, August 2023. URL http://arxiv.org/abs/
2308.04637. arXiv:2308.04637 [cs].

[9] Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mo-
hiuddin, Łukasz Kaiser, Wojciech Gajewski, Henryk
Michalewski, and Jonni Kanerva. Sparse is Enough
in Scaling Transformers, November 2021. URL http:
//arxiv.org/abs/2111.12763. arXiv:2111.12763 [cs].

[10] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, Gianna Lengyel, Guillaume
Bour, Guillaume Lample, Lélio Renard Lavaud, Lu-
cile Saulnier, Marie-Anne Lachaux, Pierre Stock,
Sandeep Subramanian, Sophia Yang, Szymon Anto-
niak, Teven Le Scao, Théophile Gervet, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El
Sayed. Mixtral of Experts, January 2024. URL http:
//arxiv.org/abs/2401.04088. arXiv:2401.04088 [cs].

[11] Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat
Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N. Gomez.
Exploring Low Rank Training of Deep Neural Net-
works, September 2022. URL http://arxiv.org/abs/2209.
13569. arXiv:2209.13569 [cs, stat].

[12] Guillaume Lample, Alexandre Sablayrolles,
Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Large Memory Layers with Product Keys,
December 2019. URL http://arxiv.org/abs/1907.05242.
arXiv:1907.05242 [cs].

[13] Yann LeCun, John Denker, and Sara Solla. Op-
timal Brain Damage. In D. Touretzky, editor,
Advances in Neural Information Processing Sys-
tems, volume 2. Morgan-Kaufmann, 1989. URL
https://proceedings.neurips.cc/paper files/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

[14] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. GShard:
Scaling Giant Models with Conditional Computation
and Automatic Sharding, June 2020. URL http://arxiv.
org/abs/2006.16668. arXiv:2006.16668 [cs, stat].

[15] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa:
A Robustly Optimized BERT Pretraining Approach,
July 2019. URL http://arxiv.org/abs/1907.11692.
arXiv:1907.11692 [cs].

[16] Zeyu Leo Liu, Tim Dettmers, Xi Victoria Lin, Veselin
Stoyanov, and Xian Li. Towards A Unified View
of Sparse Feed-Forward Network in Pretraining Large

Language Model, October 2023. URL http://arxiv.org/
abs/2305.13999. arXiv:2305.13999 [cs].

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Yang,
Zach DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library, De-
cember 2019. URL http://arxiv.org/abs/1912.01703.
arXiv:1912.01703 [cs, stat].

[18] Telmo Pessoa Pires, António V. Lopes, Yannick As-
sogba, and Hendra Setiawan. One Wide Feedforward
is All You Need, October 2023. URL http://arxiv.org/
abs/2309.01826. arXiv:2309.01826 [cs].

[19] Alec Radford, Jeff Wu, R. Child, D. Luan, Dario
Amodei, and I. Sutskever. Language Models are Un-
supervised Multitask Learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

[20] Jack W. Rae, Jonathan J. Hunt, Tim Harley, Ivo Dani-
helka, Andrew Senior, Greg Wayne, Alex Graves, and
Timothy P. Lillicrap. Scaling Memory-Augmented
Neural Networks with Sparse Reads and Writes, Oc-
tober 2016. URL http://arxiv.org/abs/1610.09027.
arXiv:1610.09027 [cs].

[21] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the Limits of Trans-
fer Learning with a Unified Text-to-Text Transformer,
September 2023. URL http://arxiv.org/abs/1910.10683.
arXiv:1910.10683 [cs, stat].

[22] Harald Semmelrock, Simone Kopeinik, Dieter Theiler,
Tony Ross-Hellauer, and Dominik Kowald. Re-
producibility in Machine Learning-Driven Research,
July 2023. URL http://arxiv.org/abs/2307.10320.
arXiv:2307.10320 [cs, stat].

[23] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean.
Outrageously Large Neural Networks: The Sparsely-
Gated Mixture-of-Experts Layer, January 2017. URL
http://arxiv.org/abs/1701.06538. arXiv:1701.06538 [cs,
stat].

[24] Yi Tay, Mostafa Dehghani, Dara Bahri, and Don-
ald Metzler. Efficient Transformers: A Survey,
March 2022. URL http://arxiv.org/abs/2009.06732.
arXiv:2009.06732 [cs].

[25] Vithursan Thangarasa, Mahmoud Salem, Shreyas Sax-
ena, Kevin Leong, Joel Hestness, and Sean Lie. MediS-
wift: Efficient Sparse Pre-trained Biomedical Language
Models. 2024. doi: 10.48550/ARXIV.2403.00952.
URL https://arxiv.org/abs/2403.00952. Publisher: arXiv
Version Number: 1.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2308.04637
http://arxiv.org/abs/2308.04637
http://arxiv.org/abs/2111.12763
http://arxiv.org/abs/2111.12763
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2209.13569
http://arxiv.org/abs/2209.13569
http://arxiv.org/abs/1907.05242
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/2006.16668
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2305.13999
http://arxiv.org/abs/2305.13999
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2309.01826
http://arxiv.org/abs/2309.01826
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
http://arxiv.org/abs/1610.09027
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2307.10320
http://arxiv.org/abs/1701.06538
http://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2403.00952


Kaiser, and Illia Polosukhin. Attention Is All You
Need, December 2017. URL http://arxiv.org/abs/1706.
03762v5. arXiv:1706.03762 [cs].

[27] Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Be-
siroglu, Lennart Heim, and Marius Hobbhahn. Will
we run out of data? Limits of LLM scaling based on
human-generated data, June 2024. URL http://arxiv.org/
abs/2211.04325. arXiv:2211.04325 [cs].

[28] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. GLUE: A
Multi-Task Benchmark and Analysis Platform for Nat-
ural Language Understanding, February 2019. URL
http://arxiv.org/abs/1804.07461.

[29] Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. SuperGLUE: A Stickier
Benchmark for General-Purpose Language Understand-
ing Systems, February 2020. URL http://arxiv.org/abs/
1905.00537.

[30] Hai Wang and David McAllester. On-The-Fly Infor-
mation Retrieval Augmentation for Language Models.
In Proceedings of the First Joint Workshop on Narra-
tive Understanding, Storylines, and Events, pages 114–
119, Online, 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.nuse-1.14. URL https:
//www.aclweb.org/anthology/2020.nuse-1.14.

[31] Alex Warstadt, Leshem Choshen, Aaron Mueller, Ad-
ina Williams, Ethan Wilcox, and Chengxu Zhuang.
Call for Papers – The BabyLM Challenge: Sample-
efficient pretraining on a developmentally plausible cor-
pus, January 2023. URL http://arxiv.org/abs/2301.
11796. arXiv:2301.11796 [cs].

[32] Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. BLiMP: The Benchmark of Linguistic Mini-
mal Pairs for English, February 2023. URL http://arxiv.
org/abs/1912.00582.

[33] Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang
Lin, Zihan Liu, and Pascale Fung. Lightweight and Effi-
cient End-to-End Speech Recognition Using Low-Rank
Transformer, February 2020. URL http://arxiv.org/abs/
1910.13923. arXiv:1910.13923 [cs, eess].

[34] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter J. Liu. PEGASUS: Pre-training with Ex-
tracted Gap-sentences for Abstractive Summarization,
July 2020. URL http://arxiv.org/abs/1912.08777.
arXiv:1912.08777 [cs].

A BLiMP and (Super)GLUE Task Scores

http://arxiv.org/abs/1706.03762v5
http://arxiv.org/abs/1706.03762v5
http://arxiv.org/abs/2211.04325
http://arxiv.org/abs/2211.04325
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://www.aclweb.org/anthology/2020.nuse-1.14
https://www.aclweb.org/anthology/2020.nuse-1.14
http://arxiv.org/abs/2301.11796
http://arxiv.org/abs/2301.11796
http://arxiv.org/abs/1912.00582
http://arxiv.org/abs/1912.00582
http://arxiv.org/abs/1910.13923
http://arxiv.org/abs/1910.13923
http://arxiv.org/abs/1912.08777


Table 4: (Super)GLUE scores for GPT-Neo, RoBERTa, and their sparse variants.

Name Overall BoolQ CoLA MNLI MNLI-MM MRPC MultiRC QNLI QQP RTE SST-2 WSC

GPT-Neo 0.503 0.510 0.504 0.644 0.647 0.466 0.329 0.478 0.688 0.297 0.763 0.206
GPT-Neo CNT (N = 16) 0.487 0.471 0.525 0.621 0.634 0.476 0.322 0.465 0.664 0.281 0.729 0.175
GPT-Neo CNT (N = 64) 0.496 0.489 0.546 0.625 0.632 0.476 0.316 0.474 0.666 0.340 0.740 0.153
GPT-Neo CNT (N = 32) 0.506 0.500 0.507 0.620 0.642 0.527 0.314 0.482 0.665 0.370 0.750 0.192
GPT-Neo MoE (k = 1) 0.515 0.479 0.520 0.632 0.632 0.490 0.319 0.482 0.622 0.399 0.755 0.337
GPT-Neo MoE (k = 3) 0.503 0.497 0.510 0.645 0.654 0.395 0.296 0.600 0.693 0.290 0.769 0.183
GPT-Neo MoE (k = 2) 0.510 0.488 0.488 0.644 0.654 0.509 0.352 0.479 0.682 0.344 0.731 0.244
GPT-Neo PKM (k = 14) 0.514 0.490 0.527 0.643 0.646 0.483 0.353 0.483 0.696 0.424 0.771 0.139
GPT-Neo PKM (k = 42) 0.514 0.514 0.501 0.630 0.630 0.524 0.338 0.468 0.665 0.353 0.749 0.283
GPT-Neo PKM (k = 28) 0.508 0.504 0.527 0.630 0.637 0.486 0.330 0.477 0.660 0.341 0.732 0.264
RoBERTa 0.446 0.449 0.505 0.535 0.522 0.505 0.178 0.409 0.606 0.266 0.722 0.205
RoBERTa CNT (N = 16) 0.456 0.449 0.505 0.523 0.554 0.505 0.177 0.459 0.593 0.330 0.714 0.205
RoBERTa CNT (N = 64) 0.444 0.449 0.505 0.534 0.524 0.505 0.214 0.472 0.603 0.168 0.707 0.205
RoBERTa CNT (N = 32) 0.440 0.449 0.505 0.532 0.537 0.505 0.177 0.449 0.610 0.132 0.736 0.205
RoBERTa MoE (k = 1) 0.458 0.449 0.505 0.528 0.515 0.505 0.316 0.442 0.629 0.324 0.710 0.119
RoBERTa MoE (k = 3) 0.472 0.449 0.505 0.557 0.554 0.505 0.333 0.413 0.618 0.302 0.748 0.205
RoBERTa MoE (k = 2) 0.467 0.449 0.505 0.523 0.531 0.505 0.355 0.419 0.577 0.332 0.742 0.205
RoBERTa PKM (k = 14) 0.468 0.449 0.505 0.544 0.534 0.505 0.232 0.475 0.602 0.365 0.737 0.205
RoBERTa PKM (k = 42) 0.465 0.449 0.505 0.543 0.543 0.505 0.186 0.474 0.602 0.369 0.731 0.205
RoBERTa PKM (k = 28) 0.469 0.449 0.505 0.534 0.550 0.505 0.198 0.476 0.606 0.401 0.730 0.205

Table 5: BLiMP scores for GPT-Neo, RoBERTa, and their sparse variants.

Model Overall ANA AGE AGR STR BIN CTRL RAIS D-N AGR ELLIPSIS FILLER GAP HYP IRR FRM ISLAND NPI QA EASY QA TRICKY QNT S-A INV S-V AGR TURN

GPT-Neo 0.589 0.819 0.602 0.655 0.582 0.627 0.529 0.570 0.491 0.663 0.427 0.440 0.547 0.394 0.660 0.731 0.500 0.561
GPT-Neo CNT (N = 16) 0.544 0.728 0.575 0.591 0.606 0.580 0.431 0.608 0.515 0.551 0.484 0.397 0.484 0.436 0.382 0.619 0.502 0.611
GPT-Neo CNT (N = 64) 0.538 0.764 0.548 0.638 0.583 0.568 0.472 0.592 0.520 0.528 0.423 0.296 0.406 0.448 0.504 0.636 0.511 0.554
GPT-Neo CNT (N = 32) 0.589 0.785 0.584 0.652 0.575 0.601 0.431 0.626 0.512 0.598 0.456 0.489 0.469 0.455 0.691 0.701 0.496 0.529
GPT-Neo MoE (k = 1) 0.531 0.727 0.539 0.566 0.585 0.544 0.456 0.564 0.513 0.537 0.413 0.380 0.547 0.406 0.518 0.655 0.489 0.468
GPT-Neo MoE (k = 3) 0.567 0.635 0.575 0.617 0.586 0.583 0.479 0.617 0.501 0.599 0.423 0.434 0.500 0.394 0.683 0.643 0.504 0.596
GPT-Neo MoE (k = 2) 0.552 0.707 0.544 0.595 0.600 0.547 0.410 0.575 0.488 0.537 0.467 0.474 0.406 0.388 0.625 0.628 0.494 0.550
GPT-Neo PKM (k = 14) 0.570 0.780 0.560 0.643 0.603 0.575 0.467 0.594 0.491 0.591 0.483 0.444 0.516 0.388 0.636 0.619 0.515 0.514
GPT-Neo PKM (k = 42) 0.552 0.758 0.571 0.587 0.601 0.575 0.393 0.592 0.488 0.600 0.463 0.352 0.422 0.467 0.611 0.624 0.524 0.564
GPT-Neo PKM (k = 28) 0.584 0.796 0.587 0.606 0.598 0.600 0.393 0.627 0.458 0.652 0.473 0.434 0.500 0.503 0.690 0.715 0.512 0.589
RoBERTa 0.484 0.391 0.558 0.363 0.574 0.484 0.378 0.290 0.507 0.557 0.515 0.716 0.484 0.382 0.339 0.543 0.480 0.539
RoBERTa CNT (N = 16) 0.524 0.274 0.541 0.616 0.578 0.484 0.407 0.502 0.520 0.367 0.430 0.658 0.406 0.418 0.469 0.566 0.507 0.382
RoBERTa CNT (N = 64) 0.505 0.334 0.557 0.422 0.583 0.480 0.391 0.290 0.488 0.476 0.447 0.711 0.453 0.400 0.632 0.600 0.476 0.600
RoBERTa CNT (N = 32) 0.530 0.399 0.566 0.442 0.592 0.487 0.377 0.526 0.526 0.591 0.502 0.734 0.500 0.376 0.422 0.555 0.496 0.600
RoBERTa MoE (k = 1) 0.507 0.340 0.569 0.480 0.597 0.489 0.402 0.495 0.516 0.586 0.462 0.509 0.484 0.364 0.385 0.629 0.497 0.482
RoBERTa MoE (k = 3) 0.501 0.456 0.567 0.423 0.590 0.484 0.372 0.461 0.512 0.561 0.498 0.509 0.453 0.364 0.458 0.553 0.520 0.393
RoBERTa MoE (k = 2) 0.510 0.343 0.567 0.441 0.590 0.484 0.387 0.481 0.516 0.578 0.507 0.553 0.469 0.382 0.486 0.587 0.505 0.321
RoBERTa PKM (k = 14) 0.470 0.382 0.552 0.427 0.576 0.492 0.402 0.291 0.517 0.560 0.497 0.322 0.438 0.382 0.679 0.504 0.501 0.389
RoBERTa PKM (k = 42) 0.463 0.384 0.553 0.424 0.577 0.495 0.403 0.290 0.521 0.507 0.466 0.335 0.469 0.382 0.605 0.481 0.503 0.382
RoBERTa PKM (k = 28) 0.469 0.350 0.553 0.428 0.575 0.498 0.404 0.294 0.515 0.552 0.502 0.373 0.453 0.376 0.600 0.482 0.505 0.375


	Introduction
	Background
	Transformer
	Related Works

	Approach
	Feedforward Network (FFN)
	Sparsely Gated Mixture of Experts (MoE)
	Controller Feedforward (CNT)
	Product Key Memory (PKM)

	A Unified View of Sparse Feedforward Layers

	Experimental Setup
	Research Questions
	TinyStories
	BabyLM Pipeline
	Hyperparameters

	Results
	Pretraining
	Evaluation
	Inference Speed

	Discussion
	Performance of Sparse Feedforward Layers
	Role of Sparsity Ratio
	Inference Cost of Sparse Models
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Future Work

	Conclusions
	Responsible Research
	BLiMP and (Super)GLUE Task Scores

