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Chapter 1

INTRODUCTION

Due to advancing technology, systems in engineering are becoming increasingly com-
plex and interconnected. Despite the ubiquity of systems that can be modelled as
interconnected systems, the field of system identification is still mainly focused on
open-loop and closed-loop systems, limiting the application of system identification
tools beyond a classical control systems framework. This thesis aims to extend the
theory of closed-loop identification to the identification in dynamic networks. The
main question that guides the research is: under what conditions is it possible to con-
sistently identify the dynamics of a particular module of interest that is embedded in
the network? As the reader progresses through the thesis the conditions/assumptions
become less restrictive. The types of conditions and assumptions that are considered
are: the presence of process noise, presence of measurement noise, which variables
are measured/measureable, and the intersample behavior. In this first chapter dy-
namic networks are introduced from a broad point of view. The notion of causality
is briefly discussed since it is at the foundation of modeling a dynamic network. The
chapter concludes with a detailed presentation of the goals of this thesis.

1.1 INTRODUCTION

SYSTEMS IN ENGINEERING are becoming more complex and interconnected. Con-
sider for example, power systems (Kundur, 1994), telecommunication systems
(Proakis & Salehi, 2001), distributed control systems (Ren & Beard, 2008),

windfarms (Johnson & Thomas, 2009; Soleimanzadeh & Wisniewski, 2011), etc..
Many of these systems form part of the foundation of our modern society. Conse-
quently, their seamless operation is paramount. However, the increasing complexity
and size of the systems poses real engineering challenges. Consider for example,
maintaining stability of the electrical power grid and increasing data throughput
of telecommunication networks. These systems cannot be operated, designed, and
maintained without the help of models.

Also due to advancing technology, it is becoming possible/easier to collect an
increasing array of different types of data. Sensors are becoming cheaper, more sen-
sitive, and able to measure many different types of variables such as temperature,

1



2 1 Introduction

pressure, flow rates, etc. For example, due to dropping costs, phase measurement
units (PMUs) are being deployed in the power grid to synchronously sample and
measure voltage and current at many locations in the electrical grid. Similarly, in
reservoir engineering, new sensors have been developed that can be permanently
placed at the bottom of a wellbore so that it is possible to continuously measure
pressure, temperature, flow rate, and fluid density directly at the interface between
the reservoir and the wellbore. The point is that in many practical situations mea-
surements of many interrelated variables (i.e. variables that form part of a dynamic
network) are available.

The main topic of this thesis is to use the data collected from a dynamic network
to construct a model of the system.

It is worth spending some time on the notion of a model. A model describes the
interaction between the variables of the system. In engineering, common examples
of variables that form part of a model are flow variables such as current, fluid flow
rate, and velocity, potential variables such as voltage, pressure, and force, and other
types of variables such as temperatures, altitudes, etc. A model is a tool that is an
abstraction of reality, constructed with a specific purpose in mind.

There are many different purposes for models in engineering such as system
design, prediction, simulation, measurement and diagnosis. (Ljung, 1999).
System Design. A model of a system can be used to design the system such that
it achieves a behavior that is (close to) the desired behavior. For instance, if a
mechanical system appears to be vulnerable to mechanical vibration, the mass of
the system could be increased. Another method to achieve a desired behavior is
the use of controllers. In order to design a controller, a model of the system to be
controlled is required. Using this technique an active vibration controller could be
designed to reduce mechanical vibrations in a system.
Prediction. A model could be used to make predictions about the future behavior
of a system given a particular set of inputs and operating conditions. For instance,
electricity usage, the effect of various inputs and operating conditions on the effi-
ciency of a power plant, etc. Such models are used so that an operator can make
informed decisions as to how to best manage a system.
Simulation. A model can be used to simulate the behavior of a system. Such a
model can be used to train operators of complex systems (flight simulators, power
plant simulators, etc.).
Measurement. A model can be used to estimate the value of an unmeasurable
variable (such as estimating the acceleration of a system by measuring its velocity
and position).
Diagnosis. A model can be used to detect faults in a system (deviations from
normal operation). In an electrical system examples of faults are transmission lines
breaking. Often the type and the location of the fault must be detected.

Models are, of course, not used exclusively in engineering, but have wide usage
in all domains of science. In science models are constructed based on theories, and
the models are compared to what is observed in nature. Or, vice versa, a model
is constructed that fits a set of observations and then the model is interpreted in
order to explain what mechanisms cause the observations. The latter methodology
is common in fields like economics, where fundamental laws governing the system
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are difficult to define. The typical purpose of models in science is to explain how
particular variables interact, in order to gain insight into how the world works.

“Inferring models from observations and studying their properties is re-
ally what science is about. The models (‘hypotheses’, ‘laws of nature’,
‘paradigms’, etc.) may be of more or less formal character, but they
have the basic feature that they attempt to link observations together
into some pattern” (Ljung, 1999)

When modeling large, complex systems, that describe the inter-relationships be-
tween many different variables, it is invaluable to impose a structure on the system.
The variables are partitioned into subgroups, such that each subgroup only directly
interacts with a small subset of other subgroups. The result is a network. When
the variables are also temporally related, the result is a dynamic network.

1.1.1 Dynamic Networks
In this thesis we consider dynamic networks of the following form. A network consists
of a collection of internal variables. Each internal variable is dynamically related to
other variables in the network. Each internal variable is assumed to be measureable
in the sense that it can be measured using an appropriate measurement device.
Examples of internal variables are pressure, flow rate, voltage, current, position,
force, etc. There may also be unmeasured disturbances present that affect the value
of an internal variable. Examples of unmeasured disturbances are thermal noise in
an electrical circuit, and wind affecting a mechanical structure. A third type of
variable that may be present in a dynamic network is an external variable. This
is a variable that can be directly manipulated by an operator of the system. For
example a valve may be opened or closed by an operator or a voltage in a circuit
may be controlled using a waveform generator.

These concepts will be formally defined in Chapter 2. For now, consider the
following examples of dynamic networks taken from different engineering domains:
control, power and reservoir engineering.

The first example is a distributed control system. Consider the case of a team
of mobile robots as shown in Figure 1.1. Each vehicle can communicate with other
vehicles within a limited range.

Suppose that the objective of the team is to move in a certain formation along
a pre-specified path. One control scheme is that each vehicle communicates with
a centralized controller. This controller co-ordinates the manoeuvres for each ve-
hicle. The centralized control scheme requires that each vehicle is constantly in
contact with the central controller, which could be an unrealistic or burdonesome
requirement. Secondly, this scheme does not scale well with additional vehicles.

An alternative approach is a distributed control scheme, where each vehicle only
communicates with its neighbors (Ren & Beard, 2008). The vehicles communicate
amongst themselves to achieve a consensus as to what the next manoeuvres should
be. Extra vehicles can easily enter and leave the team, and only a limited com-
munication range is required. Further reading on distributed control of multi-agent
systems can be found in Ren & Beard (2008).



4 1 Introduction

Figure 1.1: Diagram of a team of mobile robots.
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Figure 1.2: Model of the multi-agent system shown in Figure 1.1 using transfer
functions. The variable xi denotes the state of agent i (could be position and velocity
for instance); yi denotes the output of agent i; and r3 is an external reference variable.
The transfer function Ai denotes the internal dynamics of agent i, Ci denotes the
controller dynamics of agent i, and Iij denotes the dynamics of the interconnection
between agents.

In Figure 1.2 a model of a distributed control system is shown. Each block in the
figure represents a transfer function and circles denote internal variables. The main
point is that a distributed control system can be modelled as a dynamic network.

A second example of a dynamic network is taken from reservoir engineering,
shown in Figure 1.3. In the figure, three wells are shown that are drilled into a
reservoir. The pressure of the fluid in the reservoir is very high, driving the fluid up
through the wellbores. The rate of the flow in the wellbores is controlled by a valve
at the wellhead. The variables that are used to model the system are the pressure
and flow rate at the well heads and the pressure and flow rates at the bottom holes
of the wellbores. The properties of the fluid in the reservoir creates a dynamic
interconnection between the flow rates in the three wellbores. For instance, suppose
that the flow rate in one of the wellbores is allowed to be very large, this would cause
the flow rate to drop in the surrounding wellbores. Reservoir engineers would like
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Figure 1.3: Diagram of three wells. The brown layers denote layers of rock, the black
layer denotes a permeable layer where oil has gathered, and the blue layer denotes
a water layer. The rock formation shown is an anticline formation. Reservoirs often
are found in this type of formation (Dake, 1983).

to infer characteristics of the reservoir such as depth of the reservoir, permeability
of the rock in the reservoir, shape of the reservoir, presence of faults in the geology
of the reservoir, etc., based on the observed pressure and flow rate data.

A model of the three wells is shown in Figure 1.4. Again, the main point is that
this situation can be described by a dynamic network. This particular example will
be further worked out in Chapter 8.

The third example of a dynamic network is taken from power engineering. A
simple power system consists of generators, transmission lines, and loads as shown in
Figure 1.5. The transmission lines provide an interconnection between the generators
and the loads. The variables that can be included in a model of a power system are
voltage, current at different locations in the transmission line, and the torque and
radial velocity of the shaft of the generator.

Again, this situation can be modelled as a dynamic network as shown in Figure
1.6.

The main point of this section is that we have illustrated that systems in engineer-
ing can be modelled as systems of interconnected transfer functions, i.e. dynamic
networks.

In Willems (2008) a nomenclature is proposed to talk about dynamic networks.
This nomenclature is adopted in this thesis. Thus, each transfer function is referred
to as a module. Each module is embedded in a dynamic network via an interconnec-
tion structure.
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Figure 1.4: Model of the three wells and reservoir shown in Figure 1.3 using transfer
functions. The variables pibh and piwh denote bottomhole and wellhead pressures
of well i respectively; qibh and qiwh denote bottomhole and wellhead flow rates re-
spectively; ri denotes the flowrate that can be externally controlled using a valve.
The transfer functions Wji denote the dynamics of wellbore k, and Rji denote the
dynamics of the reservoir.

Figure 1.5: Diagram of a power system. Power is generated by power plants and
wind turbines. The load (city) is connected to the power source by transmission
lines.

1.1.2 SystemModeling
There are many ways to determine the dynamics of each module embedded in the
network. One could attempt to construct a model based on the physics of the
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Figure 1.6: Model of the power system of Figure 1.5 using transfer functions. The
variables vp and vc denote the voltage on the transmission line at the plant and city
respectively; ip and ic denote the current on the transmission line at the plant and
city respectively, τp and ωp denote the torque and radial velocity of the turbine shaft
of the power plant. The transfer functions Tji denote the dynamics of the transmis-
sion line; Pji denote the dynamics of the power plant; C denotes the dynamics of
the load (i.e. the city).

system (sometimes referred to as first principles modeling). In this case the equations
relating all the variables of the system are derived based on principles in physics
(such as the laws of conservation of energy and mass, Newton’s first law, etc). This
approach may not be feasible for complex systems, or for systems where the physics
are not known (to a sufficiently accurate degree). Using this procedure good insight
into the system is developed in the sense that it is clear which parameters (such as
temperature, permeability, etc.) affect the dynamics of the system.

1.1.3 System Identification
A different approach is to use measurements of the variables of the system to infer
a model of the system. This is called system identification.

There are three main components in the system identification procedure: (1) the
data set, (2) the set of candidate models and (3) the selection of the “best´´ model
from the set of candidate models (Ljung, 1999; Söderström & Stoica, 1989a; Pintelon
& Schoukens, 2012b). Each component is briefly described below.
The Data Set. In this step the user must decide which variables to measure, and
how to measure the variables. It may be possible to excite the system using a signal
which is designed by the user.
The Model Set. In this step the user must choose a model structure. The model
structure is a parameterized mapping from the inputs and past outputs to the out-
put at the current time. The user has many choices to make in this step. For in-
stance one must choose linear/nonlinear, discrete/continuous, gray box/black box,
parametric/non-parametric, what type of noise model to include, how many poles
and zeros to include in the model, etc..
Identification Criterion. In this step the user must choose a rule which can
discriminate between the candidate models and select the best model. A typical
choice is to asses the candidate model quality using the sum of squared prediction
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errors.
Once all the choices in the three steps have been made numerical algorithms can

be applied to the data to obtain a model.
A large portion of the identification literature deals with the analysis of the

obtained models. The two most important properties of an estimated model are
its bias and its variance. It is crucial to know under what conditions a proposed
identification procedure will (or will not) lead to an unbiased model. Similarly, it is
just as important to understand how to user choices affect (reduce) the variance of
an estimated model.

An important factor (if not dealt with properly) that can contribute to the bias
of an estimated model is the presence of feedback in the data generating system.
Consequently several closed-loop identification methods have been proposed in the
literature (Forssell & Ljung, 1999; Van den Hof, 1998; Ljung, 1999).

The majority of the identification literature deals with systems that are operating
in either open-loop or closed-loop. The main topic of this thesis is to move beyond
identifying open and closed loop systems to identifying modules that are embedded
in dynamic networks.

1.1.4 System Identification and Dynamic Networks
System identification as presented in the previous section seems to offer huge po-
tential in a world where data collection is becoming easier and cheaper for a wide
variety of systems, and the demand (need) for accurate models of these systems is
growing. One of the main aspects that limits the applicability of system identifica-
tion tools to a broader range of systems is the lack of tools that are dedicated to
dynamic networks. In the current system identification literature data generating
systems are typically considered to be either open or closed loop. There are con-
siderable advantages to taking into consideration the structure of the system under
investigation, as will be shown in this thesis. For example, the ease with which prior
knowledge (such as known controllers) can be incorporated into the model1, the
increased flexibility in which variables need to be measured2, and the (some what
surprising) fact that sensor noise is easily dealt with in a network setting (unlike in
the classical open-loop errors-in-variables problem)3. In addition, a network setting
offers interesting opportunities for reducing the variance of the estimates that are
not available in a classical open or closed-loop setting Wahlberg et al. (2009); Everitt
et al. (2013); Gunes et al. (2014).

When given a data set generated by a dynamic network, one of the first questions
that the user is confronted with is how to determine which variables cause which.
Does a change in voltage cause a change in current, or vice versa? If there are feed-
back loops present in the system, what does this mean in terms of causality? Which
variables should be classified as “inputs” and which variables should be classified as
“outputs”. Does there exist a causal structure in the data, or can a causal structure
be imposed by the user? For this reason, although this is not the main topic of

1This is discussed in Chapter 4.
2This is discussed in Chapter 5.
3This is discussed in Chapter 6.
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this thesis, we include a short section on causality in this introductory chapter. The
presence of a causal structure in the data is at the very foundation of identification
in dynamic networks, and so it is worth spending some time on investigating what
role causality takes in both system modeling and system identification.

The rest of this introductory chapter is structured as follows. After a section
briefly discussing causality in Section 1.2 the current state of the art of dynamic
network identification is summarized in Section 1.3. The literature on identifica-
tion and dynamic networks can be split into two categories: those that assume that
the interconnection structure is known (referred to as identification in dynamic net-
works), and those that assume it is unknown (referred to as topology detection). In
scientific applications it is perhaps more common that the interconnection structure
is unknown, and the goal is to discover the interconnection structure in order to gain
a deeper understanding of the system under investigation (for example in systems
biology, ecology, economics, etc.). In engineering applications, it is more common
that the interconnection structure is known since it has been explicitly designed (for
example power systems, telecommunication systems, etc.). Both categories of the
literature are summarized.

This chapter ends with Section 1.4 where the problem statement of this thesis is
presented in detail. The motivating question is stated and the main contributions
contained in this thesis are presented.

1.2 CAUSALITY
In this section we briefly discus the notion of causality. Causality is not the main
topic of this thesis, however it implicitly plays a central role in a dynamic network
model. The direction of the arrows in each of the Figures 1.2, 1.4 and 1.6 denotes a
causal relationship.

The topic of causality is a very interesting one, and quickly leads down a very
philosophical path. It is not without controversy. There are many different defini-
tions (Granger proposes 7 different definitions in just one article (Granger, 1980)).
The debate ranges from “there is no such thing as causality” to “causality is the
most basic foundation of the world we live in”. In his book Causality, Pearl (2000)
says:

“Though it is basic to human thought, Causality is a notion shrouded
in mystery, controversy, and caution, because scientists and philosophers
have had difficulties defining when one event truly causes another. We
all understand that the rooster’s crow does not cause the sun to rise, but
even this simple fact cannot easily be translated into a mathematical
equation.”

Willems (2007), on the other hand argues that cause and effect should not play
a role in system modeling, even going so far as to quote Bertrand Russell:

“The law of causality, I believe, like much that passes muster among
philosophers, is a relic of a bygone age, surviving, like the monarchy,
only because it is erroneously supposed to do no harm” (Russell, 1912)
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In the literature, causality has been referred to as: “due to”; “temporally prior”;
“temporally interrelated” (Granger, 1980); “feedback free” (Caines & Chan, 1975);
and “non-anticipatory” (Polderman & Willems, 1991). Identification in dynamic
networks is fundamentally based on the notion that we are able to determine which
variables cause which. So what should we make of this controversy? How should we
define causality?

In this section we explore what some of the leading thinkers have thought about
causality and we attempt to consolidate their seemingly contradictory beliefs into one
line of reasoning. This will give insight into foundation of identification in dynamic
networks.

Willems’ argument is that from a system modeling perspective there is no reason
to label some variables as inputs, and others as outputs. In fact, he proves that any
variable in a linear time invariant system can be considered as both an input or an
output (Polderman & Willems, 1991). For instance, consider an electrical circuit.
The variables of the system are the current and voltage at different locations in the
circuit. One could choose current as the “input” to a particular component, which
implicitly means that voltage is the “output” of the component. However, one could
just as easily chose voltage as the “input”, which means that current is the “output”.
Since the choice of input/output partition is a free choice, the idea of causality does
not make sense in this setting.

Now consider a system identification perspective. Consider a set of measurements
from a system with no additional knowledge about the data generating system. No
additional knowledge, does not mean no knowledge! Given that fact that a set of
measurements has been collected from the system already says something about the
system: (1) the system forms part of/is connected to the real world, i.e. boundary
conditions have been applied to the relevant equations, (2) something is driving the
system, i.e. something is causing the variables to be non-zero and (3) a transfer of
energy has occurred.

The main point is that items (1) - (3) imply that a particular input/output
partition of the variables has generated the data. Once an input/output partition
has been chosen, and the proper boundary conditions have been applied, it makes
sense to talk about causality. Thus, a causal structure is present in a data set.

This idea is illustrated by an example using a transmission line.

1.2.1 A Transmission Line
This example is largely taken from personal communication with Jan Willems and
partially from Willems (2010) where Willems discusses the behavior of transmission
lines. More of his ideas on the behavioral framework in interconnected systems
is found in Willems (1997, 2007, 2008). The main point of this subsection is to
illustrate that the concept of causality may not be very meaningful at a system
equations level, however at a measurement level it is.

Consider a transmission line as shown in Figure 1.7. Intuitively, we are used
to thinking about transmission lines as simple input/output devices (modelled as
transfer functions). For instance, suppose a voltage signal is applied to the left hand
side of the line, then the voltage signal will appear, slightly delayed, on the other
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end of the transmission line. In fact, for simplicity, let us assume that the transfer
function of the transmission line is simply a delay, i.e. G(q) = q−1. Denote the
input voltage as u = P1 − P2 and denote the output voltage (i.e. the voltage at the
other end of the transmission line) as y = P3 − P4. Then y = Gu, or as expected
y(t) = u(t−1) (i.e. the output y is simply a delayed version of the input). Intuitively
this is how a transmission line works.

By this reasoning, and by the usual rules for manipulating transfer functions, it
is then also possible to say that u = G−1y. In this case, since G is simply a delay
G−1 is a non-causal transfer function. This is not as expected! Intuitively, it should
be that if a signal y is applied to the right hand side, the signal appearing on the
left should be simply a delayed version of y, i.e. u = Gy, not u = G−1y as suggested
by the transfer function reasoning. Where is the error in this line of reasoning?

.........P1
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.. P3

..

P4

...

G

.

u

.

y

........I1 ...

I2

... I3...

I4

Figure 1.7: A lossless transmission line. I’s denote currents, and P ’s denote voltage
potentials and a transfer function representation of the transmission line.

In order to find the mistake in the reasoning, consider how the transfer function
representation of a system is derived from the governing differential equations. The
equations governing a lossless transmission line are (O’Neil, 2007):

∂

∂x
V (t, x) =

∂

∂t
I(t, x)

∂

∂x
I(t, x) =

∂

∂t
V (t, x)

where unit inductance and capacitance are chosen for simplicity, V (t, x) is the voltage
at time t and position x measured with respect to the return wire, and I(t, x) is the
current in the transmission line are time t and position x. It can be shown that
(O’Neil, 2007)

V (t, x) = f+(t− x) + f−(t+ x)

I(t, x) = −f+(t− x) + f−(t+ x),
(1.1)
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where f− and f+ are any functions. The function f+ represents a wave traveling in
the forward direction, whereas f− represents a wave traveling in the reverse direction.
The voltage at any point in the line is a sum of both the forward and the backwards
waves. Let the voltage at the start of the line (i.e. at x = 0) be denoted w1(t) =
V (t, 0), and the voltage at the other end of the transmission line of length 1 be
denoted w2(t) = V (t, 1). Then,

w1(t) = f+(t) + f−(t)

w2(t) = f+(t− 1) + f−(t+ 1)

which shows that there is a noncausal relationship between w1 and w2.
Where does the intuition that a transmission line acts as a causal transfer function

come from? A voltage signal is injected into the line at one end, and appears
delayed at the other end. This however, requires a proper termination (a boundary
condition).

Suppose that the transmission line is terminated at x = 1 with a unit resistor.
By Ohm’s Law, this imposes the following constraint:

V (t, 1) = −I(t, 1).

By (1.1) this is equivalent to imposing:

f+(t− 1) + f−(t+ 1) = f+(t− 1)− f−(t+ 1),

resulting in f−(t + 1) = 0. Here, the transmission line has been terminated by its
characteristic impedance, with the result that there is no reflected wave.

What is the moral of the story? The equations governing a transmission line are
non-causal. However, if a voltage input is imposed at x = 0, and the voltage across a
terminating resistor is measured, the result is a causal relationship y(t) = f(u(t−1)).
Conclusion: it is not the transmission line that acts like an input/output device, but
the transmission line together with a termination. This architecture breaks the
perceived symmetry of a transmission line as shown in Figure 1.8.

To be able to collect a data set from a transmission line, it follows that there
must be a source connected to the line, and there must be a termination on the line.
Thus, given a data set, if one were to identify the transfer function from u → y,
one would obtain an estimate of G. Alternatively, if one were to identify a transfer
function from y → u, one would obtain an estimate of G−1, as originally expected
from the transfer function reasoning.

The main point is that, given a data set, the conditions required to talk about
causality in a meaningful way are implicitly satisfied.

In summary, what is the main insight offered by this example?

• In order to generate data, a generating mechanism needs to be in place. In
the case of a transmission line that means terminating one end of the line and
attaching a signal generator to the other end.

• The generating mechanism destroys any symmetry that the differential equa-
tions may have.
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Figure 1.8: A lossless transmission line with a termination. I’s denote currents, and
P ’s denote voltage potentials and a transfer function representation of the transmis-
sion line.

• The notion of a transfer function can only be used once a generating mechanism
has been defined.

The main conclusion from a system identification point of view: although the
notion of causality may not be present in the differential equations used to model a
system, a causal structure is present in the data collected from the system.

Given a data set of measured variables, just because it is possible to relate two
variables through a (proper) transfer function does not necessarily mean that the
input is a cause of the output. This, along with a proposed definition for causality
is briefly discussed in the next subsection.

1.2.2 Granger Causality and Causal Inference
Two large bodies of literature that attempt to define operational definitions of causal-
ity are Granger Causality and Causal Inference. An operational definition of causal-
ity means that the definition can be used for detecting causality from a data set.
Detecting which variables cause others from a data set is not trivial. The difficulty
falls under the “rubric of spurious correlations, namely correlations that do not imply
causation” (Pearl, 2000). Consider for instance an example:

“A rooster crow stands in constant conjunction to the sunrise, yet it does
not cause the sun to rise. Regularity of succession is not sufficient; what
would be sufficient? What patterns of experience would justify calling a
connection ‘causal’? ... If causal information has an empirical meaning
beyond regularity of succession, then that information should show up in
the laws of physics. But it does not! ... This may come as a surprise to
some of you but the word ‘cause’ is not in the vocabulary of probability
theory; we cannot express in the language of probabilities the sentence,
‘mud does not cause rain’ - all we can say is that the two are mutually
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correlated, or dependent - meaning if we find one, we can expect the
other” (Pearl, 2000).

The idea of Causal Inference is built on Bayesian Networks. In Pearl (1988) and
Pearl (2000) a calculus of causality is presented. However, since the reasoning is
fundamentally based on Bayesian Networks, the theory has troubles dealing with
loops or feedback, and both books focus exclusively on networks without loops. In
recent literature there is a push to move towards network containing loops, see Mooij
et al. (2011) for instance. Also from the system identification side, recently there
are some results using a Bayesian framework (Aravkin et al., 2011, 2012; Chuiso &
Pillonetto, 2012). Thus, in the future, it may be possible to make some very nice
connections between Bayesian system identification and causal inference. However,
this is not the approach taken in this thesis.

Most of the literature on topology detection is based on the idea of Granger
Causality. This approach is more in-line with classical system identification concepts.

Granger was concerned with formulating a testable definition of causality. He
determined three axioms of causality that he thought were incontestable truths.
Then he attempted to turn these truths into testable conditions. Before presenting
the axioms, consider the following notation. Let Ωn denote all knowledge in the
universe available at time n, and denote by Ωn − Yn this information except the
values taken by a variable Y up to time n (Granger, 1980). Then:

Axiom A. The past and the present may cause the future, but the future cannot
cause the past.

Axiom B. Ωn contains no redundant information.

Axiom C. All causal relationships remain constant in direction throughout time.

His starting point for defining causality is the following general definition.

Definition 1.1 (General Definition (Granger, 1980)) Yn is said to cause Xn+1

if Prob(Xn+1 ∈ A|Ωn) ̸= Prob(Xn+1 ∈ A|Ωn − Yn) for some A.

In other words, for Yn to cause Xn+1, the variable Yn needs to have some unique
information (not contained anywhere else in the universe) about what value Xn+1

will take in the immediate future (Granger, 1980). In his view, a cause is a“difference
to the normal course which accounts for the difference in the outcome” (Granger,
1980).

Definition 1.1 cannot be used with actual data (all knowledge in the universe up
to time n is not available!). Thus, Granger imposed several constraints to render the
definition operational. Let Jn be an information set available at time n consisting of
the vector series Zn. Suppose that Zn does not include any components of Yn. Let
F (Xn+1|Jn) denote the conditional distribution function of Xn+1 given Jn. Consider
the following two operational definitions:

Definition 1.2 ( (Granger, 1980) ) Yn does not cause Xn+1 with respect to Jn+
Yn if

F (Xn+1|Jn) = F (Xn+1|Jn + Yn),
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Figure 1.9: Diagram of the dynamic network of Example 1.4.

so that the extra information in Jn+Yn has not affected the conditional distribution.
�

Definition 1.3 ( (Granger, 1980) ) If

F (Xn+1|Jn) ̸= F (Xn+1|Jn + Yn),

then Yn is said to be the prima facie cause of Xn+1 with respect to the information
set Jn + Yn. �

The main difference between the general Definition 1.1 and the operational Defi-
nitions 1.2 and 1.3 is that not all information in the universe is assumed to be known
in the operational definitions. There are two main consequences of this change: (1)
it becomes possible to formulate a practical test of causality, and (2) true causality
is no longer detectable since there may be missing variables which make it seem like
there is a causal relationship between two variables, when in fact there is not.

Granger devoted a lot of attention to the situation where missing variables could
cause a mis-interpretation of a causal link between two variables. The problem is
illustrated by an example.

Example 1.4 Consider the simple dynamic network shown in Figure 1.9. The
equations for the network are:

w1(t) = v1(t)

w2(t) = G21(q)w1(t) + v2(t)

w3(t) = G31(q)w1(t) + v3(t)

where v1, v2 and v3 are stationary stochastic process with rational power spectral
densities. Suppose that G21(q) = q−1 and G31(q) = q−2. Then the network equations
become

w1(t) = v1(t)

w2(t) = v1(t− 1) + v2(t)

w3(t) = v1(t− 2) + v3(t).

(1.2)
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From the figure, it is clear that w1 is causing both w2 and w3 with respect to the
information set Jn(w1, w2, w3).

However, consider the information set Jn(w2, w3). From (1.2), the variable w3

is a prima facie cause of w2 with respect to the information set Jn(w2, w3), since
w3(t) contains unique information about what the value of w2(t+ 1) will be.

Thus, we must conclude that w3 does not cause w2 with respect to information
set Jn(w1, w2, w3), but that w3 does cause w2 using information set Jn(w2, w3).
Apparently missing variables can cause spurious links between known variables. �

In the next section it is shown how these operational definitions of causality form
the foundation of the dynamic network identification theory.

1.3 CURRENT STATE OF THE ART OF DYNAMIC NETWORK IDENTIFI-
CATION

In this section we present a review of the current literature related to dynamic net-
work identification. The literature is split into two categories based on the whether
the interconnection structure of the network is known or not. The situation when
the interconnection structure is assumed to be unknown is referred to as topology
detection. The situation where the interconnection structure of the system under
investigation is known is referred to as identification in dynamic networks. It seems
that the topology detection problem has attracted more attention judging by the
number of papers written on the topic. However, the results of the papers for iden-
tification in dynamic networks are more readily implemented in practice (many of
the papers directly address specific applications to test their methods).

1.3.1 Topology Detection
In this section a brief review of the topology detection literature is presented. As
mentioned in Section 1.2, the topology detection literature can be split into two
categories, those based on Granger Causality and those based on Causal Inference.
Only the literature based on Granger Causality will be presented in this section
because it is very closely connected to the prediction-error identification methods
that will form the basis of the methods in this thesis. The main disadvantage with
the methods based on Causal Inference is that they have trouble dealing with the
presence of loops in the data generating system. However, this is a very active area
of research, and in the near future it is likely that topology detection methods based
on Causal Inference will be developed that can deal with the presence of loops in
the data generating system (see Mooij et al. (2011) for instance).

First the algorithm devised in Granger (1969, 1980) is presented since it forms
the foundation of the topology detection methods presented in this section. After
presenting Granger’s algorithm, it is shown how various modern tools are used to
slightly adapt/improve the algorithm.
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Granger’s Method

Consider a data set consisting of measured internal variables w1, …, wL. Suppose
that a predictor has been constructed in order to predict/estimate the current value
of the internal variable wj(t) using current and past values of a set of internal
variables wk1 , . . . , wkn and past values of wj . Let {k1, . . . , kn} = Dj and refer to the
set of internal variables wk1 , . . . , wkn as predictor inputs. Let M(θ,Dj) denote the
predictor model with predictor inputs wk, k ∈ Dj , and parameter vector θ. For the
present discussion, it is not important how the predictor model is obtained, however
we assume that it satisfies an optimality criterion (for example, θ0 is such that the
predictor M(θ0) has the smallest sum of squared prediction errors out of the set of
candidate predictor models).

Algorithm 1.5 Testing for Granger Causality (Granger, 1969, 1980)

1. Construct a predictor model to predict wj using all other internal variables that
are available, i.e. construct M(θ0,Dj), where Dj = {1, . . . , L} \ {j}.

2. Examine if there is evidence of possible causal relationships. If there is a (non-
zero) dynamic relationship between wj and a predictor input wi in M(θ0,Dj) then
wi is a candidate cause for wj. Denote the set of indices of the candidate causes
as Cj.

3. Identify a new predictor model using only wℓ1 , . . . , wℓn−1 , {ℓ1, . . . , ℓn−1} = Dj \
{i}, where i is an element in Cj (i.e. wi is a candidate cause) as the set of
predictor inputs.

4. The forecasting ability (prediction error) of both models M(θ0,Dj) and M(θ0,Dj \
{i}) are then compared. If removing the internal variable wi from the model
M(θ0,Dj) results in significantly worse forecasting ability, then evidence of cau-
sation is found.

5. Repeat Steps 3-4 for every candidate cause (i.e. repeat for every element in Cj).

Topology Detection Based on Granger’s Method

In this section a brief overview of the current topology detection literature based on
Granger’s Method is presented. A new feature of some of these algorithms is that
they attempt to combine steps 2-5 of Algorithm 1.5 into step 1 by using some form
of regularization (such as ℓ1 regularization).

Early contributions to this problem date back to Caines & Chan (1975); Caines
(1976); Anderson & Gevers (1982); Gevers & Anderson (1981, 1982) who address
the question whether an open-loop or closed-loop structure is present between two
measured signals w1 and w2. They consider a stochastic system with two observed
variables as shown in Figure 1.10. They conclude that indeed the two different data
generating systems shown in Figure 1.10 can be distinguished based on observations
of the variables w1 and w2. The main assumptions that they make are: (a) the data
generating system is either the open-loop system shown in Figure 1.10a, or the one
shown in Figure 1.10b, and (b) the stochastic variables v1 and v2 are uncorrelated
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for all lags. The method developed in these papers has later been referred to as the
Joint IO Method of closed-loop identification. Steps 3-4 of Algorithm 1.5 are not
dealt with in these papers.

... G0
21
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12

.

v1
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v2

. w1. w2
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21
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v2

. w1
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Figure 1.10: Open and Closed-loop data generating systems considered as candidate
data generating systems considered in Caines & Chan (1975); Caines (1976); Ander-
son & Gevers (1982); Gevers & Anderson (1981, 1982). The v’s denote stochastic
processes with rational power spectral density.

Seneviratne & Solo (2012a,b) exactly implement Granger’s Algorithm using a
Laguerre Basis Function Model.

Friedman et al. (2010); Julius et al. (2009) propose using an FIR model structure,
in conjunction with a Least Absolute Shrinkage and Selection Operator (LASSO,
(Tibshirani, 1994)) approach. The idea is that the method will automatically detect
which transfer functions (causal links) are not present and force them to exactly
zero. Thus, steps 2-5 in Algorithm 1.5 are automatically taken care of.

Sanandaji et al. (2011, 2012) also uses an FIR model structure, however, they
combine it with a compressed sensing approach. The advantage of this approach is
that it can be used for large numbers of variables and relatively small data sets, i.e.
even in the case where that are more variables than the length of the data records.

Innocenti & Materassi (2009); Materassi & Innocenti (2010); Materassi et al.
(2011); Materassi & Salapaka (2012) use a non-parametric approach, which they
show is equivalent to calculating the optimal Wiener filter. They show that this
approach can correctly detect the interconnection structure of a dynamic network
as long as every transfer function in the network is strictly proper (strictly causal).
They do not deal with steps 2-5 of Algorithm 1.5. citetTan11 use a similar non-
parametric approach.

Torres (2014); Torres et al. (2014a) present a subspace implementation. However,
they do not allow for loops in the data generating system.

Gonçalves & Warnick (2008) consider the case where the network is driven only
by known (deterministic) inputs. They derive conditions on the interconnection
structure of the network and the location and number of the external inputs to en-
sure a unique representation of the network. The results are equally applicable to a
stochastic network. The results of Gonçalves & Warnick (2008) are applied to the
structure detection problem in Yuan et al. (2009, 2010, 2011). In Yuan et al. (2011)
they explicitly look into how to apply steps 2-5 of Granger’s Algorithm 1.5 (in mod-
ern language, one would call this an ℓ0 regularization). In Hayden et al. (2014a,b)
they present the Joint IO method extended to include results for non-minimum phase
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data generating systems. In Yeung et al. (2010, 2011); Adebayo et al. (2012) they
have attempted to further extended the idea of identifiability in networks. They
define several levels of interconnection (such as a interconnection between states,
interconnection between variables, interconnection between larger subsystems, etc),
and state which level of interconnection is identifiable (i.e. detectable).

In Bottegal & Picci (2013, 2014) results are presented where each subsystem is
assumed to be largely the same. The dynamics that are shared by each subsystem
are called the flock dynamics. In addition to the flock dynamics each subsystem has
a component that is unique to that subsystem.

In Dankers et al. (2012b) we propose that instead of using the Joint IO method
as suggested by Granger (1969); Caines & Chan (1975); Caines (1976); Anderson
& Gevers (1982); Gevers & Anderson (1981, 1982), other Prediction Error Methods
can be used as well such as the Direct closed loop method (these methods will be
properly introduced lated in this thesis). One of the advantages is that the Direct
Method is easier to implement in practice than the Joint IO method.

Marques et al. (2013) propose additional tests that can be used in Step 2 of the
algorithm. Similar to Dankers et al. (2012b) they also use the Direct Method. They
propose that in addition to looking at whether a transfer function is zero or not,
cross-correlation tests can be used to detect if feedback is present. It provides an
extra clue/tool to detect possible causal relationships.

Most of the papers cited above assume that the system under investigation is
a stochastic network in the sense that the data is generated by a set of unknown
stochastic processes. All internal variables in the network are measured, and each
internal variable is driven by an independent noise source. Most papers assume that
all transfer functions G0

jk in the data generating system are strictly proper. Under
these conditions it is shown that structure detection is possible.

1.3.2 Identification in Dynamic Networks
There seem to be two main lines of research that deal with the identification in
dynamic networks: (1) very large systems are considered and the objective is to
identify all the transfer functions in the network, (2) the objective is to identify only
part of the dynamic network (the size of the entire network is not so important in
this line of research).

The first line of research is more developed. The types of networks that are often
considered in this line of research are spatially distributed systems. Such systems
result from the discretization of partial differential equations for instance. For ex-
ample, a model of a beam, or thermal conductivity along a metal plate. Another
application is in wind farms, where the turbines are placed in a grid, and are inter-
connected by the wind passing through the farm (Annoni et al., 2014). The number
of subsystems considered in this line of research is very large, and can range from
more than 100 in wind farm applications to more than 100000 when the system un-
der investigation is the result of the discretization of a partial differential equation
over a spatial domain. Because of the large number of modules that make up the
network, and because the objective is to identify all the modules, the emphasis is on
the numerical implementation of the methods. Often simplifying assumptions are
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made such as assuming that each module is only connected to its direct neighbors,
or assuming that all modules have the same dynamics. The assumptions are made
in order to develop numerically efficient methods.

In the second line of research the objective is to identify one module embedded
in a dynamic network. The emphasis in this line of research is in (1) determining
if it possible to obtain consistent estimates of the module of interest for the setup
under consideration, and (2) studying if it is possible to reduce the variance of the
estimate of the module of interest for the setup under consideration. There are only
a few results available in this line of research for very simple dynamic network such
as cascaded systems, and two closed-loops with an interaction. Although there are
only a few results available in the literature, there seems to be many areas where such
results/tools could be applied. Consider the three examples of dynamic networks
given in Section 1.1.1

Consider the team of mobile robots. Each robot has its own controller. Just as
it may be beneficial to identify a plant operating in a closed loop (to ensure that
the model is targeted to the frequency range in which the plant is operating for
instance), it may be beneficial to identify a model for the robot while it is operating
in a distributed control setting (i.e. receiving inputs from neighboring robots, and
from its own on board controller). The objective then is to identify the transfer
function A3 in Figure 1.2.

In the case of a power system, a possible objective is to identify the transfer
function of a power plant. Most models of power plants are based on first principles
modeling and then linearized about an operating point. Many decisions in the
operation of the power grid are based on this model. However, over time (due to
aging of the power plant) the first principles model may no longer be an accurate
description of the power plant. Thus an alternative approach is to estimate a model
of the (linearized) power plant from data collected from the power system. Since
it is not desirable to disconnect the power plant from the grid in order to do an
identification experiment, the identification must be done in a networked setting. In
this case the objective is to obtain an estimate of the transfer functions P12 and P22

in the system shown in Figure 1.6.
Instead of identifying the dynamics of one power plant as in the previous example,

it may also be attractive to identify the dynamics of an aggregate of power plants and
generators. For instance the mix of power generation (wind, solar and conventional)
may change over time, and consequently the dynamics of the aggregated power
plants will change over time. The operators need to know what the dynamics of the
aggregated power generating unit are inorder to make informed decisions to operate
the power grid. First principles modeling does not seem to be a viable option in this
case.

Some results of identification in a power system can be found in Virag et al.
(2013); Dosiek & Pierre (2013); Wu et al. (2012); Pierre et al. (2012).

Lastly, consider the reservoir engineering example. In this case the objective
of the reservoir engineer is to determine some characteristics of the reservoir using
pressure and flow rate data collected from the wellbore. In particular, reservoir
engineers are interested in estimating the thickness of the reservoir at the location
of the wellbore; the permeability of the rock at the location of the wellbore; and
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Figure 1.11: A spatially interconnected system. The x’s represent the states of
each of the subsystems, u’s denote external inputs, s’s denote sensor noise which is
modelled as a stochastic process with rational power spectral density, and the y’s
denote the measured outputs of the subsystems.

the distance from the wellbore to the boundary of the reservoir. All three of these
features can be obtained from the transfer function from the pressure to the flow
rate at the bottomhole of the wellbore. In other words, the objective could be to
estimate R11 in Figure 1.3.

In the following subsections, the literature for both lines of research is reviewed.

Identification of all modules in large networks

A diagram of a spatially distributed system is shown in Figure 1.11. In such a system,
it is the state that forms the interconnection. Often the modules are interconnected
according to a well defined pattern. For example, each module is only interconnected
to its direct neighbors. Each module is assumed to have a (exactly) known external
input uk and an output yk. The state interconnection in a positive direction is
labeled x+

k and the state interconnection in a negative direction is labeled x−
k . The

inputs are assumed to be exactly known, and the outputs are measured with noise
(called sensor noise). A key feature of sensor noise is that it does not propagate
through the network. The result is that open-loop identification techniques can be
applied to obtain consistent estimates. Since the number of modules is very large,
and the objective is to identify all of them, the algorithms must be computationally
efficient.

Fraanje & Verhaegen (2005); Massioni & Verhaegen (2008, 2009) assume that
each subsystem is identical. In Ali et al. (2009, 2011c,b,a) the reasoning is extended
to more complex noise models, and also to the case where each subsystem is modelled
as a linear parameter varying system.

Sarwar et al. (2010); Van Wingerden & Torres (2012); Torres et al. (2014b) pro-
pose methods to identify all the subsystems in the dynamic network that scale lin-
early with each added subsystem. In these papers, they do not make the assumption
that each subsystem is identical.

In Haber et al. (2011); Haber & Verhaegen (2012, 2013) a variant of a spatially
distributed system is considered where each subsystem is assumed to interact only
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Figure 1.12: Cascaded system that is considered in Wahlberg et al. (2009); Everitt
et al. (2013, 2014), where r1 denotes an external variable, s2 and s3 denote sensor
noise.

with other subsystems within a limited distance. This assumption is used to im-
plement numerically efficient algorithms. The subsystems are not constrained to be
identical in this case.

Identification of a module embedded in a network

There are only a few results available in this line of research. Moreover, none of the
results are very general. They only develop consistency or variance results for very
basic dynamic networks.

In Gevers et al. (2006); Wahlberg et al. (2009); Everitt et al. (2013, 2014) some
interesting questions are posed. They consider a cascaded system as shown in Figure
1.12. There is one external excitation variable r1 which is exactly known to the user.
Each of the internal variables w2 and w3 are measured with noise. A consistent
estimate of G0

21 can be obtained using any open loop identification method. The
question is: how can the measurement w3 help in order to reduce the variance of
the estimate of G0

21 (even though w3 is not directly connected to G0
21)? The main

conclusion of the work is that usually the extra measurement w3 can be used to
reduce the variance of the estimate of G0

21. In Gunes et al. (2014) it is shown that
the reasoning can be extended to general interconnection structures.

Lastly, there are some results which consider networks that are slightly more
complex than a single closed-loop, such as two closed-loops with an interaction
(Gudi & Rawlings, 2006) and a multi-variable closed-loop (Leskens & Van den Hof,
2007). In these papers it is shown how the closed-loop methods can be adapted to
use in the network configuration under investigation in order to obtain consistent
estimates of the plant.

1.4 PROBLEM STATEMENT
As can be seen from the literature review in Section 1.3 the field of dynamic network
identification has been very active with many papers being published in the last 5-6
years. Currently the papers form a disconnected patchwork of results instead of a
strong theory of dynamic network identification. For instance, each paper makes
assumptions suited to the method presented; consistency is not always rigorously
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treated; there is almost no mention of the variance of the obtained estimates in
many of the papers. However, almost all the results can be easily “translated” into
extensions of (closed-loop) system identification methods. In addition to providing
a common foundation to all the current results, viewing the results through the
lens of system identification also offers new insights and opportunities for further
development of the field.

Not only does system identification offer a vast array of tools and a foundation
for the dynamic network identification literature, but the integration of networks
and system identification presents an opportunity for system identification to move
(beyond control) into many new application domains. This opportunity should not
be missed by the system identification community.

There are many possible research questions when considering system identifi-
cation and dynamic networks. The aim of this thesis is to start the development
of a rigorous theory of dynamic network identification based on the foundations of
system identification.

..
The main motivating question for the research presented in this thesis is: under
what conditions is it possible to consistently identify a particular module that
is embedded in a dynamic network?

The question is very broad. Clearly, the motivating question encompasses the
identification in dynamic networks problem. However, it also encompasses the topol-
ogy detection problem: by determining that a particular transfer function is zero,
the topology of the network is implicitly detected (as long as the estimated transfer
function is consistent).

What does the motivating question not encompass? Variance analysis of the
estimates obtained is not discussed. This is not to say this is not important. Since
the number of parameters that need to be estimated is large, issues associated with
the variance should certainly be addressed. In fact, as shown by Wahlberg et al.
(2009); Everitt et al. (2013) there are unique opportunities when to moving to a
network setting to reduce the variance of the obtained estimates by using extra
measurements collected from the system. Secondly, the numerical implementation
of the methods is not discussed in this thesis.

In the next subsection the research question is further analyzed, and the scope
of the research in this thesis is further sharpened.

1.4.1 Analysis of Research Question
One of the main distinctions that has been made thus far is the case when the inter-
connection structure is known vs. the case when it is unknown. From the consistency
analysis point of view the two cases are not that different. If a method results in
a consistent estimate a transfer function, then it does not matter if the estimated
transfer function is non-zero, very small, or zero. Of course, from a practical im-
plementation point of view, there could be many additional challenges that need to
be tackled in the topology detection case. Thus, the approach that is taken in this
thesis is to first assume that the interconnection structure is known, and investigate
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under what conditions a module embedded in a dynamic network can be consistently
estimated. Then the consistency results can be transferred straightforwardly to the
case where the interconnection structure is unknown.

A second fundamental choice that we make in this thesis is to choose closed-loop
identification methods as a starting point for analysing dynamic network identifica-
tion. This is not such a bad starting point, dynamic networks may contain many
loops, and in fact it can be shown that any dynamic network can be expressed as a
single multi-variable feedback loop.4 However, there are certain assumptions rooted
in the closed-loop identification literature that become unrealistic when applied to
dynamic networks. The two main assumptions that become untenable are the as-
sumption that the predictor inputs are measured without sensor noise and that the
predictor inputs are zero-order-hold signals. The closed-loop system that is typically
considered in the identification literature is shown in Figure 1.13.

....
u

. Plant...
y

.

ADC

.

Controller

.

DAC

.

v

.DAC .r

(a)

... P (q)..

C(q)

.r .

v

. u. y

(b)

Figure 1.13: A closed-loop system as considered in the closed-loop identification
literature.

In this closed-loop system the feedback path consists of (1) an analog to digital
converter (ADC) which samples the output y, (2) a digital controller, and (3) a
digital to analog converter (DAC) which converts the digital output of the controller
back to an analog signal typically by using a zero order hold. The first feature of this
setup is that it is reasonable to suppose that the input to the plant, u, is known noise
free. It is the sum of two signals that are exactly known to the experimenter, i.e.
the reference r and the output of the controller. Secondly, the input to the plant is a
piece-wise constant signal (as long as both DACs are equipped with zero-order-hold
circuits).

Consider now the case of a dynamic network. Consider for example a power
system where voltage and current are measured at various locations in the network.
Suppose that the dynamics of a transmission line are to be identified. The “input”

4This statement is formally proved in Proposition 4.2 in Chapter 4.
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is the voltage at one end of the line, and the “output” is the voltage at the other
end of the line. Firstly, neither the input nor the output are known, noise free. Both
variables are measured using sensors, and so only noisy versions of the variables are
known. Secondly, neither signal is generated by a DAC, and so neither signal is
constant during the sampling interval. Thus, for this example, both assumptions
that are typically made in closed-loop identification are not realistic. The same
reasoning holds for many types of dynamic networks.

Since we have chosen to use the closed-loop methods as a starting point for a
theory of dynamic network identification, both of these issues must be dealt with in
an appropriate manner in order to develop methods that are applicable in practice.

A third fundamental choice that we make in this thesis is to base our reasoning
on the Prediction-Error methodology. The reason for this choice is that we are
mainly interested in studying the consistency of the estimated transfer functions, and
the Prediction-Error framework is equipped with very useful tools when analyzing
consistency.

In light of these three fundamental choices, the following types of conditions
are considered in this thesis when analyzing consistency. The aim is to address
conditions that render the methods more applicable to practical situations. As the
thesis progresses the assumptions become more realistic.

1. Presence and correlation of process noise. In the prediction error methods
it is common to consider process noise on the output. Process noise can be
thought of as thermal noise, noise due to electromagnetic radiation, etc., i.e.
it is noise that affects the value of a variable. In a network, process noise can
enter anywhere, not just at the variable considered as “output”. Moreover, as
in the case of electromagnetic radiation affecting an electric circuit, it seems
likely that many of the process noise terms will be correlated. How does this
affect the estimates obtained by various identification methods? This question
is addressed in Chapter 4.

2. Presence of variables that can be controlled/changed by the user. In certain
situations it may be possible to excite the network by manipulating a par-
ticular variable. For example, in reservoir engineering it may be possible to
change/manipulate particular valve settings on some of the wellbores for in-
stance. How can these external variables be used to our advantage? This
question is addressed in Chapter 4.

3. Measurability or availability of the internal variables in the network. Is it
possible to measure all variables in the network, or are several variables un-
measurable? Or perhaps several variables are expensive/difficult/unsafe to
measure, thus the user would prefer to avoid using those particular variables.
Which variables need to be measured in order to guarantee that it is possible to
obtain consistent estimates of a particular module embedded in the network?
This question is addressed in Chapter 5.

4. Presence and correlation of sensor noise. Another source of noise is due to
measurement errors. This type of noise does not propagate through the net-
work, however it has fundamental consequences for the consistency of several
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methods. How can this issue be addressed in a network setting? This question
is addressed in Chapter 6.

5. As discused, the zero order hold assumption on the intersample behavior of
the variables in a dynamic network is typically not a realistic assumption. It
implies that almost the entire network consists of digital components. Many
dynamic networks consist almost entirely of continuous-time dynamics. What
is the consequence of modeling a continuous-time data generating system as
a discrete-time dynamic network? Under what conditions can a continuous-
time module embedded in a (continuous-time) dynamic network be identified?
Some preliminary results addressing these questions are presented in Chapter
7.

1.4.2 Isn't This Just MIMO Identification?
One of the main distinctions of the approach we take in this thesis and standard
MIMO identification is that we are not attempting to identify all the transfer func-
tions in the dynamic network, only a small subset. The result of our approach is that
the conditions under which we can identify one module embedded in the dynamic
network are considerably less restrictive than those required in a MIMO approach.
For instance, we do not need to measure all internal variables; external variables do
not need to be present at each node; and correlation between (some) noise terms is
allowed. The result of our approach versus a MIMO approach is analogous to a dis-
tributed/local approach vs. a centralized/global approach. To identify a particular
module embedded in a dynamic network, we only require local measurements. The
main feature of our approach that enables the relaxation of the conditions under
which consistent estimates are possible is the introduction of the interconnection
structure of the dynamic network into the identification problem. The main points
are briefly illustrated in the following text.

Consider the data generating system5:
w1(t)
w2(t)

...
wL(t)

 =


0 G0

12(q) · · · G0
1L(q)

G0
21(q) 0

. . . G0
2L(q)

... . . . . . . ...
G0

L1(q) G0
L2(q) · · · 0



w1(t)
w2(t)

...
wL(t)

+


r1(t)
r2(t)

...
rL(t)

+


v1(t)
v2(t)

...
vL(t)


= G0(q)w(t) + r(t) + v(t), (1.3)

where each rk is a known external variable (that can be manipulated by the user),
vk is process noise (modelled as a stochastic process with rational power spectral
density) and each wk is a measured internal variable. The transfer functions G0

jk

are non-zero if and only if there is a direct connection from wk to wj . Suppose that
I −G0 is invertible so that w can be expressed as:

w(t) = (I −G0(q))−1(r(t) + v(t)) (1.4)
5Dynamic network models will be presented more formally and in more detail in Chapter 2
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Option 1. One could take all the r’s as inputs, and all the w’s as outputs and obtain
an estimate of (I −G0)−1 using tools from MIMO identification. This is simply an
open loop MIMO identification problem. Even if G0 has a structure of zero entries,
(I −G0)−1 does not have any/many zero entries due to feedback loops. The matrix
G0 can be recovered from the estimate of (I − G0)−1 by algebraic manipulations.
There are several issues with this proposed procedure:

1. There must be a (sufficiently exciting) signal present at every node in the
network. In otherwords, for each measured variable wk, there must be an rk
present.

2. Each rk is only allowed to directly affect one node.

3. All L internal variables, w1, . . . , wL in the network must be available (mea-
sured).

4. As this is a indirect method, it leads to high order estimates, i.e. inaccuracies
can be introduced by the algebraic manipulations required to recover G0 from
the estimated transfer function (I −G0)−1.

5. All L2 transfer functions of the network must be identified in order to obtain
an estimate of the one transfer function of interest.

Consequently, this approach may not be a feasible or recommended approach.
Option 2. A second MIMO approach could be to (attempt to) directly identify the
matrix G0 in (1.3) by taking the vector w as the output, and also as the input (and
parameterizing the model with zeros on the diagonal). In this way, the problem of
requiring an external variable to be present at each node is avoided, and also since
the matrix G0 is directly identified, no algebraic manipulations are required which
result in high order estimates. The main problem with this approach is that the
input w is correlated to the noise v. Thus, this is not an open-loop identification
problem, and the estimate of G0 obtained using this approach will not be consistent.

The solution to this problem is to move to closed-loop identification methods.
In this thesis we show that indeed closed-loop tools can be used to address the
identification problem sketched in Option 2. However, we also show that by only
attempting to identify one module embedded in a dynamic network conditions under
which consistent estimates are possible can be significantly relaxed compared to a
MIMO approach.

Perhaps most importantly, the approach that we take in this thesis results in a
local identification method in the sense that only local measurements are required to
identify a module embedded in the dynamic network. As an additional advantage, a
local method is such that it can be easily parallelized so that multiple modules can
be estimated in parallel.

1.5 STRUCTURE OF THESIS
The remainder of the thesis is structured as follows. Chapters 2 and 3 contain
background information on dynamic network models and system identification. The
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subsequent chapters present methods of identification in dynamic networks with
increasingly less restrictive conditions. Thus the methods of the last chapter are the
most general, i.e. can be applied in the largest variety of situations. The structure
is graphically shown in Fig. 1.14.
Chapter 2 - Dynamic Network Models. In this chapter a discrete-time dynamic
network model is presented. In particular several assumptions are made regarding
what are deemed to be “realistic” models.
Chapter 3 - System Identification. In this chapter several closed loop system
identification methods are presented. Since dynamic networks may contain loops,
it seems natural that the closed-loop identification methods can be modified such
that they can be applied in networks. In particular the Direct, Two-Stage and
Joint IO and Basic Closed Loop Instrumental Variable Prediction-Error Methods
are presented. Lastly the Errors-in-Variables framework is presented, with some
closed-loop identification results.
Chapter 4 - From Identification in Closed-Loops to Identification in Net-
works. In this chapter the first results of identification in dynamic networks are
presented. The presented methods are straightforward extensions of the Direct,
Two-Stage and Joint IO Methods. The material in this chapter is based on the
following conference and journal papers:

Dankers, A.G.,Van den Hof, P.M.J., Heuberger, P.S.C., and Bombois, X.,
(2012). Dynamic network identification using the direct prediction error
method. In Proceedings of the 51st IEEE Conference on Decision and Con-
trol (pp. 901-906).
Van den Hof, P.M.J., Dankers, A.G., Heuberger, P.S.C., and Bombois, X.
(2012). Identification in dynamic network with known interconnection topol-
ogy. In Proceedings of the 51st IEEE Conference on Decision and Control (pp.
895-900).
Van den Hof, P.M.J., Dankers, A.G., Heuberger, P.S.C., and Bombois, X.
(2012). Identification of dynamic models in complex networks with prediction
error methods - basic methods for consistent module estimates. Automatica, 49,
2994-3006.

Chapter 5 - Predictor Input Selection. In this chapter conditions regarding
which variables need to be measured in order to guarantee that a particular module
can be consistently identified are presented. The conditions can be used to check
whether it is possible to consistently estimate a particular module embedded in the
network while avoiding the need to measure particular variables. The conditions
can also be used to design a sensor placement scheme to ensure that it is possible
to consistently estimate a particular module. The material in this chapter is based
on the following conference and journal papers:

Dankers, A.G., Van den Hof, P.M.J., Bombois, X., Heuberger, P.S.C. (2013).
Predictor input selection for two stage identification in dynamic networks. In
Proceedings of the European Control Conference 2013. (pp. 1422-1427). Zürich,
Switzerland.
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Dankers, A.G., Van den Hof, P.M.J., Heuberger, P.S.C. (2013). Predictor input
selection for direct identification in dynamic networks. In Proceedings of the
52nd IEEE Conference on Decision and Control. Florence, Italy.
Dankers, A.G., Van den Hof, P.M.J., Bombois, X., Heuberger, P.S.C. (2014).
Identification of dynamic models in complex networks with prediction error
methods - predictor input selection. IEEE Transactions on Automatic Control.
Under Review.

Chapter 6 - Dealing with Sensor Noise. In this chapter two methods are
presented that can deal with sensor noise on all the internal variables. The methods
can be framed as hybrids between the Direct closed-loop identification method and
the closed loop instrumental variable method. The material in this chapter is based
on the following conference and journal papers:

Dankers, A.G., Van den Hof, P.M.J., Bombois, X., Heuberger, P.S.C. (2014).
Errors-in-variables Identification in Dynamic Networks Using an Instrumental
Variable Approach. In Proceedings of the 19th IFAC World Congress. Cape
Town, South Africa. Accepted.
Dankers, A.G., Van den Hof, P.M.J., Bombois, X., Heuberger, P.S.C. (2014).
Errors-in-variables Identification in Dynamic Networks - Consistency Results for
an Instrumental Variable Approach . Automatica. Under Review.

Chapter 7 - Continuous-Time Identification in Dynamic Networks. In this
chapter the assumptions on the intersample behavior of the measured variables is
addressed. A continuous-time identification method is proposed. The material in
this chapter is based on the following conference paper:

Dankers, A.G., Van den Hof, P.M.J., Bombois, X. (2014). An Instrumental
Variable Method for Continuous-Time Identification in Dynamic Networks. In
Proceedings of the 53th Conference on Decision and Control. Los Angeles, USA.
Under Review.

Chapter 8 - Case Study - Well Test Analysis. In this chapter a detailed case
study is presented to illustrate some of the methods presented in this thesis. The
example is taken from reservoir engineering. The material in this chapter is based
on the conference paper:

Mansoori, M., Dankers, A.G., Van den Hof, P.M.J. (2014). Errors-in-Variables
identification in bilaterally coupled systems with application to oil well testing.
In Proceedings of the 19th IFAC World Congress. Cape Town, South Africa.
Accepted.

Chapter 9 - Conclusions. In this chapter conclusions are formulated and some
suggestions for future work are made.
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Chapter 2

DYNAMIC NETWORKMODELS

In this chapter a dynamic network model is presented. The dynamic network model
is a straightforward extension of the classical closed-loop model and as such, it
consists of internal, external and noise variables. The internal variables define the
interconnection structure of the network. In this chapter we demonstrate that a wide
variety of physical phenomena can be modeled as a dynamic network, suggesting that
it is a useful modeling tool. The property of well-posedness of a dynamic network
model is also discussed. Lastly, it is shown how a graph of a dynamic network model
can be constructed. This is useful since it enables the use of graph theoretical tools.

2.1 INTRODUCTION

AS ILLUSTRATED IN Chapter 1 a set of variables can be modelled as a dynamic
network. In this chapter a dynamic network model is formally defined. A
dynamic network model is a tool that can help to gain insight into the operation

of a system. For instance, by modeling a set of variables as a dynamic network, it
becomes clear if there is a feedback mechanism present. This insight could then be
used to control the system.

In this thesis, we will only consider Linear Time Invariant (LTI) models of dy-
namic networks.

A dynamic network model may consist of three classes of variables: internal,
external, and noise variables.

Internal Variables. These are the system variables of the model. It is these vari-
ables that define the interconnection structure of the dynamic network. Examples
of internal variables for various types of systems are: voltage, current, pressure, flow
rate, temperature, etc. The internal variable are assumed to be measurable (at least
in principle) in the sense that a measurement device can be used to record the value
of the variable.

External Variables. These are variables that can be directly manipulated by an
experimenter. For instance a voltage in an electrical circuit can be manipulated
using a waveform generator, or a flow rate can be manipulated using a value setting.

31
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Process Noise/Disturbance Variables. These variables are used to model un-
known external variables. For example, wind affecting an airplane, or electromag-
netic radiation inducing current in the wires of an electrical circuit.

The dynamic network model that is presented in this chapter is a straightforward
extension of the classical closed-loop model. In fact, it is possible to express any
dynamic network as a multi-variable closed-loop system.1 However doing so results
in a loss of information about the interconnection structure. An important feature
of any model is a characterization as to what types of systems can be modelled using
the proposed model. In Section 2.2 it is illustrated that a wide variety of physical
phenomena can be modelled using dynamic network model.

In Section 2.4 the notion of a well-posed dynamic network model is presented.
There are certain features that a physical system has (or does not have), for instance,
variables cannot take on a value that is infinite, and a system cannot react to an
external excitation before the excitation is applied. These properties are grouped
together in the concept of well-posedness. Since a physical system is well posed, a
model should be as well.

The chapter concludes with Section 2.5 where it is shown how a graph of a dy-
namic network model can be constructed. In Graph Theory many tools are available
to analyze interconnections between nodes. Consequently, it will be very useful to
create a graph of a dynamic network model in order to be able to use the available
tools from Graph Theory.

2.2 A DYNAMIC NETWORKMODEL
First some basic notation will be introduced. In this thesis, t will be used to denote
time (except for the chapter on continuous-time identification (Chapter 7), t is always
a discrete-time variable). Let q denote a shift operator such that q−1u(t) = u(t−1).

Suppose that a linear time-invariant (LTI) discrete-time causal system has an
impulse response g21(t), t = 0, 1, . . . , and a input w1 is applied to the system. Using
the q-operator notation the output can be expressed as

w2(t) =
∞∑
k=0

g21(k)w1(t− k)

=
∞∑
k=0

g21(k)q
−kw1(t)

= G21(q)w1(t).

Informally, G21(q) is the z-transform of the impulse response g21 with z replaced by
q.

Now a dynamic network model is presented. The network structure that we
consider in this thesis is built up of L elements or nodes, related to L internal
variables, wj , j = 1, · · ·L. Each internal variable wj in this network can be expressed

1This statement is proved in Proposition 4.2 in Chapter 4.
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as:

wj(t) =
∑
k∈Nj

Gjk(q)wk(t) + rj(t) + vj(t), (2.1)

where

• Nj is the set of indices of internal variables wk, k ̸= j, for which G0
jk ̸= 0, i.e.

the set of indices of internal variables with direct causal connections to wj .

• vj is an unmeasured disturbance, referred to as the process noise (this variable
will be characterized in more detail later on).

• rj an external variable that can be manipulated by the experimenter.

The variables rj and vj may or may not be present at each node.
We choose not to allow a Gjj term in (2.1) (i.e. j /∈ Nj). This is equivalent to

choosing not to allow self loops. This choice does not impose any restrictions on the
generality of a dynamic network model. It can be viewed as a normalization.

Remark 2.1 Throughout this thesis all the variables wk, rk, and vk, k = 1, . . . , L
are treated as scalar variables. However, there is no reason that they cannot be
vectors of variables.

Graphically, (2.1) can be interpreted as a single building block of a dynamic
network. This is illustrated in Fig. 2.1. A dynamic network is then constructed by
interconnecting several blocks.

The following sets will be useful throughout the remainder of this thesis.

• V denotes the set of indeces of process noise variables that are present in the
network model.

• R denotes the set of indeces of external variables that are present in the net-
work model.

..Gjk1(q)...

Gjkn
(q)

....

rj(t)

.

vj(t)

......wk1(t) .

wkn
(t)

. wj(t).

for k∗ ∈ Nj

Figure 2.1: Graphical Representation of a single measured variable.
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All the internal variables can be written in a single matrix equation as:
w1(t)
w2(t)

...
wL(t)

 =


0 G12(q) · · · G1L(q)

G21(q) 0
. . . G2L(q)

... . . . . . . ...
GL1(q) GL2(q) · · · 0



w1(t)
w2(t)

...
wL(t)

+


r1(t)
r2(t)

...
rL(t)

+


v1(t)
v2(t)

...
vL(t)


= G(q)w(t) + r(t) + v(t), (2.2)

with obvious definitions for G, w, r and v, and where the (j, k)th entry of G is
non-zero if and only if k ∈ Nj ; the kth entry of r is non-zero if and only if k ∈ R;
and the kth entry of v is non-zero if and only if k ∈ V.

The interconnection structure of the dynamic network is encoded by the matrix
G. This is illustrated in the following example.

Example 2.2 Consider a network defined by:

w1

w2

w3

w4

w5

w6

=


0 0 0 G14 0 0
G21 0 G23 0 0 0
0 G32 0 0 0 0
0 0 0 0 0 G46

0 G52 0 G54 0 G56

0 0 G63 0 G65 0





w1

w2

w3

w4

w5

w6

+


v1
v2
v3
v4
v5
v6


Three equivalent diagrams of the network are shown in Fig. 2.2. The diagram shown
in Figure 2.2a is a traditional block diagram as is commonly used in the control
systems field. Here a circle represents a summation and a rectangle represents a
transfer function.

In many fields such as artificial intelligence, machine learning (Materassi et al.,
2011) and systems biology (Yuan et al., 2010) node-and-link style diagrams are
more common to represent dynamic networks. In this style of diagram each internal
variable is represented as a node, and arrows between nodes represent causal dynamic
relationships between two internal variables. This style is illustrated in Fig. 2.2b.

The node-and-link style of diagram (shown in Figure 2.2b) emphasizes the internal
variables (measurement-centric), whereas the style commonly used in control (shown
in Figure 2.2a) emphasizes the transfer functions (module-centric).

In this thesis a style is used that is a hybrid between the two styles discussed. We
wish to emphasize the interconnection structure (which is more clearly represented
using the node-and-link style) and we also wish to emphasize the dynamics of the
system (which is more clearly represented using the rectangles of the control systems
style). Thus, we move the labels of the internal variables inside each summation,
which denotes that the outgoing edges of that summation are the denoted internal
variables. This style is shown in Figure 2.2c. �

The process noise variable vj represents unknown or unmodeled variables that
affect wj . Since the process noise is inherently something that is unknown, it is
modelled as a stochastic process. It is common to model vk as filtered white noise:

vk(t) = Hk(q)ek(t)
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Figure 2.2: Three equivalent visual representations of the network considered in
Example 2.2. In (a), each rectangle represents a transfer function, and each circle
represents a summation. In (b) a node-and-link representation of the same network
is shown where a transfer function is denoted by a link, and an internal variable is
denoted by a circle. In (c) the internal variables are placed inside the circles which
denotes that the edges leaving the circle are equal to the internal variable denoted
inside the circle. Rectangles represent transfer functions.
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where e is white noise in accordance with the standard Prediction-Error identification
framework (Ljung, 1999). The variance of e is denoted σ2

ek
, and Hk is a monic, stable,

minimum phase filter.

Remark 2.3 What is the physical basis for modeling the noise as a sequence of
Gaussian processes?

In engineering many types of noise can be described as Brownian Motion (Åström,
1970). This type of stochastic process was first studied in the motion of small
particles. Thermal noise, for instance is a classical example of a Brownian Motion
Process.

Of course, not all noise-generating mechanisms are Brownian. However, ap-
proximations to many other noise generating mechanisms can be made sufficiently
small by considering filtered versions of Brownian Motion Processes (Pintelon &
Schoukens, 2012b).

It can be shown that by sampling a Brownian Motion Process at periodic intervals,
a sequence of Gaussian processes results (Åström, 1970).

Examples of process noise are: thermal noise in an electrical circuit, electro-
magnetic radiation inducing current in wires of an electrical network, vibrations in
mechanical structures, and turbulent wind flow hitting a mechanical structure.

Some of the process noise terms may be correlated. Consider an electrical net-
work for instance. If the process noise is (predominantly) caused by external electro-
magnetic radiation, most likely all variables related to the current in the wires are
somehow affected by this radiation. The result is that all the vk terms are correlated
in this case.

2.3 MODELINGOFPHYSICALSYSTEMSUSINGDYNAMICNETWORK
MODELS

In the previous section a dynamic network model was presented. What types of
systems can be modeled using a dynamic network model? The framework that is
chosen in this thesis is a straight-forward extension of the closed-loop models that
are common in closed-loop identification, i.e. the closed loop system shown in Figure
2.3 is a special case of a dynamic network model. Is this extension justified? In this
section we show that many systems in engineering can be modeled using the dynamic
network model proposed in this thesis. A systematic method is presented to model
a physical system using interconnected transfer functions.

Bond graph modeling is a common first principles modeling technique for large
interconnected systems that was developed in the early 1970’s (Shearer et al., 1971;
Takahashi et al., 1970). A similar modeling technique is presented in Willems (1997,
2007, 2008, 2010) which he calls Tearing, Zooming and Linking. A third, closely
related, first principles modeling technique for large interconnected systems is Port-
Hamiltonian Modeling (Duindam et al., 2009). The method of Willems is slightly
more general than Bond graph modeling. All three methods are modularized meth-
ods of modeling. That is, a system is supposed to be made up of many different
subsystems, or modules, that are interconnected (to form a network).



2.3 Modeling of Physical Systems Using Dynamic Network Models 37

... G21

..

G12

.r1 .

v2

. w1. w2

Figure 2.3: Typical closed-loop model in system identification

..Electrical
Circuit

. Mechanical
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. Hydraulic
System

.

(Potential,Current)

.

(Position,Force)

.

(Pressure,Flow Rate)

Figure 2.4: Examples of systems with terminals (Willems, 2007). The terminals are
shown in thick lines, and the variables living on those terminals are indicated in
brackets.

A module can be viewed as a black-box with terminals (see Figure 2.4). The
terminals are where the variables “live”, and it is how the modules interact with
their environment (Willems, 2007). Each terminal is of a certain type, characterized
by the variables that live there. For instance current and voltage are associated with
electrical terminals, flow rate and pressures are associated with hydraulic terminals,
and forces and displacements are associated with mechanical terminals. Typically a
terminal has a “flow” variable and a “potential” variable. A terminal of a certain type
can be connected to another terminal of the same type, thus forming interconnections
between modules. Forming an interconnection imposes constraints on the terminal
variables. Typically, the potential of each of the terminals must be the same after
interconnection, and, the flow into the interconnection must equal the flow out of
the interconnection. Consider the following illustrative example.

Example 2.4 Consider a hydraulic system as shown in Figure 2.5a. The system
consists of two tanks of water connected by a pipe. One of the tanks is connected to
a constant flow pump which injects water. The system can be viewed as composed of
five modules that are interconnected, a module for the pump, each of the tanks, the
pipe, and a plug as shown in Figure 2.5b. Each module has terminals of hydraulic
type. Thus the variables that live on the terminals are pressure, denoted p and flow
rate, denoted f .

Differential equations can be derived to describe the behavior of the variables of
each of the modules.

Lastly, the modules can be interconnected in series in order to form the complete
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Figure 2.5: Simple hydraulic system.

system as shown in Figure 2.5c. The result is a (continuous time) model of the
hydraulic system.

For the system to exhibit a behavior (other than a transient due to the initial
conditions) a source and a boundary condition must be included in the model. In
the example of Figure 2.5 a constant flow pump can be attached to the left-hand
terminal of the left tank, and a plug can be attached to the right-hand terminal of
the tank on the right.

By connecting a source to the model, a direction of causality is defined. This is
exactly in line with the discussion in Section 1.2 in Chapter 1 where, once a data
generating mechanism is present, causality becomes a well-defined notion.

The important feature is that once a direction of causality exists, transfer func-
tions can be used to model each module (Takahashi et al., 1970). By connecting
a source to a terminal, one of the variables on that terminal is transformed to an
“input”. For instance, by connecting a constant flow pump to the nozzle of a tank,
the flow rate of that terminal becomes an input to the system. Since the second
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Figure 2.6: Graphical illustration of a bilaterally coupled system.

variable on the terminal is completely determined by the value of the first variable,
it becomes an “output”. As a consequence each module can be represented as a
bilaterally coupled system (Mansoori et al., 2014). Once a direction of causality is
known, (for a linear system) four transfer functions relate the inputs and outputs of
a two-terminal (or two port) subsystem:[

y1(t)
y2(t)

]
=

[
G11(q) G12(q)
G21(q) G22(q)

] [
u1(t)
u2(t)

]
(2.3)

where u1 and y1 are the (input and output) variables that live on terminal 1, and
u2 and y2 are the (input and output) variables that live on terminal 2. If the
subsystem is not linear, then (2.3) represents a linear approximation of the module.
Graphically, (2.3) can be expressed as shown in Figure 2.6.

Remark 2.5 In (2.3) we have assumed a discrete-time representation of the two-
port system. However, in physical modeling, one usually deals with differential
equations and so the two-port system should be modelled in the Laplace domain. The
discussion of the relationship between the continuous-time transfer functions and the
discrete-time transfer functions is delayed until Chapter 7. There it is shown that
under certain conditions each discrete-time transfer function Gjk in (2.3) is simply
the discrete-time version of its continuous-time counterpart.

Consequently, each module of the overall model can be expressed as a bilat-
erally coupled system, resulting in a dynamic network model as proposed in the
previous section. Process noise variables can be added to each sum in order to
model/compensate for unknown disturbances that may affect the output.

Example 2.6 Consider again the system shown in Figure 2.5a. Once the constant
flow pump is attached to the left hand terminal of the tank on the left, a direction of
causality is defined for the system.

Consequently, the four transfer function model of (2.3) can be substituted into
each module resulting in the dynamic network model shown in Figure 2.5d.

In this section a systematic modeling procedure has been introduced in order to
illustrate that many systems in engineering can be modelled as a dynamic network
model. In the next section an important property of a dynamic network model is
discussed.
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2.4 WELL-POSEDNESS OF A DYNAMIC NETWORKMODEL
To characterize the suitability of the equations (2.2) in describing a physical system,
the property of well-posedness is used. The topic of well-posedness was first studied
in the context of continuous-time closed-loop systems in the late 1960’s by Willems
(1971); Zames (1964), and for interconnected dynamical systems in the late 1970’s
and early 1980’s by Vitacco & Michel (1977); Vidyasagar (1980); Araki & Saeki
(1983). It has remained an important topic in the field of control ever since (see
(Zhou et al., 1996; D’Andrea & Dullerud, 2003) for instance). The following quote
encapsulates the essence of well-posedness:

“Well-posedness is essentially a modeling problem. It expresses that a
mathematical model is, at least in principle, adequate as a description of
a physical system. ... Well-posedness thus imposes a regularity condition
on feasible mathematical models for physical systems. ... In other words,
since exact mathematical models would always be well posed, one thus
requires this property to be preserved in the modeling” (Willems, 1971)

The following pair of definitions are intended to be in the spirit of Willems
(1971) and capture the physical reasons why well-posedness is a critical issue. In
the following text we will gradually build up the definition of wellposedness from a
simple closed loop to a dynamic network model.

Consider the simple closed loop as shown in Figure 2.7. The property of well-
posedness for this system is defined as follows. The conditions are stated in a
non-formal manner inorder to convey the main message of well-posedness. For a
technical definition, see Willems (1971).

... G21

..

G12

.r1 .

r2

. w1. w2

Figure 2.7: Closed-loop system considered by Willems (1971) when discussing well-
posedness.

Definition 2.7 The closed-loop model shown in Figure 2.7 is well-posed if the fol-
lowing conditions are satisfied.

(a) The internal variables w1 and w2 are completely (uniquely) determined by r1
and r2.

(b) The internal variables w1 and w2 depend causally on the external variables r1
and r2.

(c) The internal variables w1 and w2 depend on r1 and r2 in a continuous manner.
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(d) Small2 changes in the model should not result in a model that does not satisfy
Conditions (a) - (c).

The equations for the system shown in Figure 2.7 are[
w1(t)
w2(t)

]
=

[
0 G12(q)

G21(q) 0

] [
w1(t)
w2(t)

]
+

[
r1(t)
r2(t)

]
w = Gw + r. (2.4)

Condition (a) ensures that the operator (I − G) is one-to-one and onto, i.e. it is
invertible. Conditions (b) and (c) ensure that the operator (I −G)−1 is causal and
continuous respectively.

Consider the following illustration of Condition (d). Introducing a tiny delay into
the loop of the closed-loop model should not result in a model that does not satisfy
Conditions (a)-(c) of Definition 2.7. Consider the following examples of illposed
models.

Example 2.8 Consider the closed-loop model shown in Figure 2.7. From (2.4) the
transfer function from the variables, r1, and r2 to the internal variables w1 and w2

is: [
w1(t)
w2(t)

]
=

1

1−G12(q)G21(q)

[
1 G12(q)

G21(q) 1

] [
r1(t)
r2(t)

]
. (2.5)

Suppose that G12 = G−1
21 , where G12 is a proper transfer function, and G−1

12 is also a
proper transfer function. In this case, the term 1−G12G21 = 0, thus from (2.5), the
operator (I −G) is not invertible. Consequently, by the first condition of Definition
2.7 this model is not well posed. It seems reasonable to exclude this system as a
realistic model. Since the matrix I − G is not full rank, the internal variables are
not uniquely determined by the variables r1 and r2. As a model of a physical system,
this does not make sense.

Example 2.9 Consider again the closed loop system shown in Figure 2.7. Sup-
pose G12 and G21 are both monic transfer functions. In this case, the term 1 −
G12(q)G21(q) in the denominator of (2.5) is a strictly proper transfer function.
Consequently, 1/(1−G12(q)G21(q)) is not proper. The result is that the value of w1

at time t depends on the value of r1 and r2 at the future time t+1. In this case the
second condition of Definition 2.7 is violated. Again, it seems reasonable to exclude
such models as accurate descriptions of physical systems.

Next, consider a slight generalization of Definition 2.7 to a loop that is embedded
in a dynamic network.

Definition 2.10 Consider a dynamic network as defined in (2.2). Consider a loop
embedded in the network. Suppose the loop passes through the internal variables
wℓ1 , . . . , wℓn . Let L = {wℓ1 , . . . , wℓn}. If a variable in the network has a direct

2We use the informal term “small” here to avoid technicalities that distract from the main
message. See Willems (1971) for the exact technical statement of the condition.
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connection to any wℓ ∈ L denote this variable as a ‘variable that affects the loop
L’. Let AL denote the set of variables that affect the loop. Note that AL consists of
internal variables, external variables and process noise variables. The loop defined
by L is well posed if the following conditions are satisfied:

(a) The internal variables of the loop (i.e. all wℓ ∈ L) are completely (uniquely)
determined by the variables that affect the loop, i.e. all variables in AL.

(b) The internal variables of the loop depend causally on the variables that affect the
loop.

(c) The internal variables of the loop depend on the variables that affect the loop in
a continuous manner.

(d) Small changes in the model should not result in a loop L that does not satisfy
Conditions (a) - (c).

Similar to the case of the definition of well-posedness for a simple closed-loop,
the first condition of Definition 2.10 ensures that given all knowledge of everything
that is external to the loop, it is possible to uniquely determine the value of the
loop variables. The second condition ensures that only past and present knowledge
of everything that is external to the loop is needed to determine that value of the
internal variables in the loop. Finally, consider the definition of well-posedness for
a dynamic network model.

Definition 2.11 Consider a dynamic network as defined in (2.2). The dynamic
network model is well-posed if every loop in the network is well-posed.

By Definition 2.11 it follows that if a dynamic network model as defined in
(2.2) is well posed, then the matrix I − G is invertible and moreover, the inverted
matrix (I −G)−1 only consists of causal transfer functions. Also note that dynamic
network models with algebraic loops (i.e. loops such that the loop transfer function,
Gℓ1ℓ2 · · ·Gℓnℓ1 , has a direct feed-through term) can still be well posed. Thus, well
posedness does not place a restriction on the presence of algebraic loops in the
dynamic network model.

Remark 2.12 In some literature (Zhou et al., 1996; D’Andrea & Dullerud, 2003)
the definition of well-posedness is stated in terms of a condition on a matrix. Here
a justification for the matrix condition is sought, grounded in physical phenomena.
Later in this chapter, in Proposition 2.14 it is shown that Definition 2.11 implies
the condition on the matrix that (Zhou et al., 1996; D’Andrea & Dullerud, 2003)
use as the definition for well-posedness.

Example 2.13 Consider the dynamic network model shown in Figure 2.8. The
equations for the model are:

w1(t)
w2(t)
w3(t)
w4(t)

 =


0 G12 0 0

G21 0 0 G24

G31 0 0 G34

0 0 G43 0



w1(t)
w2(t)
w3(t)
w4(t)

+


v1(t)
v2(t)
v3(t)
v4(t)

 . (2.6)
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Figure 2.8: Dynamic Network Model considered in Example 2.13.

Suppose that G21 = G−1
12 .

There are three loops in this model:

w1 → w2 → w1

w1 → w3 → w4 → w2 → w1

w3 → w4 → w3

The map from [v1 v2 v3 v4]
T to [w1 w2 w3 w4]

T exists and is causal, since the matrix
G is full rank. Thus the outer loop is well-posed.

Consider however, the loop through w1 and w2. The variables that affect this
loop are AL = {v1, v2, w4}. The map from these variables to the loop variables is[

w1(t)
w2(t)

]
=

[
1 −G12

−G21 1

]−1
([

0
G24

]
w4 +

[
v1
v2

])
.

Since G21 = G−1
12 the matrix inversion is not possible, thus this map is not well

defined, and the loop is not well-posed.
Consequently, by Definition 2.11 the dynamic network (2.6) is not well-posed.

It is useful to have a way of checking whether a dynamic network model is well-
posed. The following proposition characterizes the property of well-posedness of a
dynamic network model in terms of a condition on the matrix G in (2.2).

Proposition 2.14 A dynamic network model as defined in (2.2) is well-posed if all
principal minors of limz→∞(I −G(z)) are non-zero.

For a proof see Appendix 2.7.1. In fact the condition for wellposedness of Propo-
sition 2.14 is essentially all but necessary. It is only Condition (d) of Definition
2.10 that is not necessarily satisfied if all principal minors of limz to∞(I −G(z) are
non-zero (see Willems (1971) for details).
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2.5 THE GRAPH OF A DYNAMIC NETWORKMODEL
Graph Theory provides many tools for analyzing interconnections between nodes.
Throughout this thesis tools from graph theory will be used to analyse properties
of dynamic network models. Thus, in this section rules are presented in order to
construct a graph of a dynamic network model.

A directed graph G is a collection of nodes (denoted V (G)) that are connected
together by directed edges (denoted E(G)). A directed graph of a dynamic network
model can be constructed as follows:

1. Let all wk, k = {1, . . . , L} be nodes.

2. Let all vk, k ∈ V and rk, k ∈ R be nodes.

3. For all i, j ∈ {1, . . . , L} if Gji ̸= 0, then add a directed edge from node wi to node
wj .

4. For all vk, k ∈ V add a directed edge from vk to wk.

5. For all rk, k ∈ R add a directed edge from rk to wk.

Example 2.15 Consider the system of Example 2.2. For convenience the equations
of the dynamic network model are repeated here:

w1

w2

w3

w4

w5

w6

=


0 0 0 G14 0 0
G21 0 G23 0 0 0
0 G32 0 0 0 0
0 0 0 0 0 G46

0 G52 0 G54 0 G56

0 0 G63 0 G65 0





w1

w2

w3

w4

w5

w6

+


v1
v2
v3
v4
v5
v6


A graph of the dynamic network model constructed using the rules presented above
is shown in Figure 2.9.

There exists a path from wi → wj if there exist integers n1, . . . , nk such that
G0

jn1
G0

n1n2
· · ·G0

nki
is non-zero. Likewise there exists a path from ri → wj (or

vi → wj) if there exist integers n1, . . . , nk such that G0
jn1

G0
n1n2

· · ·G0
nki

is non-zero,
and i ∈ R (or i ∈ V). A loop is a path that starts and ends at the same node.

A graph can be fully represented by its adjacency matrix. This matrix, denoted
A is a square matrix of size (L + card(V) + card(R)) × (L + card(V) + card(R)) is
defined as

A(j, i) = 0 if there is no path from node i to node j

A(j, i) = 1 if there is no path from node i to node j.

Because of the interconnection structure that we consider in this thesis (see (2.2))
it follows that A(i, i) = 0, for all nodes in the graph.

The following lemma from graph theory will be very useful.
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Figure 2.9: Graph of the dynamic network shown in Fig. 2.2

Proposition 2.16 (Diestel (1997)) Consider a directed graph with adjacency ma-
trix A. Then for k ≥ 1, [Ak]ji indicates the number of distinct paths of length k
from node i to node j. �

In addition to the adjacency matrix A defined above, we will also consider a
related delay-adjacency matrix Ad of which the elements have three possible values:
0 (no link), 1 (a link with no delay), and d (a link with a delay). Through the use
of the following rules for addition and multiplication:

0 + 0 = 0 0 + d = d 0 · 0 = 0 0 · d = 0
0 + 1 = 1 1 + d = 1 0 · 1 = 0 1 · d = d
1 + 1 = 1 d+ d = d 1 · 1 = 1 d · d = d

summation and multiplication of matrices Ad can be defined, and one can evaluate
[Ak

d]ji. The following proposition is helpful in characterizing the presence of delays
in particular paths in a dynamic network model.

Proposition 2.17 Consider a directed graph with delay-adjacency matrix Ad and
the rules of multiplication and addition with d. Then for k ≥ 1,

• [Ak
d]ji = 1 indicates that there is a path of length k from i to j without a delay,

• [Ak
d]ji = d indicates that all paths of length k from i to j have a delay,

• [Ak
d]ji = 0 indicates that there is no path of length k from i to j.

The following proposition presents a property of the adjacency matrix of an
acyclic graph (i.e. a graph with no loops).

Proposition 2.18 (Deo (1974)) A directed graph is acyclic if and only if its ver-
tices can be ordered such that the adjacency matrix is an upper (or lower) triangular
matrix.

More concepts from graph theory will be used throughout the thesis, but they
will be presented where they are applicable.
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2.6 SUMMARY
In this chapter a dynamic network model has been presented. It has been shown
that this type of model can be used to model many different physical phenomena.
The property of well-posedness has been investigated. Based on the discussions in
this chapter the following general assumption will be made for all dynamic network
models from this point on in the thesis.

Assumption 2.19 General Conditions.

(a) The dynamic network model is well-posed.

(b) The dynamic network is stable in the sense that (I−G)−1 consists only of stable
transfer functions (transfer functions with poles inside the unit circle).

(c) All rm, m ∈ R are uncorrelated to all vk, k ∈ V. �

In the following chapters it is shown how this model can be used in a system
identification framework. Before presenting how to identify transfer functions in a
dynamic network model, some of the basics of system identification are presented in
the next chapter.

2.7 APPENDIX
2.7.1 Proof of Proposition 2.14
Before presenting the proof of Proposition 2.14 consider the following useful result
from Control Theory (Scherer, 2001). A transfer function matrix is called proper if
all its elements are proper transfer functions.

Proposition 2.20 let G(z) be a proper, invertible transfer function matrix. The
transfer function matrix G(z)−1 is proper if and only if limz→∞ G(z) is non-singular.

Proof: It is easiest to proceed using a state-space representation of G(z). Since,
G(z) is proper, it can be expressed as G(z) = C(Iz −A)−1B +D. It follows that

lim
z→∞

G(z) = D.

By assumption, G is invertible, thus, it follows that D is non-singular. Since, D
is invertible, G(z)−1 can be expressed as

G(z)−1 = −D−1C(Iz −A+BD−1C)−1BD−1 +D−1, (2.7)

which is also a proper transfer function matrix.
Next, a proof of Proposition 2.14 is presented.
Proof: It must be shown that every loop in the dynamic network model is

well-posed. Consider a loop embedded in the dynamic network consisting of the
internal variables wd1 , . . . , wdn , {d1, . . . , dn} = D. Let Z denote the indices of the
internal variables not in the loop, i.e. Z = {1, . . . , L} \ D. Let wD denote the vector
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[wd1 · · · wdn ]
T . Let wZ be similarly defined. Using this notation the equations of

the dynamic network model (2.2) can be expressed as:[
wD

wZ

]
=

[
GDD GDZ

GZD GZZ

] [
wD

wZ

]
+

[
rD
rZ

] [
vD
vZ

]
with obvious definitions for GDD, GDZ , etc., and rD, rZ , etc. Consequently, the internal
variables of the loop can be expressed as:

wD = GDDwD +GDZwZ + rD + vD. (2.8)

Since all the principal minors of limz→∞(I − G(z)) are assumed to be non-zero, it
follows that limz→∞(I − GDD(z)) is non-singular. Thus, by Proposition 2.20 (I −
GDD(z)) is causally invertible (i.e. it is invertible and the inverse consists only of
proper transfer functions). Thus, (2.8) can be expressed as:

wD = (I −GDD)
−1
(
GDZwZ + rD + vD

)
, (2.9)

where all transfer functions are proper.
The first important point is that since (I−GDD) is invertible, the internal variables

wD can be uniquely determined by the variables that affect the loop, i.e. any wZ , rD
and vD with direct connections to and internal variables in wD. Thus Condition (a)
of Definition 2.10 is satisfied.

Secondly, since (I −GDD) is causally invertible, Condition (b) of Definition 2.10
is satisfied.

Thirdly, since all transfer functions in (2.9) are assumed to be rational by the
definition of a dynamic network model, Condition (c) of Definition 2.10 is satisfied.

That Condition (d) of Definition 2.10 also holds is not proved here. However,
the reasoning of Willems (1971); Vidyasagar (1980) can be extended to the case of
(2.9). The technical details are beyond the scope of this thesis.

Thus all the conditions for well-posedness of a loop embedded in a dynamic
network are satisfied. Since, all principal minors of limz→∞(I −G(z)) are assumed
to be non-zero, the reasoning applies to all loops embedded in the dynamic network,
and thus the dynamic network model is well posed. �





Chapter 3

SYSTEM IDENTIFICATION

In this chapter the prediction-error framework for system identification is presented
(Ljung, 1999). After a brief overview of system identification, a data generating
system is defined. The idea of a data generating system is useful for the analysis of
system identification methods. Then the prediction-error framework is presented with
an emphasis on the concept of consistency, which will be the main focus throughout
the thesis. As mentioned in the previous chapters, the approach that we take in
this thesis is to extend closed-loop identification methods to the case of identifica-
tion in dynamic networks. In this section several closed-loop identification methods
are presented. Namely the Direct, Two-Stage, Joint IO and Instrumental Variable
Prediction-Error methods. Each of these methods can be used under different cir-
cumstances. The chapter ends with an overview of the open- and closed-loop identifi-
cation problem in the presence of sensor noise. (i.e. a closed-loop errors-in-variables
framework).

3.1 INTRODUCTION

SYSTEM IDENTIFICATION refers to the procedure of obtaining a model from a given
data set. There exist many different methods in the system identification
literature. The most suitable method depends on considerations such as:

• is the data set generated in open-loop, closed-loop, or dynamic network?

• how is the data collected? (is sensor noise a problem?)

• are there external signals present that are exactly known?

• is it possible to actively interact with the system? In other words, can a signal
of choice be used to excite the system? Or is the user a passive observer
collecting data from the system?

• are multiple experiments possible?

• what is the purpose of the obtained model? For instance, simulation, predic-
tion, controller design, physical parameter estimation?

49
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• what type of model is desired, i.e. continuous time, discrete time, rational
transfer function, non-parametric frequency domain models, etc.?

In this chapter various methods of system identification are presented that will be
useful in view of the dynamic network identification problem. In this thesis only the
prediction-error methods of system identification are studied. The main reason being
that there are well established tools to analyze the properties of the prediction-error
methods. The focus of this thesis is to analyze under which conditions it is possible
to obtain consistent estimates of a transfer function. Albeit important, the focus is
not on variance analysis of the obtained estimates, or the practical implementation
of the methods.

In the system identification field it is well known that special attention is required
by the user when identifying a plant that is operating in a closed loop (i.e. not
every open-loop method will automatically work when it is used in a closed loop
setting). Since in networks, there is the possibility of loops, it seems natural that
the same problems that are encountered in identification in closed-loop systems are
also present in identification in networks. Consequently, the starting point for this
thesis is to extend various closed-loop methods to the network setting. A typical
closed loop system is shown in Figure 3.1.

....
w1

. G0
21

...
w2

.

G0
12

.

v2

.r1

Figure 3.1: A typical closed loop system considered in the identification literature.

The main problem when identifying a plant operating in a closed-loop is that
the input to the plant (w1 in Figure 3.1) is correlated to the noise on the output of
the plant (v2 in Figure 3.1) due to the feedback path. A variety of methods have
been developed to obtain consistent estimates even when a plant is operating in a
closed-loop including

• Direct Methods, where the idea is to directly identify transfer functions be-
tween internal variables (Ljung, 1999; Van den Hof et al., 1992).

• Indirect methods such as the Two-Stage and Projection Method where first the
internal variables are projected onto external excitation variables, and then the
transfer function between the projected signals is estimated (Van den Hof &
Schrama, 1993; Forssell & Ljung, 2000).

• Joint Input-Output methods, where an estimate of (I−G0)−1 is obtained, and
then using algebraic manipulations the matrix G0 is recovered (Granger, 1969;
Caines & Chan, 1975; Caines, 1976; Ng et al., 1977; Granger, 1980; Gevers &
Anderson, 1981; Anderson & Gevers, 1982; Gevers & Anderson, 1982).
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• Closed-loop Instrumental Variable Methods(Söderström & Stoica, 1983; Söder-
ström et al., 1988; Söderström & Stoica, 1989b; Gilson & Van den Hof, 2005;
Gilson et al., 2009, 2011).

• Controller Design Relevant Methods (Zhu & Stoorvogel, 1992; de Callafon
et al., 1993; Van den Hof et al., 1995; Van den Hof & de Callafon, 1996; Van
Donkelaar & Van den Hof, 2000).

• Closed-Loop State Space Methods (Verhaegen, 1993; Ljung & McKelvey, 1996;
Chuiso & Picci, 2003; Chiuso & Picci, 2005; Chiuso, 2007; Van der Veen et al.,
2010, 2013).

• Closed-Loop Frequency Domain Methods (Schoukens et al., 1997; Pintelon &
Schoukens, 2006, 2012b)

• Closed-loop Errors-in-Variables Methods where there is assumed to be sensor
noise present on the input to the module (Söderström et al., 2013).

• Closed-Loop Continuous-time identification (Gilson & Garnier, 2003; Gilson
et al., 2008).

In this thesis each of the methods in the list above will be addressed except the
control-relevant and frequency-domain methods. State space methods will also not
be dealt with explicitly.

Remark 3.1 Although the state-space methods are not directly dealt with, there are
strong connections between state space methods and the prediction-error methods.
The sub-space method presented in Verhaegen (1993) can be seen as a Joint-IO
method. In addition, in Ljung & McKelvey (1996); Chuiso & Picci (2003); Chiuso
& Picci (2005) it is shown that sub-space methods are equivalent to using a high-
order ARX model-structure. In Chiuso (2007); Van der Veen et al. (2010) this idea
is incorporated to develop so called predictor based subspace identification methods
for closed-loop systems. Thus, because the state-space methods are closely related
to the prediction-error methods, indirectly, statements about the consistency of the
state-space methods can be made, however, this is not explicitly done in this thesis.

In order to analyze the consistency of a method, it is useful to make assumptions
about a data generating system. In particular we will assume that the data gen-
erating system has the form of a dynamic network model as presented in Chapter
2. This should not be seen as a true system, but rather a useful tool to enable the
analysis of an identification method. This is what Ljung (1999) refers to as the
fiction of a true system:

“The real-life actual system is an object of a different kind than our
mathematical models. In a sense there is an impenetrable screen between
our world of mathematical descriptions and the real world. We can
look through this window and compare certain aspects of the physical
system with its mathematical description, but we can never establish any
exact connection between them. The question of nature’s susceptibility
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to mathematical description has some deep philosophical aspects, and
in practical terms we have to take a more pragmatic view of models”
(Ljung, 1999)

Nevertheless, the fiction of a true system is useful (and is heavily employed in this
thesis) in order to analyze the properties of an identification method.

The remainder of this chapter is organized as follows. First, in Section 3.2 the
data generating system is defined. The measurement setup is considered to be part
of the data generating system. In Section 3.3 the Prediction-Error framework is
presented. In Section 3.4, closed-loop identification is presented, and the Direct,
Two-Stage, Joint IO and Instrumental Variable closed-loop identification methods
are presented. Finally, in Section 3.5 the closed-loop Errors-in-Variables framework
is presented, which is a framework that incorporates sensor noise.

3.2 THE DATA GENERATING SYSTEM
As mentioned in the introduction, the data generating system is assumed to be a
dynamic network model as presented in Chapter 2. Thus, the internal variables are
assumed to satisfy:

w1(t)
w2(t)

...
wL(t)

 =


0 G0

12(q) · · · G0
1L(q)

G0
21(q) 0

. . . G0
2L(q)

... . . . . . . ...
G0

L1(q) G0
L2(q) · · · 0



w1(t)
w2(t)

...
wL(t)

+


r1(t)
r2(t)

...
rL(t)

+


v1(t)
v2(t)

...
vL(t)


= G0(q)w(t) + r(t) + v(t), (3.1)

with obvious definitions for G0, w, r and v. In this thesis, the transfer functions of
the data generating system will be denoted with a superscript 0. A single internal
variable can be expressed as:

wj(t) =
∑
k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (3.2)

As with the dynamic network models presented in Chapter 2 the data generating
system (3.1) is assumed to satisfy Assumption 2.19 (see Section 2.6 of Chapter 2).

In practice, the data is collected using measurement devices (sensors or probes
for instance). Let w̃j denote the measurement of wj . It is typically not possible
to exactly record the true value of a variable; a measurement intrinsically has some
error. This error will be referred to as the measurement error, or sensor noise. The
measurement w̃j of wj is modeled as

w̃j(t) = wj(t) + sj(t)

where sj represents the measurement error and is modeled as a stochastic process
with rational power spectral density (it is not necessarily assumed to be white). The
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measurements of the variables of the data generating system (3.1) are thenw̃1(t)
...

w̃L(t)

 =

w1(t)
...

wL(t)

+

s1(t)...
sL(t)


w̃(t) = w(t) + s(t)

with obvious definitions for w̃, w and s. Suppose that the measurements are obtained
using physically different sensors, then it seems reasonable to assume that the errors
each sensor is making in recording the variable are uncorrelated to each other. On
the other hand, if there is an external phenomenon affecting all sensors, such as a
mechanical vibration, then it is possible that the measurement errors are all affected
by the mechanical vibration, resulting in a correlation between measurement errors.

Remark 3.2 There is a very interesting difference between the process noise, v
and the sensor noise s. Sensor noise does not affect the internal variables, it is
just an error made in recording the value of the internal variable. Consequently,
a measurement of the internal variable, wk is not affected by sensor noise on wj,
j ̸= k. On the other hand, process noise does affect the value of an internal variable.
Consequently, an internal variable wk is affected by the process noise vj, if there is
a path from wj to wk.

In the following section, we shift our attention from the data generating system,
to the identification methods.

3.3 PREDICTION-ERROR IDENTIFICATION
In this section, the prediction-error framework is briefly presented with a focus on
evaluating the consistency of a model. For a more in depth treatment of the mate-
rial, see Ljung (1999) for instance. Essentially, the philosophy of the prediction-error
framework is that candidate models are evaluated based on their predictive capabil-
ity. Before presenting the prediction-error framework, a framework for dealing with
mixed deterministic and stochastic variables is briefly presented.

3.3.1 Quasi-Stationary Variables
Many of the variables in a data generating system as defined in Section 3.2 have a
deterministic component and a stochastic component, thus they are said to be quasi-
stationary variables (Ljung, 1999). The following tools are useful when dealing with
quasi-stationary variables. The generalized expected value operator is (Ljung, 1999)

Ē[ · ] = lim
t→∞

1

N

N−1∑
t=0

E[ · ]

where E[ · ] is the (standard) expected value operator. Note that this is a combination
of the ensemble mean and time-average of a variable.
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Using this operator, the auto- and cross-covariance functions are defined as:

Rx(τ) = Ē[x(t)x(t− τ)] and Rxy(τ) = Ē[x(t)y(t− τ)].

The power spectral density and cross power spectral densities are consequently
defined as

Φx(ω) = F [Rx(τ)] and Φxy(ω) = F [Rxy(τ)]

where F [ · ] denotes the Discrete-Time Fourier Transform,

X(ω) = F [x(t)] =
∞∑

t=−∞
x(t)e−jωt.

3.3.2 Prediction-Error Framework
There are three main pillars in any system identification framework. The data
record, the model set, and the identification criterion. The data record must contain
enough “excitation” so that the identification criterion can discriminate between
the candidate models (the data set must be informative enough with respect to the
model structure). The model structure places constraints on the set of candidate
models. The identification criterion selects one model out of the possible sets of
candidate models. Each of the three pillars are briefly presented in the context of
the Prediction-Error framework.

First, consider the model set. In this thesis we will use the one-step-ahead
predictor model. The point of a predictor model is to predict the value of a particular
variable using the past values of that variable and other variables available in the
data set. Let wj(t) denote the (internal) variable to be predicted1. Let wk(t) k ∈ Dj

denote the internal variables that will be used to predict the value of wj(t). Suppose
that the relationship between wj(t) and wk, k ∈ Dj is:

wj(t) =
∑
k∈Dj

G0
jk(q)wk(t) + vj(t),

where vj(t) = H0
j (q)ej(t), and ej is a white noise process. Next, a predictor is

constructed in order to predict the current value of wj using only the past values of
wj(t), i.e. {wj(t− 1), wj(t− 2), . . .} and the current and past values of wk, k ∈ Dj ,
i.e. {wk(t), wk(t − 1), . . .}. In Ljung (1999) it is shown that such a one-step-ahead
predictor of wj(t) has the form:

ŵj(t|t− 1) =
∑
k∈Dj

H0−1

j (q)G0
jk(q)wk(t) +

(
1−H0−1

(q)
)
wj(t).

The transfer functions G0
jk(q), k ∈ Dj and H0

j (q) are not known of course, and
so they are modelled using parameterized transfer functions Gjk(q, θ), k ∈ Dj and

1Here we use the dynamic network notation in order to denote inputs and outputs. This is done
to avoid having to re-introduce a new notation later in the thesis.
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Hj(q, θ), where θ is a parameter vector. The one-step-ahead prediction model is
then:

ŵj(t|t− 1, θ) =
∑
k∈Dj

H−1
j (q, θ)Gjk(q, θ)wk(t) +

(
1−H−1

j (q, θ)
)
wj(t). (3.3)

The prediction-error for a model is:

εj(t, θ) = wj(t)− ŵj(t|t− 1, θ)

= H−1
j (q, θ)

(
wj(t)−

∑
k∈Dj

Gjk(q, θ)wk(t)
)
. (3.4)

In this thesis, the transfer functions Gjk(q, θ), k ∈ Dj and Hj(q, θ) are parameterized
as rational functions:

Gjk(q, θ) =
q−nk(bjk0 + bjk1 q−1 + · · ·+ bjknb

q−nb)

1 + f jk
1 q−1 + · · ·+ f jk

nf q
−nf

, and

Hj(q, θ) =
1 + cj1q

−1 + · · ·+ cjnc
q−nc

1 + dj1q
−1 + · · ·+ djndq

−nd

.

where the parameter vector

θjk = [bjk0 · · · bjknb
f jk
1 · · · f jk

nf
]T ,

θj = [cj1 · · · cjnc
dj1 · · · djnd

]T ,

θ = [θjk1 · · · θjkn θj ]
T , {k1, . . . , kn} = Dj .

This parameterization is completely characterized by nb, nf , nk, nc and nd. Let M
denote the set of all candidate models. Let Mi denote a model in M.

Now consider the data record. The second pillar of identification is that the data
must satisfy certain conditions to ensure that “different” models result in “different”
predicted outputs. A data set that meets this requirement is said to be informative
enough with respect to the model structure. This statement is formalized in the
following two definitions. First it is defined what “different models” are, and secondly
informative data is defined.

Definition 3.3 Let GMi

jk and HMi
j denote the transfer functions Gjk and Hj respec-

tively in (3.3) of the model Mi. Two models M1,M2 ∈ M are equal if

GM1

jk (ejω) = GM2

jk (ejω), ∀k ∈ Dj , and HM1
j (ejω) = HM2

j (ejω)

for almost all ω ∈ [0, π]. �

In otherwords two models are equal if the frequency response functions of the transfer
functions defining the two models are the same. Let ZN denote the data set where
N is the data length.
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Definition 3.4 Let ŵMi
j denote the output predicted by a model Mi. A data set Z∞

is informative w.r.t. a model structure if for any M1, M2 ∈ M,

Ē[
(
ŵM1

j (t|Z∞)− ŵM2
j (t|Z∞)

)
] = 0 =⇒ M1 = M2

where equality of M1 and M2 is defined according to Definition 3.3.

In otherwords, when the data set is informative with respect to the model structure,
if two models predict the same output, then these two models must be the same.
Informative data ensures that it is possible to discriminate between all the possible
candidate models.

The last pillar of identification is the criterion that is used to select one model
from the set of all candidate models. The selection criterion, or identification crite-
rion selects the model with the best predictive capability. It is common to choose
the model with the smallest sum of squared prediction errors. In this way a scalar
number is attached to each model in the model set:

VN (θ) =
1

N

N−1∑
t=0

εj(t, θ)
2. (3.5)

The optimal model is then the model with

θ̂N = arg min
θ

VN (θ).

The function VN (θ) is the identification criterion. Sometimes VN is referred to as
the objective function. Note that the sum of squared prediction errors is only one
possible identification criterion.

Under standard (weak) assumptions the estimated transfer function converges in
the number of data N , to satisfy (Ljung (1999)):

Gjk(q, θ̂N ) → Gjk(q, θ
∗) w.p. 1 as N → ∞

where

θ∗ = arg min
θ

V̄ (θ), where V̄ (θ) = Ē[εj(θ)2]

If Gjk(q, θ
∗) = G0

jk(q) the estimated module transfers are said to be consistent.
Consistent estimates are possible under several different conditions dependent on the
experimental circumstances, and the chosen model parameterization. As mentioned,
consistency plays a central role in the remainder of this thesis.

..r1. G0
21

.. w2.

v2

. w1

Figure 3.2: A open-loop data generating system.
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The following open-loop result will help to illustrate the difference between open-
and closed-loop identification. The open-loop system under consideration is shown
in Figure 3.2, where

w2(t) = G0
21(q)w1(t) + v2(t).

Note that for this system the input is exactly known (i.e. there is no sensor noise on
w1. The case with sensor noise on w1 is called an Error-in-Variables system, and is
dealt with later in Section 3.5.

Proposition 3.5 Consider the open-loop data generating system shown in Figure
3.2. Consider a predictor model of the form (3.3). Suppose that the data is infor-
mative with respect to the model structure. Consider an estimate G(q, θ̂N ) obtained
by minimizing (3.5). The estimate G(q, θ̂N ) is consistent if the following conditions
hold:

(a) The noise v2 is uncorrelated to the input w1.

(b) The parameterization is chosen flexible enough such that there exists a θ0 such
that G(q, θ0) = G0.

(c) The noise model H2(θ) is independently parameterized of G21(θ).

The main condition that we wish to highlight is that as long as the noise is
uncorrelated to the input, then consistent estimates of G0 are possible (as long as the
other conditions are also satisfied). Secondly, note that the noise model H(q, θ) does
not need to be parameterized flexible enough to be able to represent the dynamics
of H0.

In the following section some features of the closed-loop identification problem
are presented.

3.4 CLOSED-LOOP IDENTIFICATION
The closed-loop identification setup is shown in Figure 3.3. In this figure the symme-
try between the predictor model and the data generating system becomes apparent.
The closed-loop data generating system is defined as:

w1(t) = G0
12(q)w2(t) + r1(t)

w2(t) = G0
21(q)w1(t) + v2(t).

Why is closed-loop identification challenging? What is the critical difference
between open- and closed-loop identification? In open-loop identification the process
noise is assumed to be uncorrelated to the input of the system (see Condition (a)
of Proposition 3.5). This fundamental assumption does not hold in a closed-loop
setting since there is a path from the output back to the input. From the expression
of the “input” w1:

w1(t) =
G0

12(q)

1−G0
12(q)G

0
21(q)

v2(t) +
1

1−G0
12(q)G

0
21(q)

r1(t)
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Figure 3.3: Closed-loop identification setup.

it is clear that it is correlated to the process noise on the output v2. Why is this a
problem? It means that it is tough to distinguish which component of the output is
due to the noise, and which component is due to the input.

Over the last few decades several technique have been devised to deal with this
problem (see the survey papers Van den Hof (1998); Forssell & Ljung (1999) for
for an overview). The techniques can all be interpreted as somehow “decorrelating”
the input from the process noise in order to reduce the problem back to the open
loop situation (where it is easily possible to obtain a consistent estimate). Four of
the techniques are presented in the following sections: the Direct, Two-Stage, Joint
Input/Output, and Instrumental Variable Methods.

3.4.1 Direct Method of Closed-Loop Identification
In this method, one simply chooses w1 as the input, w2 as the output, constructs the
predictor (3.3) and obtains an estimate of G0

21 by minimizing the objective function
(3.5).

“Actually, the presence of feedback is simply discarded; the data is
treated as if there was no feedback at all. This is of course an attrac-
tive approach if it works, since one does not have to bother about the
presence of feedback at all” (Van den Hof, 2006).

Thus the predictor model that is used is:

ŵ2(t|t− 1, θ) = H−1
2 (q, θ)G21(q, θ)w1(t) +

(
1−H−1

2 (q, θ)
)
w2(t). (3.6)

This approach results in consistent estimates under certain conditions. These con-
ditions are briefly presented in this section.
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The following proposition is a closed-loop counterpart to Proposition 3.5. The
main point is that instead of requiring that the process noise is uncorrelated to the
input (as was the case in Condition (a) of Proposition 3.5), we now require that
there exists a noise model H2(θ

∗) such that the filtered version of the process noise
is uncorrelated to the input. In other words, at the optimal parameter vector, the
(filtered) noise is uncorrelated to the input.

Proposition 3.6 Consider a closed-loop data generating system that satisfies As-
sumption 2.19. Consider the predictor model (3.6). Suppose that the data is infor-
mative w.r.t. the model structure. The estimate G21(q, θ̂N ) obtained by minimizing
(3.5) is consistent if the following conditions hold:

(a) There exists an H2(θ
∗) such that H−1

2 (q, θ∗)v2(t) is white.

(b) Ē[H−1
2 (q, θ∗)v2(t) · ∆G21(q, θ)w1] = 0 for all θ, where ∆G21(q, θ) = G0

21(q) −
G21(q, θ).

(c) There exists a θ0 such that G21(q, θ
0) = G0

21(q). �

Thus, from Condition (b) of Proposition 3.6 it follows that if the (filtered) noise
term H−1

2 (q, θ∗) is uncorrelated to the (filtered) input term ∆G21(q, θ)w1 then con-
sistent estimates of G0

21(q) are possible. This is a statement that is analogous to the
open-loop statement of the previous section. A typical way to ensure that Condi-
tion (b) holds is by assuming that there is a delay present in the loop (i.e. there
is no algebraic loop in closed-loop system). Then ∆G21(q, θ)w1(t) is a function of
only delayed versions of e2(t), which is uncorrelated to H2(q, θ

∗)v2(t) = e2(t). This
reasoning is emphasized in the following Corollary to Proposition 3.6

Corollary 3.7 Consider a closed-loop data generating system that satisfies Assump-
tion 2.19. Consider the predictor model (3.6). Suppose that the data is informative
w.r.t. the model structure. Suppose that the data is informative w.r.t. the model
structure. The estimate G21(q, θ̂N ) obtained by minimizing (3.5) is consistent if the
following conditions hold:

(a) There is a delay present in the loop (no algebraic loop).

(b) If G0
21 has a delay, then G21(q, θ) is parameterized with a delay.

(c) There exists a θ such that G21(q, θ) = G0
21(q) and Hj(q, θ) = H0

j (q). �

For the Direct Method, several variables can contribute to the informativity of
the data: the external variable r1, the noise v2, the order of the feedback path (the
controller), and a controller that switches between several setting during the data
collection experiment. Detailed conditions to ensure the data is informative can be
found in Gevers et al. (2009a,b); Bazanella et al. (2010).
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3.4.2 Two-stagemethod of closed-loop identification
In the Two-Stage Method a different approach is used to “decorrelate” the input and
the process noise. The idea is to project the input orthogonal to the noise in a first
stage, and then in a second stage obtain an estimate of G0

21 using the projected input
(which now by construction is uncorrelated to the process noise). The method was
first proposed in Van den Hof & Schrama (1993) and a modification of the method
is proposed in Forssell & Ljung (1999).

In the second stage, the same predictor structure (3.6), is used to address the
closed loop identification problem. However, instead of using predictor input w1, it
uses only the part of w1 that is correlated to the external signal r1.

First it is shown how to project the input w1 orthogonal to the noise v2. Note that
r1 and w1 are quasi-stationary signals (Ljung (1999)) such that the cross-correlation
function

Rw1r1(τ) := Ē[w1(t)r1(t− τ)]

is zero for τ < 0 and non-zero for τ ≥ 0. Then there exists a proper transfer function
F 0
w1r1 such that

w1(t) = F 0
w1r1(q)r1(t) + z(t)

with z uncorrelated to r1. This provides a decomposition

w1(t) = w
(r1)
1 (t) + w

(⊥r1)
1 (t)

with w
(⊥r1)
1 (t) = z(t). Note that w

(r1)
1 is the projection of signal w1 onto the space

of (causally) time-shifted versions of r1, however, we will simply refer to w
(r1)
1 as the

projection of w1 onto r1.
If r1 and w1 are available from measurements then F 0

w1r1(q) can be consistently
estimated from data, provided that the signal r1 is persistently exciting of a suffi-
ciently high order. This consistent estimation can be done without the necessity to
model the noise dynamics of z, because it is open-loop identification problem (r1 and
z are uncorrelated thus by Proposition 3.5 consistent estimates are possible without
exact noise models). Subsequently the projection

ŵ
(r1)
1 (t) := F̂w1r1(q)r1(t) (3.7)

can be calculated, with F̂w1r1(q) the estimated transfer. This estimate then can
serve as an accurate estimate of w(r1)

1 (t).
In the second stage of the algorithm ŵ

(r1)
1 is used as an input in the predictor

model (3.3):

ŵ2(t|t− 1, θ) = H−1(q, θ)G21(q, θ)ŵ
(r1)
1 (t) +

(
1−H−1(q, θ)

)
w2(t). (3.8)

Consequently, estimates of G0
21 are obtained by minimizing the sum of squared

prediction errors (3.5).
Typical conditions for consistency of the estimate of the module transfer G21 are
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• In the first step a consistent estimate should be obtained of Fw1r1 . This is
typically achieved by high order modeling.

• If in the second stage G21(q, θ) and H2(q, θ) are parameterized independently,
then only G0

21 needs to be an element in the parameterized model set.

• the feedback loop is sufficiently excited by external variable r1. For the Two-
Stage Method the noise does not contribute to the excitation of the data, since
it is projected away in the first stage. This is in contrast to the Direct Method
where the noise adds to the informativity of the data (the external variable r1
is not even required to be present in the Direct Method as long as the loop is
sufficiently excited by the noise v2).

• There are no conditions on (the absence of) algebraic loops in the feedback
system (in contrast to the Direct Method).

These statements are formalized in the following proposition.

Proposition 3.8 Consider a closed-loop data generating system that satisfies As-
sumption 2.19. Consider the predictor model (3.8). Suppose that the data is infor-
mative w.r.t. the model structure. The estimate G21(q, θ̂N ) obtained by minimizing
(3.5) is consistent if the following conditions hold:

(a) The estimate F̂w1r1 in (3.7) is consistent.

(b) If G21(q, θ) and H2(q, θ) are parameterized independently, then there exists a
θ such that G21(q, θ) = G0

21(q). Otherwise, there must exist a θ such that
G21(q, θ) = G0

21(q) and H2(q, θ) = H0
2 (q). �

For a proof see Van den Hof & Schrama (1993); Forssell & Ljung (1999).

3.4.3 Joint-IOmethod of closed-loop identification
The Joint Input/Output method is an indirect identification method. First an es-
timate of the transfer function W 0 = (I − G0)−1 is obtained, then using algebraic
manipulations, an estimate of G0

21 is obtained.
The Joint input-output method was first proposed by Granger (1969); Caines &

Chan (1975); Caines (1976); Ng et al. (1977); Granger (1980); Gevers & Anderson
(1981); Anderson & Gevers (1982); Gevers & Anderson (1982). Typically in these
papers the data generating system is assumed to be entirely stochastic in the sense
that there are no external variables present. In this case the system is assumed to
be entirely driven by stochastic processes. Thus the data generating system can be
expressed as: [

w1(t)
w2(t)

]
=

[
0 G0

12(q)
G0

21(q) 0

] [
w1(t)
w2(t)

]
+

[
v1(t)
v2(t)

]

=

 H0
1 (q)

1−G0
12(q)G

0
21(q)

G0
12(q)H

0
2 (q)

1−G0
12(q)G

0
21(q)

G0
21(q)H

0
1 (q)

1−G0
12(q)G

0
21(q)

H0
2 (q)

1−G0
12(q)G

0
21(q)

[e1(t)
e2(t)

]
. (3.9)
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where the inverse exists provided that the system is well-posed. Let

W 0 =

[
W 0

11 W 0
12

W 0
21 W 0

22

]
=

 H0
1 (q)

1−G0
12(q)G

0
21(q)

G0
12(q)H

0
2 (q)

1−G0
12(q)G

0
21(q)

G0
21(q)H

0
1 (q)

1−G0
12(q)G

0
21(q)

H0
2 (q)

1−G0
12(q)G

0
21(q)

 (3.10)

Once an estimate of W 0 is obtained, an estimate of G0
12 is obtained as follows:

G0
12 =

W 0
12

W 0
22

, (3.11)

where it is clear that the equality holds from inspection of (3.10).
The prediction-error method can be used inorder to obtain an estimate of W 0.

In (3.9) the process w(t) = [w1(t) w2(t)]
T is expressed as an multivariable Autore-

gressive Moving Average (ARMA) process (i.e. a multivariable stochastic process
with no external inputs). As such, only a noise model can be identified. The one-
step-ahead predictor is then:

ŵ(t|t− 1, θ) = (I −H(q, θ)−1)w(t) (3.12)

where ŵ(t|t−1, θ) and w(t) are vectors, and the model H(q, θ) is a matrix. Typically
H(q, θ) is parameterized such that limz→∞ H(z, θ) is either identity (Gevers & An-
derson, 1982; Van Overschee et al., 1997; Mari & Stoica, 2000) or can be permuted
to a triangular matrix (Anderson & Gevers, 1982; Van den Hof, 2006). Since the
prediction error in this case is a vector, the objective function is changed to:

VN (θ) =
N−1∑
t=0

εT (t, θ)ε(t, θ). (3.13)

Remark 3.9 It is possible to include a weighting matrix in the objective function:

VN (θ) =
N−1∑
t=0

εT (t, θ)Ξε(t, θ),

where Ξ is the weighting matrix. This matrix can be used to tune the method. For
instance the user may choose to put more emphasis on measurements with low noise
levels. In this thesis however we will simply set Ξ = I, since this results in simpler
expressions, and because the choice of Ξ does not affect the consistency analysis.

For a closed-loop system, the conditions under which using the Joint-IO Method
leads to consistent estimates of G0

21 are very similar to those of the Direct Method,
i.e. sufficient excitation of the closed-loop, and an absence of algebraic loops. The
only difference is that in the case of the Joint IO Method, the noise term v1 should
be present.

Proposition 3.10 Consider the closed-loop data generating system (3.9) that sat-
isfies Assumption 2.19. Consider the predictor model (3.12). Suppose that the data
is informative w.r.t. the model structure. Suppose that the data is informative w.r.t.
the model structure. The estimate G21(q, θ̂N ) obtained using the Joint IO Method is
consistent if the following conditions hold:
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(a) There is a delay present in the loop (no algebraic loop).

(b) There exists a θ such that H(q, θ) = W 0(q).

(c) The parameterization of H(q, θ) is such that the matrix limz→∞ H(z, θ) can be
permuted to a triangular matrix with ones on the diagonal. �

For a proof see Anderson & Gevers (1982). Since limz→∞ H(z, θ) is equal to the
impulse response of H(q, θ) at time t = 0, Condition (c) ensures that the model does
not have any algebraic loops.

A disadvantage of the Joint IO method is that a high-order model is obtained.
The estimate of G0

21 is obtained by dividing two estimated transfer functions, as
shown in (3.11). In practice, not all (or none) of the common poles and zeros of W 0

12

and W 0
22 will cancel, with the result that G21(q, θ) has many extra poles and zeros

(i.e. is of very high order).
Another difficulty with the Joint IO method as it has been presented here is the

practical implementation.2 Using the Joint IO method in practice requires parame-
terizing the matrix H(q, θ) such that Conditions (b) and (c) hold, and subsequently
finding the global minimum of the objective function (3.13). This is a non-convex
optimization problem with many parameters and many local minima.

Fortunately, in the early 1990’s a sub-space like method (i.e. based on singular
value decompositions and solving Riccati Equations) was proposed which could effi-
ciently obtain a spectral factorization of a given power-spectral density. The point is
that the matrix W 0 is exactly the spectral factor of the power-spectral density of the
data. Consequently, the Joint IO method has enjoyed a rebirth in the literature, this
time in a form that is “easily” implementable (Verhaegen, 1993; Lindquist & Picci,
1996; Van Overschee et al., 1997; Mari & Stoica, 2000; Hinnen et al., 2005). Note
however, that although the spectral factorization approach of obtaining an estimate
of W 0 is easier to implement in practice, the analysis of the consistency of the Joint
IO method is easier using tools from the Prediction-Error framework.

In the following text it is shown that H(q, θ) is in fact an estimate of the spectral
factor of Φw, the power spectral density of the vector w. Consider the objective
function (3.13):

V̄ (θ) = Ē[εT (θ)ε(t, θ)]
= trace

{
Ē[ε(t, θ)ε(t, θ)T ]

}
= trace

{
Ē[H(q, θ)−1w(t)w(t)TH(q, θ)−1]}

= trace
{∫ π

−π

H(ejω, θ)−1Φw(ω)H(e−jω, θ)−1dω
}
.

Methods to obtain a spectral factor from a given power spectral density matrix have
been developing since the late 1960’s (Anderson, 1967, 1973, 1974, 1975; Boyd et al.,
1994; Van Overschee et al., 1997; Hinnen et al., 2005). The key point is that a given
power-spectral density matrix has a unique spectral factor that is monic, stable,

2Note that the MATLAB System Identification Toolbox cannot be used to minimize (3.13) since
the toolbox only allows for diagonal noise models.
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and minimum phase (Youla, 1961). This is exactly equivalent to parameterizing
limz→∞ H(z, θ) = I. The advantage of the spectral factorization approach is that
there exist convex methods to obtain the spectral factors. Secondly, the estimate
H(q, θ) does not need to be parameterized a priori.

3.4.4 Closed-Loop Instrumental Variable Methods
The last closed-loop Prediction-Error method that is presented is the Basic Closed-
Loop Instrumental Variable method (Söderström & Stoica, 1983; Söderström et al.,
1988; Söderström & Stoica, 1989b; Gilson & Van den Hof, 2005; Gilson et al., 2009,
2011). The IV methods are closely related to the Two-Stage Method since they
both involve a “projection” onto the external variable r1. A big advantage of the IV
method is that it results in a predictor that is linear in the parameters. Consequently,
the parameters can be obtained by a linear regression. This is unlike the previous
three methods.

In order to present the basic closed-loop IV method, it is useful to explicitly define
the parameter vector as θ = [a211 · · · a21na

b210 · · · b21nb
]T. In addition, the following

regressor will be very useful:

ϕT
21(t)=

[
−w2(t−1) · · · −w2(t−na) w1(t) · · · w1(t−nb)

]
The output w2 can now be expressed as

w2(t) = B0
21(q)w1(t) +

(
1−F 0

21(q)
)
w2(t) + F 0

21(q)v2(t)

= ϕT
21(t)θ

0
21 + v̆2(t) (3.14)

where B0
21 and F 0

21 denote the numerator and denominator of G0
21, θ021 denotes the

true parameters, and

v̆2(t) = F 0
21(q)v2(t). (3.15)

The IV estimate of θ0 is the solution to (Gilson & Van den Hof, 2005)

1

N

N−1∑
t=0

z(t)
(
w2(t)− ϕT

21(t)θ̂IV
)
= 0,

where z(t) is a vector of so called instruments. If
∑N−1

t=0 z(t)ϕT
21(t) is nonsingular,

then

θ̂IV =
( 1

N

N−1∑
t=0

z(t)ϕT
21(t)

)−1(N−1∑
t=0

z(t)w2(t)
)
. (3.16)

An expression of θ̂IV in terms of θ0 can be obtained by substituting (3.14) into
(3.16):

θ̂IV = θ0 +
( 1

N

N−1∑
t=0

z(t)ϕT
21(t)

)−1(N−1∑
t=0

z(t)v̆2(t)
)
. (3.17)

From (3.16) and (3.17) the conditions for consistent estimation of θ0 are exposed.
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Proposition 3.11 Consider a closed-loop data generating system that satisfies As-
sumption 2.19. The estimate θ̂IV obtained as in (3.16) is consistent if the following
conditions hold:

(a) Ē[z(t)ϕT
21(t)] is nonsingular.

(b) Ē[z(t)v̆2(t)] = 0. �

Similar to the Two-Stage Method there is no condition on the absence of algebraic
loops. Condition (a) essentially ensures that the data is informative with respect to
the model structure.

The choice of the instrumental variable z is critical with respect to the consistency
of the estimates. Typically in the closed-loop IV methods, the variable r1 is chosen
as the instrumental variable:

z(t) =
[
r1(t) · · · r1(t− na − nb)

]T
.

By Assumption 2.19 and (3.15), Condition (b) is met. Consequently, consistent
estimates of G0

21 are possible using this instrument. Note that, by (3.16), in order
to calculate the estimate θ̂IV only a linear regression needs to be evaluated. This is
a big advantage of the Instrumental Variable Methods.

3.5 ERRORS-IN-VARIABLES FRAMEWORK
A main assumption in the previous methods was that either the input w1 or a ref-
erence signal r1 is measured noise free. In this section that assumption is relaxed,
leading to the so called Errors-in-Variables (EIV) framework. The majority of the
EIV literature is for the open loop case (see the survey papers Söderström (2007,
2011)), however recently the closed-loop EIV problem has been considered in Pin-
telon & Schoukens (2012b); Söderström et al. (2013). In this section, first the open
loop EIV problem is presented, and then the closed-loop results.

3.5.1 Open-Loop EIV
The open-loop EIV data generating system is illustrated in Fig. 3.4. The main
problem is that the input to G0

21 is not exactly known. Only a noisy version of w1

is known. The equations for the data generating system are:

w2(t) = G0
21(q)w1(t) (3.18)

where the available measurements satisfy:

w̃2(t) = w2(t) + s2(t)

w̃1(t) = w1(t) + s1(t).

There are several different ways to obtain an estimate of G0
21 using the data

w̃1 and w̃2 (Söderström, 2007, 2012). The methods generally differ based on what
assumptions can be made about s1 and s2. A common assumption is that s1 is
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Figure 3.4: An open loop data generating system with sensor noise on both the
input and the output.

white noise. However, a more general situation is to suppose that both s1 and s2
are stochastic processes with rational power spectral density (i.e neither s1 or s2 are
necessarily white noise).

Several methods to obtain estimates of G0
21 are based on analyzing the power

spectral density of [w̃2 w̃1]
T . These methods will be briefly presented here. For a

more detailed analysis, see Agüero & Goodwin (2008).
The power spectral density of z = [w̃2 w̃1] is

Φz =

[
Φs2 +G0

21Φw1G
0∗

21 G0
21Φw1

Φw1G
0∗

21 Φs1 +Φw1

]
. (3.19)

Let the spectral density Φw1 be expressed as

Φw1(z) = L0(z)QL0(z
−1)

where L0(z) is the stable, minimum phase, monic spectral factor of Φw1(z), and Q
is a positive constant. By Youla (1961) such a spectral factorization is unique.

The following (weak) assumption will be made about the data generating system
(3.18).

Assumption 3.12 Consider an open-loop data generating system as shown in Fig.
3.4. The following conditions are assumed to hold (Agüero & Goodwin, 2008):

1. G21(z) has no pole that is also a pole of G21(z
−1).

2. G21(z) has no zero that is also a zero of G21(z
−1).

3. G21(z) does not have a non-minimum phase zero that is a pole of Φw1 . No
poles of G21(z) are zeros of Φw1 .

Under this assumption, the poles and zeros of G0
21(z) can be obtained from

Φw2w1(z) as follows. Let G0
21(z) be factored as b0Ḡ

0
21(z), where Ḡ0

21 is a monic
transfer function. Thus, Φw2w1(z) can be expressed as:

Φw2w1(z) = G0
21(z)Φw1(z)

= b0QḠ0
21(z)L0(z)L0(z

−1). (3.20)
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Let α0 = b0Q. From (3.20) the poles and zeros that appear in pairs that are
symmetrically placed with respect to the unit circle (i.e. z − a and 1 − az form a
pair) belong to Φw1 and the remaining poles and zeros belong to G0

21(z). In Agüero
& Goodwin (2008) it is shown that under Assumption 3.12 the poles and zeros of
G0

21 can be uniquely determined using this procedure (i.e. Ḡ0
21 can be uniquely

determined).
Since G0

21 = b0Ḡ
0
21, there only remains one more parameter to estimate in order

to obtain an estimate of G0
21(z) (namely, b0). With no further prior knowledge

about the system, b0 cannot be uniquely determined. However, bounds on b0 can
be calculated (Agüero & Goodwin, 2008).

Proposition 3.13 Consider the open-loop data generating system shown in Figure
3.2. Suppose that Assumption 3.12 holds. Suppose Ḡ0

21(z), α, and L0(z) have been
obtained from Φw2w1(z). Then the following bound on b0 holds:

min
ω

α|L0(e
jω)|2

Φw1(e
jω)

≤ b0 ≤ max
ω

αΦw2(e
jω)|L0(e

jω)|2

|Φw2w1(e
jω)|2

(3.21)

The proof is in Agüero & Goodwin (2006); Agüero & Goodwin (2008). With
additional assumptions on the data generating system, it is possible to obtain a
unique estimate of G0

21. Typical assumptions include (Söderström, 2007):

• If one of the sensor noise terms s1 and/or s2 are not Gaussian distributed, then
the higher order statistics of the noise can be used to obtain more information
about the system (Deistler, 1986).

• If more detailed assumptions are made about the poles and zeros of L0, Hs1

and Hs2 it may be possible to obtain a unique estimate. See Theorem 14 in
Agüero & Goodwin (2008).

• If the system can be excited by a periodic signal, or if repeated (identical)
experiments are possible, then a unique estimate of G0

21 can be obtained
(Schoukens et al., 1997; Söderström & Hong, 2005).

Next, consider the closed-loop EIV problem.

3.5.2 Closed-Loop EIV
The closed-loop set-up that is considered in Söderström et al. (2013) is shown in
Figure 3.5.

The difference between the data generating system shown in Figure 3.5 and the
one studied in the section on the closed-loop Prediction-Error methods (i.e. Section
3.4) is the presence of sensor noise s2 and s3. The conclusion of Söderström et al.
(2013) is that in this case G0

21 is identifiable using a data set consisting of r1, w2

and w3. This is not surprising since r1 is still assumed to be known, noise free.
Consequently, the Two-Stage and the Closed-Loop IV methods can still be used
without any alterations to obtain consistent estimates of G0

21.
A more challenging data generating system is when r1 is not present, and w1 is

measured with noise. In this case the Two-Stage method will not result in consistent
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Figure 3.5: Closed-Loop data generating system with sensor noise.

estimates of G0
21. However, it can be shown that the Closed-Loop IV method still

results in consistent estimates. This result will be further discussed in Chapter 6.

3.6 SUMMARY
In this chapter the system identification framework that is used for the remainder of
this thesis has been presented. First a data generating system was defined as a tool
to analyse the properties of various identification methods. Then the prediction-
error framework for system identification was presented. Subsequently, the Direct,
Two Stage, Joint IO and Closed-Loop IV methods were presented. Each of these
methods will be generalized in the remainder of this thesis in order to be able to
estimate a transfer function that is embedded in a dynamic network.

Finally the Errors-in-Variables framework is presented which incorporates sensor
noise into the framework. In Chapter 6 this framework will be extended to the case
of dynamic network models.



Chapter 4

FROM IDENTIFICATION IN
CLOSED-LOOPS TO IDENTIFICATION IN
NETWORKS

The problem of identifying dynamical models on the basis of measurement data is
usually considered in a classical open-loop or closed-loop setting. In this chapter this
problem is generalized to dynamical systems that operate in a complex interconnection
structure and the objective is to consistently identify the dynamics of a particular
module in the network. For a known interconnection structure it is shown that
classical prediction error methods for closed-loop identification can be generalized
to provide consistent model estimates, under specified experimental circumstances.
Graph theoretical tools are presented to verify the topological conditions under which
the methods lead to consistent module estimates.1

4.1 INTRODUCTION

IN THIS CHAPTER we make a first attempt at identification in dynamic networks.
Each of the closed-loop identification methods presented in Chapter 3 are ex-
tended to the case of identification in dynamic networks. This can be considered

as a natural extension of the situation of open-loop data, closed-loop data in a single
loop, towards data that is obtained from systems operating in a predefined network
structure. Since dynamic networks typically contain (feedback) loops, it is shown
that methods for closed-loop identification are an appropriate basis for developing
more generalized tools to deal with complex networks.

The question that is addressed in this chapter is: given the interconnection struc-
ture of the dynamic network under what conditions can a particular module transfer
function G0

ji be estimated consistently?
Several considerations are taken into account. Firstly, in this chapter we assume

1This chapter is based on the papers Van den Hof et al. (2013, 2012); Dankers et al. (2012a).
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that every internal variable is in principle measurable/known. Moreover, we assume
that the internal variables are measurable without sensor noise. In other words,
noise free measurements of every internal variable wk in the network are available.
Although these assumptions are restrictive, they serve as a good starting point. In
subsequent chapters these assumptions will be significantly relaxed.

Secondly, in this chapter we consider the possibility that particular modules in the
network may be known a priori. For instance, there may be controllers embedded in
the network. If so, how can this extra knowledge about the network be incorporated
into the algorithms and be used as an advantage to obtain better estimates?

Throughout the chapter we will focus on conditions on the interconnection struc-
ture as well as on the presence of noise sources and excitation/probing signals for
consistently identifying a particular module in the network.

Just as in the closed-loop case, the generalized Direct and Joint IO Methods rely
on exact noise models (system in the model set). On the other hand, the generalized
Two-Stage and IV Methods rely on the presence of external excitation variables.

The chapter proceeds as follows. In Section 4.2 some of the key equations from
Chapter 3 are repeated for the convenience of the reader and some additional no-
tation is introduced. In Section 4.3 some network properties are presented and in
Sections 4.4, 4.5 and 4.6 network versions of the Direct, Two-Stage and Joint IO
Methods respectively are presented and analyzed.

4.2 PRELIMINARIES AND NOTATION
The data generating system assumed to be of the form


w1(t)
w2(t)

...
wL(t)

 =


0 G0

12(q) · · · G0
1L(q)

G0
21(q) 0

. . . G0
2L(q)

... . . . . . . ...
G0

L1(q) G0
L2(q) · · · 0



w1(t)
w2(t)

...
wL(t)

+


r1(t)
r2(t)

...
rL(t)

+


v1(t)
v2(t)

...
vL(t)


= G0(q)w(t) + r(t) + v(t). (4.1)

The objective considered in this chapter is to estimate a particular transfer function
embedded in the network. This transfer function is denoted G0

ji.
The generalized predictor model for the internal variable wj is:

ŵj(t|t−1, θ)=H−1
j (q, θ)

(∑
xk∈X

Gjk(q, θ)xk(t) + rj(t)
)
+
(
1−H−1

j (q, θ)
)
wj(t) (4.2)

where the set of input variables X is left unspecified for the moment. Typically,
X consists of internal and external variables. If X contains only one element, then
(4.2) is referred to as a single-input, single-output (SISO) predictor. If X contains
more than one element, then (4.2) is referred to as a multiple-input, single-output
(MISO) predictor.
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The identification criterion considered in this chapter is:

VN (θ) =
1

N

N−1∑
t=0

ε2j (t, θ) (4.3)

where εj is the prediction error: εj(t, θ) = wj(t)− ŵj(t|t− 1, θ).
The following sets are used throughout the chapter to denote parts of a dynamic

network:

• Nj denote the set of indices of internal variables with direct connections to wj ,
i.e. k ∈ Nj if and only if Gjk ̸= 0.

• Kj denotes the set of indices of internal variables wk, k ∈ Nj for which the
module transfer functions G0

jk of the data generating system are known. We
assume that i /∈ Kj since if G0

ji is known, there is no need to obtain an estimate
of G0

ji.

• U i
j denotes the set of indices of internal variables wk, k ∈ Nj , k ̸= i for which

the module transfer functions G0
jk of the data generating system are unknown.

• R denotes the set of indices of all external variables present in the network.

• Rj denotes the set of indices of all external variables present in the network
that have a path (not necessarily a direct path) to the internal variable wj .

• V denotes the set of indices of all process noise variables present in the network.

• Vj denotes the set of indices of all process noise variables present in the network
that have a path (not necessarily a direct path) to the internal variable wj .

Note that Nj = i ∪ Kj ∪ U i
j .

4.3 PROPERTIES OF DYNAMIC NETWORKS
Two properties of dynamic networks are presented in this section. The first property
establishes a relationship between the transfer functions of the matrix (I − G0)−1

and the interconnection structure of a dynamic network model. This helps give an
interpretation of the transfer functions in (I − G0)−1. This property will be used
extensively throughout the remainder of this thesis.

The second property that is presented here establishes a relationship between a
closed-loop model and a dynamic network model.

The first property is formulated in the following lemma. As mentioned, a rela-
tionship is established between the transfer functions of the matrix (I −G0)−1 and
the interconnection structure of a network.

Lemma 4.1 Consider a dynamic network model that satisfies Assumption 2.19,
with transfer matrix G0 (4.1). Let G0

ji be the (j, i)th entry of (I − G0)−1. If every
path from wi to wj has a delay, then G0

ji has a delay. If there is no path from wi to
wj then G0

ji = 0



72 4 From Identification in Closed-Loops to Identification in Networks

This lemma can be proved using Mason’s Rules (Mason, 1953, 1956). For complete-
ness, an alternative proof is included in Appendix 4.8.1.

One of the properties of a dynamic network is the possible occurrence of algebraic
loops, i.e. loops for which the transfer function has a direct feed-through term. For
analyzing the properties of direct identification algorithms it is attractive to be able
to characterize these loops. Lemma 4.1 enables this analysis.

In addition it is often useful to determine if there is a path from an external
input to an internal variable. The existence of such a path can be determined from
the matrix (I −G0)−1 using Lemma 4.1.

The next proposition shows that the dynamic network can be rewritten in a
classical feedback structure by denoting one particular wj as an “output variable”.
Any node signal can serve this purpose. This equivalent structure will facilitate the
understanding and analysis of the several identification results.

Proposition 4.2 Consider a dynamic network that satisfies Assumption 2.19, and
select one particular internal variable wj to be referred to as “output”. Classify
the remaining variables wi, i ∈ D with D := {1, . . . , L} \ {j} as “inputs”, denoted
as wD = [wk1 · · ·wkn ]

T , {k1, . . . , kn} = D. The vectors rD and vD and defined
analogously.

Let G0
jD denote the row vector [G0

jk1
· · · G0

jkn
], {k1, . . . , kn} = D, let G0

Dj denote
the column vector [G0

k1j
· · · G0

knj
]T , {k1, . . . , kn} = D, and let G0

DD be a matrix
constructed analogously.

The internal variables {wk}k=1,···L are equivalently described by the feedback
connection structure as indicated in Figure 4.1, with wj interpreted as output, and
wD as input, determined by

wj = G0
jD(q)wD + rj + vj

wD = Ğ0
Dj(q)wj + Ğv(q)vD + Ğr(q)rD,

where

Ğv = Ğr = (I −G0
DD)

−1

Ğ0
Dj = (I −G0

DD)
−1G0

Dj

where transfer matrices Ğv, Ğr ∈ R(L−1)×(L−1)(z), and the transfer vector Ğ0
Dj ∈

R(L−1)×1(z).

Proof: Using the introduced notation the dynamic network model equations
(4.1) can be written as[

wj

wD

]
=

[
0 G0

jD

G0
Dj G0

DD

] [
wj

wD

]
+

[
rj + vj
rD + vD

]
leading to the equations:

wj = G0
jDwD + rj + vj

wD = (I −G0
DD)

−1G0
Djwj + (I −G0

DD)
−1(rj + vj)
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provided that the inverse (I − G0
DD)

−1 exists and is proper. This is guaranteed by
condition a of Assumption 2.19.

One of the important observations from the presented feedback structure is that
the disturbance/excitation terms that directly affect the “output” wj , do not appear
as disturbance/excitation signals directly acting on the “input signals” wD; they only
contribute to these inputs through the “feedback” operation Ğ0

Dj .

..G0
jD
..

Ğ0
Dj

..Ğr .rD+vD .

rj + vj

.

wj

.wD ......

Figure 4.1: Closed Loop representation of wj . Double lines denote multivariable
paths.

4.4 IDENTIFICATION IN DYNAMIC NETWORKS USING THE DIRECT
METHOD

The direct method for closed-loop identification can rather simply be generalized
to the situation of dynamic networks. To this end we consider the one-step ahead
predictor that was formulated in (4.2). The principal choice that has to be made is
the set of input signals xk ∈ X that has to be taken into account in the predictor.
If the module transfer function G0

ji needs to be identified it is tempting to choose
only wi as input for the predictor. However in most cases this will lead to biased
results of the estimates due to the fact that other (neglected) variables with direct
connections to wj also affect the output. Therefore the safest situation is to choose
in the predictor all variables that have a direct link to the output wj , i.e. X = Nj

in (4.2), leading to the predictor:

ŵj(t|t− 1, θ)=H−1
j (q, θ)

(∑
k∈Nj

Gjk(q, θ)wk(t)+rj(t)
)
+
(
1−H−1

j (q, θ)
)
wj(t). (4.4)

For this predictor the following result is obtained.

Proposition 4.3 Consider a dynamic network that satisfies Assumption 2.19, and
consider a direct prediction error identification according to (4.3) with predictor
(4.4). Then the module transfer functions G0

jk, k ∈ Nj as well as H0
j are estimated

consistently under the following conditions:

(a) The noise vj is uncorrelated to all noise signals vk, k ∈ Vj\{j}.

(b) For both the data generating system and the parametrized model, every loop
through wj has a delay.
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(c) The spectral density of [wj wn1 · · ·wnn ]
T , n∗ ∈ Nj, denoted as Φj,Nj (ω) is

positive definite for ω ∈ [−π, π].

(d) The system is in the model set, i.e. there exists a θ0 such that Gjk(z, θ
0) = G0

jk(z)
for all k ∈ Nj, and Hj(z, θ

0) = H0
j (z).

The proof can be found in Appendix 4.8.2.
Note that in the considered situation all transfers G0

jk, k ∈ Nj and H0
j need to

be estimated simultaneously in order for the result to hold, and that the dynamics
of noise source vj needs to be modeled correctly through a noise model Hj . Note
also that both the noise signal vj and the probing signal rj provide excitation to
the loop that is going to be identified. The excitation condition (c) is a rather
generic condition for informative data (Ljung, 1999). A further specification for
particular finite dimensional model structures can be made along the results for
classical feedback loops as developed in Gevers et al. (2009b).

Whereas in classical closed loop identification with the direct method there is
a condition on absence of algebraic loops in the full feedback system (Van den Hof
et al., 1992), this is further specified here in condition (b) by limiting that condition
to only apply to the output signal that is considered for identification.

Remark 4.4 In the Proposition above the predictor that is used employs all possible
inputs that directly connect to the output signal wj. If some of these transfers are
known already, e.g. they could be controllers with known dynamics, then the result
above can simply be generalized. Then the predictor (4.4) can be generalized as

ŵj(t, θ) = H−1
j (q, θ)

( ∑
k∈Nj\Kj

Gjk(q, θ)wk(t) +
∑
k∈Kj

G0
jk(q)wk(t) + rj(t)

)
+ (1−H−1

j (q, θ))wj(t), (4.5)

leading to consistent estimates of the transfers G0
jk, k ∈ Nj \ Kj, while in the

formulation of the conditions of Proposition 4.3, the set Nj is replaced by the set
Nj \ Kj. �

Next, an algorithm for checking Condition (b) will be presented. The other
conditions are straightforward to check and do not need an algorithm. Recall that the
matrix Ad is the adjacency matrix with d’s in the entries with strictly proper module
transfer functions, and 1’s in the entries with proper module transfer functions (see
Section 2.5 of Chapter 2).

Algorithm 4.5 Check if all loops through wj have a delay

1. Evaluate Aℓ
d for ℓ = 1, . . . , L using the multiplication and addition rules defined

in Section 2.5 of Chapter 2.

2. If for any considered power ℓ entry (j, j) equals 1, Condition (b) is not met.
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Figure 4.2: Dynamic network with 5 internal variables, of which 2 (red-colored)
transfer functions G0

21 and G0
23 can be consistently identified with the direct method

using a MISO predictor. The blue-colored transfer functions can be identified with
SISO predictors.

Example 4.6 If we apply the result of the direct method to the network example of
Figure 4.2, it appears that the direct method can be applied to each of the internal
variables w1, · · ·w5. Note that in this data generating system G0

43 = 1. The transfer
functions G0

15, G0
32 can be identified provided that the loop (G0

54G
0
32G

0
21G

0
15) has a

delay and an appropriate noise model is used. The transfer functions G0
54 and G0

45

can be identified provided that the loop (G0
54G

0
45) has a delay and an appropriate noise

model is used. The transfers G0
21 and G0

23 can only be estimated simultaneously by
considering both w1 and w3 as inputs and w2 as output. Under the condition that
a delay is present in the loops (G0

32G
0
23) and (G0

54G
0
32G

0
21G

0
15) and by the use of an

appropriate model set that includes accurate noise modeling, the transfers G0
21 and

G0
23 can be estimated consistently.

Remark 4.7 It is not always necessary to include all wk, k ∈ Nj as input in the
predictor. For instance consider the case shown in Fig. 4.3a. Suppose that the
objective is to obtain consistent estimates of G0

21. According to Proposition 4.3 both
w1 and w3 must be included as inputs in the predictor. However, from the figure, it
can be seen that w3 only acts as a (uncorrelated) disturbance on w2, and does not
need to be modeled for consistent estimation of G0

21. This idea is illustrated in Fig.
4.3b where ṽ2 = v2 + w3. This idea is formalized and extended in the next chapter.

Note that for using signal wj as an output, it is not strictly necessary that a
noise source vj is present. This special case is considered in the next Corollary.

Corollary 4.8 Consider the situation of Proposition 4.3. If the noise source vj
is not present. Then the module transfer functions G0

ji, i ∈ Nj can be estimated
consistently, under the conditions of Proposition 4.3, where the excitation condition
(c) is replaced by:

(c’) The spectrum of [wn1 · · · wnn
]T , n∗ ∈ Nj, ΦNj (ω) is positive definite for

ω ∈ [−π, π],

the delay condition (b) is removed, and the noise model is fixed to 1, thereby focusing
condition (d) on the module transfer property only.
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(a) (b)

Figure 4.3: Example of a system where not all wk, k ∈ Nj need to be included as
inputs in the predictor (w3 can just be considered as an uncorrelated disturbance).

Proof The same line of reasoning as in the proof of Proposition 4.3 can be followed
starting with (4.24) and plugging in vj = 0, H(θ) = 1, and σ2

ej = 0. �

4.5 IDENTIFICATION IN DYNAMIC NETWORKS USING THE 2-STAGE
METHOD

The Two-Stage Method for closed-loop identification as described in Section 3.4.2 of
Chapter 3 follows a different approach than the Direct Method. It explicitly utilizes
the presence of (known) external variables, and has the potential to consistently
identify module transfers without the necessity to consistently identify noise models
also. Consider the scheme depicted in Figure 4.4. The key is that the internal
variable wj and wi are excited by an external variable rm that is present somewhere
in the network. The following strategy is pursued in an attempt to consistently
identify the module transfer G0

ji. Note that here we attempt to use only wi as an
input in the predictor model.

..G0
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G0
jk1
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G0
jkn
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.
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rm
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vm

....wi .
wk1

.

wkn

. wj.

for k∗ ∈ Nj\{i}

.wm

Figure 4.4: Graphical representation of a data generating system where the internal
variable wi is excited through an external variable rm.

Algorithm 4.9 (Two-stage SISO model)
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1. Select a set of external variables {rm}, with m ∈ Tj ⊆ Ri, each of them
correlated with wi.

2. On the basis of the variables {rm}, m ∈ Tj and wi, determine w
(Tj)
i :

w
(Tj)
i :=

∑
m∈Tj

w
(rm)
i =

∑
m∈Tj

F 0
kmrm.

An estimate of w
(Tj)
i can be obtained by estimating {F 0

im}, m ∈ Tj using pa-
rameterized models Fim(q, γ), with γ a parameter vector, resulting in estimated
models Fim(q, γ̂N ). These models are used to generate the simulated signal:

ŵ
(Tj)
i (t, γ̂N ) =

∑
m∈Tj

Fim(q, γ̂N )rm(t)

3. Construct w̃j(t) = wj(t)−
∑

k∈Kj
G0

jk(q)wk(t)− rj(t), i.e. correct wj with all
known terms.

4. Identify the transfer function G0
ji on the basis of a predictor model with pre-

diction error

εj(t, θ) = Hj(q, η)
−1
(
w̃j(t)−Gji(q, θ)w

(Tj)
i (t)

)
using w̃j and w

(Tj)
i , an identification criterion (4.3), and where Hj is a fixed

noise model or parametrized independently of θ.

For this algorithm the following result can be obtained.

Proposition 4.10 Consider a dynamic network that satisfies Assumption 2.19.
Then the module transfer function G0

ji can be consistently estimated with Algorithm
4.9 if the following conditions are satisfied:

(a) The set Tj is non-empty.

(b) The external variables rm m ∈ Tj are uncorrelated to all noise variables vk,
k ∈ {j,U i

j};

(c) The projection of wi onto the set of external variables, w
(Tj)
i is persistently

exciting of a sufficiently high order2;

(d) All internal variables wk, k ∈ U i
j , k ̸= i, are uncorrelated to all rm, m ∈ Tj.

(e) The module transfer function G0
ji is in the model set, i.e. there exists a parameter

θ0 such that Gji(q, θ
0) = G0

ji(q). �
2Within the classical prediction error framework (Ljung, 1999), w(Tj)

i (t) will need to be persis-
tently exciting of an order at least equal to the number of unknown parameters that is estimated
in Gji(q, θ).
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Proof: Note that wj can be expressed as

wj(t) = G0
ji(q)wi(t) +

∑
k∈Kj

G0
jk(q)wk(t) +

∑
k∈Ui

j

G0
jk(q)wk(t) + rj(t) + vj(t)

= G0
ji(q)wi(t) + pj(t) + xj(t) + vj(t)

where pj reflects the contributions of all components G0
jk(q)wk that are known be-

cause of the fact that the dynamics G0
jk are known, as well as rj(t); and xj(t)

similarly reflects the contributions of all components G0
jk(q)wk that are unknown,

because the dynamics G0
jk are unknown.

Subsequently

wj(t)− pj(t) = G0
ji(q)wi(t) + xj(t) + vj(t)

where the left hand side is a known variable.
Condition (b) together with the fact that by construction all rm, m ∈ Tj are

correlated to wi, guarantee that wi can be decomposed as wi = w
(Tj)
i + w

(⊥Tj)
i .

Then,

wj − pj = G0
ji(q)

(
w

(Tj)
i + w

(⊥Tj)
i

)
+ xj + vj . (4.6)

Conditions (b) and (d) guarantee that xj is uncorrelated to all rm, m ∈ Tj . And
by condition (b) the noise vj is uncorrelated to all rm, m ∈ Tj , while w

(⊥Tj)
i is

uncorrelated to all rm, m ∈ Tj by construction.
As a result a prediction error identification on the basis of input w(Tj)

i and output
wj − pj will provide a consistent estimate of G0

ji, provided that the input w
(Tj)
i (t)

is persistently exciting of a degree at least equal to the number of parameters in
Gji(q, θ), see the classical conditions on consistency of prediction error estimates in
Ljung (1999). �

Note that as an alternative for the Two-Stage method, also the IV method could
have been used, using rm as instrument, wi as input and wj − pi as output, leading
to the same consistency result (Gilson & Van den Hof, 2005).

The next question is how to check whether the conditions of Proposition 4.10 are
satisfied. Both the appropriate construction of the set Tj and Condition (d) can be
checked mainly on the basis of the adjacency matrix A of the network.

Algorithm 4.11
Check for candidate external variables that are correlated to wi.

1. Evaluate element (i,m) of Aℓ for ℓ = 1, · · ·L.

2. If for any considered power ℓ this element is non-zero, then the external variable
rm qualifies as a candidate excitation source that excites the input wi.3

3In the case that
∑N

ℓ=1[A
ℓ]im > 1, there is a hypothetical option that different path connections

cancel each other. Since the actual correlation between rm and wi always needs to be checked, this
situation will not be dealt with separately.
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Check whether all wk, k ∈ U i
j are uncorrelated to all rm, m ∈ Tj.

Check whether there is no path from m to k:

1. Evaluate Aℓ for ℓ = 1, . . . , L.

2. For all k ∈ U i
j , k ̸= i, check whether the entries (k,m) of Aℓ are zero for all

powers ℓ.
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Figure 4.5: Dynamic network with 5 internal variables, of which 4 (blue-colored)
transfer functions can be consistently identified using the Two-Stage Method pre-
sented of Algorithm 4.9.

Example 4.12 Consider the dynamic network from Example 4.6, depicted in Figure
4.5. When applying the conditions of Proposition 4.10 it appears that the blue-colored
transfers, G0

32, G0
54, G0

15 and G0
45 can be consistently identified with the two-stage

approach presented in this section (i.e. using only wi as a predictor input). These
four transfers satisfy the conditions that their inputs are correlated to r1, while their
outputs do not include non-modeled terms that are correlated with r1.

Note that the transfers G0
21 and G0

23 do not satisfy the conditions of the Propo-
sition because there are unknown contributions to w2 that are correlated to r1.

Actually the conditions that are formulated for Proposition 4.10 are very restric-
tive and it may be very well possible that even in case of networks that have several
external variables present, there is no choice of Tj possible that satisfies the condi-
tions. Additionally, by limiting attention to SISO predictors, i.e. by only considering
wi as input in the predictor, the effect of all other inputs that affect wj will be mod-
eled as noise and therefore will increase the variance of the parameter estimate. An
alternative reasoning, that matches the situation of the direct method, is then to
extend the predictor to a MISO format, as reflected in the following algorithm.

Algorithm 4.13 (Two-stage MISO model)

1. Select a set of external variables {rm}, with m ∈ Tj ⊆ Ri, each of them
correlated with wi.

2. Determine the set of internal variables wk, k ∈ {U i
j , i} that is correlated to any

of the external variables {rm}, with m ∈ Tj. Denote this set as {wk}, k ∈ Uis.
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3. Determine w
(Tj)
k , for all k ∈ Uis (see step 2 of Algorithm 4.9 for details on

how to obtain an estimate of w(Tj)
k ).

4. Construct w̃j(t) = wj(t)−
∑

k∈Kj
G0

jk(q)wk(t)− rj(t), i.e. correct wj with all
known terms;

5. Identify the transfers G0
jk, k ∈ Uis on the basis of a predictor model with

prediction error

εj(t, θ) = Hj(q, η)
−1
(
w̃j(t)−

∑
k∈Ujs

Gjk(q, θ)w
(Tj)
k (t)

)
using w̃j and w

(Tj)
k , an identification criterion (4.3), and where Hj is a fixed

noise model or parametrized independently of θ.

For this algorithm the following result can be obtained:

Proposition 4.14 Consider a dynamic network that satisfies Assumption 2.19.
Then the module transfer function G0

ji can be consistently estimated with algorithm
4.13 if the following conditions are satisfied:

(a) The set Tj is non-empty.

(b) The external variables rm, m ∈ Tj are uncorrelated to noise variables vk, k ∈
{j,U i

j}.

(c) The power spectral density of [w(Tj)
n1 · · · w

(Tj)
nn ]T , n∗ ∈ Uis is positive definite for

ω ∈ [−π, π].

(d) The module transfers G0
jk are in the model set, i.e. there exists a parameter θ0

such that Gjk(q, θ
0) = G0

jk(q) for all k ∈ Uis. �

Under the considered conditions, all model transfer functions G0
jk, k ∈ Uis are

estimated consistently.

Proof: The proof follows the same line as reasoning as the proof of Proposition
4.10 with appropriate change of notation. �

Example 4.15 Returning now to the situation of Example 4.12, it can be observed
that with Algorithm 4.13, the remaining module transfers G0

21 and G0
23 can be iden-

tified by using a MISO predictor with inputs w1 and w3 and output w2. The external
excitation variable r1 excites both inputs. It only has to be checked whether this
excitation is sufficiently informative. Adding a second excitation variable could be
helpful in this respect.

Moving from a SISO to a MISO predictor further increases the complexity of
the identification procedure, in terms of number of models and parameters to be
estimated. However it also can substantially reduce the variance of the estimates
by improving the effective signal-to-noise ratio in the output. The choice for which
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inputs to use in the predictor, and which external variables to project upon, leaves
more freedom here to choose from.

Although in this chapter, we are dealing with noise-free measurements of the
internal variables, it has to be noted that the two-stage method can simply be
generalized to deal with the situation of having measurement noise on the internal
variables also. This is caused by the property that measurement noise will disappear
when the internal variables are projected onto the external variables.

4.5.1 Two-StageMethodWith Reconstructible Noise Variables
Whereas in the two-stage method external variables serve as a basis for removing
noise influences from inputs by way of projection, a similar mechanism can be real-
ized under particular circumstances by noise variables. Consider the situation that
somewhere in the network there is a noise variable vm present, that can be recon-
structed on the basis of internal variables and known transfers, and that provides
excitation for the internal variable wi that is an input to the transfer function G0

ji.
Then a reasoning that is completely similar to the two-stage method of the previous
section can be applied by treating this reconstructible noise variable as an external
variable.

The situation is depicted in Figure 4.6, where noise variable vm is reconstructible
if all transfers G0

mk, k ∈ Nm are known. Then xm can be calculated and vm can be
reconstructed according to vm = wm − xm. From this moment onwards vm can act
as as an external variable that can be used in both the SISO and MIMO predictor
of the two-stage method.

An algorithm for checking whether a noise variable is reconstructible is easily
generated. For every index m ∈ V: check if Km = Nm. If so, vm qualifies as
a reconstructible noise variable. Algorithms for checking whether vm satisfies the
appropriate correlation properties with respect to the inputs wi and wk, k ∈ Nj are
equivalent to the ones provided in the previous section.
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Figure 4.6: Single building block in a network structure, where the internal variable
wi is excited through a reconstructed noise variable vm.

Example 4.16 If we consider the network example of Figure 4.5, it appears that
both v3 and v5 qualify as a reconstructible noise variables, provided that the transfers
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G0
32 and G0

54 are known a priori. However in the considered situation none of the
remaining transfer functions satisfies the other condition of Proposition 4.10 that
the outputs should not be disturbed by unknown terms that are correlated to the (re-
constructible) noise source. However if we remove the outer loop connection G0

15, as
depicted in Figure 4.7, then G0

23 can be identified consistently through reconstructible
noise signal v3 if G0

32 is known. In Figure 4.7 this transfer is indicated in red. Sim-
ilarly, using a two-input predictor the Two-Stage method can now be applied to the
internal variable w2 with inputs w1, w3 and external variables r and v3.
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Figure 4.7: Dynamic network with 5 internal variables, of which 1 (red-colored)
transfer function can be consistently identified with the two-stage method presented
in this section 4.5.1 based on reconstructed noise signals.

The special phenomenon with reconstructible noise variables, is the appealing
mechanism that a noise signal with variance-increasing effects on the model esti-
mates, by the use of a prior knowledge of particular module transfers, can be turned
into an external excitation variable that reduces the variance of the estimates.

4.6 IDENTIFICATION IN DYNAMIC NETWORKS USING THE JOINT IO
METHOD

Also the joint IO method can be generalized to the situation of dynamic networks. As
with the other methods presented before, we focus on a particular internal variable
wj , for which we intend to identify the module transfer G0

ji. When isolating the
internal variables wi and wj , and modeling the vector process (wT

j , w
T
i )

T as the
output of a stationary stochastic process, it is very unlikely that the resulting process
will allow to determine consistent estimates of G0

ji, if the two internal variables are
part of a complex network topology. Like in the direct method, we have to extend
the number of internal variables that we take into account.

Consider the following partition of measured variables: w = {wj , wNj , wZj} where
Nj has the usual meaning, and Zj is a set of indices of all remaining variables, i.e.
Zj = {1, . . . , L} \ {{j} ∪ Nj}. Let wN denote the vector [wk1 · · · wkn ]

T , where
{k1, . . . , kn} = Nj . Let vN denote the vector [vk1 · · · vkn ]

T , where {k1, . . . , kn} = Nj ,
and where the ℓth entry is zero if vℓ is not present in the network (i.e. ℓ /∈ V). The
vectors wZ , vZ are defined analogously. The ordering of the elements of wN and vN
is not important, as long as it is the same for both these vectors (the same holds for



4.6 Identification In Dynamic Networks Using the Joint IO Method 83

wZ and vZ). The transfer function matrix between wN and wj is denoted G0
jN . The

other transfer function matrices are defined analogously.
Since in the Joint IO method no explicit use is made of external variables, we

assume that no r-variables are present, and that all external excitation originates
from noise variables.

Using these partitions the data generating system (4.1) can be written aswj

wN

wZ

 =

 0 G0
jN 0

G0
Nj G0

NN G0
NZ

G0
Zj G0

ZN G0
ZZ

wj

wN

wZ

+

vjvN
vZ

 . (4.7)

First we are going to formalize the properties of the vector process [wj wN ]T in
the next Lemma.

Lemma 4.17 Consider a dynamic network (4.7) that satisfies Assumption 2.19.
Suppose that vj is present and is uncorrelated to all other noise variables vk, k ∈ Vj.
The spectral density Φw(ω) of the vector process [wj wN ]T is:

Φw=

[
Ğ0

jjH
0
j G0

jN Ğ0
NN H̃0

N

Ğ0
NN G̃0

NjH
0
j Ğ0

NN H̃0
N

][
σ2
ej

Qs

][
Ğ0

jjH
0
j G0

jN Ğ0
NN H̃0

N

Ğ0
NN G̃0

NjH
0
j Ğ0

NN H̃0
N

]∗

=

[
W 0

jj W 0
jN

W 0
Nj W 0

NN

] [
σ2
ej

Qs

] [
W 0

jj W 0
jN

W 0
Nj W 0

NN

]∗
= W 0QW 0∗ (4.8)

where σ2
ej is the variance of ej, Qs is a positive definite matrix, and

Ğ0
jj = (1−G0

jN (I − G̃0
NN )−1G̃0

Nj)
−1,

Ğ0
NN = (I − G̃0

NN − G̃0
NjG

0
jN )−1,

G̃0
NN = G0

NN +G0
ND(I −G0

DD)
−1G0

DN ,

G̃0
Nj = G0

Nj +G0
ND(I −G0

DD)
−1G0

Dj ,

and H̃0
N is a monic, stable, minimum phase spectral factor of the stochastic process

vN +G0
ND(I −G0

DD)
−1vD.

There are a few important things to note about this lemma. The matrix W 0 is a
spectral factor of Φw. However, W 0 may not be monic. This is due to the fact that
some transfers G0

ji may not have delays. In particular the following two statements
can be verified using Lemmas 4.17 and 4.1:

• If every loop through k ∈ {N , j} in the data generating system has a delay,
then the diagonal entries of both W 0 and W 0−1 are monic transfer functions.

• If every path from wi to wj has a delay (is zero), then W 0
ji has a delay (is

zero).
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If the matrix W 0 as defined in Lemma 4.17 is available (or an estimate thereof)
then it is possible to obtain expressions for (estimates of) G0

jN and H0
j :

G0
jN = W 0

jNW 0
NN

−1 (4.9)

H0
j = W 0

jj −W 0
jNW 0

NN

−1
W 0

Nj . (4.10)

The main effort when using the Joint IO method goes into obtaining an estimate
of W 0. There are two ways to proceed. The first option is to use the prediction
error methods. In this case the measured signals (wj , wN ) are modeled as outputs
of an ARMA process. An estimate of W 0 is then obtained by estimating a noise
model. The second option is to first obtain an estimate of the power spectral density
of [wj wT

N ]T , denoted Φw, and then obtain an estimate of W 0 by calculating the
spectral factor of Φw.

In the following sections the two options are compared.

4.6.1 Joint IO Method - Prediction Error Approach
The algorithm is summarized as:

Algorithm 4.18 (Joint IO Method - Prediction Error Approach)

1. Choose parameterization of W (θ).

2. Minimize the sum of squared prediction errors to obtain θ̂, i.e., minimize

θ̂N = arg min
θ

VN (θ), where VN (θ) =
N−1∑
t=0

εT (t)ε(t).

3. Calculate GjN (θ̂N ) = WjN (θ̂N )W−1
NN (θ̂N ).

A key element of the Prediction Error approach is choosing the parameterization.
The parameterization must be chosen such that (a) the data generating system is
in the model set (there exists a parameter such that W (θ0) = W 0), and (b) the
parameter space is sufficiently restricted in order to guarantee uniqueness of θ0. In
this case, since we are only dealing with ARMA model structures, only the noise
model needs to be parameterized.

It is common in the prediction error method to parameterize H as a monic,
stable, and minimum phase transfer matrix. This guarantees uniqueness of H0.
However, using this choice of parameterization will not lead to consistent estimates
in the situation that we are considering. This is because we are using H to model
not only the noise component of the signal, but also the module dynamics. From
Lemma 4.17 it can be seen that if certain transfers G0

ji have delays, then W 0 will
not be monic (i.e. off-diagonal elements of limz→∞ W 0(z) will be non-zero).

In order to ensure that the data generating system is in the model set, every
transfer without a delay in the data generating system must be parameterized with-
out a delay in the model. Note that the converse statement does not need to hold.
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A transfer with a delay need not be parameterized with a delay in order for the data
generating system to be in the model set.

The following two lemmas will provide insight as to how to parameterize the
model such that both the data generating system is in the model set, and uniqueness
can be guaranteed.

Lemma 4.19 Consider a dynamic network that satisfies Assumption 2.19. If every
path from wk2 to wk1 , k1 ̸= k2, k1, k2 ∈ {j,Nj} has a delay (is zero) then W 0

k1k2
has

a delay (is zero). If every loop through wk k ∈ {j,Nj} has a delay (is zero) then
W 0

kk is a monic transfer function (is one).

Lemma 4.20 Consider a dynamic network that satisfies Assumption 2.19. Suppose
that every loop involving wk, k ∈ {j,Nj} has a delay. Then there exists a permutation
matrix

P =

[
1 0
0 PNN

]
such that[

1 0
0 PNN

] [
Wjj(∞) WjN (∞)
WNj(∞) WNN (∞)

] [
1 0
0 PNN

]T
=

 1 [djN 0][
0
dNj

]
L0

NN

 (4.11)

where length(djN )+ length(dNj) = n, where n = card(Nj) and L0
NN is lower triangular

with ones on the diagonal.

The proof can be found in Appendix 4.8.4. Here we have used the notation Wjj(∞)
as a short-hand to denote limz→∞ Wjj(z).

In light of Lemma 4.20, consider the following parameterization scheme. Choose

W (θ) =

[
Wjj(θ) WjN (θ)
WNj(θ) WNN (θ)

]
(4.12)

such that S ∈ M and

W (∞, θ) =

 1 [djN (θ) 0][
0

dNj(θ)

]
L(θ)

 (4.13)

where length(djN (θ)) is equal to the number of non-zero elements in G0
jN (∞), and

length(dNj) is equal to n − length(djN (θ)), and L(θ) is a fully parameterized lower
triangular matrix with ones on the diagonal.

As mentioned, one role that the parameterization plays is to ensure uniqueness
of the estimates. An important feature of the parameterization (4.12) is that both
W (∞, θ) and W−1(∞, θ) have ones on the diagonal. This feature ends up ensuring
the uniqueness of the estimates.

Finally, consider the following Proposition which shows that an ARMA model
parameterized as in (4.12) and (4.13) results in consistent estimates of G0

jN using
Algorithm 4.18.
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Proposition 4.21 Consider a data generating system (4.1) that satisfies Assumtion
2.19. Consistent estimates of G0

jN can be obtained using Algorithm 4.18 if the
following conditions hold:

(a) vj is present, and is uncorrelated to all vk, k ∈ Vj.

(b) The process vN + G̃NDvD is full rank.

(c) For all k ∈ {j,N}, every loop through wk in the data generating system has a
delay.

(d) The model W (θ) is parameterized according to (4.12) and (4.13).

The proof can be found in Appendix 4.8.5.

4.6.2 Joint IO Method - Spectral Factorization Approach
Although, by Proposition 4.21, Algorithm 4.18 leads to a consistent estimate of G0

jN ,
it may be difficult to implement in practice. The key points are that choosing the
parameterization (4.12) such that Condition (d holds could be difficult. Secondly,
since there are a large number of parameters involved, finding the global minimum
of VN (θ) could also be difficult.4

Fortunately, as stated in Section 3.4.3 of Chapter 3 there exists an alternative
approach to finding an estimate of W 0. Namely the spectral factorization approach.
By exactly the same reasoning as in Section 3.4.3 it follows that W 0 is a spectral
factor of the power spectral density of [wj wN ]T .

Before proceeding to the result, consider the following nomenclature and nota-
tion. Let W be a matrix of transfer functions. Let limz→∞ W (z) be denoted W (∞).
The matrix W is monic if W (∞) = I (i.e. has ones on the diagonal and zeros
elsewhere). The matrix W is stable if all transfer functions in W are stable. The
matrix W is minimum phase W−1 exists and is stable.

Consider a data generating system where all transfer functions have a delay. Then
by Lemmas 4.19 and 4.17, W 0 is monic, stable and minimum phase. By the Spectral
Factorization Theorem5 of Youla (1961) every power spectral density matrix has a
unique monic, stable and minimum phase spectral factor. Consequently, in this case
W 0 is the unique monic, stable, minimum phase spectral factor. Moreover, there
exist several methods to obtain this spectral factor from data (Van Overschee et al.,
1997; Mari & Stoica, 2000; Hinnen et al., 2005). Thus, in this case the following
algorithm can be used to obtain an estimate of W 0.

Algorithm 4.22 Assume that all transfer functions in the data generating system
have a delay. Assume the power spectral density of [wj wT

N ]T , or an estimate thereof
is available. Denote it Φw.

4The MATLAB system identification toolbox cannot be used to find models with this param-
eterization since the toolbox only allows for diagonal noise models, thus dedicated code must be
written.

5See Appendix 4.8.6 for the exact statement of the Spectral Factorization Theorem.
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1. Obtain an estimate of the unique monic, stable, and minimum phase spectral
factor of Φw. This is an estimate of W 0.

2. Use (4.9) and the estimate of W 0 to obtain an estimate of G0
jN .

However, it is too restrictive to only consider data generating systems for which
all transfer functions have a delay. As in the previous section, consider a data
generating system such that all loops through all wk, k ∈ {j} ∪ Nj have a delay. In
this case W 0 is not monic - there may be paths from some wk1

to wk2
that don’t

have a delay, which, by Lemma 4.19, results in W 0(∞) having a non-zero off-diagonal
element. Therefore the following Algorithm is proposed to estimate G0

jN .

Algorithm 4.23 (Joint IO Method - Spectral Factorization Approach)
Assume all loops through wk, k ∈ N ∪ {j} have a delay. Assume the power spectral
density of [wj wT

N ]T , or an estimate thereof is available. Denote it Φw.

1. Obtain an estimate of the unique monic, stable, and minimum phase spectral
factor of the stochastic process Φw. Denote this estimate as M , and denote the
estimated covariance matrix as T (i.e. Φw = M0T 0M0∗).

2. Use M and T to obtain an estimate of W 0.

3. Use (4.9) and the estimate of W 0 to obtain an estimate of G0
jN .

In the remaining text, we focus on Step 2 of Algorithm 4.23. The proceedure
that is presented is algorithmic in nature, and thus can be easily implemented in
practice (using MATLAB for instance).

First, we establish a connection between W 0, the non-monic spectral factor that
we need in order to obtain an estimate of G0

jN and M0, the unique monic, stable,
minimum phase spectral factor of Φw. Let D0 denote the direct feed-through term
of W 0:

D0 = lim
z→∞

W 0(z).

Then

Φw = W 0Q0W 0∗

= W 0D0−1

D0Q0D0TD0−T

W 0∗

= M0T 0M0∗ (4.14)

where M0 = W 0D0−1 is monic, stable and minimum phase, and T 0 = D0Q0D0T is
a positive definite matrix.

From (4.14) it follows that once an estimate of D0 is available, W 0 can be re-
constructed from M0 (i.e. W 0 = M0D0).

However, it is not necessary to exactly estimate D0 in order to obtain an estimate
of G0

jN . The matrix D0 need only be known up to a similarity transform X where

X =

[
1 0
0 XNN

]
(4.15)
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where XNN is a full rank n × n matrix of real numbers, and n is the cardinality of
Nj . To see why this is so, suppose that D̃0 = D0X is known. Thus an estimate
of W 0 is known up to a similarity transform of the form (4.15) (since we have an
estimate of M0 is available from Step 1 of Algorithm 4.23):

W̃ 0 = M0D̃0

= M0D0X

= W 0X

=

[
Ğ0

jjH
0
j G0

jN Ğ0
NN H̃0

NXNN

Ğ0
NN G̃0

NjH
0
j Ğ0

NN H̃0
NXNN

]
(4.16)

Using W̃ 0 to obtain an estimate of G0
jN according to (4.9) results in:

W̃ 0
jNW̃ 0−1

NN = G0
jN Ğ0

NN H̃0
NXNN

(
Ğ0

NN H̃0
NXNN

)−1

= G0
jN (4.17)

as desired.
In light of this similarity transform, we focus on the following problem: given an

estimate of T 0, obtain an estimate of D̃0 (recall that T 0 is available from Step 1 in
Algorithm 4.23). Once D̃0 is known, an estimate of G0

jN can be obtained as shown
above.

To this end, recall the connection between T 0 and D0. From (4.14) we have
T 0 = D0Q0D0T where T 0 is known, but Q0 and D0 are unknown. Although Q0

is unknown, we do know from Lemma 4.17 that Q0 is block diagonal (i.e. the
off-diagonal terms of the first row and column are all zero). Now consider the
connection between T 0 and D̃0 (i.e. the connection between T 0 and D0 up to a
similarity transform X of the form (4.15)):

T 0 = D0XX−1Q0X−TXTD0T

= D̃0Q̃0D̃0T (4.18)

where X is any matrix of the form (4.15) and Q̃0 = X−1Q0X−T . Note that since
Q0 is block diagonal, Q̃0 is also block diagonal.

From Lemma 4.20 we see that D0 (recall that D0 is defined as W 0(∞)) can be
permuted so that it has the form (4.11) (as long as every loop through each wk,
k ∈ Nj ∪ {j} has a delay). Thus, without loss of generality we can consider D̃0 to
have the form:

D̃0 =

 1 d̃jN 0
0 I 0

d̃Nj ∗ I

 . (4.19)

Now we present an algorithm to obtain D̃0 from the known matrix T 0. The algorithm
is based on (4.18) and the following facts: it is known that the off diagonal entries
of the first row and column of Q̃0 are all zero; and it is known that D̃0 has the form
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(4.19). The algorithm proceeds by performing row and column operations on T 0 to
place zeros in the correct places according to the known locations of zeros in D̃0 and
Q̃0. The result of these operations is an estimate of D̃0.

Let T 0 be denoted/partitioned as:

T 0 =

T 0
11 T 0T

21 T 0T

31

T 0
21 T 0

22 T 0T

32

T 0
31 T 0

32 T 0
33


where the partition is such that T 0

11 is a scalar, T 0T

12 has the same dimensions as d̃jN
in (4.19) and T 0

31 has the same dimensions as d̃Nj in (4.19).

Algorithm 4.24 (Obtain D̃0 from T 0)

1. Place a vector of zeros in the (2, 1) and (1, 2) partitions of T 0:

T 0 =

1 T 0T

21 T 0−1

22 0
0 I 0
0 0 I


T̃ 0

11 0 T̃ 0T

31

0 T 0
22 T 0T

32

T̃ 0
31 T 0

32 T 0
33


 1 0 0

T 0−1

22 T 0
21 I 0

0 0 I

 (4.20)

where

T̃ 0
11 = T 0

11 − T 0T

21 T 0−1

22 T 0
21,

T̃ 0
31 = T 0

21 − T 0T

21 T 0−1

22 T 0T

32 .

2. Set the remaining off-diagonal non-zero entries in the top row and first column
of the middle matrix in (4.20) to zero:

T 0=

1 T 0T

21 T 0−1

22

I
I

 1
I

T̃ 0
31T̃

0−1

11 I

T̃ 0
11 0 0

0 T 0
22 T 0T

32

0 T 0
32 T̃ 0

33

1 T̃ 0−1

11 T̃ 0T

31

I
I

 1

T 0−1

22 T 0
21 I

I


where

T̃33 = T 0
33 − T̃ 0T

31 T̃ 0−1

11 T̃ 0
31.

3. Multiply the first two matrices and the last two matrices resulting in the following
equation:

T 0 =

 1 T 0T

21 T 0−1

22 0
0 I 0

T̃ 0
31T̃

0−1

11 0 I

T̃ 0
11 0 0

0 T 0
22 T 0T

32

0 T 0
32 T̃ 0

33

 1 0 T̃ 0−1

11 T̃ 0T

31

T 0−1

22 T 0
21 I 0

0 0 I

 ,

(4.21)

where the first matrix has zero entries in the same locations as D̃0 in (4.19) and
the middle matrix has zero entries in the same locations as Q̃0 in (4.18). Thus,
by (4.18), the first matrix in (4.21) is D̃0 and the middle matrix is Q̃0 (up to a
similarity transforms of the form (4.15)).
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Using this estimate of D̃0, it is possible to construct an estimate of W̃ 0 in (4.16).
Then from the estimate of W̃ 0 an estimate of G0

jN can be obtained as shown in
(4.16).

In this section we have shown that it is possible to use the Joint IO method
for identification in dynamic networks. The conditions under which it is possible
to consistently identify G0

ji are very similar to the Direct Method in the sense that
we require S ∈ M and that there is a condition on the presence of algebraic loops.
However, the condition on the absence of algebraic loops is slightly stricter for the
Joint IO method since for this method it is required that all loops through all wk, k ∈
N ∪{j} have a delay, whereas for the Direct Method this condition only had to hold
for loops through wj . In addition a weakness of the Prediction-Error formulation
of the Joint IO method is the practical implementation. However, using tools from
spectral factorization theory, it is possible to develop a practical implementation of
the method.

4.7 SUMMARY
Several methods for closed-loop identification have been generalized to become ap-
plicable to systems that operate in a general network configuration. In the current
setting we have focused on networks in which noise free measurements of all internal
variables are available, and where our intention is to model one particular module.
Complex networks can be handled and effective use can be made of external vari-
ables. These external variables limit the necessity to perform exhaustive consistent
modeling of all noise sources in the network. The several prediction error methods
presented (direct method, two-stage method based on either external variables or
on reconstructible noise signals, and joint-IO method) are shown to be able to es-
timate particular subparts of the network. It opens questions as to where and how
many external and internal variables are required to identify particular parts of the
network.

4.8 APPENDIX
4.8.1 Proof of Lemma 4.1
Let G0(∞) denote limz→∞ G0(z), and let G0(∞) represent a directed graph, denoted
by G. If every path from b → a has a delay then there is no path from b to a in the
graph defined by G0(∞). We can now separate the nodes of G into two groups, one
called A, containing node a and all nodes that have a path to a, and a second group
of nodes called B, containing b and all remaining nodes that have no path to a. By
reordering the nodes in the graph G, the matrix G0(∞) related to this reordered
representation can be written as

G0(∞) =

[
GAA 0
GBA GBB

]
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where GAA and GBB both have zeros on the diagonals.
With the inversion rule for block matrices it follows that:(

I −G(∞)
)−1

=

[
I −GAA 0
−GBA I −GBB

]−1

=

[
∗ 0
∗ ∗

]
which shows that the (a, b) entry in (I − G0(∞))−1 is zero. Since (I − G0)−1 is
proper, this implies that the (b, a) entry in (I −G0)−1 has a delay.
The reasoning to show that if there is no path from b to a then G0

ab = 0 is completely
analogous except that instead of working with G0(∞), it is necessary to work with
G0. �

4.8.2 Proof of Proposition 4.3
Proof:

1. Show that the lower bound of the objective function V̄j(θ) := Ēε2j (t, θ) is σ2
ej ,

the variance of ej .

2. Show that V̄j(θ) = σ2
ej implies that θ = θ0 (i.e the global minimum is attainable

and unique).

Step 1. Throughout the proof, it will be useful to expand the measured variable
wi in terms of all noise sources and external inputs that affect wi. From (4.1) and
using the notation from Lemma 4.1 we have:

wi =

L∑
k=1

G0
ik(vk + rk) =

∑
k∈Vi

G0
ikvk +

∑
k∈Ri

G0
ikrk (4.22)

where the second equality holds by Lemma 4.1 and the definitions of Vi and Ri.
Now, (4.22) will be used to express the objective function in terms of only noise

sources and external inputs. With the predictor (4.4) it follows that

V̄j(θ) = Ē
[(

H−1
j (θ)

(
vj +

∑
i∈Nj

(
G0

ji −Gji(θ)
)
wi

))2]
= Ē
[(
H−1

j (θ)
(
vj+

∑
i∈Nj

∆Gji(θ)
(∑
k∈Vi

G0
ikvk+

∑
k∈Ri

G0
ikrk

)))2]
= Ē

[(
∆Hj(θ)vj +H−1

j (θ)
∑
i∈Nj

∑
k∈Vi

∆Gji(θ)G0
ikvk

+H−1
j (θ)

∑
i∈Nj

∑
k∈Ri

∆Gji(θ)G0
ikrk + ej

)2]
(4.23)

where ∆Gji(θ) = G0
ji −Gji(θ), and ∆Hj(θ) = H−1

j (θ)−H0
j
−1. Next Condition (b)

will be used to simplify this expression.
By (b) if G0

ji has a delay, then Gji(θ) will be parameterized with a delay (i.e.
∆Gji(θ) has a delay if G0

ji has a delay). Moreover, by Lemma 4.1 the term G0
jiGij
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has a delay if all paths from j to j have a delay. By Condition (b), every path from
j to j has a delay, therefore, ∆Gji(θ)G0

ij has a delay for all i.
Consequently every term in (4.23) is uncorrelated to ej :

• since Hj(θ) and H0
j are both monic, ∆Hj(θ)vj is a function of vj(t−k), k > 1;

• as described above, ∆Gji(θ)G0
ijvj is also a function of vj(t− k) k > 1;

• by Condition (a) any term involving vk, k ∈ Vj , k ̸= j is uncorrelated to ej ;

• by Condition c of Assumption 2.19, ej is uncorrelated to rk for all k.

Using this reasoning to simplify (4.23) results in:

V̄j(θ) = Ē
[(

∆Hj(θ)vj +H−1
j (θ)

∑
i∈Nj

∑
k∈Vi

∆Gji(θ)G0
ikvk

+H−1
j (θ)

∑
i∈Nj

∑
k∈Ri

∆Gji(θ)G0
ikrk

)2]
+ σ2

ej

= Ē
[(
∆Hj(θ)vj+H−1

j (θ)
∑
i∈Nj

∆Gji(θ)wi

)2]
+σ2

ej (4.24)

where σ2
ej is the variance of ej . From (4.24), it is clear that V̄j(θ) ≥ σ2

ej . This
concludes the first step.
Step 2. Next it must be shown that the global minimum of V̄j(θ) is attainable and
unique. This will be done by showing

V̄j(θ) = σ2
ej ⇒ θ = θ0.

Using (4.24), V̄j(θ) = σ2
ej can be written as

Ē
[ ∑
i∈Nj

∆Gji(θ)

Hj(θ)
wi +∆Hj(θ)vj

)2]
+ σ2

ej = σ2
ej

or equivalently

Ē

[([
∆Hj(θ)

∆Gjn1(θ)

Hj(θ)
· · · ∆Gjnn

(θ)

Hj(θ)

]
vj
wn1

...
wnn


)2]

= 0

Ē

[(
∆x(θ)


1 −G0

jn1
· · · −G0

jnn

1
. . .

1



wj

wn1

...
wnn


)2]

= 0

Ē
[(

∆x(θ)TJw{j,Nj}

)2]
= 0 (4.25)
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where

∆x(θ)T =
[
∆Hj(θ)

∆Gjn1(θ)

Hj(θ)
· · · ∆Gjnn

(θ)

Hj(θ)

]
,

wT
{i,Nj} = [wj wn1 · · · wnn

], nk ∈ Nj .

Using Parseval’s Theorem results in:

1

2π

∫ π

−π

∆x(ejω, θ)TJΦ{j,Nj}(ω)J
∗∆x(e−jω, θ)dω=0

for ω ∈ [−π, π), where J∗ denotes the conjugate transpose of J . By Condition (c),
Φ{j,Nj}(ω) is positive definite. Moreover, J(ejω) is full rank for all ω. Thus the only
way the equation can hold is if each entry of [∆Hj ∆Gjn1 · · · ∆Gjnn1

] is equal to
zero for all ω. Therefore, by Condition (d) and if the parameterization of Gji(θ) is
such that the only way that G0

ji −Gji(θ) is equal to zero is when Gji(θ) = G0
ji, the

global minimum of V̄j(θ) is unique. �

Remark 4.25 There exists an alternative reasoning to prove the proposition, by
utilizing the equivalent feedback structure as presented in Proposition 4.2, combined
with the reasoning in Van den Hof et al. (1992) concerning absence of algebraic loops.
However the proof presented above naturally includes the excitation conditions also.

4.8.3 Proof of Lemma 4.17
Proof: The variables wZ can be eliminated from the equations:[

wj

wN

]
=

[
0 G0

jN

G0
Nj G0

NN

][
wj

wN

]
+

[
0

G0
NZ

]
(I −G0

ZZ)
−1[G0

Zj G0
ZN

][wj

wN

]
+

[
0

G0
NZ

]
(I −G0

ZZ)
−1vZ +

[
vj
vN

]

=

[
0 G0

jN

G̃0
Nj G̃0

NN

] [
wj

wN

]
+

[
I 0 0

0 I G̃0
NZ

]vjvN
vZ

 ,

where the several matrices G̃ are implicitly defined through the equations. The
transfer from wN to wj is still G0

jN , whereas the transfer from wj to wN has become
a composite function of various tranfers (denoted G̃0

Nj). Subsequently the map from
v to [wj wN ]T is

[
wj

wN

]
=

[
1 −G0

jN

−G̃0
Nj I − G̃0

NN

]−1 [
I 0 0

0 I G̃0
NZ

]vjvN
vZ

 .

Consider the stochastic process vN + G̃0
NZvZ which appears as part of wN . Denote the

power spectral density of this process as Φ̃N (ω), and let H̃0
N be its monic, stable and
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minimum-phase spectral factor. Substituting this into the expression of the data
generating system results in[

wj

wN

]
=

[
Ğ0

jj G0
jN Ğ0

NN

Ğ0
NN G̃0

Nj Ğ0
NN

][
H0

j

H̃0
N

][
ej
ẽN

]
where ej and ẽN are uncorrelated since vj and vN and vZ are uncorrelated. �

4.8.4 Proof of Lemma 4.20
Proof: Since we are assuming that every loop through wk, k ∈ {j,Nj} has a delay,
it follows by Lemma 4.19 that the diagonal entries of W 0 are monic transfers. This
proves the top left entry of (4.11).

Consider a graph of W 0
NN (∞) − I. By Lemma 4.19, since every loop involving

wk, k ∈ {j,Nj} has a delay this is an acyclic graph. By Theorem 2.18 it follows that
there exists a permutation matrix PNN such that PNNW 0

NN (∞)PT
NN is lower triangular.

Consequently, the lower right entry of (4.11) holds. Note that PNN may not be
unique. Let PNN denote the set of permutation matrices such that the lower right
entry of (4.11) holds.

Finally it must be shown that for at least one PNN ∈ PNN , the off diagonal entries
of (4.11) also hold. The reasoning will be split into two steps. First it will be shown
that there exists a PNN ∈ PNN such that PNNW 0

NjW
0
jNPT

NN is strictly lower triangular.
Secondly, it will be shown that for this matrix to be strictly lower triangular, the off
diagonal entries of (4.11) must hold.

Consider the graph of W 0
NN (∞)+W 0

Nj(∞)W 0
jN (∞)−I. This graph is equal to the

original graph of W 0
NN (∞)− I with some new egdes added. The set of permutation

matrices that triangularizes W 0
NN (∞)+W 0

Nj(∞)W 0
jN (∞)− I will be a subset of PNN

since edges have only been added to W 0
NN (∞)−I and none have been removed. This

implies that if W 0
NN (∞) +W 0

Nj(∞)W 0
jN (∞)− I is not triangularizable by any PNN ∈

PNN then there does not exist a permutation matrix such that it is triangularizable.
Denote, P ′

NN ∈ P ′
NN ⊆ PNN as the set of permutation matrices that triangularize

W 0
NN (∞) +W 0

Nj(∞)W 0
jN (∞)− I

By the condition that all loops passing through wk, k ∈ {j,Nj} have a delay, the
graph W 0

NN (∞) +W 0
Nj(∞)W 0

jN (∞) − I is acyclic. By Proposition 2.18 this implies
that there exists a permutation matrix P ′

NN such that

P ′
NN

(
W 0

NN (∞) +W 0
Nj(∞)W 0

jN (∞)− I
)
P ′T

NN

is lower triangular. Consequently, P ′
NN is not empty. Since P ′

NN ⊆ PNN it follows
that there exists a permutation matrix such that W 0

NN (∞) and W 0
Nj(∞)W 0

jN (∞) are
both lower triangular.

From Lemma 4.19 it follows that the diagonal entries of P ′
NNW 0

Nj(∞)W 0
jN (∞)P ′T

NN

are zero and therefore this matrix is strictly lower triangular.
Next it will be shown that the fact that PNNW 0

NjW
0
jNPT

NN is strictly lower tri-
angular implies that the off diagonal entries of (4.11) hold. Consider two vectors,
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xT = [xT
1 xT

2 ] and yT = [yT1 yT2 ]. Then,[
x1

x2

] [
yT1 yT2

]
=

[
x1y

T
1 x1y

T
2

x2y
T
1 x2y

T
2

]
.

The only way this this matrix can be strictly lower triangular is if both x1 and y2 are
zero. Let x = PNNW 0

Nj(∞) and y = W 0
jN (∞)PT

NN , then by this reasoning, it follows
that the off diagonal entries of (4.11) hold.

4.8.5 Proof of Proposition 4.21
Proof: Refer to Lemma 4.17, and let Q = LQDLT

Q be the LDL decompostion of Q.
By Lemmas 4.19 and 4.20, and Condition (c) it is possible to assume, without loss
of generality, that W 0(∞) is of the form:

W 0
jj(∞) = 1 (4.26)

W 0
jN (∞) = [djN 0] (4.27)

W 0
Nj(∞) =

[
0
dNj

]
(4.28)

W 0
NN (∞) = L0

NN (4.29)

In other words, the variables wk, k ∈ N have been arranged such that (4.26) - (4.29)
hold. The proof will proceed in the usual fashion:

1. Calculate a lower bound on V̄ (θ) ≥ trace{D}

2. Show that achieving this lower bound implies that W (θ∗) = W 0LQ.

Using this expression of W (θ∗), consistent estimates of G0
jN can be obtained.

Step 1. The expression for V̄ (θ) is

V̄ (θ) = Ē[εT (t, θ)ε(t, θ)]
= Ē

[
wTW (θ)−TW (θ)−1w

]
= tr

{
Ē[W (θ)−1wwTW (θ)−T ]

}
=

1

2π

∫ π

−π

tr
{
W (θ)−1W 0Q(W (θ)−1W 0)∗

}
dω

=
1

2π

∫ π

−π

tr
{
W (θ)−1W 0LQDLT

Q(W (θ)−1W 0)∗
}

dω (4.30)

where tr stands for trace and ∗ denotes complex conjugate. By Condition (a) and
Lemma 4.17 it follows that LQ has the form

LQ =

[
1 0
0 LQ

NN

]
where LQ

NN is lower triangular with ones on the diagonal.
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The expression (4.30) can be expanded as:

V̄ (θ)=
1

2π

∫ π

−π

tr
{
(W(θ)−1W 0LQ−I)D(W(θ)−1W 0LQ−I)∗ + (W(θ)−1W 0LQ − I)D

+D(W(θ)−1W 0LQ − I)∗ +D
}

dω (4.31)

Two important properties of (4.31) is that the first term is always greater than zero
for any θ, and secondly that the last term is not a function of θ. In the following text
it will be shown that the second and third terms of (4.31) are zero. Consequently,
V̄ (θ) ≥ tr{D}.

Consider the second term of (4.31):

(W(θ)−1W 0LQ−I)D=

([
Wjj(θ)−WjN (θ)W−1

NN (θ)WNj(θ) 0
0 WNN (θ)−WNj(θ)W

−1
jj (θ)WjN (θ)

]−1

·
[
W 0

jj−WjN (θ)W−1
NN (θ)W 0

Nj W 0
jN−WjN (θ)W−1

NN (θ)W 0
NN

W 0
Nj−WNj(θ)W

−1
jj (θ)W 0

jj W 0
NN−WNj(θ)W

−1
jj (θ)W 0

jN

][
1 0
0 LQ

NN

]
− I

)
D

By Lemmas 4.19 and 4.20 and Condition (d),(
Wjj(θ)−WjN (θ)W−1

NN (θ)WNj(θ)
)−1 ·

(
W 0

jj−WjN (θ)W−1
NN (θ)W 0

Nj

)
− 1

is a strictly proper transfer function, which means that the first diagonal element of
(W(θ)−1W 0LQ−I)D is a strictly proper transfer function.

Secondly, Lemmas 4.19 and 4.20 and Condition (d),(
WNN (θ)−WNj(θ)W

−1
jj (θ)WjN (θ)

)−1 ·
(
W 0

NN−WNj(θ)W
−1
jj (θ)W 0

jN

)
LQ

NN .

is a product of three lower triangular matrices with ones on the diagonals. In par-
ticular the first term is lower triangular due to Condtion (d), and the fact that the
inverse of a lower triangular matrix with ones on the diagonal is a lower triangular
matrix with ones on the diagonal. The second term is lower triangular with ones
on the diagonal by Lemmas 4.19 and 4.20. The third term is lower triangular with
ones on the diagonal by construction. The statement follows, since the product of
triangular matrices with ones on the diagonal, is a lower triangular matrix with ones
on the diagonal. Consequently, the diagonal terms of (W(θ)−1W 0LQ−I)D are all
strictly proper transfer functions.

Finally, the integral in (4.30) is zero for strictly proper transfer fucntions. Con-
sequently (4.31) can be simplified,

V̄ (θ)=
1

2π

∫ π

−π

tr
{
(W(θ)−1W 0LQ−I)D(W(θ)−1W 0LQ−I)∗+D

}
dω ≥ tr{D} (4.32)

Step 2. From (4.32) V̄ (θ) = tr{D} implies that

1

2π

∫ π

−π

tr
{
(W(θ)−1W 0LQ−I)D(W(θ)−1W 0LQ−I)∗

}
dω = 0 (4.33)
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Since D is positive definite ∀ω ∈ [−π, π) this implies that (W(θ)−1W 0LQ−I) = 0
∀ω ∈ [−π, π). Consquently,

W (θ) = W 0LQ for all ω ∈ [−π, π)[
Wjj(θ) WjN (θ)
WNj(θ) WNN (θ)

]
=

[
W 0

jj W 0
jNLQ

NN

W 0
Nj W 0

NNLQ
NN

]
(4.34)

By Condition (d) and Lemma 4.20 the parameterization is such that there exists a
solution to this equation. In particular the parameterization is such that the equality

WjN (θ) = W 0
jNLQ

NN

can hold. This completes the proof.

4.8.6 Spectral Factorization Theorem
Theorem 4.26 (Spectral Factorization Theorem Youla (1961)) Let Φ(z) be
a n× n real rational full rank spectral density matrix.

(a) There exists a unique factorization of the form Φ(z) = W̄ (z)Q̄W̄ ∗(z), in which
W̄ (z) is n× n, real, rational, stable, minimum phase and such that W̄ (∞) = I,
with Q̄ positive definite.

(b) Any other factorization of the form Φ(z) = W (z)QW ∗(z) in which W (z) is
real rational, and Q is positive semi-definite, is such that W (z) = W̄ (z)V (z),
where V (z) is a real rational scaled paraunitary matrix, i.e. V (z)QV ∗(z) = Q̄.
Moreover V (z) is stable if and only if W (z) is stable.

(c) Any other factorization of the form Φ(z) = W (z)QW ∗(z) in which W (∞) is
finite and nonsingular, W (z) is n×n real rational, stable, and minimum phase,
and Q is positive definite is such that W (z) = W̄ (z)T , where T is a real non-
singular constant matrix, with TQTT = Q̄.





Chapter 5

PREDICTOR INPUT SELECTION

In Chapter 4 several methods have been proposed to obtain consistent estimates of
a module embedded in a dynamic network. However, in that chapter, the variables
that are included in the predictor model are not considered as a user choice. In this
chapter it is shown that there is considerable freedom as to which variables can be
included as inputs to the predictor, while still obtaining consistent estimates of the
particular module of interest. This freedom is encoded into sufficient conditions on
the set of predictor inputs such that if the conditions are satisfied, consistent estimates
of the the module of interest are possible. The conditions can be used to find the
smallest number of predictor inputs, or they can be used to determine if it is possible
to obtain consistent estimates without using certain variables for instance. Thus, the
conditions can be used to design sensor placement schemes. In this chapter the Direct
and Two Stage Prediction-Error methods are studied. Algorithms are presented for
checking the conditions using tools from graph theory.1

5.1 INTRODUCTION

IN CHAPTER 4 it has been assumed that (noise free) measurements of all internal
variables in the network are available. However, although it may be possible
to take measurements at many different locations in the network, it may be

expensive or inconvenient to do so. Thus, it may be attractive to use the minimum
number of required variables or avoid using variables that are difficult (unsafe or
practically unfeasible) to measure in order to obtain estimates of the module of
interest.

The variables that are measured are available to use as predictor inputs, i.e.
the predictor inputs are the variables that will be used to predict the value of a
particular internal variable. Specifically, the question addressed in this chapter is:
given a dynamic network with known interconnection structure, for which selection
of predictor inputs can we guarantee that a particular module of interest can be
estimated consistently? Conditions are presented for the set of predictor inputs

1This chapter is based on the papers Dankers et al. (2014d, 2013a,b).
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that ensure this property. The conditions are derived for the Direct and Two-Stage
Prediction-Error Methods.

If only a subset of variables in a network are measured, then measurement data
can only reveal the dynamical links between the measured variables. In this chapter
the related identifiability problem will be addressed by formalizing the notion of
an immersed network. This is the network that (exactly) describes the dynamic
relationships between the (subset) of measured/available variables. Under particular
conditions on the set of available variables the relevant module of interest in the
immersed network and the original network are the same.

The conditions point to a particular notion of identifiability of modules embedded
in the network based on the availability of measurements. The conditions presented
in this chapter can be used to answer the following questions. Given a set of variables
from a network, which module transfer functions are identifiable? Or, conversely,
which variables should be measured in order to ensure that a particular module in
the network is identifiable?

In Section 5.2 a generalization of the Direct and Two-Stage methods is presented,
along with some notation that will be used throughout the remainder of the chapter.
In Section 5.3 the notion of the immersed network is presented and the relationship
between the dynamics of the immersed network and the original network is inves-
tigated, and in Sections 5.4 and 5.5 the conditions that the predictor inputs must
satisfy are derived for each method. In Section 5.6 an algorithm based on graph
theory is presented to check the required conditions.

5.2 PRELIMINARIES AND NOTATION
The data generating system is written as

w1(t)
w2(t)

...
wL(t)

 =


0 G0

12(q) · · · G0
1L(q)

G0
21(q) 0

. . . G0
2L(q)

... . . . . . . ...
G0

L1(q) G0
L2(q) · · · 0



w1(t)
w2(t)

...
wL(t)

+


r1(t)
r2(t)

...
rL(t)

+


v1(t)
v2(t)

...
vL(t)


= G0(q)w(t) + r(t) + v(t). (5.1)

The objective considered in this chapter is to estimate a particular transfer function
embedded in the network. This transfer function is denoted G0

ji.
In this chapter the set of internal variables chosen as predictor inputs plays an

important role. For this reason, it is convenient to partition (5.1) accordingly. Let
Dj denote the set of indices of the internal variables that are chosen as predictor
inputs used for the prediction of wj , i.e. the internal variable wk is a predictor
input if and only if k ∈ Dj . Let Zj denote the set of indices not in {j} ∪ Dj ,
i.e. Zj = {1, . . . , L} \ {{j} ∪ Dj}. Let wD denote the vector [wk1 · · · wkn ]

T , where
{k1, . . . , kn} = Dj . Let rD denote the vector [rk1 · · · rkn ]

T , where {k1, . . . , kn} = Dj ,
and where the ℓth entry is zero if rℓ is not present in the network (i.e. ℓ /∈ R). The
vectors wZ , vD, vZ and rZ are defined analogously. The ordering of the elements of
wD, vD, and rD is not important, as long as it is the same for all these vectors (the
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same holds for wZ , vZ , and rZ). The transfer function matrix between wD and wj is
denoted G0

jD. The other transfer function matrices are defined analogously. Using
this notation, the network equations (5.1) are rewritten as:wj

wD

wZ

 =

 0 G0
jD G0

jZ

G0
Dj G0

DD G0
DZ

G0
Zj G0

ZD G0
ZZ

wj

wD

wZ

+

vjvD
vZ

+

rjrD
rZ

 , (5.2)

where G0
DD and G0

ZZ have zeros on the diagonal. Note that the partition depends on
j and Dj .

5.2.1 Prediction Error Identification
In this section we briefly present the predictor model. The presentation is slightly
more general than in the previous chapter. Let wj denote the variable which is to
be predicted, i.e. it is the output of the module of interest. The predictor inputs
are those (known) variables that will be used to predict wj . The sets Dj and Pj are
used to denote the sets of indices of the internal and external variables respectively
that are chosen as predictor inputs - wk is a predictor input iff k ∈ Dj , and rk is
a predictor input iff k ∈ Pj . The one-step-ahead predictor for wj is then (Ljung,
1999):

ŵj(t|t− 1, θ) = H−1
j (q, θ)

( ∑
k∈Dj

Gjk(q, θ)wk(t)

+
∑
k∈Pj

Fjk(q, θ)rk(t)
)
+
(
1−H−1

j (q, θ)
)
wj(t) (5.3)

where Hj(q, θ) is the (monic) noise model, Gjk(q, θ) models the dynamics between
wk to wj , k ∈ Dj , and Fjk(q, θ) models the dynamics between rk to wj , k ∈ Pj .
Although a parameterization including Fjk(q, θ) may seem to add unnecessary com-
plexity to the predictor, the importance will become apparent later in the chapter.
The prediction error is:

εj(t, θ) = Hj(q, θ)
−1
(
wj(t)−

∑
k∈Dj

Gjk(q, θ)wk(t)−
∑
k∈Pj

Fjk(q, θ)rk(t)
)
. (5.4)

The parameterized transfer functions Gjk(θ), k ∈ Dj , Fjk(θ), k ∈ Pj , and Hj(θ) are
estimated by minimizing the sum of squared (prediction) errors:

Vj(θ) =
1

N

N−1∑
t=0

ε2j (t, θ), (5.5)

where N is the length of the data set.
In the following two sections we present slightly generalized versions of the Direct

and Two-Stage Methods presented in Chapter 4.



102 5 Predictor Input Selection

5.2.2 The Direct Method
The Direct Method in this chapter is defined by the following algorithm. It is a
generalization of the Direct Method as presented in Section 4.4 in Chapter 4 because
here the choice of predictor inputs is up the the user.

Algorithm 5.1 Direct Method. Objective: identify G0
ji.

1. Select wj as the variable to be predicted (the output).

2. Choose the internal and external variables to include as inputs to the predictor
(5.3) (i.e. choose the sets Dj and Pj).

3. Construct the predictor (5.3).

4. Obtain estimates Gjk(q, θ̂N ), for all k ∈ Dj, Fjk(q, θ̂N ), for all k ∈ Pj and
Hj(q, θ̂N ) by minimizing the sum of squared prediction errors (5.5).

In Chapter 4 Step 2 of the algorithm is replaced by a fixed choice, namely, Dj = Nj ,
and Pj = ∅.

5.2.3 Two StageMethod
In the Two Stage Method, the predictor inputs are not internal variables, but pro-
jections of internal variables. As presented in Section 3.4.2 of Chapter 3 the term
w

(rm)
k is the projection of wk onto causally time shifted versions of rm (referred to

as simply the projection of wk onto rm). Recall also Algorithm 4.13 of Chapter
4 where the predictor inputs were projected onto a set of external variables {rm},
m ∈ Tj . The following algorithm is a generalization of the one presented in Chapter
4 (Algorithm 4.13) as the choice of predictor inputs is not fixed anymore.

Algorithm 5.2 Two Stage Method. Objective: identify G0
ji.

1. Select wj as the variable to be predicted (the output).

2. Choose the external variables to project onto (choose Tj).

3. Choose the internal and external variables to include as predictor inputs (i.e.
choose Dj and Pj).

4. Obtain estimates ŵ
(T j)
k of w(T j)

k for each k ∈ Dj.

5. Construct the predictor

ŵj(t|t− 1, θ) =
∑
k∈Dj

Gjk(θ)ŵ
(T j)
k +

∑
k∈Pj

Fjk(θ)rk. (5.6)

6. Obtain estimates Gjk(q, θ̂N ) for all k ∈ Dj and Fjk(q, θ̂N ) for all k ∈ Pj by
minimizing the sum of squared prediction errors (5.5).

For simplicity in (5.6) we do not include a noise model. However, a noise model
can be included with no change in the results, as long as it is parameterized inde-
pendently of the modules Gjk(q, θ), k ∈ Dj .
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5.3 CONSISTENT IDENTIFICATION ON THE BASIS OF A SUBSET OF
INTERNAL VARIABLES

When only a subset of all internal variables in a network is available from measure-
ments, a relevant question becomes: what are the dynamical relationships between
the nodes in this subset of measured variables? In Section 5.3.1 it is shown that
when only a selected subset of internal variables is considered, the dynamic relation-
ships between these variables can be described by an immersed network. Several
properties of the immersed network are investigated. Next, in Section 5.3.2 it is
shown under which conditions the dynamics that appear between two internal vari-
ables remain invariant when reducing the original network to the immersed one. In
Section 5.3.3 the results of identification in networks are characterized. It is shown
that it is the dynamics of the modules in the immersed network that are being iden-
tified, and conditions for consistency of general identification results are formulated.
The results presented in this section are independent of the particular identification
method.

5.3.1 The Immersed Network
In this subsection, we show that there exists a unique dynamic network consisting
only of a given subset of internal variables, that can be constructed by applying an
algorithm from graph theory for constructing an immersed graph. Given the selected
variables wk, k ∈ {j} ∪ Dj , the remaining variables wn, n ∈ Zj are sequentially
removed from the network.

The following proposition shows that there is a unique characterization of the
dynamics between the selected variables.

Proposition 5.3 Consider a dynamic network as defined in (5.1) that satisfies
Assumption 2.19. Consider the set of internal variables {wk}, k ∈ Dj ∪ {j}. There
exists a network:[

wj(t)
wD(t)

]
=Ğ0(q,Dj)

[
wj(t)
wD(t)

]
+F̆ 0(q,Dj)

rj(t)+vj(t)
rD(t)+vD(t)
rZ(t)+vZ(t)

, (5.7)

where Ğ0 and F̆ 0 are unique transfer matrices of the form (using a notation analogous
to that of (5.2)):

Ğ0 =

[
0 Ğ0

jD

Ğ0
Dj Ğ0

DD

]
and F̆ 0 =

[
F̆ 0
jj 0 F̆ 0

jZ

0 F̆ 0
DD F̆ 0

DZ

]
, (5.8)

where Ğ0
DD has zeros on the diagonal, F̆ 0

DD is diagonal, and if there is an index ℓ such
that both vℓ and rℓ are not present, then the corresponding column of F̆ 0 is set to
all zeros. �

See Appendix 5.9.1 for the proof. Proposition 5.3 is based on a result of Gonçalves
& Warnick (2008) where it is proven that a unique interconnection matrix Ğ0 exists
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..

a
..

b
..

c

Figure 5.1: Simple illustration of lifting a path. In the graph on the left, the path
through node b is lifted, resulting in the graph on the right.

if and only if enough entries of Ğ0 and F̆ 0 are known (set to zero in our case).
Enforcing Ğ0 to have zeros on the diagonal results in a network that does not have
any “self-loops”, i.e. no paths that enter and leave the same node. This matches the
assumptions imposed on the data generating system (5.1). Enforcing the leading
square matrix of F̆ 0 to be diagonal results in a network where each rk, k ∈ Dj ∪{j}
only has a path to the corresponding internal variable wk (again, this matches the
interconnection structure of (5.1)). The external variables corresponding to internal
variables wn, n ∈ Zj that were removed from the original network can have direct
paths to one or more of the internal variables in the network defined by (5.7). This
is encoded in (5.7) by allowing F̆ 0

jZ and F̆ 0
DZ to be matrices with no pre-defined zero

entries.
Denote the noise in (5.7) as:

[
v̆j
v̆D

]
=

[
F̆ 0
jj 0

0 F̆ 0
DD

] [
vj
vD

]
+

[
F̆ 0
jZ

F̆ 0
DZ

]
vZ . (5.9)

Then by the Spectral Factorization Theorem (Youla, 1961), there exists a unique,
monic, stable, minimum phase spectral factor H̆0:

[
v̆j
v̆D

]
=

[
H̆0

jj H̆0
jD

H̆0
Dj H̆0

DD

][
ĕj
ĕD

]
. (5.10)

where [ĕj ĕTD ]T is a white noise process.
In the following text it is shown that a network of the form (5.7) can be con-

structed using ideas from graph theory.
In graph theory, one way to remove nodes from a graph is by constructing an

immersed graph. A graph G′ is an immersion of G if G′ can be constructed from
G by lifting pairs of adjacent edges and then deleting isolated nodes (Langston &
Plaut, 1998). Lifting an edge is defined as follows. Given three adjacent nodes a, b,
c, connected by edges ab and bc, the lifting of path abc is defined as removing edges
ab and bc and replacing them with the edge ac. This is shown graphically in Figure
5.1. If lifting an edge results in a self-loop, the self-loop is removed from the graph.

Constructing an immersed graph is illustrated in the following example.
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Figure 5.2: A diagram (a) and graph (b) of the network for Examples 5.4 and 5.7.

Example 5.4 Consider a network defined by:



w1

w2

w3

w4

w5

w6

=


0 0 0 G0
14 0 0

G0
21 0 G0

23 0 0 0
0 G0

32 0 0 0 0
0 0 0 0 0 G0

46

0 G0
52 0 G0

54 0 G0
56

0 0 G0
63 0 G0

65 0





w1

w2

w3

w4

w5

w6

+


v1
v2
v3
v4
v5
v6


shown in Fig. 5.2a. Its graph is shown in Fig. 5.2b. �

Consider the graph shown on the top left hand side of Figure 5.3 (it is the same
graph shown in Figure 5.2). Suppose that the objective is to construct an immersed
graph with {w1, w2, w5, w6} as internal variables. In other words, w3 and w6 must
be removed from the graph by lifting edges and removing isolated nodes.

First, w3 will be removed from the graph. All paths through w3 must be lifted.
There are four distinct paths through w3:

w2 → w3 → w6,

w2 → w3 → w2,

v3 → w3 → w6,

v3 → w3 → w2.

Lifting each of these four paths results in the second graph of Figure 5.3. Lifting the
path w2 → w3 → w2 results in a self-loop around w2, which by definition of lifting
is removed from the graph.

Next, w6 is removed from the second graph of Figure 5.3. The paths through w6



106 5 Predictor Input Selection

... w1..

w2

..

w3

..w4 ..

w5

..

w6

..

v1

..

v2

..

v3

..

v4

..

v5

..

v6

.. lift paths
through

w3

.. w1..

w2

..

w3

.. w4..

w5

..

w6

..

v1

..

v2

..

v3

..

v4

..

v5

..

v6

.. lift paths
through

w6

.. w1..

w2

..

w3

.. w4..

w5

..

w6

..

v1

..

v2

..

v3

..

v4

..

v5

..

v6

Figure 5.3: Example of constructing an immersion graph. The last step of removing
the nodes w3 and w6 in the immersion graph is not shown. Edges between w’s have
been emphasized in thick blue lines since these connections define the interconnection
structure of the corresponding dynamic network.

are:

w2 → w6 → w5, w2 → w6 → w4,

w5 → w6 → w5, w5 → w6 → w4,

v6 → w6 → w5, v6 → w6 → w4,

v3 → w6 → w5, v3 → w6 → w4.

Lifting each of these paths results in the third graph of Figure 5.3.
Both w3 and w6 are isolated nodes in the final graph of Figure 5.3 and can thus

be removed from the graph. This step is not shown graphically.
An interesting feature of the immersed graph in this example is that it has edges

from nodes w2 → w4 and w5 → w4 whereas the original graph did not have these
edges.

In this way an immersed network can be constructed by an algorithm that ma-
nipulates the dynamics of the network iteratively. To keep track of the changes in
the transfer functions iteratively, let G

(i)
mn and F

(i)
mn denote the transfer functions of

the direct connections wn to wm and from rn and vn to wm, respectively, at iteration
i of the algorithm.

Algorithm 5.5 Constructing an immersed network.

1. Initialize. Start with the original network:

• G
(0)
mn = G0

mn for all m,n ∈ {1, . . . , L}, and
• F

(0)
kk = 1, for all k ∈ R ∪ V, F (0)

mn = 0 otherwise.

2. Remove each wk, k ∈ Zj from the network, one at a time. Let d = card(Zj). Let
Zj = {k1, . . . , kd}.
for i = 1 : d
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(a) Let Iki denote the set of internal variables with edges to wki . Let Oki denote
the set of nodes with edges from wki . Lift all paths wn → wki → wm,
n ∈ Iki , m ∈ Oki . The transfer function of each new edge from wn → wm is
G

(i)
mn = G

(i−1)
mki

G
(i−1)
kin

.
(b) Let Ir

ki
denote the set of external or disturbance variables with edges to wki .

Lift all paths rn → wki → wm, n ∈ Ir
ki

, m ∈ Oki . The transfer function for
each new edge from rn → wm is F

(i)
nm = F

(i−1)
nki

G
(i−1)
kin

.
(c) If there are multiple edges between two nodes, merge the edges into one edge.

The transfer function of the merged edge is equal to the sum of the transfer
functions of the edges that are merged.

(d) remove the node wki from the network.

end

3. Remove all self-loops from the network. If node wm has a self loop, then divide
all the edges entering wm by (1 − G

(d)
mm(q)) (i.e. one minus the loop transfer

function). �

Let Ği0 and F̆ i0 denote the final transfer matrices of the immersed network.

Remark 5.6 Algorithm 5.5 has a close connection to Mason’s Rules (Mason, 1953,
1956). However, Mason was mainly concerned with the calculation of the transfer
function from the sources (external and noise variables) to a sink (internal vari-
able). This is equivalent to obtaining the immersed network with Dj = ∅, i.e. all
internal variables except one are removed. Importantly, Algorithm 5.5 is an iterative
algorithm which allows for easy implementation (even for large networks), whereas
Mason’s rules are not iterative and complicated even for small networks.
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Ğ0
54

.

Ğ0
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Figure 5.4: (a) Original dynamic network considered in Example 5.7. (b) Immersed
network with w3 and w6 removed.
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Example 5.7 Consider the dynamic network shown in Figure 5.4a. The graph of
this network is shown in the first graph of Fig. 5.3. Suppose w3 and w6 are to be
removed from the network (i.e. Zj = {3, 6}). By Algorithm 5.5 the network shown
in Figure 5.4b results. The transfer functions of the immersed network are:

Ği0(q,Dj)=


0 0 G0

14 0
G0

21

1−G0
23G

0
32

0 0 0

0 G0
32G

0
46G

0
63 0 G0

46G
0
65

0
G0

52+G0
56G

0
63G

0
32

1−G0
56G

0
65

G0
54

1−G0
56G

0
65

0



F̆ i0(q,Dj)=


1 0 0 0 0 0

0 1
1−G0

23G
0
32

0 0
G0

23

1−G0
23G

0
32

0

0 0 1 0 G0
46G

0
63 G0

46

0 0 0 1
1−G0

56G
0
65

G0
56G

0
63

1−G0
56G

0
65

G0
56

1−G0
56G

0
65

.
Note that the immersed network (shown in Figure 5.4b) is represented by the last
graph shown in Figure 5.3. �

Interestingly, the matrix F̆ i0 in Example 5.7 has the same structure as that of F̆ 0

in Proposition 5.3. This alludes to a connection between the network characterized
in (5.7) and immersed networks as defined by Algorithm 5.5.

Proposition 5.8 The matrices Ğ0 and F̆ 0 of the network characterized by (5.7)
and the matrices Ği0 and F̆ i0 defined by Algorithm 5.5 are the same. �

The proof is in Appendix 5.9.2. Since, by Proposition 5.8 the matrices in (5.7) are
the same as those of the immersed network, the superscript i will be dropped from
this point on in the matrices defined by Algorithm 5.5. An important consequence
of Proposition 5.8 is that (by Proposition 5.3) the immersed network is unique.

Instead of calculating the matrices of the immersed network iteratively, it is also
possible to derive analytic expressions for the matrices Ğ0 and F̆ 0.

Proposition 5.9 Consider a dynamic network as defined in (5.1) that satisfies
Assumption 2.19. For a given set {j} ∪ Dj the transfer function matrices Ğ0 and
F̆ 0 of the immersed network are:2[

0 Ğ0
jD

Ğ0
Dj Ğ0

DD

]
=

[
1−G̃jj

I−diag(G̃0
DD)

]−1[
0 G̃0

jD

G̃0
Dj G̃0

DD−diag(G̃0
DD)

]
[
F̆ 0
jj 0 F̆ 0

jZ

0 F̆ 0
DD F̆ 0

DZ

]
=

[
1−G̃jj

I−diag(G̃0
DD)

]−1[
1 0 F̃ 0

jZ

0 I F̃ 0
DZ

]
where [

G̃jj G̃jD

G̃Dj G̃DD

]
=

[
0 G0

jD

G0
Dj G0

DD

]
+

[
G0

jZ

G0
DZ

]
(I−G0

ZZ)
−1
[
G0

Zj G0
ZD

]
,[

F̃jZ

F̃DZ

]
=

[
G0

jZ

G0
DZ

]
(I −G0

ZZ)
−1. �

2The arguments q or Dj (or both) of Ğ0
jk(q,Dj) and F̆ 0

jk(q,Dj) are sometimes dropped for
notational clarity.
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The proof is in Appendix 5.9.3. The transfer functions Ğmn correspond to G
(d)
mn

in Step 3 of Algorithm 5.5.
The immersed network inherits some useful properties from the original network.

Lemma 5.10 Consider a dynamic network as defined in (5.1) that satisfies As-
sumption 2.19 and a given a set {j} ∪ Dj.

1. Consider the paths from wn to wm, n,m ∈ Dj that pass only through nodes wℓ,
ℓ ∈ Zj in the original network. If all these paths and G0

mn(q) have a delay (are
zero), then Ğ0

mn(q,Dj) has a delay (is zero).

2. Consider the paths from rn to wm (or vn to wm), n ∈ Zj, m ∈ Dj. If all these
paths pass through at least one node wℓ, ℓ ∈ Dj then F̆ 0

mn(q,Dj) = 0.

For a proof see Appendix 5.9.4.

Example 5.11 Consider the network of Example 5.7 shown in Figure 5.4. Again,
consider an immersed network that contains the internal variables {w1, w2, w4, w5},
i.e. w3 and w6 are removed from the original network. Using the set notation,
suppose {j} = {2}, then D2 = {1, 4, 5} and Z2 = {3, 6}.

Suppose we want to know if there will be a direct path from w2 to w4 in the
immersed network. By Part 1 of Lemma 5.10 we need to check whether there are
any paths from w2 to w4 that pass only through nodes wℓ, ℓinZ2 (i.e. the paths only
pass through w3 and w6). From Figure 5.4a we see that there is such a path:

w2 → w3 → w6 → w4.

Consequently, by Lemma 5.10 there will be a direct path from w2 → w4 in the
immersed network. By inspecting Figure 5.4b we see that indeed this is the case.

5.3.2 Conditions to Ensure Ğ0
ji(q,Dj) = G0

ji(q)

A central theme in the previous section was that the transfer function Ğ0
ji(Dj) in the

immersed network may not be the same as the transfer function G0
ji in the original

network. In other words, by selecting a subset of internal variables to be taken
into account, the dynamics between two internal variables might change. In this
section conditions are presented under which the module of interest, G0

ji, remains
unchanged in the immersed network, i.e. Ğ0

ji(q,Dj) = G0
ji(q).

The following two examples illustrate two different phenomena related to the
interconnection structure that can cause the dynamics Ğ0

ji(q,Dj) to be different
from G0

ji(q).

Example 5.12 Consider the dynamic network
w1

w2

w3

w4

w5

=


0 G0
12 0 0 G0

15

G0
21 0 G0

23 0 G0
25

G0
31 0 0 0 0

G0
41 0 0 0 0
0 0 0 G0

54 0



w1

w2

w3

w4

w5

+

v1 + r1

v2
v3
v4

v5 + r5

 .
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Figure 5.5: Network analyzed in Examples 5.12 and 5.29.

shown in Fig. 5.5. The objective of this example, is to choose D2 such that in
the immersed network Ğ0

21(D2) = G0
21 (denoted in gray). A key feature of the

interconnection structure in this example is that there are multiple paths from w1 to
w2: w1 → w2, w1 → w3 → w2, w1 → w4 → w5 → w2, etc..

Start by choosing D2 = {1}, then by Proposition 5.9,

Ğ0
21(q,{1})=G0

21(q)+G0
23(q)G

0
31(q)+G0

25(q)G
0
54(q)G

0
41(q).

Two of the terms comprising this transfer function correspond to the two paths from
w1 to w2 that pass only through wk, k ∈ Z2 (Z2 = {3, 4, 5}). From Algorithm 5.5
this is not surprising since the paths G0

23G
0
31 and G0

25G
0
54G

0
41 must be lifted to remove

the nodes w3, w4 and w5 from the original network. Clearly, for this choice of D2,
Ğ0

21(D2) ̸= G0
21.

Now choose D2 = {1, 5}. By Proposition 5.9

Ğ0
21(q, {1, 5}) = G0

21(q) +G0
23(q)G

0
31(q).

Again, one of the terms comprising Ğ0
21(q, {1, 5}) corresponds to the (only) path from

w1 to w2 that passes only through wk, k ∈ Z2 (Z2 = {3, 4}).
Finally, choose D2 = {1, 3, 5}. By Proposition 5.9 Ğ0

21(q, {1, 3, 5}) = G0
21(q) as

desired. �

In general, one internal variable wk from every independent path wi to wj must be
included in Dj to ensure that Ğ0

ji(q,Dj) = G0
ji(q). This is proved later in Proposition

5.14.
However, before presenting the proposition, there is a second phenomenon re-

lated to the interconnection structure of the network that can cause the dynamics
Ğ0

ji(q,Dj) to be different from G0
ji(q), as illustrated in the next example.

..w1.
G0

21

.

G0
12

. w2.
G0

32

.

G0
23

. w3.

v1

.

r1

.

v2

. v3

Figure 5.6: Network that is analyzed in Example 5.13.
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Example 5.13 Consider the network shown in Fig. 5.6. The objective of this
example, is to choose D2 such that in the immersed network Ğ0

21(D2) = G0
21 (denoted

in gray).
Note that in this network there is only one independent path from w1 to w2.

Choose D2 = {1}. By Proposition 5.9

Ğ0
21(q, {1}) =

G0
21(q)

1−G0
23(q)G

0
32(q)

which is not equal to G0
21(q) as desired. The reason the factor 1

1−G0
23G

0
32

appears is
because when lifting the path G23G32 a self-loop from w2 to w2 results. Thus, in step
3 of Algorithm 5.5 the transfer functions of the edges coming into w2 are divided by
the loop transfer function.

For the choice D2={1,3}, Ğ0
21({1,3})=G0

21 as desired. �

In general, if Dj is chosen such that no self-loops from wj to wj result due to
the lifting of the paths when constructing the immersed network, the denominator
in Step 3 of Algorithm 5.5 is reduced to 1. From these two examples we see that:

• Every parallel path from wi to wj should run through an input in the predictor
model, and

• Every loop on the output wj should run through an input in the predictor
model.

This is formalized in the following proposition.

Proposition 5.14 Consider a dynamic network as defined in (5.1) that satisfies
Assumption 2.19. The transfer function Ğ0

ji(q,Dj) in the immersed network is equal
to G0

ji(q) if Dj satisfies the following conditions:

(a) i ∈ Dj, j /∈ Dj,

(b) every path wi to wj, excluding the path G0
ji, goes through a node wk, k ∈ Dj,

(c) every loop wj to wj goes through a node wk, k ∈ Dj. �

The proof is in Appendix 5.9.5. The formulated conditions are used to make appro-
priate selections for the node variables that are to be measured and to be used as
predictor inputs. In the following section it is shown that it is possible to identify
the dynamics of the immersed network.

5.3.3 Estimated Dynamics in Predictor Model
In this section it is shown that the estimated dynamics between the predictor in-
puts and the module output wj , are equal to Ğ0

jk(Dj). The result confirms that
the estimated dynamics are a consequence of the interconnection structure and the
chosen predictor inputs. In addition conditions are presented that ensure that the
estimates of Ğ0

jk(Dj) are consistent. The results in this section are not specific to a
particular identification method.
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To concisely present the result, it is convenient to have a notation for a predictor
which is a generalization of both the Direct and Two Stage Methods. Consider the
predictor

ŵj(t|t−1, θ)=H−1
j (q,θ)

( ∑
k∈Dj

Gjk(q,θ)w
(X )
k (t)

+
∑
k∈Pj

Fjk(q,θ)rk(t)
)
+
(
1−H−1

j (q,θ)
)
wj(t) (5.11)

where X denotes a (sub)set of the variables rk, vk, k ∈ {1, . . . , L} and Hj(q, θ) is
monic. Note that both predictors (5.3) and (5.6) are special cases of the predic-
tor (5.11). For the Direct Method, choose X = {rk1 , . . . , rkn , vℓ1 , . . . , vℓn}, where
{k1, . . . , kn} = R, and {ℓ1, . . . , ℓn} = V. Then w

(X)
k = wk. For the Two Stage

Method, choose X = {rk1 , . . . , rkn}, where {k1, . . . , kn} = Tj .
A key concept in the analysis of this section is the optimal output error residual,

which will be discussed next. From (5.7), wj can be expressed in terms of wk, k ∈ Dj

as

wj=
∑
k∈Dj

Ğ0
jkwk+

∑
k∈Zj∩Rj

F̆ 0
jkrk+

∑
k∈Zj∩Vj

F̆ 0
jkvk + vj + rj . (5.12)

Note that by Lemma 5.10 some F̆ 0
jk(q,Dj) may be zero depending on the intercon-

nection structure. Let wk be expressed interms of a component dependent on the
variables in X , and a component dependent on the remaining variables, denoted
wk = w

(X )
k + w

(⊥X )
k . In addition, split the sum involving the rk-dependent terms

according to whether rk is in Pj or not. Then, from (5.12):

wj=
∑
k∈Dj

Ğ0
jkw

(X )
k +

∑
k∈Dj

Ğ0
jkw

(⊥X )
k +

∑
k∈Pj

F̆ 0
jkrk

+
∑

k∈((Zj∪{j})∩Rj)\Pj

F̆ 0
jkrk +

∑
k∈Zj∩Vj

F̆ 0
jkvk + vj . (5.13)

When choosing an Output Error predictor (i.e. Hj(q, θ) = 1), with predictor inputs
w

(X )
k , k ∈ Dj and rk, k ∈ Pj , the part of (5.13) that is not modeled can be lumped

together into one term. This term is the optimal output error residual of wj , and is
denoted pj :

pj(Dj) :=
∑
k∈Dj

Ğ0
jkw

(⊥X )
k +

∑
k∈((Zj∪{j})∩Rj)\Pj

F̆ 0
jkrk + v̆j , (5.14)

where v̆j is given by
∑

k∈Zj∩Vj
F̆ 0
jkvk + vj in accordance with (5.9). Consequently,

wj equals:

wj =
∑
k∈Dj

Ğ0
jkw

(X )
k +

∑
k∈Pj

F̆ 0
jkrk + pj . (5.15)
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In a system identification setting, the optimal output error residual of wj acts as the
effective “noise” affecting wj (this is clear from (5.15)). It also corresponds to the
unmodeled component of wj .

The following theorem is the main result of this section. It characterizes con-
ditions that correlation between the optimal output error residual of wj and the
predictor inputs must satisfy so that it is possible to obtain consistent estimates
of the dynamics between the predictor inputs. Such conditions are common in the
identification literature. In open-loop identification for instance it is well known
that if the innovation is uncorrelated to the input consistent estimates are possible
(Ljung, 1999). Similarly, it is known (Ljung, 1999) that for the Direct Method in
closed-loop, if the output noise is whitened and the whitened noise is uncorrelated
to the plant input then consistent estimates of the plant are possible. The result
that follows is an analogue to that reasoning adapted to identification in networks.

Proposition 5.15 Consider a dynamic network as defined in (5.1) that satisfies
Assumption 2.19. Consider model structures with independently parameterized noise
and module models. For given sets Dj, Pj, and X construct the predictor (5.11).
Suppose the power spectral density of

[wj w
(X)
k1

. . . w
(X)
kn

rℓ1 . . . rℓm ]T

where {k1, . . . , kn} = Dj , {ℓ1, . . . , ℓm} = Pj is positive definite for a sufficiently
large number of frequencies ωk ∈ (−π, π]. Consider the conditions:

(a) Ē[H−1
j (q,η)pj(t,Dj)·∆Gjk(q, θ,Dj)w

(X)
k (t)]=0, ∀k∈Dj,

(b) Ē[H−1
j (q,η)pj(t,Dj)·∆Fjk(q, θ,Dj)rk(t)] = 0, ∀k∈Pj,

where ∆Gjk(θ,Dj)=Ğ0
jk(Dj)−Gjk(θ), and ∆Fjk(θ,Dj)= F̆ 0

jk(Dj)−Fjk(θ).
Then Gjk(q, θ

∗) = Ğ0
jk(q,Dj), where Ğ0

jk(q,Dj) is defined in Proposition 5.9, if for
all θ ∈ Θ:

1. Conditions (a) and (b) hold for all η, or

2. The equations of Conditions (a) and (b) hold for η∗ only, where

η∗=arg min Ē[
(
H−1

j (q, η)sj(t,Dj)
)2
],

and H−1
j (q, η∗)pj(t,Dj) is white noise. �

The proof can be found in Appendix 5.9.6. The theorem can be interpreted as
follows. In Case 1, consistent estimates are possible if the predictor inputs are
uncorrelated to the optimal output error residual of wj . This is analogous to the
open loop situation. In Case 2, consistent estimates are possible if the whitened
version of the optimal output error residual of wj is uncorrelated to the predictor
inputs. This is analogous to the closed-loop Direct Method reasoning.

The condition on the power spectral density of [wj w
(X)
k1

. . . w
(X)
kn

rℓ1 . . . rℓm ]T is
basically a condition on the informativity of the data (Söderström & Stoica, 1989a)
(i.e. the data must be persistently exciting of sufficiently high order).

The main point of Proposition 5.15 is twofold:
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1. The estimated transfer functions Gjk(q, θ
∗) are consequences of the choice of Dj .

In particular, they are estimates of the transfer functions Ğ0
jk(q,Dj) specified by

the immersed network.

2. To present general conditions under which consistent estimates are possible.

Proposition 5.15 points to a notion of identifiability. For a given set Dj , a par-
ticular module G0

ji is identifiable if Ğ0
ji = G0

ji. Thus, if the conditions of Proposition
5.14 are satisfied for a given set Dj , then G0

ji is identifiable.
Conditions (a) and (b) are enforced by different mechanisms in the Direct and

Two Stage methods, leading to different conditions to ensure consistency of the
estimates. This is discussed in the next two sections.

5.4 PREDICTOR INPUT SELECTION - DIRECTMETHOD
In this section it is shown how to satisfy the conditions of Proposition 5.15 using the
Direct Method.

When using the Direct Method for identification in dynamic networks, there
are three main mechanisms that ensure consistent estimates of G0

ji (Dankers et al.,
2013b; Van den Hof et al., 2013) (the same mechanisms are present in the closed-loop
Direct Method (Ljung, 1999; Forssell & Ljung, 1999; Van den Hof, 1998)):

1. the noise vj affecting the output wj is uncorrelated to all other noise terms vn,
n ∈ Vj ,

2. every loop that passes through wj in the data generating system contains at least
one delay, and

3. there exists a θ such that H−1
j (θ)vj = ĕj is white noise.

In Proposition 2 of Van den Hof et al. (2013) it is shown that for the choice Dj = Nj

and Pj = ∅, these conditions plus a condition on the informativity of the data are
sufficient in order to obtain consistent estimates of a module G0

ji embedded in the
network. In the setup considered in this chapter an additional mechanism plays a
role, namely the choice of predictor inputs.

The following proposition presents conditions on the immersed network that
ensure that Case 2 of Proposition 5.15 holds. The conditions reflect the three mech-
anisms presented above.

Proposition 5.16 Consider a dynamic network as defined in (5.1) that satisfies
Assumption 2.19. Consider the immersed network constructed by removing wn,
n ∈ Zj from the original network. The situation of Case 2 of Proposition 5.15 holds
for the immersed network if:

(a) v̆j is uncorrelated to all v̆k, k ∈ Dj.

(b) There is a delay in every loop wj to wj (in the immersed network).

(c) If Ğ0
jk has a delay, then Gjk(θ) is parameterized with a delay.
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(d) pj is not a function of any rn, n ∈ R.

(e) There exists a η such that H−1
j (q, η)pj(t) is white noise.

The proof can be found in Appendix 5.9.7.
In the following subsections, the conditions of Proposition 5.16 are interpreted

in terms of what they mean in the original network. In Subsection 5.4.1 it is shown
what conditions can be imposed in the original network in order to ensure that
v̆j is uncorrelated to v̆k, k ∈ Dj (i.e Condition (a) of Proposition 5.16 holds).In
Subsection 5.4.2 it is shown under which conditions pj is not a function of external
variables (i.e. Condition (d) of Proposition 5.16 holds). In Subsection 5.4.3 a version
of Proposition 5.16 is presented where all the conditions are stated only in terms of
the original network.

5.4.1 Correlation of Noise
In this section conditions are presented that ensure that v̆j is uncorrelated to v̆k,
k ∈ Dj . The conditions are presented using only variables in the original network.

Recall from (5.9) that v̆k is a filtered sum of vn, n∈Zj∪{k},

v̆k(t) =
∑
n∈Zj

F̆ 0
jn(q,Dj)vn + F̆ 0

jj(q,Dj)vj(t). (5.16)

Consider 2 variables v̆k1 and v̆k2 . Suppose that there is a path from another variable
vn, n ∈ Zj to both wk1 and wk2 . By Lemma 5.10 both F̆ 0

k1n
and F̆ 0

k2n
are non-zero in

this situation. Consequently, as can be see from (5.16) both v̆k1 and v̆k2 are functions
of vn, with the result that v̆k1 and v̆k2 are correlated. Thus, due to the presence of
vn and the interconnection structure of the network, v̆k1 and v̆k2 are correlated. In
this case vn is a confounding variable. In statistics, and in particular in statistical
inference, a confounding variable is a variable that is not known (or measured) and
causally affects both the output variable and the input variable (Pearl, 2009). The
induced correlation between input and output is however not caused by a direct
causal relation between the input and output. In the framework of this chapter
consider the following definition.

Definition 5.17 Consider a particular output variable wj and a set Dj of predictor
inputs. In this modeling setup, a variable vℓ is a confounding variable if the following
conditions hold:

(a) There is a path from vℓ to wj that passes only through wm, m ∈ Zj.

(b) There is a path from vℓ to one or more wk, k ∈ Dj that passes only through wm,
m ∈ Zj. �

The following is an example of a confounding variable.

Example 5.18 Consider the network shown in Fig. 5.7. Suppose that the objective
is to obtain a consistent estimate of G0

21 (denoted in gray) using the Direct Method.
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Figure 5.7: Network that is analyzed in Example 5.18.

Let j = 2, and choose D2 = {1}. By Definition 5.17, v3 is a confounding variable.
The expressions for v̆1 and v̆2 for this network are:

v̆1 = v1 +G0
13v3 and v̆2 = v2 +G0

23v3.

Clearly, the confounding variable v3 induces a correlation between v̆1 and v̆2. �

The presence of confounding variables is not the only way that v̆k1 and v̆k2 could
become correlated. Suppose that v̆k1

is a function of vn, and v̆k2
is a function of vm.

If vn and vm are correlated, then v̆k1 and v̆k2 are correlated.
The following proposition presents conditions that ensure v̆j is uncorrelated to

all v̆k, k ∈ Dj .

Proposition 5.19 Consider a dynamic network as defined in (5.1) that satisfies
Assumption 2.19. Consider the immersed network constructed from the internal
variables, {wk}, k ∈ Dj. The disturbance term v̆j (as defined in (5.9)) is uncorrelated
to all v̆k, k ∈ Dj if the following conditions hold:

(a) vj is uncorrelated to all vk, k ∈ Dj and to all variables vn, n ∈ Zj that have
paths to any wk, k ∈ Dj that pass only through nodes wℓ, ℓ ∈ Zj.

(b) All vk, k ∈ Dj are uncorrelated to all vn, n ∈ Zj that have a path to wj that
passes only through nodes in Zj.

(c) All vn, n ∈ Zj are uncorrelated to each other

(d) No variable vk, k ∈ Zj is a confounding variable.

The proof can be found in Appendix 5.9.8.

Remark 5.20 Suppose that all vk, k ∈ V are uncorrelated. Then Conditions (a) -
(c) hold for any Dj. However, whether Condition (d) holds depends on the inter-
connection structure and the choice of Dj. �

5.4.2 Adding External Excitation
External variables are not strictly necessary to ensure that the data is informative
when using the direct method as long as the noise that is driving the system is
sufficiently exciting. However, external excitation can be beneficial in order to reduce
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the variance of the estimates, or provide extra excitation in a frequency range of
interest.

Whenever there is an external variable rk acting as a “disturbance” on the output
variable wj (i.e. pj contains an element which is due to the external variable rk),
it makes sense to model that component. This happens whenever there is a path
rk to wj that passes only through wk, k ∈ Zj . Thus, in this case, choose the set
Pj = {k} so that rk is included as a predictor input (i.e. the dynamics from rk to
wj are modeled). The advantage of this scheme is that the power of the optimal
output error residual is reduced by eliminating known variables from pj , suggesting
that a better estimate will result (the signal to noise ratio is increased). Secondly,
the result is that pj is only a function of v’s and so Condition (d) of Proposition
5.16 holds.

5.4.3 Main Result - Direct Method
Conditions are presented so that the Direct Method will result in consistent estimates
of Ğ0

ji(Dj). In Proposition 5.16 the conditions were stated in terms of the immersed
network. In the following proposition the conditions are stated in terms of the
original network.

Proposition 5.21 Consider a dynamic network as defined in (5.1) that satisfies
Assumption 2.19. Let {wk}, k ∈ Dj and {rk}, k ∈ Pj be the set of internal and
external variables respectively that are included as inputs to the predictor (5.3). The
set Pj is constructed to satisfy the condition that k ∈ Pj if and only if there exists
a path from rk to wj, that passes only through nodes in Zj. Consistent estimates of
Ğ0

ji are obtained using the Direct Method formulated in Algorithm 5.1 if the following
conditions are satisfied:

(a) There is a delay in every loop wj to wj.

(b) v satisfies the conditions of Proposition 5.19.

(c) The power spectral density of [wj wk1 · · · wkn
rℓ1 · · · rℓm ]T , k∗ ∈ Dj, ℓ∗ ∈ Pj

is positive definite for a sufficiently large number of frequencies ωk ∈ (−π, π].

(d) The parameterization is chosen flexible enough, i.e. there exist parameters θ and
η such that Gjk(q, θ) = Ğ0

jk(q,Dj), ∀k ∈ Dj, Fjk(q, θ) = F̆ 0
jk(q,Dj), ∀k ∈ Pj,

and Hj(q, η) = H̆0
j (q,Dj).

(e) If Ğ0
jk has a delay, then Gjk(θ) is parameterized with a delay. �

Proof: The proof follows almost directly from Proposition 5.15 and Propositions
5.16 and 5.19. It remains to be shown that pj = v̆j (i.e. Condition (d) of Proposition
5.16 holds).

By Lemma 5.10 F̆ 0
jk, k ∈ Dj is zero unless there is a path from rk to wj which

passes only through wn, n ∈ Zj . From (5.14) and by the way Pj is constructed it
follows that there are no r terms present in pj . Consequently, pj = v̆j .
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Remark 5.22 In Proposition 5.21 conditions have been presented which, if satisfied,
ensure that consistent estimates of Ğ0

jk(q,Dj), k ∈ Dj as defined by the immersed
network are obtained. If the set Dj is chosen such that Ğ0

ji(q,Dj) = G0
ji(q) (i.e.

the Dj is chosen such that the conditions of Proposition 5.14 are satisfied) then
Proposition 5.21 shows under which conditions G0

ji can be consistently identified. �

The reason that Condition (a) and exact noise modeling are required is due to
the presence of a (feedback) path from wj to at least one wk, k ∈ Dj . If there
is no such feedback, then the conditions of Proposition 5.21 simplify considerably.
Similarly, since, it is the variable vj that is causing the problems when there is such
a feedback path, if it is not present, the conditions can be simplified.

Corollary 5.23 Consider the situation of Proposition 5.21. If there is no path from
wj to any wk, k ∈ Dj, or if vj is not present in the network, then Conditions (a)
and (e) can be omitted, and Condition (d) can be changed to:

(d’) The parameterization is chosen flexible enough, i.e. there exists a parameter θ
such that Gjk(q, θ) = Ğ0

jk(q,Dj), ∀k ∈ Dj, Fjk(q, θ) = F̆ 0
jk(q,Dj), ∀k ∈ Pj. �
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Figure 5.8: Network that is analyzed in Examples 5.24 and 5.30.

Example 5.24 Consider the dynamic network shown in Fig. 5.8. Suppose the
objective is to obtain consistent estimates of G0

32 (denoted in gray) using the Direct
Method.

First, we show how to choose the set D3 such that Ğ0
32(q,Dj) in the immersed

network is equal to G0
32(q) (i.e. Dj is chosen such that it satisfies the conditions of

Proposition 5.14). Besides G0
32 there are several paths from w2 to w3:

w2 → w1 → w4 → w5 → w3,

w2 → w1 → w4 → w6 → w3

for instance. All paths from w2 to w3 (not including G0
32) pass through either the

nodes w1 and w2, the nodes w4 and w2. Thus, Condition (b) of Proposition 5.14 is
satisfied for D3 = {1, 2} and D3 = {2, 4}.
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Since all loops from w3 pass through w2, Condition (c) of Proposition 5.14 is
also satisfied for both these choices of D3.

For both of these choices, v7 and v8 are confounding variables (Condition (b) of
Proposition 5.21 is not satisfied). However, if w7 is included as a predictor input,
then there are no more confounding variables.

By this reasoning two possible choices for D3 that lead to consistent estimates of
G0

32 are {2, 4, 7} (denoted in dark gray), and {2, 1, 7}. In either case, P3 should be
chosen as ∅.

Another possible choice for D3 = {2, 5, 6, 7} = N3. It is interesting that the
previous sets D3 are strictly smaller than N3, and are not even subsets of N3. �

The choice Dj = Nj , Pj = ∅ always satisfies the Conditions of Proposition 5.14
and confounding variables are never present. This is the choice that is made in Van
den Hof et al. (2013).

In the following section an analogue to Proposition 5.21 is presented for the
Two-Stage Method.

5.5 PREDICTOR INPUT SELECTION - TWO STAGEMETHOD
A guiding principle to ensure consistent estimates that has been presented in Propo-
sition 5.15 is that the optimal output error residual of wj should be uncorrelated to
the predictor inputs. For the Two Stage Method this condition is enforced by pro-
jecting the predictor inputs onto the external variables. Consequently, the predictor
inputs are only functions of rm, m ∈ Tj . As long as the unmodeled component of
wj is not a function of rm, m ∈ Tj then Conditions (a) and (b) of Proposition 5.15
are satisfied.

Proposition 5.25 Consider a dynamic network as defined in (5.1) that satisfies
Assumption 2.19. Let {rm}, m ∈ Tj be the external input(s) onto which will be
projected. Let {w(Tj)

k }, k ∈ Dj and {rk}, k ∈ Pj be the sets of (projections of)
internal and external variables respectively that are included as inputs to the predictor
(5.6). The set Pj is constructed to satisfy the condition that k ∈ Pj if and only
if there exists a path from rk to wj, k ∈ Tj, that passes only through nodes in Zj.
Consistent estimates of G0

ji are obtained using the Two Stage Method (Algorithm
5.2) if the following conditions hold:

(a) Every rk, k ∈ Tj is uncorrelated to all rm, m /∈ Tj, except those rm for which
there is no path to wj.

(b) The power spectral density of [w
(T j)
k1

· · ·w(T j)
kn

rm1 · · · rmn ]
T, k∗ ∈ Dj, m∗ ∈ Pj, is

positive definite for a sufficient number of frequencies ωk ∈ (−π, π]

(c) The parameterization is chosen flexible enough, i.e. there exists a parameter θ
such that Gjk(q, θ) = Ğ0

jk(q,Dj), ∀k ∈ Dj, Fjk(q, θ) = F̆ 0
jk(q,Dj), ∀k ∈ Pj. �

For a proof, see Appendix 5.9.9.
Note that in order for Condition (b) to hold, there must be a path from at least one
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rm, m ∈ Tj to wi. If not, then w
(T j)
i = 0 and the power spectral density of Condition

(b) will not be positive definite.

Remark 5.26 The condition on the order of excitation of the data (Condition (b))
can be satisfied if there is one external variable present for each predictor input. This
is however just a sufficient condition. For more information on how the network
dynamics add excitation to the data so that fewer external variables are required see
Gevers et al. (2009a) for instance. �

Remark 5.27 In the discussion thus far, we have not allowed the choice of wj as a
predictor input (by Condition (a) in Proposition 5.14, j is not allowed to be in Dj).
It can be shown that wj can be used as a predictor input to consistently identify G0

ji

using the Two-Stage method if rj is present (and Conditions (a) - (c) of Proposition
5.25 are satisfied). Moreover, it can also be shown that if rj is not present, then it is
not possible to choose wj as a predictor input to consistently identify G0

ji using the
Two-Stage Method. These statements are proved in Appendix 5.9.10. The advantage
of choosing wj as a predictor input is that Condition (c) is automatically satisfied
without the need to include any other variables. �

Remark 5.28 The Conditions presented in Proposition 5.25 do not change if there
is measurement noise present on the measurements of wk, k ∈ Dj. The Two Stage
method still results in consistent estimates of Ğ0

ji in the presence of measurement
noise, as long as the r’s are exactly known. This observation is further explored and
generalized in Dankers et al. (2014c). �

It is interesting to compare the conditions of the Direct and Two Stage Methods.
For the Two Stage Method there are no restrictions on algebraic loops. Moreover,
there are no conditions regarding the correlation of the noise terms, or the presence of
confounding variables. However, to use the Two Stage Method at least one external
variable rm must be present that affects wi (this is not the case for the Direct
Method). Moreover, the excitation conditions of the Two Stage Method are much
stricter than those of the Direct Method.

From the perspective of reducing the variance of an estimate, it is desirable to
project onto as many external variables as possible, since this increases the power
of the predictor inputs relative to the optimal output error residual (not projecting
onto a particular external variable means that the power of the predictor inputs is
less, and that particular external variable becomes part of the unmodeled component
of the output, increasing the power of the optimal output error residual).

Example 5.29 Recall the network of Example 5.12 shown in Fig. 5.5. Suppose
that the objective is to obtain an estimate of G0

21 (denoted in gray) using the Two
Stage Method. Choose an output error model structure (H2(q, θ) = 1). Choose
D2 = {1, 3, 4}. For this choice of D2 all conditions of Proposition 5.14 are satisfied,
and therefore G̃0

21 = G0
21. To ensure that the estimate of G̃0

21 is consistent, P2 must
also be chosen properly.
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Choose to project the predictor inputs onto r1 and r5 (T2 = {1, 5}). Thus, by
Proposition 5.25 P2 is set to {5}, since there is a path from r5 to w2 that passes
only through wn n ∈ Z2 = {5}.

Now consider projecting only onto r1. In this case, by Proposition 5.25, P2 is
set to ∅.

Finally, consider the choice D2 = {1, 2, 5}. Futhermore, choose to project onto
both r1 and r5. In this case, by Proposition 5.25, P2 is set to ∅. In this case, due to
the different choice of D2, P2 can be chosen as ∅ even though T2 = {1, 5} just like
in the first case considered in this example. �

Example 5.30 Consider the same network as in Example 5.24, shown in Fig. 5.8.
Suppose the objective is to obtain consistent estimates of G0

32 (marked in gray) using
the Two Stage Method. Choose r1 as the external variable to project onto (T3 = {1}).
By the same reasoning as in Example 5.24, choosing D3 = {1, 2} or {2, 4} satisfies
the conditions of Proposition 5.14. However, in this case (unlike for the Direct
Method) both these choices of D3 satisfy all the remaining conditions of Proposition
5.25 (since confounding variables are not an issue for the Two Stage Method).

Finally, P3 must be chosen as stated in Proposition 5.25. There are two inde-
pendent paths from r1 to w3,

r1 → w4 → w6 → w3 and r1 → w2 → w3

both of which pass through a variable wn, n ∈ D3, so P3 should be chosen as ∅. �

Example 5.31 In this example the Direct and Two Stage Methods will be compared
using a simulation example. Data has been generated in Matlab for the network of
Examples 5.24 and 5.30. Each transfer function G0

jk, j = 1, . . . , 8, k ∈ Nj is of
second order with one delay. The transfer functions are chosen so that (I −G0)

−1

is stable.
The noise terms vk, k = 1, . . . , 8 and the external variable r1 are constructed as

>>r = 3*randn(N,1);
>>e = randn(N,8);
>>v = lsim(H0,e,0:N-1);

where H0 is a diagonal matrix with first order monic transfer functions on the
diagonal, and N is the number of data points used. For this simulation example
N = 5000. As in Examples 5.24 and 5.30 suppose the objective is to identify G0

32

(denoted in gray in the figure).
Consider first the Direct Method. In Example 5.24 it was shown that choosing

D3 = {2, 4, 7} will result in consistent estimates of G0
32. As discussed in Section 5.4,

a key mechanism which ensures consistent estimates are possible using the Direct
Method is that the term ṽ3(t,D3) is correctly modeled. Choosing

H3(q, θ) = 1 + c1q
−1 + · · ·+ c50q

−50

ensures that the noise model can model any H0
3 that has an impulse response that is

basically 0 for any lag greater than 50. Of course the noise model will not be exact,
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but using this parameterization a very good approximation can be obtained for a wide
range of possible noise models.

Secondly, the transfer functions G3k(q, θ), k ∈ D3 must be parameterized. Since
only the estimate G32(q, θ) is of interest, choose the following parameterization:

G32(q, θ) =
b321 q−1 + b322 q−2

1 + a321 q−1 + a322 q−2
, (5.17a)

G34(q, θ) = b341 q−1 + · · · b3450q−50, (5.17b)
G37(q, θ) = b371 q−1 + · · · b3750q−50. (5.17c)

The resulting estimates of 10 different identification experiments are plotted in Fig.
5.9. Note that the estimate of G0

32 is quite good.
Next the Two Stage Method is used. In this case, as shown in Example 5.30,

D3 = {2, 4} is sufficient to obtain consistent estimates of G0
32. It is interesting to

note that the parameterization of G34(q, θ) in (5.17) cannot be used for the Two
Stage Method since the Condition (b) is stricter than in the Direct Method. The
condition places an upper bound on the number of parameters that can be estimated.
Therefore, the following parameterization is used:

G32(q, θ) =
b321 q−1 + b322 q−2

1 + a321 q−1 + a322 q−2
,

G34(q, θ) =
b342 q−2 + · · ·+ b349 q−9

1 + a341 q−1 + · · ·+ a348 q−8
.

The resulting estimates of 10 different identification experiments are plotted in Fig.
5.10. It is clear that the estimates of the Two-Stage method have a higher variance.
This is as expected because only the projections of the internal variables onto the
external variable are used as predictor inputs, thus the signal to noise ratio is much
larger than in the Direct Method.

Example 5.32 Consider now an illustration of the notion that the identified object
is a function of the predictor inputs. Consider the same situation as in Example
5.31. Suppose that now we choose D3 = {2, 5, 7}. From Proposition 5.14 this
choice of predictor inputs will not lead to a consistent estimate of G0

32. Further
suppose that v4 and v1 and r1 are not present (otherwise the noise terms would
be confounding variables, and r1 would need to be chosen as a predictor input).
Suppose that each transfer function (i.e. G23(θ), G25(θ), G27(θ), and H3(θ)) is
modeled using 50 parameters, just as in the previous simulation. The resulting
estimates of 10 different identification experiments are plotted in Fig. 5.11. Note
that all the identified transfer functions have changed from those shown in Fig. 5.9,
simply because one predictor input was chosen differently. Now G23(θ) is no longer
a consistent estimate of G0

32, but rather it is a consistent estimate of Ğ0
32 which is

equal to:

Ğ0
32(q,D3) = G0

32(q) +G0
36(q)G

0
64(q)G

0
41(q)G

0
12(q).

From Figure 5.11 it is clear that in fact consistent estimates of Ğ0
32 are obtained. �
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Figure 5.9: Results of Identification Experiments using the Direct Method as de-
scribed in Example 5.31. The red lines denote the transfer functions of the immersed
network for D = {2, 4, 7}, the blue lines denote the estimates.
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Figure 5.10: Results of Identification Experiments using the Two Stage Method
as described in Example 5.31. The red lines denote the transfer functions of the
immersed network for D = {2, 4}, the blue lines denote the estimates.
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Figure 5.11: Results of Identification Experiments using the Direct Method as de-
scribed in Example 5.31. The red lines denote the transfer functions of the immersed
network for D = {2, 5, 7}, the blue lines denote the estimates, and the gray line de-
notes the transfer function G0

32 of the original network.

5.6 ALGORITHMIC ASPECTS
In this section an algorithm is presented that provides a practical way to check

the conditions that the set Dj must satisfy in order to ensure that Ğ0
ji(q,Dj) of

the immersed network is equal to G0
ji(q) of the original network. In other words,

an algorithm is presented to check whether, for a given set Dj , the conditions of
Proposition 5.14 are satisfied. The algorithm uses tools from graph theory, therefore,
before presenting the result, consider the following definitions.
Definition 5.33 (A-B path (Diestel, 1997)) Given a directed graph G and sets
of nodes A and B. Denote the nodes in the graph by xi. A path P = x0x1 · · ·xk, where
the xi are all distinct, is an A-B path if V (P) ∩A = {x0}, and V (P) ∩B = {xk}.

Definition 5.34 (A-B Separating Set (Diestel, 1997)) Given a directed graph
G, and sets of nodes A,B ⊂ V (G), a set X ⊆ V (G) is an A-B separating set if the
removal of the nodes in X results in a graph with no A-B paths.

The following notation will be useful in order to reformulate the conditions of
Proposition 5.14 using the notion of separating sets. Let the node wj be split into
two nodes, w+

j to which all incoming edges (of wj) are connected and w−
j to which

all outgoing edges (of wj) are connected. The new node w+
j is connected to w−

j with
the edge Gj+j− = 1. Let w+

i and w−
i be defined analogously.

Proposition 5.35 The conditions of Proposition 5.14 can be reformulated as: the
set Dj is a {w+

i , w
−
j }-{w+

j } separating set.

Proof: The conditions of Proposition 5.14 can be rewritten as follows. The set Dj

satisfies the following conditions:

1. Dj \ {i} is a {wi}-{wj} separating set for the network with path G0
ji removed,

2. Dj is a {w−
j }-{w+

j } separating set.
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These two conditions can be formulated as the single condition of the proposition.
Note that wi must always chosen to be in Dj to ensure that Dj is a {w+

i , w
−
j }-

{w+
j } separating set (i.e. Condition (a) of Proposition 5.14 is automatically satis-

fied). This is because there is always a path w+
i → w−

i → w+
2 . Consequently, w−

i

must be chosen in the set Dj .
The advantage of reformulating the conditions in terms of separating sets is that

there exist tools from graph theory to check if a given set is a separating set or to
find (the smallest possible) separating sets (Diestel, 1997; Kanevsky, 1993).
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Figure 5.12: Example of an interconnected network used in Example 5.36.

Example 5.36 Consider the network shown in Fig. 5.12. Suppose that the objective
is to obtain consistent estimates of G0

21 (denoted in green). Both w1 and w2 have
been split into two nodes as described above.

By Proposition 5.35 the conditions of Proposition 5.14 are satisfied for the given
network if D2 is a {w+

1 , w
−
2 }-{w+

2 } separating set. The outgoing set {w+
1 , w

−
2 } is

denoted in brown, and the incoming set {w+
2 } is denoted in orange in the figure.

There are many possible choices of D2, but the smallest choice, {w−
1 , w6, w3}, is

denoted in black. It is easy to verify that all paths from the brown set to the orange
set pass through a node in the black set. �

5.7 DISCUSSION
In this chapter we have not addressed algorithmic aspects of the identification meth-
ods themselves. The presented approach is a local approach in the sense that only
a (small) subset of internal variables are required to identify a particular module
embedded in the network. Therefore, even for large networks, the numerical com-
plexity of obtaining an estimate of a particular module can be limited by proper
choice of predictor inputs. If multiple modules need to be identified each module
can be estimated in parallel, reducing the execution time of estimation routines. If
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the number of predictor inputs is large it may be attractive to rely on linear re-
gression schemes such as ARX, FIR (Ljung, 1999) and orthogonal basis function
expansions (Heuberger et al., 2005), as well as IV-type and subspace algorithms
(Ljung, 1999).

While we have restricted this chapter to dealing with questions of consistency,
variance properties of estimates will be highly relevant to consider as a function of
measured node signals as predictor inputs, as well as of external excitation signals
present. This includes considering experiment design problems to increase the in-
formativity of the measured data for the particular identification objective. For an
analysis of related aspects in open-loop see e.g. Gevers et al. (2006).

The approach presented in this chapter can be extended to the situation where
all measured node variables are measured with sensor noise. The resulting errors-
in-variables problem can be handled in a dynamic network setting, as will be shown
in the next chapter

5.8 SUMMARY
In this chapter, identification in dynamics networks has been investigated. In a
dynamic network, unlike in open or closed loop systems, there are many options
as to which variables to include as predictor inputs. It has been shown that when
identifying in networks, the obtained estimates are consequences of the (chosen)
set of predictor inputs. In particular, the obtained estimates are estimates of the
dynamics defined by the immersed network. Conditions on the predictor inputs have
been presented such that it is possible to obtain consistent estimates of a module
embedded in a dynamic network using either the Direct or Two Stage methods of
identification. These conditions are useful since they enable the user to design a least
expensive sensor placement scheme or check if it is possible to avoid using particular
variables in the identification experiment for instance. Moreover, it is shown that
efficient algorithms exist, using separating sets, that can be used to find a set of
predictor inputs that satisfies the conditions.

5.9 APPENDIX
5.9.1 Proof of Proposition 5.3
The following Lemma is used in proving Proposition 5.3.

Lemma 5.37 Let G be a n×m matrix of transfer functions, with n ≤ m. Suppose
all principal minors of G are non-zero. The matrix G can be uniquely factored as
(I −G)−1F , where G and F have the structure defined in (5.8).

Proof: The proof will proceed by using matrix operations to factor G into the form
(I−G)−1F , where G and F have the required form. Every matrix used in the proof
is full rank, and consequently the operations are unique.
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Partition G as [Gs Gr] where Gs is square. Start by factoring out Gs. Since, by
assumption the principal minors of G are non-zero, this matrix is full rank.

G = Gs

[
I G−1

s Gr

]
. (5.18)

Let W−1
s = M . Then (5.18) can be expressed as:

G = M−1
[
I G−1

s Gr

]
Let D be a matrix of the diagonal entries of M . Since each diagonal entry is a
principal minor, it follows that D is full rank. Removing the diagonal entries of M
(so that it matches the structure of G) results in:

G =
(
D − (D −M)

)−1 [
I G−1

s Gr

]
=
(
I −D−1(D −M)

)−1
D−1

[
I G−1

s Gr

]
=
(
I −D−1(D −M)

)−1 [
D−1 D−1G−1

s Gr

]
. (5.19)

The main point is that D−1(D −M) has the required structure of G, and[
D−1 D−1G−1

s Gr

]
has the required structure of F . This concludes the proof.
Now follows the proof of Proposition 5.3.

Proof: Any network can be expressed as

[
wj(t)
wD(t)

]
= G0(q)

rj(t) + vj(t)
rD(t) + vD(t)
rZ(t) + vZ(t)

 .

Because the network is well posed, the principal minors of G are all non-zero. Thus,
by Lemma 5.37, G can be uniquely factored into Ğ0 and F̆ 0 with the structure (5.8).

If there is an index ℓ such that both vℓ and rℓ are not present, then setting the
corresponding column of F̆ 0 to zero has no effect on in the validity of (5.7) with
respect to the signals.

5.9.2 Proof of Proposition 5.8
Proof: The proof proceeds by showing that Algorithm 5.5 results in matrices Ğ0

and F̆ 0 of the form in Proposition 5.3.
In Step 2c of Algorithm 5.5 no path starting from vk (or rk), k ∈ Dj is ever lifted.

Moreover, in the framework considered in this chapter, in the original network, vk,
k ∈ V (or rk, k ∈ R) only has a path to wk. It follows that in the immersed network,
vk (or rk), k ∈ Dj only has a path to wk. Thus, all the off-diagonal entries of the
leading square matrix of F̆ i0 are zero, which shows that the form of F̆ i0 is the same
as that of F̆ 0.

In Step 3 of the algorithm all self-loops are removed. Thus the diagonal entries
of Ği0 are set to zero. This shows that Ği0 and Ğ0 have the same form.

By the uniqueness result of Proposition 5.3 it follows that F̆ i0 = F̆ 0 and Ğ0 = Ği0
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5.9.3 Proof of Proposition 5.9
Proof: The proof proceeds by starting with the original network (5.1) and removing
the internal variables wk, k ∈ Zj from the equations. The proofs proceeds at a signal
level. At the end of the proof, matrices Ğ0 and F̆ 0 are obtained of the form required
by Proposition 5.3. Consequently, uniqueness of the matrices is ensured.

Given a network of the form (5.2), the variables wZ must be removed from the
equation. This is done by expressing wZ in terms of wk, k ∈ {j} ∪ Dj , vk, k ∈ Zj ,
and rk, k ∈ Zj :

wZ = G0
Zjwj +G0

ZDwD +GZZwZ + vZ + rZ

= (I −GZZ)
−1(GZjwj +GZDwD + vZ + rZ). (5.20)

where the inverse exists by Assumption 2.19. In order to eliminate wZ from the
expression of [wj wD], first express [wj wD] in terms of wZ , and then substitute in
(5.20): [

wj

wD

]
=

[
0 GjD

GDj GDD

][
wj

wD

]
+

[
GjZ

GDZ

]
wZ +

[
vj
vD

]
+

[
rj
rD

]
=

[
0 GjD

GDj GDD

][
wj

wD

]
+

[
GjZ

GDZ

]
(I −GZZ)

−1
[
GZj GZD

][wj

wD

]
+

[
GjZ

GDZ

]
(I −GZZ)

−1(rZ + vZ) +

[
vj
vD

]
+

[
rj
rD

]
. (5.21)

Collect all the v’s and r’s into a single vector:[
wj

wD

]
=

([
0 GjD

GDj GDD

]
+

[
GjZ

GDZ

]
(I −GZZ)

−1
[
GZj GZD

])[wj

wD

]

+

[
1 0 GjZ(I −GZZ)

−1

0 I GDZ(I −GZZ)
−1

]rj + vj
rD + vD
rZ + vZ

 .

From the statement of the Proposition, the matrix preceding [wj wD]
T is G̃0, and

the matrix preceding the r and v terms is F̃ 0. To put the matrices G̃0 and F̃ 0 into
the form required by Proposition 5.3, the diagonals of G̃0 must be removed. Let D
denote the diagonal entries of G̃0:

[
wj

wD

]
= G̃0

[
wj

wD

]
+ F̃ 0

rj + vj
rD + vD
rZ + vZ


= (I−D)−1(G̃0−D)

[
wj

wD

]
+(I−D)−1F̃ 0

rj+vj
rD+vD
rZ+vZ

. (5.22)

Both matrices in (5.22 have the same form as Ğ0, and F̆ 0 in (5.7). Thus, by Propo-
sition 5.3, they are equal to Ğ0 and F̆ 0.



5.9 Appendix 129

5.9.4 Proof of Lemma 5.10
Proof: Consider part 1. From Proposition 5.9, the transfer function of the (m,n)th
entry of Ğ0 (where m ̸= n) is

Ğ0
mn =

1

1− G̃0
mm

(
G0

mn+
∑

ℓ1∈Zj

∑
ℓ2∈Zj

G0
mℓ1G

Z
ℓ1ℓ2G

0
ℓ2n

)
(5.23)

where GZ
ℓ1ℓ2

denotes the (ℓ2, ℓ1) entry of (I − G0
ZZ)

−1. By Lemma 4.1 if every path
from ℓ2 to ℓ1 passing only through nodes wk, k ∈ Zj has a delay then GZ

ℓ1ℓ2
has

a delay. Thus, if every path from wk1 to wk2 that passes only through nodes wk,
k ∈ Zj has a delay, either G0

mℓ1
, GZ

ℓ1ℓ2
, or G0

ℓ2n
has a delay (for every ℓ1 and ℓ2). By

(5.23) the statement of the lemma follows.
To show that Ğ0

mn = 0 when there is no path from wm to wn that passes through
only nodes wk, k ∈ Zj follows the same reasoning, as does part 2 of the Lemma.

5.9.5 Proof of Proposition 5.14
Proof: From Algorithm 5.5 there are two ways that the transfer function Ğ0

ji can
change to be different from G0

ji: in Steps 2c and 3. Using the same notation as that
in Algorithm 5.5, the proof will proceed by showing that Conditions (b) and (c)
ensure that no change to Ğ

(k)
ji occurs for all k = 1 : d in Steps 2c and 3 respectively.

Start by investigating Step 2c. A change to G
(k)
ji occurs if a path has been lifted

in Step 2a and resulted in an edge from wi to wj . By Condition (b) every path from
wi to wj passes through a node wn, n ∈ Dj . Consequently, it will never occur at
any iteration k that a node wn is being removed that has an incoming edge from wi

and an outgoing edge to wj . Thus, there will never be parallel edges generated from
wi to wj that must be merged in Step 2c.

Similarly, by Condition (c) every path from wj to wj passes through a node wn,
n ∈ Dj . Consequently, it will never occur at any iteration k of the algorithm that a
node wn is being removed that has an incoming edge from wj and an outgoing edge
to wj . Thus there is never a self loop from wj to wj generated. Which means that
the division in Step 3 will simply be a division by 1.

5.9.6 Proof of Proposition 5.15
The following Lemma will be used to prove Proposition 5.15.

Lemma 5.38 Consider a vector of rational functions

∆X(q, θ) = [∆X1(q, θ1) · · · ∆Xd(q, θd)]
T

where ∆Xk(q, θk) = Lk(q, θk)(X
0
k(q) − Xk(q, θk)), where Lk is a monic transfer

function, X0
k is a transfer function and Xk(θk) is a transfer function parameterized

as:

Xk(θk) =
bk0 + bk1q

−1 + · · ·+ bknb
q−nb

1 + ak1q
−1 + · · ·+ akna

q−na
,
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where θk = [bk0 · · · bknb
ak1 · · · akna

]T . Suppose the parameterization is chosen such
that for each ∆Xk(θk), there exists a parameter vector θ∗ such that ∆X(θ∗) = 0.
Consider a (d × d) power spectral density matrix Φ. If Φ is positive definite for at
least nθ = na + nb + 1 frequencies ωn, where −π < ωn ≤ π then∫ π

−π

∆X(ejω, θ)TΦ(ω)∆X(e−jω, θ)dω=0 =⇒ ∆Xk(q, θ)=0

for k = 1, . . . , d.

Proof: Consider the expression for the kth entry of ∆X(q, θ):

∆Xk(q, θ) = Lk(q, θ)
(B0

k(q)

A0
k(q)

− Bk(q, θ)

Ak(q, θ)

)
= Lk(q, θ)

B0
k(q)Ak(q,θ)−Bk(q,θ)A

0
k(q)

A0
k(q)Ak(q,θ)

= ∆Pk(θ)Kk(q, θ)

where B0
k and Bk(θ) are polynomials in q−1, A0

k and Ak(θ) are monic polynomials
in q−1, and

∆Pk(q, θ) = B0
k(q)Ak(q, θ)−Bk(q, θ)A

0
k(q),

Kk(q, θ) = Lk(q, θ)
1

A0
k(q)Ak(q, θ)

.

Note that ∆Pk(q, θ) is a polynomial of order nθ.
The implication in the statement of the lemma can now be expressed as:∫ π

−π

∆P (ejω, θ)K(ejω, θ)Φ(ω)KH(ejω, θ)∆PH(ejω, θ)dω = 0,

where (·)H denotes conjugate transpose,

∆P =[∆P1 · · · ∆Pd] and K=diag
(
K1, . . . ,Kd

)
.

Since the term in the integral is nonnegative for all θ, the only way that the integral
can equal zero is if the term in the integral is zero for every omega, i.e.:

∆P (ejω, θ)K(ejω, θ)Φ(ω)KT(e−jω, θ)∆PT (e−jω, θ) = 0

for all ω ∈ [−π, π). Because Φ is positive definite at nθ frequencies, and K(θ) is full
rank for all ω and θ (since Kk is a monic transfer function for k = 1, . . . , d), it follows
that K(ejω, θ)Φ(ω)KT(e−jω, θ) is positive definite at nθ frequencies. However, ∆P (q)
is a vector of polynomials of degree nθ. By Property 6 in Section 5.4 of Söderström
& Stoica (1989a) this implies that ∆P (q) = 0. From the definition of ∆P (θ, θ) this
implies that Xk(θ) = X0

k for all k = 1, . . . , d.
The proof of Proposition 5.15 now proceeds:
Proof: First consider Case 1 (Conditions (a) and (b) hold for all η). Since the

noise model is independently parameterized from the module models, let η denote
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the parameters associated with the noise model, and let θ denote the parameters
associated with the modules.

From (5.11) and (5.5) the asymptotic objective function is

V̄ (θ, η) = Ē
[(

H−1
j (q, η)

(
wj(t)−

∑
k∈Dj

Gjk(q, θ)w
(X )
k (t)−

∑
k∈Pj

Fjk(q, θ)rk(t)
))2]

By (5.14) and (5.15) wj can be expressed in terms of wk, k ∈ Dj , rk, k ∈ Pj and a
residual, pj(t,Dj) resulting in:

V̄ (θ, η) = Ē
[(

H−1
j (q, η)

(∑
k∈Dj

∆Gjk(q, θ,Dj)w
(X)
k (t)

+
∑
k∈Pj

∆Fjk(q, θ,Dj)rk(t) + pj(t,Dj)
))2]

(5.24)

where ∆Gjk(q, θ,Dj) = Ğ0
jk(q,Dj) − Gjk(q, θ), and ∆Fjk(q, θ,Dj) = F̆ 0

jk(q,Dj) −
Fjk(q, θ). By Conditions (a) and (b), the term H−1

j (q, η)pj(t,Dj) is uncorrelated to
the other two terms in (5.24), resulting in:

V̄ (θ, η) = Ē
[(
H−1

j (q, η)
(∑
k∈Dj

∆Gjk(q, θ,Dj)w
(X)
k (t) +

∑
k∈Pj

∆Fjk(q,θ,Dj)rk(t)
))2]

+ Ē
[(
H−1

j (q, η)pj(t,Dj)
)2]

. (5.25)

By Parseval’s theorem (5.25) can be expressed as:

V̄ (θ, η) =
1

2π

∫ π

−π

∆X(ejω, θ, η)Φ(ω)∆XT (e−jω, θ, η)

+H−1
j (ejω, η)Φpj (ω)H

−1
j (e−jω, η)dω (5.26)

where

∆X=H−1
j

[
∆Gjk1 · · · ∆Gjkn ∆Fjm1 · · · ∆Fjmℓ

]
,

Φ(ω) =

[
ΦwD (ω) ΦwDrP (ω)
ΦrPwD (ω) ΦrP (ω)

]
,

where k∗ ∈ Dj , m∗ ∈ Pj and Φ∗∗(ω) are the (cross) power spectral densities of the
denoted variables.

Note that second first term of (5.26) is a function of only η. Moreover both terms
are positive for any θ and η. Since the parameterization is chosen flexible enough,
the first term can equal 0 for particular choices of θ.

By assumption the power spectral density of [wj wk1 · · · wkn rm1 · · · rmℓ
] is

positive definite for a sufficiently large number of frequencies. Since pj is uncorre-
lated to the predictor inputs, this implies that Φ in (5.26) is positive definite for
a sufficiently large number of frequencies. Thus, all the conditions of Lemma 5.38
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hold, and consequently when the first term in (5.26) is zero, this implies that ∆X in
(5.26) is zero. It follows that at the minimum of V̄ , Gjk(q, θ

∗) = Ğjk(q,Dj), k ∈ Dj ,
Fjk(q, θ

∗) = Ğjk(q,Dj), k ∈ Pj , as desired. This concludes the proof for Case 1.
Consider now the proof for Case 2 (Conditions (a) and (b) hold for only η∗ and

H−1
j (η∗)pj is white). Since the noise model is independently parameterized from the

module models, let η denote the parameters associated with the noise model, and
let θ denote the parameters associated with the modules.

For notational simplicity, let H−1
j (q, η∗)pj(t,Dj) be denoted as sj(t,Dj). The

reasoning will be split into two steps:

1. Show that if Conditions (a) and (b) hold at η∗, then the following bound on the
objective function holds:

V̄ (θ) ≥ Ē
[(
H−1

j (q, η∗)pj(t,Dj)
)2]

. (5.27)

2. Show that when equality holds it implies that Gjk(q, θ) = Ğ0
jk(q,Dj), k ∈ Dj ,

and Fjk(q, θ) = F̆ 0
jk(q,Dj), k ∈ Pj .

Step 1. If (5.24) is evaluated at η∗, the third term is equal to sj .
By Conditions (a) and (b) sj is uncorrelated to the first two terms in the ex-

pression. Moreover, since sj is white, it is also uncorrelated to delayed versions
of itself which means that E[∆Hj(q, η)sj(t) · sj(t)] = 0 where ∆Hj(q, η,Dj) =
Hj(q, η

∗) − Hj(q, η) (the expression holds since Hj is monic, and thus ∆Hj has
a delay).

Using this fact to simplify (5.24) results in

V̄ (θ, η) = Ē
[
s2j (Dj)

]
+ Ē

[
H−1

j (η)
(∑
k∈Dj

∆Gjk(θ,Dj)w
(X)
k

+
∑
k∈Pj

∆Fjk(θ,Dj)rk +∆Hj(η,Dj)sj(Dj)
)2]

. (5.28)

The first term of V̄ (θ, η) is not a function of θ or η, proving that V̄ (θ,η)≥ Ē
[
s2j (t,Dj)

]
as desired.
Step 2. Now it is shown that

V̄ (θ,η)= Ē
[
s2j (t,Dj)

]
⇒


Gjk(q, θ)=Ğ0

jk(q,Dj), k ∈ Dj

Fjk(q, θ)= F̆ 0
jk(q,Dj), k ∈ Pj

Hj(q, η)=Hj(q, η
∗)

Consider the equation V̄ (θ, η) = Ē
[
s2j (t,Dj)

]
. From (5.28) using Parseval’s the-

orem, this results in:

1

2π

∫ π

−π

∆X(ejω, θ)Φ(ω)∆XT (e−jω, θ)dω = 0, (5.29)
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for all ω ∈ [−π, π], where

∆X=H−1
j

[
∆Gjk1 · · · ∆Gjkn ∆Fjm1 · · · ∆Fjmℓ

∆Hj

]
,

Φ(ω) =

 ΦwD(ω) ΦwDrP (ω) ΦwDsj (ω)
ΦrPwD (ω) ΦrP (ω) ΦrPsj (ω)
ΦsjwD (ω) ΦsjrP (ω) Φsj (ω)

 , (5.30)

where k∗ ∈ Dj , m∗ ∈ Pj and Φ∗∗(ω) are the (cross) power spectral densities of the
denoted variables. Recall from (5.15) that wj can be expressed in terms of w

(X )
k ,

k ∈ Dj , rk, k ∈ Pj and pj . By rearanging (5.15) an expression for sj is

sj = H0−1

j

(
wj −

∑
k∈Dj

Ğ0
jkw

(X )
k −

∑
k∈Pj

F̆ 0
jkrk

)
Consequently, (5.30) can be expressed as JΦwJ

H , where

J =

 I 0 0
0 I 0

−Ğ0
jD −F̆ 0

jD 1

 ,

Φw is the power spectral density of [wk1
· · · wkn

rm1
· · · rmℓ

wj ], and (·)H denotes
conjugate transpose. Because J is full rank for all ω, and Φw is full rank for at
least nθ frequencies (by the statement of the theorem) it follows that Φ in (5.29)
is full rank for at least nθ frequencies. Because Φ(ω) is positive definite for at
least nθ frequencies, and the parameterization is chosen flexible enough, it follows
from Lemma 5.38 that ∆X = 0. By the definition of ∆X it follows that (5.29)
implies Gjk(q, θ

∗) = Ğjk(q,Dj), k ∈ Dj , Fjk(q, θ
∗) = Ğjk(q,Dj), k ∈ Pj , and

Hj(q, θ
∗)=Hj(q, η

∗) as desired.

5.9.7 Proof of Proposition 5.16
Proof: The proof proceeds by showing that Conditions (a) and (b) hold at η∗,
and that H−1

j (η∗)pj is white noise. By Condition (d), pj is not a function of any
r terms, and thus from (5.14) it follows that pj = v̆j . Recall from (5.7) that the
equation defining the immersed network is w = Ğ0w+ F̆ 0r+ v̆ where w = [wj wD]

T ,
r = [rj rD rZ ]

T and v̆ is defined in (5.9). Consequently, wk can be expressed as

wk = Ğ0
kj(v̆j + rj + F̆ 0

jZrZ) +
∑
n∈Dj

Ğ0
kn(v̆n + rn + F̆ 0

nZrZ)

where Ğ0
jk denotes the (j, k) entry of (I − Ğ0)−1. Using this expression for wk,

Condition (a) of Proposition 5.15 can be expressed as:

Ē[H−1
j (q, η∗)pj(t) ·∆Gjk(q,Dj ,θ)wk(t)]= Ē

[
H−1

j (q, η∗)v̆j(t)·

·∆Gjk(q,Dj ,θ)
∑

n∈Dj∪{j}

Ğ0
kn(q)

(
v̆n(t) + rn(t) + F̆ 0

nZ(q)rZ(t)
)]
.
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By Assumption 2.19 every vk is uncorrelated to every external variable. Moreover,
by Condition (a) v̆j is uncorrelated to the other noise terms in the immersed network,
and so the above equation can be simplified:

Ē[H−1
j (q, η∗)pj(t) ·∆Gjk(q,Dj , θ)wk(t)]

= Ē[H−1
j (q, η∗)v̆j(t) ·∆Gjk(q,Dj , θ)Ğ0

kj(q)v̆j(t)] (5.31)

By Lemma 4.1 (in Appendix 5.9.4) the transfer function Ğ0
kj has a delay if every path

(in the immersed network) from wj to wk has a delay. It follows by Condition (b)
that either Ğ0

kj or Ğ0
jk (or both) has a delay. By Condition (c) it follows that either

Ğ0
kj or ∆Gjk(q,Dj , θ) (or both) has a delay. The result is that ∆Gjk(q,Dj , θ)Ğ0

kj v̆j
is a function of only delayed versions of v̆j (and thus delayed versions of ĕj , where
ĕj is the whitened version of v̆j as defined in (5.10)). Thus it follows that

Ē[H−1
j (q, η∗)pj(t) ·∆Gjk(q,Dj , θ)wk(t)] = Ē[ĕj(t) ·∆Gjk(q,Dj , θ)Ğ0

kj(q)v̆j(t)] = 0

which means that the Condition (a) of Proposition 5.15 holds.
Since pj = v̆j , and by Assumption 2.19, all v’s are uncorrelated to all r, it follows

that Condition (b) holds as well.

5.9.8 Proof of Proposition 5.19
Proof: The following reasoning will show that Ē[v̆j(t) · v̆k(t−τ)] = 0 for all τ . From
(5.9),

Ē[v̆j(t) · v̆k(t− τ)]= Ē[
(
vj(t)+ F̆ 0

jZ(q)vZ(t)
)
·
(
vk(t− τ)+ F̆ 0

kZ(q)vZ(t− τ)
)
]. (5.32)

Consider the following three facts. First, by Condition (a), vj is uncorrelated to all
vk, k ∈ Dj . Secondly,

Ē[vj(t) · F̆ 0
kn(q)vn(t− τ)] = 0,∀τ, and ∀n ∈ Zj (5.33)

by the following reasoning. Either one of the conditions holds:

• There is a path from vn, n ∈ Zj to wk that passes only through nodes wk,
k ∈ Zj . In this case, by Condition (a) vj is uncorrelated to vn.

• There is no path from vn, n ∈ Zj to wk. In this case, by Lemma 5.10, F̆ 0
kn is

zero. Consequently, Ē[vj(t) · F̆kn(q)vn(t)] = 0.

Thirdly, by the same reasoning and by Condition (b), Ē[vk(t) · FjZ(q)vZ(t− τ)] = 0
for all τ . Consequently, (5.32) can be simplified to:

Ē[v̆j(t)v̆k(t−τ)]= Ē[F̆ 0
jZ(q)vZ(t) · F̆ 0

kZ(q)vZ(t− τ)].

By Parseval’s Theorem this equation can be expressed as

Ē[v̆j(t)v̆k(t−τ)]=
1

2π

∫ π

−π
F̆ 0
jZ(e

jω)ΦvZ (ω)F̆
0T

kZ (e−jω)ejωτdω.
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By Condition (c), ΦvZ is diagonal, and so

Ē[v̆j(t)v̆k(t−τ)]=
1

2π

∫ π

−π

∑
ℓ∈Zj

F̆jℓ(e
jω)F̆kℓ(e

−jω)ejτωϕℓ(ω)dω

where ϕℓ is the power spectral density of vℓ. By Lemma 5.10 the transfer function
F̆ 0
jk is zero if there is no path from vk to wj that passes only through nodes wk,

k ∈ Zj . Consequently, by Condition (d) for each ℓ, ℓ ∈ Zj , either F̆ 0
jℓ or F̆ 0

kℓ (or
both) are equal to zero. Consequently, Ē[v̆j(t)v̆k(t−τ)] is equal to zero for al τ , and
for all k ∈ Dj .

5.9.9 Proof of Proposition 5.25
Proof: The proof proceeds by showing that Case 1 of Proposition 5.15 holds. The
predictor inputs w

(T j)
k , k ∈ Dj and rk, k ∈ Pj are functions of all rk, k ∈ {Tj} ,

except those rk for which there is no path rk to wj (the projection onto this external
variable is zero in this case). Thus it is sufficient to show that the optimal output
error residual of wj is not correlated to these r’s. From (5.14) pj is equal to

pj(t,Dj) = F̆ 0
jj(q,Dj)rj(t) + v̆j(t) +

∑
k∈(Zj∩Rj)\Pj

F̆ 0
jk(q,Dj)rk(t)

+
∑
k∈Dj

Ğ0
jk(q,Dj)w

(⊥Tj)
k (t). (5.34)

By Assumption 2.19 all r’s are uncorrelated to all v’s. Thus, only the r terms in
pj could cause a correlation between pj and the predictor inputs. In particular, it
must be shown that pj is not a function of any rk, k ∈ Tj .

Split the variables in Tj into two categories: the rk’s for which at least one path
from rk to wj passes only through nodes in Zj , and the rk’s for which all paths
from rk to wj pass through at least one node wk, k ∈ Dj . By construction, all rk’s
that are in the first category are in Pj . Since no variable rk ∈ Pj appears in pj (see
(5.34) none of the variables in the first category appear in the expression for pj .

By Lemma 5.10 it follows that for all rk in the second category F̆ 0
jk is zero.

Thus, from (5.34) it follows that no rk term in the first category will appear in the
expression for pj .

Thus, pj is not a function of any rk, k ∈ Tj . Consequently, pj is uncorrelated to
the predictor inputs, and the conditions of Proposition 5.15 are satisfied.

Lastly, to satisfy all the conditions of Proposition 5.15 we must show that the
power spectral density Φ of [wj w

(Tj)
k1

· · · w
(Tj)
kn

rm1 · · · rmℓ
] is positive definite for

at least nθ frequencies. By (5.15) pj can be expressed as a function of w(Tj

k ), k ∈ Dj ,
and rk, k ∈ Pj and pj . It has allready been shown that pj is uncorrelated to all the
predictor inputs. Consequently, the power spectral density Φ is equal to

Φ =

[
1 [−Ğ0

jD − F̆ 0
jD]

0 I

] [
ϕp 0
0 Φw

] [
1 [−Ğ0

jD − F̆ 0
jD]

0 I

]H
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where ϕp is the power spectral density of pj and Φw is the power spectral density of

[w
(Tj)
k1

· · · w
(Tj)
kn

rm1 · · · rmℓ
]T

(which is positive definite at nθ frequencies). Because the first (and last) matrices
are full rank for all ω it follows that Φ is full rank for at least nθ frequencies.
Consequently all the conditions of Case 1 of Proposition 5.15 are satisfied.

5.9.10 Proof of Remark 5.27
Proposition 5.39 Consider a dynamic network that satisfies Assumption 2.19.
Consider the situation of Proposition 5.25. Suppose that Conditions (a) to (c)
are satisfied. Consistent estimates of Ğ0

ji are obtained using the Two-Stage Method,
with wj as a predictor input (i.e. j is an element of Dj) if and only if rj is present

Proof: (Sufficiency). We show that if rj is present, then Vj(θ) has a unique
minimum. Let {wk}, k ∈ Dj and {rk}, k ∈ Pj denote the sets of internal and
external variables respectively that are chosen as predictor inputs. Let {rk} k ∈ Tj
denote the set of external variables that are projected onto. Suppose that j ∈ Dj ,
i.e. wj is selected as a predictor input. Then the expression for the identification
criterion is:

V̄j(θ) = Ē[ε2j (t, θ)]

= Ē
[(

wj −
∑
k∈Dj

Gjk(q, θ)w
(T j)
k −

∑
k∈Pj

Fjk(q, θ)rk − rj

)2]
. (5.35)

An important feature of this proposition is that there is a unique representation of wj

with Fjj = 1. Consider Algorithm 3 for the construction of the immersed network.
By Propositions 1 and 2 the immersed network is unique. Consider now removing
Step 3 of Algorithm 3. In Step 3 any self loops around wj are removed. If this step
is not applied then the result is an expression for wj in terms of wj and all the other
selected variables in the immersed network. Moreover, the transfer function Fjj in
this network is 1. Since applying Step 3 is not essential for the uniqueness result, it
follows that wj can be uniquely expressed in terms of {wk}, k ∈ Dj , where j is an
element of Dj and Fjj = 1:

wj(t) =
∑

k∈Dj\{j}

Ğ0
jk(q,Dj)wk(t) + Ğ0

jj(q,Dj)wj(t) +
∑
k∈Pj

F̆ 0
jk(q,Dj)rk(t)

+ rj(t) + v̆j(t).

where the ·̆ notation here has been used to denote the dynamics of the immersed
network with the self-loops removed. Consequently, (5.35) can be expressed as

V̄ (θ) = Ē
[( ∑

k∈Dj

∆Ğjk(θ)w
(T j)
k +

∑
k∈Pj

∆F̆jk(θ)rk + pj

)2]
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where pj is the optimal output error residual:

pj =
∑
k∈Dj

Ğ0
jkw

(⊥T j)
k + v̆j (5.36)

and ∆Ğjk(θ) = Ğ0
jk −Gjk(θ), and ∆F̆jk(θ) = F̆ 0

jk − Fjk(θ). By Condition (a) pj is
uncorrelated to all {rk}, k ∈ Tj . Thus, V̄ can be expressed as:

V̄ (θ) = Ē
[( ∑

k∈Dj

∆Ğjk(θ)w
(T j)
k +

∑
k∈Pj

∆F̆jk(θ)rk

)2]
+ Ē

[(
pj
)2]

. (5.37)

It follows from (5.37) that V̄ (θ) ≥ Ē
[(
pj
)2].

The remainder of the proof proceeds by showing that V̄j(θ) = Ē
[(
pj
)2] implies

that ∆Ğjk(θ) = 0 for all k ∈ Dj , and ∆F̆jk(θ) = 0 for all k ∈ Pj . This reasoning
can be found in the proof of Proposition 5.15 and so will not be repeated here.

(Necessity). We show that if rj is not present, then V̄j(θ) does not have a
unique global minimum (and so consistent estimates are not possible). Consider
first, two ways of expressing wj :

wj =
∑

k∈Dj\{j}

Ğ0
jkwk + Ğjjwj +

∑
k∈Pj

F̆jkrk + v̆j (5.38)

and

wj =
∑

k∈Dj\{j}

Ğ0
jk

1− Ğ0
jj

wk +
∑
k∈Pj

F̆jk

1− Ğ0
jj

rk +
1

1− Ğ0
jj

v̆j . (5.39)

where in the second equality wj has been eliminated from the expression. Note that
rj does not appear in the expressions, by assumption.

Consider now, two models in the model set. The models are based on (5.38) and
(5.39) respectively. Let Model 1, denoted M1, be defined as:

Gjk(q, θ1) = Ğ0
jk(q,Dj), for all k ∈ Dj (5.40)

where the dynamics Ğ0
jk(q,Dj) are the same as in (5.38). Model 2, denoted M2, is

defined as:

Gjk(q, θ2) =
Ğ0

jk(q,Dj)

1− Ğ0
jj(q,Dj)

, for all k ∈ Dj \ {j}. (5.41)

where the transfer functions Ğ0
jk(q,Dj) in (5.41) are the same as those in (5.40).

Note that when rj is not present, the expression for the optimal output error
residual is actually the same as that in (5.36), since rj does not appear in (5.36).
Thus, the optimal output error residual for Model 1 is:

pj(θ1) =
∑
k∈Dj

Ğ0
jk(q,Dj)w

(⊥T j)
k + v̆j . (5.42)
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Similarly, the optimal output error residual for Model 2 is:

pj(θ2) =
∑

k∈Dj\{j}

Ğ0
jk(q,Dj)

1− Ğjj(q,Dj)
w

(⊥T j)
k +

1

1− Ğjj(q,Dj)
v̆j . (5.43)

where, again, the transfer functions in (5.43) are the same as those in (5.42). In the
remaining text, we will show that in fact (5.42) and (5.43) are the same.

The term Ğ0
jjw

(⊥Tj)
j will be removed from (5.42). The expression for w

(⊥Tj)
j in

terms of {w(⊥Tj)
j }, k ∈ Dj \ {j} is obtained by projecting wj in (5.39) into all singal

s that are uncorrelated to {rk}, k ∈ Tj :

w
(⊥Tj)
j =

∑
k∈Dj\{j}

Ğ0
jk

1− Ğ0
jj

w
(⊥Tj)
k +

1

1− Ğ0
jj

v̆j . (5.44)

Substituting (5.44) into the expression for the optimal output error residual of Model
1, (5.42) results in:

pj(θ1) =
∑

k∈Dj\{j}

(
1 +

Ğ0
jj

1− Ğ0
jj

)
Ğ0

jkw
(⊥T j)
k +

(
1 +

Ğ0
jj

1− Ğ0
jj

)
v̆j

=
∑

k∈Dj\{j}

Ğ0
jk

1− Ğ0
jj

w
(⊥T j)
k +

1

1− Ğ0
jj

v̆j (5.45)

which is the same expression as the optimal output error residual of Model 2. Thus,
both models 1 and 2 have the same optimal output error residual. Consequently,
both models attain a global minimum of V̄ (θ). Thus, we have shown that in the
case that rj is not present, V̄j(θ) does not have a unique global minimum. �



Chapter 6

DEALINGWITH SENSOR NOISE

In this chapter we consider the identification of a module that is embedded in a
dynamic network using noisy measurements of the internal variables of the network.
This is an extension of the errors-in-variables (EIV) identification framework to
the case of dynamic networks. The consequence of measuring the variables with
sensor noise is that some of the prediction error identification methods no longer
result in consistent estimates. The method proposed in this chapter is based on
a combination of the instrumental variable philosophy and the Direct Method of
closed-loop prediction error identification. The results regarding the predictor input
selection of Chapter 5 also apply to the method developed in this chapter. We also
present a method that can be used to validate the identified model.1

6.1 INTRODUCTION

IN THEMETHODS considered so far in the thesis, it was assumed that noise-free mea-
surements of the internal variables are available. Of course, in practice this is
not a very realistic assumption, especially since the internal variables are often

assumed to be measured using sensors. Every sensor measures a variable with noise.
In this chapter methods are presented that use this noisy data to infer a model of a
particular module of interest that is embedded in a dynamic network. This chapter
represents a further relaxation of the assumptions that need to be made about the
system under investigation.

In this chapter we consider a very general framework where there may or may
not be known external excitation present, there is both (correlated) process noise
and (correlated) sensor noise present in the data collected from the network, and not
all internal variables of the network are measurable. We make the assumption that
the interconnection structure of the network is known. Including the possibility of
sensor noise (in addition to process noise) is not as trivial as it may seem. In many
identification methods, the inputs are assumed to be measured without noise (Ljung,
1999). Moreover, if there is sensor noise on the inputs, the methods do not lead to

1The material contained in this chapter is based on Dankers et al. (2014c,b).

139



140 6 Dealing With Sensor Noise

consistent estimates.
Specifically, we address the following question: under what conditions is it pos-

sible to consistently identify a particular module embedded in a dynamic network
when only noisy measurements of a subset of the internal variables of the network
are available? This is an extension of the so-called Errors-in-Variables framework to
the case of dynamic networks.

The open loop EIV problem was briefly presented in Section 3.5 of Chapter 3.
In an open-loop setting, either prior knowledge about the system or a controlled
experimental setup is required to ensure consistent estimates (Söderström, 2007,
2012). Examples of controlled experimental setups are presented in Schoukens et al.
(1997) and Söderström & Hong (2005) where it is shown that using periodic exci-
tation or repeated experiments respectively it is possible to consistently estimate
the plant in an open loop EIV setting (without any additional prior knowledge).
The method proposed in Söderström & Hong (2005) to deal with the sensor noise is
based on an Instrumental Variable (IV) method. The closed-loop EIV problem has
been addressed in Pintelon & Schoukens (2012b); Söderström et al. (2013). In both
these reference there is an external variable present that is known noise free. In this
chapter we do not make that assumption.

In this chapter we also consider IV based approaches, and in a roughly similar
vein to Söderström & Hong (2005), instead of using repeated experiments, we show
that additional (noisy) measurements generated by the dynamic network can be
used to deal with the sensor noise. It is the unique possibility of measuring extra
variables in the network that is crucial for dealing with the sensor noise. The extra
measurement(s) are used as instrumental variables. We present a method so that
any extra measurements that are somehow correlated to the output of the module
of interest can be used as instrumental variables, irrespective of their location in the
network. However, due to the (possible) presence of loops the process noise must
also be specifically dealt with.

As discussed at length in this thesis, the problem with process noise in the
presence of loops in the interconnection structure of the data generating system is
that the predictor inputs are correlated to the process noise affecting the output. One
closed-loop identification method is the Basic Closed-Loop Instrumental Variable
(BCLIV) Method (Gilson & Van den Hof, 2005) (see also Section 3.4 of Chapter 3).
We show that this method can be easily extended so that it is possible to consistently
identify modules embedded in dynamic networks. Interestingly, we show that this
method can be used even in the presence of sensor noise. However, for this method,
not all additional measurements generated by the dynamic network are candidate
instrumental variables. Depending on the measurements available to the user, and
the interconnection structure of the network, it may be that there does not exist
any candidate instrumental variables, which means that in this case this method
cannot be used. Thus, an alternative method must be used, which is presented in
the second part of this chapter.

The second method proposed in this chapter is based on a combination of the
Instrumental Variable method and the Direct closed-loop Prediction Error method.
The problems caused by the process noise are dealt with using the reasoning of the
direct closed-loop method, and the problems caused by the sensor noise are dealt



6.2 Background 141

with using an instrumental variable reasoning. In this method all measured variables
that are not used to construct the predictor are candidate instrumental variables.
The method can be cast as a generalization of the IV method using a one-step-ahead
predictor model with a Box-Jenkins model structure. This method can also be cast
as a generalization of the first method proposed in this chapter.

The chapter is structured as follows. In Section 6.2 the dynamic network frame-
work is briefly summarized for convenience, and the Basic Closed-Loop Instrumental
Variable (BCLIV) method is briefly presented in such a way that the extension to
dynamic networks is fairly straight-forward. The first method (a straightforward
extension of the BCLIV method) is presented in Section 6.3, the second one (a com-
bination of the IV and Direct Method) is presented in Section 6.4. In Section 6.5
the conditions on the required measurements are further relaxed (i.e. the predictor
input selection reasoning of Chapter 5 is applied to the methods of this chapter). In
Section 6.6 a practical implementation of the second method is proposed. In Section
6.7 a method is presented to validate the obtained model.

6.2 BACKGROUND

For convenience, in this section we briefly present the data generating system and
the basic closed-loop Instrumental Variable (IV) Method. For more information see
Chapters 2 and 3 respectively. In addition the concept of persistently exciting data
is presented in some detail.

6.2.1 Dynamic Networks

Each internal variable is defined by:

wj(t) =
∑
k∈Nj

G0
jk(q)wk(t) + rj(t) + vj(t) (6.1)

where G0
jk, k ∈ Nj is a proper rational transfer function, and,

• Nj is the set of indices of internal variables with direct causal connections to
wj , i.e. k ∈ Nj iff G0

jk ̸= 0;

• vj is process noise, that is modeled as a realization of a stationary stochastic
process with rational spectral density: vj = H0

j (q)ej where ej is a white noise
process, and H0

j is a monic, stable, minimum phase transfer function;

• rj is an external variable that is known to the user, and may be manipulated
by the user.
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It may be that the noise and/or external variables are not present at some nodes.
The data generating system is defined as:

w1

w2

...
wL

=


0 G0
12 · · · G0

1L

G0
21 0

. . . ...
... . . . . . . G0

L−1 L

G0
L1 · · · G0

L L−1 0



w1

w2

...
wL

+

r1
r2
...
rL

+

v1
v2
...
vL

,
where G0

jk is non-zero if and only if k ∈ Nj for row j, and vk (or rk) is zero if it is
not present. Using an obvious notation this results in the matrix equation:

w = G0w + r + v. (6.2)

Each internal variable is measured with some measurement or sensor error:

w̃k(t) = wk(t) + sk(t), k = 1, . . . , L

where w̃k denotes the measurement of wk, and sk is the sensor noise, which is
represented by a stationary stochastic process with rational spectral density (sk is
not necessarily white noise).

6.2.2 Closed Loop Instrumental Variable Methods
The Basic Closed-Loop Instrumental Variable (BCLIV) method is presented in Sec-
tion 3.4 of Chapter 3. Here, we present the method in a different way. The different
approach in this section will allow for a straight-forward extension of the closed-loop
method to the situation of identification in dynamic networks.

The Instrumental Variable method can be seen as a generalization of the Least
Squares Method (Söderström & Stoica, 1983). The mechanism that ensures that
the closed-loop IV methods result in consistent estimates is to correlate the input
and output with a so-called instrumental variable. As long as the instrumental
variable is uncorrelated to the process noise, consistent estimates are possible. In
the following text, the Basic Closed-Loop Instrumental Variable (BCLIV) method
of Gilson & Van den Hof (2005) is presented, however is a form that highlights the
underlying mechanism of the BCLIV that ensures consistent estimates of the plant.
In particular, it is shown that the underlying mechanism of interest is the correlation
between the prediction error and the instrumental variable.

A closed-loop data generating system is:

w2 = G0
21w1 + v2, (6.3a)

w1 = G0
12w2 + r1. (6.3b)

Suppose (for now!) that there is no sensor noise. The objective is to obtain a
consistent estimate of G0

21. Consider an ARX model structure, i.e. the module
transfer function G21(θ) is parameterized as (Ljung, 1999):

G21(θ)=
B21(θ)

A21(θ)
=

q−nk(b210 + · · ·+ b21nb
q−nb)

1 + a211 q−1 + · · ·+ a21na
q−na

(6.4)
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and the noise model is parameterized as H2(θ) =
1

A21(θ)
. Note that A21 is a poly-

nomial of order na and B21 is a polynomial of order nb. The parameter vector θ
is

θ = [a211 · · · a21na
b210 · · · b21nb

]T . (6.5)

From (3.4) the prediction error is

ε2(t, θ) = A21(q, θ)w2(t)−B21(q, θ)w1(t) (6.6)

which can be expressed as

ε2(t, θ) = w2(t)− ϕT (t)θ (6.7)

where

ϕT(t)=
[
−w2(t−1) · · · −w2(t−na) w1(t) · · · w1(t−nb)

]
. (6.8)

Let z denote the variable chosen as the instrumental variable. In the BCLIV method,
r1 is chosen to be the instrumental variable. The mechanism that forms the foun-
dation of the BCLIV method is presented in the following proposition.

Proposition 6.1 (BCLIV) Consider a closed-loop system (6.3) that satisfies As-
sumption 2.19. Consider the prediction error (6.7). Let the instrumental variable
z = r1. The equivalence relation{

Ē[ε(t, θ)z(t− τ)] = 0, for τ = 0, . . . , n
}

⇐⇒
{
G21(q, θ) = G0

21(q)
}
.

holds for any finite n ≥ na + nb + 1 if the following conditions are satisfied:

(a) Ē
[
ϕ(t) · [z(t) · · · z(t− na − nb)]

]
is nonsingular,

(b) Ē[v2(t) · z(t− τ)] = 0, ∀τ ≥ 0.

(c) The parameterization is chosen flexible enough, i.e. there exists a θ such that
G21(q, θ) = G0

21(q). �

The proof is straightforward and follows almost directly from the reasoning pre-
sented both in Section 3.4 and Gilson & Van den Hof (2005). The main point is that
the cross correlation between the instrumental variable and the prediction error is
zero if and only if G21(q, θ) = G0

21(q) (as long as the conditions hold). This implies
that if a parameter vector θ̂ can be found that satisfies the set of equations Rεz(τ),
τ = 0, 1, . . . , n then θ̂ in fact characterizes a consistent estimate of G0

21. This leads
to the following algorithm.

Algorithm 6.2 Objective: obtain an estimate of G0
21.

1. Choose r1 as the instrumental variable. Let z = r1.
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2. Choose an ARX model structure and construct the prediction error (6.7).

3. Find a solution to the set of equations

1

N

N−1∑
t=0

ε2(t, θ)z(t−τ)=0, τ=0, . . . , na+nb (6.9)

From Proposition 6.1 it follows that Algorithm 6.2 results in a consistent estimate
of G0

21. Note that in Step 3 of Algorithm 6.2 a solution to an approximation of Rεz(τ)
is obtained. The bigger N is, the better the approximation. Secondly, the solution
to the set of equations (6.9) can be found by linear regression. This follows from
(6.7) where it appears that (for the ARX model structure) the prediction error is
linear in θ.

6.2.3 Persistently Exciting Data
Condition (a) of Proposition 6.1 has a very nice interpretation in terms of persistence
of excitation of the data. In any identification method the (input) data must be
persistently exciting of sufficiently high order to ensure a unique estimate (Ljung,
1999). In this section, first we provide the definition of persistence of excitation, and
then it is shown that Condition (a) holds if the external variable r1 is persistently
exciting of sufficiently high order. This provides insight into which mechanisms
ensure Condition (a) holds. The formalization presented in this section is used in
the extension to the dynamic network case where, due to the presence of many
different variables and complex interconnection structures the insight offered by the
concept of persistence of excitation becomes increasingly useful. We employ the
setting of Söderström & Stoica (1983, 1989a).

Consider first the classical definition of persistence of excitation (Söderström &
Stoica, 1989a; Ljung, 1999).

Definition 6.3 The vector of (internal and/or external) variables u is persistently
exciting of order n if

R̄u =

 Ru(0) · · · Ru(n− 1)
...

...
Ru(n− 1) · · · Ru(0)


is positive definite, where Ru(τ) is the auto-correlation of the vector u as defined in
Section 3.3.1 of Chapter 3.

The concept of persistence of excitation imposes a constraint that the data must
satisfy. For the BCLIV method presented in Section 6.2.2 the external variable r1
must be persistently exciting of sufficiently high order to ensure that the matrix in
Condition (a) of Proposition 6.1 is full rank. This is formalized by the following
lemma from Söderström & Stoica (1983, 1989a).
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Lemma 6.4 Consider a closed-loop system (6.3) that satisfies Assumption 2.19.
Consider Algorithm 6.2. Consider the matrix

R = Ē
[
ϕ(t)

[
z(t) z(t− 1) · · · z(t− nz)

] ]
where z is the instrumental variable, and ϕ(t) is defined in (6.8). The matrix R
generically2 has rank na+nb+1 (i.e. full row rank) if the following conditions hold:

(a) nz ≥ na + nb + 1.

(b) r1 is (at least) persistently exciting of order na+nb+ 1.

(c) The model orders na and nb are equal to the orders n0
a and n0

b that define G0
21.

�

For a proof see Lemma 4.1 and Theorem 4.1 in Söderström & Stoica (1983). The
main point of Lemma 6.4 is to provide an interpretation of Condition (a) of Propo-
sition 6.1. It provides the connection between persistence of excitation of the data
and consistency of the estimate for IV methods. For a discussion on why the result
only holds generically see Söderström & Stoica (1983, 1989a).

Condition (a) of Lemma 6.4 ensures that the matrix R has at least na + nb + 1
columns. Clearly this is necessary in order for R to have rank na+nb+1. Condition
(c) of Lemma 6.4 ensures that there is a unique θ that represents G0

21 (i.e. the model
is identifiable in the sense that G21(θ) = G0

21 ⇐⇒ θ = θ0).
The persistence of excitation of a variable can also be characterized in the fre-

quency domain. Consider the following two propositions.

Proposition 6.5 Let z be a scalar variable. The variable z is persistently exciting
of order n if and only if the spectral density, Φz is non-zero for at least n distinct
frequencies ω ∈ (−π, π]. �

For a proof see Result A1.3 in Söderström & Stoica (1983).

Proposition 6.6 Let z be a vector of variables. If the spectral density matrix is full
rank for at least n distinct frequencies ω ∈ (−π, π] then z is persistently exciting of
order n. �

For a proof see Result A1.1 in Söderström & Stoica (1983). Interestingly, in the case
where z is a vector the frequency domain condition implies that z is persistently
exciting, but not the other way around. Thus, there exist vectors of variables that
are persistently exciting of order n such that the spectral density is not full rank for
at least n distinct frequencies. For example

z(t) = [sin(ω1t) sin(ω2t)]

is persistently exciting of order 2, but Φz is rank deficient at all frequencies.
In the following section a method is presented for identification in networks that

is a straightforward extension of the BCLIV method.
2A statement is generically true if the statement is true with probability one (Söderström &

Stoica, 1989a).
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6.3 EXTENSION OF BCLIV METHOD TO DYNAMIC NETWORKS AND
SENSOR NOISE

Recall, the objective considered in this chapter is to obtain an estimate of a particular
module, G0

ji, embedded in a dynamic network using noisy measurements of the
internal variables. In this section a straight-forward extension of the BCLIV method
is presented. The extension focuses on three aspects:

• We generalize the method so that it is able to identify a particular module
embedded in a dynamic network, not just a closed-loop data generating system.

• We consider the situation that all measured variables can be subject to sensor
noise.

• Rather than the classical case where only external variables are considered
as candidate instrumental variables, we consider both internal and external
variables as candidate instrumental variables.

A main theme in this chapter is that for a dynamic network, there are many
different variables present that can serve as potential instrumental variables. For
instance, one can choose between several external and internal variables. In this
chapter we consider any measured or known variable that is not w̃j or a predictor
input as a potential instrumental variable. In otherwords, the set of candidate
instrumental variables is w̃ℓ, ℓ ∈ {1, . . . , L} \ {Dj ∪ {j}} and rℓ, ℓ ∈ R. Let Xj and
Ij denote the set of indices of external and internal variables respectively chosen as
instrumental variables (i.e. rℓ is an instrumental variable iff ℓ ∈ Xj and w̃ℓ is an
instrumental variable iff ℓ ∈ Ij). Since predictor inputs and w̃j are not considered
as allowable instrumental variables it must be that Ij ∩ {Dj ∪ {j}} = ∅.

The variables that are selected as instrumental variables are placed in a vector of
instrumental variables, denoted z. Three methods for constructing z are suggested
below.

• Choose one or more external variables, rℓ1 , . . . , rℓn , as instrumental variables,
resulting in

z(t) = [rℓ1(t) · · · rℓn(t)]
T (6.10)

and Xj = {ℓ1, . . . , ℓn}, Ij = ∅.

• Choose one or more measurements of internal variables, w̃ℓ1 , . . . , w̃ℓn , as in-
strumental variables:

z(t) = [w̃ℓ1(t) · · · w̃ℓn(t)]
T (6.11)

and Xj = ∅, Ij = {ℓ1, . . . , ℓn}.

• Choose sums of measured internal variables (or external variables, or a com-
bination of both), w̃ℓ11 + · · ·+ w̃ℓ1n , . . ., w̃ℓd1 + · · ·+ w̃ℓdn . In this case

z(t)=
[ n∑
m=1

w̃ℓ1m(t) · · ·
n∑

m=0

w̃ℓdm(t)
]T

(6.12)
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and Xj = ∅, Ij = {ℓ11, . . . , ℓ1n, . . . , ℓd1, . . . , ℓdn}.

Of course, combinations of these cases can also be used. Which method is used
to choose the instrumental variables will depend on which variables are available
(measured), and which choice ensures that z is persistently exciting of sufficiently
high order.

In any instrumental variable method, it is essential that the instrumental vari-
ables and the predictor inputs are correlated. In the BLCIV method, the instru-
mental variable was chosen to be r1, which is correlated to both w1 and w2. In
the case of dynamic networks it is not automatically guaranteed that a candidate
internal variable is correlated to (one or more of) the predictor inputs and/or wj .
The following lemma presents graphical conditions to check wether two variables are
correlated.

Lemma 6.7 Consider a dynamic network as defined in Section 6.2.1 that satisfies
Assumption 2.19. Let zℓ be an internal or external variable. Then zℓ and wk are
not correlated if the following three conditions hold:

(a) There is no path from zℓ to wk.

(b) There is no path from wk to zℓ.

(c) There is no variable wp, p /∈ Dj ∪ Ij ∪ {j} such that there are paths from wp to
both zℓ and to wk. �

The proof can be found in Appendix 6.9.1. This lemma can guide the user to choose
appropriate instrumental variables that are correlated to the predictor inputs.

Note that the converse statement of Lemma 6.7 does not guarantee that zℓ and
wk are correlated, i.e. if at least one of the conditions of Lemma 6.7 does not hold,
it does not necessarily mean that zℓ and wk are correlated. For instance, suppose
there are two paths from zℓ to wk (Condition (a) does not hold). Suppose that the
dynamics of paths 1 and 2 are G0

1 and G0
2 respectively. If G0

1 = −G0
2, then zℓ and

wk are uncorrelated, even though there is a path from zℓ to wk. On the other hand,
these situations can be considered to be quite rare, and so if any one (or more) of
the conditions of Lemma 6.7 holds then, most likely, zℓ and wk are correlated.

6.3.1 Generalization of BCLIV Method
As in Section 6.2.2 first a mechanism that forms the foundation of the method is
presented. Then an algorithm is proposed to exploit this mechanism in order to
obtain consistent estimates of a module embedded in a network.

The main modification that must be made to the BCLIV algorithm to be able
to use it in dynamic networks is to move to a multiple input, single output (MISO)
ARX model structure. For a MISO ARX model structure, the modules and noise
model are parameterized as:

Gjk(q, θ) =
Bjk(q, θ)

Aj(q, θ)
, and Hj(q, θ) =

1

Aj(q, θ)
, (6.13)
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for all k ∈ Dj , where

Bjk(q, θ) = q−njk
k (bjk0 + bjk1 q−1 + · · ·+ bjk

njk
b

qn
jk
b ),

Aj(q, θ) = 1 + a1q
−1 + · · ·+ anaq

−na ,

Note that all modules Gjk, k ∈ Dj have the same denominator, and that Bjk(θ) is
a polynomial of order njk

b and Aj(θ) is a polynomial of order na. For notational
convenience, in the remainder of this chapter, all polynomials Bjk(θ) will be assumed
to be of the same order, denoted nb. Let each module G0

jk, k ∈ Dj be expressed as
B0

jk

A0
jk

. Then, from (6.1), wj can be expressed using transfer functions with a common
denominator as follows:

wj(t) =
1

Ă0
j (q)

∑
k∈Nj

B̆0
jk(q)wk(t) + vj(t) (6.14)

where

Ă0
j (q) =

∏
n∈Nj

A0
jn(q) and B̆0

jk(q) = B0
jk(q)

∏
n∈Nj\k

A0
jn(q).

From (6.13) and (3.4), the prediction error is:

εj(θ) = Aj(q, θ)w̃j(t)−
∑
k∈Dj

Bjk(q, θ)w̃k(t)

= w̃j(t)−
[
ϕ̃T
k1
(t) · · · ϕ̃T

kn
(t) ϕ̃T

j (t)
]
θ

= w̃j − ϕ̃T (t)θ. (6.15)

where ϕ̃T
ki
(t) = [w̃ki(t) · · · w̃ki(t− nb)], ϕ̃T

j (t) = [−w̃j(t− 1) · · · − w̃j(t− na)] and
θ is a vector of parameters defined analogously to (6.5).

The result of Proposition 6.1 can now be extended to the case of dynamic net-
works where only noisy measurements of the internal variables are available.

Proposition 6.8 Consider a dynamic network as defined in Section 6.2.1 that sat-
isfies Assumption 2.19. Consider the prediction error (6.15). Choose the set of
predictor inputs, {wk1 , . . . , wkd

}, such that {k1, . . . , kd} = Nj (i.e. Dj = Nj). Let
d = card(Dj). Choose sets Ij and Xj of instrumental variables according to the
methods of (6.10) - (6.12) such that Ij∩{Dj ∪ {j}}=∅. The equivalence relation{

Rεz(τ) = 0, for τ = 0, . . . nz

}
⇐⇒

{
Gjk(q, θ) = G0

jk(q), ∀k ∈ Dj

}
(6.16)

holds for any finite nz ≥ ⌈(na + dnb)/length
(
z(t)

)
⌉ if the following conditions are

satisfied:3

(a) If vj is present, then there is no path from wj to any wℓ, ℓ ∈ Ij
3⌈x⌉ denotes the ceiling function, i.e. the smallest integer that is larger than or equal to x
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(b) The
(
dnb + na

)
×
(
nz length(z)

)
matrix

R̄ = Ē
[
ϕ̃(t)[zT (t) · · · zT (t− nz)]

]
is full row rank, where ϕ̃(t) is defined in (6.15).

(c) Each sensor noise sℓ, ℓ ∈ Ij is uncorrelated to all sk, k ∈ Dj.

(d) If vj is present, then it is uncorrelated to all vm with a path to wj.

(e) The parameterization is flexible enough, i.e. there exists a θ such that Gjk(q,θ)=
G0

jk(q), ∀k∈Dj. �

The proof can be found in Appendix 6.9.2. Most importantly, the presence of
sensor noise does not affect the validity implication (6.16) (as long as Condition (c)
holds). Condition (a) puts a restriction on which internal variables are candidate
instrumental variables. For example, the candidate instrumental variables cannot be
part of any loop that passes through wj . Note that no similar condition is explicitly
stated for the external variables chosen as instrumental variables. This is because,
by definition, there is no path from vj to any rℓ.

As was done when analyzing the BCLIV method in Section 6.2.2, Condition (b) of
Proposition 6.8 can be further analyzed using the concept of persistence of excitation.
Suppose that none of the chosen instrumental variables satisfy all conditions of
Lemma 6.7. This alone does not guarantee that the matrix R̄ of Condition (b) of
Propostion 6.8 is full rank. For the condition to hold, it additionally must be that the
vector z of chosen instrumental variables is persistently exciting of sufficiently high
order. This is formalized in the following lemma, which is the network counterpart
to Lemma 6.4.

Lemma 6.9 Consider the situation of Proposition 6.8 and

R̄ = Ē
[
ϕ̃(t)

[
zT (t) zT (t− 1) · · · zT (t− nz)

] ]
where z is the vector of instrumental variables, and ϕ̃(t) is defined in (6.8). Let nθ

denote the size of the vector ϕ(t). The matrix R̄ generically has rank nθ (i.e. full
row rank) if the following conditions hold:

(a) nz · length
(
z(t)

)
≥ nθ.

(b) z is persistently exciting of order ⌈nθ/length
(
z)
)
⌉.

(c) The parameter vector θ such that Gjk(q, θ) = G0
jk, ∀k ∈ Dj is unique.

(d) No instrumental variable satisfies all the conditions of Lemma 6.7 for all wk,
k ∈ Dj ∪ {j}.

The proof follows the same reasoning as that of Lemma 6.4. The main point of
Lemma 6.9 is that as long as the instruments are correlated to the predictor in-
puts and wj , and are persistently exciting of sufficiently high order, then Condition
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(b) of Proposition 6.8 (generically) holds. There is no explicit restriction on the
number of instrumental variables, as long as the chosen z is persistently exciting
of sufficiently high order. However, if only one internal variable is selected as the
intrumental variable, then by Condition (b) of Lemma 6.9 z must be persistently
exciting of order nθ. Whereas, if two internal variables are selected as instrumental
variables then by the same condition z need only be persistenly exciting of order
nθ/2. Thus Condition (b) may implicitly place a restriction on the required number
of intrumental variables.
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Figure 6.1: Closed loop data generating systems

Example 6.10 Consider the data generating system shown in Fig. 6.1a. Suppose
that the objective is to obtain a consistent estimate of G0

32. Thus, {j} = {3}, and
N3 = {2}. There is only one variable left as a candidate instrumental variable (since
it must be that {Dj ∪ {j}} ∩ Ij = ∅), i.e. w̃1 must be chosen as the instrumental
variable. Since there is no path from w3 to w1, Condition (a) of Proposition 6.8
holds. Moreover, Condition (b) of Proposition 6.8 generically holds because the
instrumental variable is persistently exciting of sufficiently high order (since v1 is
white noise) and because there is a path from w1 to both w2 and w3 (i.e. there is a
path from the instrumental variable to the predictor inputs and wj). If the remaining
conditions of Proposition 6.8 hold, then the implication (6.16) holds. �

Example 6.11 Consider the data generating system shown in Fig. 6.1b. Suppose
that the objective is to obtain a consistent estimate of G0

32. Thus, choose w2 as the
predictor input, and w3 is the variable to be predicted. This leaves w1 as the only
candidate instrumental variable. In this case it is not possible to satisfy Condition
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(a) of Proposition 6.8 because vj is present, and there is a path from the variable to
be predicted w3 to the instrumental variable w1. Consequently, it is not possible to
guarantee that the implication (6.16). �

The following algorithm shows how the implication of Proposition 6.8 can be
exploited to obtain an estimate of a module embedded in a dynamic network.

Algorithm 6.12 Objective: obtain an estimate of G0
jk.

1. Choose the set of predictor inputs {wkn , kn ∈ Nj}. (i.e. Dj = Nj).

2. Choose the sets Ij and Xj of instrumental variables. Construct z, the vector of
instrumental variables.

3. Choose an ARX model structure and construct the prediction error (6.15).

4. Find a solution, θ̂N to the set of equations

1

N

N−1∑
t=0

εj(t, θ)z
T (t−τ)=0, for τ=0, . . . , nz, (6.17)

where nz · length
(
z(t)

)
≥ na + dnb.

This algorithm is similar to that of the BCLIV method (Algorithm 6.2). Only
Steps 1 and 2 are more involved due to the increased complexity of a network vs.
a closed loop. Let R̂εz(τ) denote the function in (6.17). Under weak general con-
vergence conditions of the Prediction-Error Identification methods (Ljung, 1999) it
follows that

E[R̂εz(τ)] → Rεz(τ) as N → ∞ (6.18)

and that the solution to (6.17), denoted θ̂N tends to θ0 as N → ∞. Thus, the
estimates of G0

jk, k ∈ Nj obtained by Algorithm 6.12 are consistent if the conditions
presented in Proposition 6.8 are satisfied. Note that all the conditions are a priori
checkable, except Conditions (c) and (d). In Step 4 of Algorithm 6.12 θ̂N can be
obtained by linear regression. This follows from (6.17) which is affine in θ.

In the following section this method is generalized so that it can be used in the
situation where there is a path from wj to one or more instrumental variables (as
was the case in Example 6.11).

6.4 GENERALIZED INSTRUMENTAL VARIABLE APPROACH
In the previous section the set of candidate instrumental variables is restricted by
Condition (a) of Proposition 6.8, i.e. it is only allowed to choose instrumental vari-
ables for which there is no path from wj to the instrumental variable. As illustrated
in Example 6.11 this can be a restrictive condition. In this section a method is
proposed for which all external variables and all internal variables wℓ, ℓ /∈ Dj ∪ {j}
are candidate instrumental variables.
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The key difference in this method is that a Box-Jenkins model structure is used
instead of an ARX model structure. In this sense the method presented here is a
generalization of the classical IV methods. This change is in line with closed-loop
identification reasoning where it is well known that for direct methods, consistent
estimates are possible if the process noise is correctly modeled (Forssell & Ljung,
1999). The price for the increased applicability is that the estimates of G0

jk k ∈ Nj

can no longer be obtained by solving a linear regression problem.
The main reason that a path from wj to the instrumental variable wi causes a

problem is because then the projections of the predictor inputs onto the instrumental
variable(s) are correlated to the output noise. This is equivalent to the closed-
loop identification problem where the plant input is correlated to the output noise.
From the closed-loop identification literature, there are several methods to deal
with this correlation that is induced by feedback (Forssell & Ljung, 1999; Van den
Hof et al., 2013). One method, called the Direct Method, deals with the problem
by exactly modeling the noise. In the following text it is shown that this idea
can be extended to the IV framework, so that all (measured) internal variables w̃ℓ

ℓ ∈ {1, . . . , L} \ {Dj ∪{j}} are candidate instrumental variables. Note that the idea
is to exactly model the process noise term vj , and not the sensor noise (or a sum of
the two). The sensor noise is dealt with using the instrumental variable mechanism.

To exactly model the noise, a Box-Jenkins model structure is required. This
amounts to the parameterization:

Gjk(q,θ)=
Bjk(q,θ)

Fjk(q,θ)
, k∈Dj andHj(q,θ)=

Cj(q,θ)

Dj(q,θ)
, (6.19)

where Fjk(θ), Bjk(θ), Cj(θ), Dj(θ) are polynomials in q−1 of orders njk
f , njk

b , nc

and nd respectively. For notational convenience all transfer functions Gjk(q, θ) will
be assumed to be of the same orders, denoted nf and nb.

In the following proposition it is shown that by changing the model structure,
the fundamental mechanism on which the IV methods are based, holds for the set
of candidate instrumental variables wℓ, ℓ∈{1, . . . ,L}\{Dj∪{j}}.

Proposition 6.13 Consider a dynamic network as defined in Section 6.2.1 that
satisfies Assumption 2.19. Consider the prediction error (3.4) and model structure
(6.19). Choose the set of predictor inputs such that Dj = Nj. Choose the sets Ij
and Xj of instrumental variables according to the methods of (6.10) - (6.12) such
that Ij ∩ {Dj ∪ {j}} = ∅). Let z denote the vector of instrumental variables. The
equivalence relation

{
Rεz(τ) = 0, ∀τ ≥ 0

}
⇐⇒

{
Gjk(q, θ) = G0

jk(q)∀k ∈ Dj ,

Hj(q, θ) = H0
j (q)

}
(6.20)

holds if the following conditions are satisfied:

(a) Every instrumental variable w̃ℓ, ℓ ∈ Ij is a function of only delayed versions of
wj.
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(b) Let d = card(Dj). Let nz = ⌈(d+ 1)/length
(
z(t)

)
⌉. Let ng = max(nb + nf , nc +

nd). Let

w(t) = [wk1(t) · · · wkd
(t) wj(t)]

T , {k1, . . . , kd} = Dj

z′(t) = [zT (t) zT (t− ng − 1) · · · zT (t− nzng − 1)]T

The cross power spectral density Φwz′ is full row rank for at least ng distinct
frequencies ω ∈ (−π, π].

(c) Every sensor noise variable sk, k ∈ Dj ∪ {j} is uncorrelated to every sℓ, ℓ ∈ Ij.

(d) The process noise variable vj is uncorrelated to all vk with a path to wj.

(e) The parameterization is chosen flexible enough, i.e. there exists a parameter θ
such that Gjk(q, θ) = G0

jk(q), ∀k ∈ Dj, and Hj(q, θ) = H0
j (q). �

The proof can be found in Appendix 6.9.3. Condition (a) of Proposition 6.13 can be
satisfied in two ways. First, if there is a delay in the path from wj to the instrumental
variable wℓ, then wℓ is only a function of delayed versions of wj . Secondly, instead
of using wℓ(t) as an instrumental variable, it is also possible to use a delayed version
of wℓ, i.e. wℓ(t− 1), as an instrumental variable. In this way Condition (a) can be
satisfied.

By Condition (e) the process noise must be exactly modelled. This condition is
a signature of the Direct closed-loop method Forssell & Ljung (1999); Van den Hof
et al. (2013). This is why we can think of the mechanism proposed in Propostion
6.13 as a hybrid between the Direct closed-loop method and an instrumental variable
method. Recall that in Proposition 6.8 exact noise modeling was not required.

In Proposition 6.13 Condition (b) is a condition on the data. For the sake of
argument, suppose that z′ and w are the same length.4 Again, it can be interpreted
in terms of persistence of excitation. A necessary condition for Condition (b) to hold
is that no instrumental variable satisfies all the conditions of Lemma 6.7 for all wk,
k ∈ Dj ∪ {j}. Consequently, the vector w is a function of z′ and thus

Φwz′(ω) = K(ejω)Φz′(ω).

Suppose that det(K) has no zeros on the unit circle. Then, if Φz′ is full rank for
at least n distinct frequencies, Φwz′ will be as well. By Proposition 6.6 if Φz′ is full
rank for at least n distinct frequencies, then z′ is persistently exciting of order n.
Thus, we can link Condition (b) of Proposition 6.13 to the idea of a persistently
exciting vector of instrumental variables.

The following examples illustrate the result.

Example 6.14 Consider again the situation of Example 6.11. Suppose that there
is a delay in G0

13. Choose, {j} = {3}, N2 = {2}. Choose w1 as the instrumental
variable, i.e. z(t) = w̃1(t), Ij = {1}, and Xj = ∅. Condition (a) is satisfied due

4the vector z′ of (delayed versions of) instrumental variables can simply be truncated so that z′

and w are the same length since z is a user constructed vector
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to the delay in G0
13. By Lemma 6.7, since there is a path from w1 to both w2 and

w3 the necessary conditions for Condition (b) to hold are satisfied. If the remaining
conditions of Proposition 6.13 are satisfied, then the implication (6.20) holds.

The important point, is that for this data generating system, the implication (6.16)
of Proposition 6.8 did not hold because it was not possible to satisfy Condition (a)
of Proposition 6.8. �
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Figure 6.2: Example of a dynamic network. The sensor noise is not shown in the
figure, but it is still assumed that in the available data set, each internal variable
is measured with sensor noise. The labels of the wi’s have been placed inside the
summations indicating that the output of the sum is wi.

Example 6.15 Consider the network shown in Fig. 6.2. Suppose that the objective
is to obtain a consistent estimate of G0

21. Thus, {j} = {2}, and N2 = {1, 4, 6}.
Now choose the instrumental variables. One option is to choose 4 distinct internal
variables. A possible choice for the set of instrumental variables is w̃3(t), w̃5(t), w̃7(t)
and w̃8(t) (i.e. I2 = {3, 5, 7, 8}). In this case if z(t) = [w̃3(t) w̃5(t) w̃7(t) w̃8(t)]

T

is persistently exciting of sufficiently high order, and the remaining conditions of
Proposition 6.13 hold, then the implication (6.20) holds.

Another option for choosing the instrumental variables is to only use w̃7. In this
case if z′(t) = [w̃7(t) w̃7(t− ng − 1) w̃7(t− 2ng − 1) w̃7(t− 3ng − 1)] is persistently
exciting of sufficiently high order, and the remaining conditions of Proposition 6.13
hold, then the implication (6.20) holds. Other options for choosing z are also possible
depending on the persistence of excitation of z. �

In the following algorithm the implication of Proposition 6.13 is exploited to
construct a method to obtain an estimate of a module embedded in a dynamic
network.

Algorithm 6.16 Objective: obtain an estimate of G0
jk.

1. Choose the set of predictor inputs as Dj = Nj.
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2. Choose the set Ij and construct the vector in instrumental variables, z.

3. Choose a Box-Jenkins model structure, (6.19), and construct the prediction error
(3.4).

4. Find a solution to the set of equations

1

N

N−1∑
t=0

ε(t, θ)z(t− τ) = 0, for τ = 1, . . . , n. (6.21)

By Proposition 6.13 and the reasoning of (6.18) it follows that the estimate
obtained using Algorithm 6.16 is consistent, as long as all the conditions of the
proposition are satisfied.

In the following section the choice Dj = Nj is relaxed.

6.5 PREDICTOR INPUT SELECTION
In this chapter thus far, the required set of predictor inputs has not been a user
choice. In the reasoning thus far, in order to identify a particular module G0

ji, the
internal variables with direct connections to wj , i.e. w̃k, k ∈ Nj must be used as
the predictor inputs. From the results of Chapter 5 we know that this is an overly
restrictive requirement.

In this section, we show that the notion of predictor input selection developed in
Chapter 5 applies almost verbatim to the methods developed in this chapter.

Recall, that in Chapter 5 conditions are derived that the set of predictor inputs
must satisfy in order to ensure that it is possible to consistently identify a module
of interest, G0

ji. The cost of the increased flexibility in the choice of predictor inputs
is that instead of consistently estimating G0

jk, k ∈ Nj , only the module of interest
G0

ji is consistently estimated.
For conviniece, one of the main results of Chapter 5 is repeated here. In Chapter

5 it is shown that in order to consistently identify the module G0
jk using the Direct

Method, the set of predictor inputs must have the following property.

Property 6.17 Consider the internal variables wi, wj and the set of indices of
predictor inputs, wk, k ∈ Dj. Let Dj satisfy the following conditions:

(a) i ∈ Dj, j /∈ Dj,

(b) every loop from wj to wj passes through a wk, k ∈ Dj,

(c) every path from wi to wj, excluding the path G0
ji, passes through a wk, k ∈ Dj,

(d) there are no confounding variables in the modeling setup5. �
5See Section 5.4.1 for the definition of a confounding variable.
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6.5.1 Predictor Input Selection - Extended BCLIV
Consider the following generalization of Proposition 6.8.

Proposition 6.18 Consider a dynamic network as defined in Section 6.2.1 that
satisfies Assumption 2.19. Consider the MISO ARX model structure (6.13) and the
prediction error (6.15). Let G0

ji denote the module of interest. Choose Dj such that
it has Property 6.17. Let d = card(Dj). The implication{

Rεz(τ)=0, for τ=0, . . . n
}

=⇒
{
Gji(q, θ)=G0

ji(q)
}

holds for any finite n ≥ ⌈(na + dnb)/length
(
z(t)

)
⌉ if the following conditions are

satisfied:

(a) Conditions (a) - (c) of Proposition 6.8 hold.

(b) All process noise variables are uncorrelated to each other.

(c) The parameterization is chosen flexible enough, i.e. there exists a θ such that
Rϵz(τ, θ)=0.

Remark 6.19 Condition (b) can be somewhat relaxed. See Section 5.4.1 of Chapter
5 for details.

In Algorithm 6.12 only Step 1 is changed. In this case Dj must be chosen such
that it has Property 6.17. Thus, by applying Algorithm 6.12 with a set Dj that has
Property 6.17 a consistent estimate of G0

ji is obtained. In this case, we no longer
make a statement about the remaining transfer functions Gjk(q, θ), k ∈ Dj \{i} that
need to be estimated. For an interpretation of these remaining transfer functions
see Section 5.3.1 on the immersed network.

6.5.2 Predictor Input Selection - Generalized IV
Similarly, the method of Section 6.4 can be generalized to allow for a more flexible
choice of predictor inputs.

Proposition 6.20 Consider a dynamic network as defined in Section 6.2.1 that
satisfies Assumption 2.19. Consider the BJ model structure (6.19) and the prediction
error (3.4). Let G0

ji denote the module of interest. Choose Dj such that it has
Property 6.17. The implication{

Rεz(τ)=0,∀τ ≥ 0
}

=⇒
{
Gji(q, θ)=G0

ji(q)
}

(6.22)

holds if the following conditions are satisfied:

(a) Conditions (a) - (d) of Proposition 6.13 hold.

(b) All process noise variables are uncorrelated to each other.

(c) The parameterization is chosen flexible enough, i.e. there exists a θ such that
Rϵz(τ, θ) = 0.
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Figure 6.3: Network that is analyzed in Example 6.21. For clarity the sensor noise
is not shown, although it is still assumed to be present.

Predictor input selection is illustrated in the following example. The example illus-
trates the additional flexibility that is allowed in choosing the set Dj .

Example 6.21 Consider the network shown in Fig. 6.3. Suppose that the objective
is to obtain an estimate of G0

32. First we must choose which internal variables to
include as predictor inputs, i.e. we must choose D3 such that it has Property 6.17.
By Condition (a) of Property 6.17 w̃2 must be included as a predictor input. Next,
we must check all loops from w3 to w3. All such loops pass through w2, which is
allready chosen as a predictor input, so Condition (b) of Property 6.17 is satisfied.
Next, we check all paths from w2 to w3:

w2 → w1 → w4 → w5 → w3

w2 → w1 → w4 → w6 → w3

for instance. It can be seen that all paths from w2 to w3 (not including G0
32) pass

through w4. Thus Condition (c) is satisfied if we include w̃4 as a predictor input. For
D3 = {2, 4} there are no confounding variables, and so it satisfies all the conditions
of Property 6.17. Note that this is not the only choice of D3 that has Property 6.17.

For this choice of Dj, the candidate instrumental variables are {w̃1, w̃5, w̃6}. For
all these candidates there is a path from wj to the candidate. Thus, Proposition
6.18 does not apply and we have to defer to Proposition 6.20. If measurements of
all the candidate instrumental variables are available, we could choose to use them
all, i.e. Ij = {1, 5, 6}. Alternatively, if using the smallest number of measurements
is desirable, only one of them could be selected as the instrumental variable.

If the remaining conditions of Proposition 6.20 are satisfied, then the implication
(6.22) holds. �
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6.6 IMPLEMENTATION OF ALGORITHMS
In this section we present a method to implement Algorithm 6.16 An attractive
feature of the classical IV methods is that the estimates can be obtained by solving
a linear regression problem. When making the move to a BJ model structure, as
in the method proposed in Section 6.4, this property is lost. In this section an
implementation of the method presented in Section 6.4 is presented.

We show that standard tools for identifying Box-Jenkins models can be used to
obtain an estimate of the solution to (6.21). Recall from Section 6.4 that we are
interested in finding θ such that

Rεz(τ, θ) = 0 for τ = 0, . . . , nz.

This is equivalent to finding θ such that
nz∑
τ=0

R2
εz(τ, θ) = 0. (6.23)

Since (6.23) is nonnegative for all θ, finding θ such that (6.23) holds is equivalent to
finding θ such that

θ̂ = arg min
θ

nz∑
τ=0

R2
εz(τ, θ). (6.24)

Note that (6.24) is a standard sum of squared errors objective function. Now, con-
sider the expression for Rεz(τ):

Rεz(τ)= Ē
[(
H−1

j (θ)
(
wj(t)−

∑
k∈Dj

Gjk(θ)wk(t)
))

z(t−τ)
]

=H−1
j (q, θ)

(
Rwjz(τ)−

∑
k∈Dj

Gjk(q, θ)Rwkz(τ)
)
. (6.25)

The point is that (6.25) has the same form as the prediction error using a Box-
Jenkins model structure (see (3.4)), where the “output” is R̂wjz(τ) and the predictor
“inputs” are R̂wkz(τ), k ∈ Dj . In practice Rwjz(τ) and Rwkz(τ) cannot be exactly
computed. However, Rwjz(τ) for instance can be approximated as:

R̂wjz(τ) =
1

N − τ

N∑
t=τ

wj(t)z(t− τ).

Thus, we can compute R̂wjz(τ) and R̂wkz(τ) for τ = 0, . . . , nz, k ∈ Dj resulting in a
data set. Now standard identification tools (such as the bj function in the MATLAB
identification toolbox) can be used to find θ.

Example 6.22 Consider the system shown in Fig. 6.4. The objective is to obtain
an estimate of G0

21 using w̃1, w̃2 and w̃3. Thus, the output is w2, and the predictor
input is w̃1. This leaves w̃3 as the only choice for instrumental variable. In this
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and the generalized IV Method (red).

case Algorithm 6.12 does not apply since there is a path from w2 to the instrumental
variable w3. Thus, we use Algorithm 6.16. All the noise variables vk and sk,
k = 1, 2, 3 are simulated as sequences of low-pass filtered white noise. 5000 data
points are simulated. Results are shown in Fig. 6.5. The blue lines denote estimates
that are obtained by ignoring the presence of sensor noise and applying the Direct
Method of Chapter 4. Clearly these estimates are biased. The red lines denote
estimates obtained using the implementation of Algorithm 6.16 presented in this
section with nz = 1000. The estimates appear consistent, as expected. �
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6.7 MODEL VALIDATION
Once a model is obtained, it is possible to express how confident one is that the
obtained model is in fact the model that generated the data. Presumably, R̂εz(τ, θ̂N )
is small for all τ ≥ 0. However, how can one be sure that it is small enough to be
considered “very near to zero”? If the variance of R̂εz(τ, θ̂N ) is known, then it is
possible to say that R̂εz(τ, θ̂N ) is zero with probability p. Then, by the implications
(6.16) and (6.20), it follows that it is possible to address the quality of the estimate
Gjk(q, θ̂).

The steps shown in Söderström & Stoica (1990, 1989a); Ljung (1999) can be
closely followed in order to obtain the variance of R̂N

εz(τ, θ̂N ). The result is that
√
NR̂N

εz(τ, θ̂N ) ∈ AsN (0, P )

where AsN (0, P ) means that as N → ∞ the distribution of
√
NR̂N

εz(τ, θ̂N ) tends to
a normal distribution with zero mean and variance P , where (Ljung, 1999):

P =

∞∑
τ=−∞

Rε(τ)Rz(τ).

Let nα denote the α level of the N (0, 1) distribution. Then it is possible to check if
(Ljung, 1999)

∣∣R̂N
εz(τ, θ̂)

∣∣ ≤√P

N
nα.

If the inequality holds, then the obtained model is the correct model with probability
α.

Example 6.23 Consider the same situation as in Example 6.22. Consider a con-
fidence level of 95%. The results are shown in Fig. 6.6. From the figure, one can
conclude with 95% confidence that there is no evidence in the data that the model is
wrong. �

6.8 SUMMARY
In this chapter a novel method is presented to obtain consistent estimates of a module
G0

ji embedded in a dynamic network using noisy measurements of internal variables.
The method is based on IV reasoning. Any variable (external or internal) that is
not a predictor input or wj is a candidate instrumental variable. Thus, as long as
a variable other than wk, k ∈ Dj and wj is measurable it is possible to consistently
identify G0

ji. Even if all variables are measured with sensor noise! The result becomes
even more applicable when it is coupled with the ideas of predictor input selection.
Then the predictor inputs need only be chosen such that Dj has Property 6.17.
Thus the experimenter has a relatively flexible choice of which variables to measure
in the network. The experimenter could choose to use the cheapest measurements,
the least number of measured variables, etc.
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Figure 6.6: Results of the validation test presented in Section 6.7 for the setup
considered in Examples 6.22 and 6.23. The red dashed lines represent the 95%
confidence intervals.

Since the process noise is modeled in the method of Section 6.4, the variance
of the obtained estimate is likely to be relatively close to the statistical optimum.
However, more research is needed in this area.

6.9 APPENDIX
6.9.1 Proof of Lemma 6.7
Proof: The proof proceeds by considering zℓ = wℓ (the proof for zℓ = rℓ is analo-
gous). First both wℓ and wk are expressed in terms of process noise variables. Then
Lemma 4.1 is used to prove the result. Using the notation of Lemma 4.1, wℓ and
wm can be expressed in terms of only process noise terms:

wℓ(t)=

L∑
n=1

G0
ℓn(q)vn(t) and wk(t)=

L∑
n=1

G0
kn(q)vn(t).

Consequently the cross power spectral density Φwℓwk
is

Φwℓwk
(ω) =

L∑
n=1
n̸=ℓ,k

G0
ℓn(e

jω)Φvn(ω)G0
kn(e

−jω)+

G0
ℓk(e

jω)Φvk(ω)G0
kk(e

−jω)+G0
ℓℓ(e

jω)Φvℓ
(ω)G0

kℓ(e
−jω)

Suppose that none of the Conditions of Lemma 6.7 hold. By Lemma 4.1 and Condi-
tion (a), G0

kℓ is zero. Thus the third term of Φwℓwk
(z) is zero. Similarly, by Condition

(b) the second term is zero. By Condition (c) for each n ∈ {1, . . . , L} \ {k, ℓ} either
G0
ℓn or G0

kn is zero. Thus the first term of Φwℓwm(z) is zero. Consequently, if none
of the conditions hold, wk and wℓ are uncorrelated. �
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6.9.2 Proof of Proposition 6.8
Proof: The proof proceeds by first deriving a simplified expression for Rεz(τ) and
then showing that this expression equals 0 for τ = 0, . . . , n if and only if θ = θ0.
Using (6.15) Rεz(τ) can be expressed as

Ē[ε(t)z(t− τ)] = Ē
[(
w̃j(t)− θT ϕ̃(t)

)
z(t− τ)

]
Both the predictor inputs and the instrumental variable have a component that is
due to the sensor noise. However, By Condition (c) both these components can be
removed from the expression of Rεz(τ):

Rεz(τ) = Ē
[(
wj(t) + sj(t)− θTϕ(t)− θTϕs(t)

)
·
(
z(t− τ) + zs(t− τ)

)]
= Ē

[(
wj(t)− θTϕ(t)

)
z(t− τ)

]
where

ϕT
s (t)=

[
sd1(t) · · · sd1(t−nb) · · · sj(t−1) · · · sj(t−na)

]
and, similarly, zs(t) is a vector of all the measurement noise terms associated with
the instrumental variables. From (6.14) wj(t) can be expressed as:

wj(t) = θT0 ϕ(t) +A0
j (q)vj(t)

where θ0 = [b̆0jk1
· · · b̆0jkd

a0j ] where b̆0jki
is a vector of the coefficients of B̆0

jki
, ki ∈ Nj

and a0j is a vector of the coefficients of A0
j . Using this expression for wj in Rεz(τ):

Rεz(τ) = Ē
[(
θT0 ϕ(t) +A0

j (q)vj(t)− θTϕ(t)
)
z(t− τ)

]
= Ē

[(
∆θϕ(t) +A0

j (q)vj(t)
)
z(t− τ)

]
(6.26)

where ∆θ = θ0 − θ.
Condition (a) states that there is no path from any predictor input to any variable

chosen as an instrument. This implies that each wℓ, ℓ ∈ Ij is not a function of vj .
This statement can be proved using Lemma 4.1 as follows. First, using the notation
of Lemma 4.1, express wℓ in terms of v:

wi =
L∑

k=1

G0
nkvk.

Since there is no path from wj to wℓ, by Lemma 4.1 G0
ℓj is zero. Thus, wℓ is not

a function of vj . Consequently, by Condition (d) wℓ and vj are uncorrelated. This
leads to the following simplification of (6.26):

Rεz(τ) = Ē
[
∆θϕ(t)z(t− τ)

]
(6.27)
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This is the final expression for Rεz(τ).
It follows immediately from (6.27) that if θ = θ0 then Rεz(τ) = 0 for all τ ≥ 0.
It remains to be shown that if Rεz(τ) = 0 for all τ = 0, . . . , n for any finite

n ≥ ⌈(na + dnb)/length(z(t))⌉ then θ = θ0. Consider the set of equations:

[Rεz(0) Rεz(1) · · · Rεz(n)] = 0

Then, using (6.27), it follows that

∆θ[Rϕz(0) · · · Rϕz(n̆) · · · Rϕz(n)] = 0. (6.28)

The matrix [Rϕz(0) Rϕz(1) · · · Rϕz(n̆)] is either square or has more columns than
rows. By Condition (b) it is full row rank. Consequently, the only solution to the
equation is ∆θ = 0. This proves the result. �

6.9.3 Proof of Proposition 6.13
Proof: First simplified expressions for εj and z are derived in order to arrive at a
simple expression for Rεz(τ). Then it is shown that this expression equals zero for
all τ ≥ 0 iff Gjk(θ) = G0

jk.
Consider first an expression for the prediction error. Substitute the expressions

for w̃j and w̃k into (3.4):

εj(θ)=H−1
j (θ)

(∑
k∈Nj

G0
jkwk+vj+sj−Gjk(θ)(wk+sk)

)
=H−1

j (θ)
∑
k∈Nj

∆Gjk(θ)wk+∆Hj(θ)vj+ ej

+H−1
j (θ)

(
sj −

∑
k∈Nj

Gjk(θ)sk

)
(6.29)

with ∆Gjk(θ)=G0
jk−Gjk(θ) and ∆Hj(θ)=H−1

j (θ)−H0−1

j .
Now consider the expression for the instrumental vector:

z(t) =
[
w̃ℓ1(t) · · · w̃ℓn(t)

]
=
[
wℓ1(t) + sℓ1(t) · · · wℓn(t) + sℓn(t)

]
. (6.30)

In the following text, an expression for Rεz(τ) is derived using (6.29) and (6.30) that
is valid for all τ ≥ 0. Subsequently, this expression is used to prove the proposition.

No measurement chosen as an instrumental variable can be a predictor input
(Nj ∩ Ij = ∅ by the statement of the proposition). Thus, no sℓ that appears in the
instrumental variable vector z (6.30), will appear in the expression for εj , (6.29).
By Condition (c) each sk, k ∈ Dj is uncorrelated to all sℓ, ℓ ∈ Ij , resulting in:

Ē[εj(t,θ) · z(t− τ)]= Ē
[(

H−1
j (q,θ)

∑
k∈Nj

∆Gjk(q,θ)wk(t)

+∆Hj(q,θ)vj(t)+ej(t)
)
[wℓ1(t−τ) · · · wℓn(t−τ)]

]
(6.31)
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By Condition (a) each instrumental variable is a function of only delayed versions
of vj (and thus delayed versions of ej), resulting in the following simplification

Ē[εj(t,θ) · z(t− τ)]= Ē
[(

H−1
j (q,θ)

∑
k∈Nj

∆Gjk(q,θ)wk(t)

+ ∆Hj(q, θ)vj(t)
)[
wℓ1(t−τ) · · · wℓn(t−τ)

] ]
(6.32)

which holds for all τ ≥ 0. Using a vector notation (6.32) can be expressed as:

Rεz(τ)= Ē
[
∆X(q,θ)T


wk1

(t)
...

wkd
(t)

vj(t)

[wℓ1(t−τ) · · · wℓn(t−τ)
]]

where
∆X(q, θ)T =

[
∆Gjk1

(q,θ)

H−1
j (q,θ)

· · · ∆Gjkd
(q,θ)

H−1
j (q,θ)

∆Hj(q, θ)
]

and {k1, . . . , kd} = Dj . The variable vj can be expressed in terms of internal vari-
ables as:

vj = wj −
∑
k∈Nj

G0
jk(q)wk

and so 
wk1(t)

...
wkd

(t)
vj(t)

=


1
. . .

1
−G0

jk1
(q) · · · −G0

jkd
(q) 1



wk1(t)

...
wkd

(t)
wj(t)

 (6.33)

Denote the matrix in (6.33) as J0(q). Using this notation,

Rεz(τ)= Ē
[
∆X(q, θ)TJ0(q)w(t)

· [wℓ1(t−τ) · · · wℓn(t−τ)]
]

(6.34)

where w(t) = [wk1(t) · · · wkn(t) wj(t)]
T . Note that (6.34) is valid for all τ ≥ 0.

Now, first consider the ‘if’ statement. It is shown that if Gjk(q, θ) = G0
jk, for

all k ∈ Nj and Hj(q, θ) = H0
j , then Rεz(τ) = 0 for all finite τ ≥ 0. Let θ0 denote

this particular parameter vector (such a parameter vector is guaranteed to exist by
Condition (e)). Clearly, ∆Gjk(θ0) = 0 and ∆Hj(θ0) = 0. Thus, from (6.34),

Ē[εj(t, θ0) · z(t− τ)] = 0, for all τ ≥ 0.

Now consider the ‘only if’ statement. It must be shown that if Rεz(τ) = 0, for all
τ ≥ 0 then Gjk(θ) = G0

jk, for all k ∈ Nj and Hj(θ) = H0
j . If z has fewer elements

than w, then increase the size of z by appending delayed versions of z as is done in
Condition (b), i.e. construct:

z′(t) = [z(t) z(t− ng − 1) · · · z(t− nzng − 1)].
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Thus, w and z′ are either of equal length, or z′ has slightly more elements. Since
Rεz(τ) = 0, for all τ ≥ 0 it follows that Rεz′(τ) = 0, for all τ ≥ 0 also. Consequently
the following equation holds

Rεz′(τ)RT
εz′(−τ) = 0, ∀τ.

Thus the following equation also holds
∞∑

τ=−∞
Rεz′(τ)RT

εz′(−τ) = 0.

Take the Fourier Transform of this equation. Using the time reversal property and
Parseval’s Theorem results in

1

2π

∫ π

−π

Φεz′(ejω)ΦT
εz′(e−jω)dω = 0. (6.35)

Substitute (6.34) into (6.35):

1

2π

∫ π

−π

∆X(ejω, θ)J0(ejω)Φwz′(ejω)

· ΦT
wz′(e−jω)J0T (e−jω)∆XT (e−jω, θ)dω = 0. (6.36)

In the following text, an expression for ∆X(ejω) is derived such that the parameters
appear in a vector that is not a function of ω.

Consider the expression for the dth entry of ∆X(q, θ), where d ≤ card(Dj):

H−1
j (q, θ)∆Gjk(q, θ) =

Dj(q, θ)

Cj(q, θ)

(B0
jk(q)

F 0
jk(q)

− Bjk(q, θ)

Fjk(q, θ)

)
=

Dj(q,θ)

Cj(q,θ)

B0
jd(q)Fjk(q,θ)−Bjk(q,θ)F

0
jk(q)

F 0
jk(q)Fjk(q,θ)

= ∆Pjk(θ)Kjk(q, θ) (6.37)

where

∆Pjk(q, θ) = B0
jk(q)Fjk(q, θ)−Bjk(q, θ)F

0
jk(q),

Kjk(q, θ) =
Dj(q, θ)

Cj(q, θ)F 0
jk(q)Fjk(q, θ)

.

Note that ∆Pjk(q, θ) is a polynomial of order nf + nb (or less). Similarly, the last
entry of ∆X(q, θ) can be expressed as:

∆Hj(q, θ) =
Dj(q, θ)

Cj(q, θ)
−

D0
j (q)

C0
j (q)

=
(
Dj(q, θ)C

0
j (q)−D0

j (q)Cj(q, θ)
) 1

Cj(q, θ)C0
j (q)

= ∆Pj(q, θ)Kj(q, θ). (6.38)
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where

∆Pj(q, θ) = Dj(q, θ)C
0
j (q)−D0

j (q)Cj(q, θ),

Kj(q, θ) =
1

Cj(q, θ)C0
j (q)

.

Note the ∆Pj(q, θ) is a polynomial of order nc + nd (or less). For notational conve-
nience suppose that nh ≤ ng.

The next step is to plug the expressions for ∆X(ejω, θ), (6.37) and (6.38) into
(6.36). Let

∆P (ejω, θ)=[∆Pjk1(e
jω, θ) · · · ∆Pjkd

(ejω, θ) ∆Pj(e
jω, θ)]

where {k1, . . . , kd}=Dj , then

1

2π

∫ π

−π

∆P (ejω, θ)K(ejω, θ)J0(ejω)Φwz(ω)Φ
H
wz(ω)

· J0T(e−jω)KT(e−jω, θ)∆PT(e−jω, θ)dω = 0,

where superscript H denotes conjugate transpose, and

K(θ) = diag
(
Kjd1(θ), . . . ,Kjdn(θ),Kj(θ)

)
where the argument ejω has been dropped for notational clarity, diag(·) denotes a
diagonal matrix with the arguments on the diagonal. Since the term in the integral
is nonnegative for all theta, the only way that the integral can equal zero is if the
term in the integral is zero for all omega, i.e.:

∆P (ejω, θ)Υ(ω)∆PT (e−jω, θ) = 0 (6.39)

for all ω ∈ [−π, π) where

Υ = K(θ)J0ΦwzΦ
H
wzJ

0HKH(θ).

By Condition (b) Φwz is full rank at ng distinct frequencies. Note that J0 and K(θ)
are full rank for all ω, and θ. The result is that that Υ is positive definite for at
least ng +1 frequencies. However, ∆P (q) is a (vector) polynomial of degree ng only.
This implies that ∆P (q) = 0 (Söderström & Stoica, 1983).

From the definition of ∆p(θ) this implies that Gjd(q, θ)=G0
jd(q), for all d ∈ Dj

and Hj(q, θ) = H0
j (q). �



Chapter 7

CONTINUOUS-TIME IDENTIFICATION IN
DYNAMIC NETWORKS

In the thesis thus far the object to be identified has been a discrete-time dynamic
network model. In order to study the consistency of the proposed methods the data
generating system was assumed to be a discrete-time dynamic network model. How-
ever, in practice the data generating system is often in continuous-time. In the first
part of this chapter we investigate the relationship between a discrete-time dynamic
network and its continuous-time counterpart. The two features that are investigated
are the effect of (not having) anti-aliasing filters in the sensors, and the effect of
the intersample behavior on the presence of algebraic loops in the discrete-time rep-
resentation of the continous-time data generating system. The intent is to establish
conditions under which it is possible to use the identified discrete-time module to es-
timate the corresponding continuous-time module. In the second part of this chapter
a method is presented to directly identify continuous-time transfer functions embed-
ded in a continuous-time dynamic network model. The method is a continuous-time
version of the method presented in Section 6.3. As such, it is also a generaliza-
tion of the closed-loop continuous-time instrumental variable methods to the case of
identification in dynamic networks. 1

7.1 INTRODUCTION

MANY PHYSICAL SYSTEMS are naturally modeled in continuous-time (i.e. in terms
of (partial) differential equations) rather than discrete-time. Moreover, the
continuous-time transfer functions are directly related to physical properties

of the system under investigation, such as resistances, capacitances, permeabilities
of materials, diameters of pipes, etc. Thus, by identifying a continuous-time trans-
fer function embedded in the continuous-time dynamic network, estimates of the
physical properties of the system are obtained. In this chapter we consider the ques-
tion: under what conditions can a consistent estimate of a continuous-time transfer

1The material contained in this chapter is based on Dankers et al. (2014a).
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168 7 Continuous-Time Identification in Dynamic Networks

function be obtained when it is embedded in a dynamic network? The underlying
objective is to obtain estimates of physical parameters of a physical system.

This chapter is split into two parts. In the first part an indirect continuous-time
identification approach is investigated, and the second part a direct continuous-time
identification approach is investigated.

In the first part the relationship between a continuous-time dynamic network
model and its discretized counterpart is investigated. In this part of the chapter
we address the question: under which conditions can a discrete-time module be
identified that is an accurate representation of its continuous-time counterpart? The
purpose of the discrete-time estimate is to convert it into a continuous-time transfer
function from which the physical parameters of the system can be estimated. This is
referred to as the indirect continuous-time identification approach (Garnier & Wang,
2008).

Two effects of discretization are investigated in this chapter. The effect of dis-
cretization on the interconnection structure of the discrete-time representation, and
the effect of discretization on the presence of algebraic loops in the discrete-time
representation. It is well known that aliasing can cause discrepancies between the
dynamics of a discrete-time transfer function and its continuous-time counterpart.
In this chapter, we investigate the effect of aliasing from a dynamic network point
of view, where the key question is: under what conditions do the discrete-time and
continuous-time dynamic networks describing a system have the same interconnec-
tion structure? Discretizing a continuous-time system can also affect the presence of
direct feed-through terms in the discrete-time module transfer functions (Laurijsse,
2014). In particular it is the intersample behavior of the external variables that
affects the presence of feed-though terms in the discrete-time network. Since the
Direct and Joint IO methods are sensitive to the absence of algebraic loops in the
discrete-time data generating system (see Chapters 4 and 6) this phenomenon merits
our attention.

In the second part of this chapter, we consider directly identifying a continuous-
time model (thus skipping the intermediate step of first identifying a discrete-time
model which is subsequently converted to a continuous-time model). There are
several advantages to such an approach (Garnier & Wang, 2008; Rao & Unbehauen,
2006):

• Non-uniformly sampled data. In certain applications such as in biological
systems, economics, and environmental science (Young & Garnier, 2006), it
may be difficult to obtain uniformly spaced data. Because all these applica-
tions also deal extensively with dynamic networks, this is a relevant reason
to consider the direct continuous-time methods presented in this chapter. In
this situation standard discrete-time techniques cannot be applied because
discrete-time transfer functions are not defined for the situation where the
sampling rate is non-uniform, whereas continuous-time transfer functions are
independent of the sampling rate.

• Sensitivity to high sampling rates. As the sampling rate increases, the
poles of a discrete-time transfer function tend towards the unit circle. The
optimization routines used to obtain the estimates of a discrete-time system
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have difficulty with poles near the unit circle because any small change in a pole
location could result in an unstable model. This leads to estimates with high
variance. Again, since the continuous-time transfer functions are independent
of the sampling rate they do not suffer from this affliction.

• Stiff systems. A stiff system is a system with some very fast dynamics and
some very slow dynamics. Again, since the discrete-time transfer function is
dependent on the sampling rate, it becomes difficult to capture both the fast
and the slow dynamics.

It is in part due to these advantages that direct continuous-time identification is
becoming a more prominent topic in the identification literature (see for instance
Garnier et al. (2003); Larsson et al. (2006); Gillberg & Ljung (2009); Pintelon &
Schoukens (2012b)). This leads to a second question which is addressed in the second
part of this chapter: under what conditions can a continuous-time transfer function
embedded in a continuous-time dynamic network be directly identified (i.e. without
first identifying a discrete-time transfer function)? The method that is presented is
a continuous-time version of the extension of the (discrete-time) Basic Closed-Loop
Instrumental Variable Method of Section 6.3 in Chapter 6. It can also be considered
as an extension of the Continuous-Time Basic Closed-Loop Instrumental Variable
method of Gilson et al. (2008) to the situation of identification in dynamic networks.

The chapter proceeds as follows. In Section 7.2 we briefly define a continuous-
time dynamic network model, then in Section 7.3 we discuss the indirect continuous-
time identification approach applied to dynamic networks, and in Section 7.4 we
present an instrumental variable method for direct continuous-time dynamic network
identification.

7.2 CONTINUOUS-TIME DYNAMIC NETWORKS

In this section a continuous-time dynamic network model is briefly presented. Anal-
ogous to the discrete-time dynamic network model, each internal variable is assumed
to be such that it can be written as:

wj(t) =
∑
k∈Nj

Gjk(p)wk(t) + rj(t) + vj(t)

where t is now a continuous-time variable, Gjk(s) a continuous-time transfer func-
tion, and p is the differential operator, i.e. pu(t) = d

dtu(t). The set Nj has the
usual definition, and rj and vj represent the external variables and the process noise
respectively, as usual. The process noise is modeled as a continuous-time stochastic
process with rational power spectral density. Thus the data generating system in



170 7 Continuous-Time Identification in Dynamic Networks

this chapter has the form:


w1

w2

...
wL

 =


0 G0

12 · · · G0
1L

G0
21 0

. . . G0
2L

... . . . . . . ...
G0

L1 G0
L2 · · · 0



w1

w2

...
wL

+


r1
r2
...
rL

+


v1
v2
...
vL


= G0(p)w(t) + r(t) + v(t). (7.1)

We assume that the continuous-time data generating system (7.1) is well-posed (see
Definition 2.11). We suppose that measurements of the internal variables are ob-
tained using data aquisition systems (DAQs) or analog to digital converters (ADC)s.
An analog to digital converter consists of four components: a sensor, an anti-aliasing
filter, a sampler and a digitizer (Fadali & Visioli, 2013). A sensor continuously trans-
forms a physical parameter to a form such that it can be sampled. Anti-aliasing
filters remove the high frequency content from a signal before it is sampled. The
sampling operation involves recording a variable every T seconds. The digitizer con-
verts the output of the sampler into a number. Not all DAQs are equipped with
anti-aliasing filters. Adopting the notation of Fadali & Visioli (2013), a sampled and
digitized version of a continuous-time variable will be denoted with a superscript ⋆.
For instance, the sampled and digitized version of the continuous-time variable rk(t)
is

r⋆k(n) = rk(nT ), n = 0, 1, 2, . . . . (7.2)

where n is used to denote discrete-time, and T denotes the sampling period. We
assume that every DAQ measures with some error which we call sensor noise. The
(discrete-time) output of a DAQ is then denoted:

w̃aa⋆

k (n) = waa
k (nT ) + sk(n), n = 1, 2, . . . (7.3)

where waa
k (t) = Gaa,k(p)wk(t) where Gaa,k(s) is the transfer function of the anti-

aliasing filter, and sk is the sensor noise. A superscript ⋆ denotes a discrete-time
signal, and w̃k denotes that wk is measured with (sensor) noise. If anti-aliasing
filters are not present in the sensor, then Gaa,k(s) = 1. The sensor noise is modeled
as a discrete-time stochastic process with rational power spectral density. It can
be shown that the sensor noise can be assumed to be discrete-time without loss of
generality (i.e. even if it is really a continuous-time process, after sampling the noise
can be approximated arbitrarily well by a discrete-time filtered white noise process)
(Åström, 1970; Pintelon & Schoukens, 2012b). Equations (7.1) and (7.3) define the
continuous-time data generating system.

Often the external variables, rk, are digital signals that have been converted into
analog signals by a digital to analog converter (DAC). A common DAC is equipped
with a zero-order-hold circuit, which means that the output of the DAC is held
constant in between sampling instants (Fadali & Visioli, 2013). For example the
continuous-time signal rk(t) that is the output of a DAC equipped with a zero-
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order-hold is:

rk(t) =

∞∑
n=0

r⋆k(n)gh(t− nT ), with gh(t) =

{
1, 0 ≤ t < T

0, otherwise
(7.4)

In the following text, it will be useful to use the rect(t) function, defined as:

rect(t) =
{
1, 0 ≤ t < T

0, otherwise
.

In other words, rect(t) is a rectangular pulse of length T . The transfer function of
rect(t) is (Fadali & Visioli, 2013):

Rect(s) = 1− esT

s
.

Using this notation, the output of a DAC equipped with a zero-order-hold circuit,
i.e. (7.4) can be expressed as

rk(t) =

∞∑
n=0

r⋆k(n)rect(t− nT ).

It is well known that the effect of sampling is not trivial. Next we consider the
effect of sampling in dynamic networks.

7.3 INDIRECT CONTINUOUS-TIME IDENTIFICATION
In the indirect approach, first a discrete-time transfer function is estimated from
the sampled data. Then a continuous-time transfer function is constructed based
on the discrete-time transfer function. In order to be able to (easily) obtain an
estimate of the continuous-time transfer function Gji(s)

0 from the transfer function
G0

ji(z) estimated from the (sampled) data, it is essential that Gji(z) is an accurate
representation of the dynamics of G0

ji. Thus, it is essential to understand the effect
of discretizing (7.1). In this section we investigate two effects: first we investigate the
effect of aliasing on the interconnection structure of the discrete-time representation
of the continuous-time data generating system, and secondly we investigate the
effect of the intersample behavior on the presence of direct feed-though terms in the
discrete-time dynamic network. The results of effect of the intersample behavior on
the presence of direct feed-through terms is based on the work of Laurijsse (2014).

7.3.1 Effect of Discretization on the Interconnection Structure
In this section we illustrate that when using the indirect approach it is critical
that either the ADCs are equipped with anti-aliasing filters or the sampling rate
is much faster than the bandwidth of the system. This may seem like a rather
obvious result. It is well known in sampling theory that aliasing causes a change
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in the dynamics of the discrete-time description with respect to the continuous-
time version. However, in this section, we show that not only does aliasing cause a
change in the dynamics of the discrete-time representation, but aliasing also causes
the interconnection structure of the discrete-time dynamic network to be different
from the interconnection structure of the underlying continuous-time data generating
system. This is a phenomenon that is a side-effect of aliasing that is unique to
dynamic networks.

From the perspective of identification in dynamic networks this can have un-
expected consequences. Suppose that anti-aliasing filters are not used to take the
measurements. Then, although the interconnection structure of the continuous-time
data generating system is known, this interconnection structure is not the same as
that of the equivalent discrete-time dynamic network. Thus, if the interconnection
structure of the continuous-time data generating system is imposed on the discrete-
time representation, a bias will result. This bias is in addition to the usual bias
that results from aliasing. Moreover, this bias is unique to identification in dynamic
networks (i.e. it does not appear in the classical open and closed-loop setups).

The following setup is used to illustrate the difference between the discrete-time
and continuous-time representations of the data. Consider a network of the form
(7.1) with no process noise present and all external variables r1, . . . , rL present. Sup-
pose that the external variables are discrete-time signals that have been converted
into continuous-time signals by DACs. An example of such a set up is shown in
Figure 7.1.

..r⋆4. DAC. G0
14

.. G0
21

... G0
32

.

G0
23

...
r4

..
w1

.

ADC

..

s1

.

w̃⋆
1

..
w2

.

ADC

..

s2

.

w̃⋆
2
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s3
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w̃⋆
3
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.

DAC

.

DAC

.

r⋆1
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r⋆2
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r⋆3

.
w3

.
r1.

r2.
r3

Figure 7.1: Closed loop data generating system with no process noise and continuous-
time external variables that are constructed from discrete-time external variables
(using DACs).

Since the given data set is completely in discrete-time, i.e. the data set consists
of {w⋆

1 , w
⋆
2 , w

⋆
3 , w

⋆
4} and {r⋆1 , r⋆2 , r⋆3 , r⋆4} it is possible to exactly represent the system

as a discrete-time dynamic network:

w⋆(n) = G⋆(q)w⋆(n) + r⋆(n) (7.5)

where G⋆(z) is a matrix of discrete-time transfer functions. The question is addressed
in this subsection is: how is G⋆(z) of (7.5) related to G(s) of (7.1)?

In the following reasoning, we show that due to aliasing, the elements G⋆
jk(z)

of G⋆(z) are not simply the discrete versions of their continuous-time counterparts
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Gjk(s). In fact, we show that the discrete-time network (7.5) may not even have the
same interconnection structure as the continuous-time network (7.1). From (7.1) we
have

w(t) =
(
I −G(p)

)−1
r(t) = F (p)r(t) (7.6)

where F (p) = (I −G(p))−1. Suppose that each DAC is equipped with a zero-order-
hold circuit, then from (7.4), the continuous-time representation of the external
variable r⋆k(n) is

rk(t) =
∞∑

m=0

r⋆k(m)rect(t− T )

=

∞∑
m=0

r⋆k(m)rect(t) ∗ δ(t−mT )

where ∗ denotes convolution, and δ(t) is an impulse function. Consequently, (7.6)
can be expressed as:w1(t)

...
wL(t)

 = f(t) ∗

rect(t)
. . .

rect(t)

 ∗


∑∞

m=0 r
⋆
1(m) ∗ δ(t−mT )

...∑∞
m=0 r

⋆
L(m) ∗ δ(t−mT )

 , (7.7)

where f(t) = L−1[F (s)] where L−1[ · ] denotes the inverse Laplace transform. Let
fc(t) = L−1[F (s)diag(Rect(s), . . . ,Rect(s))]. Then (7.7) can be expressed as:

w(t) = fc(t) ∗


∑∞

m=0 r
⋆
1(m) ∗ δ(t−mT )

...∑∞
m=0 r

⋆
L(m) ∗ δ(t−mT )


=

∫ t

0

fc(t− τ)


∑∞

m=0 r
⋆
1(m) ∗ δ(τ −mT )

...∑∞
m=0 r

⋆
L(m) ∗ δ(τ −mT )

dτ

=
∞∑

m=0

fc(t−mT )r⋆(m), (7.8)

where w(t) = [w1(t) · · · wL(t)]
T and r⋆(m) = [r⋆1(m) · · · r⋆L(m)]T . From (7.8) by

sampling and digitizing w(t) according to (7.2) the discrete-time representation of
w(t) is

w⋆(n) =
∞∑

m=0

f⋆
c (n−m)r⋆(m), (7.9)

where f⋆
c (n) =

(
fc(t)

)⋆
=
(
L−1[Fc(s)]

)⋆. Interestingly, (7.9) is a discrete-time
convolution, an thus using the q notation it can be expressed as:

w⋆(n) = F ⋆
c (q)r

⋆(n). (7.10)
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where F ⋆
c (q) = Z[f⋆

c (n)] = Z
[(
L−1[Fc(s)]

)⋆]. The equation (7.10) is the discrete-
time representation of (7.6) and the relationship between the discrete-time dynamics
F ⋆
c (z) in (7.10) and the continuous-time dynamics F (s) in (7.6) is:

F ⋆
c (z) = Z

[(
L−1

[
F (s)diag

(
Rect(s), . . . ,Rect(s)

)])⋆]
.

Finally, the discrete-time dynamic network equations can be obtained from (7.10).
The objective is to obtain an expression of the form w⋆ = G⋆w⋆ + r⋆ (where G⋆ has
zeros on the diagonal) from the expression (7.10). Consider the following steps:

F ⋆−1

c (q)w⋆(n) = r⋆(n). (7.11)

In order to ensure that G⋆ has zeros on the diagonal, first set the main diagonal
of the matrix on the left in (7.11) to all ones by multiplying by D⋆, where D⋆ is a
diagonal matrix of all the diagonal elements of F ⋆

c :

D⋆(q)F ⋆−1

c (q)w⋆(n) = D⋆(q)r⋆(n). (7.12)

In (7.12) the diagonal elements of D⋆(q)F ⋆−1

(q) are all one, and so it can be ex-
pressed as I + (D⋆(q)F ⋆−1

c (q)− I) where the second matrix in the sum has zeros on
the diagonal. Thus, (7.12) can be expressed as:

w⋆(n) = (I −D⋆(q)F ⋆−1

c (q))w⋆(n) +D⋆(q)r⋆(n). (7.13)

Finally, let G⋆(q) = (I −D⋆(q)F ⋆−1

c (q)). Then (7.13) can be expressed as

w⋆(n) = G⋆(q)w⋆(n) +D⋆(q)r⋆(n) (7.14)

which is an equation that represents a discrete-time dynamic network. Equation
(7.14) describes the discrete-time representation of the continuous-time data gen-
erating system (7.1). This expression can now be used to investigate the effect of
sampling on the interconnection structure of the discrete-time dynamic network. As
a summary of the previous derivation, the key equations relating the continuous-time
and discrete-time dynamic networks are:

F ⋆
c (z) = Z

[(
L−1

[
F (s)diag

(
Rect(s), . . . ,Rect(s)

)])⋆]
(7.15a)

G⋆(z) = I −D⋆(z)F ⋆−1

c (z) (7.15b)
G(s) = I − F−1(s) (7.15c)

From (7.15b) and (7.15c) to obtain G(s) and G⋆(z) from F (s) and F ⋆(z) respec-
tively, involves simply algebraic manipulations. Thus, the main effect of sampling
is encoded into the first relationship (7.15a).

An important feature of the continuous-time to discrete-time transformation by
sampling and digitizing, i.e. the operation Z[(L−1[ · ])⋆] is that a product (or
quotient) of two continuous-time transfer functions (say Gjk(s) and Gkℓ(s)) cannot
be separated/factored in the discrete-time domain, i.e.

Z
[(
L−1[Gjk(s)Gkℓ(s)]

)⋆] ̸=Z
[(
L−1[Gjk(s)]

)⋆] · Z[(L−1[Gkℓ(s)]
)⋆]

. (7.16)
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The reason is due to aliasing. The effect of aliasing is easier to see in frequency
domain (Pintelon & Schoukens, 2012b):

F
[(
L−1[Gjk(s)Gkℓ(s)]

)⋆]
=
(
Gjk(jω)Gkℓ(jω)

)
∗
( 1

T

∞∑
n=−∞

δ(ω−nωs)
)

= Gjk(jω)Gkℓ(jω) +
∞∑

n=−∞
n̸=0

Gjk(jω − jωsn)Gkℓ(jω − jωsn)

︸ ︷︷ ︸
component due to aliasing

, (7.17)

where F [ · ] is the Discrete-Time Fourier Transform and ωs = 2π/T is the sampling
frequency. From (7.17) if Gjk(jω)Gkℓ(jω) is non-zero for frequencies greater than
ωs then the component due to aliasing in (7.17) will be non-zero (i.e. the shifted
versions of the Fourier Transform of the unsampled signals overlap).

The matrix F (s) = (I − G(s))−1 of course contains many products of transfer
functions. Due to the fact that products of transfer functions can not be ”split”
after sampling, the operations in (7.15b) to obtain G⋆(z) from F ⋆

c (z) do not ”undo”
the operations in (7.6) where F (s) is obtained from G(s). The result is that, in
general, the (j, k)th element of G⋆(z), i.e. G⋆

jk(z), is not simply a discretized version
of Gjk(s), i.e.

G⋆
jk(z) ̸= Z

[(
L−1[Gjk(s)]

)⋆]
.

In fact, the discrete-time dynamic network may not even have the same interconnec-
tion structure as its continuous-time counterpart. This is illustrated in the following
example.

Example 7.1 Consider the system shown in Fig. 7.1. Suppose that the ADCs are
not equipped with anti-aliasing filters. Suppose that all the DACs are equipped with
zero-order-hold circuits. The continuous-time dynamic network is

w1(t)
w2(t)
w3(t)
w4(t)

=


0 0 0 G14(s)
G21(s) 0 G23(s) 0

0 G32(s) 0 0
0 0 0 0



w1(t)
w2(t)
w3(t)
w4(t)

+

r1(t)
r2(t)
r3(t)
r4(t)

 (7.18)

By following the steps shown in (7.7) to (7.14) the resulting discrete-time represen-
tation of the system is:

w⋆
1(n)

w⋆
2(n)

w⋆
3(n)

w⋆
4(n)

=


0 0 0 G14(q)
G21(q) 0 G23(q) G24(q)
G31(q) G32(q) 0 G34(q)

0 0 0 0



w⋆

1(n)
w⋆

2(n)
w⋆

3(n)
w⋆

4(n)

+


r⋆1(n)
D2(q)r

⋆
2(n)

D3(q)r
⋆
3(n)

r⋆4(n)

 (7.19)

Note that the resulting interconnection structure of the discrete-time network is not
the same as that of the continuous-time network. The expression for the transfer
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function G23(z) is equal to

G23(z) =
Z
[(
L−1[G23(s)Rect(s)S(s)]

)⋆]
Z
[(
L−1[S(s)]

)⋆]
where S(s) = ( 1

1−G23(s)G32(s)
)Rect(s). If (7.16) were to hold with equality, then

the product in the numerator could be “split” resulting in a cancellation with the
denominator, and G23(z) would simply be the discrete-time version of G23(s). �

Remark 7.2 We have shown that the interconnection structure of the continuous-
time and corresponding discrete-time dynamic network models are (in general) not
the same. In the framework that we consider in this thesis, the interconnection struc-
ture of the continuous-time dynamic network model is known, thus, one could simply
impose this known interconnection structure on the discrete-time model. Consider
the case illustrated in Example 7.1. Suppose that one is attempting to identify G23.
Based on the discrete-time interconnection structure, we would need to include w1,
w3 and w4 as predictor inputs (see (7.19)). However, based on the continuous-time
interconnection structure, we only need to include w1 and w3 as predictor inputs
(see (7.18)). Thus, imposing the continuous-time interconnection structure on the
discrete-time system is equivalent to ignoring the effect of w4. Because both w1 and
w3 are correlated to w4, this will result in additional bias. Further investigation is
needed to obtain an exact expression for this additional bias term.

There are two important cases when the elements of G⋆(z) are (approximately)
the discrete versions of the corresponding elements of G(s): when the sampling rate
is fast enough such that the system does not have significant frequency content at
frequencies greater than half the sampling frequency (i.e. the Nyquist frequency)
and/or when anti-aliasing filters are used to take the measurements.

First consider the effect of a fast sampling rate. Suppose that all the dynamics
in the network are low-pass. By increasing the sampling rate, the aliasing terms in
(7.17) become smaller with the result that

Z
[(
L−1[Gjk(s)Gkℓ(s)]

)⋆] ≈ Z
[(
L−1[Gjk(s)]

)⋆] · Z[(L−1[Gkℓ(s)]
)⋆]

. (7.20)

Since all the products of transfer functions can be split into separate components,
the operations in (7.15b) to obtain G⋆(z) from F ⋆(z) ”undo” the operations in
(7.6) where F (s) is obtained from G(s) with the result that each entry of G⋆(z) is
(approximately) a discrete-time version of the corresponding entry of G(s).

If the external variables and the process noise variables only have power in the
frequency range [−ωs/2, ωs/2] then the dynamics in (7.17) that result in aliasing
are not excited. Thus, the approximation (7.20) can be quite good, with again,
the result that each entry of G⋆(z) is (approximately) a discrete-time version of
the corresponding entry of G(s). Note however, that requiring external variables
to have zero frequency content outside of the frequency range [−ωs/2, ωs/2] the
DACs cannot be equipped with zero-order-holds since this causes the continuous time
external variable to have frequency content over all frequencies. Thus, if the external
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variables are injected into the system using DACs, it may not be possible to satisfy
the condition that they have no frequency content outside the range [−ωs/2, ωs/2],
depending on the DACs.

A second alternative is that anti-aliasing filters are used to take the measure-
ments, i.e. before sampling, the internal variables are lowpass filtered. The conse-
quence is that all frequencies outside of [−ωs/2, ωs/2] in (7.17) are filtered out. The
result is that

Z
[(
L−1[Gaa(s)Gjk(s)Gkℓ(s)]

)⋆]
≈Z

[(
L−1[Gaa(s)Gjk(s)]

)⋆]·Z[(L−1[Gaa(s)Gkℓ(s)]
)⋆] (7.21)

where Gaa(s) is the transfer function of the anti-aliasing filter. This setup is sug-
gested by Pintelon et al. (2008); Pintelon & Schoukens (2012b) which they call a
band-limited setup. Note with this approach, the dynamics of the anti-aliasing fil-
ter become part of the equations. Suppose that each ADC is equipped with an
anti-aliasing filter. The expression for the discrete-time internal variables is then:

w⋆(n) =
(
A(p)

(
I −G(p)

)−1
r(t)

)⋆
(7.22)

where A is a diagonal matrix with the anti-aliasing filter of the kth ADC in the
(k, k)th entry. In the following example it is shown how the dynamics of the anti-
aliasing filters become part of the equations.

Example 7.3 Consider the same setup as in Example 7.1. Suppose that each ADC
is equipped with an anti-aliasing filter. From (7.22) and the steps shown in equations
(7.11) to (7.14) the expression for G23(z) is:

G23(z) =
Z
[(
L−1[A22(s)G23(s)Rect(s)S(s)]

)⋆]
Z
[(
L−1[A33(s)S(s)]

)⋆] (7.23)

where S(s) = ( 1
1−G23(s)G32(s)

)Rect(s), and A22(s) and A33(s) are the anti-aliasing
filters on the 2nd and 3rd ADCs respectively. Because the anti-aliasing filters remove
all the high-frequency content the approximation (7.21) holds. The result is that from
(7.23) the expression for G23(z) is (approximately):

G23(z) =
Z
[(
L−1[A22(s)]

)⋆]
Z
[(
L−1[A33(s)]

)⋆]Z[(L−1[G23(s)]
)⋆]

.

Thus, if the anti-aliasing filters both have the same dynamics, or are calibrated so
that they are the same, then the first term in the expression is simply 1, with the
result that G23(z) is a discrete version of G23(s).

In general, if the anti-aliasing filters are all the same, then their transfer functions
will cancel out of the expression for Gji. For certain open loop or closed loop systems,
this can be relatively simple (called a relative callibration Pintelon & Schoukens
(2012b)). However, for certain dynamic networks this could be difficult.
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7.3.2 Effect of Discretization on the Presence of Delays
A second feature of discretization that is particularly relevant in a dynamic network
setting is the effect of discretization on the feed-through terms of the discrete-time
dynamic network. In Chapters 4 to 6 considerable emphasis was placed on the pres-
ence/absence of algebraic loops in the data generating system. In particular, it was
shown that for the Direct and Joint IO methods the discrete-time data generating
system should not have algebraic loops in order to be able to guarantee consistent
estimates. However, the Two-Stage and Instrumental Variable based methods do not
place this restriction on the discrete-time data generating system. In this section
we show that the inter-sample behavior of the external variables and noise variables
affects the presence of direct feed-through terms in the discrete-time representation
of the continuous-time system.

The main reasoning is based on a result from Laurijsse (2014). The result is that
the direct feed-through term of a discrete-time transfer function which represents
an under lying continuous-time data generating system depends on the inter-sample
behavior of the input to the transfer function. In particular, consider the following
equation:

wk(t) = Fkk(p)rk(t), (7.24)

with the following discrete-time representation:

w⋆
k(n) = F ⋆

kk(q)r
⋆
k(n). (7.25)

Consider the direct feed-through term of F ⋆
kk(z), i.e. f⋆

kk(0). The result of Laurijsse
(2014) says that the whether f⋆

kk(0) is zero or not depends (in part) on the inter-
sample behavior of the continuous-time variable rk(t) in (7.24). Formally, consider
the following proposition is taken from Laurijsse (2014).

Proposition 7.4 Consider a continuous-time causal SISO system of (7.24). Con-
sider the discrete-time representation of the system, (7.25). The direct feed-through
term f⋆

kk(0) is dependent on the inter-sample behavior of r(t):

• For a piece-wise constant (zero-order-hold) r(t),

f⋆
kk(0) = fkk(0).

• For a piece-wise linear (first-order-hold) r(t),

f⋆
kk(0) =

∫ T

0

T − τ

T
fkk(τ)dτ.

• For a band-limited r(t) (i.e. r(t) has no power above the frequency ws =
π
T ),

f⋆
kk(0) =

∫ T

0

sinc
(πτ
T

)
fkk(τ)dτ.�
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For a proof see Laurijsse (2014).
In the previous section, we made the assumption that every internal variable in

the network was exclusively driven by a zero-order-hold signal. Thus, by Proposition
7.4 the delay structure of F (s) in (7.6) is the same as that of F ⋆(z) in (7.10). How-
ever, for a realistic continuous-time data generating system, there will be continuous-
time noise variables vk(t) that excite the system. A continuous-time noise source
will (most likely) not be piece-wise constant. A more realistic assumption is that
the noise is band-limited. As a consequence, by Proposition 7.4 all non-zero entries
of the matrix F ⋆(z) will have direct feed-through terms. Since F ⋆ = (I −G⋆)−1, it
follows that the discrete-time dynamic network will have algebraic loops.

Based on the results of Chapters 4 to 6 the Two-Stage and Instrumental Variable-
based methods do not require that the (discrete-time) data generating system is free
of algebraic loops. Thus these methods can be used to identify a module embedded
in a discrete-time representation of a continous-time dynamic network. From the
results of Chapters 4 and 6 this does mean however, that either at least one external
variable needs to be present, or measurements of extra variables in the network are
required.

The Direct and Joint IO methods cannot be used since they both rely on the
absence of algebraic loops in the discrete-time data generating system. A potential
solution to this problem is proposed in Schoukens & Relan (2014) where a model
structure is chosen with every transfer function parameterized with a delay. The
result is a biased estimate of the transfer function of interest. However, in Schoukens
& Relan (2014) it is shown that this bias can be made small by faster sampling.

7.3.3 Discussion
By the results of Sections 7.3.1 and 7.3.2 the indirect continuous-time identification
approach will work well if (1) ADC equipped with anti-aliasing filters are used to
take the measurements or, if all the dynamics in the network are low pass and a high
sampling rate is used and (2) the Two-Stage Method or an IV based method are
used to identify the module embedded in the discrete-time dynamic network (that
represents the continuous-time dynamic network). In this case we have shown that
the discrete-time dynamics Gji(z) between w⋆

i and w⋆
j are directly related to Gji(s).

Moreover, by using the Two-Stage or IV based methods the algebraic loops present
in the discrete-time network do not pose a problem.

The analysis of Section 7.3.1 was based on a continuous-time dynamic network
with only external variables present (no process noise). Further research is required
to extend the analysis to the more general situation where noise is also exciting
the network. However, the end result is expected to be the same. In the literature
there are quite a few publications that deal with continuous-time noise modeling (see
Pintelon et al. (2006); Larsson et al. (2008); Gillberg & Ljung (2009) for instance).
It is likely that the result we seek is based on the reasoning in these papers.

In certain situations the required assumptions for the indirect continuous-time
identification approach are not satisfied. For instance in applications such as bio-
logical or economic systems it may not be possible to use anti-aliasing filters.
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7.4 DIRECT CONTINUOUS-TIME IDENTIFICATION IN NETWORKS
Similar to the other methods presented in this thesis, here we extend continuous-time
closed-loop identification methods to the case of dynamic networks. In the litera-
ture there are several continuous-time closed-loop methods. Gilson et al. (2008);
Cheng & Wang (2011) present an instrumental variable (IV) method for direct
continuous-time identification. However, they do not allow for the possibility of
sensor noise. In Pintelon et al. (2008) a frequency domain approach is proposed to
identify continuous-time closed-loop systems, with the requirement that an external
reference signal that is periodic is present. In this case they allow for sensor noise
on all variables, except the reference.

In this section the so called Basic CLIVC method of Gilson et al. (2008) is
extended such that it can be used (a) in the presence of sensor noise, (b) for identifi-
cation in interconnection structures more complex than a closed loop. The method
we develop in this section is the continuous-time counterpart to that presented in
Section 6.3 in Chapter 6.

The objective is to identify a transfer function G0
ji(s) embedded in a continuous-

time dynamic network. First, a set of internal variables must be chosen to form
the data set. The internal variable wj is chosen as the ’output’. For now, choose
the set of ’inputs’ as all internal variables that have a direct causal connection to
wj (i.e. choose wk, k ∈ Nj as inputs). The transfer functions to be identified are
parameterized as rational functions in p:

Gjk(p, θ) =
Bjk(p, θ)

Ajk(p, θ)
, (7.26)

for all k ∈ Nj , where Bjk and Ajk are polynomials in p:

Bjk(p, θ) = bjk0 pnb + bjk1 pnb−1 + · · ·+ bjknb
,

Ajk(p, θ) = pna + ajk1 pna−1 + · · ·+ ajkna
.

where the parameters are ajkn , n = 1, . . . , na, k ∈ Nj and bjkn , n = 0, . . . , nb, k ∈ Nj ,
i.e.

θ = [aj1 · · · ajna
bjk1

0 · · · bjk1
nb

· · · bjkd

0 · · · bjkd
nb

]T

where {k1, . . . , kd} = Nj . For notational convenience, we assume all polynomials
Bjk(θ) and Ajk(θ), k ∈ Nj have the same orders, denoted nb, and na respectively.
The internal variable wj can be expressed as

wj(t) =
∑
k∈Nj

Gjk(p)
0wk(t) + vj(t)

=
1

Ă0
j (p)

∑
k∈Nj

B̆0
jk(p)wk(t) + vj(t) (7.27)
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where

Ă0
j (p) =

∏
n∈Nj

A0
jn(p) and

B̆0
jk(p) =

∏
n∈Nj\k

B0
jk(p)A

0
jn(p).

Consequently, the following differential equation holds:

Ă0
j (p)wj(t) =

∑
k∈Nj

B̆0
jk(p)wk(t) + Ă0

j (p)vj(t). (7.28)

Moreover, (7.28) holds at each time instant t = 0, T, 2T, . . .. Recall from (7.3) that
each internal variable is measured at regular time instants t = 0, T, 2T, . . .. Suppose
that the ADCs are not equipped with anti-aliasing filters, i.e. Gaa in (7.3) is 1.
Thus, the differential equation relating the measured values of the internal variables
w̃j and w̃k, k ∈ Nj at times t = 0, T, 2T, . . . is

Ă0
j (p)w̃j(tn) =

∑
k∈Nj

B̆0
jk(p)

(
w̃k(tn)− sk(tn)

)
+ Ă0

j (p)
(
vj(tn) + sj(tn)

)
=
∑
k∈Nj

B̆0
jk(p)w̃k(tn) + v̆j(tn) (7.29)

where tn denotes the time instant t = nT , n = 0, 1, . . . and

v̆j(tn) =
∑
k∈Nj

−B̆0
jk(p)sk(tn) + Ă0

j (p)
(
vj(tn) + sj(tn)

)
. (7.30)

The notation in (7.29) and (7.30) is perhaps a little sloppy because the continuous-
time operator p cannot be applied to a discrete-time sequence. However, we adopt
the notation from (Gilson et al. (2008)). The expression (7.29) can be rearranged
to collect all coefficients on the right-hand side:

w̃
(na)
j (tn) =

∑
k∈Nj

B̆0
jk(p)w̃k(tn) +

(
1− Ă0

j (p)
)
w̃j(tn) + v̆j(tn)

= ϕ̃T
j (tn)θ̆

0 + v̆j(tn) (7.31)

where superscript (m) denotes the mth order derivative, θ̆0 denotes the vector of
coefficients of the data generating system, i.e.

θ̆0 = [ăj
0

1 · · · ăj
0

n̆a
b̆jk1

0

0 · · · b̆jk1
0

n̆b
· · · b̆jkd

0

0 · · · b̆jkd
0

n̆b
]T (7.32)

where {k1, . . . , kd} = Nj , and

ϕ̃T
j (tn)=

[
−w̃

(na−1)
j (tn) · · · −w̃j(tn) w̃

(nb)
k1

(tn) · · · w̃k1(tn) · · · w̃
(nb)
kd

(tn) · · · w̃kd
(tn)

]
(7.33)

where {k1, . . . , kd} = Nj . Note that if θ̆ is known, it is possible to calculate the
value of θ in (7.26).
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The IV estimate of θ̆0 is the solution to

θ̂IV = sol
θ̆

{
1

N

N−1∑
n=0

Z(tn)
(
w̃

(na)
j (tn)− ϕ̃T

j (tn)θ̆
)
= 0

}
, (7.34)

where Z(tn) = [z(nz)(tn) z
(nz−1)(tn) · · · z(tn)]

T and z(tn) is a vector of instrumen-
tal variables. The choice of the instrumental variables is critical with respect to
the consistency of the estimates. In this chapter we consider all external and (mea-
surements of) internal variables, except w̃k, k ∈ Nj ∪ {j} to be potential candidate
instrumental variables. Let Ij and Xj denote the sets of indices of internal and
external variables respectively chosen as instrumental variables. Then,

z(tn) = [rℓ1(tn) · · · rℓn(tn) w̃m1(tn) · · · w̃mn(tn)]
T (7.35)

where Xj = {ℓ1, . . . , ℓn} and Ij = {m1, . . . ,mn}. The parameter estimate is

θ̂IV =
( 1

N

N−1∑
n=0

Z(tn)ϕ̃
T
j (tn)

)−(N−1∑
n=0

Z(tn)w
(na)
j (tn)

)
. (7.36)

An expression of θ̂IV in terms of θ̆0 can be obtained by substituting (7.31) into
(7.36):

θ̂IV = θ̆0 +
( 1
N

N−1∑
n=0

Z(tn)ϕ̃
T
j (tn)

)−1(N−1∑
n=0

Z(t)v̆
(na)
j (tn)

)
. (7.37)

Thus, by starndard IV analysis, θ̂IV → θ̆0 as N → ∞ with probability 1, i.e. it is
consistent, if the following conditions hold:

(a) Ē
[
Z(tn)ϕ̃

T
j (tn)] has full column rank.

(b) Ē[Z(tn)v̆j(tn)] = 0.

It is clear that for Condition (a) to hold, the instrumental variables must be
correlated to the internal variables wk, k ∈ Nj ∪ {j} that make up ϕ̃j(t). Recall
Lemma 6.7 in Chapter 6 where conditions were presented that ensure two internal
variables are correlated.

The second condition, i.e. that Ē[Z(tn)v̆(tn)] = 0 also has a nice interpretation
in terms of paths in a dynamic network. Recall the reasoning in Section 6.3. The
following reasoning is entirely equivalent. Suppose w̃ℓ is chosen as an instrumental
variable. If there is no path from wj to wℓ, then wℓ is not a function of vj . If, in
addition sℓ is uncorrelated to sj and sk, k ∈ Nj , then the condition holds. Thus
this condition places a restriction on the set of candidate instrumental variables.
Note that every external variable is still a candidate instrumental variable, since, by
definition there is no path from vj to any rℓ. The reasoning is summarized in the
following proposition which is the continuous-time counterpart to Proposition 6.8 of
Chapter 6.
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Proposition 7.5 Consider a dynamic network as defined in (7.1). Choose the sets
Ij and Xj of instrumental variables such that Ij ∩ {Nj ∪ {j}} = ∅. Consider the
estimate θ̂IV of (7.34) where nz ≥ ⌈length

(
ϕ̃j(t)

)
/length

(
z(t)

)
⌉. The estimate θ̂IV

is consistent if the following conditions are satisfied:

(a) If vj is present, there is no path from wj to any wℓ, ℓ ∈ Ij

(b) The matrix Ē
[
Z(tn)ϕ̃j(tn)]

]
has full column rank.

(c) Each sensor noise sℓ, ℓ ∈ Ij is uncorrelated to all sk, k ∈ Nj.

(d) If vj is present, then it is uncorrelated to all vm with a path to wj.

(e) The parameterization is flexible enough, i.e. there exists a θ such that Gjk(s,θ)=
Gjk(s), ∀k∈Nj. �
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Figure 7.2: Closed loop data generating system

Example 7.6 Consider the data generating system shown in Fig. 7.2. Suppose
that the objective is to obtain a consistent estimate of G0

32. Thus, {j} = {3}, and
N3 = {2}. Suppose that we choose w̃1 as the instrumental variable (I3 = {1}, and
X3 = ∅). This choice satisfies the requirement {N3 ∪ {3}} ∩ I3 = ∅. Since there is
no path from w3 to w1, Condition (a) of Proposition 7.5 holds.

By Lemma 6.7 the necessary conditions for Condition (b) of Proposition 7.5
to hold are satisfied since there is a path from w1 to both w2 and w3. Thus, if
the remaining conditions of Proposition 7.5 hold, then consistent estimates of G0

jk,
k ∈ Nj are obtained by solving (7.34). �

By the exact same reasoning as in Section 6.5 of Chapter 6 it is possible to
incorporate the predictor input selection methods of Chapter 5 to the situation
presented here. The reasoning is not repeated here.

In order to calculate θ̂IV in (7.34) it is necessary to calculate the derivatives
of wk k ∈ Nj ∪ {j} and the instrumental variables. A standard approach in the
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continuous-time identification literature is to approximate the derivative as (Garnier
et al., 2003)

w
(m)
k (tn) = pnwk(tn) ≈

pm

(p+ λ)ms
wk(tn) (7.38)

where ms ≥ m. The parameter λ determines the bandwidth of the approximation.
Within the bandwidth determined by λ, the filter pm

(p+λ)ms is equal to the derivative
operator. In the literature this is referred to as the state-variable filter method
(Garnier & Wang, 2008; Garnier et al., 2003). Other methods for approximating the
derivative exist (see Garnier et al. (2003) for instance). For many of the methods the
approximation of the derivative improves with increasing sampling rate and low pass
dynamics (Van Hamme et al., 1991; Marelli & Fu, 2010).Thus, it may be beneficial
to use the fastest sampling rate possible when applying the method presented in this
section in practice.
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Figure 7.3: Closed loop data generating system considered in Example 7.7

Example 7.7 Consider the network shown in Figure 7.3. Note that sensor noise
is present on both measured variables, and no process noise is present. This is
not because the methods cannot handle process noise, but simply to be inline with
the reasoning of Section 7.3.1. Both the indirect and direct approaches have been
performed using a data set consisting of 10000 data points sampled at 100Hz using
ADCs not equipped with anti-aliasing filters. In this simulation only a little sensor
noise is added in order to highlight the bias of the estimates. A bode plot of the
dynamics of the continuous-time G32(s) is shown in the bottom plot of Fig. 7.4
in grey. The corresponding discrete-time transfer function G32(z) calculated using
the reasoning in Section 7.3 is shown in the top plot in grey. The difference in
dynamics between the two plots is because of high-frequency content in other parts
of the network. In the top plot the discrete-time IV method of Section 6.3 is used to
estimate G32(z) (i.e. the discrete-time counterpart to the continuous-time method
described in this section). The estimates are shown in blue. In the bottom plot the
continuous-time IV method of this paper is used to estimate G32(s). From the figure
it is clear that the dynamics of G23(z) and G23(s) do not match (due to aliasing)
and so it is not possible to reconstruct a good estimate of G32(s) from G32(z, θ).
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Also note that the estimate of G23(s) is biased. This is because due to the fact that
when the sampling rate is not fast enough compared to the bandwidth of the signal,
the state-variable-filter method for calculating the derivative is not very accurate.

In Figure 7.5 the same experiment is repeated but with a sampling rate of 250Hz.
In this case more sensor noise is added to the system in order to get an idea of
the variances of the two approaches. In this case it both the direct and indirect
continuous-time identification approaches result in consistent estimates of G0

23(s).
�

10
−1

10
0

10
1

10
2

−5

0

5

10

15

20

Frequency (rad/s)

M
a
g
n
it
u
d
e
(d
B
)

Discrete-time Estimate of G0
32(z)

 

 

G0
32

G32(θ)

10
−1

10
0

10
1

10
2

−10

−5

0

5

10

15

20

Frequency (rad/s)

M
a
g
n
it
u
d
e
(d
B
)

Continuous-time Estimate of G0
32(s)

 

 

G0
32

G32(θ)

Figure 7.4: Results of direct and indirect continous-time identification approaches
for the continuous-time system shown in Fig. 7.3 with a sampling frequency of
100Hz.

Remark 7.8 Another advantage of the proposed direct continuous-time identifica-
tion method presented in this chapter is that it is easily modified so that it is possible
to identify non-rational transfer functions, such as transfer functions in

√
s. This

is a useful feature because diffusive phenomena such as heat conduction, viscous
flow, flow through porous media, and transmission lines are modeled more accu-
rately using fractional order models Oldham & Spanier (1974); Caponetto et al.
(2010); Herrmann (2011). There already exist some identification methods to iden-
tify transfer functions in

√
s (Pintelon et al., 2005; Monteyne et al., 2011, 2014).

However, these are currently formulated as open-loop methods, and the presence of
sensor noise is not dealt with in any of these methods. The method presented in
this chapter can be easily extended in order to identify transfer functions that are
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Figure 7.5: Results of direct and indirect continous-time identification approaches
for the continuous-time system shown in Fig. 7.3 with a sampling frequency of
250Hz.

functions of
√
s. Essentially the only difference is to replace the expression for a

derivative in (7.38) with an approximation for a fractional derivative.

7.5 SUMMARY
In the first part of this chapter we investigated the indirect continuous-time identifi-
cation approach. We showed that if anti-aliasing filters and/or fast enough sampling
rate are used to take the measurements then each transfer function in the resulting
discrete-time dynamic network is directly related to its continuous-time counterpart.
Some more work is required in order to obtain an exact expression for the bias, in
addition the analysis presented in this chapter did not account for the presence
of process noise. Secondly we showed that the inter-sample behavior of the exter-
nal variables affects the presence of direct feed-through terms in the discrete-time
representation of the continuous-time data generating system. Consequently, there
are algebraic loops present in the discrete-time representation, which means that
only the Two-Stage or IV-based methods can be used to consistently identify the
discrete-time dynamics. In the second part of the chapter, we considered the ob-
jective of directly obtaining an estimate of Gji(s) embedded in a dynamic network.
We present a direct continuous-time IV method to consistently estimate a transfer
function embedded in a dynamic network.



Chapter 8

CASE STUDY -WELL TEST ANALYSIS

In this chapter the tools that have been developed throughout the thesis are applied
to a practical situation. The idea is to use measurements of pressure and flow rate
in a well bore to estimate the thickness and permeability of an oil reservoir.1

8.1 INTRODUCTION

WELL TEST ANALYSIS is a standard procedure in reservoir engineering to extract
information about dynamic properties and geological features of an under-
ground hydrocarbon reservoir from flow and pressure measurements. In

particular Well Test Analysis is used to obtain estimates of the average permeabil-
ity and reservoir thickness. The test involves producing from a well based on a
sequence of planned wellhead flow rates and continuously recording the pressure
and flow rate at the bottom hole of the well. Conventionally, in the analysis phase
either the step or impulse response of the reservoir is calculated by deconvolution
(Gringarten, 2008). Then the impulse response (or step response) is used to estimate
the physical parameters of the reservoir (Gringarten, 2008).

Mansoori et al. (2013) proposed a new framework for the Well Test Analysis
in which first a dynamical model is identified based on the measurements by using
suitable system identification techniques. Then the identified model is used to esti-
mate the physical parameters of the reservoir by comparing the estimated transfer
functions to a physics based model.

The chapter proceeds as follows. In Section 8.2 it is shown how a well and
reservoir can be modeled using the procedure suggested in Chapter 2 using bilaterally
coupled systems. In Section 8.3 the EIV instrumental variable method of Section
6.3 is applied to the data generating system considered here in order to identify the
dynamics of the reservoir.

1The material presented in this chapter is based on joint work with Mehdi Mansoori. The results
contained in this chapter are based on Mansoori et al. (2014)
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8.2 PHYSICS BASEDMODELING OF THE PRODUCTION SYSTEM
We consider a single vertical well connected to a homogeneous reservoir as shown
in Figure 8.1. The production system is comprised of a convective flow in the well
bore and diffusive flow in the reservoir that interact with each other at the bottom
hole of the well.

Figure 8.1: A cylindrical homogeneous reservoir with a vertical well. This figure was
created by Mehdi Mansoori (Mansoori et al., 2014)

The reservoir and well bore shown in Figure 8.1 are modeled as two bilaterally
coupled subsystems. First the equations for the well bore and then the reservoir
are presented. The following derivation of the equations for the wellbore and the
reservoir was done by Mehdi Mansoori (Mansoori et al., 2014).

8.2.1 Modeling theWell Bore

Consider modeling the well bore. The flow in the well bore is governed by the so
called Water-Hammer equations if the fluid flow velocity is much smaller that the
velocity of sound in the fluid (Chaudhry, 1987). Thus the equations governing the
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flow rate, q(z, t), and pressure, p(z, t), at depth z and time t are
ρa2

A

∂q(z, t)

∂z
+

∂p(z, t)

∂t
= 0, (8.1)

A

ρ

∂p(z, t)

∂z
+

∂q(z, t)

∂t
+Rq(z, t)−Ag = 0, (8.2)

where g (9.81 m/s−2) is the acceleration due to gravity; A (m2) is the cross sec-
tional area of the well; a2 = K/[ρ+KDρ(eE)−1] (m/s) is the velocity of the
Water-Hammer wave; R = 32ν/D2 (s−1) is the laminar flow friction effect;, and
the remaining parameters are defined in Table 8.1.

Table 8.1: Well bore and Reservoir Properties
Model Parameters Parameter Values
Reservoir boundary, (re) 3000 m
Well radius, (rw) 0.1 m
Reservoir height, (H) 50 m
Pipe internal diameter, (D) 0.1 m
pipe wall thickness,(e) 16 × 10−3m
Well length, ( L) 2000 m
Permeability of rock, (k) 2× 10−13m2

Porosity of rock, (ϕ) 0.2
Viscosity of fluid, (µ) 0.01 Pa.s
Total compressibility, (Ct) 7.25×10−9 Pa−1

bulk modulus elasticity of the fluid, (K) 1.5×109 Pa
kinematic viscosity of the fluid,(ν) 1.11×10−5 m2 s−1

Density of fluid, (ρ) 900 Kgm−3

Young’s Modulus of elasticity, (E) 200×109Pa

Solving the equations in the Laplace domain leads to a hyperbolic equation that
needs two boundary conditions. At each side of the well bore only one of the vari-
ables can be the boundary condition, therefore in accordance with the well testing
configuration the flow rate at the well head and the pressure at the bottom hole
(denoted qwh(t) and pbh(t) respectively) are taken as the boundary conditions. This
results in the following equations:[

Pwh(s)
Qbh(s)

]
=

[
W11 W12

W21 W22

] [
Qwh(s)
Pbh(s)

]
, (8.3)

where Pwh(s) and Pbh(s) are the Laplace transforms of the pressure at the well head
and bottom hole respectively, Qwh(s) and Qbh(s) and the Laplace transforms of the
flow rate at the well head and bottom hole respectively, and

W11 =
ρµa2

sA
tanhµL W12 =

1

coshµL

W21 =
1

coshµL
W22 = − sA

ρµa2
tanhµL

This is the model of the well.
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8.2.2 Modeling the Reservoir
Now consider modeling the reservoir. A reservoir is porous rock filled with fluid.
The reservoir is modeled as a cylinder, with fluid flowing radially toward the well
bore. The outer edge of the reservoir is called the outer boundary. The intersection
of the well bore and the reservoir is called the sand face. In this situation, the radial
flow rate q(r, t) and pressure p(r, t) in the reservoir at radial distance r from the
symmetry axis, satisfy the diffusivity equation and Darcy’s Law

1

r

∂

∂r
r
∂p(r, t)

∂r
=

1

η

∂p(r, t)

∂t
(8.4)

q(r, t) = −2πrkh

µ

∂p(r, t)(t)

∂r
(8.5)

with η = ϕµct/k (s−1) is the hydraulic diffusivity; and the remaining parameters
are defined in Table 8.1.

Solution of the elliptic diffusivity equation in the Laplace domain requires two
boundary conditions which are chosen to be the flow rate at the sand face and the
pressure at the outer boundary (denoted qsf (t) and po(t) respectively). This leads
to [

Psf (s)
Qo(s)

]
=

[
R11 R12

R21 R22

] [
Qsf (s)
Po(s)

]
(8.6)

where

R11 =
µ

2πkhrw
√

s
η

I0eK0w − I0wK0e

I0eK1w + I1wK0e
, (8.7)

R12 =
I0wK1w + I1wK0w

I0eK1w + I1wK0e
, (8.8)

R21 =
re
rw

I1eK0e − I0eK1e

I0eK1w + I1wK0e
, (8.9)

R22 =
2πkh

µ
re

√
s

η

I1wK1e − I1eK1w

I0eK1w + I1wK0e
. (8.10)

where I and K are modified Bessel functions of the first and second kind and Iij =

Ii(rj
√

s
η ) and Kij = Ki(rj

√
s
η ).

The complete production system model is obtained by concatenating of the bot-
tom hole side of the well bore model to the sand face side of the reservoir model by
coupling qbh(t) to qsf (t) and psf (t) to pbh(t) as shown in Figure 8.2.

Recall that the purpose of the well test analysis is to obtain estimates of the
average permeability, k, and the reservoir thickness, h. From a well test analysis
point of view, the parameters are conventionally estimated from R11. Thus, we are
interested in obtaining an estimate of R11.

To this end, we isolate the parts of the network shown in Fig. 8.2 that are
relevant for the identification of R11 into the structure that is given in Fig. 8.3. We
have removed R12 from the network because it has a very small gain.
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Figure 8.2: Bilaterally coupled reservoir and well bore model.

8.2.3 Data generating system
Formulating the corresponding system identification problem for the well test anal-
ysis requires using measurement devices in the correct positions in the model. In a
typical production setup, (see Figure 8.1), the wellhead flow rate and the bottom
hole pressure and flow rate are measured. Both process noise and sensor noise are
present in the data. The process noise is due to phenomena such as turbulence,
sudden well bore reservoir condition change, two phase flow occurrence, etc. It is
assumed that the well head measurement does not have process noise. In Figure 8.3
the model is shown with all measurement devices and noise terms.
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Figure 8.3: Bilaterally coupled reservoir/well bore with measurements.

The objective is to estimate the transfer function R11 shown in Figure 8.3. By
estimating this transfer function, it is possible to infer the average permeability and
thickness of the reservoir at the well location based on the expression (8.7).

Because there is sensor noise present in the data generating system, one of the
methods of Chapter 6 must be used. Because the flow rate at the well head, qwh is
also measured in addition to the bottom hole pressure and flow rate (pbh and qbh)
respectively), this variable can be used as an instrumental variable. From Figure
8.3, it is clear that there are no paths from vpbh

to the instrumental variable qwh.
Consequently, the method of Section 6.3 can be used to consistently identify the
transfer function R11 as shown in Figure 8.3.

Then, this estimate of R11 is used for physical parameter estimation by comparing
it with the physics based model of the reservoir, (8.7). Let β = [k h] denote a vector
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of the physical parameters in R11 that are to be estimated. The identified model
R11(z, θ) and the physics based model R11(s, β) can be compared in the frequency
domain:

R11(ω,β) ≈ R11(e
jω, θ) (8.11)

The difference of the models can be evaluated in a frequency range of interest
[ω0, ωL]. Then the physical parameters can be estimated as

β=arg min
β

1

L

L∑
l=1

∥∥R11(ωl,β)−R11(e
jωl, θ)

∥∥W (ωl) (8.12)

where W (ωl) is a user defined weighting function.

8.3 RESULTS AND DISCUSSION
To simulate the system, the discrete approximation of transfer functions in (8.3) and
(8.6) are used. The system is excited with a PRBS signal with the clock parameter
of 1000 seconds; i.e. the surface choke to be in one state for at least for this period
of time. Practically it is not feasible to change the surface choke setting too often.
White noise signals are added to qwh, qbh and pbh with SNR of 40, 30 and 35. The
SNR of qbh is conventionally considered to be the lowest Von Schroeter et al. (2004).
Low pass frequency noise is added to qbh and pbh. A reasonable duration for a well
test is one day. The sampling time is Ts = 1 second. Thus a reasonable data length
is N = 50000. The physical parameters for the well bore and reservoir are listed in
table 8.1. Both the non-parametric and IV methods are applied to the simulated
data set. The results are shown in Fig. 8.4.

The high variance of the non-parametric estimate at high frequency is due to
the fact that the system is not excited at these frequencies. For the IV estimate the
data was resampled by a factor of 9 in order to remove the higher frequency content
from the data.

The reservoir module R11 has a diffusive behavior which results in a low pass
frequency response. The identified model captures this behavior for ω = [1×10−4−
1× 10−1] rad/sec. The estimation results for the physical parameters, k and h, are
listed in Table 8.2.

Table 8.2: Single Parameter Estimation
Parameters True Values Estimated Values
Permeability, (k) 200 182.3 mD
Reservoir thickness. (h) 50 45.4 m

8.4 SUMMARY
In this chapter a first principles model of a vertical well and cylindrical reservoir
was developed. The objective is to obtain an estimate of the reservoir thickness
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Figure 8.4: Parametric and non-parametric estimates of R11

and permeability. From the first principles model, it appears that if an estimate of
the transfer function R11 can be obtained, the reservoir thickness and permeability
can be estimated. Thus the methods developed in this thesis were applied in order
to obtain an estimate of the transfer function R11. Since measurement noise was
supposed to be present in the data, the methods of Chapter 6 were used. Using
these methods a reasonable estimate of the parameters of interest were obtained.





Chapter 9

CONCLUSIONS

In this chapter some concluding remarks are made regarding the research presented
in this thesis. In addition some thoughts for future work are suggested.

9.1 SUMMARY OF THE THESIS

IN THIS THESIS we have attempted to lay the foundation for identification in dynamic
networks. We have shown that many physical phenomena can be modeled as
dynamic networks. Moreover, we have shown that there is a strong motivation to

identify particular transfer functions embedded in the dynamic networks. Examples
include distributed control, power systems, and reservoir engineering.

In this thesis closed-loop identification tools are extended so that they can be
used to consistently identify a particular transfer function that is embedded in a
dynamic network. Various types of conditions have been considered such as

• presence and correlation of process noise (all chapters),

• presence of external variables that can be manipulated by the experimenter
(Chapter 4),

• presence of known dynamics in the network, such as known controllers (Chap-
ter 4),

• measurability/availability of the internal variables (Chapter 5), and

• presence of measurement noise (Chapter 6).

The concept of identifying a particular module embedded in a dynamic network
has opened the door to a vast number of possibilities of estimating physical param-
eters of complex systems. The case presented in Chapter 8 is one example. In these
types of applications the entire identification procedure becomes like a sensor, i.e.
the objective of the identification procedure is a tool to infer the value of a physical
parameter that is not measurable (such as the thickness of an oil reservoir). Often
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the physics based models that are used in these types of applications are continuous-
time in nature. The relationship between a continuous-time data generating system
and a discrete-time representation thereof has been investigated in Chapter 7.

This thesis is only a first step in developing a theory for the identification in
dynamic networks. There are still many different aspects where more work needs to
be done in order to form a complete picture of identification in dynamic networks.

9.2 SUGGESTIONS FOR FUTUREWORK
In this section we present some areas where further work is required.

9.2.1 Conditions on the Informativity of the Data
In practice there are often constraints as to how exciting a signal can be. For instance
it may not be possible to continuously open and close a value on a pipe, or power
system operators do not like injecting large disturbances into the grid for fear of
instability. Throughout this thesis a rather severe condition has been imposed on
the excitation on the data. For the majority of the thesis (with the exception of some
of the results of Chapter 6) the condition on the data was that the power spectral
density of the predictor inputs should be positive definite for all ω ∈ (−π, π]. It
is well known that this is not a necessary condition in order to obtain consistent
estimates (Gevers et al., 2009a,b). In particular for the Two-Stage Method this is a
very severe condition.

It would be very useful to determine what the minimum conditions on the data
should be. This will require an in depth investigation into the persistence of excita-
tion of multi-variable signals.

9.2.2 Structure Detection
Another tantalizing objective is to be able to detect the structure of a dynamic
network, given only a set of measurements obtained from the system. This could lead
to new insights in many different fields of science including biology and chemistry.
Being able to detect the causal relationships between a set of measured variables
could give a biologist insight into the process that a cell uses ot transforms sugar
into energy. Although this objective is not specifically dealt with in this thesis, tools
have been developed that could be used in an attempt to detect the structure of a
dynamic network. In fact, many of the propositions regarding the identification of
a module in a dynamic network can be straightforwardly extended to the structure
detection problem. This is because structure detection is simply the consistent
estimation of transfer functions that are 0.

The difficulty lies in the numerical implementation of the results of the propo-
sitions. Special parameterizations may have to be considered, and regularization
terms may need to be added to the objective function in order to attract certain
parameters to exactly zero. This is an active field of research with many different
options such as LASSO, Ridge Regression, and Sparseva to name a few.
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9.2.3 Variance Expressions for the Obtained Estimates
In this thesis we have exclusively focused on the consistency of the estimated transfer
functions. However, the variance of the estimate is equally important. Some work
has already been done on this topic (Wahlberg et al., 2009; Everitt et al., 2013, 2014;
Gunes et al., 2014). In these papers it is shown that using extra measurements can
reduce the variance of the estimated transfer function. In Wahlberg et al. (2009);
Everitt et al. (2013, 2014) only a cascaded network is considered. However, in
Gunes et al. (2014) it is shown that the results hold for the case of more complex
interconnection structures as well. All of the above mentioned papers consider a
framework with only sensor noise present, and no process noise. These results should
be extended to the more general framework considered in this thesis.

9.2.4 Checkability of The Conditions
Another area where further study would be interesting is in the checkability of the
conditions. Many of the propositions in this thesis state that consistent estimates
of G0

ji are possible if vj is uncorrelated to all other noise sources, or if there is no
sensor noise, or if there are no confounding variables, etc. However, given a data
set, it is hard to know if these conditions hold. It would be very useful to have a
test to determine if there is (significant) measurement noise present, or if there are
confounding variables present.

9.2.5 Extension to Non-linear Systems
In this thesis only linear data generating systems are considered. Moving to non-
linear systems will greatly increase the number of potential applications of identifi-
cation in dynamic networks. In addition, it could result in more accurate estimates.

As a first step it would be interesting to consider that case where some blocks
are allowed to be non-linear, however, the module of interest is still linear. Which
tools could be used in order to consistently estimate the linear dynamics embedded
in a non-linear dynamic network? For a closed-loop system it is possible to show
that even when the feedback is nonlinear, it is still possible to consistently identify
a linear plant using standard identification tools (Pintelon & Schoukens, 2012a,
2013). It would be very interesting and relevant to extend this result to the case of
identification in dynamic networks.

A second incremental step that could be taken is to move to networks of inter-
connected linear parameter varying systems. This is a situation that occurs when
modeling physical systems where temperature acts as a modulator for various mod-
ules embedded in a network.

It is clear that much work still needs to be done. However, the identification in
networks holds many opportunities for interesting contributions in many areas of
science.
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SUMMARY

System Identification in Dyanmic Networks
A.G. Dankers

Systems in engineering such as power systems, telecommunication systems, and
distributed control systems are becoming more complex and interconnected. Many
of these systems are part of the foundation of modern society and their seamless
operation is paramount. However, the increasing complexity and size of the systems
poses real engineering challenges (in maintaining stability of the electrical power grid,
increasing data throughput of telecommunication networks, etc.). These systems
cannot be operated, designed, and maintained without the help of models.

Tools from system identification are well suited to construct models using mea-
surements obtained from a system. However, the field of system identification is
primarily focused on identifying open and closed-loop systems. Recently, there has
been a move to considering more complex interconnection structures. The literature
on identification and dynamic networks can be split into two categories based on
whether the interconnection structure of the network is assumed to be known or
not. In the latter the objective is to detect the topology of the network, whereas in
the former the objective is to identify the dynamical transfers in the network.

A variety of approaches have been presented in the literature in order to detect
the topology of a network based on a given data set. The main features that these
approaches have in common is that all internal variables in the network are assumed
to be known, each internal variable is driven by an independent stochastic variable,
and often is it assumed that all transfer functions in the network are strictly proper.
Under these conditions it is shown that topology detection is possible.

The literature on identification of dynamic networks with known interconnection
structure is dominated by identification of spatially distributed systems (systems
where each node is connected only to its direct neighbors). In this literature there
is a strong emphasis on developing numerically fast algorithms.

In this thesis our approach is to use the known interconnection structure in
order to relax the assumptions imposed on the data generating system such as the
requirement that each variable is measured, and that each variable is driven by
an independent noise source. In addition, we do not limit the interconnection to
a spatially distributed topology. Our approach is to focus on identifying a single
module embedded in the network, resulting in a local approach where only a small
number of variables need to be measured in order to identify the object of interest.
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The resulting algorithms can be applied to small to medium scale networks, or to
large networks with sparse interconnection structures. Our approach is based on
extending closed-loop system identification methods to develop to the situation of
dynamic networks. One advantage of this approach is that we suppose that both
noise and known user defined signals (called reference signals in the closed loop
literature) can drive or excite the network. The user defined signals can be very
beneficial since they can be used to further relax the assumptions made about the
noise in the system.

The main objective of this thesis is to investigate under which conditions it is
possible to consistently identify a module embedded in a dynamic network. The
thesis is structured in such a way that the results become more applicable to real
systems as the chapters progress.

At first several closed-loop prediction error methods, namely the Direct, Two
Stage, and Joint IO methods, are extended to the situation of dynamic networks.
We show that for the Direct Method consistent estimates of a module embedded
in a dynamic network are possible if there is a delay in every loop; all variables
with a direct connection to the output are measured, the process noise affecting the
output is uncorrelated to the other noise variables in the network; the process noise is
exactly modeled; and there is no sensor noise present. Clearly, there are quite a few
conditions that need to be satisfied, and some of the conditions are not checkable.
The Two-Stage method makes explicit use of external variables that are present in
the network. This leads to less conditions: using the Two Stage method consistent
estimates are possible if there are external variables present in the network that are
informative and every variable with a direct connection to the output is measured.

Subsequently, we analyze the flexibility that exists in which selection of measured
variables leads to consistent identification of the module of interest. We derive
conditions that the set of measured variables need to satisfy in order to guarantee
that a particular module of interest can be estimated consistently. The conditions
can be used to determine if is it possible to avoid measuring variables that are
expensive, difficult or unsafe to measure. Or if sensors are expensive, then these
conditions can be used to design a sensor placement scheme with a small number of
sensors.

Subsequently, methods are developed such that consistent estimates are possible
even in the situation where sensor noise is present in the measurements. The methods
are based on a combination of the Instrumental Variable and Direct Method style of
reasoning. This is a significant step in rendering the methods more practical because
internal variables are always measured using sensors, and sensors inherently do not
make perfect measurements.

Finally, a preliminary analysis is made on how the proposed methods work on
continuous-time systems. This is an important step because many systems in prac-
tice are inherently of a continuous-time nature.

There are still many interesting challenges ahead. Among other things, the
analysis of continuous time systems needs to be completed, the variance of the
methods needs to analyzed, and the effects of nonlinearities in the systems needs to
be investigated.



SAMENVATTING

Systeemidentificatie in Dynamische Netwerken
A.G. Dankers

Veel technologische systemen zoals elektrische netwerken, telecommunicatiesys-
temen, en gedistribueerde regelsystemen, worden gekenmerkt door groeiende com-
plexiteit en daarnaast zijn deze systemen in toenemende mate onderling verbonden.
De moderne maatschappij is in sterke mate afhankelijk van deze systemen en daarom
is het van groot belang dat deze systemen zo probleemloos mogelijk functioneren.
De toenemende complexiteit en omvang van deze systemen leiden tot grote technol-
ogische uitdagingen (bijvoorbeeld in het handhaven van de stabiliteit van elektrische
netwerken, en het verwerken van de sterk groeiende datastromen in telecommuni-
catiesystemen). Het gebruik van (wiskundige) modellen is van intrinsiek belang voor
het ontwerp, gebruik en onderhoud van deze systemen.

Methoden uit de systeemidentificatie zijn uitermate geschikt om modellen te
ontwikkelen op basis van meetdata van een systeem. Dit vakgebied richt zich echter
voornamelijk op het identificeren van open en gesloten lus systemen. In de laatste
jaren zien we een trend om de aandacht ook te richten op meer complexe en onderling
gekoppelde structuren. De literatuur over identificatie en dynamische netwerken kan
in twee categorieën verdeeld worden, gebaseerd op exacte/ontbrekende kennis over
de structuur van het netwerk. In het laatste geval is het doel om de topologie van het
netwerk te bepalen, terwijl men zich in de eerste situatie richt op het identificeren
van dynamische overdrachtsfuncties in het netwerk.

In de literatuur zijn er een reeks benaderingen voor topologiedetectie van netwer-
ken. De gemeenschappelijke kenmerken van deze benaderingen zijn dat alle variabe-
len in het netwerk bekend worden verondersteld, dat elke variabele gestuurd wordt
door een onafhankelijke stochastische variabele, en in de meeste gevallen dat alle
overdracht functies causaal zijn. Onder deze aannamen is topologiedetectie mo-
gelijk.

De literatuur over de identificatie van dynamische netwerken met een bekende
verbindingsstructuur wordt gedomineerd door ruimtelijk verdeelde systemen (sys-
temen waar elke knooppunt alleen verbonden is met zijn directe buren). In deze
literatuur ligt een nadruk op het ontwikkelen van efficiënte numerieke algoritmes.

In dit proefschrift wordt een benadering voorgesteld waarbij exacte kennis van de
verbindingsstructuur wordt gebruikt om een aantal aannamen te versoepelen, zoals
de eis dat elke variabele gemeten wordt en aangedreven wordt door een onafhankeli-
jke ruisbron. Bovendien word de verbindingsstructuur niet beperkt tot een ruimtelijk
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verdeelde topologie. In onze benadering wordt de nadruk gelegd op het identificeren
van één enkele module in het netwerk, met als resultaat een lokale aanpak waarbij
slechts een klein aantal variabelen gemeten hoeft te worden. De resulterende algo-
ritmes kunnen toegepast worden op kleine tot middelgrote netwerken, dan wel op
grote netwerken met een ijle verbindingsstructuur. De benadering is gebaseerd op
het uitbreiden van gesloten lus identificatiemethoden naar de situatie van dynamis-
che netwerken. Een voordeel van deze benadering is dat we veronderstellen dat
zowel ruissignalen als door de gebruiker gedefinieerde signalen (referentiesignalen)
het netwerk kunnen aandrijven. Een voordeel van deze signalen is dat ze kunnen
gebruikt worden om de aannamen over de ruis in het systeem te versoepelen.

Het doel van dit proefschrift is om te onderzoeken onder welke omstandigheden
het mogelijk is om een module in een dynamisch netwerk op een consistente manier
te identificeren.

Allereerst worden verschillende gesloten lus voorspellingsfout (prediction error)-
methoden uitgebreid om toegepast te kunnen worden op dynamische netwerken,
waarbij met name de direct, two-stage, en joint io methoden bekeken worden. We
laten zien dat met de direct methode consistente schattingen van modules in het
dynamisch netwerk mogelijk zijn, indien er vertraging is in elke lus; alle variabelen
met een directe verbinding met de uitgang gemeten worden; er geen correlatie is
tussen de procesruis van de uitgang en de andere ruisvariabelen in het netwerk; de
procesruis exact gemodelleerd wordt; en er geen sensorruis aanwezig is. Er zijn dus
veel condities die vervuld moeten worden, en sommige van deze condities kunnen niet
gecontroleerd worden. De two-stage methode maakt expliciet gebruik van de externe
variabelen die aanwezig zijn in het netwerk. Dit resulteert in een kleiner aantal
condities. Het gebruik van de two-stage methode leidt tot consistente schattingen
als er externe variabelen aanwezig zijn die informatief zijn, en elke variabele met een
directe verbinding met de uitgang gemeten wordt.

Vervolgens analyseren wij de flexibiliteit die bestaat in de keuze van gemeten
variabelen, en ontwikkelen condities waaraan een selectie van metingen moet vol-
doen om te garanderen dat de betreffende module consistent geschat kan worden.
Deze condities kunnen worden gebruikt om te bepalen of het mogelijk is situaties
te vermijden, waarin metingen duur, moeilijk of onveilig zijn. In de situatie waarin
sensoren duur zijn geven deze condities de mogelijkheid om de sensoren zodanig te
plaatsen dat zo weinig mogelijk sensoren nodig zijn.

In de volgende stap worden methoden ontwikkeld die consistente schattingen
ook mogelijk maken in de situatie waarbij wel sensorruis aanwezig is in de metingen.
Dit is een belangrijke uitbreiding om de aanpak meer praktisch toepasbaar te maken
omdat interne variabelen altijd met sensoren gemeten worden, waarbij in de praktijk
altijd sprake is van meetfouten.

Ten slotte wordt een voorlopige analyse gemaakt van de toepassing van de
voorgestelde methoden op continue tijd systemen. Dit is een belangrijk stap omdat
in de praktijk veel systemen van nature continue tijd systemen zijn.

Er blijven echter nog veel uitdagingen. Onder andere moet de analyse voor
continue tijd systemen nog verder ontwikkeld worden, moet de variantie van de
resulterende schattingen worden geanalyseerd, en moeten de effecten van niet lineaire
modules in het netwerk onderzocht worden.
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