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Abstract. Fluorescencein situ hybridization allows the enumeration of chromosomal
abnormalities in interphase cell nuclei. This process is called dot counting. To estimate
the distribution of chromosomes per cell, a large number of cells have to be analysed,
particularly when the frequency of aberrant cells is low. Automation of dot counting is
desirable because manual counting is tedious, fatiguing, and time consuming.
We have developed a completely automated fluorescence microscope system that counts
fluorescent hybridization dots for one probe in interphase cell nuclei. This system
works with two fluorescent dyes—one for the DNA hybridization dots and one for the
cell nucleus. A fully automated scanning procedure has been used for the image
acquisition. After an image is acquired it has to be analysed in order to find the nuclei
and to detect the dots. This article focuses upon the dot detection procedure. Three
different algorithms are presented. The problems of ‘overlapping’ dots and split dots
are discussed. The automated dot counter has been tested on a number of normal
specimens where DAPI was used for the nucleus counter stain and a centromeric probe
was used to mark the chromosome 12. The slides contained lymphocytes from cultured
blood. The performance of the different algorithms has been evaluated and compared
with manually obtained results. The automated counting results approximate the results
of manual counting.

Keywords: fluorescencein situ hybridization, chromosome enumeration, dot counting,
overlapping dots, image analysis

1. Introduction

Fluorescencein situ hybridization (FISH) techniques in
interphase cell nuclei have great potential both in research
and in clinical applications such as minimal residual disease
and early relapse detection in leukemias. FISH has made
it possible to selectively stain various DNA sequences in
interphase cell nuclei. The sequences may be chosen so as
to detect specific abnormalities or to facilitate the process of
identification and quantification of numerical and structural
chromosomal abnormalities (Eastmond and Pinkel 1989,
Hopmanet al 1991, Nederlofet al 1989).

Fluorescence has a high sensitivity and allows the use
of multiple colors to detect multiple targets simultaneously.
The target signals in interphase cells become visible as
colored dots. Enumeration of these signals is called dot
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counting. Chromosome enumeration requires the analysis
of a large number of cells to determine the distribution
of chromosomes per cell and to be able to detect small
aberrant sub-populations. The number of cells that must
be analysed depends on the frequency of aberrant cells and
the count accuracy. In practical situations this can vary
from only a few cells to more then 10 000 cells (Carothers
1994, Castleman and White 1995, Kibbelaaret al 1993).
Current manual counting procedures leave much to be
desired including the need to work in a dark environment
and the fatiguing nature of the work. An automated dot
counting system is a practical requirement.

We have developed a completely automated microscope
system that counts fluorescent hybridization dots for one
probe in interphase cell nuclei. Only two colors can
be used—one for the counter stain and one to make the
chromosome visible. A complete description is presented
in (Netten et al 1997). A critical part of the system is

0966-9051/96/020093+14$19.50c© 1996 IOP Publishing Ltd 93



H Nettenet al

the dot detection algorithm. Previous results showed that
an average of 11% of the cells are counted incorrectly
(Nettenet al 1997). About 6% of the cells that are counted
incorrectly are caused by the dot detection algorithm.
Missed dots, false dots, touching dots and split dots have a
significant influence on the count accuracy of the system.
This paper presents a more detailed discussion about the dot
detection algorithm. Different image processing algorithms
have been developed and evaluated.

The paper is organized as follows. Section 2 gives
an overview of the system and hardware and scanning
procedures are described. Section 3 describes the image
processing and image analysis procedures used in the dot
counter. The problem of overlapping FISH dots in 2-D
images of interphase nuclei is discussed in section 4. We
have evaluated the dot detection algorithms using a set of
352 images acquired with the automated scanning system.
The experimental results are given in section 5. Finally,
in section 6, we draw some conclusions and discuss the
results.

2. Materials and methods

We have developed a completely automated microscope
system that counts FISH dots of a single probe in counter-
stained interphase cell nuclei. This section describes the
different components that are necessary for the image
acquisition. An overview of the instrumentation is given,
along with how the actual screening is implemented and
what kind of specimens are used to test the system.

2.1. Biological material

The automated dot counter has been tested on a number of
slides where DAPI is used for the nucleus counter stain and
a centromeric 12 probe (CEP 12, Vysis, Downer’s Grove, Il,
USA) is used to mark the desired chromosomes. The probe
is labeled with Spectrum Orange†. The samples have been
provided by Vysis and contain lymphocytes from cultured
blood. All samples are normal specimens.

2.2. Screening procedure

The system is built around a Zeiss Axioskop microscope.
The microscope is fully automated. Focus, scanning
stage, excitation filter wheels and shutter (Ludl Electronic
Products Ltd) are controlled by computer. A Macintosh
Quadra 840 AV computer controls all hardware and takes
care of the image processing. A KAF 1400 Photometrics
Series 200 camera (Aikenset al 1990) is used to digitize
the microscope images. It is a slow scan (500 kHz),
cooled (−42◦C) CCD camera. The CCD chip contains
1317× 1035 pixels with a size of 6.8 × 6.8µm2. The

† Spectrum Orange is a trademark of Vysis Corporation, Downer’s Grove,
Illinois, USA.

performance of the camera in terms of the signal-to-noise
ratio (SNR) is excellent. Due to a slow readout rate and
cooling, the camera is photon limited. The SNR of a
single pixel is limited only by photon statistics. Other noise
sources are not significant (Mullikinet al 1994). The image
SNR is limited by the variation of the gain and offset of
each pixel. The maximum image SNR is 30 dB (Nettenet
al 1994). It is possible to correct for the pixel variation
using flat field correction. Because flat field correction is
a time consuming operation and the SNR is adequate, we
have not used this technique.

Screening a slide consists of a number of steps that are
repeated until a preset number of nuclei is analysed. This
is called the scanning cycle. Each field of view (FOV)
is focused automatically after which an image is acquired.
When the acquisition is finished, the image is processed
and the stage is moved to the next FOV.

The auto-focusing algorithm is based on a derivative
filter (Boddekeet al 1994). A digital filter [1,0,−1] is
applied in thex direction of the image. The ‘energy’ in
the resulting image is computed. This is called the focus
function and it has to be maximized with respect to thez

position for the image to be in focus. A sequence of images
is acquired at differentz positions to find that maximum.

We have used a 40×/1.3 objective (Plan NEOFLUAR,
Zeiss) in combination with 2×2 binning for the acquisition
of images after the focusing process. Binning is the process
of combining adjacent pixels on the CCD into one larger
pixel. This is used to increase the signal amplitude and to
reduce the spatial sampling frequency. The imaging setup
results in a spatial sampling frequency of 2.9 pixels/µm.
The choice of the objective is mainly determined by the
high numerical aperture. A high numerical aperture has
the advantage that the integration time can be relatively
short. The image brightness is commonly assumed to be
proportional to the fourth power of the NA (Inoué 1986).
We use an integration time of 1.0 s.

The two dyes are acquired simultaneously into one
monochromeimage. We have used a dual band-pass filter
block, both emission and excitation, that is suitable for
the two dyes, DAPI counter stain and Spectrum Orange.
The dual band-pass filter block maps the blue fluorescence
(DAPI, peak emission spectrumλ = 452 nm) into the
middle gray values (∼ 20% at full dynamic range) and
the red signal (Spectrum Orange, peak emission spectrum
λ = 615 nm) into the light gray values (∼ 60% at full
dynamic range). Through the judicious use of the color
filters, the image processing is based on brightness contrast
and not on color information. A typical image is shown in
figure 1.

The whole system is embedded in a ‘user-friendly’ user-
interface to control the microscope, to adjust parameters,
and to evaluate the results. Before the system starts
screening, an operator has to define a scan area on the
slide. The area is scanned following a meander pattern.
After a preset number of nuclei have been analysed, the
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Figure 1. Double stained cells (DAPI + Spectrum Orange). These images are 143 by 165 pixels sampled at 2.9 pixels/µm. (a)
Two-color FISH acquired in a true, multi-filter color image. (b) Same FOV acquired in one monochrome image. The bright dots are
easy to distinguish from the gray nuclei.

system stops, and the result can be interactively verified
and corrected. The individual nuclei are automatically
relocated under the microscope. Visual inspection can
be done either using the monitor display or through the
microscope. The output of the dot counter can be a dot
histogram, a confusion matrix, and/or a gallery of images
of every cell that has been analysed (Nettenet al 1997).

3. Image analysis

After the image acquisition, each image is processed to
determine the number of dots per nucleus. The image
analysis consists of finding the nuclei in the image,
detecting the dots within each nuclei, counting the number
of dots per nucleus and updating the results including a dot
histogram for the entire specimen. The algorithm must be
accurate. The number of false positives and false negatives
must be as low as possible. On the other hand the algorithm
must be fast. In a practical situation more then 70 MBytes
of data have to be processed to analyse 500 nuclei.

The algorithm can be divided into four steps: (1) find
a region that contains a nucleus, (2) find the nucleus in the
region, (3) find the dots in nucleus, and (4) count the dots
and update the results. This paper focuses on the third step,
the dot detection procedure. Three different approaches
are presented. The nucleus segmentation (steps 1 and 2)
is discussed only briefly. A more detailed discussion is
presented in Nettenet al (1997).

3.1. Cell detection

3.1.1. Find region of interest (ROI). The goal of this
first step is to find those regions that contain cell nuclei.
To speed up the algorithm the original image is first sub-
sampled by a factor of 8. The reduced image is then filtered
to suppress the noise and to correct for shading. The entire

resulting image is segmented by an automatically-chosen
threshold (Zacket al 1977). An enclosing rectangle for
each object in the segmented image defines the region of
interest and is used for the next step.

3.1.2. Detect nuclei in ROI. For each ROI the original
image is processed again at full resolution to define a mask
for the nucleus. A gray-value opening is applied to remove
the dots. The high intensity of the dots can influence
the threshold level calculated in the next step. The iso-
data thresholding algorithm (Ridler and Calvard 1978) is
used to segment the ROI into object and background. The
resulting object mask is then further processed using binary
morphological operations to remove small objects and to
separate slightly touching nuclei (Haralicket al 1987).

After segmentation, size, shape, and intensity features
are measured for each object (Young and Roos 1988).
The features are used to select single nuclei and to reject
touching nuclei, debris, etc. The selected single nuclei are
used in the next step where the dots are to be detected.

3.2. Dot detection

To count the dots, the original image is segmented
again within the mask of the nucleus. Three different
techniques are presented. The first algorithm is the most
simple one and is based on a tophat transform followed
by constant threshold. This technique is calledtophat
threshold. The second technique is calledLaplacian
threshold (nL threshold) and is an extended version of the
tophat threshold. After the tophat transform a nonlinear
Laplacian (nL) filter is applied to separate touching dots.
The third technique is again based on the tophat transform
but instead of a constant threshold a variable threshold is
used to label the dots. This third technique is nameddot
label.
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(a) (b)

(c) (d)

Figure 2. An example of tophat threshold and nL threshold. (a) Original image. (b) Intensity plot of a line crossing the two dots.
(c) Tophat transform, tophat[Im] = Im−Max5[Min 5[Im]]. (d) Laplacian, nL[tophat]=Max3[tophat]+Min3[tophat]− 2tophat. The index
of the Max/Min operator defines the size of the square kernel.

3.2.1. Tophat threshold. A tophat transform (Meyer
1979) is performed on the original image to remove
the DAPI counter stain. For light objects, on a darker
background, the tophat transform is given by

T ophat (A, B) = A − max
B

(
min

B
(A)

)
(1)

where max() and min() are maximum and minimum filters,
respectively, over a regionB. We typically chooseB to
be a 5× 5 window. This is illustrated in figure 2. The
tophat transform is only applied within the mask of the
nucleus. The resulting image only contains the Spectrum
Orange dots on a noisy background. The size of the tophat
kernel must be slightly larger then the dots. A constant
threshold is performed on the tophat transform to find the
dots. The threshold level is given by2th = µbkg + kσbkg

whereµbkg and σbkg are the mean and standard deviation
of the background inside the mask of the nucleus. The
mean and standard deviation are estimated using the pixels
below the 90% percentile intensity of the tophat image. The
parameterk has to be determined on the basis of a limited
number of nuclei used as a training set.

3.2.2. nL threshold. Most dots are detected properly
with the tophat threshold, but some dots appear merged.

Therefore, an extra step is included after the tophat
threshold. A nonlinear Laplacian (Van Vlietet al 1989)
is performed on the tophat image. This step is only applied
within the mask of the tophat threshold. A threshold on
a negative level will separate touching dots (see figure 2).
The threshold level2nL is determined by half the minimum
intensity of the Laplacian image. The mask of the tophat
transform and nL are combined into a mask of detected
dots.

3.2.3. Dot label. The tophat threshold has the
disadvantage that it is difficult to define a proper threshold
level. Figure 2 shows that if the threshold level is too high
a dot will be missed, and if it is too low, two dots will be
merged. The nL filter is used to separate touching dots but
has the disadvantage that it is sensitive to noise. False dots
could be the result. To overcome these problems a different
approach is presented.

Again a tophat transform is performed on the original
image. In contrast with the tophat threshold, the dot label
algorithm uses a variable threshold level. The basic idea
of the algorithm is that pixels with an intensity that is
equal to a threshold level are assigned to a dot if they
are connected to that dot. If they are not connected to
an existing dot, a new dot is created. The threshold level
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Figure 3. An example of the definition of connectivity. The
light gray pixels are already labeled with 1 or 2. The dark gray
pixels have an intensity within the threshold-band. Pixela will
be assigned to dot 1. Pixelb will create a new dot if the
intensity is equal to2seed .

2seed starts at the maximum intensity of the imageImax

and runs down until it is just above the background level
2seed = µbkg + kσbkg. A second threshold level2conn is
introduced to avoid false dots. Small variations in the image
due to noise can create false dots. Instead of a threshold
level, a threshold-band is used. Pixels within a threshold-
band (2seed ≥ I (x, y) > 2conn) are assigned to a dot if
they are connected to that dot. Pixels that are equal to
the threshold level2seed and not connected to a dot will
create a new dot. The width of the threshold-band is related
to the SNR of the images, specifically theσ associated
with the noise. The second threshold level is defined as
2conn = 2seed − 3σcamera where σcamera is the standard
deviation of the camera at the intensity2seed .

A pixel is connected to a dot if there is a path from
that pixel to one pixel of the dot, considering all the pixels
within the threshold-band. An example is given in figure 3.
Two dots have been created and the pixels are labeled with
1 or 2. The dark gray pixels have an intensity within the
threshold-band. Considering pixela, there is a path, in a
4-connected neighborhood, along the gray pixels to a pixel
of dot 1. So this pixel would be labeled as 1. Considering
pixel b, there is no path to one of the dots. If the intensity
of pixel b is greater than or equal to2seed then this pixel
is the seed of a new dot with label 3. Figure 4 shows three
intermediate steps of the algorithm. The threshold level
2seed starts at the maximum intensity of the image. This
pixel is the seed of the first dot. Pixels within the threshold-
band are labeled if they are connected to that dot. The
second dot is created when2seed is equal to the maximum
intensity of that dot. The threshold level2seed decreases
until it is just above the background level.

3.3. Feature extraction

To refine the result of the dot detection algorithm a number
of features are measured. Those features can be used to
verify if a detected dot is a real hybridization dot, to detect
split dots, or to distinguish ’overlapping’ dots from single
dots. The problem of overlapping dots is discussed in the
next section. This section presents a number of features
that can be measured and how they can be used to improve
the result.

Often features are based on the resulting mask of
the segmentation procedure. For example the area is
commonly estimated by counting the number of pixels
in the mask. Because the dots are relatively small (area
of dot ≈ 11 pixels), the area strongly depends on the
threshold level. To make the features independent of the
segmentation procedure, the measurements are not based
on the dot mask. The features are measured using the
pixels that have an intensity larger than a fractionγ of
the maximum intensity of the dot. The maximum intensity
Imax of a dot is the maximum intensity within the dot mask.
As an example, the total intensity is defined as the sum of
the intensities that are larger thanγ Imax and is given by:

Itot =
∑

x,y∈dot mask

I (x, y)clip (I (x, y) − γ Imax) (2)

where

clip(q) =
{

1 q ≥ 0
0 q < 0

and the set(x, y) is chosen within the dot mask. The
fraction γ is an arbitrary value between 0 and 1. If
γ is close to zero, background noise will influence the
measurements. Ifγ is too high the measurements will
be based on only a few pixels. We have used a value
γ = 0.33. The input imageI (x, y) is assumed to be
corrected for background variation. The tophat image is
used as the input image. The tophat transform subtracts
the estimated background signal from the original image.

The following features are measured: maximum
intensity, area, total intensity, average intensity, relative
intensity, and eccentricity.

• Maximum intensity Imax is the maximum intensity
within the dot mask.

• Area Adot is the number of pixels withI (x, y) >

γ Imax .
• Total intensityItot is the sum of the intensities with

I (x, y) > γ Imax .
• Average intensityIavg is the total intensity divided by

the area.
• Relative intensityIrel is the total intensity relative to

the maximum total intensity within a nucleus and is
defined as:

Irel(di) = Itot (di)

max(Itot (d1), . . . , Itot (dn))
(3)
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Figure 4. Three steps of the dot label algorithm.2seed starts at the maximum intensity of the image. Dot 2 is created when2seed is
equal to the maximum intensity of that dot. The algorithm stops whenθseed is just above the background level.

whereItot (di) is the total intensity of doti. The relative
intensity of a dot with the maximum total intensity will
always be one.

• Eccentricity. The definition for the eccentricity is:

Edot =
√

η20

η02
(4)

where η20 and η02 are the invariant second order
normalized moments (Gonzales and Woods 1990). For
a circular dot with a brightness distribution, that is
circularly symmetric, the eccentricity will be one.

There are several factors that can influence the measure-
ments. The number of pixels per dot, which is related to
the sample density, affects the accuracy of the feature esti-
mators. A number of publications (Van Vliet 1993, Young
1988) have reported on the relationship between the sam-
ple density and the coefficients of variation (CV) of sev-
eral estimators. Considering the area, the theory predicts
a percentage error below 10% (Young 1988), even though
the dots are relatively small. However, the measured CV
of the area is 35% (the percentage error and the CV are
roughly equivalent measures). Thus the variation caused
by a limited number of pixels is not a complete explana-
tion of the difference between theory and experiments. A
second source that can effect the measurements is the image
brightness noise. In our case using a Photometrics camera
and an average dot intensity above 500 ADU (camera range
is 4095 ADU) the SNR will be about 30 dB (Nettenet al
1994). Again a variation in the intensity of less then 4% due
to noise is not significant in comparison to the measured
variation. CVs of 21% and 42% for the intra- and inter-
nuclear distribution, respectively, of the total intensity have
been reported (Nederlofet al 1992). The non-uniform illu-
mination of the fluorescence microscope is another source
that can contribute to the large variation of the intensity
features. We have measured a shading of 20% . The shad-
ing is defined as the(Imax − Imin)/Iavg of a homogenous

FOV. Finally the effect of the focus position of a dot must
be considered.

Because nuclei are not flat, the dots are not always in
the same focal plane, and it is possible that a dot is out of
focus. It is also possible that the auto-focusing routine fails
because it focuses on debris instead of the dots. Figure 5
shows the relative error for each feature as a function of
the focus position. The relative intensity is not included.
The features are measured at different focus positions. The
relative error of a featuref for a dot at positionz is defined
as:

εf (z) = |f (z0) − f (z)|
f (z0)

(5)

wherez0 is the in-focus position of the dot. The average
relative error for 12 dots is plotted in figure 5. All features
strongly depend on the focus position. A focusing error
of 0.5µm yields a relative error of more then 15% for the
area, average intensity and maximum intensity. Only the
total intensity and the eccentricity have a relative error less
than 10% if the focusing error is on the order of 1µm. Each
source that influences the measurements will contribute to
the large variation of the features. We have measured CVs
from 22% for the relative intensity to 51% for the average
intensity.

3.4. Dot classification

The total intensity and the relative intensity are used to
verify if a detected dot is a real hybridization dot. If
the value of a feature is not within a certain interval the
detected dot will be rejected. The interval is defined from
the minimum value to the maximum value of that feature
as observed in a training set. The training set contains only
hybridization dots and no false dots.

The relative intensity is also used to detect split dots.
As a result of cell replication, one target chromosome can
appear as two dots that are close together. This is called
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Figure 5. The relative error for five different features as a function of the focus position. Each data point is an average of the relative
error measured for 12 dots. Atz = 0 the dots are in focus. The error intervals of each plotted point are not included because they are
significantly smaller than the estimated relative error.

a split dot. Those two dots should be counted as one dot.
Mis-interpretation of a split dot can lead to an apparent high
percentage of trisomy cells in what is actually a normal
specimen. Figure 6 shows a gallery of cell nuclei that
contain split dots. All these cells should be interpreted as
cells containing two dots. The two dots of a split dot are
always close together and the intensities of both dots are in
general weaker then the third dot. Two dotsdi anddj will
be classified as a split dot if the following rule is true:

D(di, dj ) < Dsplit

and

Īrel(. . . , di + dj , . . .) > Īrel(. . . , di, dj , . . .) (6)

whereD(di, dj ) is the projected distance between the two
dots (di and dj ) and Īrel is the average relative intensity
within a nucleus. Two dots are combined (di + dj ) if
the average relative intensity is larger than if they are not
combined (di, dj ). In other words the relative intensity of
the combined dots must be closer to one. This rule is only
applied to a cell with more than two detected dots.

4. Overlapping FISH dots in 2D images

It is important to realize that we are observing a three-
dimensional nucleus through a two-dimensional projection,
and thus one dot can hide ‘behind’ another dot. Normal
interphase cell nuclei contain two copies of all autosomes.
Microscope imaging projects the three dimensional nucleus
onto a two dimensional sensor. Two dots can be
distinguished if the projected dots do not severely overlap.
Overlapping dots means in this article that the projected
distance between two dots is too small to separate the dots
properly.

4.1. Probability of an overlap

We have calculated the probability that in a nucleus with
two dots the projected dots overlap by modeling the nucleus
as an oblate spheroid. Cell nuclei in suspension have a
spherical shape. In the process of slide preparation they
turn into bodies of revolution called oblate spheroids, i.e.
ellipsoids with principal axesRc, Rc, Rh whereRc is the
radius of a nucleus in thexy-plane andRh is the principal
axis parallel to thez-axis. Given an oblate spheroid, the
heighth(x, y) of the body in thexy-plane is then given by:

h(x, y) = 2Rh

√
1 − (x2 + y2)/R2

c . (7)

If the position (x, y, z) of a dot is equally likely to be
anywhere within the volume of the nucleus, the probability
density function to find a dot inside an oblate spheroid at
position (x, y) is:

p(x, y) = h(x, y)
4
3πR2

c · Rh

= 3
√

1 − (x2 + y2)/R2
c

2πR2
c

(8)

where the denominator is the volume of an oblate spheroid.
The two dots overlap when the second dot lies inside a
cylinder with radiusr0 that is centered at thex, y position
of the first dot. This is illustrated in figure 7. The radius
r0 is the smallest distance between two projected dots that
can still be separated. The probability of an overlap is then
given by:

P0(D(d1, d2) < r0) =
∫

x,y

p(x, y)(p(x, y)πr2
0) dxdy

= 9

8

(
r0

Rc

)2

(9)

with D(d1, d2) the lateral distance between the two dots.
The above calculation assumes that: (1) the probability
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Figure 6. A gallery of images of cells that contain split dots.

density function of the position (x, y, z) of a dot inside
a nucleus is uniformly distributed; (2) the positions of the
dots are independent; (3)r0 � Rc. Frequency distribution
curves of observed distances between two targets have
been compared with a model that assumes uniform and
independent distribution of point-like targets. There is
evidence that chromosomes occupy distinct territories in
cell nuclei. Dietzelet al have shown a significant difference
between observed data and this model (Dietzelet al
1995). But the differences are small, especially when the
distance between the targets is small. Although the above
assumptions are not completely correct, equation (9) yields
a good approximation of the probability of an overlap.

It is interesting to see that the probability of an overlap
is independent of the spheroid’s eccentricity and is inversely
proportional to the projected area of the nucleus. In other
words, flattening the nuclei on a slide, which increases the
area, will reduce the probability of an overlap.

The distancer0 depends on the radius of an observed
dot Rd and on the capability of the image processing
algorithm to separate the dots.Rd is determined by the

Figure 7. Two ‘overlapping’ dots when we are observing a
three-dimensional nucleus through a two-dimensional projection.
The two dots overlap when the second dot lies inside a cylinder
with radiusr0 that is centered at thex, y position of the first dot.

physical size of a dot and the point-spread-function of the
optical system which depends on the NA of the objective
and the emission wavelengthλ of the fluorescent dye. If
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the physical dots are smaller than a wavelength of light,
each observed dot is approximately an Airy disc with
Rd = 0.61λ/NA. The probability of an overlap becomes:

P0 = 0.42(αλ/NARc)
2 (10)

where α is a parameter that represents our ability to
segment two adjacent dots. In this caser0 is defined as
r0 = αRd . If α = 1, r0 is equal to the Rayleigh criteria.
The Rayleigh criterion defines a distance at which two
superimposed Bessel functions can still be separated based
on the maximum intensity. As an example forα = 1,
λ = 0.615µm (peak emission spectrum), NA= 1.3, and
Rc = 5µm, the probability of an overlapP0 = 0.4%.
In our case, using a centromeric probe, the radius of an
observed dot is generally larger than the radius of an Airy
disc. The physical size of a dot is significantly larger than
the wavelength of light. In this case, the radiusr0 has to
be determined experimentally.

4.2. Overlapping dots detection

The problem of ‘overlapping’ dots is especially important
for the detection of a monosomy. Monosomy means that
a proportion of the nuclei has only one copy of the target
chromosome instead of two. ’Overlapping’ dots mainly
affect the estimated proportion of cells that contain one dot.
In practice most cells have two copies of a chromosome
and only a small sub-population of cells have an aberrant
number of chromosomes. Due to overlapping, some of the
cells with two chromosomes are counted as one. Because
the proportion of cells with two dots is much larger than
the proportion with one dot, the error will be significant for
the estimated proportion of cells with one dot. Although
overlapping also occurs with cells with three dots, the
effect on the estimated proportion of cells with two dots
is much smaller. The proportion of cells with three dots is
in practice much smaller than those with two dots.

To improve the results of the image processing
algorithm we want to include an extra step that classifies
detected dots into single dots or ‘overlapping’ dots based
on these features. We may expect that two ‘overlapping’
dots will have twice the total intensity of a single dot or
that the eccentricity of two touching dots is larger then the
eccentricity of a single dot. A nearest neighbor classifier
(Fukanaga 1990) has been used to see if it is possible to
discriminate ‘overlapping’ dots from single dots based on
the total intensity and eccentricity. The classification is
only applied to the cells with one detected dot.

5. Results

The performance of the dot counter has been evaluated. A
set of images has been used to test the different algorithms.
Two slides have been scanned automatically. From each
FOV an image has been acquired and has been saved on

computer disk. Afterwards the images have been checked
manually to see if they were properly focused. Because
the purpose of the experiments was to investigate the
performance of the image analysis algorithms, focusing
errors have been excluded. A total of 352 images have
been acquired, containing 1014 nuclei. A subset of 113
images with 200 nuclei has been used as an independent
training set to adjust the parameters of the algorithms. The
other 239 images have been used to test the system.

The result of the dot counter is a dot distribution that
gives the proportion of cells containing 0, 1, 2, 3 or> 3
dots. The proportionpi is estimated by

pi = ni

N
(11)

whereni is the number of cells withi dots andN is the
total number of cells. Assuming that the probabilities of the
counting errors are constant and the selection of the cells
is random, the proportionpi is a multinomial distribution.
The standard deviationsi is then given by:

s2
i = pi(1 − pi)

N
. (12)

For largeN the multinomial distribution is approximately
Gaussian. In that case a 95% confidence interval of the
estimated proportion is approximately betweenpi ± 1.96si

(Castleman and White 1995).

5.1. Counting results

The dot distribution of the test set has been estimated
with the three different algorithms; tophat threshold, nL
threshold and dot label (table 1). Together with these fully
automated counting results, manually obtained results are
also given. Each nucleus from the test set has been counted
manually using the monitor display. The first row of table 1
shows the dot distribution for a normal specimen, given by
the product specification of the CEP 12 Spectrum Orange
probe (Vysis). This dot distribution will be used as the
‘ground truth’. The manually obtained results of the test
set are comparable with the specifications. Using a monitor
display instead of the microscope does not influence the
counting result. The automated results differ from the
manually obtained dot distribution. The best result has been
obtained with the dot label algorithm. About 2% of the
nuclei are counted incorrectly. Using the tophat threshold
the error percentage increases to 8%.

5.2. Overlapping dots

The percentage of nuclei containing one dot is significantly
larger for the automated results obtained with the tophat
threshold and nL threshold than with manual counting. This
is especially true when the tophat threshold has been used.
Most errors occur because ’overlapping’ dots cannot be
properly separated. The proportionε0 of nuclei that are
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Figure 8. The frequency distribution histogram of the projected distance between two dots within a nucleus. The distance is normalized
by the radius of the nucleus. The measured distribution curves are given for all nuclei with two detected dots obtained (1) with the
tophat threshold and (2) with the distribution of a model which assumes uniform and independent distribution of point-like dots.

Figure 9. The cumulative frequency distribution curves of the projected distance between two dots as observed in cells with two
detected dots. The distance is normalized by the radius of the nucleus. The curves have been obtained with the three algorithms. The
0.5% level definesr0. Only a small range near zero is plotted.

counted as one instead of two has been obtained. The
results of the three algorithms are examined visually using
the monitor display. Each nucleus that has an automated
scoring of one dot has been classified manually as a single
dot or an ‘overlapping’ dot. Table 2 shows the number
of ‘overlapping’ dots for each algorithm as a percentage
of the number of nuclei containing two dots. The error
interval is defined as two times the standard deviation given
by equation (12). The smallest distancer0 that can be
separated is estimated using the frequency distribution of
the distances between two dots. The distance between
two dots is normalized by the radius of the nucleusRc.

The result is also given in table 2, together with the
estimated probability of an overlapP0 using equation (9).
For each algorithm the distances between two dots have
been measured for all nuclei with two correctly detected
dots. Because the frequency distribution of distances does
not contain those cells for which the dots are not properly
separated, we may expect that the smallest distance that
occurs in the distribution is the smallest distance for which
the dots can be separated. But it is possible that the
smallest distance of the distribution is an outlier caused
by noise. In other words, two touching dots, at a certain
distance, are sometimes properly separated and sometimes
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Table 1. Percentage of cells containing various numbers of dots
for the test set as identified manually using a monitor display
and with full automation using three different algorithms. The
dot distribution for normal specimens is also given (Vysis). The
number of cells that have been countedN = 814.

Chromosome 12 0 1 2 3 > 4

Manual
Spectrum OrangeTM 0.2% 1.5% 97.1% 1.2% 0.1%
Monitor display 0.6% 1.4% 97.2% 0.6% 0.3%

Automated
Tophat threshold 0.6% 8.7% 89.3% 1.1% 0.3%
nL threshold 0.5% 3.9% 94.2% 1.0% 0.4%
Dot label 0.5% 1.8% 95.1% 2.1% 0.5%

Table 2. Because ‘overlapping’ dots cannot always be properly
separated, some nuclei are counted as having one dot instead of
two. The proportions of ‘overlapping’ dots,ε0 as a percentage of
the total number of cells containing two dots, observed with the
three different algorithms are given, together with the measured
ratio r0/Rc and the estimated probability of an overlap given by
equation (9). The number of cells with two dots isN ≈ 800.

Algorithm ε0 r0/Rc P0(r0/Rc)

Tophat threshold 7.1 ± 1.8% 0.26± 0.02 7.6 ± 1.2%
nL threshold 2.4 ± 1.0% 0.17± 0.01 3.1 ± 0.4%
Label dot 0.9 ± 0.6% 0.13± 0.01 1.9 ± 0.3%

not. Thereforer0 is defined as the distance at the 0.5%
level of the cumulative frequency distribution. In our case
with N ≈ 800, r0 becomes equal to the fourth smallest
distance (sample) in the distribution. The error interval
is defined as the difference between the third smallest
distance and the fifth smallest distance. Figure 8 shows the
measured frequency distribution as a result of the tophat
threshold in combination with the distribution of a model
which assumes the uniform and independent distribution
of point-like dots. The model frequency distribution is
obtained from simulations. Figure 9 shows the cumulative
distributions for the three algorithms with the resulting
r0 distance at the 0.5% level. The dot label algorithm
has the best performance in segmenting ‘overlapping’ dots
followed by the nL threshold. The nL filter significantly
improves the result of the tophat threshold. There is no
significant difference between the estimated probability of
an overlap using equation (9) and the measured proportion
of ‘overlapping’ dotsε0, but the error intervals are large.

Including an extra classification step to distinguish
‘overlapping’ dots from single dots has been evaluated.
The result of the tophat threshold has been used to see
if it is possible to improve the results based on the total
intensity and eccentricity. Table 3 gives the mean and
standard deviation of the total intensity and the eccentricity
for ’overlapping’ dots and single dots. The number of
single dots is much larger than the number of ‘overlapping’
dots because we have used all dots from cells with two

detected dots. As we expected, the average total intensity
of ‘overlapping’ dots is twice the total intensity of single
dots. Also the eccentricity is larger for ‘overlapping’ dots.
The variation, however, is also larger. A scatter plot
(figure 10) illustrates the overlap between the two classes.
A nearest neighbor (NN) classifier (Fukanaga 1990) has
been applied to these data. The set of 1452 single dots and
57 ‘overlapping’ dots has been used as a training set and
as a test set. Because the number of ‘overlapping’ dots is
small, we did not want to split the set into a separate training
set and test set. Table 4 gives the result of 6-NN classifier.
Because the training set has been used as the test set these
results are optimistic. The classifier has been trained in
such a way that the number of false negatives (single dots
that are classified as ‘overlapping’ dots) is close to zero.
Only 54% of the ‘overlapping’ dots are classified correctly.
This result shows that an extra classification step only
slightly improves the result. The results of the nL threshold
algorithm and dot label algorithm are still better than the
results of the tophat threshold with the extra classification
step. The large variation of the features makes it difficult
to distinguish ‘overlapping’ dots from single dots.

5.3. Split dots

The ability to separate touching dots means that a split
dot could be detected as two dots. Mis-interpretation of a
split dot can lead to a high percentage of trisomy cells
in normal specimens. A simple rule has been used to
detect split dots based on the distance between the two
dots and the relative intensity. This rule is only applied on
nuclei with more than two dots. If two dots are classified
as a split dot, these dots are combined into one dot. To
test this rule the test set has been analysed again using
the three algorithms but without split dot detection. The
results given in table 1 were obtainedwith the use of split
dot detection. The results of the two experiments are now
compared. Table 5 gives the proportion of nuclei that have
been counted incorrectly because of a split dot, with and
without the use of split dot detection. Because the tophat
threshold does not have the ability to separate touching
dots, no split dots have been detected as two dots and the
tophat threshold is therefore not included. If the ability
to separate dots improves, the number of split dots that
have been detected as two dots increases. Using the split
dot detection, most of the split dots have been combined
into one. Four nuclei have been counted incorrectly due to
split dots using the dot label algorithm and cause a slightly
higher percentage of trisomies (table 1).

6. Discussion

We have developed a completely automated fluorescence
microscope system that can examine interphase cell nuclei
in order to determine the proportions of cells containing
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Table 3. The mean and standard deviation of the total intensity and the eccentricity for single dots and ‘overlapping’ dots. The result of
the tophat threshold is used to calculate these values.

Features Total intensity (ADU) Eccentricity

µ σ µ σ

Single dots (N = 1452) 7458 4079 1.5 0.5
Overlapping dots (N = 57) 14823 7677 3.1 1.3

Table 4. A confusion matrix for a 6-NN classifier using the total intensity and the eccentricity to distinguish ‘overlapping’ dots from
single dots. The learning set was also used as test set. More than 99% of the single dots are classified as single dots but only 54% of
the ‘overlapping’ dots are classified correctly.

Classification\ Test set Single dots (N = 1452) Overlapping dots (N = 57)

Single dots 99.7% 45.6%
Overlapping dots 0.3% 54.4%

Figure 10. Scatter plot of the total intensity and the eccentricity for single dots (light gray) and ‘overlapping’ dots (dark gray).

Table 5. The proportion of cells that have been counted
incorrectly due to a mis-interpretation of a split dot. The
percentages are given for nL threshold algorithm and dot label
algorithm with and without split dot detection. The split dot
detection combines most of the split dots. The total number of
cells isN = 814.

Algorithm No split dot detection Split dot detection

nL threshold 3.2% 0.4%
Dot label 9.1% 1.2%

0, 1, 2, 3, or > 3 dots. This paper describes the
image processing algorithms that are responsible for the
dot detection. Three techniques have been presented:
tophat threshold, nL threshold, and dot label. The different
techniques have been evaluated and the results have been
compared with manual counting. All experiments have
been done with a set of images stored on computer disk.

Because we wanted to evaluate the image processing
algorithms, the images have been checked manually in
order to avoid errors caused by the image acquisition.

The results of the dot label algorithm approximate the
manually obtained results. Only 2% of the cells are counted
incorrectly. Using nL threshold or tophat threshold the
error rates increase to 3% and 8%, respectively. Because
the images of the test set have been checked manually the
error rate of the complete system, automated scanning and
image analysis, will be higher. Previously presented results
(Nettenet al 1997) showed an error rate of 3% (out of the
total 11%) to be caused by focusing errors. These results
showed also that the variance of the dot distribution, using
full automation, is significantly larger than the expected
variance of a multinomial distribution. Our experience is
that the large variation is related to the slide quality. Clean
slides will make the error rate of the dot counter more
predictable.
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‘Overlapping’ dots are the main problem of the dot
segmentation. The overall error rate is strongly related
to the ability to separate touching dots. The estimated
distancer0 gives an indication of how well the dots can be
separated. The smallest distance has been measured with
the dot label algorithm. The estimated error percentage due
to an overlap is comparable with the calculated probability
of an overlap using the distancer0 (equation (9)). Of
course this result depends on how we have definedr0.
The distancer0 has been defined as a fixed distance. In
other words two dots at a distance smaller thanr0 will
not be separated, and if the distance is larger they will
be separated. The frequency distribution of the distances
between two dots, as a result of the tophat threshold in
comparison with the results of the model, shows that it is
not a fixed distance but an interval where some dots are
separated and some are not. If the distance between the
dots becomes larger, the distribution of the model, which
assumes uniform and independent distribution of point-like
dots, is in agreement with the result of the tophat threshold.
The underlying assumption of equation (9) seems to be
reasonable. Although the definition ofr0 is ambiguous,
equation (9) yields a good approximation to the probability
of an overlap.

Including an extra step, that distinguishes ‘overlapping’
dots from single dots based on the eccentricity and total
intensity, has been tested. Although the total intensity of
‘overlapping’ dots is twice the total intensity of a single
dot, and the eccentricity is larger for ‘overlapping’ dots,
the large variation of the features yields only a small
improvement of the results.

If the ability to separate touching dots increases, the
number of split dots that are detected as two dots will
increase. A simple rule is applied to detect split dots. If two
dots are classified as a split dot these two dots are combined.
Without the split dot detection, the results of nL threshold
and dot label would have a higher estimated percentage of
trisomy cells and the results would be unreliable. The split
dot detection combines most of the spit dots. We have
only tested the split dot detection on a normal specimen.
Therefore we could not measure the false negative rate of
the split dot detection. The false negative rate has been
defined as the percentage of real trisomy cells that are
counted as two dots because of a false detection of a split
dot. None of the few trisomy cells in the test set has been
detected as a split dot. The number of trisomy cells is not
sufficient to give an estimation of the false negative rate.
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