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ABSTRACT 
This paper presents the first step of the derivation of an 

aerodynamic damping matrix that can be adopted for the 
foundation design of a wind turbine. A single turbine blade is 
modelled as a discrete mass-spring system, representing the 
flap and edge wise motions. Nonlinear wind forcing is applied, 
which couples the degrees of freedom. The structural response 
is determined by means of a Volterra series expansion. The 
contribution of the aerodynamic damping to the structural 
response is determined  by comparing the response without 
structural feedback to the response that includes structural 
feedback. 

The reduction of the structural response due to 
aerodynamic damping is significant. This also applies for the 
edge wise response and the cross response that results from the 
coupling. Due to the nonlinear forcing, higher order harmonics 
are excited. This study only presents the response to a single 
harmonic 1P forcing. To fully understand the response to the 
nonlinear forcing, a representative excitation spectrum needs to 
be adopted.  

 
INTRODUCTION 

In determining the wind forcing on a wind turbine, the 
interaction between the air flow and the structure cannot be 
neglected. The effective force due to a flow on a structure 
depends on the relative velocity of this flow with respect to the 
structure. If the structure responds dynamically, the relative 
flow velocity is affected by the structural vibration. This aspect 
is of particular importance for flexible structures like wind 
turbines, where the motion of the structure generally leads to a 
reduction of the effective wind force. Moreover, turbine blades 
are highly sensitive to perturbations in the angle of attack of the 
wind flow, reducing or increasing the forcing on the structure. 
The force reduction due to the structural feedback velocity is 

commonly known as added damping, or – specifically for wind 
turbines – as aerodynamic damping. 

Complex models, making use of computational fluid-
dynamics techniques, can be adopted to estimate the effective 
forcing – and so the aerodynamic damping – of a wind flow on 
a wind turbine. For early design stages this approach is time-
consuming, in both model construction and calculation 
processing. Besides, such complex models do not necessarily 
provide the physical insight that can be employed to improve 
the aero-elastic performance of the structure. On the other hand,  
when it comes to foundation design, the available techniques to 
determine the reduction in aerodynamic forcing due to 
structural response are rather simplified. Linearized 
expressions, neglecting the dependency of the force on the 
mean wind speed and the coupling between flap and edge wise 
blade motion – among other things, are adopted to estimate the 
effective wind forcing [1, 2, 3]. For offshore wind turbines, the 
aerodynamic damping of hydrodynamic forces is recognized 
[4], but the existing theories do not allow for a misalignment 
between the aerodynamic and hydrodynamic forcing.  

This paper presents the first step in the derivation of an 
aerodynamic damping matrix that particularly serves the design 
of offshore wind support structures under combined wind and 
wave loading. A single blade is modelled as a mass-spring 
system representing the flap and edge wise motions. The blade 
is excited by a drag force that depends quadratically on the 
effective flow velocity. The forcing ensures coupling between 
the degrees of freedom. The modelling includes dependencies 
on the mean wind velocity and the pitch angle of the blade. In 
order to account for the nonlinear character of the loading, a 
Volterra series expansion is applied, a technique that enables 
the identification of higher-order transfer kernels in the 
frequency domain [5]. 
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effective stiffness due to the rotation of the blade has not been 
accounted for. The natural frequencies corresponding to the 
motions are 2.42 rad/s and 3.42 rad/s. For structural damping a 
damping ratio of 0.01 is adopted. 

The geometry of the blade is defined by its radius 63 m and 
the chord width, for which a radius independent average value 
of 3.0 m is adopted. The blade angle  is set at 0o, the rated tip 
speed is 80 m/s, and the mean wind velocity is 15 m/s. In order 
to define the generalized forcing, modal shapes proportional to 
a simplified expression for cantilever beams,  ߤ௫ଵ ൌ ௬ଵߤ ൌ 1 െ

ݏ݋ܿ ቀ
గ

ଶ

௥

ோ
ቁ, are applied. 

In order to derive first- and second-order Volterra kernels 
from the system described by equation (1-8), a number of 
assumptions have been adopted: 

- The magnitude of the constant contribution to the 
relative flow wሬሬሬԦ is larger than that of the fluctuating 

parts, i.e หvതሬԦห ൐ ቚvሬԦ െ uሶ෠ሬԦቚ. Moreover, the vector that 

follows from the multiplication wሬሬሬԦ|wሬሬሬԦ| is replaced by a 
vector with the two equal entries ൫ݓ௫ଶ ൅  .௬ଶ൯ݓ

- The blade remains unstalled, implying that the 

contribution of the drag force fୈሬሬሬԦ can be neglected and 
the relation between the lift coefficient ܥ௅ and the 
angle of attack ߙ is linear. 

- The local blade twist angle is constant in time. 
- Trigoniometric operations of the flow angle ߮ can be 

approximated by the first term of the Taylor expansion 
around ߮ ൌ 0. 

- The time-dependent contributions to the y component 
of the relative flow wሬሬሬԦ - ݒ௬ and ݑሶ෠௬ – do not affect the 
fluctuation of the flow angle ߮. 

 
In comparison with the linearized approach, defined by the 

equation (13-15), the mean wind velocity, pitch angle and 
radius dependent tangential velocity have been taken into 
account explicitly. Moreover, coupling between flap and edge 
wise motion has been adopted and the quadratic flow-structure 
interaction has been accounted for by incorporating second-
order Volterra kernels.  

Figure 3 presents the linear direct and cross frequency- 
response functions of the nonlinear blade model, when 
neglecting the structural feedback uሶሬԦ, see (6). Large peaks at the 
natural frequencies can be observed. The contribution of the 
cross-terms is significant; the response Uy is mostly affected by 
fluctuations of Vx. To verify the results, the transfer function of 
the linearized system is plotted too. Due to the fact that the 
pitch angle is set at 0o, this curve precisely follows the response 
Ux to fluctuations of Vy.  

By taking system feedback into account, the picture 
presented by Figure 3 gets disturbed, as can be seen in Figure 4. 
First of all, the height of the peaks has significantly decreased, 
which can be seen as the result of the added damping. 
Moreover, system response in ux direction affects the uy 
response, and vice versa. 

 

 
Figure 3: First-order Volterra kernels, or frequency 

response functions, of the blade model without system 
feedback. Note the linearized system response, which equals 
the ux response to vy excitation. 

 
Figure 4: First-order Volterra kernels, or frequency-

response functions, of the blade model with system feedback. 
 
In order to provide insight in the contribution of the 

aerodynamic damping, Table 1 presents the values of the 
transfer functions – with and without structural feedback – at 
the natural frequencies and the ratios of the magnitude of the 
transfer functions. The effect of the structural feedback is most 
significant for the flap wise response. The flap wise reduction 
ratios are in line with the ratio obtained with the linearized 
model. For the given configuration, the aerodynamic damping 
affects the structural response in y direction much less. 

 
 No feedback 

[s] 
Feedback  

[s] 
Ratio 

[-] 
Ux response to Vx excitation 35.8 0.651 55.0 
Ux response to Vy excitation 20.4 0.365 55.9 
Uy response to Vx excitation 21.7 0.977 22.2 
Uy response to Vy excitation 7.22 0.476 15.2 
Linearized system response 20.4 0.405 50.4 

Table 1: Transfer function values at natural frequencies, 
with and without structural feedback. 
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Until now, only first-order responses have been 
considered. To analyze also the second-order response, which 
accounts for the nonlinearity of the system excitation, a specific 
forcing needs to be defined, since the second order Volterra 
kernels do not provide input independent transfer functions in 
the frequency domain, as was obtained for the first order 
Volterra kernels. 

As system excitation, a harmonic fluctuation 
corresponding to a 1P frequency (0.84 rad/s) of the turbine 
blade is adopted. This excitation is thought to be active both in- 
and out-of-plane of the rotor, with equal amplitude in both 
directions. The structural response for the system with and 
without structural feedback is depicted in Figure 5. The first-
order Volterra kernels provide system response at the excitation 
frequency. As expected, the second-order kernel gives a 
response that contains higher harmonics, the response 
frequency of which exactly doubles the excitation frequency. 
The effect of the added damping can be deduced from Figure 5 
too. For each line, the higher data point indicates the structural 
response without the added damping. The lower data point 
shows the response including the beneficial effect of structural 
feedback. 

   
Figure 5: First and second-order structural response due to 

harmonic in- and out-of-plane system excitation, corresponding 
to the rotation frequency of the blade.  
 

To draw sound conclusions with respect to the 
aerodynamic damping, the frequency response to a 
representative wind power spectrum should be analyzed, since 
this provides real insight in the actual effect on the nonlinearity 
of the excitation to the response at different frequencies. The 
derivation of an excitation spectrum, containing additional 
peaks due to the harmonics of the rotating turbine will be the 
next step in this analysis.  

CONCLUSIONS 
The analysis performed on the basis of the discrete blade 

model show the significant impact of structural feedback on the 
response to fluctuations in the flow field. Moreover, the 
importance of coupling of the flap and edge wise motions has 
been observed, since the cross contributions to the structural 

response cannot be neglected. Studying the effect of nonlinear 
excitation by means of second-order Volterra kernels has shown 
some higher-harmonic response. In order to get a clear picture 
of how the nonlinear forcing affects the structural motion, the 
response to a realistic excitation spectrum for a rotating turbine 
needs to be analyzed. 
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