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ABSTRACT

This paper presents the first step of the derivation of an
aerodynamic damping matrix that can be adopted for the
Jfoundation design of a wind turbine. A single turbine blade is
modelled as a discrete mass-spring system, representing the
flap and edge wise motions. Nonlinear wind forcing is applied,
which couples the degrees of freedom. The structural response
is determined by means of a Volterra series expansion. The
contribution of the aerodynamic damping to the structural
response is determined by comparing the response without
structural feedback to the response that includes structural
feedback.

The reduction of the structural response due to
aerodynamic damping is significant. This also applies for the
edge wise response and the cross response that results from the
coupling. Due to the nonlinear forcing, higher order harmonics
are excited. This study only presents the response to a single
harmonic 1P forcing. To fully understand the response to the
nonlinear forcing, a representative excitation spectrum needs to
be adopted.

INTRODUCTION

In determining the wind forcing on a wind turbine, the
interaction between the air flow and the structure cannot be
neglected. The effective force due to a flow on a structure
depends on the relative velocity of this flow with respect to the
structure. If the structure responds dynamically, the relative
flow velocity is affected by the structural vibration. This aspect
is of particular importance for flexible structures like wind
turbines, where the motion of the structure generally leads to a
reduction of the effective wind force. Moreover, turbine blades
are highly sensitive to perturbations in the angle of attack of the
wind flow, reducing or increasing the forcing on the structure.
The force reduction due to the structural feedback velocity is

commonly known as added damping, or — specifically for wind
turbines — as aerodynamic damping.

Complex models, making use of computational fluid-
dynamics techniques, can be adopted to estimate the effective
forcing — and so the aerodynamic damping — of a wind flow on
a wind turbine. For early design stages this approach is time-
consuming, in both model construction and calculation
processing. Besides, such complex models do not necessarily
provide the physical insight that can be employed to improve
the aero-elastic performance of the structure. On the other hand,
when it comes to foundation design, the available techniques to
determine the reduction in aerodynamic forcing due to
structural response are rather simplified. Linearized
expressions, neglecting the dependency of the force on the
mean wind speed and the coupling between flap and edge wise
blade motion — among other things, are adopted to estimate the
effective wind forcing [1, 2, 3]. For offshore wind turbines, the
aerodynamic damping of hydrodynamic forces is recognized
[4], but the existing theories do not allow for a misalignment
between the aecrodynamic and hydrodynamic forcing.

This paper presents the first step in the derivation of an
aerodynamic damping matrix that particularly serves the design
of offshore wind support structures under combined wind and
wave loading. A single blade is modelled as a mass-spring
system representing the flap and edge wise motions. The blade
is excited by a drag force that depends quadratically on the
effective flow velocity. The forcing ensures coupling between
the degrees of freedom. The modelling includes dependencies
on the mean wind velocity and the pitch angle of the blade. In
order to account for the nonlinear character of the loading, a
Volterra series expansion is applied, a technique that enables
the identification of higher-order transfer kernels in the
frequency domain [5].



Validation of the proposed model is performed on the
basis of the NREL 5.0 MW blade characteristics [6]. First order
transfer functions are compared to the transfer function that
result from the existing techniques to evaluate aerodynamic
damping. The second order response is analyzed for a 1P
harmonic loading.

DISCRETE BLADE MODEL

A discrete model with two degrees of freedom -
representing a single blade - is adopted to analyze the wind-
structure interaction. Figure 1 depicts the mass-spring system,
where Figure 1(a) presents the mass-spring representation of
the blade as a part of the rotor. The actual mass-spring system,
Figure 1(b), consists of x and y springs representing the
generalized flap and edge wise blade stiffness &, and k,, x and y
dashpots representing the generalized structural damping ¢, and
¢,, and generalized masses m, and m,. Generalization is done on
the basis of the undamped first flap and edge wise fixed
interface modes of vibration. The application of fixed interface
modes implies that the blade is assumed clamped at its root and
that tower flexibility is not accounted for. The flap wise
deflection is given by u,, while u, expresses the edge wise
motion. The angle £ represents the pitch angle with which the
aerodynamic blade response can be controlled.

The system of equations describing the dynamic
behaviour of the blade model can be written as:

Mi+Ci+Ki=f (1)
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_mXO' _ch' _kxO'
M= ] C=1o cy]’ K—[o ky]’

=i 0

3)

(a) (b)

Figure 1: (a) the mass-spring representation of the blade as
a part of the rotor, (b) discrete model with two degrees of
freedom, representing a single blade.

AERODYNAMIC FORCING

Since the blade is modelled using the generalized
coordinates u, and u,, the forcing vector f represents a
generalization too. This generalization can be expressed as:

f=[fular 4)

, where f represents the distributed aerodynamic forcing vector
— consisting of the force components in x and y direction f, and
f;, — and p the matrix containing the first flap and edge wise
fixed interface modes of vibration p,; and w,; on its main
diagonal, whereas the off-diagonal entries are zero. Both
components are a function of the radius » and in order to obtain
the generalized forcing vector, the product needs to be
integrated over r.

In order to define the wind load on the blade the following
nonlinear flow-force relation is adopted:

F= 2 pA(C,®)"WIW] 5)

This relation defines the force vector f as a quadratic function
of the relative flow velocity W, which consists of the mean flow

¥, the flow fluctuation ¥ and the structural feedback velocity U
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Like for the forcing vector E the hat on U indicates spatial
dependency. All components of W can be radius-dependent.
Figure 2 depicts the flow vector W that excites the blade model.
Within the frame of reference, x and y components of the flow
vector can be distinguished. U, represents the mean wind
velocity that acts on the blade, whereas 7, is the constant
tangential velocity of the rotating blade. It is assumed that the y
component of the mean wind velocity is zero. For an idling
turbine, ¥, equals zero. v, and v, represent fluctuations of the
wind field. The distributed structural feedback velocity Gl can be
represented by the matrix-vector product of the matrix p and
the generalized structural response velocity vector u.

Other components of (1) are the air density p, the blade
chord width A4, and the blade aero-clastic matrix C,, which
consists of the lift and drag coefficients C and Cp:

c.=[¢ o] ™
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The wind flow W, being active under an angle ¢ with respect to
the rotor plane, results in a lift and drag force fj, and fp, see
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Figure 2. In order to obtain force components in x and y
direction, the transformation matrix ¥ is applied:
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Figure 2: air flow excited blade model and resulting lift
and drag forces.

The generalized forcing vector f follows from integration over
the blade length. Therefore, an important aspect is the
definition of the length depending components of (1). First of
all, the mean wind velocity 7, is assumed to be constant within
the blade swept area. The same applies for the wind
fluctuations v, and v,. For the tangential velocity ¥, a linear
radius dependent function is adopted, which relates the velocity
at radius r to the blade tip speed.

The aero-elastic coefficients C and C, are functions of the
angle of attack «, see Figure 2. These functions are assumed to
be radius invariant. The only remaining component with length
dependency is the chord width A.

NONLINEAR BLADE ANALYSIS

The structural response to the nonlinear excitation, which
moreover forces a coupling between the responses in x and y
direction, is estimated with the help of a Volterra series
expansion. With the help of this technique, the nonlinear effects
can be accounted for by higher-order transform kernels.
Moreover, the technique permits analyses in the frequency
domain. The theory is already applied in analyzing responses of
wind, and combined wind and wave excited structures [7, 8].
When limiting the expansion to the second order, the
frequency-domain response vector U, representing the Fourier
transform of U and consisting of the components U, and U,,
can be found from the following relations:

ﬁ=ﬁ)1 +ﬁz (9)

, where the components of ﬁl and ﬁz represent the first- and
second-order frequency responses. The first-order response
follows from the well-known linear relation, where the input-
output relation is defined by the transfer function matrix Hy:

U, = H,V (10)

The vector V , representing the Fourier transform of V, consists
of the frequency dependent excitation signals V, and 1, the
matrix H; contains direct- and cross-kernel transforms, or
direct or cross frequency-response functions. The second-order
Volterra kernels are not just a function of the excitation
frequency w, but of the frequency w; too. In order to find the

second-order response ﬁz, the direct- and cross-kernel
transforms, combined in the 2X4 matrix H, need not only be

multiplied by the excitation signal V*, but as well by the

excitation signal V*. Moreover, the relation needs to be
integrated with respect to w, over an infinite interval:

=T

Uy = [ H, V7" do, (11)

The asterisks imply double entries of V, and Vj,, to maintain
consistency with the H, matrix. The entries of the vector V* are

functions of w, while the entries of V* are functions of
(0 — wy).

Identification of the Volterra kernels can be achieved by
applying the harmonic probing algorithm [9]. An elegant
alternative exists in assembling complicated kernels from
known partial solutions [10].Since the harmonic probing
algorithm has already been extended for multi-input and multi-
output systems [11], this approach is adopted for the current
Volterra kernel identification.

It can easily be shown that the first order Volterra kernels
represent the frequency-response function for the linearized
system. Higher-order Volterra kernels cannot be defined as
unique frequency response functions, but are input-dependent.

LINEARIZED BLADE RESPONSE

Currently, aecrodynamic damping due to blade motion is
estimated using one-degree-of-freedom systems as a result of
linearized wind flow-structure interaction. According to this
approach, which is only valid for operating turbines, the flap
wise motion of the blade results from the tangential velocity of
the rotating blade only. Small fluctuations in the wind field, and
the flap wise feedback velocity, cause perturbations in the flow
angle and therefore in the lift coefficient. Based on this, an
expression for the aerodynamic damping can be obtained,
which among other things, neglects the mean wind velocity, the
pitch angle and the coupling of flap and edge wise motion.

NREL 5.0MW BLADE ANALYSIS

The structural response to the nonlinear wind-flow
excitation is determined for a single blade of the NREL 5.0
MW reference turbine [6]. For convenience’s sake, the edge
wise structural properties have been related in a simple manner
to the flap wise characteristics, namely m, = m, = 2242 kg and

ke = %k) = 13141 N/m. It should be noted that an increase in
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effective stiffness due to the rotation of the blade has not been
accounted for. The natural frequencies corresponding to the
motions are 2.42 rad/s and 3.42 rad/s. For structural damping a
damping ratio of 0.01 is adopted.

The geometry of the blade is defined by its radius 63 m and
the chord width, for which a radius independent average value
of 3.0 m is adopted. The blade angle S is set at 0°, the rated tip
speed is 80 m/s, and the mean wind velocity is 15 m/s. In order
to define the generalized forcing, modal shapes proportional to
a simplified expression for cantilever beams, iy =y, =1 —

Tr .
cos (;;), are applied.

In order to derive first- and second-order Volterra kernels
from the system described by equation (1-8), a number of
assumptions have been adopted:

- The magnitude of the constant contribution to the

relative flow W is larger than that of the fluctuating

parts, i.e |$| > |V—ﬁ|. Moreover, the vector that

follows from the multiplication W|Ww]| is replaced by a
vector with the two equal entries (w2 + w).
- The blade remains unstalled, implying that the

contribution of the drag force E can be neglected and
the relation between the lift coefficient C; and the
angle of attack « is linear.

- The local blade twist angle £ is constant in time.

- Trigoniometric operations of the flow angle ¢ can be
approximated by the first term of the Taylor expansion
around ¢ = 0.

- The time-dependent contributions to the y component
of the relative flow W - v, and ﬁy — do not affect the
fluctuation of the flow angle ¢.

In comparison with the linearized approach, defined by the
equation (13-15), the mean wind velocity, pitch angle and
radius dependent tangential velocity have been taken into
account explicitly. Moreover, coupling between flap and edge
wise motion has been adopted and the quadratic flow-structure
interaction has been accounted for by incorporating second-
order Volterra kernels.

Figure 3 presents the linear direct and cross frequency-
response functions of the nonlinear blade model, when

neglecting the structural feedback U, see (6). Large peaks at the
natural frequencies can be observed. The contribution of the
cross-terms is significant; the response U, is mostly affected by
fluctuations of V. To verify the results, the transfer function of
the linearized system is plotted too. Due to the fact that the
pitch angle is set at 0°, this curve precisely follows the response
U to fluctuations of V.

By taking system feedback into account, the picture
presented by Figure 3 gets disturbed, as can be seen in Figure 4.
First of all, the height of the peaks has significantly decreased,
which can be seen as the result of the added damping.
Moreover, system response in u, direction affects the u,
response, and vice versa.
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Figure 3: First-order Volterra kernels, or frequency
response functions, of the blade model without system
feedback. Note the linearized system response, which equals
the u, response to v, excitation.
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Figure 4: First-order Volterra kernels, or frequency-
response functions, of the blade model with system feedback.

In order to provide insight in the contribution of the
aerodynamic damping, Table 1 presents the values of the
transfer functions — with and without structural feedback — at
the natural frequencies and the ratios of the magnitude of the
transfer functions. The effect of the structural feedback is most
significant for the flap wise response. The flap wise reduction
ratios are in line with the ratio obtained with the linearized
model. For the given configuration, the aecrodynamic damping
affects the structural response in y direction much less.

No feedback Feedback Ratio

[s] [s] [-]
U, response to V, excitation 35.8 0.651 55.0
U, response to ¥, excitation 20.4 0.365 55.9
U, response to V; excitation 21.7 0.977 22.2
U, response to V, excitation 7.22 0.476 15.2
Linearized system response 20.4 0.405 50.4

Table 1: Transfer function values at natural frequencies,
with and without structural feedback.




Until now, only first-order responses have been
considered. To analyze also the second-order response, which
accounts for the nonlinearity of the system excitation, a specific
forcing needs to be defined, since the second order Volterra
kernels do not provide input independent transfer functions in
the frequency domain, as was obtained for the first order
Volterra kernels.

As system excitation, a harmonic fluctuation
corresponding to a 1P frequency (0.84 rad/s) of the turbine
blade is adopted. This excitation is thought to be active both in-
and out-of-plane of the rotor, with equal amplitude in both
directions. The structural response for the system with and
without structural feedback is depicted in Figure 5. The first-
order Volterra kernels provide system response at the excitation
frequency. As expected, the second-order kernel gives a
response that contains higher harmonics, the response
frequency of which exactly doubles the excitation frequency.
The effect of the added damping can be deduced from Figure 5
too. For each line, the higher data point indicates the structural
response without the added damping. The lower data point
shows the response including the beneficial effect of structural
feedback.

Aerodynamic damping of first and second order structural response
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Figure 5: First and second-order structural response due to
harmonic in- and out-of-plane system excitation, corresponding
to the rotation frequency of the blade.

To draw sound conclusions with respect to the
aerodynamic damping, the frequency response to a
representative wind power spectrum should be analyzed, since
this provides real insight in the actual effect on the nonlinearity
of the excitation to the response at different frequencies. The
derivation of an excitation spectrum, containing additional
peaks due to the harmonics of the rotating turbine will be the
next step in this analysis.

CONCLUSIONS

The analysis performed on the basis of the discrete blade
model show the significant impact of structural feedback on the
response to fluctuations in the flow field. Moreover, the
importance of coupling of the flap and edge wise motions has
been observed, since the cross contributions to the structural

response cannot be neglected. Studying the effect of nonlinear
excitation by means of second-order Volterra kernels has shown
some higher-harmonic response. In order to get a clear picture
of how the nonlinear forcing affects the structural motion, the
response to a realistic excitation spectrum for a rotating turbine
needs to be analyzed.
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