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In this paper, we propose closed-form analytical expressions to determine the minimum number of driver
nodes that is needed to control a specific class of networks. We consider swarm signaling networks with
regular out-degree distribution where a fraction p of the links is unavailable. We further apply our method
to networks with bi-modal out-degree distributions. Our approximations are validated through intensive
simulations. Results show that our approximations have high accuracy when compared with simulation
results for both types of out-degree distribution.
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1. Introduction

Network controllability is an essential property for the safe and reliable operation of real-world infras-
tructures, and as such this research area has attracted significant attention over the past decade [6, 11,
16, 27]. For definiteness, a system is said to be controllable if it can be driven from any initial state to
any desired final state by external inputs in finite time [12]. By blending classical control theory with
concepts from network science, the notion of structural controllability has emerged [2]. Classically, let
A be the N×N adjacency matrix of a given network with N nodes, while the connection of M input
signals to the network is described by the N×M input matrix B, where M 6 N. Then, the system char-
acterized by (A,B) is structurally controllable if it is possible to find the non-zero parameters in A and
B such that the obtained system (A,B) is controllable in the classical sense of satisfying the Kalman
rank condition.

In their seminal article, Liu et al. [11] used maximum matching to get the minimum number ND of
driver nodes—i.e., nodes driven by external inputs—that are needed to achieve structural controllability
of a directed network. However, the results reported in Liu et al. [11] critically depend on the assumption
that the network has no self-links, i.e. a node’s internal state can only be changed upon interaction with
neighboring nodes [3]. Yuan et al. [27] further proposed the concept of exact controllability based on the
maximum multiplicity of all eigenvalues of the adjacency matrix A to find the driver nodes in networks.
Ruths et al. [20] developed a theoretical framework for characterizing control profiles of networks. Jia
et al. [6] classified each node into one of three categories, based on its likelihood of being included in
a minimum set of driver nodes and discovered bi-modal behavior for the fraction of redundant nodes
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when the average degree of the networks is high. Yan et al. [25] investigated the relation between the
maximum energy needed for controllability and the number of driver nodes. Nepusz et al. [16] indicated
that most real-world networks are more controllable than their randomized counterparts. More recently,
Zhang et al. [28] studied the change of network controllability in growing networks, and found a lower
bound for the maximum number of nodes that can be added to a network while keeping the number of
driver nodes unchanged.

The robustness of network controllability under perturbation of the network topology has been inves-
tigated extensively. Lu et al. [14] discovered that a betweenness-based strategy is quite efficient to harm
the controllability of real-world networks. Lou et al. [13] present a search for the network configuration
with optimal robustness of controllability against random node-removal attacks. Wang et al. [24] pro-
posed a dynamic cascading failure model and investigated the controllability robustness of real-world
logistic networks. Nie et al. [19] found that the controllability of Erdős-Rényi random networks with a
moderate average degree is less robust, whereas a scale-free network with moderate power-law exponent
shows a stronger ability to maintain its controllability when these networks are under intentional link
attack. Sun et al. [22] proposed closed-form analytic approximations for the minimum number of driver
nodes needed to fully control networks, where links are removed according to both random and targeted
attacks. Komareji et al. [9] discussed the resilience and controllability of dynamic collective behaviors
for a class of Swarm Signaling Networks (SSNs) [9]. The SSNs are modeled as directed (unweighted)
graphs where the nodes have k-regular out-degree and Poisson-like in-degree distribution with average
k. Following the paper by Liu et al. [11], an implicit equation is derived, whose solution leads to the
minimum number of driver nodes to control the whole swarm [9]. However, upon validation of the
formula given in [9] through simulation, we found significant differences between the analytical results
and simulation results.

Beyond the theoretical interest in analytical results related to the controllability of complex net-
works, it is worth stressing that our particular focus on SSNs stems from their practical importance and
ubiquity in a number of key problems related to collective behaviors and space-dependent collective
decision-making [1]. By construction, the nodes of SSNs are embedded in the physical space and the
specific nature of inter-agent interactions governs the distribution of edges. Hence, the SSN topology—
with its particular in- and out-degree distributions, and high clustering—is a powerful abstraction to
study the dynamics of these collective behaviors. For instance, when considering natural swarms—e.g.,
schools of fish or flocks of birds—the concept of controllability of the SSN is key to explain how a single
agent detecting a predator is capable of triggering a collective evasive maneuver [9, 10]. The analysis of
the controllability of SSNs is even more important when considering artificial swarming systems: e.g.,
groups of robots collectively moving in space [21], or performing a decentralized mapping of an open
space [8], or aiming at achieving a spatial consensus [15]. In all these multi-robot systems, the tuning of
the topology of the SSNs plays a key role in achieving the desired collective actions. Even for problems
of social contagion in collective decision-making, the Kirchhoff index and clustering coefficients of the
SSN have been found to be responsible for a transition from a simple social contagion to a complex
one [5]. In all these natural, artificial and social systems, the effectiveness in achieving an effective
collective response rests on the amplified influence of a few agents (i.e., nodes of the SSN) over the
entire network. Therefore, a detailed understanding of the controllability of various types of SSN would
offer valuable insights into the complex dynamics of this broad class of collective behaviors.

The aim of this paper is threefold. First, we correct the assumption when calculating the minimum
fraction of driver nodes given in [9] and back this up with simulations. Second, we generalize the results
by considering SSNs in which a fraction p of the links are removed at random. Also for this case, we
are capable of deriving an implicit equation, whose solution leads to the minimum number of driver
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nodes. Finally, we relax the condition that the out-degree is regular. Specifically, we consider bi-modal
out-degree distributions, where the out-degree is k1 for a fraction α of the nodes and k2 for the remaining
fraction (1−α) of the nodes. Note that the impact of having unavailable links is also considered a more
general scenario.

2. Controllability of networks and driver nodes

2.1 Controllability of networks

A system is controllable if it can be driven from any initial state to any desired final state, by proper
variable inputs, in finite time [12]. Most real systems are driven by nonlinear processes, but the control-
lability of nonlinear systems is in many aspects structurally similar to that of linear systems [11]. The
linear and time-invariant (LTI) dynamics on a directed network can be described by:

dx(t)
dt

= Ax(t)+Bu(t), (2.1)

where the N× 1 vector x(t) = (x1(t),x2(t), ...,xN(t))T denotes the state of the system with N nodes at
time t. The weighted matrix A is an N×N matrix which describes the network topology and the inter-
action strength between the components. The N×M matrix B is the input matrix which identifies the
M6N driver nodes controlled by outside input signals. The M×1 vector u(t)= (u1(t),u2(t), ...,uM(t))T

is the input signal vector. A driver node j ∈ {1, . . . ,M} has an input signal u j(t) which is externally fed
into it.

The LTI system defined by Eq. (2.1) is controllable if and only if the N×NM controllability matrix:

C = (B,AB,A2B, ...,AN−1B), (2.2)

has full rank, i.e., rank(C) = N. This criterion is the so-called Kalman controllability rank condition [7].
The rank of the matrix C provides the dimension of the controllable subspace of the system. One
therefore needs to find the right input matrix B consisting of a minimum number of driver nodes to
ensure that the controllability matrix C has full rank.

2.2 Driver nodes

Liu et al. [11] proved that the minimum number of driver nodes needed for structural controllability,
where the input signals are injected to control the directed network, can be obtained through the “max-
imum matching” of the network. The source node of a directed link is defined as the node from which
the link originates, while the target node is the node where the link terminates. A maximum matching
of a directed network is a maximum set of links that do not share source or target nodes [26], which
is illustrated in Fig.1(a). Such links are coined “matching links”. Target nodes of matching links are
matched nodes and the other nodes are unmatched nodes. For a given maximum matching, connecting
driver nodes with unmatched nodes gives a minimum number of driver nodes ND needed for controlling
the network.

A directed network G with N nodes and L links can be converted into a bipartite graph BN,N with
2N nodes and L links in order to find the maximum number of matching links, so as to determine the
minimum number of driver nodes ND (see Fig. 1(b)). A maximum matching in a bipartite graph can be
obtained efficiently by the Hopcroft–Karp algorithm [4] when the original directed network is small. The
unmatched nodes in a maximum matching constitute a minimum set of driver nodes. It is worth noting
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FIG. 1. Driver nodes and matching links (shown in red) in a directed network G. (a) An example network G with N = 5 nodes
and L = 5 directed links. Unmatched nodes are shown in green. (b) The corresponding bipartite graph with 2N nodes and L links.
By using the Hopcroft–Karp algorithm, a maximum set of matching links can be found in the bipartite graph. The target nodes of
matching links are matched nodes. Other target nodes are unmatched nodes, which are also driver nodes.

that a minimum set of driver nodes is not necessarily unique. The Hopcroft–Karp algorithm guarantees
to return the minimum number of driver nodes to completely control the network. In addition, the
computational complexity of the Hopcroft–Karp algorithm to find all driver nodes is O(

√
NL).

As discussed above, the Hopcroft–Karp algorithm works efficiently when the network is small and
sparse. However, in real life, this is seldom the case. When the network is large and dense, the Hopcroft–
Karp algorithm may no longer be a viable efficient option in finding the number of driver nodes. Even
with the rapid increase in computational power, the use of Hopcroft–Karp algorithm can be rendered
ineffective if one tries to identify the sensitivity of the number of driver nodes with respect to sev-
eral parameters characterizing the SSN topology. For instance, as we will see with Theorem 5.3, the
number nD of driver nodes can have a very nonlinear, implicit and intricate relationship with the param-
eters defining the degree distribution. In such cases, performing a systematic sensitivity analysis of the
dependence of nD with respect to these parameters using the Hopcroft–Karp algorithm would prove pro-
hibitive. As an alternative, there exists a general expression for the minimum number ND of driver nodes
obtained by using generating functions [17], which is also provided in [11]. However, this approach
requires the knowledge of the closed-form degree distribution of the network. In the rest of this paper,
we use this general expression to estimate the minimum number ND of driver nodes in the SSNs with
regular out-degree distribution, and then deduce the general formula by considering the scenario when a
fraction p of the links are unavailable. We subsequently relax the condition that the out-degree is regular
and look into networks with bi-modal out-degree distributions.

3. Generating functions

In a network, let x denote the probability that a link is in state X . For example, X can denote the weight
of each link in a weighted network: X can denote the existence of a link in an unweighted network. We
assume that the states of links are independent from each other. Then, the probability that all the links
of a node with degree k are in state X is xk. Averaging this probability by the degree distribution of
the network, we then obtain the probability that all the links of a randomly chosen node are in state X .



CONTROLLABILITY OF A CLASS OF SWARM SIGNALING NETWORKS 5 of 22

According to the definition of the generating function [18], this probability can be written as

G(x) =
∞

∑
k=0

pkxk, (3.1)

where pk is the probability that a randomly chosen node in the network has degree k. Let x = 1, then we
obtain G(1) = ∑

∞
k=0 pk = 1. Besides, the average degree 〈k〉 of the network can be expressed as:

〈k〉= G
′
(1) =

∞

∑
k=0

kpk. (3.2)

Considering the degree of the node reached by following a randomly chosen link is k, the probability
that all the other links of this node are in state X is xk−1. The distribution of the degrees of the nodes
reached by following a randomly chosen link is called the excess degree distribution qk, which depends
on the degree distribution pk. Note that the larger pk is, the larger qk is. Furthermore, following a link,
it is easier to reach a node with larger k. Hence, we have

qk ∝ kpk. (3.3)

The normalized distribution qk is

qk =
kpk

∑
∞
k=0 kpk

=
kpk

〈k〉
. (3.4)

Thus, the probability that all the other links of a node reached by following a randomly chosen link are
in state X is given by

H(x) =
∞

∑
k=1

qkxk−1 =
∞

∑
k=1

kpk

〈k〉
xk−1 =

G
′
(x)

G′(1)
. (3.5)

It must be highlighted that all these functions are based on the assumption that the states of links are
independent from each other [17].

4. SSNs with k-regular out-degree

4.1 Fraction of driver nodes in SSNs with k-regular out-degree

It is shown in Liu et al [11] that the minimum number of driver nodes can be obtained by using the
following set of generating functions

Gout(x) =
∞

∑
kout=0

Pout(kout)xkout , (4.1)

Gin(x) =
∞

∑
kin=0

Pin(kin)xkin , (4.2)

Hout(x) =
∞

∑
kout=1

koutPout(kout)

〈kout〉
xkout−1, (4.3)

Hin(x) =
∞

∑
kin=1

kinPin(kin)

〈kin〉
xkin−1, (4.4)
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where Pout(·) and Pin(·) denote the probability distribution function of the out-degree and in-degree,
respectively, and 〈kout〉 and 〈kin〉 denote the average out-degree and in-degree, respectively.

Using those generating functions, the general expression for the minimum fraction ND of driver
nodes derived by Liu et al. [11] reads

nD =
ND

N
=

1
2
{Gin(w2)+Gin(1−w1)−2+Gout(ŵ2)+Gout(1− ŵ1)+

k(ŵ1(1−w2)+w1(1− ŵ2))},
(4.5)

where w1,w2, ŵ1 and ŵ2 satisfy

w1 = Hout(ŵ2), (4.6)
w2 = 1−Hout(1− ŵ1), (4.7)
ŵ1 = Hin(w2), (4.8)
ŵ2 = 1−Hin(1−w1). (4.9)

By construction, the out-degree distribution for the SSN suggested in [9] is a Dirac delta function, i.e.

Pout(kout) = δ (k− kout), (4.10)

where k is the fixed out-degree for every node. Thus, the average out-degree 〈kout〉 equals the out-degree
k of each node. It is also shown in [9] that, for sufficiently large SSNs, the in-degree distribution closely
resembles a Poisson distribution, with average k, i.e.

Pin(kin) =
kkin

kin!
e−k. (4.11)

Using the degree distributions in Eqs. (4.1)–(4.4) it follows

Gout(x) = xk, (4.12)

Gin(x) = e−k(1−x), (4.13)

Hout(x) = xk−1, (4.14)

Hin(x) = e−k(1−x). (4.15)

Therefore, the parameters w1,w2, ŵ1 and ŵ2 satisfy

w1 = ŵk−1
2 , (4.16)

w2 = 1− (1− ŵ1)
k−1, (4.17)

ŵ1 = e−k(1−w2), (4.18)

ŵ2 = 1− e−kw1 . (4.19)

For the trivial case k = 0, it is easy to see that the above set of equations leads to nD = 1, i.e. all agents
in the swarm need to be controlled, which makes sense because the out-degree of every node is 0 in
this case. Also, for the case k = 1, Eqs. (4.16)–(4.19) are solved for w1 = 1,w2 = 0, ŵ1 = e−1 and
ŵ2 = 1− e−1. Hence, for k = 1, it holds that nD = e−1.
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For the case k > 1, Komareji & Bouffanais [9] argue that the smallest solution of the pair of
Eqs. (4.16) and (4.19) is given by w1 = ŵ2 = 0, and assuming that w1 and ŵ2 are indeed zero, the
following expression for the fraction of driver nodes is derived:

nD =
1
2
{(1− e−k(1−w2))k−1+ e−k(1−w2)+ k(1−w2)e−k(1−w2)}, (4.20)

where w2 is the solution of the implicit equation

1−w2 = (1− e−k(1−w2))k−1. (4.21)

From Eq. (4.20) the asymptotic behaviour of nD for large k can also be derived:

nD ≈
1
2

e−k. (4.22)

However, upon simulation of SSNs, determining the fraction of driver nodes by applying the maximum
matching algorithm, as described in [11], we found a discrepancy between Eq. (4.20) and the simulation
results shown in Fig. 2. We generate 10000 directed networks with N = 10000 nodes each having an
out-degree k whose value ranges from 1 to 8. The fraction nD of driver nodes is the average fraction of
driver nodes over 10000 networks for each out-degree k. As shown in Fig. 2, the result from Eq. (4.20)
fits well with the simulation result at k = 1. However, the difference between Eq. (4.20) and simulation
results are obvious for other values of k. For example, at all points k > 1, the results from the simulation
are about two times the results given by Eq. (4.20).

The discrepancy is due to the assumption that one can choose the solution of Eq. (4.16) and Eq. (4.19)
given by w1 = ŵ2 = 0. One can also argue that the pair Eq. (4.16) and Eq. (4.19) is equivalent to the
pair Eq. (4.17) and Eq. (4.18). If we assume

w1 = 1−w2, (4.23)
ŵ2 = 1− ŵ1, (4.24)

then the pair of equations Eq. (4.17)–Eq. (4.18) follows from the pair of equations Eq. (4.16)–Eq. (4.19).
As a result, applying Eq. (4.5) leads to the following expression for the fraction of driver nodes:

nD = ((1− e−k(1−w2))k−1+ e−k(1−w2)+ k(1−w2)e−k(1−w2)), (4.25)

where w2 is still the solution of Eq. (4.21).
The asymptotic behavior of nD for large k becomes:

nD ≈ e−k. (4.26)

Note that Eq. (4.25) also holds for k = 1, another indication of its correctness.
Table 1 shows the comparison between the approximations in Eqs. (4.25) and (4.26) and the simu-

lations.
Like previously, we generate 10000 directed networks with N = 10000 for each out-degree k whose

value ranges from 1 to 8. The fraction of driver nodes nD is the average fraction of driver nodes in
10000 networks. Then we calculate the analytical results from Eq. (4.25) and Eq. (4.26) and also
the corresponding absolute relative error r. As shown in Table 1, the absolute relative errors of our
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FIG. 2. Fraction of driver nodes nD for different values of the out-degree k: Eq. (4.20) versus simulation results.

approximation are less than 1% for k from 1 to 6. For the case where k = 7 and k = 8, the absolute
relative errors are still small—less than 6%. When the values of k are small, the absolute relative errors
of Eq. (4.26) are large.

We conclude from Table 1 that the simulations are an excellent fit for our approximation in Eq. (4.25).
Also, the asymptotic approximation Eq. (4.26) is increasingly accurate for increasing k.

4.2 Fraction of driver nodes under random link failures

In this section, we generalize the results of the previous section by considering SSNs with k-regular
out-degree, but now we assume that a fraction p of the links is removed at random. This assumption is
in accordance with some real-life scenarios, such as the communication disconnection between robots
in swarm robotic networks because of the limited range of communication.

In what follows, we show that the analysis that led to our implicit approximations is still valid and
applicable for this case. A crucial step is to find expressions for the generating functions Eqs. (4.1)–(4.4)
for this specific case involving a fraction of link failures.

The following lemma is instrumental in establishing the key results for this case—see [23] which
gives an expression for the degree distribution, after removing m links uniformly at random.

LEMMA 4.1 After removing m links in a uniform and random way from a network G0(N,L), with
degree distribution Pr[DG0 = j], the degree distribution Pr[DG = i] of the new network G satisfies:

Pr[DG = i] = (1− p)i
N−1

∑
j=i

(
j
i

)
p j−iPr[DG0 = j], (4.27)
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Table 1. Comparison of Eqs. (4.25)–(4.26) with simulation results.

k
Eq. (4.25) Eq. (4.26) Simulationsvalue r value r

1 0.367879 0.0079% 0.367879 0.0079% 0.36782
2 0.161903 0.40% 0.135335 16.07% 0.162003
3 0.060759 0.29% 0.049787 17.82% 0.06068
4 0.020916 0.28% 0.018316 12.18% 0.020943
5 0.007262 0.93% 0.006738 6.35% 0.007221
6 0.002578 0.23% 0.002479 4.06% 0.002561
7 0.00093 2.76% 0.000912 0.77% 0.000929
8 0.000339 5.93% 0.000335 4.69% 0.000346

where p = m
L denotes the fraction of removed links in the original network G0.

THEOREM 4.1 Consider a directed network with a k-regular out-degree and a Poisson in-degree distri-
bution with average k. Upon removing uniformly and at random a fraction p of the links, the generating
functions Ḡout(x) and Ḡin(x) of the out- and in-degree, respectively, satisfy

Ḡout(x) = (p+(1− p)x)k, (4.28)

Ḡin(x) = e−k(1−p)(1−x). (4.29)

The proof of Theorem 4.1 is given in Appendix A. Note that for the case without link removals, i.e.
p = 0, Eqs. (4.28)–(4.29) reduce to Eqs. (4.12)–(4.13). Also, we can deduce from Eqs. (4.28)–(4.29)
directly that both the average out- and in-degree after link removals, which is denoted by k̄, equal

k̄ = k(1− p). (4.30)

THEOREM 4.2 Consider a directed network with a k-regular out-degree and a Poisson in-degree with
average k. Then, after removing uniformly at random a fraction p of the links, the generating functions
H̄out(x) and H̄in(x) of the excess out- and in-degree, respectively, satisfy

H̄out(x) = (p+(1− p)x)k−1 (4.31)

H̄in(x) = e−k(1−p)(1−x) (4.32)

The proof of Theorem 4.2 is given in Appendix A. Note that for the case without link removals, i.e.
p = 0, Eqs. (4.31)–(4.32) reduce to Eqs. (4.14)–(4.15).

The results in Theorems 4.1 and 4.2 can also be directly deduced by using a result from [23]: if
the generating function for the degree distribution for a network is given by G(x), then the generat-
ing function Ḡ(x) for the resulting network after a fraction p of links are randomly removed, satisfies
Ḡ(x) = G(p+(1− p)x). In addition, Theorem 4.2 can also be established directly by applying Eq. (3.5)
to Eqs. (4.28)–(4.29).

We are now in a position to state the following result.
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THEOREM 4.3 Consider a directed network with a k-regular out-degree and a Poisson in-degree distri-
bution with average k. Then, after removing uniformly at random a fraction p of its links, the fraction
of the minimum number of driver nodes is given by

nD = (p+(1− p)(1− e−k(1−p)(1−w2)))k−1+ e−k(1−p)(1−w2)+

k(1− p)(1−w2)e−k(1−p)(1−w2),
(4.33)

where w2 satisfies
1−w2 = (p+(1− p)(1− e−k(1−p)(1−w2)))k−1. (4.34)

The asymptotic behavior of nD for large k is given by

nD ≈ e−k(1−p). (4.35)

It is worth noting that for the particular case without link removals, i.e. p = 0, Eqs. (4.33)–(4.35)
reduce to Eqs. (4.25)-(4.21)-(4.26), respectively. The proof of Theorem 4.3 is given in Appendix A.

Table 2 shows the comparison between the approximations in Eqs. (4.33) and (4.35) and simulations,
for the cases p = 0.2 and p = 0.5. Specifically, we generated 1000 directed networks with N = 10000
with out-degree k, where k ∈ {1,2,3,4,5,6,7,8}. For each network with the same out-degree k, we
randomly removed a fraction p of links and get the value of nD, and then repeat this process one thousand
times. Thus, the fraction of driver nodes nD for a combination (k, p) is the average fraction of driver
nodes in 106 realizations.

As shown in Table 2, the absolute relative errors r of our approximation Eq. (4.33) are small—less
than 4% for any k value when p = 0.2 or p = 0.5. In contrast, the relative errors of the asymptotic
approximation Eq. (4.35) are large for most cases.

Table 2. Comparison of Eqs. (4.33)–(4.35) with simulation results.
k

Eq. (4.33) Eq. (4.35) Simulations
p = 0.2 r p = 0.5 r p = 0.2 r p = 0.5 r p = 0.2 p = 0.5

1 0.442926 1.41% 0.584101 3.72% 0.449329 0.019% 0.606531 0.021% 0.449321 0.606622
2 0.238827 0.30% 0.410116 0.12% 0.201897 15.21% 0.367879 10.20% 0.238905 0.410229
3 0.116278 0.30% 0.279218 0.24% 0.090718 21.75% 0.22313 19.89% 0.116176 0.279108
4 0.050341 0.38% 0.183439 0.19% 0.040762 18.72% 0.135335 26.08% 0.050167 0.183421
5 0.021143 0.96% 0.112696 0.29% 0.018316 12.53% 0.082085 26.95% 0.021215 0.112680
6 0.009002 0.13% 0.065394 0.55% 0.00823 8.70% 0.049787 23.45% 0.009041 0.065339
7 0.003902 0.20% 0.037384 1.18% 0.003698 5.41% 0.030197 18.92% 0.003915 0.03736
8 0.001714 2.50% 0.021502 0.20% 0.001662 5.5% 0.018316 14.65% 0.001706 0.021533

We conclude from Table 2 that the simulations yield an excellent fit with our approximation Eq. (4.33).
Unsurprisingly, the asymptotic approximation Eq. (4.35) is increasingly accurate for increasing k.

Finally, Fig. 3 shows the fraction of driver nodes nD as a function of the out-degree k for several
values of p. The value of nD decreases as the degree of networks increases for a specific p. Note that
for the same k value, a larger value of p leads to a larger value of nD.

5. SSNs with a bi-modal out-degree

5.1 Fraction of driver nodes in SSNs with a bi-modal out-degree

In this section, we generalize the results of one of the previous sections by considering SSNs with a
bi-modal out-degree distribution, i.e. we assume that for a fraction α of nodes the out-degree is k1,
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FIG. 3. Fraction of driver nodes as function of the out-degree k for several values of the fraction of removed links p.

while for the remaining fraction 1−α of nodes, the out-degree equals k2. We will assume k1 6= k2 and
both k1 and k2 are strictly larger than 0.

THEOREM 5.1 Consider a directed network with a bi-modal out-degree distribution αδ (kout − k1)+
αδ (kout− k2), with average out-degree

k = αk1 +(1−α)k2, (5.1)

and a Poisson in-degree distribution with average k. The generating functions Ĝout(x) and Ĝin(x) of the
out- and in-degree, respectively, satisfy

Ĝout(x) = αxk1 +(1−α)xk2 , (5.2)

Ĝin(x) = e−k(1−x). (5.3)

The proof of Theorem 5.1 is given in Appendix B.

THEOREM 5.2 Consider a directed network with bi-modal out-degree αδ (kout− k1)+αδ (kout− k2),
with average out-degree

k = αk1 +(1−α)k2 (5.4)

and a Poisson in-degree distribution with average k. Then, the generating functions Ĥout(x) and Ĥin(x)
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of the excess out- and in-degree, respectively, satisfy

Ĥout(x) =
αk1xk1−1 +(1−α)k2xk2−1

k
, (5.5)

Ĥin(x) = e−k(1−x). (5.6)

The proof of Theorem 5.2 is given in Appendix B. The proof also can be established by applying
Eq. (3.5) directly to Eqs. (5.2)–(5.3). Note for the case k1 = k2 = k, where the out-degree reduces to a
Dirac function, Eqs. (5.2)–(5.6) reduce to Eqs. (4.12)–(4.15).

THEOREM 5.3 Consider a directed network with a bi-modal out-degree αδ (kout− k1)+αδ (kout− k2),
with average out-degree k = αk1+(1−α)k2 and a Poisson in-degree with average k. Then, the fraction
of minimum number of driver nodes is given by

nD = α(1− e−k(1−w2))k1 +(1−α)(1− e−k(1−w2))k2 −1+ e−k(1−w2)+ ke−k(1−w2)(1−w2), (5.7)

where w2 satisfies

1−w2 =
αk1(1− e−k(1−w2))k1−1 +(1−α)k2(1− e−k(1−w2))k2−1

k
. (5.8)

The asymptotic behaviour of nD for large k is given by

nD ≈ e−k. (5.9)

Note for the case k1 = k2 = k, where the out-degree reduces to a Dirac function, Eqs. (5.7)–(5.9)
reduce to Eqs. (4.25)–(4.21)–(4.26), respectively. It is worth noting that Eqs. (5.7)–(5.8) reveal a com-
plex dependency of nD with respect to the parameters characterizing the degree distribution, namely
(α,k1,k2). This is particularly apparent given the implicit nature of Eq. (5.8). In such cases, identifying
the intricate dependency of nD with those parameters using the Hopcroft–Karp algorithm would require
an impractical brute-force approach.

The proof of Theorem 5.3 is given in Appendix B.

Table 3 shows the comparison between the approximations in Eqs. (5.7) and (5.9) and simulations.
We generate 10000 directed networks with N = 10000 for each out-degree combination (k1,k2,α)

and obtain the average fraction nD of driver nodes. As shown in Table 3, the absolute relative errors r
of our approximation Eq. (5.7) are small, thereby indicating a good fit with simulations. The absolute
relative errors of Eq. (5.9) are larger, especially for small average degree k = αk1 +(1−α)k2.

We conclude from Table 3 that the simulations constitute a very good fit with our approximation
Eq. (5.7). Also, the asymptotic approximation Eq. (5.9) is increasingly accurate for increasing k.

5.2 Fraction of driver nodes under random link failures

In this section, we generalize the results of the previous section by considering again SSNs with a bi-
modal out-degree, but now we assume that a fraction p of the links is removed at random. We show
that the analysis that led to our implicit approximations can also be conducted for this case. Similar
to the case with a regular out-degree, a crucial step is to find expressions for the generating functions
Eqs. (4.1)–(4.4) for this particular case.

Based on Lemma 1, we get:
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Table 3. Comparing Eqs. (5.7)–(5.9) with simulation results.

k1 k2 k α
Eq. (5.7) Eq. (5.9) Simulationvalue r value r

1 3 2.5 0.25 0.107746 0.51% 0.082085 23.43% 0.107795
1 3 2 0.5 0.183062 0.020% 0.135335 26.09% 0.181395
1 3 1.5 0.75 0.273670 0.040% 0.223130 18.44% 0.273455
2 4 3.5 0.25 0.036402 0.56% 0.030197 16.58% 0.036705
2 4 3 0.5 0.063648 0.27% 0.049787 21.57% 0.06352
2 4 2.5 0.75 0.106955 0.25% 0.082085 23.44% 0.106735
2 6 5 0.25 0.007355 1.04% 0.006738 9.30% 0.007315
2 6 4 0.5 0.022172 0.76% 0.018316 16.76% 0.022335
2 6 3 0.75 0.071349 0.19% 0.049787 30.09% 0.071875
2 8 6.5 0.25 0.001555 3.81% 0.001503 0.33% 0.001595
2 8 5 0.5 0.007556 2.20% 0.006738 8.86% 0.007745
2 8 3.5 0.75 0.045382 0.35% 0.030197 33.69% 0.04665
4 6 5.5 0.25 0.004324 0.68% 0.004087 4.84% 0.004362
4 6 5 0.5 0.007293 0.97% 0.006738 6.71% 0.007181
4 6 4.5 0.75 0.012357 1.40% 0.011109 8.34% 0.01228
4 8 7 0.25 0.000931 3.22% 0.000912 5.20% 0.000962
4 8 6 0.5 0.002593 4.18% 0.002479 4.36% 0.002706
4 8 5 0.75 0.007354 1.17% 0.006738 7.56% 0.007269

THEOREM 5.4 Consider a directed network with a bi-modal out-degree αδ (kout−k1)+(1−α)δ (kout−
k2), with average out-degree

k = αk1 +(1−α)k2 (5.10)

and a Poisson in-degree with average k. Then, after removing uniformly at random a fraction p of the
links, the generating functions G̃out(x) and G̃in(x) of the out- and in-degree, respectively, satisfy

G̃out(x) = α(p+(1− p)x)k1 +(1−α)(p+(1− p)x)k2 , (5.11)

G̃in(x) = e−k(1−p)(1−x). (5.12)

By applying the generating function Ḡ(x) for the resulting network after a fraction p of links are
randomly removed [23], the theorem also follows directly from G̃out(x) = Ĝout(p + (1− p)x) and
G̃in(x) = Ĝin(p+ (1− p)x). Note that for the case without link removals, i.e. p = 0, Eqs. (5.11)–
(5.12) reduce to Eqs. (5.2)–(5.3). Also, we can deduce from Eqs. (5.11)–(5.12) directly that both the
average out- and in-degree after link removals, which we denote by k̃, and satisfies

k̃ = k(1− p). (5.13)

THEOREM 5.5 Consider a directed network with a bi-modal out-degree αδ (kout−k1)+(1−α)δ (kout−
k2), with average out-degree

k = αk1 +(1−α)k2, (5.14)

and a Poisson in-degree with average k. Then, after removing uniformly at random a fraction p of the
links, the generating functions H̄out(x) and H̄in(x) of the excess out- and in-degree, respectively, satisfy

H̃out(x) =
αk1(p+(1− p)x)k1−1 +(1−α)k2(p+(1− p)x)k2−1

k
, (5.15)

H̃in(x) = e−k(1−p)(1−x). (5.16)
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The proof of Theorem 5.5 can readily be obtained by combining the proofs of Theorems 4.2 and
5.2. By applying the generating function Ḡ(x) for the resulting network after a fraction p of links
are randomly removed [23], the theorem also follows directly from H̃out(x) = Ĥout(p+(1− p)x) and
H̃in(x) = Ĥin(p+(1− p)x). Note that for the case without link removals, i.e. p = 0, Eqs. (5.15)–(5.16)
reduce to Eqs. (5.5)–(5.6).

After obtaining expressions for all required generation functions, we are now in the position to state
the following result.

THEOREM 5.6 Consider a directed network with a bi-modal out-degree αδ (kout−k1)+(1−α)δ (kout−
k2), with average out-degree k = αk1 +(1−α)k2 and a Poisson in-degree with average k. Then, after
removing uniformly at random a fraction p of the links, the fraction of minimum number of driver nodes
is given by:

nD = α(p+(1− p)(1− e−k(1−ω2)))
k1
+(1−α)(p+(1− p)(1− e−k(1−ω2)))k2

−1+ e−k(1−p)(1−ω2)+ k(1− p)e−k(1−ω2)(1−ω2)
(5.17)

where ω2 satisfies

1−ω2 =

αk1(p+(1− p)(1− e−k(1−p)(1−ω2)))k1−1 +(1−α)k2(p+(1− p)(1− e−k(1−p)(1−ω2)))k2−1

k
.

(5.18)

The asymptotic behaviour of nD for large k is given by

nD ≈ e−k(1−p). (5.19)

For the case without link removals, i.e. p = 0, Eqs. (5.17)–(5.19) reduce to Eqs. (5.7)–(5.9).

The proof of Theorem 5.6 is given in Appendix C.

As a final step, to verify our approximation Eq. (5.17), we generate 1000 directed networks with
N = 10000 for each out-degree combination (k1,k2,α). For each network with the same out-degree
combination (k1,k2,α), we randomly remove a fraction p of links and get the value of nD, and then
repeat this process for 1000 times. Thus, the fraction of driver nodes nD for a combination (k1,k2,α, p)
is the average fraction of driver nodes in 106 realizations.

Table 4 shows the comparison between Eq. (5.17) and simulations. In most cases, the relative errors
between Eq. (5.17) and simulations are small. We conclude from Table 4 that the simulations are a very
robust fit with our approximation Eq. (5.17).

6. Conclusion

In this paper, we correct the formula given in [9] for the minimum number of driver nodes for a specific
class of swarm signaling networks, which are characterised by a regular out-degree. We then generalize
the results by considering SSNs with a regular out degree k where a fraction p of the links is unavailable.
For this case we derive an implicit equation, whose solution leads to the minimum number of driver
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Table 4. Comparison of approximation Eq. (5.17) with simulation results.

k1 k2 k α
Eq. (5.17) Simulation

p = 0.2 r p = 0.5 r p = 0.2 p = 0.5
1 3 2.5 0.25 0.251484 0.50% 0.541569 0.19% 0.252746 0.540569
1 3 2 0.5 0.340662 0.41% 0.627028 1.29% 0.342065 0.619028
1 3 1.5 0.75 0.431100 0.29% 0.709013 2.21% 0.432370 0.693714
2 4 3.5 0.25 0.122113 0.25% 0.410770 0.29% 0.121813 0.409569
2 4 3 0.5 0.183813 1.32% 0.476848 0.43% 0.186273 0.474822
2 4 2.5 0.75 0.247667 0.80% 0.535501 0.43% 0.245692 0.537824
2 6 5 0.25 0.033257 0.87% 0.299464 0.52% 0.033549 0.297913
2 6 4 0.5 0.094631 1.86% 0.435961 1.48% 0.096426 0.429607
2 6 3 0.75 0.216405 0.93% 0.514376 3.06% 0.218443 0.499125
2 8 6.5 0.25 0.008650 0.06% 0.101497 17.49% 0.008655 0.123010
2 8 5 0.5 0.037450 0.81% 0.406573 0.15% 0.037150 0.405974
2 8 3.5 0.75 0.204397 0.017% 0.505728 1.00% 0.204363 0.510815
4 6 5.5 0.25 0.020441 5.68% 0.163736 0.14% 0.021671 0.163504
4 6 5 0.5 0.032167 4.57% 0.229064 0.44% 0.033706 0.228061
4 6 4.5 0.75 0.050380 1.00% 0.288043 0.80% 0.049880 0.285759
4 8 7 0.25 0.005504 1.47% 0.058532 0.33% 0.005586 0.058338
4 8 6 0.5 0.013368 0.077% 0.135230 0.42% 0.013357 0.134664
4 8 5 0.75 0.033187 0.27% 0.265665 0.93% 0.033275 0.263211

nodes. We find that our approximation fits well with simulation results. Finally, we relax the condition
that the out-degree is regular and look into bi-modal out-degree distributions. For this case we also
consider scenarios with unavailable links. We derive an implicit equation and verify its accuracy. We
find that our approximation for bi-modal out-degree distribution fits well with simulation results.
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Appendix A

Here we will give the proof of Theorem 4.1. The out-degree distribution Pout(·) for the unperturbed
network is given in Eq. (4.10). Let us denote the out-degree distribution for the perturbed network by
P̄out(·). Then it follows from Lemma 4.1 and Eq. (4.10) that

P̄out(kout) = (1− p)kout
N−1

∑
j=kout

(
j

kout

)
p j−kout δ (k− j). (6.1)

Therefore we obtain

P̄out(kout) = 0, (6.2)

if kout > k and

P̄out(kout) = (1− p)kout

(
k

kout

)
pk−kout (6.3)
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if kout 6 k. From this we get

Ḡout(x) =
∞

∑
kout=0

P̄out(kout)xkout =
k

∑
kout=0

(1− p)kout

(
k

kout

)
pk−koutxkout =

k

∑
kout=0

(
k

kout

)
((1− p)x)kout pk−kout = (p+(1− p)x)k.

(6.4)

This proves that Eq. (4.28) holds.

We assumed that the in-degree distribution of the original graph follows a Poisson distribution, see
(4.11) but for finite N the actual distribution is binomial. However, for N −→∞ the limiting distribution
is indeed Poissonian. Therefore, for proving that Eq. (4.29) holds, we will use Lemma 4.1 with N = ∞.
The in-degree distribution Pin(·) for the unperturbed network is given in Eq. (4.11). Let us denote the in-
degree distribution for the perturbed network by P̄in(·). Then it follows from Lemma 4.1 and Eq. (4.11)
that

P̄in(kin) = (1− p)kin
∞

∑
j=kin

(
j

kin

)
p j−kin

k j

j!
e−k. (6.5)

From this we get

Ḡin(x) =
∞

∑
kin=0

P̄in(kin)xkin =
∞

∑
kin=0

(1− p)kin
∞

∑
j=kin

(
j

kin

)
p j−kin

k j

j!
e−kxkin =

e−k
∞

∑
kin=0

(
(1− p)x

p
)kin

∞

∑
j=kin

(
j

kin

)
(pk) j

j!
=

e−k
∞

∑
kin=0

(
(1− p)x

p
)kin

∞

∑
j=kin

1
kin!

(pk) j

( j− kin)!
=

e−k
∞

∑
kin=0

(
(1− p)x

p
)kin

1
kin!

∞

∑
j=kin

(pk) j−kin(pk)kin

( j− kin)!
=

e−k
∞

∑
kin=0

(
(1− p)x

p
)kin

(pk)kin

kin!

∞

∑
ĵ=0

(pk) ĵ

ĵ!
=

e−k
∞

∑
kin=0

(k(1− p)x)kin

kin!
epk =

e−kek(1−p)xepk = e−k(1−p)(1−x).

(6.6)

This proves that Eq. (4.29) holds.

Next we will prove Theorem 4.2. Using the same notation as before, it follows from Eq. (4.3) that
for the perturbed system the generating function H̄out(x) is given by

H̄out(x) =
∞

∑
kout=1

koutP̄out(kout)

〈kout〉
xkout−1 (6.7)
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Then, using Eqs. (6.2)–(6.3) we obtain

H̄out(x) =
k

∑
kout=1

kout(1− p)kout
( k

kout

)
pk−kout

k(1− p)
xkout−1 =

k

∑
kout=1

(
k−1

kout−1

)
pk−kout((1− p)x)kout−1 =

k−1

∑
m=0

(
k−1

m

)
pk−1−m((1− p)x)m = (p+(1− p)x)k−1.

(6.8)

Finally, we prove Eq. (4.32).
Using the same notation as before, it follows from Eq. (4.4) that for the perturbed system the generating
function H̄in(x) is given by

H̄in(x) =
∞

∑
kin=1

kinP̄in(kin)

〈kin〉
xkin−1. (6.9)

Then, using Eq. (6.5) we obtain

H̄in(x) =
∞

∑
kin=1

kin(1− p)kin

k(1− p)

∞

∑
j=kin

(
j

kin

)
p j−kin

k j

j!
e−kxkin−1 =

e−k
∞

∑
kin=1

kin(k(1− p)x)kin

xk(1− p)kin!
epk = e−k+pk

∞

∑
kin=1

(k(1− p)x)kin−1

(kin−1)!
=

e−k+pk
∞

∑
m=0

(k(1− p)x)m

m!
= e−k+pk+k(1−p)x = e−k(1−p)(1−x).

(6.10)

This finishes the proof of Theorem 4.2.

Proof of Theorem 4.3.
Using Theorem 4.1 and 4.2, the set of equations (4.6)–(4.9) becomes

w1 = (p+(1− p)ŵ2)
k−1 (6.11)

ŵ2 = 1− e−k(1−p)w1 (6.12)

w2 = 1− (p+(1− p)(1− ŵ1))
k−1 (6.13)

ŵ1 = e−k(1−p)(1−w2) (6.14)

By setting ŵ2 = 1− ŵ1 and w1 = 1−w2, it follows that the pair of Eqs. (6.11)–(6.12) is equivalent to
the pair of Eqs. (6.13)–(6.14) .
From this it follows that nD in Eq. (4.5) becomes

nD = Ḡout(1− ŵ1)+ Ḡin(w2)−1+ k(1− p)ŵ1(1−w2) (6.15)

Using Eqs. (4.28), (4.29) and (6.14), this leads to Eq. (4.33). Furthermore, Eq. (4.34) follows from the
substitution of ŵ1 given in Eq. (6.14) into Eq. (6.13).
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Finally, we prove that Eq. (4.35) holds. First, we rewrite Eq. (4.33) as

nD = (p+(1− p)(1− ŵ1))
k−1+ ŵ1 + k(1− p)(1−w2)ŵ1, (6.16)

where ŵ1 satisfies
ŵ1 = e−k(1−p)(p+(1−p)(1−ŵ1))

k−1
. (6.17)

Therefore, for large k we obtain
ŵ1 ≈ e−k(1−p), (6.18)

while from Eq. (6.13) we get

1−w2 = (p+(1− p)(1− ŵ1))
k−1 ≈ 1− (1− p)(k−1)ŵ1. (6.19)

Then plugging Eqs. (6.18) and (6.19) into Eq. (6.16) yields

nD ≈ 1− (1− p)kŵ1−1+ ŵ1 + k(1− p)(1− (1− p)(k−1)ŵ1)ŵ1 =

1− (1− p)kŵ1−1+ ŵ1 + k(1− p)ŵ1− (1− p)2k(k−1)ŵ2
1 ≈ ŵ1 ≈ e−k(1−p).

(6.20)

This completes the proof of Theorem 4.3.

Appendix B

Proof of Theorem 5.1.
Let us denote the out-degree distribution for the considered network by P̂out(·). Then it holds that

P̂out(kout) = αδ (kout− k1)+(1−α)δ (kout− k2). (6.21)

Then, denoting the generating function for the out-degree distribution by Ĝout, we get

Ĝout(x) =
∞

∑
kout=0

P̂out(kout)xkout =

∞

∑
kout=0

(αδ (kout− k1)+(1−α)δ (kout− k2))xkout = αxk1 +(1−α)xk2 .

(6.22)

Let us denote the in-degree distribution for the considered network by P̂in(·), which for large N will
approach a Poisson distribution with average k = αk1 +(1−α)k2. Then it holds that

P̂in(kin) =
kkin

kin!
e−k. (6.23)

Then, denoting the generating function for the in-degree distribution by Ĝin, we get

Ĝin(x) =
∞

∑
kin=0

P̂in(kin)xkin =
∞

∑
kin=0

kkin

kin!
e−kxkin =

e−k
∞

∑
kin=0

(kx)kin

kin!
= e−kekx = e−k(1−x).

(6.24)
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This finishes the proof of Theorem 5.1.

Proof of Theorem 5.2.

Using the same notation as before, it follows from Eq. (4.3) that the generating function Ĥout(x) is
given by

Ĥout(x) =
∞

∑
kout=1

koutP̂out(kout)

〈kout〉
xkout−1 (6.25)

Then, using Eqs. (6.21) we obtain

Ĥout(x) =
∞

∑
kout=1

kout(αδ (kout− k1)+(1−α)δ (kout− k2))

k
xkout−1 =

αk1xk1−1 +(1−α)k2xk2−1

k
.

(6.26)

Finally, we prove Eq. (5.6).
Using the same notation as before, it follows from Eq. (4.4) that the generating function Ĥin(x) is given
by

Ĥin(x) =
∞

∑
kin=1

kinP̂in(kin)

〈kin〉
xkin−1 (6.27)

Then, using Eq. (6.23) we obtain

H̄in(x) =
∞

∑
kin=1

kinkkin e−kxkin−1

kkin!
= e−k

∞

∑
kin=1

kkin−1xkin−1

(kin−1)!
−

e−k
∞

∑
i=0

(kx)i

i!
= e−kekx = e−k(1−x).

(6.28)

This finishes the proof of Theorem 5.2

Proof of Theorem 5.3.
Using Theorems 5.1 and 5.2, the set of Eqs. (4.6)–(4.9) becomes

w1 =
αk1ŵk1−1

2 +(1−α)k2ŵ2
k2−1

k
(6.29)

ŵ2 = 1− e−kw1 (6.30)

w2 = 1− αk1(1− ŵ1)
k1−1 +(1−α)k2(1− ŵ1)

k2−1

k
(6.31)

ŵ1 = e−k(1−w2) (6.32)

By setting ŵ2 = 1− ŵ1 and w1 = 1−w2, it follows that the pair of Eqs. (6.29)–(6.30) is equivalent to
the pair of equations Eqs. (6.31)–(6.32).
From this it follows that nD in Eq. (4.5) becomes

nD = Ĝout(1− ŵ1)+ Ĝin(w2)−1+ kŵ1(1−w2) (6.33)



20 of 22 P. SUN ET AL

Using Eqs. (5.2), (5.3) and (6.32), this leads to Eq. (5.7). Furthermore, Eq. (5.8) follows from the sub-
stitution of ŵ1 given in Eq. (6.32) into Eq. (6.31).

Finally, we prove that Eq. (5.9) holds. First, we rewrite Eq. (5.7) as

nD = α(1− ŵ1)
k1 +(1−α)(1− ŵ1)

k2 −1+ ŵ1 + k(1−w2)ŵ1, (6.34)

where ŵ1 satisfies

ŵ1 = e−(αk1(1−ŵ1)
k1−1+(1−α)k2(1−ŵ1)

k2−1) ≈

e−(αk1+(1−α)k2)+(αk1(k1−1)+(1−α)k2(k2−1))ŵ1 =

eke(αk1(k1−1)+(1−α)k2(k2−1))ŵ1

(6.35)

Therefore, for large k we obtain
ŵ1 ≈ e−k, (6.36)

while from Eq. (6.31) we get

w2 ≈ 1− αk1(1− (k1−1)ŵ1 +(1−α)k2(1− (k2−1)ŵ1

k
=

1− k− (αk1(k1−1)+(1−α)k2(k2−1))ŵ1

k
=

αk1(k1−1)+(1−α)k2(k2−1)
k

ŵ1 ≡ σ ŵ1.

(6.37)

Then plugging Eqs. (6.36) and (6.37) into Eq. (6.34) yields

nD ≈ α(1− k1ŵ1)+(1−α)(1− k2)ŵ1−1+ ŵ1 + k(1−σ ŵ1)ŵ1 =

α−αk1ŵ1 +1−α− k2(1−α)ŵ1−1+ ŵ1 + kŵ1− kσ ŵ2
1 ≈ ŵ1 = e−k.

(6.38)

This completes the proof of Theorem 5.3.

Appendix C

Using Theorems 5.4 and 5.5, the set of Eqs. (4.6)–(4.9) becomes

ω1 =
αk1(p+(1− p)ω̂2)

k1−1 +(1−α)k2(p+(1− p)ω̂2)
k2−1

k
(6.39)

1−ω2 =
αk1(p+(1− p)(1− ω̂1))

k1−1 +(1−α)k2(p+(1− p)(1− ω̂1))
k2−1

k
(6.40)

ω̂1 = e−k(1−p)(1−ω2) (6.41)

1− ω̂2 = e−k(1−p)ω1 (6.42)
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By setting ω̂2 = 1− ω̂1 and ω2 = 1−ω1, it follows that the pair of Eqs. (6.40)–(6.41) is equivalent
to the pair of Eqs. (6.39)–(6.42). Then by using Eq. (4.5), we get

nD = α(p+(1− p)(1− e−k(1−ω2)))
k1
+(1−α)(p+(1− p)(1− e−k(1−ω2)))k2

−1+ e−k(1−p)(1−ω2)+ k(1− p)e−k(1−ω2)(1−ω2)
(6.43)

where w2 is the solution of Eqs. (6.40)–(6.41). This proves that Eq. (5.17) holds.
Finally, we prove that Eq. (5.19) holds. From Eqs. (6.40)–(6.41) it follows that

ω̂1 = e−(1−p)(αk1(p+(1−p)(1−ω̂1))
k1−1+(1−α)k2(p+(1−p)(1−ω̂1))

k2−1) ≈

e−k(1−p)e(1−p)2(αk1(k1−1)+(1−α)k2(k2−1))ŵ1
(6.44)

Therefore, for large k we obtain
ŵ1 ≈ e−k(1−p), (6.45)

Similarly, from Eq. (6.40) we can deduce

w2≈ (1− p)(αk1(k1−1)+(1−α)k2(k2−1))
k

ŵ1 ≡ σ ŵ1 (6.46)

Substitution of Eq. (6.45) and Eq. (6.46) into Eq. (6.43), we obtain

nD ≈ e−k̄(1−p) (6.47)

This completes the proof of Theorem 5.6.
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