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Abstract This article addresses the challenge of planning coordinated activities for a set
of autonomous agents, who coordinate according to social commitments among themselves.
We develop a multi-agent plan in the form of a commitment protocol that allows the agents to
coordinate in a flexible manner, retaining their autonomy in terms of the goals they adopt so
long as their actions adhere to the commitments they have made. We consider an expressive
first-order setting with probabilistic uncertainty over action outcomes. We contribute the
first practical means to derive protocol enactments which maximise expected utility from
the point of view of one agent. Our work makes two main contributions. First, we show
how Hierarchical Task Network planning can be used to enact a previous semantics for
commitment and goal alignment, and we extend that semantics in order to enact first-order
commitment protocols. Second, supposing a cooperative setting, we introduce uncertainty
in order to capture the reality that an agent does not know for certain that its partners will
successfully act on their part of the commitment protocol. Altogether, we employ hierarchical
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planning techniques to check whether a commitment protocol can be enacted efficiently, and
generate protocol enactments under a variety of conditions. The resulting protocol enactments
can be optimised either for the expected reward or the probability of a successful execution
of the protocol. We illustrate our approach on a real-world healthcare scenario.

Keywords Commitment protocols · Intelligent agents · Uncertainty · Goal reasoning · HTN
planning · Non-determinism

1 Introduction

Modern information technology (IT) applications in a variety of domains involve interactions
between autonomous parties such as people and businesses. For example, IT serves a pivotal
role for the patients, staff, departments, and stakeholders in a modern healthcare centre [40].
The field of multi-agent systems provides constructs to deal with such settings through the
notions of autonomous agents and their protocols of interaction. However, many challenges
remain to building a realistic multi-agent society.

In particular, agents in a system, although autonomous, may be interdependent in subtle
ways. The physical, social, or organisational environment in which they interact can be com-
plex. We need ways to accommodate the environment while supporting decoupling of the
agents’ internals from their interaction, thus facilitating the composition of multi-agent sys-
tems. The notion of a socio-technical system (STS) [23,58] provides a basis for representing
such interactions between agents in the context of an organisation, such as a healthcare cen-
tre, and respecting technical artefacts required for the effective operation of the organisation.
Here, activities in an STS are characterised by a combination of the goals sought by and the
specified interactions between the agents.

Along these lines, the notion of (social) commitments [54–56] has been adopted to describe
interactions among agents in a high-level implementation-independent manner. A particu-
larly important feature of commitments is that they are a public construct in that they define
a relationship between the concerned parties. Of course, any party may represent a com-
mitment internally but the meaning and significance of commitments derives from their
relational nature. Over the years, there has been progress on structuring interactions in terms
of commitment protocols [7,8,19,20,25,35,69]. Commitment protocols offer a noted advan-
tage in that they enable participating agents to coordinate in a flexible manner, retaining their
autonomy. An agent would comply with a protocol as long as it does not violate any of its
commitments—thus, in general, an agent may act in a variety of compliant ways to satisfy its
goals. Once stakeholders design a commitment protocol, it is then up to the individual agents
to instantiate commitments operationally in order to achieve their individual goals [23].

Put anotherway, goals relate to commitments at two levels: at design time, the collaborative
design process produces a commitment protocol; and at run time, agents consider the protocol
and their respective goals and make their decisions accordingly. This view leads us to two
main challenges:

– Where do the protocols come from? Collaborative organisational design and redesign
involve stakeholders jointly exploring the specification of a socio-technical system in
terms of the goals and commitments of the individual agents participating in the STS.
Previous work examined this problem qualitatively, for example, through Protos [18],
an abstract design process for capturing requirements of multiple stakeholders through
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an STS specification constructed in terms of commitments (with its associated formal
assumptions).

– How can an agent gain assurance that its goals are indeed achievable when the STS is
instantiated?An important challenge is to specify an STS so that autonomous agents with
their individual goals would want to participate in it—that is, to provide an assurance to
the agents that their participation would lead to their goals being satisfied.

Our contribution is to address the foregoing challenges by moving from a purely quali-
tative generated specification to one that allows the verification of the properties of actual
instantiations of the commitment protocols. While previous approaches have addressed the
challenge of whether a protocol can be verified in the sense that participants can enforce
it [7] (i.e., observe that agents comply with it), we address a more fundamental question of
whether a protocol can be enacted in the environment for which it was designed. Specifically,
the problem we address is the design of commitment protocols for agents acting in uncer-
tain environments, and the validation of the feasibility of the commitment protocol from a
centralised perspective.

Our planning-based approach provides a computational mechanism to reason about a
number of properties of commitment protocols and their enactments. In this article, we
consider an enactment to be an instantiation of a protocol defined in terms of goals and
commitments that corresponds to the full hierarchical decomposition of an Hierarchical Task
Network (HTN) task using a method library [29], simply put, an enactment is a sequence of
executable actions that fulfills agent goals and satisfies their commitments. An enactment is
optimal if it maximises the expected utility [12] across all alternative enactments. First, we
can identify whether or not a commitment protocol is compatible with the agent’s goals, i.e.,
whether there is at least one enactment of the protocol that achieves one or more individual
goals. Second, our approach can quickly generate a suboptimal enactment to prove a protocol
is feasible as well as generate all possible enactments, if needed. Third, we can provide
a quantitative assessment of the utilities of each possible enactment of the commitment
protocol. Fourth, we can use the exhaustive generation of enactments to select among them
regarding their utility to one or more of the participating agents.

Our previous work provided the initial steps to automate the verification of the realis-
ability of instances of commitment protocols using planning formalisms [50,62] as well as
quantifying the utility of such instances [51]. This article consolidates these contributions
and provides five novel contributions. First, we formalise a typical socio-technical system,
namely a real-world healthcare scenario (introduced in Sect. 2 and formalised in Sect. 5),
that is used throughout the article to illustrate the approach, and which can be used to test the
scalability of approaches such as ours. Second, in Sect. 3 (augmented by Sect. 4.1) we provide
a complete account of the planning formalism used to reason about commitment protocols
and how they relate to individual agent goals. This formalisation extends our previous work
by providing a probabilistic view of the environment and the utilities of states, allowing the
algorithms that generate possible enactments to reason about their expected utilities. Third,
in Sect. 4 we provide the complete extended formalisation of the commitment dynamics and
reasoning patterns [63] underlying our verification system. Fourth, in Sect. 6 we develop
a depth-first search algorithm, ND-PyHop, to explore commitment protocols in stochastic
environments and generate realisable protocol enactments. We show that using ND-PyHop
we can generate protocol enactments that satisfy a minimal expected utility criterion in expo-
nential time and linear memory. Finally, in Sect. 7 we evaluate the efficiency of the resulting
approach for increasingly complex instantiations of the healthcare scenario. We conclude the
article with a discussion of related research and future directions.
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Fig. 1 A breast cancer diagnosis process [3]

2 Healthcare scenario

Throughout this article, we use the following scenario as an example of the application of our
contribtuion. The scenario is illustrative and useful for two reasons. First, it shows a com-
plex network of commitment between a number of parties/agents that would be ill-suited to
model as a monolithic system, showcasing the power of modelling systems in terms of multi-
ple interacting agents following commitment protocols. Second, it is amenable to generating
arbitrarily large instantiations as the number of instances of agent roles (e.g., physicians,
patients, and radiologists), enabling it to be employed in empirical experimentation to mea-
sure the scalability of the algorithms we develop.

The scenario is drawn from a real-world healthcare application domain. Figure 1 shows
a breast cancer diagnosis process adapted from a report produced by a U.S. governmental
committee [3]. We omit the tumour board, which serves as an authority to resolve any dis-
agreements among the participants. For readability, we associate feminine pronouns with the
patient, radiologist, and registrar, and masculine pronouns with the physician and patholo-
gist.1

The process begins when the patient (not shown in the figure) visits a primary care physi-
cian, who detects a suspicious mass in her breast. He sends the patient over to a radiologist
for mammography. If the radiologist notices suspicious calcifications, she sends a report to
the physician recommending a biopsy. The physician requests the radiologist to perform a
biopsy, who collects a tissue specimen from the patient, and sends it to the pathologist. The
pathologist analyses the specimen, and performs ancillary studies. If necessary, the pathol-
ogist and radiologist confer to reconcile their findings and produce a consensus report. The
physician reviews the integrated report with the patient to create a treatment plan. The pathol-
ogist forwards his report to the registrar, who adds the patient to a state-wide cancer registry
that she maintains.

We formalise this scenario in the next sections and use it as an example in the rest of the
article.

1 This assignment is arbitrary; female and male can be swapped among the medical professionals.
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3 Formal background

Here we introduce the fundamental background upon which we build our formalisation of
planning for commitment protocols. Section 3.1 defines the first-order logic language we
use to formally represent agent goals and commitments, and the planning operators with
which the agents reason about the realisation of the commitment protocols. We review the
propositional formalisation of commitments from Telang et al. [63] in Sect. 3.2, from which
(in Sect. 4) we will build a first-order operationalisation from Meneguzzi et al. [50] that can
handle different instances of the same commitment. Finally, in Sect. 3.3 we introduce the
planning formalism we subsequently extend in Sect. 4.1 and employ thereafter.

3.1 Formal language and logic

Our formal language is based on first-order logic and consists of an infinite set of symbols for
predicates, constants, functions, and variables. It obeys the usual formation rules of first-order
logic and follows its usual semantics when describing planning domains [32].

Definition 1 (Term) A term, denoted generically as τ , is a variable following the prolog
convention of an uppercase starting letter A, B, . . . , Z , . . . (with or without subscripts); a
constant a, b, c (with or without subscripts); or a function term f (τ0, . . . , τn), where f is a
n-ary function symbol applied to (possibly nested) terms τ0, . . . , τn .

Definition 2 (Atoms and formulas) A first-order atomic formula (or atom), denoted as ϕ, is
a construct of the form p(τ0, . . . , τn), where p is an n-ary predicate symbol and τ0, . . . , τn
are terms. A first-order formula Φ is recursively defined as Φ ::= Φ ∧ Φ ′|¬Φ|ϕ. A formula
is said to be ground, if it contains no variables or if all the variables in it are bound to a
constant symbol.

We assume the usual abbreviations: Φ ∨ Φ ′ stands for ¬(¬Φ ∧ ¬Φ ′); Φ → Φ ′ stands
for ¬Φ ∨ Φ ′ and Φ ↔ Φ ′ stands for (Φ → Φ ′) ∧ (Φ ′ → Φ). Additionally, we also
adopt the equivalence {Φ1, . . . , Φn} ≡ (Φ1 ∧ · · · ∧ Φn) and use these interchangeably. Our
mechanisms use first-order unification [2], which is based on the concept of substitutions.

Definition 3 (Substitution) A substitution σ is a finite and possibly empty set of pairs
{x1/τ1, . . . , xn/τn}, where x1, . . . , xn are distinct variables and each τi is a term such that
τi �= xi .

Given an expression E and a substitution σ = {x1/τ1, . . . , xn/τn}, we use Eσ to denote
the expression obtained from E by simultaneously replacing each occurrence of xi in E with
τi , for all i ∈ {1, . . . , n}.

Substitutions can be composed; that is, for any substitutions σ1 = {x1/τ1, . . . , xn/τn}
and σ2 = {y1/τ ′

1, . . . , yk/τ
′
k}, their composition, denoted as σ1 · σ2, is defined as {x1/(τ1 ·

σ2), . . . , xn/(τn ·σ2), z1/(z1 ·σ2), . . . , zm/(zm ·σ2)}, where {z1, . . . , zm} are those variables
in {y1, . . . , yk} that are not in {x1, . . . , xn}. A substitution σ is a unifier of two terms τ1, τ2,
if and only if τ1 · σ = τ2 · σ .

Definition 4 (Unify Relation) Relation unify(τ1, τ2, σ ) holds iff τ1 · σ = τ2 · σ . Moreover,
unify(p(τ0, . . . , τn), p(τ ′

0, . . . , τ
′
n), σ ) holds iff unify(τi , τ ′

i , σ ), for all 0 ≤ i ≤ n.

Thus, two terms τ1, τ2 are related through the unify relation if there is a substitution σ

that makes the terms syntactically equal. The logic language is used to define a state within
a planning domain, as follows:
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Expired (E) Null (N) Pending(P)

Conditional (C) Detached (D)

Terminated(T) Satisfied (S) Violated (V)

Active(A)

createantecedent failure

antecedent

cancel cancelconsequentrelease

suspendreactivate

Fig. 2 State transition diagram of our commitment lifecycle, adapted from [63]

Definition 5 (State) A state is a finite set of ground atoms (facts) that represent logical values
according to some interpretation. Facts are divided into two types: positive and negated facts,
as well as constants for truth (�) and falsehood (⊥).

3.2 Goal and commitment operational semantics

We adopt the notion of a (social) commitment, which describes an element of the social
relationships between two agents in high-level terms. A commitment in this article is not to
be confused with a ‘psychological’ commitment expressing an agent’s entrenchment with
its intentions [16,54,57]. Commitments are extensively studied in multi-agent systems [27,
31,65] and are traditionally defined exclusively in terms of propositional logic constructs.
Recent commitment-query languages, e.g., [21,22], go beyond propositional constructs but
do not address the challenges studied in this article.

We make a distinction between commitment templates (which describe commitments
in general) and commitment instances, which allow for variable bindings that differentiate
commitments adopted by specific parties and referring to specific objects in the domain.
Although we elaborate on the formalisation of commitment instances in Sect. 4.2, we repre-
sent commitment template tuples exactly as the commitment formalisation of Telang et al.
[63] and define commitment instances later in the article. Thus, in this section, we explain
the commitment formalism in a simplified manner before extending it to handle multiple
commitment instances and the additional formalism required to reason with them.

A commitment C(de, ct , antecedent, consequent) means that the debtor agent de
commits to the creditor agent ct to bring about the consequent if the antecedent holds [56].
Figure 2 summarises a commitment lifecycle [63]. Upon creation, a commitment transitions
from state null to active, which consists of two substates: conditional (its antecedent is false)
and detached (its antecedent is true). An active commitment expires if its antecedent fails. If
the consequent of an active commitment is brought about, the commitment is satisfied. An
active commitment may be suspended and a pending commitment reactivated. If the debtor
cancels or the creditor releases a conditional commitment, the commitment is terminated. If
the debtor cancels a detached commitment, the commitment is violated.

Using this formalism,we canmodel the initial commitments betweenpatient and physician
for the scenario of Sect. 2 as follows:

– C1: physician commits to patient to providing the diagnosis (represented by the
predicate diagnosisProvided) if patient requests it (represented by the predicate diag-
nosisRequested), and does not violate commitments C2 and C3 (represented by the
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Null(N) Inactive (I) Active (A)

Suspended(U)

Terminated(T) Failed(F) Satisfied (S)

consider activate

reconsider reactivate
suspend suspend

drop ∨ abort fail succeed

Fig. 3 State transition diagram of our goal lifecycle, adapted from [63]

vio(X ) predicate). To not violate C2 and C3, patient needs to keep her imaging and
biopsy appointments.
C1 = C(physician, patient, diagnosisRequested ∧ ¬ vio(C2) ∧ ¬ vio(C3), diag-
nosisProvided)

– C2: patient commits to physician to keep the imaging appointment (represented by
the iAppointmentRequested predicate) upon physician’s request (represented by the
iAppointmentKept predicate).
C2 = C(patient, physician, iAppointmentRequested, iAppointmentKept)

Second, we adopt the notion of an (achievement) goal, which describes a pro-attitude of
an agent. A goal is a state of the world that an agent wishes to bring about. Goals in our
approach map to consistent desires and can be treated as possibly weaker than intentions; the
subtle distinctions between the two do not concern us. Figure 3 summarises a goal lifecy-
cle [63]. Exactly like our treatment of commitments, we differentiate goal templates—goal
descriptions before their adoption by an agent—and goal instances—goals currently being
pursued by an agent—which we detail in Sect. 4.3. Formally, a goal template is represented
as G(x, pg, s, f ), where x is an agent and pg is G’s precondition, whose truth is required
for G to be considered [63]. Since G’s success condition is s and failure condition is f , G
succeeds if s ∧ ¬ f holds.

Using this formalism, we can model the initial goals of the patient and physician for the
healthcare scenario of Sect. 2 as follows:

– G1: physician has a goal to have a diagnosis requested.
G1 = G(physician, �, diagnosisRequested, ⊥)

– G2: patient has a goal to have a diagnosis provided.
G2 = G(patient, �, diagnosisProvided, ⊥)

3.3 Classical and HTN planning

In what follows, we use an adaptation of the formalism defined by Ghallab et al. [32, Chapter
2]. Classical planning defines a problem in terms of an initial state and a goal state—each a
set of ground atoms—and a set of operators. Operators represent changes to the inherently
uncertain world via stochastic STRIPS-style operators 〈ω, φ, 〈(ε1, p1), . . . (εn, pn)〉〉where:
ω represents the operator identifier,φ represents the precondition that needs to hold in the state
prior to the operator being executed and (εi , pi ) represents the i th effect εi that happens with
pi probability (we assume that

∑n
i=1 pi = 1). We represent the possible effects compactly

as E . The effects of an operator contain both positive (represented as ε+) and negative
(represented as ε−) literals denoting properties that become, respectively, true and false in
the state where the operator is executed. That is, ε = 〈ε+, ε−〉. We represent the outcome of
executing an operator ω in state s as γ (s, 〈ω, φ, E〉). For stochastic operators, the outcome
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corresponds to the states resulting from the application of the effects of each possible outcome
represented by a function γ ′, shown in Eq. (1), resulting in the function γ shown in Eq. (2).

γ ′(s, 〈ε, p〉) = ({(s − ε−) ∪ ε+}, p) (1)

γ (s, 〈ω, φ, E〉) =
⎧
⎨

⎩

⋃

εi∈E
γ ′(s, 〈εi , pi 〉) if s |� φ

⊥ if s �|� φ

(2)

Intuitively, the application of γ on a state using a deterministic operator results in a
new state where the negative effects are removed from and positive effects are added to the
current state. Conversely, the application of γ on a state using a stochastic operator results
in a set of states, one for each possible stochastic outcome, leading to a branching structure
of future states. Hence, for a stochastic operator 〈ω, φ, 〈(ε1, p1), . . . (εn, pn)〉〉, we have that
γ (s, ω) = {(γ ′(s, ε1), p1), . . . (γ ′(s, εn), pn)}. For a deterministic operator 〈ω, φ, 〈(ε, 1)〉〉,
we can simplify the representation as 〈ω, φ, ε〉 with preconditions φ and effects ε. As an
example, consider an operator 〈act1, p ∧ q, 〈({¬p, r}, 0.5), ({¬q, t}, 0.5)〉〉 being applied
to a state S = {p, q}. The result if applying Eq. (2) (γ (S, act1)) is a set with two states
S′
1 = {q, r} and S′

2 = {p, t}.
Although classical planning has ExpSpace-Complete complexity in its most general for-

mulation, approaches such as Hierarchical Task Network (HTN) planning [30] use suitable
domain knowledge to solve many types of domains highly efficiently. A Hierarchical Task
Network (HTN) planner [32] considers tasks to be either primitive (equivalent to classical
operators) or compound (abstract high-level tasks). It generates a plan by refinement from
a top level goal: the planner recursively decomposes compound tasks by applying a set of
methods until only primitive tasks remain. Methods in HTNs represent domain knowledge,
which, when efficiently encoded enables HTN planners to be substantially more efficient
than other classical planning approaches. Many HTN planners, such as JSHOP2 [39], also
allow the encoding of domain knowledge in terms of horn-clause type conditional formulas
to encode simple inferences on the belief state, which we use to encode the dynamics of goal
and commitment states.

We leverage the efficient solution algorithms of regular HTN planning to plan
commitment–goal protocols in Sect. 4, and extend HTN planning to account for stochas-
tic actions and develop a new algorithm, to accommodate uncertainty within the protocols, in
Sect. 6. In between, Sect. 5 formalises the healthcare scenario in the HTN planning language
of the next section.

4 Planning formalisation for the operational semantics

We now develop the logical rules, operators, and methods in the HTN formalism, which
together operationalise the goal and commitment dynamics introduced above. Note that,
although the planning model includes rewards, we assume that rewards are only accrued by
actions of an agent in the environment (i.e., actions disjoint from the operational semantics
of commitment and goal manipulation), consequently, operators in our operational semantics
define zero rewards (and zero cost). Existing techniques show that it is straightforward to
convert models of processes into HTN domain specifications [53], as well as to convert
formalised process description languages, such as business process languages, into planning
operators [38]. Granted these techniques, we assume that a large part of the domain-specific
knowledge used in HTN encoding can be generated from the processes being validated.
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In order to reason about multiple instances of the same type of commitment, we need
to use first-order predicates to represent the parts of commitments and goals. Consequently,
our formalisation of the operational semantics departs from the propositional definitions of
Sect. 3.2 [63] in two ways. First, in order to be able to identify the logical rules that refer to
a specific type of commitment and goal, we extend the tuples with a type. Second, once an
agent creates a specific instance of a type of commitment (alternatively goals), we introduce
the variables required to identify such instances of commitments and goals as part of its
tuple. It follows that our semantics presented below is in an expressive first-order setting.
First, in Sect. 4.1, we formalize HTN planning in our context. Then, in Sects. 4.2 and 4.3
we formalise respectively commitments and goals within the planning framework. Finally,
in Sect. 4.4 we describe how to operationalize our semantics using a HTN planner.

4.1 Formalisation of HTN planning in a multi-agent system

We first introduce a formalisation of HTN planning geared to multi-agent systems. Let
〈I,D,A〉 be amulti-agent system (MAS) composed of an initial state I, a shared plan library
(also called domain knowledge), and a set of agents A where each agent a = 〈G, C〉 ∈ A
has a set of individual goals G and commitments C. In this formalism, we assume each agent
to have a known set of individual goals G (each agent may have zero or more goals) and
commitments C (representing, for example, known work-relations or cooperation networks).
Agent goals are not necessarily shared between multiple agents and commitments may not
necessarily connect all agents in the multi-agent system.

The shared domain knowledge D = 〈M,O,R〉 consists of an HTN planning domain,
which comprises a set ofmethodsM, a set of operatorsO, and a reward functionR. Operators
are divided into strict mutually disjoint subsets of domain operators Od (e.g., operators
modelling medical and administrative procedures) and social dynamics operators Os (i.e.,
the operators referring to the reasoning about goals and commitments). Od is specified by
the designer of the multi-agent system (and varies with each application) whereas Os is
domain-independent and specified in this section.

In order to achieve their goals G, agents try to accomplish tasks by decomposition using
methodsM, which decompose higher-level tasks t into more refined tasks until they can be
decomposed into primitive tasks corresponding to plans of executable operators ω1, . . . , ωn .
Tasks in an HTN are divided into a set of primitive tasks t ∈ O. In our formalisation
O = Od ∪ Os and a set non-primitive tasks t ∈ T defined implicitly as all tasks symbols
mentioned in m that are not in O. Formally, a method m = 〈t, φ, (t ′0, . . . , t ′n)〉 decomposes
task t in a state s |� φ (Definition 5) by replacing it by t0, . . . , tn in a task network. Thus,
applying methodm above to a task network (t0, . . . , t, . . . , tm) generates a new task network
(t0, . . . , t ′0, . . . , t ′n, . . . , tm). Solving an HTN planning problem consists of decomposing an
initial task network t0 from an initial state I using methods inm. A solution is a task network
T such that all task symbols in T are elements of O and they are sequentially applicable
from I using the γ function of Eq. (2). The key objective of our work is to generate protocol
instances or enactments and ensure that for a given MAS 〈I,D,A〉, we can generate valid
HTNplan for any top-level task t0 ∈ D. A top-level task inD is a non-primitive task that is not
part of any task network resulting from a method. We assume that a domain designer always
includes such tasks in the domain-dependent part of the method library. We now develop a
plan library (operators and methods) corresponding to the domain-independent commitment
dynamics, which we refer to as Is .
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We assume, without loss of generality, that the commitment dynamics operators Os are
all deterministic. Hence there is no uncertainty regarding an agent’s own commitment and
goal state. Crucially, by contrast, the domain operators Od may or may not be stochastic.

We can compute the expected utility of each generated plan using the probability informa-
tion of each operator outcome and the reward functionR(s, s′), which we assume is common
to all agents. The reward function describes the reward for transitioning from state s to state
s′. It does so by computing the individual reward of each atom that comprises a state. Our
model makes no specific assumptions about the reward function: it could be any function
over pairs of states. Nevertheless, in the scenario of Sect. 2, we represented the reward func-
tionR(s, s′) as taking input two states and as having an underlying predicate value mapping
R : Φ → R, with which we can compute the reward for a transition as follows:

R(s, s′) =
∑

φ∈Φ : s �|�φ ∧ s′|�φ

R(φ) (3)

Using this reward function, we can compute the utility of the states s0, . . . sn induced by
a plan by computing

∑n
i=1 R(si−1, si ). Note that rewards are always cumulative; when φ

ceases to hold, its reward is not subtracted.
The reward of individual atoms and the probabilities are domain-specific information that

need to be modelled by the designer of the commitment protocol. As an example, consider
a state in which a patient named alice has an imaging appointment but has not attended it
yet (and thus a literal iAppointmentKept(alice) is not true). If we define a reward function
whereby iAppointmentKept(X) has a value of 10, then the state resulting from the execution
of an action attendImaging(Patient, Physician, Radiologist) that has in its positive effect
iAppointmentKept(alice), the resulting state s′ will accrue value of 10 in its utility.

4.2 Commitment dynamics

We now extend the original formalisation of commitments from Sect. 3 in order to be able
to use it within a planner; in our case, a HTN planner. A commitment instance is a tuple

〈Ct, De,Cr, P, Q,
−→
Cv〉, where:

– Ct is the commitment type
– De is the debtor of the commitment
– Cr is the creditor of the commitment
– P is the antecedent, a universally quantified first-order formula
– Q is the consequent, an existentially quantified first-order formula

–
−→
Cv is a list [v1, . . . , vn] of variables identifying a specific instance of Ct .

We note that the antecedent is universally quantified because an agent can instantiate a
commitment with anything that matches the antecedent, whereas an agent needs only one
unifiable set of beliefs with the consequent to fulfil the commitment.

The first challenge in encoding commitment instances2 in a first-order setting is ensuring
that the components of a commitment are connected through their shared variables. To this
end, we model the entire set of variables of a particular commitment within one predicate.
Here, the number of variables n for a commitment is equivalent to the sumof arities of all first-
order predicates in P , and Q, so if P = p0(

−→
t0 ) . . . pa(

−→
tk ) and Q = pa+1(

−−→
tk+1) . . . pb(

−→
tm ),

then n = ∑i=m
i=0 |−→ti |.

For example, consider a radiologist X who commits to reporting the imaging results
of patient Y to physician Z if physician Z requests an imaging scan of patient Y . This

2 Throughout the remainder, we refer to commitment instances simply as commitments.
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is formalised as C(X, Z , imagingRequested(Z,Y), imagingResultsReported(X,Z,Y)).
This commitment has two predicates and three unique variables; however, with no loss of
generality, we model the variable vector [X, Z , Z , Y, X, Z , Y ] as having seven variables.
Notice that no information about the implicit quantification of the variables induced by the
commitment semantics is lost, since the logical rules referring to these variables remain the
same, and the variable vector is simply used to identify unique bindings of commitment and
goal instances.

Thus, for each commitment instance C = 〈Ct, De,Cr, P, Q,
−→
Cv〉, where P is a formula

ϕ and Q is a formula 
 we define the rules below:

p(C,Ct,
−→
Cv) ← commitment(C,Ct, De,Cr) ∧ ϕ (4)

q(C,Ct,
−→
Cv) ← commitment(C,Ct, De,Cr) ∧ 
 (5)

Note that, for implementation reasons, the commitment predicate in the formula is not
the exact translation of the formalisation, just a part of the commitment instance defined
above. We convert each element of a commitment’s formalisation into a conditional formula.
The condition of this formula is a conjunction of (1) the predicate that encodes an instance
C of a commitment of type Ct for debtor De toward a creditor Cr and (2) the condition
being checked. Equation (4) for a commitment’s precondition states that the antecedent

p(C,Ct,
−→
Cv) is only true for commitment instanceC of typeCt , containing variables

−→
Cv (i.e.

all variables in ϕ) if there is such a commitment commitment (C,Ct, De,Cr) and if formula
ϕ (encoding condition P) holds. Thus, Eq. (5) is encoded analogously as an implication that
depends upon identifying the commitment instance commitment (C,Ct, De,Cr) and the
truth of the formula encoding the commitment consequent.

Given these two basic formulas from the commitment tuple, we define rules that compute a
commitment’s state in Eqs. (6)–(13). These rules follow from Fig. 2. Together with domain-
independent operators in Os , we define goal and commitment dynamics within our HTN
planning framework. Note that the operational semantics introduces a var predicate used to

assert the list of variables
−→
Ct into a logic belief base.

null(C,Ct,
−→
Cv) ← ¬var(C,Ct,

−→
Cv) (6)

conditional(C,Ct,
−→
Cv) ← active(C,Ct,

−→
Cv) ∧ ¬p(C,Ct,

−→
Cv) (7)

detached(C,Ct,
−→
Cv) ← active(C,Ct,

−→
Cv) ∧ p(C,Ct,

−→
Cv) (8)

active(C,Ct,
−→
Cv) ← ¬null(C,Ct,

−→
Cv) ∧ ¬terminal(C,Ct,

−→
Cv)

∧¬pending(C,Ct,
−→
Cv) ∧ ¬satis f ied(C,Ct,

−→
Cv) (9)

terminated(C,Ct,
−→
Cv) ← released(C,Ct,

−→
Cv)

∨(¬p(C,Ct,
−→
Cv) ∧ cancelled(C,Ct,

−→
Cv)) (10)

violated(C,Ct,
−→
Cv) ← p(C,Ct,

−→
Cv) ∧ cancelled(C,Ct,

−→
Cv) (11)

satis f ied(C,Ct,
−→
Cv) ← ¬null(C,Ct,

−→
Cv) ∧ ¬terminal(C,Ct,

−→
Cv)

∧q(C,Ct,
−→
Cv) (12)

terminal(C,Ct) ← commitment (C,Ct, De,Cr)

∧(cancelled(C,Ct,
−→
Cv) ∨ released(C,Ct,

−→
Cv)

∨expired(C,Ct,
−→
Cv)) (13)
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Expired (E) (13) Null (N) (6) Pending(P)

Conditional (C) (7) Detached (D) (8)

Terminated(T) (10) Satisfied (S) (12) Violated (V) (11)

Active(A) (9)

createantecedent failure

antecedent

cancel cancelconsequentrelease

suspend
reactivate

Fig. 4 State transition diagram of our commitment lifecycle, with annotations corresponding to the equation
numbers

The null state for a commitment is instance dependent, as each commitment has a number
of possible instantiations, depending on the variables of the antecedent. In order to differ-
entiate commitment instances, each commitment instance has an associated var predicate
containing the commitment type and the list of variables associatedwith the instance [Eq. (6)].

A commitment is active if it is not null, terminal, pending, or satisfied [Eq. (9)]. An active
commitment is conditional if its antecedent (p) is false [Eq. (7)], and is detached otherwise
[Eq. (8)]. Note that terminal is a shortcut for being in any of the transitions cancelled,
released, or expired [Eq. (13)]. A commitment is terminated if it is released or it is cancelled
when its antecedent is false [Eq. (10)]. A commitment is violated if it is cancelled when its
antecedent is true [Eq. (11)]. A commitment is satisfied if it is not null and not terminal, and
its consequent (q) is true [Eq. (12)].

Finally, we encode the transitions from Fig. 2 over which the agent has direct control as
the planning operators, in the operators of Eqs. (14)–(19). For the reader’s convenience, the
figure is reproduced as Fig. 4 with annotations corresponding to the numbers of the equations
that logically encode these states when they are represented by a complex logical condition.3

The first of these operators, the create operator adds the var predicate if the commitment
is in the null state, transitioning it to the active state as defined in Eqs. (6) and (9). That is,
depending on the truth of the antecedent, createmaymake the commitment either conditional
[via Eq. (7)] or detached [via Eq. (8)].

〈operator !create(C,Ct, De,Cr,
−→
Cv),

pre(commitment (C,Ct, De,Cr) ∧ null(C,Ct,
−→
Cv)),

del(),

add(var(C,Ct,
−→
Cv))〉

(14)

If a commitment is active, executing suspend adds the pending predicate, transitioning
the commitment to the pending state.

〈operator !suspend(C,Ct, De,Cr,
−→
Cv),

pre(commitment (C,Ct, De,Cr) ∧ active(C,Ct,
−→
Cv)),

del(),

add(pending(C,Ct,
−→
Cv))〉

(15)

3 The pending state is achieved by adding a single predicate via an action.
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If a commitment is pending, executing reactivate deletes the pending predicate, returning
the commitment to any one of the active states.

〈operator !reactivate(C,Ct, De,Cr,
−→
Cv),

pre(commitment (C,Ct, De,Cr) ∧ pending(C,Ct,
−→
Cv)),

del(pending(C,Ct,
−→
Cv)),

add()〉

(16)

If a commitment is conditional and a timeout has occurred, then executing expire adds
the expired predicate, representing the transition the commitment to the expired state. We
note that this is a technical limitation of the vast majority of planners available, which do
not account for external processes and events, but could be overcome by planners that can
reason about such events [26].

〈operator !expire(C,Ct, De,Cr,
−→
Cv),

pre(commitment (C,Ct, De,Cr)

∧ conditional(C,Ct,
−→
Cv) ∧ t imeout (C,Ct,

−→
Cv)),

del(),

add(expired(C,Ct,
−→
Cv))〉

(17)

If a commitment is active, executing cancel adds the cancelled predicate, transitioning
the commitment to the violated state from Eq. (11) if the commitment was already detached,
or to the terminated state from Eq. (10) if the commitment was still conditional.

〈operator !cancel(C,Ct, De,Cr,
−→
Cv),

pre(commitment (C,Ct, De,Cr) ∧ active(C,Ct,
−→
Cv)),

del(),

add(cancelled(C,Ct,
−→
Cv))〉

(18)

Finally, if a commitment is active, executing release adds the released predicate, transi-
tioning it to the terminated state from Eq. (10).

〈operator !release(C,Ct, De,Cr,
−→
Cv),

pre(commitment (C,Ct, De,Cr) ∧ active(C,Ct,
−→
Cv)),

del(),

add(released(C,Ct,
−→
Cv))〉

(19)

4.3 Goal dynamics

The dynamics of goals is modelled in a similar way to that for commitments. We represent

a goal instance4 as a tuple 〈Gt, X, Pg, S, F,
−→
Gv〉, where:

– Gt is the goal type;
– X is the agent that has the goal;
– Pg is the goal precondition;
– S is the success condition;

4 Throughout the remainder, we refer to goal instances simply as goals.
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Null(N) (23) Inactive(I) (24) Active(A) (25)

Suspended(U)

Terminated(T) (28) Failed(F) (27) Satisfied (S) (26)

consider activate

reconsider reactivate
suspend suspend

drop ∨ abort fail succeed

Fig. 5 State transition diagram of our goal lifecycle, with annotations corresponding to the equation numbers

– F is the failure condition; and
–

−→
Gv is a list of variables identifying specific instances of Gt .

As for commitments, the number of variables for a goal is equivalent to the sum of arities
of all first-order predicates in Pg, S, and F . Likewise, for each goalG where Pg is a formula
� , S is a formula ς , and F is a formula ϑ , we define the following three rules to encode
when each condition of a goal becomes true:

pg(G,Gt,
−→
Gv) ←goal(G,Gt, X) ∧ � (20)

s(G,Gt,
−→
Gv) ←goal(G,Gt, X) ∧ ς (21)

f (G,Gt,
−→
Gv) ←goal(G,Gt, X) ∧ ϑ (22)

Observe that we convert each element of a goal’s formalisation into a conditional formula
whose condition is a conjunction of the predicate that encodes an instanceG of a goal of type
Gt for agent X and the condition being checked. Equation (20) for a goal’s precondition states

that the precondition pg(G,Gt,
−→
Gv) is only true for goal instance G of type Gt , containing

variables
−→
Gv (i.e. all variables in � ) if there is such a goal goal(G,Gt, X) and if formula

� (encoding condition Pg) holds. Thus, Eqs. (21) and (22) are encoded analogously as an
implication that depends upon identifying the goal instance goal(G,Gt, X) and the truth of
the formula encoding the respective goal condition.

For the reader’s convenience, Fig. 3 is reproduced as Fig. 5with annotations corresponding
to the numbers of the equations.5

We use Eqs. (23)–(29) to logically represent the dynamics of an agent’s goal. As with
commitments, goal states is instance dependent and ceases to be null for a particular instance
whenever a predicate describing its instance number and variables is true, as encoded in
Eq. (23). Although the state transition diagram of Fig. 3 contains only a Terminated state,
we use an auxiliary axiom to identify terminal states (i.e., Failed and Satisfied) and ensure
that once a goal reaches this state, it can never transition back to any other state, enforced by
Eq. (29).

First, a goal is active (activeG) if it has been activated (activatedG), its failure condition
is not yet true, and it is in neither the satisfied (satisfiedG), terminal (terminalG) nor in the
suspended (suspendedG) states [Eq. (25)]. Second, note that a goal in the inactive (inactiveG)
state is not exactly the same as the negation of the active state, instead, inactiveG is true if
the goal is not null, neither of its failure or success conditions are true, and it is in neither of
the terminal, suspended, and active states [Eq. (24)]. Third, a goal is satisfied (satisfiedG) if

5 Note that, like for the commitment dynamics, the suspension of a goal is the result of adding a single
predicate via an action that fully encodes this state.
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is not in the null or terminal states, and if its precondition and success conditions are true, but
not its failure condition [Eq. (26)]. Fourth, a goal is in the failed state (failedG) if it is not in
the null state and if its failure condition is true [Eq. (27)]. Lastly, a goal is in the terminated
state (terminatedG) if it is not in the null state and if it has been either dropped or aborted
[Eq. (28)].

nullG(G,Gt,
−→
Gv) ← ¬var(G,Gt,

−→
Gv) (23)

inactiveG(G,Gt,
−→
Gv) ← ¬null(G,Gt,

−→
Gv) ∧ ¬ f (G,Gt,

−→
Gv)

∧¬s(G,Gt,
−→
Gv) ∧ ¬terminalG(G,Gt,

−→
Gv)

∧¬suspendedG(G,Gt,
−→
Gv) ∧ ¬activeG(G,Gt,

−→
Gv)

(24)

activeG(G,Gt,
−→
Gv) ← activatedG(G,Gt,

−→
Gv) ∧ ¬ f (G,Gt,

−→
Gv)

∧¬satisfiedG(G,Gt,
−→
Gv) ∧ ¬terminalG(G,Gt,

−→
Gv)

∧¬suspendedG(G,Gt,
−→
Gv) (25)

satisfiedG(G,Gt,
−→
Gv) ← ¬null(G,Gt,

−→
Gv) ∧ ¬terminal(G,Gt,

−→
Gv)

∧pg(G,Gt,
−→
Gv) ∧ s(G,Gt,

−→
Gv) ∧ ¬ f (G,Gt,

−→
Gv)

(26)

failedG(G,Gt,
−→
Gv) ← ¬null(G,Gt,

−→
Gv) ∧ f (G,Gt,

−→
Gv) (27)

terminatedG(G,Gt,
−→
Gv) ← ¬null(G,Gt,

−→
Gv)

∧(dropped(G,Gt,
−→
Gv) ∨ aborted(G,Gt,

−→
Gv)) (28)

terminalG(G,Gt,
−→
Gv) ← goal(G,Gt, X)

∧(dropped(G,Gt,
−→
Gv) ∨ aborted(G,Gt,

−→
Gv)) (29)

Finally, the operators in Eqs. (30)–(36) encode the goal state transitions from Fig. 3 as
planning operators.

The consider operator transitions a goal into the inactive state of Eq. (24) Note that, given
the constraints of the operators of Eqs. (31) and (32), a goal can only be created as an inactive
goal.

〈operator !consider(G,Gt, X,
−→
Gv),

pre(goal(G,Gt, X) ∧ null(G,Gt,
−→
Gv) ∧ pg(G,Gt,

−→
Gv)),

del(),

add(var(G,Gt,
−→
Gv))〉

(30)

The activateGoal operator transitions an inactive goal into the active state of Eq. (25)
by adding the activatedG predicate.

〈operator !activate(G,Gt, X,
−→
Gv),

pre(goal(G,Gt, X) ∧ inactiveG(G,Gt,
−→
Gv)),

del(),

add(activatedG(G,Gt,
−→
Gv))〉

(31)

The suspendGoal transitions a goal that is either active or inactive [respectively,
Eqs. (25) and (24)] into the suspended state by adding the suspendedG predicate.
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〈operator !suspend(G,Gt, X,
−→
Gv),

pre(goal(G,Gt, X) ∧ ¬terminalG(G,Gt,
−→
Gv)

∧ ¬null(G,Gt,
−→
Gv)),

del(activatedG(G,Gt,
−→
Gv)),

add(suspendedG(G,Gt,
−→
Gv))〉

(32)

The reconsiderGoal operator transitions a suspended goal back into the inactive state
by removing the suspendedG predicate.

〈operator !reconsider(G,Gt, X,
−→
Gv),

pre(goal(G,Gt, X) ∧ suspendedG(G,Gt,
−→
Gv)

∧ ¬terminalG(G,Gt,
−→
Gv) ∧ ¬null(G,Gt,

−→
Gv)),

del(suspendedG(G,Gt,
−→
Gv)),

add()〉

(33)

Conversely, the reactivateGoal operator transitions a suspended goal back into the active
state by removing the suspendedG predicate and adding the activatedG predicate.

〈operator !reactivate(G,Gt, X,
−→
Gv),

pre(goal(G,Gt, X) ∧ suspendedG(G,Gt,
−→
Gv)

∧ ¬terminalG(G,Gt,
−→
Gv) ∧ ¬null(G,Gt,

−→
Gv)),

del(suspendedG(G,Gt,
−→
Gv)),

add(activatedG(G,Gt,
−→
Gv))〉

(34)

Finally, the dropGoal and abortGoal transitions a non-null goal into the terminated state
of Eq. (28) by adding the dropped or aborted predicates. Note that, in the scope of this
article, these transitions may sound redundant, however, differentiating these two transitions
can be useful when performing more complex goal dynamics [37].

〈operator !drop(G,Gt, X,
−→
Gv),

pre(goal(G,Gt, X) ∧ ¬terminalG(G,Gt,
−→
Gv)

∧ ¬null(G,Gt,
−→
Gv)),

del(),

add(dropped(G,Gt,
−→
Gv))〉

(35)

〈operator !abort (G,Gt, X,
−→
Gv),

pre(goal(G,Gt, X) ∧ ¬terminalG(G,Gt,
−→
Gv)

∧ ¬null(G,Gt,
−→
Gv)),

del(),

add(aborted(G,Gt,
−→
Gv))〉

(36)

4.4 Reasoning patterns using hierarchical plans

The reasoning patterns extended fromTelang et al. [63] in earlier sections can now be directly
implemented using HTN methods relating the commitment and goal operators to domain-
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dependent operators and predicates. This implementation as an HTN allows one to directly
verify whether a specific commitment protocol is enactable using a number of reasoning
patterns that allows individual agents to achieve their goals either directly or by adopting
commitments towards other agents.

For instance, Telang et al. [63] employ the notions of end goal, commitment, means goal,
and discharge goal. An end goal of an agent is a goal that the agent desires to achieve. Suppose
Gend = G(x, pg, s, f ) is an end goal. If agent x lacks the necessary capabilities to satisfy
G (or for some other reason), x may create a commitment C = C(x, y, s, u) toward another
agent y. Agent y may create a means goal Gmeans = G(y, pg′, s, f ′) to detach C , and agent
x may create a discharge goal Gdischarge = G(x, pg′′, u, f ′′) to satisfy C .

Accordingly, one specific HTN planning rule that describes a pattern of a debtor agent
enticing another agent to fulfil its end goal is the Entice rule, formally described as
〈GA,CN 〉
create(C)

Entice. This rule states that if an end goal is active, and a commitment supporting
that goal is not active, then create the commitment, and can be encoded as the HTN rule of
Eq. (37), below.

〈method entice(Gi,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ activeG(G,Gi,Gv) ∧ commitment (C,Ci, D, A)

∧ null(C,Ci,Cv) ∧ eqGSCP(G,Gv,C,Cv)),

tn (create(C,Ci, D, A,Cv))〉
(37)

Weprovide the full formalisationof allHTNrules encoding reasoningpatterns fromTelang
et al. [63] in Appendix A and online [47]. Bringing it all together, in the next section we can
now define a commitment protocol that implements the breast cancer diagnosis process from
Sect. 2, and we can use an HTN planner to check for realisability. In Sect. 6 we describe
our HTN planning algorithm which, further, also accommodates uncertainty in the agents’
excecution environment.

5 Healthcare scenario formalisation

This section formalises the healthcare scenario fromSect. 2 in theHTNplanning languagewe
use to generate commitment enactments.6 Following presentation of the solving algorithm
in Sect. 6, dealing also with uncertainty, we provide results and output for the scenario in
Sect. 7. Figure 6 illustrates our model of goals and commitments formalising the healthcare
scenario: ellipses represent agents , rectangles represent commitments; while shaded rectan-
gles represent goals. A commitment has an edge originating from the debtor role and an edge
directed toward the creditor role. The following sections describe the goals and commitments
from Fig. 6.

5.1 Goals

Table 1 lists the goals from the healthcare scenario. G1 is a physician’s goal that a diagnosis
be requested. G2 is a patient’s goal to request a diagnosis. Observe that G1 and G2 have
the same success condition but they are goals of different agents. G3 is a radiologist’s goal
that imaging and an imaging appointment will be requested, and G4 is a physician’s goal to

6 We provide the full implementation of this formalisation for reference at www.github.com/meneguzzi/htn-
goco/, specifically in the healthcare.jshop file. We also provide the formalisation that underpins that
implementation in Appendixes B and C.
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Fig. 6 A model of goals and commitments from the healthcare scenario

request imaging and an imaging appointment. G5 is the patient’s goal to keep the imaging
appointment.G6 andG7 are the radiologist’s goals to report the imaging results, and to have a
biopsy and a biopsy appointment requested, respectively.G8 is the physician’s goal to request
a biopsy and a biopsy appointment. G9 is the patient’s goal to keep the biopsy appointment.
G10 is the pathologist’s goal that pathology is requested, and tissue is provided. G11 is the
radiologist’s goal to request pathology and provide a tissue sample. G12 is the pathologist’s
goal to report the pathology results, and G13 is the radiologist’s goal to report the integrated
radiology and pathology results. G14 is the registrar’s goal that a patient having cancer will
be reported. G15 is the pathologist’s goal to report a patient with cancer. Finally, G16 is the
registrar’s goal to add a patient with cancer to the cancer registry.

5.2 Commitments

Table 2 lists the commitments from the healthcare scenario.C1 is the physician’s commitment
to the patient to provide diagnosis when the patient requests diagnosis, and does not violate
C2 and C3. C2 is the patient’s commitment to the physician to keep the imaging appointment
if the appointment is requested. C3 is the patient’s commitment to the physician to keep
the biopsy appointment if the appointment is requested. C4 is the radiologist’s commitment
to the physician to report the imaging results if the physician requests imaging and if the
patient keeps the imaging appointment. C5 is the radiologist’s commitment to the physician
to report the integrated radiology and pathology results if the physician requests a biopsy,
and if the patient keeps the biopsy appointment. C6 is the pathologist’s commitment to the
radiologist to report the pathology results if the radiologist requests the report, and provides
the tissue. C7 is the registrar’s commitment to the pathologist to add a patient to registry if
the pathologist reports a patient with cancer.

5.3 Domain operators

Table 3 lists the domain-specific operators. In O1, a patient requests diagnosis from a
physician. In O2, a physician requests a radiologist for imaging, and requests an imag-
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Table 1 Goals from the
healthcare scenario

ID Goal

G1 G(physician, �,
diagnosisRequested(patient,physician), ⊥)

G2 G(patient, �, diagnosisRequested(patient,physician),
⊥)

G3 G(radiologist, �,
imagingRequested(physician,patient)
∧ iAppointmentRequested(patient, radiologist), ⊥)

G4 G(physician, �, imagingRequested(physician,patient)
∧ iAppointmentRequested(patient, radiologist), ⊥)

G5 G(patient, �, iAppointmentKept(patient, radiologist),
⊥)

G6 G(radiologist, �, imagingResultsReported(radiologist,
physician, patient), ⊥)

G7 G(radiologist, �, biopsyRequested(physician,
patient) ∧ bAppointmentRequested(patient,
pathologist), ⊥)

G8 G(physician, �, biopsyRequested(physician, patient)
∧ bAppointmentRequested(patient, pathologist), ⊥)

G9 G(patient, �, bAppointmentKept(patient, pathologist),
⊥)

G10 G(pathologist, �, pathologyRequested(physician,
pathologist, patient) ∧ tissueProvided(patient), ⊥)

G11 G(radiologist, �, pathologyRequested(physician,
pathologist, patient) ∧ tissueProvided(patient), ⊥)

G12 G(pathologist, �, pathResultsReported(pathologist,
physician, patient), ⊥)

G13 G(radiologist, �, integratedReport(patient,
physician), ⊥)

G14 G(registrar, �, patientReportedToRegistrar(patient,
registrar), ⊥)

G15 G(pathologist, �, patientReportedToRegistrar(patient,
registrar), ⊥)

G16 G(registrar, �, inRegistry(patient), ⊥)

ing appointment for the patient. In O3, the radiologist performs imaging scan on the patient
upon the request from the physician, and when the patient keeps the imaging appointment.
In O4, the physician requests the radiologist for a biopsy, and requests a biopsy appoint-
ment for the patient. In O5, the radiologist performs biopsy on the patient upon the request
from the physician and when the patient keeps the biopsy appointment. In O6, the radi-
ologist requests the pathologist for pathology report. In O7, the pathologist provides the
pathology report to the radiologist. In O8, the radiologist sends the radiology report to the
physician. In O9, the radiologist sends the integrated radiology and pathology report to the
physician. In O10, the physician generates a treatment plan after receiving the radiology
report or the integrated radiology pathology report. In O11, the pathologist reports a patient
with cancer to the registrar. In O12, the registrar adds a patient with cancer to the cancer
registry.
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Table 2 Commitments from the
healthcare scenario

ID Commitment

C1 C(physician, patient, diagnosisRequested(patient,
physician) ∧¬ vio(C2) ∧¬ vio(C3),
diagnosisProvided(physician, patient))

C2 C(patient, physician,
iAppointmentRequested(physician, radiologist),
iAppointmentKept(physician, radiologist))

C3 C(patient, physician,
bAppointmentRequested(physician, pathologist),
bAppointmentKept(physician, pathologist))

C4 C(radiologist, physician,
imagingRequested(physician, patient)
∧ iAppointmentKept(patient, radiologist),
imagingResultsReported(radiologist, physician,
patient)

C5 C(radiologist, physician, biopsyRequested(physician,
patient) ∧ bAppointmentKept(patient, radiologist),
radPathResultsReported(radiologist, physician,
patient)

C6 C(pathologist, radiologist,
pathologyRequested(physician, pathologist, patient)
∧ tissueProvided(patient),
pathResultsReported(radiologist, physician, patient))

C7 C(registrar, pathologist,
patientReportedToRegistrar(patient, registrar),
inRegistry(patient))

Table 3 Domain operators from
the healthcare scenario

ID Domain operator

O1 requestAssesment(patient, physician)

O2 requestImaging(patient, physician, radiologist)

O3 performImaging(patient, physician, radiologist)

O4 requestBiopsy(patient, physician, radiologist)

O5 performBiopsy(patient, physician, radiologist)

O6 requestPathologyReport(patient, physician,
radiologist, pathologist)

O7 sendPathologyReport(patient, physician, radiologist,
pathologist)

O8 sendRadiologyReport(patient, physician, radiologist)

O9 sendIntegratedReport(patient, physician, radiologist)

O10 generateTreatmentPlan(patient, physician)

O11 reportPatient(patient, pathologist, registrar)

O12 addPatientToRegistry(patient, registrar)

6 Dealing with uncertainty

So far we have described an approach for planning commitment–goal protocols, leveraging
the efficient solution methods of HTN planning. We have allowed first-order operators, but
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we have made the assumption that the outcomes of operators are observable and determin-
istic, i.e., there is no uncertainty. In this section, we extend our approach to accommodate
uncertainty.We present a non-deterministicHTNplanning procedurewhose solutions encode
commitment protocol enactments that take into account environmental uncertainty. Finally,
we analyse properties of these protocol enactments and evaluate the expressivity and com-
plexity of the underlying planning problem.

6.1 ND-PYHOP algorithm

Recall that the shared domain knowledgeD of theMAS consists of an HTN planning domain
comprising a set of methods M, a set of operators O = Od ∪ Os , and a reward function
R. We continue to assume, without loss of generality, that dynamics operators Os are all
deterministic , but now allow domain operators Od to be deterministic or stochastic. Recall
also that we can compute the expected utility of each generated plan using the probability
information for each operator outcome and the reward function R(s, s′), which returns the
reward for transitioning from state s to state s′.

In order to generate an optimal and feasible plan for achieving the goals of all participants
within aMAS 〈I,A〉, we employ a non-deterministic HTN planning algorithm adapted from
earlier work [43] and implemented as an extension of the PyHop planner7 in the Python
language. Specifically, instead of searching for a single so-called strong-cyclic policy for the
problem in a non-deterministic domain, our algorithm quickly searches for any plan with
non-zero probability (proving that a protocol is enactable), and then continuing the search
for higher utility plans (to achieve a desired minimal utility). In Sect. 7 we report on a
re-implementation in the Ruby language; the algorithm remains the same.

The algorithm, illustrated in Fig. 7, is composed of two functions. First, it begins with
the ND-PyHop function, which takes an initial state I, an initial task network t , and domain
knowledgeD, and returns the utility of the best plan found. The initial state I for the problem
to be computed is generated by combining the initial state I from the MAS, with the rules
Is for goal and commitment dynamics, as defined in Sect. 4 [50], and predicates to uniquely
identify and handle the dynamics of each goal and commitment throughout the planning
process. Specifically, Is comprises the logic rules from Eqs. (4)–(13) and (20)–(29).

Specifically, we create an HTN planning problem with a domain knowledge D generated
directly from the shared domain knowledge from a MAS specification (from Sect. 4.1), and
an initial state Is created using the set of rules and predicates generated from the goals G and
commitments C, as follows:

I = I ∧ Is ∧
∧

C∈C
C ∧

∧

G∈G
G (38)

These data structures are sent to ND-PyHop, which tries to find every possible decom-
position of the initial task network and outcome of the operators (the contingency plan), and
selects the path in the contingency plan π∗ with the highest expected utility (Lines 19 to 22).

Second, at the core of the algorithm, we use the ForwardSearch function that searches
forward (in the state space as operators inO are executed) and downward (in the task decom-
position space as methods in M are selected to refine tasks), much like traditional HTN
forward decomposition algorithms [32].

The ForwardSearch algorithm takes as input an initial state s, a task network t for
decomposition, a partial plan π with the operators selected so far in the search process (and

7 www.bitbucket.org/dananau/pyhop/.
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Fig. 7 Stochastic HTN planning function

annotated with its probability of success and its expected utility), and an HTN domain D.
In order to decompose t it first checks if t is fully decomposed, i.e., no task remains to be
decomposed, and if so yields the full path in the contingency plan (Line 3). Instead, if further
decomposition is possible, the algorithm takes the first task t0 in the HTN (Line 5). If t0 is
a primitive task, the algorithm simulates the execution of all possible operator instantiations
corresponding to the task, and decomposes every possible outcome of each operator (Lines 7–
13). If t0 is a compound task, the algorithm tries all possible applicable methods, exactly like
a traditional HTN planning algorithm (Lines 14–17). In either case, the algorithm recurses
to perform the decomposition (Lines 13 or 17).

Note that the ForwardSearch function continually returns full plans as prompted by the
main function ND-PyHop, which searches optimising for utility, and keeping the best plan
found so far in π∗. Thus, ND-PyHop could be easily modified to optimise for other criteria,
such as returning the plan that is most likely to succeed, or the commitment with the least
external dependencies (i.e., the least creation of commitments) simply by changing Line 21.

6.2 Expressiveness and complexity

In Sect. 7 we report on the empirical performance of our implementation of ND-PyHop. In
this section, we examine our approach in conceptual terms.

Our intended problem setting is the specification of socio-technical systems. Accordingly,
we apply STS as a qualitative basis for evaluating our approach. Following Chopra and
colleagues [18,23], we understand an STS in terms of the commitments arising between the
roles in that STS, specifically as a multi-agent protocol.

It helps to think of an STS as a microsociety in which the protocol characterizes legitimate
interactions.Therefore, the problemof specifying anSTS is noneother than theoneof creating
a microsociety that accommodates the needs of its participants. Indeed, for an STS to be
successful, it must attract participation by autonomous parties. For this reason, it is important
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for the designer of an STS to take into account the goals of the prospective participants, that
is, stakeholders in the STS.

Even though an STS would have two or more participants, it could be specified by one
stakeholder, and often is. Marketplaces, such as eBay, are STSs that are specified by one
stakeholder, in this case, eBay Inc. Our approach most directly reflects this case in which
one stakeholder brings together the requirements and searches for proposed designs for
consideration. That is, there is one locus of planning although the plan itself, viewed as a
protocol, captures the actions ofmultiple participants. Potentially, the proposed designs could
be voted upon or other otherwise negotiated upon—although negotiation is not in our present
scope.

Accordingly, we proceed by assuming that a single mediating agent m ∈ A is concerned
to plan a MAS commitment protocol. The problem then is to validate a MAS including A
regarding its achievability, as we formally define below.

Definition 6 (Realisable MAS) A MAS 〈I,A〉 is said to be realisable if the contingency
plan generated by ForwardSearch(I, t, [],D) contains at least one path with non-zero
probability.

Informally, if the HTN formalisation of the domain-dependent actions (e.g., a socio-
technical system specification), goals and commitments, together with the domain-
independent HTN formalisation of Sects. 4.4 and 6.1, generate a realisable MAS from
Definition 6—as proven by the algorithm of Fig. 7—then there exists at least one feasi-
ble joint plan representing a protocol enactment that achieves the goals of the system. In
addition, each plan generated by ND-PyHop measures its probability of success and its
expected utility, allowing a system designer to choose the minimal quality required of the
resulting enactment, i.e., which MAS is acceptable, in Definition 7.

Definition 7 (Acceptable MAS) A MAS 〈I,A〉 is said to be acceptable w.r.t. an established
utility U if it is realisable and if π∗ = ND-PyHop(I, t,D) is such that π∗ · u ≥ U.

Informally, an acceptableMAS has a certain expected utility on average, while, as the time
allowed for ND-PyHop to run reaches infinity, we have a guarantee to eventually generate
the optimal plan.

Using these definitions, we can design multiple applications for the anytime algorithm
of ForwardSearch. For example, if there are time pressures on the agents to generate a
commitment protocol in a short period of time (for example, for negotiation),ND-PyHop can
be modified to return a commitment protocol that proves a MAS (Definition 6) is realisable
quickly while waiting for the algorithm to verify the existence of a protocol that proves
an MAS is acceptable (Definition 7). Proving the former is fairly quick, since it implies
generating only any one decomposition with non-zero utility, while proving the latter may,
in the worst case, requires the algorithm to explore the entire possible set of plans.

Since our encoding requires logic variables in the HTN due to the first-order logic-style
formalisation, as well as arbitrary recursions—which are a possibility from the formal encod-
ing of a user’s application into a planning domain—the type of HTN problem we need to
solve can fall into the hardest class of HTN planning [1]. Generating all possible plans
for an arbitrarily recursive HTN with variables is semi-decidable in the worst case [30].
Whereas, if we restrict the underlying planning domains to have only totally ordered tasks
(as our domain-independent methods are), then the complexity of finding an acceptable plan
is ExpSpace [1]. Hence assuming the domain follows what Erol et al. [29] define as ‘regular’
HTN methods (at most one non-primitive, right recursive task), our algorithm has to solve
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an ExpSpace-complete problem. This complexity, however, only refers to the language of
HTN planning itself, so in practice, as is illustrated by our empirical evaluation, problems
can be solved quite efficiently.

7 Implementation and experiments

We now exhibit our approach to planning expressive commitment protocol enactments using
HTN planning. This section demonstrates the output of our approach on the healthcare
scenario, and provides empirical benchmarking of the scaling performance.

Table 4 illustrates the first decomposition generated by Algorithm 7 for our formalisation
of the healthcare scenario of Sect. 2. For each step in the generated plan, we provide a brief
explanation of its meaning within the scenario.

Figure 8 shows a partial decomposition tree of the plans that our approach generates for
the healthcare scenario. The nodes in the tree represent non-primitive tasks (and their cor-
responding decomposition methods) or operators (when prefixed by the exclamation mark).
The solid edges represent the decomposition of a task into other tasks or operators. When
two or more edges come out of a box, they are interpreted as alternatives, indicating an
OR decomposition. The dashed edge indicates the computed probability and utility of the
predecessor node.

The algorithm of Fig. 7 decomposes the top-level domain-specific task protocol into
(generic) tasks such as entice, detach, and satisfy. These tasks can be further decom-
posed (e.g., entice(G1 (alice) C1 (alice) bob alice) is decomposed into create(C1 bob
alice (alice)) and detach(G2 (alice) C1 (alice) bob alice), and to consider(G2 G2 alice
(alice))). Operator performImaging(patient, physician, radiologist) has two possible out-
comes: (1) success, if radiologist successfully carries out the imaging test with probability
0.7 and utility 10, and (2) failure, if radiologist does not generate a definite imaging exam,
with probability 0.3 and utility 0.

Suppose the patient desires a plan of utility 15. Following Definitions 6 and 7, the MAS
from our healthcare scenario is realisable since there is at least one plan with non-zero
probability, and acceptable since the maximum utility of 19 is larger than the desired utility
of 15.

We first implemented the algorithm of Fig. 7 in Python and benchmarked it on a 2.4GHz
MacBook Pro with 16GB of memory running Mac OSX 10.11. This implementation solves
to optimality a planning problem in a simplification of the healthcare scenario in 30 ms. This
simplified version of the scenario has one patient (Alice), one doctor (Bob), and one insurance
company (Ins). In order to empirically evaluate the complexity of our implementation in
comparison to the abstract algorithm, we have run our implementation of ND-PyHop on a
scalable and scaled up version of the healthcare scenario. In this version, we generate larger
scenarios with several patients, physicians, and medical staff.

The results of our scalability test are summarised asFig. 9. The runtimes andmemoryusage
shown are averages over 10 runs (with negligible variance) for each factor of domain growth.
As our complexity analysis predicted, our algorithm runs in exponential time taking up
exponential memory as the search tree expands. Nevertheless, runtime to decide realisability
is substantially lower, even though memory usage is asymptotically the same (assuming that
HTN expansion is depth first). Our empirical experimentation shows an exponential runtime
growth: this growth is on the order of 20.79n for acceptability and on the order of 21.03n for
memory usage, where n is the number of sets of three agents for our empirical scenario.
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Table 4 Formalisation of the commitment protocol of Sect. 2 to be validated in the experiments

Plan step Description

!consider(G1 G1 bob (alice)) Physician considers and activates G1

!activate(G1 G1 bob (alice))

entice(G1 G1 (alice) C1 C1 (alice) bob alice) Physician employs ENTICE rule to create C1

detach(G2 G2 (alice) C1 C1 (alice) bob alice) Patient employs DETACH for C1 which results
in considering and activating of G2

!requestAssessment(alice bob) Patient requests assessment to physician

!consider(G3 G3 clyde (alice)) Radiologist considers and activates G3

!activate(G3 G3 clyde (alice))

entice(G3 G3 (alice) C4 C4 (alice) clyde bob) Radiologist employs ENTICE for G3 to create
C4

detach(G4 G4 (alice) C4 C4 (alice) clyde bob) Physician employs DETACH for C4 to create G4

!requestImaging(bob alice clyde) Physician requests imaging and books
appointment

deliver(G6 G6 (alice) C2 C2 (clyde) alice bob) Patient employs DELIVER for C2 to consider
and activate goal G6

attendTest(alice) Patient brings about iAppointmentKept

deliver(G7 G7 (alice) C4 C4 (alice) clyde bob) Radiologist employs DELIVER for C4 to
consider and activate goal G7

!requestRadiologyReport(bob clyde alice) Physician requests radiology report

!sendRadiologyReport(clyde bob alice) Radiologist brings about
imagingResultsReported

!consider(G8 G8 clyde (alice) ) Radiologist considers and activates goal G8

!activate(G8 G8 clyde (alice) )

entice(G8 G8 (alice) C5 C5 (alice) clyde bob) Radiologist employs ENTICE for G8 to create
commitment C5

detach(G9 G9 (alice) C5 C5 (alice) clyde bob) Physician employs DETACH for C5 to consider
and activate goal G9

!requestBiopsy(bob alice clyde) Physician requests biopsy and books
appointment

deliver(G11 G11 (alice) C3 C3 (clyde) alice bob) Patient employs DELIVER for C3 to consider
and activate goal G11

!performBiopsy(clyde alice bob) Patient keeps the appointment

!consider(G12 G12 doug (alice) ) Pathologist considers and activates goal G12

!activate(G12 G12 doug (alice) )

entice(G12 G12 (alice) C6 C6 (alice) doug
clyde)

Pathologist employs ENTICE for G12 to create
commitment C6

detach(G13 G13 (alice) C6 C6 (alice) doug
clyde)

Radiologist employs DETACH for C6 to
consider and activate goal G13

!performBiopsy(clyde alice bob) Radiologist provides a tissue sample

!requestPathologyReport(bob clyde doug alice) and requests a pathology assessment

deliver(G15 G15 (alice) C6 C6 (alice) doug
clyde)

Pathologist employs DELIVER for C6 to
consider and activate goal G15

!sendPathologyReport(clyde bob doug alice) Pathologist reports in results

123



484 Auton Agent Multi-Agent Syst (2018) 32:459–502

Table 4 continued

Plan step Description

deliver(G16 G16 (alice) C5 C5 (alice) clyde bob) Radiologist employs DELIVER for C5 to
consider and activate goal G16

!sendRadiologyReport(clyde bob alice) Radiologist reports results

!sendIntegratedReport(clyde doug alice bob)

!consider(G17 G17 evelyn (alice) ) Registrar considers and activates goal

!activate(G17 G17 evelyn (alice) )

entice(G17 G17 (alice) C7 C7 (alice) evelyn
doug)

Registrar employs ENTICE for G17 to create
commitment C7

detach(G18 G18 (doug) C7 C7 (alice) evelyn
doug)

Pathologist employs DETACH rule if patient has
cancer to consider and activate goal G18

!reportPatient(alice doug evelyn) Pathologist reports patient to registrar

deliver(G19 G19 (alice) C7 C7 (alice) evelyn
doug)

Registrar employs DELIVER rule for C7 to
consider and activate goal G19

!addPatientToRegistry(alice evelyn) Registrar adds patient to registry

Thus, although the runtime is exponential, the scenario we use for testing at the largest end
of the scale has a substantial number of commitments and goals—totalling 144 goals and
commitments for 13 agents—running in 15min while consuming less than 10GB of main
memory.

We note that the complexity of the search is not tied to the uncertainty in the application
scenario: the complexity is independent of the probabilities of action outcomes). Rather, it is
tied to the branching factor induced by the outcomes for each action, which in most domains
is a small number.

Finally, in order to evaluate our algorithm and formalisation using different planner imple-
mentations, we carried out an experiment using the full version of our scenario from Sect. 5
and sought to extract commitment realisations for increasingly larger problems.We ran these
experiments using the JSHOP planner8 (with the scenario modified to be deterministic), as
well as with a reimplementation of the ND-PyHop algorithm in Ruby.9 Figure 10 shows the
experimental runtime averaged over five runs on a 3.3GHz Intel Core I5-4590 CPU with
8GB of memory, running 64-bit Windows 7. The graphs show the same runtime complexity
of our original experiments, corroborating the scalability of the approach.

8 Related work

The larger question behind our work is how a set of autonomous agents can develop a
multi-agent plan that enables the agents to coordinate their mutual interactions in a flexible
manner. This article adopts a commitment-based approach in which the plan takes the form of
a commitment protocol, and considers the perspective of a single agent planning the protocol,
albeit taking into account other agents’ utilities. Durfee [28] and Meneguzzi and de Silva
[48] survey aspects of the distributed planning problem for intelligent agents. We highlight
three alternative planning settings:

8 www.sourceforge.net/projects/shop/files/JSHOP2/.
9 www.github.com/Maumagnaguagno/HyperTensioN_U/.
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Fig. 9 Runtime complexity (logscale) for ND-PyHop. Problem size refers to the number of commitments in
the scenario (replicated for multiple agents). Complexity is expressed in seconds for runtime, and megabytes
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Fig. 10 Runtime complexity comparison (logscale) for theRuby implementation of ND-PyHop and JSHOP2.
Note that JSHOP2 fails to solve problems larger than 13 patients due to lack of memory

– Centralised planning one mediating planning agent plans the realisation of an entire
commitment protocol for all agents. There are two sub-cases: (1) Cooperative setting:
Other agents must or have already agreed to accept the plan (e.g., the members of a
police team have agreed to accept the plan of the team leader); (2) Semi/non-cooperative
setting:Other agents can negotiate about and accept, reject, or ignore the plan (e.g., friends
arranging a holiday). Even in the cooperative, centralised case, the planning agent needs
to account for uncertainty over agents’ behaviours. The planning agent attempts to find
common plans that, presumably, maximise social utility in some fashion [24,66].

– (Fully) decentralised planning each agent plans for itself (e.g., owners of restaurant
franchises). A common (joint) overall plan might be sought or not [9,10]. The multiple
individual planning agents need to account for the uncertainty on third-party agents
fulfilling a commitment.

– Joint planning (a subset of) the agents plan together to make a common (partial) plan
(e.g., husband and wife coordinating childcare). For a common plan, there must be some
set of common goals, at least pairwise between some agents. SharedPlans [33] is an
example of a structured joint planning protocol.
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In this article, we consider centralised planning in a semi-cooperative setting, specifically
where the mediating planning agent must take into account the utilities of the other agents (as
it perceives them), since the agents are not compeleld to follow the plan that the mediating
agent proposes. The technical challenges involved in this case by itself demonstrate the value
of our contribution. We discuss the additional challenges brought forth by decentralised
planning below and at the end of the article.

Crosby et al. [24] address multi-agent planning with concurrent actions. As in our
approach, Crosby et al. propose to transform the planning problem into a single-agent prob-
lem. Our work does not explicitly plan for concurrent actions and their constraints, but treats
coordination through commitments.

Our planning approach is hierarchical. A number of authors consider what can be char-
acterised as probabilistic HTN planning, i.e., HTN planning with uncertain action success.
Prominent among them are Kuter et al. [42], who use probabilities directly in their HTN
planner YoYo; Kuter and Nau [43], whose HTN planner ND-SHOP2 accounts for non-
deterministic action outcomes; and, Bouguerra and Karlsson [14], whose planner C-SHOP
extends the classical HTN planner SHOP with stochastic action outcomes and also belief
states.

At first we attempted to employ ND-SHOP2 directly for commitment protocol plan-
ning and found that its representation of stochastic action outcomes, which assumes a
uniform probability distribution, would be difficult to extend. Instead, our algorithm ND-
PyHop adapts the ND-SHOP2 algorithm to reason about probabilities and utilities. We
also considered C-SHOP due to its explicit handling of outcome probabilities and partial
observability—even though our domain assumptions support perfect observability. How-
ever, C-SHOP does not handle utility functions and decision-theoretic optimisation. Thus,
although our algorithm is not based on C-SHOP, it can be seen, from the conceptual point
of view, as a decision-theoretic extension of C-SHOP.

Other approaches rely upon decision-theoreticmodels such asMarkovDecision Processes
(MDPs) to add probabilistic reasoning capabilities to their planning process. Kun et al. [41]
use an MDP policy to guide the search for possible task decompositions in HTN planning.
More specifically, the approach generates an MDP from the possible HTN decompositions,
and the solution to thisMDPguides the search to an optimalHTNplan.However, the primitive
operators (i.e., the underlying planning problem) remain deterministic.

Meneguzzi et al. [49] and Tang et al. [61] explore the use of HTN representations to
bound the search space for probabilistic planning domains. Whereas Meneguzzi et al. [49]
use an HTN representation to generate a reduced-sizeMDP containing only the states that are
reachable from the possible task decompositions, Tang et al. [61] use the grammar structure
of the HTN to plan using a variation of the Earley parsing algorithm generating a result that
is analogous to solving the MDP induced by Meneguzzi et al. [49].

In another work, Kuter and Nau [44] use the search control of a classical HTN planner
(SHOP2, a predecessor of ND-SHOP2 that has no uncertainty) in MDP planning, whereas
in an orthogonal direction, Sohrabi et al. [59] add preferences to SHOP2.

None of these works consider social commitments in their planning, and, importantly
for our purpose, none of these works enable evaluating commitment protocol enactments
individually to optimise over multiple criteria. By contrast, the algorithm of Fig. 7 can easily
be used to optimise over any criteria stored in a plan simply by changing the optimisation
criteria used in the main algorithm in Lines 19–22.

Decentralized and joint planningMaliah et al. [46] are concerned with multi-agent planning
when privacy is important. The authors present a planning algorithm designed to preserve
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the privacy of certain private information. The agents collaboratively generate an abstract,
approximate global coordination plan, and then individually extend the global plan to exe-
cutable individual plans. Commitments are not considered.

The multi-agent planning approach of Mouaddib et al. [52] is characteristic of decision-
theoretic approaches based on MDPs for multi-agent planning under uncertainty. Each agent
plans individually, with its objective function modified to account in some way for the con-
straints, preferences, or objectives of other agents. Specifically, Mouaddib et al. adopt the
concept of social welfare orderings from economics, and use Egalitarian Social Welfare
orderings so that in each agent’s local optimisation (its MDP), consideration is given to the
satisfaction of all criteria and minimisation of differences among them.

The TÆMS framework [45] models structural and quantitative aspects of interdependent
tasks among a set of agents. It features a notion of commitment. TÆMS provides a means
of decentralised planning and coordination among a group of agents. Similar to the decom-
position tree of HTN formalism, the task structure in TÆMS is hierarchical. At the highest
level of its hierarchical task structure are task groups that represent an agent’s goals. A task
group is decomposed into a set of tasks (representing subgoals) and methods that cannot be
decomposed any further. Tasks and methods have various annotations that specify aspects
such as conjunctive or disjunctive decomposition, and temporal dependence with respect to
other tasks and methods, and quantitative attributes such as expected execution time distri-
bution, quality distribution, and resource usage. In particular, TÆMS supports probability
distributions over the quality, duration, and cost of methods.

The notion of inter-agent ‘commitment’ in TÆMS is of a promise by one agent to another
that it will complete a task within a given time and quality distribution. Unlike our definition,
there is no concept of antecedent; TÆMS rather uses commitments primarily to “represent
the quantitative aspects of negotiation and coordination” [45]. Also, TÆMS is not geared
toward autonomy and it is possible for one agent to send a commitment to another, making
the recipient responsible for it. The expressive power of the full TÆMS framework has
led to simplifications for practical applications [13,45,67]. Applications have not included
commitment protocol planning in an expressive setting, such as ours.

Xuan and Lesser [68] introduce a rich model of uncertainty into TÆMS commitments.
They assume cooperative, utility-maximising agents. Like us, these authors develop a
contingency planning approach; they consider distributions over commitment outcomes, con-
tingency analysis, and a marginal cost/loss calculation. Although not accommodating goal-
commitment convergence or first-order tasks, the authors present a negotiation framework.

Witwicki and Durfee [67] aim to use commitments to approximate the multi-agent policy
coordination problem. In a Dec-(PO)MDP context, these authors decompose the coordina-
tion problem into subproblems, and connect the subproblems with commitments. Our work
differs fromMDP-based approaches in aiming for a contingent plan (a commitment protocol)
rather than an MDP policy. We chose to use an HTN planner and represent the resulting pro-
tocols as contingency plans because policies in MDPs need to inherently follow the Markov
assumption, which does not allow for sequences of operators from any given state to be rep-
resented unless time is explicitly accounted for in the state representation. Adding explicit
state variables to the state representation, however, quickly results in the curse of dimension-
ality that afflicts MDP solvers. Thus, even the most advanced factored MDP solvers cannot
deal with temporal variables since they rely on two-step dynamic Bayesian networks, which
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maintain the Markov assumption [34]. In further comparison withWitwicki and Durfee [67],
our work accommodates first-order commitments and a semantics of goals and commitments.

Commitment protocolsBaldoni et al. [9] study the problemof distributedmulti-agent planning
with inter-agent coordination via commitments. In contrast to our position, they consider the
case of decentralised planning. In addition, they consider an open system in which agents
can leave or enter the system dynamically.

Günay et al. [36] also consider open systemsbut seek aprotocol rather than a fully-specified
plan. These authors develop a framework to allow a group of agents to create a commitment
protocol dynamically. The first phase has a centralised planning agent generate candidate
protocols. The second phase has all agents rank the protocols. The third phase involves negoti-
ation over the protocols to select one. In contrast to ourwork,Günay et al. assume the planning
agent does not necessarily know the preferences of other agents, do not include an explicit
model of uncertainty, and do not have the foundation of the commitment-goal semantics.

Chopra et al. [18] present a requirements engineering approach to the specification of
socio-technical systems, founded on commitments to describe agent interactions and goals
to describe agent objectives. The methodology, Protos, pursues refinements that seek to sat-
isfy stakeholder requirements by incrementally expanding specification and assumption sets,
and reducing requirements until all requirements are accommodated. Our approach and tools
can be readily used to validate the executability of the resulting protocols in a computational
platform.

Recent commitment-query languages by these authors—Cupid [21] and Custard [22]—go
beyond propositional constructs in commitments but do not address the planning challenges
addressed in this article.

Baldoni et al. [7], similarly, are interested in the specification of commitment-based inter-
action protocols. These authors propose a definition which decouples the constitutive and
regulative specifications, with the latter being explicitly represented based on constraints
among commitments.

Günay et al. [35] share a similar spirit to our work, in that they too are motivated to analyse
agents behaviours in commitment protocols. Their ProMoca frameworkmodels agent beliefs,
goals, and commitments. It models uncertainty over action outcomes, as we do, through
probability distributions over (agents’ beliefs about) action outcomes. Günay et al. adopt
probabilistic model checking to analyse a commitment protocol for compliance and for goal
satisfaction. Although the work of Günay et al. features a more expressive language for
stating commitments, our work differs in that our approach can develop (new) commitment
protocols, not just analyse existing protocols. We adopt probabilistic HTN planning rather
than probabilistic model checking.

Like Günay et al., Venkatraman and Singh [64] and subsequent works also use model
checking to perform verification of commitment protocols, but for static verification of
properties; we go beyond checking to protocol generation, and we accommodate goals and
uncertainty. Bataineh et al. [11] present a recent approach for specification and verification
of service composition contracts, again using model checking to verify commitment-based
properties but, in this case, properties that are derived automatically from the service com-
positions. Uncertainty is not addressed.

Sultan et al. [60] use model checking to verifying probabilistic commitments. These
authors develop a logic-based specification of probabilistic commitments, inwhich the degree
of agent’s commitment (“how much an agent is confident about its commitment”) and the
degree of fulfillment (“howmuch the agent is confident about fulfilling a commitment”) can be
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expressed. This contrasts with our probabilistic planning approachwhich also accommodates
an explicit representation of goals and first-order operators.

Chesani et al. [17] study a different problem to commitment-based plan or protocol gener-
ation: monitoring commitments. Their framework captures commitments and their execution
using a first-order Event Calculus representation.

As with our work, Baldoni et al. [4–6] use the commitment-goal semantics of Telang et al.
[63] as their starting point. These authors present an extension to the norm-and artefact-aware
agent programming language, JaCaMo, in which Jason agents can interact while preserving
their deliberative capabilities by exploiting commitment-based protocols.

Lastly, we explain how this article builds on our previous work. First, we established a
framework for the coherence between an agent’s commitments and goals [63].10 Second,
we used HTN planning to enact protocols over this framework [62]. Third, we extended the
representation and planning approach to operate over first order commitments and goals [50].
Fourth, in a brief paper [51] we allowed uncertainty in action outcomes. In this article we
draw together and extended this line of work. We retain the semantics of Telang et al. [63]
as our basis, and, as has been discussed, exploit an HTN planner to develop protocols, as in
Telang et al. [62].We present a formalism that accommodates both a first-order representation
and uncertainty, and a planning algorithm in the case of a centralised planning agent.

In our other previouswork, as detailed above,Meneguzzi et al. [49] and Tang et al. [61] use
HTN representations to bound the search space for probabilistic planning domains; they do
not consider commitments. More broadly, Meneguzzi and de Silva [48] survey how planning
algorithms are used in agent reasoning.

9 Conclusion

We addressed the challenge of planning coordinated activities for a set of autonomous agents,
in the form of flexible commitment protocols. We considered an expressive first-order setting
with probabilistic uncertainty over action outcomes; these probabilities can originate from
historical data, be learned dynamically, or drawn from trust and reputation.We contributed the
first practical means to derive protocol enactments which maximise expected utility from the
point of view of one agent. First, we showed howHierarchical Task Network (HTN) planning
can be used to enact a previous semantics for commitment and goal alignment. Second, we
extended that semantics in order to enact first-order commitment protocols. Third, supposing
a cooperative setting, we introduced uncertainty in order to capture the reality that an agent
does not know for sure that its partners will successfully act on their parts of the commitment
protocol.

We illustrated our approach on a real-world healthcare scenario, producing protocols,
where possible, with a desired level of robustness in terms of the probability of success. We
empirically show that these protocols can be generated efficiently for a number of scenarios
using different implementations of the same basic algorithm.

Distributed coordinated multi-agent planning is a broad topic and we have not touched on
many interesting aspects [15]; we mention a few here. First, we support modelling different
outcome probabilities for different agents executing the same action. Doing so opens up the
possibility of delegating tasks to agents that are more likely to succeed. Similarly, agents
may have different opinions of the utility of actions and plans—we have not touched on
the negotiation process to arrive on common utilities for the planning problem. Second, we

10 An extended version of this commitment formalism is under review at the time of writing.
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consider a single configuration of the agent system: the single mediating planning agent.
Third, we consider commitment protocols founded on goals of achievement to the exclusion
of goals of maintenance.

The future scenario to be considered, ultimately, involves an agent reasoning about com-
mitments in which it participates with multiple other agents; this draws towards multi-agent
HTN planning [13,45]. The relevant technical challenges include some studied in the liter-
ature (negotiation, plan fragment merging and coordination, and information exchange) and
some that arise because of the commitments. An example challenge is representing temporal
gaps between state changes of commitments, i.e., an agent might satisfy the antecedent of a
commitment, but may need to wait some unspecified time for the consequent to be fulfilled.
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Appendix A: HTN formalisation of goal and commitment patterns

In what follows, we enumerate our HTN formalisation of all practical reasoning rules from
Telang et al. [63], alongside an explanation.

1. Goals to Commitments: This item describes the rules relating an end goal G(x, s, f ) of
agent x to a commitment C(x, y, s, u) in which agent x is the debtor.

(a) 〈GA,CN 〉
create(C)

Entice: If an end goal is active, and a commitment supporting that goal is

not active, then create the commitment.11

〈method entice(Gi,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ activeG(G,Gi,Gv) ∧ commitment (C,Ci, D, A)

∧ null(C,Ci,Cv) ∧ eqGSCP(G,Gv,C,Cv)),

tn (create(C,Ci, D, A,Cv))〉
(39)

(b) 〈GU ,CA〉
suspend(C)

Suspend Offer: If an end goal is suspended, and the commitment sup-
porting that goal is active, then suspend the commitment.

〈method suspendO f f er(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ suspendedG(G,Gi,Gv) ∧ commitment (C,Ci, D, A)

∧ active(C,Ci,Cv)),

tn (suspend(C,Ci, D, A,Cv))〉
(40)

11 Note that eqGSCP is a logical rule to ensure that a goal’s success condition equals a commitment’s
antecedent.
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(c) 〈GA,CP 〉
reactivate(C)

Revive: If an end goal is active, and the commitment supporting that
goal is pending, then reactivate the commitment.

〈method revive(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ activeG(G,Gi,Gv) ∧ commitment (C,Ci, D, A)

∧ pending(C,Ci,Cv)),

tn (reactivate(C,Ci, D, A,Cv))〉
(41)

(d) 〈GT∨F ,CA〉
cancel(C)

Withdraw Offer: If the end goal is terminated or failed, and the com-
mitment supporting that goal is active, then cancel the commitment.

〈method wi thdrawO f f er(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ ( f ailedG(G,Gi,Gv) ∨ terminatedG(G,Gi,Gv))

∧ commitment (C,Ci, D, A) ∧ active(C,Ci,Cv)),

tn (cancel(C,Ci, D, A,Cv))〉
(42)

(e) 〈GT∨F ,CP 〉
reactivate(C)

Revive to Withdraw: If the end goal is terminated or failed, and the
commitment supporting that goal is suspended, then reactivate the commitment.

〈method reviveT oWithdraw(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ ( f ailedG(G,Gi,Gv) ∨ terminatedG(G,Gi,Gv))

∧ commitment (C,Ci, D, A) ∧ pending(C,Ci,Cv)),

tn (reactivate(C,Ci, D, A,Cv))〉
(43)

(f) 〈GA∨U ,CE∨T 〉
create(C ′) Negotiate: If the end goal is active or suspended, and the commit-

ment supporting that goal is expired or terminated, then create another supporting
commitment.

negotiable(G,Gi,Gv,C,Ci,Cv) ← ((activeG(G,Gi,Gv)

∨suspendedG(G,Gi,Gv))

∧(expired(C,Ci,Cv)

∨terminated(C,Ci,Cv)))

〈method negotiate(G,Gi,Gv,C1,Ci1,Cv1,C2,Ci2,Cv2, D, A1, A2),

pre (goal(G,Gi, D) ∧ commitment (C1,Ci1, D, A2)

∧ commitment (C2,Ci2, D, A2) ∧ null(C2,Ci2,Cv2)

∧ negotiable(G,Gi,Gv,C1,Ci1,Cv2)),

tn (create(C2,Ci2, D, A2,Ci2))〉

(44)

(g) 〈GA∨U ,CE∨T 〉
drop(G)

Abandon End Goal: If the end goal is active or suspended, and the
commitment supporting that goal is expired or terminated, then drop the end goal.

〈method abandonEndGoal(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ (activeG(G,Gi,Gv) ∨ suspendedG(G,Gi,Gv))

commitment (C,Ci, D, A) ∧ (expired(C,Ci,Cv) ∨ terminated(C,Ci,Cv))),

tn (drop(G,Gi, D,Gv))〉
(45)
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2. Commitments to Means Goals: This item describes the rules relating a commitment
C(x, y, s, u) in which agent y is the creditor to the means goal G(y, s, f ′).

(a)
〈GN

2 ,CC 〉
consider(G2)∧activate(G2)

Detach: If the means goal is null, and the commitment is
conditional, then consider the means goal.

(b) Detach’
〈GI

2,C
C 〉

activate(G2)
Detach’: If themeans goal is inactive, and the commitment is conditional,

then activate the means goal.
(c) Back Burner

〈GA
2 ,CP 〉

suspend(G2)
Back Burner: If the means goal is active, and the commitment is pend-

ing, then suspend the means goal.
(d) Front Burner

〈GU
2 ,CC 〉

reactivate(G2)
Front Burner: If the means goal is suspended, and the commitment

is conditional, then reactivate the means goal.
(e) Abandon Means Goal

〈GA
2 ,CE∨T 〉

drop(G2)
Abandon Means Goal: If themeans goal is active, and the commitment

is expired or terminated, then drop the means goal.
(f) Persist

〈GT∨F
2 ,CC 〉

consider(G ′
2)∧activate(G ′

2)
Persist: If the means goal is terminated or failed, and the

commitment is conditional, then consider an alternative means goal.
(g) Give Up

〈GT∨F
2 ,CC 〉

release(C)
Give Up: If the means goal is terminated or failed, and the commitment

is conditional, then release the commitment.

3. Commitments to Discharge Goals: This item describes the rules relating a commitment
C(x, y, s, u) in which agent x is the debtor to the discharge goal G(x, u, f ′′).

(a)
〈GN

1 ,CD〉
consider(G1)∧activate(G1)

Deliver: If the discharge goal is null, and the commitment
is detached, then consider the discharge goal.

〈method deliver(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ null(G,Gi,Gv) ∧ commitment (C,Ci, D, A)

∧ detached(C,Ci,Cv)),

tn (consider(G,Gi, D,Gv), activate(G,Gi, D,Gv))〉
(46)

(b)
〈GN

1 ,CD〉
activate(G1)

Deliver’: If the discharge goal is inactive, and the commitment is
detached, then activate the discharge goal.

〈method deliver(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ inactiveG(G,Gi,Gv)

∧ commitment (C,Ci, D, A) ∧ detached(C,Ci,Cv)),

tn (activate(G,Gi, D,Gv))〉
(47)

(c)
〈GA

1 ,CP 〉
suspend(G1)

Back Burner: If the discharge goal is active, and the commitment is
pending, then suspend the discharge goal.

〈method backBurner(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ activeG(G,Gi,Gv)

∧ commitment (C,Ci, D, A) ∧ pending(C,Ci,Cv)),

tn (suspend(G,Gi, D,Gv))〉
(48)
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(d)
〈GU

1 ,CD〉
reactivate(G1)

Front Burner: If the discharge goal is suspended, and the commit-
ment is detached, then reactivate the discharge goal.

〈method f ront Burner(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ suspendedG(G,Gi,Gv)

∧ commitment (C,Ci, D, A) ∧ detached(C,Ci,Cv)),

tn (reactivate(G,Gi, D,Gv))〉
(49)

(e)
〈GA

1 ,CT∨V 〉
drop(G1)

Abandon Discharge Goal: If the discharge goal is active, and the com-
mitment is terminated or violated, then drop the discharge goal.

〈method abandonMeansGoal(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ (activeG(G,Gi,Gv) ∨ suspendedG(G,Gi,Gv))

∧ commitment (C,Ci, D, A) ∧ (expired(C,Ci,Cv) ∨ terminated(C,Ci,Cv))),

tn (drop(G,Gi, D,Gv))〉
(50)

(f)
〈GT∨F

1 ,CD〉
consider(G ′

1)∧activate(G ′
1)
Persist: If the discharge goal is terminated or failed, and the

commitment is detached, then consider an alternative discharge goal.

〈method persist (G,Gi,Gv,C,Ci,Cv,G2,Gi2,Gv2, D, A),

pre (goal(G,Gi, D) ∧ (terminatedG(G,Gi,Gv) ∨ f ailedG(G,Gi,Gv))

∧ commitment (C,Ci, D, A) ∧ detached(C,Ci,Cv)

∧ goal(G2,Gi2, D) ∧ null(G2,Gi2,Gv2)),

tn (consider(G2,Gi2, D,Gv2) ∧ activate(G2,Gi2, D,Gv2))〉

(51)

(g)
〈GT∨F

1 ,CD〉
cancel(C)

Give Up: If the discharge goal is terminated or failed, and the commitment
is detached, then cancel the commitment.

〈method giveUp(G,Gi,Gv,C,Ci,Cv, D, A),

pre (goal(G,Gi, D) ∧ (terminatedG(G,Gi,Gv) ∨ f ailed(G,Gi,Gv))

∧ commitment (C,Ci, D, A) ∧ detached(C,Ci,Cv)),

tn (cancel(C,Ci, D, A,Cv))〉
(52)

Appendix B: JSHOP domain-specific operators

Listing 1 Domain-specific operators in JSHOP

(:operator (!requestAssessment ?patient ?physician)
() ; Pre
() ; Del
((diagnosisRequested ?patient ?physician)) ; Add
1 ; Cost

)

(:operator (!requestImaging ?physician ?patient ?radiologist)
(and (physician ?physician) (patient ?patient) (radiologist ?radiologist))

;Pre
() ;Del
((iAppointmentRequested ?patient ?radiologist) (imagingRequested ?physician

?patient)) ;Add
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1 ; Cost
)

(:operator (!requestBiopsy ?physician ?patient ?radiologist)
(and (physician ?physician) (patient ?patient) (radiologist ?radiologist))

;Pre
() ;Del
((bAppointmentRequested ?patient ?radiologist) (biopsyRequested ?physician

?patient)) ;Add
1 ; Cost

)

(:operator (!performImaging ?radiologist ?patient ?physician)
(and (patient ?patient) (radiologist ?radiologist) (physician ?physician) (

iAppointmentRequested ?patient ?radiologist)) ; Pre
( (iAppointmentRequested ?patient ?radiologist) ) ; Del
((imagingScan ?patient ?physician) (iAppointmentKept ?patient ?radiologist)

) ; Add
1 ; Cost

)

(:operator (!performBiopsy ?radiologist ?patient ?physician)
(and (patient ?patient) (radiologist ?radiologist) (physician ?physician))

; Pre
((bAppointmentRequested ?patient ?radiologist)) ; Del
((biopsyReport ?patient ?physician) (bAppointmentKept ?patient ?radiologist

) (tissueProvided ?patient) ) ; Add
1 ; Cost

)

(:operator (!requestPathologyReport ?physician ?radiologist ?pathologist ?
patient)

(and (physician ?physician) (pathologist ?pathologist) (radiologist ?
radiologist) (patient ?patient) (biopsyReport ?patient ?physician) ) ;
Pre

() ; Del
((pathologyRequested ?physician ?pathologist ?patient)) ; Add
1 ; Cost

)

(:operator (!requestRadiologyReport ?physician ?radiologist ?patient)
(and (physician ?physician) (radiologist ?radiologist) (patient ?patient) (

imagingScan ?patient ?physician)) ; Pre
() ; Del
((radiologyRequested ?physician ?radiologist ?patient)) ; Add
1 ; Cost

)

(:operator (!sendPathologyReport ?radiologist ?physician ?pathologist ?patient
)

(and (physician ?physician) (radiologist ?radiologist) (patient ?patient) (
biopsyReport ?patient ?physician)

(pathologyRequested ?physician ?pathologist ?patient))
() ;Del
( (radPathResultsReported ?radiologist ?physician ?patient) (

pathResultsReported ?radiologist ?physician ?patient) ) ;Add
)

(:operator (!sendRadiologyReport ?radiologist ?physician ?patient)
(and (physician ?physician) (radiologist ?radiologist) (patient ?patient)

(imagingScan ?patient ?physician) ;(biopsyReport ?patient ?physician)
(radiologyRequested ?physician ?radiologist ?patient)
)

() ;Del
( (imagingResultsReported ?radiologist ?physician ?patient) ) ;Add

)

(:operator (!sendIntegratedReport ?radiologist ?pathologist ?patient ?physician
)

(and (radPathResultsReported ?radiologist ?physician ?patient)
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(imagingResultsReported ?radiologist ?physician ?patient)
(radiologist ?radiologist) (physician ?physician)
(patient ?patient) (pathologist ?pathologist)) ; Pre

;((radPathResultsReported ?radiologist ?physician ?patient) (
imagingResultsReported ?radiologist ?physician ?patient)) ; Del

nil
((integratedReport ?patient ?physician) (diagnosisProvided ?physician ?

patient)) ; Add
1 ; Cost

)

(:operator (!generateTreatmentPlan ?physician ?patient)
(and (patient ?patient) (physician ?physician) (imagingScan ?patient ?

physician) ;(integratedReport ?patient ?physician) ;<- This should not
be a precondition (since only imaging may do)

) ; Pre
() ; Del
((treatmentPlan ?physician ?patient) (diagnosisProvided ?physician ?patient

)) ; Add
1 ; Cost

)

(:operator (!reportPatient ?patient ?pathologist ?registrar)
(and (patient ?patient) (pathologist ?pathologist) (registrar ?registrar) (

patientHasCancer ?patient)) ; Pre
() ; Del
( (patientReportedToRegistrar ?patient ?registrar) ) ; Add
1 ; Cost

)

(:operator (!addPatientToRegistry ?patient ?registrar)
(and (patient ?patient) (registrar ?registrar) (patientReportedToRegistrar

?patient ?registrar)) ; Pre
() ; Del
( (inRegistry ?patient) ) ; Add
1 ; Cost

)

(:operator (!escalateFailure ?patient ?physician ?radiologist ?hospital)
(and (radiologist ?radiologist) (physician ?physician) (patient ?patient) (

hospital ?hospital) (not (imagingScan ?patient ?radiologist)) ) ; Pre
() ; Del
( (radiologistReported ?patient ?physician ?radiologist ?hospital)) ; Add
1 ; Cost

)
(:operator (!requestPhysicianReportAssessment ?patient ?physician ?hospital)

(and (hospital ?hospital)
(patient ?patient) (physician ?physician)
(integratedReport ?patient ?physician)
) ; Pre

() ; Del
((reportNeedsReview ?patient ?physician)) ; Add # Option 1, TB disagrees

; () ; Add # Option 2, TB agrees with physician (nothing happens)
1 ; Cost

)

(:operator (!requestRadiologyReportAssessment ?pathologist ?radiologist ?
patient ?hospital)

(and (hospital ?hospital)
(patient ?patient) (pathologist ?pathologist) (radiologist ?radiologist

)
(radiologyReport ?patient ?radiologist)
) ; Pre

() ; Del
((reportNeedsReview ?patient ?radiologist)) ; Add # Option 1, TB disagrees

; () ; Add # Option 2, TB agrees with radiologist (nothing happens)
1 ; Cost

)
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(:operator (!requestPathologyReportAssessment ?radiologist ?pathologist ?
patient ?hospital)

(and (hospital ?hospital)
(patient ?patient) (pathologist ?pathologist) (radiologist ?radiologist

)
(pathologyReport ?patient ?pathologist)
) ; Pre

() ; Del
((reportNeedsReview ?patient ?pathologist)) ; Add # Option 1, TB disagrees

; () ; Add # Option 2, TB agrees with pathologist (nothing happens)
1 ; Cost

)

Appendix C: JSHOP domain-specific methods

Listing 2 Domain-specific methods in JSHOP

(:method (hospitalScenario)
((patient ?patient))
((seekHelp ?patient)
(processPatient ?patient))

)

(:method (seekHelp ?patient)
((patient ?patient) (physician ?physician) (radiologist ?radiologist)

(commitment C1 ?Ci1 ?physician ?patient)

) ; Precondition
((!create C1 ?Ci1 ?physician ?patient (nil))
(!requestAssessment ?patient ?physician)
) ; Task Network

)

(:method (processPatient ?patient)
process-patient-healthy
((patient ?patient) (physician ?physician) (commitment C1 ?Ci ?physician ?

patient)
(radiologist ?radiologist)
;(conditional C1 ?Ci ?Cv)

) ; Precondition
((performImagingTests ?patient)
(performPathologyTests ?patient)
(deliverDiagnostics ?patient)) ; Task Network

)

(:method (performImagingTests ?patient)
imaging
((patient ?patient) (physician ?physician) (commitment C1 ?Ci ?physician ?

patient)
(radiologist ?radiologist)
(pathologist ?pathologist)
;(conditional C1 ?Ci ?Cv)
(commitment C2 ?Ci2 ?patient ?physician)
(commitment C5 ?Ci5 ?radiologist ?physician)

) ; Precondition
((!create C2 ?Ci2 ?patient ?physician (?radiologist))
(!create C5 ?Ci5 ?radiologist ?physician (?pathologist))
(!requestImaging ?physician ?patient ?radiologist)
(attendTest ?patient)

) ; Just request imaging
)

(:method (performPathologyTests ?patient)
biopsy-unnecessary
((patient ?patient) (physician ?physician) (commitment C1 ?Ci ?physician ?

patient)
(radiologist ?radiologist))

() ; Does nothing
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)

(:method (performPathologyTests ?patient)
imaging-plus-biopsy
((patient ?patient) (physician ?physician)

(radiologist ?radiologist)
(pathologist ?pathologist)
;(conditional C1 ?Ci ?Cv)
(commitment C3 ?Ci3 ?patient ?physician)
(commitment C4 ?Ci4 ?radiologist ?physician)

) ; Precondition
((!create C3 ?Ci3 ?patient ?physician (?radiologist))
(!create C4 ?Ci4 ?radiologist ?physician (?pathologist))
(!requestBiopsy ?physician ?patient ?radiologist)
(attendTest ?patient)

) ; Request
)

(:method (attendTest ?patient)
attend-imaging
((patient ?patient) (physician ?physician) (radiologist ?radiologist) (

iAppointmentRequested ?patient ?radiologist) (not (iAppointmentKept ?
patient ?radiologist)) )

((!performImaging ?radiologist ?patient ?physician))

attend-biopsy
((patient ?patient) (physician ?physician) (radiologist ?radiologist) (

bAppointmentRequested ?patient ?radiologist) (not (bAppointmentKept ?
patient ?radiologist)))

((!performBiopsy ?radiologist ?patient ?physician))
)

(:method (attendTest ?patient)
no-show-imaging
((patient ?patient) (physician ?physician) (radiologist ?radiologist) (

iAppointmentRequested ?patient ?radiologist) (not (iAppointmentKept ?
patient ?radiologist)) )

() ; No show

no-show-biopsy
((patient ?patient) (physician ?physician) (radiologist ?radiologist) (

bAppointmentRequested ?patient ?radiologist) (not (bAppointmentKept ?
patient ?radiologist)))

()
)

(:method (deliverDiagnostics ?patient)
only-imaging
((patient ?patient) (physician ?physician) (radiologist ?radiologist) (

iAppointmentKept ?patient ?radiologist) (not (biopsyRequested ?physician ?
patient)) )

((!requestRadiologyReport ?physician ?radiologist ?patient)
(!sendRadiologyReport ?radiologist ?physician ?patient)
(!generateTreatmentPlan ?physician ?patient) )

imaging-biopsy-integrated
((patient ?patient) (physician ?physician) (radiologist ?radiologist) (

pathologist ?pathologist) (iAppointmentKept ?patient ?radiologist) (
bAppointmentKept ?patient ?radiologist) )

((!requestRadiologyReport ?physician ?radiologist ?patient)
(!requestPathologyReport ?physician ?radiologist ?patient)
(!sendRadiologyReport ?radiologist ?physician ?patient)
(!sendPathologyReport ?radiologist ?physician ?patient)
(!sendIntegratedReport ?radiologist ?pathologist ?patient ?physician)
(!generateTreatmentPlan ?physician ?patient) )

)
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Appendix D: JSHOP methods for reasoning patterns

Listing 3 Methods in JSHOP encoding reasoning patterns

(:method (entice ?g ?gi ?gv ?c ?ci ?cv ?d ?a)
((goal ?g ?gi ?d) (activeG ?g ?gi ?gv) (commitment ?c ?ci ?d ?a) (null ?c ?ci ?

cv)
(eqGSCP ?g ?gv ?c ?cv) )

((!create ?c ?ci ?d ?a ?cv))
)
(:method (suspendOffer ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (suspendedG ?g ?gi ?gv) (commitment ?c ?ci ?d ?a) (active ?c
?ci ?cv))

((!suspend ?c ?ci ?d ?a ?cv))
)
(:method (revive ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (activeG ?g ?gi ?gv) (commitment ?c ?ci ?d ?a) (pending ?c ?ci
?cv))

((!reactivate ?c ?ci ?d ?a ?cv))
)
(:method (withdrawOffer ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (or (failedG ?g ?gi ?gv) (terminatedG ?g ?gi ?gv)) (commitment
?c ?ci ?d ?a) (active ?c ?ci ?cv))

((!cancel ?c ?ci ?d ?a ?cv))
)
(:method (reviveToWithdraw ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (or (failedG ?g ?gi ?gv) (terminatedG ?g ?gi ?gv)) (commitment
?c ?ci ?d ?a) (pending ?c ?ci ?cv))

((!reactivate ?c ?ci ?d ?a ?cv))
)
(:- (negotiable ?g ?gi ?gv ?c ?ci ?cv) (and (or (activeG ?g ?gi ?gv) (suspendedG ?

g ?gi ?gv) ) (or (expired ?c ?ci ?cv) (terminated ?c ?ci ?cv)) ) )
(:method (negotiate ?g ?gi ?gv ?c1 ?ci1 ?cv1 ?c2 ?ci2 ?cv2 ?d ?a1 ?a2)

((goal ?g ?gi ?d) (commitment ?c1 ?ci1 ?d ?a2) (commitment ?c2 ?ci2 ?d ?a2) (
null ?c2 ?ci2 ?cv2) (negotiable ?g ?gi ?gv ?c1 ?ci1 ?cv2))

((!create ?c2 ?ci2 ?d ?a2 ?ci2))
)
(:method (abandonEndGoal ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (or (activeG ?g ?gi ?gv) (suspendedG ?g ?gi ?gv)) (commitment
?c ?ci ?d ?a) (or (expired ?c ?ci ?cv) (terminated ?c ?ci ?cv)))

((!drop ?g ?gi ?d ?gv))
)
(:method (deliver ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

; Deliver
((goal ?g ?gi ?d) (null ?g ?gi ?gv) (commitment ?c ?ci ?d ?a) (detached ?c ?ci ?

cv))
( (!consider ?g ?gi ?d ?gv) (!activate ?g ?gi ?d ?gv) )
; Deliver’
((goal ?g ?gi ?d) (inactiveG ?g ?gi ?gv) (commitment ?c ?ci ?d ?a) (detached ?c

?ci ?cv))
((!activate ?g ?gi ?d ?gv))

)
(:method (backBurner ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (activeG ?g ?gi ?gv) (commitment ?c ?ci ?d ?a) (pending ?c ?ci
?cv))

((!suspend ?g ?gi ?d ?gv))
)
(:method (frontBurner ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (suspendedG ?g ?gi ?gv) (commitment ?c ?ci ?d ?a) (detached ?c
?ci ?cv))

((!reactivate ?g ?gi ?d ?gv))
)
(:method (abandonMeansGoal ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (or (activeG ?g ?gi ?gv) (suspendedG ?g ?gi ?gv)) (commitment
?c ?ci ?d ?a)

(or (expired ?c ?ci ?cv) (terminated ?c ?ci ?cv)) )
((!drop ?g ?gi ?d ?gv))

)
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(:method (persist ?g ?gi ?gv ?c ?ci ?cv ?g2 ?gi2 ?gv2 ?d ?a)
((goal ?g ?gi ?d) (or (terminatedG ?g ?gi ?gv) (failedG ?g ?gi ?gv))
(commitment ?c ?ci ?d ?a) (detached ?c ?ci ?cv) (goal ?g2 ?gi2 ?d) (null ?g2 ?

gi2 ?gv2))
((!consider ?g2 ?gi2 ?d ?gv2) (!activate ?g2 ?gi2 ?d ?gv2))

)
(:method (giveUp ?g ?gi ?gv ?c ?ci ?cv ?d ?a)

((goal ?g ?gi ?d) (or (terminatedG ?g ?gi ?gv) (failed ?g ?gi ?gv)) (commitment
?c ?ci ?d ?a) (detached ?c ?ci ?cv))

((!cancel ?c ?ci ?d ?a ?cv))
)
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