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The bond market is affected by the shortage of liquidity problem, which means that
many bonds are not frequently traded. This implies that market data for these bonds
are missing. This lack of data represent a problem for financial risk measures such
as Value at Risk (VaR). This research provides the framework for the construction
of a proxy which replaces the missing data with artificial data such that VaR can
be calculated. The data used for the VaR calculation are bond z-spreads, which is
a credit spread measure. This research represents an improvement of the current
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ification required a shift types assessment and it has been beneficial both for the
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a financial and statistical perspective is the theoretical and empirical convergence of
the VaR obtained through the proxy with the VaR calculated with real market data.
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Chapter 1

Introduction

This thesis aims to provide an improved framework for the analysis of one of the
most illiquid markets in finance: the bond market. This problem is called ’shortage
of liquidity problem’ (Brummelhuis and Luo, 2017), and it refers to those assets that
are not frequently traded which results in a lack of data.
This lack of data is a problem for financial institution, as it does not allow for the cal-
culation of pricing and risk measures such as Credit Value Adjustment (CVA) and
Value at Risk (VaR), the latter is the main application of this thesis.
The shortage of liquidity problem can be partially solved by the usage of a proxy, in
which the missing data points are replaced with artificial data in order to mimic the
behaviour of the original asset.
The major requirements, for proxy VaR calculation, imposed by the European Bank-
ing Authority (EBA) aim for a conservative proxy such that the risk is mitigated,
(EBA, 2016). In this thesis, we focus both on the accuracy of the proxied data and on
the estimation of a conservative VaR.
Proxy models for bonds and CDS credit spreads are already wide-spread across fi-
nancial institution. In 2013, EBA introduced the Intersectional Method, in which
missing data points are replaced by the an average of liquid data which belong
to the same categorical features, such as: credit rating, region and sector, ( EBA,
2013). Shortly after the publication of the Intersectional Method, Nomura bank pro-
vided a second and more sophisticated method for proxing CDS credit spreads, the
Cross-Sectional Method, (Chourdakis et al., 2013). The latter is based on a multi-
dimensional regression across credit rating, region, industry sector and seniority.
It effectively reduced many of the problems related to the Intersectional Method,
such as stability, robustness and consistency. For this reason we decided to adopt
the Cross-Sectional Method as our benchmark model for proxying bond z-spreads
which is a measure of credit spread.
Our analysis takes the Cross-Sectional method as starting point and develops it on
different aspects. One of the main improvements is offered by machine learning
(ML) algorithms, which in recent years are becoming more and more popular in
the financial industry. ML algortihms allow to model complex non-linear behaviour
which cannot be captured by linear regression. Furthermore, the selection of the
categorical features of the model, such as credit rating, region, seniority and their
interaction terms can be automatically modelled through machine learning algo-
rithms. Within this thesis we selected 3 different ML algorithms: Random Forest
and CatBoost, which are decision trees based methods and Support Vector Regres-
sion, which belongs to the Support Vector Machines (SVM).
Another major improvements from the benchmark model is obtained by the ad-
dition of extra categorical features, such as currency, time to maturity and market
indicator.
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The main application of this research is the VaR calculation. In particular, the method-
ology used for VaR calculation is the historical VaR (HVaR). A crucial aspect in order
to perform HVaR calculation is the modelling of credit spreads daily changes which
are commonly referred as ’shifts’. Popular choices for modelling daily changes are
absolute and relative shifts. Throughout this thesis an extensive assessment of the
most suitable shift type is performed. The shift types assessment is the starting point
of this thesis. This because, in this research, differently from the current proxy meth-
ods, we aim to directly proxy the shifts of the bond credit spreads, i.e. the daily
changes in the z-spread of bonds. For this reason, the choice of the shift type is of
fundamental importance for the construction and calibration of the proxy model it-
self.
This analysis has been carried out on a data-set containing 8119 unique bonds across
a two years time-frame, from 21st August 2017 to the 20th of August 2019. More than
50% of the z-spreads in the data-set is missing, this clearly outlines the shortage of
liquidity problem.
The most challenging task in this research is the maximization of the credit spreads
proxy accuracy together with the replication of a conservative VaR, which translate
into a proxy that is both accurate and allows for large volatility in the predicted z-
spreads in order to mimic the fluctuations of real z-spreads data. This often turned
into a trade-off between high accuracy and realistic volatility, however we provided
solutions for achieving both with a satisfying outcome.
Another important limit of existing proxy methodologies relies on the fact that the
proxy model is estimated day-by-day using only the information available on each
single day. The main part of this thesis follows this procedure as it turned out to
be simple and effective. However, historical data can provide key insights on the
behaviour of bond z-spreads and for this reason we investigated possible further
developments incorporating bond credit spreads information across time. This is
done, in this research, by the usage of autoregressive (AR) models and it provided
a strong foundation for the study of more complex time-varying models, in which
information from past and future can be used in order to achieve a even more so-
phisticated proxy.
This thesis is organized as follows. In Chapter 2, we provide background informa-
tion about bonds such as pricing approach and an extensive description of bond
z-spread. Afterwards, we present Value at Risk and the methodology of its applica-
tion to this thesis: the historical VaR. This is followed by a description of the current
proxy methodologies and the restrictions that these imply, together with the targets
of machine learning in this framework and the reasons why ML algorithms could
overcome most of the current limitations.
Chapter 3 presents the data-set that has been used for this research and the pre-
processing steps that have been performed before the start of the main analysis.
Also an exploratory analysis on the processed data is presented. This contains vi-
sual representations that can provide clear insights about the data structure and the
bond features.
In Chapter 4, all the methodologies used through the thesis are described. First,
those related to the shift types assessment, such as backtesting methods and econo-
metric tests. Then, we present the credit spreads proxy methodology, starting from
the different evaluation metrics, to the different machine learning procedures and
finally the complete model framework.
The results and the model optimization are presented in Chapter 5. Again, we first
provide the results for the shift types assessment and then the performance of the
bond credit spreads proxy. Of particular relevance for this thesis, from a financial



Chapter 1. Introduction 3

and statistical point of view, is the VaR comparison at the end of this chapter.
Finally in Chapter 6, we provide a supplementary analysis on the possible further
developments of this model. This part aims to include past information of bond z-
spreads by means of an autoregressive model.
The last chapter of the thesis, Chapter 7, is dedicated to the conclusions drawn from
our research.
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Chapter 2

Background

This chapter introduces the fundamental blocks that are needed in order to under-
stand the framework of this thesis project. In order, we present the object in ex-
amination (bond z-spreads), the application of the project (historical Value at Risk)
and the current methodologies which are used to tackle similar problems. These
methods are simpler than those presented in the rest of the thesis and therefore are
useful to clearly highlight the problem statement and the limitations of the current
methodologies.

2.1 Bond

Bonds are debt securities issued by public authorities, credit institutions or compa-
nies to investors in order to raise capital.
A bond issuer (borrower) is obliged to pay a coupon, which is an interest rate, in
consecutive time intervals of generally 6 months to the buyer of the bond (lender).
Bond instruments have a maturity date, in which the principal, or face value of the
bond, is paid back to the bond owner. The interest rate or coupon is a percentage of
the face value and the bond can be mathematically described as a collection of cash
flows composed by: a series of coupon payments which length depends on the life
of the bond (the time to maturity) and the periodicity of the payments and finally a
maturity payment that is the sum of a coupon and the face value.
Below we examine the main features of a bond.

Issuer: The nature of the issuer impacts the way the bond is considered in the mar-
ket and therefore its value. Government bonds usually have the lowest risk and
thus are considered of higher quality. The creditworthiness of the issuer determines
the credit rating, which is one important feature of bonds, e.g., ’AAA’ is the highest
quality rating and it is often assigned to trustable treasury bonds.

Coupon rate and face value: The face value is the amount that the issuer pays back
to the buyer of the bond at the maturity date. It is also called maturity value, re-
demption value or par value.
The coupon rate is the annual interest rate paid to the bondholder and is a percent-
age of the face value. Coupons are issued in form of periodic payments. All bonds
imply periodic interest payments except zero-coupon bonds. The latter allows the
lender for a positive interest since it is sold below its face value.

Time to maturity: This is the number of years after which the issuer will pay back
the obligation. The time to maturity strongly influences the bond’s yield as well as
the volatility of the bond price.
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2.1.1 Bond Pricing

Here, we present the "traditional" approach to bond pricing: in practice more so-
phisticated techniques are used, but for the scope of this introduction to bonds and
z-spreads the following approach is satisfying.
The price of a bond is equal to the present value of its cash flows, therefore we first
need to know the bond’s cash flows in order to determine the appropriate interest
rate at which we can discount the cash flows. Then the price of the bond can be
calculated.
Bond’s cash flows are coupons that are paid during the life of the bond,together
with the final redemption payment. The coupon payments for conventional bonds
are made annually, semi-annually or quarterly. If the coupon is semi-annually pro-
vided, for example, half of the coupon is paid as interest every six months.
The interest rate used to discount a bond’s cash flows (discount rate) is the rate re-
quired by the bondholder. It is also known as bond’s yield. The bond’s yield is
determined by the market and the price demanded by investors to buy it.
The fair price of a bond is the present value of all its cash flows. Hence, when pricing
a bond we need to calculate the present value of all coupon interest payments and
of the maturity payment, and sum these. The price of a conventional semi-annual
bond can be given by:

P =
C/2

(1 + 1
2 r)

+
C/2

(1 + 1
2 r)2

+
C/2

(1 + 1
2 r)3

+ ... +
C/2

(1 + 1
2 r)2N

+
M

(1 + 1
2 r)2N (2.1)

Where P is the price of the bond, C is the annual coupon payment, that is divided
by two because the bond issues semi-annual payments, r is the discount rate, N is the
number of years to maturity, therefore a semi-annually paying bond has 2N interest
periods, M is the face value or maturity payment. For more details see Choudhry,
2003.

2.1.2 Z-Spread

The z-spread is used by analysts and investors to capture discrepancies in bond
prices. The z-spread is the parallel shift over the zero-coupon Treasury curve in
order to equate the discounted cash flows of the bond to its market value. It is a
premium to compensate bond holders for taking credit risk.
A coupon bond can be thought of as a collection of zero-coupon bonds, where each
coupon is a small zero-coupon bond that matures when the bondholder receives the
coupon. Each one of these bond cash flows is discounted using its own particular
yield to maturity from the spot rate Treasury curve or zero-coupon Treasury curve.
The z-spread is the number added to all different yields to maturity in the equation
such that the bond price equals the market value of the bond. This can be under-
stood from the following equation:

P =
C1/m

(1 + 1
m (T1 + Z))

+
C2/m

(1 + 1
m (T2 + Z))2

+ ... +
CmN/m

(1 + 1
m (TmN + Z))mN

+
M

(1 + 1
m (TmN + Z))mN

= MV
(2.2)
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In this equation the discount rate is adjusted with the z-spread. Here, m is the
frequency of coupon payments, that before was 2, Z is the z-spread, Ti is the proper
yield on the spot rate Treasury curve and MV is the market value of the bond. Cal-
culating the Z-spread is an iterative computation as it is the same number that needs
to be plugged-in all cash flows to get the equality between market price and theoret-
ical price. It may be the case that the bond earns a lower yield than the zero-coupon
Treasury curve, in that case the Z-spread will be negative. For more information
about the z-spread see Choudhry, 2006.
To summarize: the z-spread measures the additional return, earned by the owner of
a bond comparing to the benchmark return, which is using the zero-coupon Trea-
sury curve. A higher z-spread implies a major potential profit for the buyer of the
bond, as the distance from the spot rate Treasury curve increases, but it also carries
higher risk.

2.2 Value at Risk

In this section we introduce the risk measure Value at Risk (VaR). The bond history
generated by the bond credit spreads proxy in this thesis will be used to calculate
VaR. VaR has been introduced in RiskMetricsTM by JP Morgan in 1994 and it is the
main market risk measure used in banking, i.e. it is used to measure the risk derived
by fluctuations of prices in the market.
VaR measures the worst expected loss that a company may have with a specified
confidence level over a time period under normal market conditions. The confi-
dence level and the time period are specified by the user. We can define VaR more
formally as:

Let X be a profit and loss distribution, The VaR at level α ∈ (0, 1) is the smallest num-
ber y such that the probability that Y := -X does not exceed y is at least 1− α, i.e., VaRα(X)
is the (1− α)-quantile of Y :

VaRα(X) = −in f {x ∈ R : FX(x) > α}, (2.3)

where FX(x) is the cumulative distribution of the random variable X.

For example if a daily VaR is 100, 000 for a 95% confidence level, it means that during
that day there is a 95% probability that the loss will be smaller than 100, 000.
VaR is calculated within a given confidence interval that is typically 95% or 99% .
The main assumption in VaR models is that the distribution of future price changes
will follow past variations. There are three different methods for computing VaR
and these are: the variance/covariance method, Monte Carlo simulation and histor-
ical simulation. For more information about VaR see Choudhry, 2003.
In the following section we introduce the historical simulation method, as the shifts
predicted by our credit spreads proxy are used to compute historical VaR.

2.2.1 Historical VaR

Historical simulation method for calculating VaR (HVaR) has the general advantage
of relying on very few assumptions. The main assumptions required for the vari-
ance/covariance method, i.e. returns are normally distributed and constant correla-
tion, are not required. The method makes very few assumptions about the market
price process generating the portfolio’s returns. It simply assumes that market price
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changes in the future are drawn from the same empirical distribution as the market
price changes generated by the historical data, i.e., price changes are independent
identically distributed (i.i.d). The HVaR model computes potential losses using his-
torical returns in the risk factors and therefore captures behaviours different from
the normal distribution. Since the risk factor returns, used for calculating HVaR, are
actual past movement, the correlations are also past correlations.
The prerequisite for HVaR calculations is that the risk factor market data in the his-
torical period must be complete and from here comes the need of a proxy to fill-in the
missing data points. The number of simulated scenarios for each HVaR calculation
is 260. This number of scenarios implies that there must be market data available for
261 business days prior to the current date. VaR is computed to measure projected
risk for 1 and 10 days into the future. When calculating a 1 day VaR, all scenarios
must represent a 1 day market movement.
The method employed to calculate the scenarios is therefore to calculate the differ-
ences between market data (shifts) on each historical date and create a complete set
of shifts. These shifts are then applied to the current market data to create the new
scenarios which represents different potential market data variations (ING, 2018b).
The choice of the shifts type for the underlying risk factor, i.e. Shift Type Assess-
ment, is of great importance for this task and it is examined in this thesis.
The HVaR methodology for generating scenarios consists of the following steps:

1: Define a vector X consisting of n + 1 days of daily observations X = {x0, x1, ..., xn}
where n usually equals 260, x0 is the oldest observation and xn the most recent.

2: Calculate n shifts defined in absolute, relative or others terms depending on the
risk factor. Here we present the (displaced) relative shifts, absolute shifts and arc-
sinh shifts.

Description Shift type Scenario value

Absolute shift ∆xi = [xi+1 − xi] ·
√

N xscn
i = xn + ∆xi

(Displaced)
Relative shift ∆xi = [ xi+1−xi

xi+a ] ·
√

N xscn
i = xn(1 + ∆xi)

ArcSinH shift ∆xi = [sinh−1 xi+1
b − sinh−1 xi

b ] ·
√

N xscn
i = b · sinh[∆xi + sinh−1 xn

b ]

Here, N is the holding period (one or ten days), a is the displacement factor for the
relative shifts (when a = 0 we are using relative shifts), b is a parameter that can
be opportunely tuned for implementing arcsinh shifts and xn is the current market
value for the risk factor x, i.e. the z-spread.

3: Apply the proper shift type to the risk factor’s current market value. This will
generate a distribution of 260 possible scenarios, among which VaR is calculated.

2.3 Current Proxy Methodologies

This section describes the two main bond proxy methods currently used by banks.
The first method has been proposed by the European Banking Authority (EBA) in
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relation to Credit Valuation Adjustment (CVA), (EBA, 2013). When the underlying
credit spread is not observable in the market, EBA proposed to average data of liq-
uid names (names that are traded and therefore data are available) across the same
rating, region and sector to proxy spreads of not observable names. This method is
defined as Intersection method.
A second and preferable method to the aforementioned one is the Cross-section
approach described in Chourdakis et al., 2013. This method is based on a multi-
dimensional regression across rating, region and industry sector and avoids many
of the stability, robustness and consistency problems related with the Intersection
method proposed by EBA.

2.3.1 Intersection Method

In the intersection methodology proposed by EBA in EBA, 2013, the liquid entities
that belong to the same region, sector and rating are grouped together, this proce-
dure is called bucketing. Then the proxy spread of an illiquid entity i is defined
as:

Sproxy
i =

1
N

N

∑
j=1

S(j) (2.4)

Here, N ≥ 1 is the number of liquid names in the same rating, region, sector as en-
tity i and S(j) is the spread level of these. The main problem with the Intersection
method is that there are buckets with few or no entities for the same rating, region
and sector and therefore the proxy for that combination of entities cannot be calcu-
lated.
Another major issue with the Intersection method is historical instability of the proxy
spreads. When a bond changes bucket, due to a rating migration for example, the
proxy spreads for that bucket will have a jump. Especially, in case the bucket has a
few entities, the jumps will be severe.

2.3.2 Cross-Section Method

The Cross-Section Method (CSM) introduced by Chourdakis et al., 2013 assumes that
the proxy spread for a given entity is the product of five risk factors: a global factor,
a sector factor, a region factor, a rating one and one that accounts for the seniority.
Therefore, the model can be described by a log-linear regression relationship:

logSproxy
i = β0 +

Nsec

∑
j=1

βsec
j Isec

j (i) +
Nreg

∑
k=1

β
reg
k Ireg

k (i) +
Nrat

∑
l=1

βrat
l Irat

l (i) +
Nsen

∑
m=1

βsen
m Isen

m (i)

(2.5)

Here, Nsec, Nreg, Nrat, Nsen represent respectively the number of available entities in
the same sector, region, rating and seniority of the obligor i. Similarly βsec, βreg, βrat, βsen
are the regression coefficients for those categories. The I(i) are indicator functions
called also dummy-variable, e.g., Isec

j will be one if entity i is in sector j, zero other-
wise.
The beta coefficient are derived by Ordinary Least Squares estimation. Once the
regression parameters are estimated, the model will provide proxies for the unob-
served entities.
The CSM overcomes many of the issues presented in the Intersection method. Here
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for an empty bucket, if there exists at least one liquid spread in a certain sector, re-
gion, rating or seniority, a proxy spread is derived. At the same time, CSM provides
more stable proxy spreads over time.
Two other major improvements of the CSM are the monotonicity in the rating and
the granularity of categories. The former refers to the fact that among the consid-
ered features, the rating is the strongest indicator for spreads. A higher rating, as
explained in Section 2.1.2, implies a smaller spread and viceversa. CSM provided
proxies that are generally monotonic in time w.r.t rating, e.g., ’AAA’ rated bonds
are below ’AA’ for same region, sector and seniority, whereas for the Intersection
method, this did not generally hold.
When choosing sector, region and rating categories, a problem called granularity of
categories arises. The problem is a trade-off in which, if the categories are too thin,
there will be too few liquid entities in some categories, while if categories are too
broad, some important information can be lost. CSM can group categories in a finer
way comparing to the Intersection method as it considers the categories separately
instead of their intersection.
For all these reasons we chose the CSM as a starting point of our analysis and as a
benchmark for the challenger models.
It is important to stress that, just like the Intersection method, CSM provides estima-
tion by using data available on the same day. Hence, it does not look at the history
of the spreads for the estimation.

2.4 Current Methods Restrictions and Targets of ML

In this section we underline the limitations introduced by the current methods and
how Machine Learning algorithms may be able to overcome them. In particular we
focus, first, on how we can produce better estimates within the daily regression, i.e.
fitting the data separately day-by-day. And secondly on how including a multiple
time-structure can improve the model. Since the CSM significantly improved the
IM in terms of performance, we mainly focus on the limitations of the CSM to be
addressed.

Nonlinearity: As we showed in the previous section, CSM relies on the assump-
tion of a (log)-linear relationship between the target variables and its covariates.The
logarithmic transformation was used in Chourdakis et al., 2013 to stabilize the vari-
ance of CDS z-spreads but, anyway, it implies a linear relationship between the log-
spreads and the categorical features.
This model lacks both in capture the non-linear contributions of each categorical
features and especially the interaction terms between these two. The interaction
between categorical features was addressed in the IM method but it led to the gran-
ularity of categories issue mentioned in the previous section.
Machine Learning algorithms in general, are well known for their ability to learn
complex non-linear functions and capturing interaction terms between categorical
features without neglecting the singular linear or nonlinear terms introduced by
each covariate. Taking into account these nonlinearities allows one to better replicate
bond z-spread distributions and achieve better accuracy.

Time Structure: The aforementioned proxy methodologies do not consider any time
structure in their models. Every day is analysed independently from the other days
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and this can clearly be seen as a waste of information. Including the historical infor-
mation of every bond is a fundamental additional feature for proxying bond credit
spreads.
Machine Learning algorithms can help discovering similar patterns and behaviours
among different bonds. This means that not only, past and future information for
each singular bond can be used to fill-in missing data points, but also past, present
and future information of similar bonds for which we have data.
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Chapter 3

Data Framework and Exploratory
Analysis

In this section we present the data set that has been used and explain the pre-
processing steps and the selection of the categorical features that are used in the
credit spreads proxy.
Afterwards, we explore the processed data set and describe its features. In this part,
several graphs are presented in order to provide visual intuition about the data struc-
ture.

3.1 Data

The pricing data used in this thesis, i.e. the z-spreads, are obtained from the IHS
MarkIT Generic Bond File, whereas the static data, the categories, are taken from
various data sources: IHS MarkIT Bond Reference Data file, GRID and Bloomberg
Credit Risk file. The use of more data providers for the static data aims to have cat-
egorical data as complete as possible.
The pricing and static data are then mapped and combined in order to identify the
features of the quoted z-spreads used as input data for the proxy. The z-spreads
of every issuer are then mapped with 7 categorical features: credit rating, region,
sector, seniority, tenor, currency and country. More details about the mapping will
follow.
For this analysis we consider corporate bonds and government bonds. Among cor-
porate bonds we excluded callable and putable bonds due to the uncertainty around
the maturity date which affects the tenor bucket for the regression.

Data Transformations

A useful technique in explanatory data analysis is the application of data transfor-
mation such as the logarithmic transformation, as performed by Chourdakis et al.,
2013, for CDS spreads. However, our empirical analysis shows that the quality of
the proxy results did not significantly improve running the regression on trans-
formed data compared to the raw z-spreads, therefore we decided to not perform
data transformation for what concerns the cross-sectional regression. For the Ma-
chine Learning algorithms implementation, the data have been standardized and
this is discussed in Chapter 4.
However the following transformations have been implemented and then not ap-
plied, also because the main focus of this thesis concerns the prediction of shifts and
not the levels:
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Log Transformation:

ztrans f = log(
z + a

b
) (3.1)

Arcsinh Transformation:

ztrans f = arcsinh(
z + a

b
) (3.2)

Where z is the z-spread level, a is a displacement parameter and b a scaling parame-
ter

Data Cleaning

The data cleaning procedure followed the indication of ING, 2018a technical docu-
mentation. Two data cleaning procedures have been performed. Firstly, we removed
callable and putable bonds as previously mentioned, together with bonds that had
matured before the final date in examination plus 30 days. This is done to avoid
the extra-volatility of the spreads that bonds close to maturity experience. Defaulted
bonds are also excluded.
The second layer of the data cleaning process aims at removing idiosyncratic bias
from specific issuers. This means that in case multiple bonds of the same issuer and
the same categorical features are present, we select only one. The selection criterion
is the maturity date, i.e. we choose the bond that is closest to the respective tenor
bucket. The following table is an example of this procedure.

Multiple Spreads Selection

Date ISIN Issuer Maturity Exact
Tenor

Difference
from 3Y

Tenor
Bucket

Selected

16/04/18 USG8200TAB64 China
Petrochimical

Corp

03/05/21 3.05 0.05 Y

16/04/18 USG8200TAG51 China
Petrochimical

Corp

29/09/21 3.46 0.46 N

16/04/18 USG8200TAA28 China
Petrochimical

Corp %

12/04/22 3.99 0.99 N

16/04/18 USG8200TAA03 China
Petrochimical

Corp %

12/04/22 3.99 0.99 N

TABLE 3.1: Procedure for the selection among multiple bonds with
same issuer and categorical features.

In Table 3.1, there were 4 bonds that have the same categorical features. Only
one has been selected in order to avoid an idiosyncratic bias to the regression
coefficients. The selected bond is the one closer to the tenor bucket 3Y.
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Input Data Structure

In this subsection, the categorical structure framework is presented. The buckets
proposed in this part are clustered buckets, which means that more categories are
grouped together.
Following Chourdakis et al., 2013 we select the categorical variables: credit rating,
region, sector and seniority. In order to improve fitting we added extra categories
such as: tenor, currency and a developed/emerging market indicator. The granular-
ity of the categories and their meaning are presented in the following, Table 3.1.

Categorical Variables Framework
Category Description Buckets # of Buckets

Rating Credit rating class AAA, AA, A, BBB, BB, B,
CCC

7

Region Clustered area in
which the bond

belongs

Northwest Europe, Northern
America, Oceania,

AroundAfrica, Asia, Southern
Europe, Latin America,

Supranational

8

Sector Operating area of
bond issuer

Basics, CommTech,
Consumer, Financial,
Government Related,

Government

6

Seniority Order of
repayment in case

of default

Secured, Senior
Unsecured,New Senior

Non-Preferred, Subordinate,
Junior Subordinate

5

Tenor Time to maturity
date

1Y, 2Y, 3Y, 5Y, 7Y, 10Y,
20Y, 30Y, 100Y

9

Currency Currency of the
quoted bond

EUR, USD, GBP, Others 4

EM/DM Economic market
classification

Emerging Market, Developed
Market

2

TABLE 3.2: Description and bucketing procedure of each categorical
feature in the data-frame.

For what concerns the EM/DM discrimination we followed the indications in FTSE,
2020, for the rest we kept the same structure as in ING, 2018a The table reports 41
unique categorical levels. Overall our data structure will be composed by T = 522
days (two years in business days), N = 8119 unique bonds ISIN, M = 8 variables: 7
categorical variables and 1 continuous variables, i.e. the z-spread. This data set can
be better thought of as a 3D structure of dimension given by (T × N ×M).

3.2 Exploratory Data Analysis

The data-frame we just described is composed by (522 × 8119) = 4.229.999 z-
spreads. Among these 1.990.566 have been observed, which means that 52.9% of
the data is missing. In figure 3.1, we provide an overview of the percentage of liquid
entities across the time-span. The number of entities with complete historical data
is 438 (entities with 1 or 2 missing data points are considered complete across our
analysis). The number of available bonds starts around 46% in the summer of 2017,
to reach its peak around 50% in the summer of 2018, to finally decrease at 45% at the
end of the analysed period.The fluctuations are not large so the quality of our proxy
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should be quite homogeneous across the 2 years in exam.

FIGURE 3.1: Percentage of available entities in the period from 21-08-
2017 to 20-08-2019

To give more intuition about the liquidity of our buckets, in figure 3.2, we show the
number of available entities across different buckets.
Figure 3.2 gives also an indication about which categories are included in the bench-
mark bucket. In fact, one problem in Chourdakis et al., 2013, was the missing pre-
vention of multi-collinearity. Multi-collinearity happens when one or more predictor
variables are a linear combination of other predictor variables. A practical solution
to avoid this problem is to set a benchmark bucket of categorical levels, these lev-
els are not part of the parameters estimated during the regression but they compose
the intercept. Including the intercept and indicators for the others n − 1 levels of a
categorical variable is called "reference level coding". More details on this and the
one-hot encoding procedure can be found in Chapter 4.
It is common in reference level coding to use the largest category as the reference.
Therefore, the categorical levels: rating ’A’, region ’Northwest Europe’, seniority
’SNRFOR’ and sector ’Financial’ are part of our benchmark bucket. More details are
provided in the methodology section.
Figure 3.2 clearly presents the problem of empty buckets explained in the Intersec-
tional method. In fact, in the figure there are some categorical levels with very few
observations, e.g. rating:’CCC’, regions: ’Latin America’ and ’Around Africa’, and
these most likely produce empty buckets or buckets with very few spreads that are
strongly affected by idiosyncratic bias, which is undesirable since the aim of the
proxy is to incorporate only systematic risk.

Figure 3.3 shows averages of z-spreads for different categories, it highlights how
different categorical levels affect the z-spread of bonds. Notice that to obtain the
spreads in bps we need to multiply by a factor of 10 000. Another drawback of the
Intersectional method and partially of the Cross Sectional method is the non mono-
tonicity of the proxy with respect to the credit rating, i.e. a higher credit rating
should always correspond to a lower z-spread. In figure 3.3, we see this property
holds not only for credit rating but also for different market indicators. It is notice-
able that also for different regions and tenors monotonicity holds for a considerable
part of the time-span.
For what concerns, the rating class monotonicity does not hold only for the lowest
rating levels ’CCC’ and ’B’. The reason for this can be found in figure 3.2 where a
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FIGURE 3.2: Number of available entities for different categorical fea-
tures in the period from 21-08-2017 to 20-08-2019

really small number of ’CCC’ rated bonds has been recovered and therefore the av-
erage z-spread fluctuations are large.
The top right sub-figure shows the z-spread mean across different regions and we
can see that regions are associated with different quality of bonds. The clustered re-
gions ’Around Africa’ and ’Latin America’ account for much higher z-spread, which
unveil a higher risk for these products and a greater volatility, which is explained
also by the low number of observed entities for these categorical levels. The lowest
z-spread is obtained by ’Supranational’ bonds, which are defined as those issued by
entities formed by two or more central governments to promote economic develop-
ment for the member countries. Sovereign bonds include sovereign guaranteed se-
curities with an explicit government guarantee or support from the sovereign, prin-
cipal or state governments and are therefore of greater quality.
The lower left sub-figure shows the net difference between z-spreads of emerging
and developed markets. The categorical feature market indicator was not consid-
ered in Chourdakis et al., 2013. However, this graph shows that it is a really pow-
erful discriminant, the two spread averages here, follow a really similar path, which
indicates that systematic risk is captured rather than idiosyncratic bias, with the
emerging market spreads being approximately 3 times larger than the developed
market.
In the last sub-figure we can see that z-spreads are almost monotonic across differ-
ent tenors, and a longer time to maturity corresponds a higher spread. Here, the
’100 years’ category level which includes bonds that have 65 or more years before
expiring has very large fluctuations because of shortage of liquidity and even some
time points with no data at all.
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In this figure we presented 4 of the 7 categorical variables that we selected and al-
ready from this visual representation it is clear that these features yield strong dis-
criminatory power and therefore are suitable as explanatory variables.

FIGURE 3.3: Mean of the z-spread across different categorical levels
in the period from 21-08-2017 to 20-08-2019
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Data Distribution

In order to better understand the behaviour of the z-spreads across our explanatory
variables, we present the distribution of the z-spread mean across same category
bonds and of the absolute shifted z-spread mean through violin plots. Violin plots
are similar to box plots but additionally show the probability density of the data
values, in our case the density of the z-spread averages across different categorical
levels, smoothed by a kernel density estimator.
Figures 3.4 and 3.5 show the distribution of the z-spread means across different rat-
ing, region,seniority and market indicators. In particular for the rating classes we
can observe that there is a net difference in the distribution of the spreads. Figure 3.3
already highlighted the difference in terms of z-spread mean across rating classes,
but with a violin plot we can better understand how the probability distribution
changes, in particular how the volatility is affected by the credit rating.
In the sub-figure below of 3.4 it is shown how the z-spreads of clustered regions
’Around Africa’ and ’Latin America’ are significantly more volatile than the other
categorical levels, while on the other hand ’Supranational’ bond z-spreads are really
stable and clustered slightly above the zero level.
In the sub-figure below, the distributions of the means across different seniorities are
presented. These distributions are more homogeneous among each other in terms
of variance. The tick black bar that is more visible here represents the interquantile
range, which means that 50% of the data points are contained in that range and the
white dot corresponds to the median.
In the last sub-figure, distributions of the z-spread mean for emerging and devel-
oped markets are presented. It is noticeable how the developed market observations
are generally more concentrated around the median, as described by the black bar
which is definitely shorter than the one for emerging markets. The distributions just
presented are not stationary and heavily skewed, which makes them less suitable
for comparison purposes.
A more visually insightful plot is the one of the absolute shifts of z-spread means
in figures 3.6 and 3.7. As mentioned in the introduction, the target of this thesis is
to focus on proxying the z-spread shifts or daily changes, instead of proxying the z-
spread levels. Therefore it is important to understand the behaviour of the z-spread
shifts. We decided to present the absolute shifts, but similar plots are drawn for the
other shift types in the analysis, i.e. displaced relative and arcsinh shifts.
In contrast to the z-spreads level, the z-spread shifts are stationary with zero mean
and are characterized by a bell-shaped distribution, which makes the graphic inter-
pretation more clear. The different characteristics across categorical levels are still
noticeable.
Starting from the top sub-figure in figure 3.6, we see how the width of the shift dis-
tribution increases for lower rating classes. This feature is reflected in the proxy,
the proxy is more robust in predicting higher rating classes as more bonds for these
classes are observed and the intra-level variance is smaller.
Region-wise distributions are significantly different. A wider spread distribution
is noticed for regions with fewer observed entities and lower credit rating, like
’Around Africa’ and ’Latin America’. The more stable distributions are those of re-
gions ’Northwest Europe’ and ’Oceania’ together with ’Supranational’ bonds which
as we discussed are considered the least subject to risk exposure. More volatile are
the distribution of bonds from ’Asia’, ’Southern Europe’ and ’Northern America’
with the last one presenting a noticeable negative skewness.
In figure 3.7, it is remarkable how shift volatility is much more clustered for secured
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entities and gets wider for lower seniority, i.e. later order of repayment in case of
default. This intuition was not seen from the z-spread mean violin plot as z-spread
levels can vary a lot within the same seniority class. The z-spread shift mean violin
plot, instead, shows how observations are narrowly focused around zero, i.e. small
daily changes, for secured entities, whereas a wider dispersion is observed for the
others seniority classes.
The bottom sub-figure of figure 3.7, presents the distributions of the mean absolute
shifts for emerging and developed markets. It is noticeable how daily changes of
bonds from emerging markets are bigger in magnitude comparing to the developed
markets, this results in a net difference in the distribution variances.
All the considerations in this section provide a general understanding on the be-
haviour of z-spreads and mostly set the targets for the construction of a more realis-
tic proxy for bond credit spreads.
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FIGURE 3.4: Violin plots of the z-spread mean across different rating
classes and regions.

FIGURE 3.5: Violin plots of the z-spread mean across different senior-
ity levels and market indicators.
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FIGURE 3.6: Violin plots of the absolute shifts of z-spread mean across
different rating classes and regions. The y-axis of the top figure is cut

to better show the probability distributions.

FIGURE 3.7: Violin plots of the absolute shifts of z-spread mean across
different seniority levels and market indicators.
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Chapter 4

Methodology

This chapter describes the methodologies that are used in this thesis in order to de-
velop the bond credit spreads proxy. The first part concerns the Shift Type Assess-
ment. It is not the main topic of this thesis but it is fundamental in order to correctly
implement historical VaR, which is the final application of our proxy. Meanwhile,
the second part is dedicated specifically to the construction of the credit spread
proxy.

4.1 Shift Type Assessment Methodology

A crucial step in the HVaR calculation is the computation of the daily historical
changes (shifts) in the risk factors. There are several ways in which shifts can be
computed. For what concerns bond z-spreads, it was common for banks using
relative shifts. However, recent ECB guidelines recommend the use of absolute
shifts or a mixed approach such as the hyperbolic inverse sine shifts (arcsinh shifts)
or displaced relative shifts. In this section the aforementioned shift types will be
described together with the criteria to select the most suitable shift type. These
criteria concern the implicit statistical assumptions that underline the HVaR model
which depend on the chosen shift type, together with back-testing results and
econometric tests.

Absolute Shifts: The use of absolute shifts is theoretically justified when the
risk factor under examination has the same distribution over time, with constant
mean and variance. This means that the dynamics of the risk factor are given by a
random walk process:

Xt = φ + Xt−1 + εt, εt ∼ i.i.d.(0, σ2). (4.1)

Here, {Xt , t ≤ 0} is the process that describes the risk factor over time, with X0
given, φ is the drift and εt is a random noise of zero mean, variance σ2 and unspeci-
fied distribution.
Absolute shifts determine the 260 scenarios for tomorrow’s risk factors as follows:

xscn j
t+1 = xt + ∆xt+1−j , j = 1, 2, ..., 260, (4.2)

where ∆xt+1 = xt+1 − xt. There are two reasons why absolute shiftsHhVaR is the
correct approach for risk factors described as in equation 4.1. First, the distribution
of the risk factor changes coincides with the distribution of the historically observed
absolute shifts, i.e.,

∆xt+1 ∼ ∆xt+1−j , j = 1, 2, ..., 260. (4.3)
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And second, the independence assumption, i.e., for a random walk process, the
day-to-day changes are independently distributed over time.

Relative Shifts: The use of relative shifts for 1-day hVaR scenario generation
is theoretically justified if the dynamics of the risk factor are given by the following
heteroskedastic random walk process:

Xt = φ + Xt−1 + εt, εt = σXt−1Zt, Zt ∼ i.i.d.(0, 1), (4.4)

with X0 given.
This means that the risk factor has constant mean and standard deviation propor-
tional to the current level of the process.
In order to show that relative shifts are the correct approach for the dynamics in 4.4,
we look at the dynamics of the shifts:

∆Xs|Fs−1 ∼ (φ, σ2X2
s−1), ∀s ≥ 0, (4.5)

where {Ft, t ≥ 0} is the natural filtration that contains {Xt, t ≥ 0} and ∆Xt =
Xt − Xt−1 as before. Now, since the variance of the absolute risk factor shift changes
over time, we can divide the centered shift by the current process level to have:

∆Xs − φ

Xs−1
|Fs−1 ∼ (0, σ2), ∀s ≥ 0. (4.6)

The random variables above are i.i.d. and the value of the risk factor tomorrow can
be written as:

xt+1 = xt + ∆xt+1

= xt + φ + xt
(∆xt+1 − φ

xt

)
, ∀t ≥ 0.

(4.7)

Then, the correct historically generated scenarios are given by:

xscn j
t+1 = xt + φ + xt

(∆xt+1−j − φ

xt−j

)
, j = 1, 2, ..., 260, (4.8)

and when there is no drift, i.e. the mean is zero, we see that relative shifts are the
correct approach to model this type of process:

xscn j
t+1 = xt + xt

(∆xt+1−j

xt−j

)
= xt

(
1 +

(∆xt+1−j

xt−j

))
= xt

(
1 + ∆xrel

t+1−j
)
, j = 1, 2, ..., 260.

(4.9)

Relative shifts are typically used when the risk factor has large absolute values and
does not cross the zero level. This is not the case for z-spreads as these can take
negative values.

Arcsinh Shifts: Arcsinh shifts are included in the category of shifts that the
ECB defines as mixed type. The mixed type is a generalization of absolute and rel-
ative shifts. Arcsinh shifts are based on the inverse hyperbolic sine transformation
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and behave like absolute shifts for risk factors close to zero and like relative shifts
for distant levels.
The arcsinh shift is defined by:

∆xarcsinh
t+1 = arcsinh(

xt+1

b
)− arcsinh(

xt

b
), (4.10)

where b > 0 is a constant scaling factor. An arcsinh shift behaves like an absolute
shift for levels that are much lower than b, i.e., xt << b, and as relative shifts for
high levels: xt >> b. This is because the arcsinh is a strictly increasing function
which has a linear asymptotic for small arguments and a logarithmic asymptotic for
large arguments. Therefore, parameter b determines the transition level between the
regions of small and large levels of the risk factor and it has to be opportunely tuned.
The simulation equation for this type of shift is given by:

xscn j
t+1 = b sinh(∆xarcsinh

t+1−j + arcsinh(
xt

b
)), j = 1, 2, ..., 260. (4.11)

Displaced Relative Shifts: Displaced relative shifts are also a mixed type of
shift between absolute and relative.
The displaced historical simulation model is designed to handle negative and
close-to-zero risk factors. This is an issue of recent and major interest to the financial
sector, both from a regulatory and financial institution perspective, especially in
light of observed negative values for bond yields and interest rate spread time
series. In historical simulation a common approach is to consider log returns (which
are relative changes) given that the risk factors remain positive (Fries, Nigbur,
and Seeger, 2017). However, for spreads, i.e., quantities that are by definition
differences, e.g. differences of interest rates, it is important to realize that a relative
change may not make sense. Because spreads may become negative and therefore
they have a vertical asymptotic for values of spreads that are close to zero. This is
visually described in Chapter 5.
Displaced relative changes interpolate between absolute and relative changes. The
displaced relative shift is defined as:

∆xdisp
t+1 =

(xt+1 + a)− (xt + a)
(xt + a)

=
xt+1 − xt

(xt + a)
.

(4.12)

The formula above means that we apply relative shifts on a displaced variable xt + a
where a > 0 is a displacement parameter. The formula for the historical simulation
is easily derived and it shows how this type of shifts is defined as an interpolation
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between absolute and relative changes:

xscn j
t+1 = (xt + a)(1 + ∆xdisp

t+1−j)− a

= xt + (xt + a)
xt+1−j − xt−j

(xt−j + a)

= xt
(
1 +

xt+1−j − xt−j

(xt−j + a)
)
+

a
(xt−j + a)

(xt+1−j − xt−j)

= xt
(
1 +

xt+1−j − xt−j

xt−j

) xt−j

(xt−j + a)
+ (xt + (xt+1−j − xt−j))

a
(xt−j + a)

= γ

[
xt
(
1 +

xt+1−j − xt−j

xt−j

)]
+ (1− γ)

[
xt + (xt+1−j − xt−j)

]
= γ

[
xt
(
1 + ∆xrel

t+1−j
)]

+ (1− γ)

[
xt + ∆xabs

t+1−j

]
, j = 1, 2, ..., 260,

(4.13)

where γ =
xt−j

(xt−j+a) .
Equation (4.13) shows that displaced relative shifts form is a linear interpolation
between absolute and relative changes applied to the process without displacement.
It is easy to check that we can recover the two limiting cases a = 0 for relative
shifts and a = ∞ for absolute shifts. Similarly, as with the arcsinh shift, we have a
parameter that has to be opportunely tuned.

4.1.1 Performance Testing

The new market risk calculation in the Fundamental Review of the Trading Book
(FRTB) framework is based on Expected Shortfall. However, there is not a widely
accepted methodology to backtest Expected Shortfall. Therefore, we choose to adopt
VaR backtesting which is required as backtesting methodology in the FRTB frame-
work and it is the same methodology that is going to be used within the bond credit
spreads proxy.
To measure the risk factor return performance under each shift type we used two
standard backtesting methods: the Likelihood Ratio (LR) statistics for unconditional
coverage and LR statistics for statistical coverage. Furthermore we performed three
types of econometric tests for each shift type.

Backtesting Methods

In the context of risk management, backtesting is a typical way to measure the per-
formance of a model generated P&L distribution in comparison to the P&L observed
in the market. Shift type selection is an essential part of scenarios generation and di-
rectly contributes to the P&L predictions. The testing strategy relies on comparing
daily risk factor shifts predicted by the model with the real ones to assess if the
model captures the underlying dynamics.
The P&L for a risk factor x on a day t + 1 is defined as:

P&Lt+1 = xt+1 − xt, (4.14)

whereas the 260 scenarios described for example in equation (4.2) generate a forecast
P&L distribution:

P&Lscn j
t+1 = xscn j

t+1 − xt, j = 1, 2, ..., 260, (4.15)
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VaR(99%) is calculated as linear interpolation between the second and third lowest
P&L values. For completeness we calculated also VaR(1%) similarly such that both
tails are tested. This because, in a trade, both long and short positions of the risk
factor could be held.
Since forecast P&L is based on 260 previous observations, VaR backtesting needs
one year of data, i.e. 260 business days, for calibration. This means that the first year
of data is not used for backtesting, but it is only used to calibrate the VaR model.
In the following we provide a detailed description of these two tests.

LR statistics for Unconditional Coverage: This test allows to check if the number
of exceptions, i.e. the observations that are more extreme than our VaR estimation,
agrees with the expected number predicted by the model. The test is assuming
that exceptions occur independently over time and to check the correctness of this
assumption we have the LR statistics for a statistical independence test.
We define a hit sequence as an indicator variable It(α), which takes the value 1 if the
P&L on day t is more extreme than the VaR prediction, i.e. the loss is bigger than
the VaR(99%) or the profit is higher than the VaR(1%) estimate:

It(α)

1 i f P&Lt > VaRt(α),

0 i f P&Lt ≤ VaRt(α).
(4.16)

Here α is the significance level and it is set at 1% and the confidence level is 1− α.
This is because the definition of the P&L given in (4.14) implies positive values of the
P&L for profits and negative for losses. Now, in order to define the likelihood ratio,
we define α̂ = Ne

N as the percentage of violations observed, where N is the number
of days in the backtesting window and Ne is the number of exceptions which is
calculated as:

Ne =
N

∑
t=0

It(α). (4.17)

We can now define the likelihood ratio statistics for unconditional coverage LRUC
and take the−2log(LRUC) which is approximately centrally chi-squared distributed
with one degree of freedom, see Romano and Lehmann, 2005 for more details:

LRUC = −2log
( (1− α)N−Ne αN

e
(1− α̂)N−Ne α̂Ne

)
∼ χ2(1, 0). (4.18)

The value of the LRUC is tested against a χ2(1, 0) distribution and values larger
than 3.84, which correspond to a p-value of 5% indicate statistically significant
differences between the realized and expected number of tail events.

LR statistics for Statistical Independence: This test checks whether VaR ex-
ceptions occur independently over time, which is another important feature for a
reliable hVaR model. A failed test indicates that the exceptions tend to cluster, i.e.
exceptions are not homogeneously distributed over time.
This test is again a likelihood ratio and it looks for unusually frequent consecutive
exceptions, e.g. It(α) = It+1(α) = 1.
We define Nij as the number of cases in which It(α) = j and It+1(α) = i. Here, for
example, N11 is the number of consecutive hVaR violations.
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Then, we define:

α̂01 =
N01

N00 + N01
,

α̂11 =
N11

N10 + N11
.

(4.19)

If our null hypothesis is true, i.e. Pr(It = 1 | It−1 = 1) = Pr(It = 1 | It−1 = 0),
we would have that the same holds for the estimators of these two probabilities:
α̂01 ∼ α̂11, see Christoffersen, 1998 for more details.
We can then set the likelihood ratio statistics for statistical independence LRIND in
a similar fashion as before and take −2log(LRIND) that is approximately centrally
chi-squared distributed with one degree of freedom:

LRIND = −2log
( (1− α̂)N−Ne α̂Ne

(1− α̂01)N00 α̂N01
01 (1− α̂11)N10 α̂N11

11

)
∼ χ2(1, 0). (4.20)

Again we reject at the 5% significance level the null-hypothesis that exceptions are
homogeneously distributed over time if LRIND > 3.84, which is the 95% quantile of
the χ2(1, 0) distribution.

Econometric Tests

Several econometric tests can be performed on the historical data to investigate if
the evolution of the transformed risk factors, e.g. absolute shifts, arcsinh shifts, can
be reasonably described by a random walk process and to understand why a certain
shift type can be a better fit for the underlying distribution. These types of tests are
performed for every bond as for the backtesting tests.
Below a brief description of the scope of each test is provided:

White Test: It is the most important econometric test for our scope and it
tests the null hypothesis that the error term is homoschedastic in a regression
model, i.e. the variance of the errors is constant with respect to the independent
variable. In particular, in this assessment we are regressing the z-spread shifts on
the levels. We test if the shifts of the risk factor have a variance term which is
correlated with the risk factor level. In that case the null-hypothesis is rejected.
Otherwise, the result of the test would support the presence of a constant variance
in the shift term and therefore the assumption that shifts are i.i.d (independent
identically distributed). This is a key component of the HVaR procedure because
the previous 260 transformed risk factors or shifts are used to predict new possible
scenarios and hence they should not depend on the level of the risk factor. The
White test performs an auxiliary regression, which means that after the primary
regression of the shifts with the z-spreads level as independent variable there is a
second regression, where the dependent variable is the squared of the residuals
from the primary model and the explanatory variables are the z-spread levels, the
square levels and a constant vector. One then inspects the R2 coefficient of the
auxiliary regression. The Lagrange Multiplier (LM) test statistic is the product of
the R2 value and sample size and it follows a chi-squared distribution, with degrees
of freedom equal to P - 1, where P is the number of estimated parameters in the
auxiliary regression, which in our case is 3− 1 = 2, i.e.,

LM = nR2 ∼ χ2(2, 0), (4.21)
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with n as the sample size. A p-value < 0.05 allows us to reject the null hypothesis
that shifts are homoschedastic with respect to the levels at a significance level of 5% .

Breush-Pagan (BP) test: An alternative to the White test is the Breusch–Pagan
test, the Breusch-Pagan test is designed to detect only linear forms of heteroskedas-
ticity. It can be described in the same way as the White test, but it does not include
squared levels of the z-spread in the explanatory variables.
In this assessment it is used to confirm the result of the White test, which is the main
driver to tune the shifts parameters, the procedure is explained in Chapter 5.

Augmented Dickey-fuller (ADF) and Phillips Perron (PP) tests: ADF and PP
tests allow us to test the null hypothesis that a unit root is present in the sample.
The Phillips-Perron test is robust with respect to unspecified autocorrelation and
heteroschedasticity in the process. Therefore, the PP test has been performed on
the levels when relative (and displaced relative) shifts were used, while ADF has
been used when absolute and arcsinh shifts were calculated. Unit root tests assess
the null hypothesis that the transformed risk factor has a random-walk behaviour.
The failure to reject the null hypothesis will be in support of our random walk
assumption. Both ADF and PP are designed in this assessment to verify whether
we should simulate future risk factor values by applying historical shifts on top of
the current risk factor level or otherwise, for instance, by directly using historical
risk factor levels as a simulated future risk factor value (when the null hypothesis is
rejected).

4.2 Credit Spreads Proxy Methodology

4.2.1 Evaluation Criteria

In order to compare and evaluate the models presented in this thesis we need to
establish the most suitable performance measures.
For every type of mathematical problem there is a different evaluation framework
which is more appropriate. In this case we are tackling a regression model. In
regression problems the target variable y is a continuous output of its predictors
X. Regression models include algorithms such as Linear Regression, Decision
Tree, Random Forest, SVM, Gradient Boosting. The most relevant and widely used
metrics that can be used to evaluate a regression model performance are described
below.

RMSE: The Root Mean Squared Error represents the sample standard devia-
tion of the residuals i.e., the differences between predicted values ŷ and observed
values y. It measures the average error given by the model in predicting the
outcome for an observation. The RMSE can be mathematically defined as:

RMSE :=

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2, (4.22)

where N is the number of observations of the target variable y. Lower values of
RMSE indicate a better fit. RMSE is a measure of how accurately the model predicts
the response.
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R2: The R-squared coefficient is the proportion of the variance in the depen-
dent variable y that is predictable from the independent variables X. It is known as
the coefficient of determination. It is a statistical measure of how close the data is to
the fitted regression line. The R2 coefficient is a powerful tool to understand how
well the independent variables explain the variance in the model and it is calculated
as:

R2 := 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳi)2

, (4.23)

where ȳi is the mean of the observed target variable y. The maximum value for
the coefficient of determination is 1. An R2 coefficient close to 1 indicates that the
model explains well the variability of the response data around its mean. On the
other side, a coefficient of determination close to 0 implies that our model performs
similarly as if we only took the mean of the observable variable y and therefore the
model performs poorly.

The aforementioned metrics are sensible to the inclusion of additional vari-
ables in the model, even though those variables do not add significant contribution
in explaining the outcome. This means that adding additional variables in the
model will always increase the R2 coefficient and decrease the RMSE. Therefore, we
need something to penalize the complexity of the model.
Information criteria provide an analytical technique for scoring and choosing
among candidate models in which models are scored both on their performance
and on their complexity.

AIC: The Akaike Information Criterion is calculated using Maximum Likeli-
hood Estimation (MLE) and is derived from frequentist probability.
Since in regression problems using MLE and minimizing the Mean Squared Error
(MSE) leads to the same result, we can calculate AIC as in Gordon, 2015:

AIC : = 2K + N log(MSE)

= 2K + N log(
1
N

N

∑
i=1

(yi − ŷi)
2),

(4.24)

where K is the number of independent variables and N the number of observations.
AIC deals with the trade-off between the goodness of the fit of the model and the
simplicity of the model. Generally, the model with the lowest AIC value is preferred.
AIC is composed by two terms: one is the error that we want to minimize (goodness
of the fit), the other is a penalty for the number of independent variables used in
the model (simplicity). AIC has been particularly useful to evaluate if including
additional features within the same model could provide significant improvements.

Other evaluation criteria that must be taken into account are those more re-
lated to the financial model than the regression problem itself.
From EBA, 2016 article 44 part 2: "The institution’s proxy selected does not underestimate
the volatility of the missing risk factor" which in this case is the Z-spread.
Therefore, we focused on the following properties for the construction of the proxy.

Conservative: The proxy should be appropriately conservative, i.e. does not
underestimate the volatility of the proxied risk factors.
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Similarity: The shifts or daily changes of the available spread series and the
shifts of the proxy should be comparable which can be assessed in two parts: the
correlation between the data series and the proxy should be high, the level of the
volatility should be similar.

We focused on the correlation between shifts instead of levels because with
levels we most likely have spurious correlation since the values for the level are
not centered around zero whereas the shifts have zero mean. Therefore, a higher
correlation between shifts implies a model that better approaches reality.
The other 2 measures that are used to measure the performance of our model are:

Correlation: Since we are dealing with shifts and not directly with z-spread
levels, correlation turns out to be a useful tool to assess the quality of our proxy.
The measure used throughout the analysis is the Pearson correlation coefficient,
which measures linear correlation between the two variables: observed target
variable y = {y1, ..., yN} and predicted variable ŷ = {ŷ1, ..., ŷN . Pearson’s coefficient
is given by the covariance of the two variables divided by the product of their
standard deviations:

corry,ŷ : =
cov(y, ŷ)

σy σŷ.
(4.25)

Standard Deviation Spread: As indicated from EBA, the standard deviation of the
proxy estimates σŷ should not be lower than the true standard deviation of the sam-
ple σy. In practice the proxied variables fluctuations calculated with our regression
approaches are necessary smaller than the true ones. This is not a problem as we
are interested in capturing the average market risk, or systematic risk and not the
specific counterparty risk, i.e. idiosyncratic risk.
However, knowing the Standard Deviation Spread: ∆σ := σy − σŷ gives an indica-
tion of the magnitude of the volatility underestimation, which can then be used in
order to simulate idiosyncratic risk for VaR calculations.

4.2.2 K-Fold Cross Validation

A standard procedure for evaluating Machine Learning models is to split the data
into training and test sets. The model is trained on the training set and then evalu-
ated on the test set using performance evaluation metrics as those described in the
previous section. The classic approach is to do a 80% / 20% split between training
and testing set. This procedure drastically reduces the amount of out-of-sample data
available for performance testing which can be a problem if the data set is not large
enough.
Since our research is about missing data proxying, it is necessary to use all the data
available without wastage. Data is often limited and assessing the model perfor-
mance only on an independent sub-sample of the data-set is not ideal to test if the
model correctly generalized the data. Generalization error can be better measured
when the model is fitted and tested on multiple independent sub-samples of the
original data-set.
K-Fold Cross Validation provides a solution to this issue by randomly splitting the
data into K subsets and using every subset once as testing set during the procedure.
The K−1 subsets are used to fit the model which is then evaluated on the excluded
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subset. The procedure is repeated K times and then the whole data-set is obtained
as an out of sample prediction. In this way the model performance is tested over the
whole data-set.
The K-Fold Cross Validation procedure is illustrated in Figure 4.1 below for K=5.
The choice of the value of K in the cross validation is associated with a bias-variance

FIGURE 4.1: K-Fold Cross Validation for K=5 in yellow the test set
and green the training sets.

trade-off. Typical choice are to choose K between 5 and 10 as these values have been
shown empirically to yield test error rate estimates that suffer neither from high bias
nor high variance, James et al., 2013.
Once applied the K-Fold Cross Validation procedure, the error metrics defined be-
fore, such as RMSE, R-squared coefficient and Pearson correlation coefficient, can be
calculated on each of the K In-Sample and Out-Sample sets.
Any of the metrics described before can be defined as: h(y, ŷ) and the K-Fold Cross-
Validation metrics for the in and out samples are given by:

hCV
in (k) : =

1
k

k

∑
i=1

h(yi
in, ŷi

in),

hCV
out(k) : =

1
k

k

∑
i=1

h(yi
out, ŷi

out),

(4.26)

where yi
in are the elements of the ith fold that are used for training the algorithm.

During our analysis a K-Fold Cross Validation with K = 10 improved the Out-of-
Sample accuracy comparing to other standard values for K such as K=5. Therefore,
all the models presented in this thesis use 10 folds for the cross validation.
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4.2.3 Different Machine Learning Procedures

In this subsection and the coming ones we introduce the machine learning algo-
rithms that are used in this thesis through a waterfall approach. Starting from the
more general categorizations of machine learning algorithms we narrow the focus
on those sub-categories that are relevant for this thesis.
The main feature that characterizes machine learning algorithms is learning from
experience. The learning happens when the algorithm is fed with a large data set
(training set) and the algorithm can use the information present in this data set
to train itself. This process can be done in several ways, but two main branches
can be identified that yield very different approaches: unsupervised learning and
supervised learning.

Unsupervised Learning
Unsupervised learning is a machine learning algorithm used to draw inferences
from a data set of input data without labeled responses, i.e. without a given target
variable. The goal of unsupervised learning is to extract similarities and recurrent
patterns within the data set and then cluster the data according to these findings.

Supervised Learning
In supervised learning algorithms the output variable is known. This means that
there is a mapping of input and output data that are fed to the algorithm such that
it can learn this mapping and apply it to general new input data.
It is called supervised learning because the process of an algorithm learning from
the training data set can be thought as a teacher supervising the learning process.
The problem we are dealing with is a supervised learning problem, in which the
input data are the categorical variables, e.g. credit rating, region, and the output
data are the shifts (absolute,displaced relative or arcsinh) of the z-spreads.
Supervised learning problems can be further grouped into two type of problems:
regression and classification problems.

Classification Problems
In classification problems the task is to approximate a mapping function of the
input variables X, to a discrete class of labels f (X) = y ∈ {y1, ..yn}.
An example of binary classification, which is a classification problem with two class
labels, is to assess if it would be safe for a financial institution to grant a mortgage.
The training input set in this case would be a set of categorical and continuous
variables associated to the borrower like age, employment type, marital status and
the training output set would be a binary variable indicating whether the mortgage
was finally repaid.
In our case, since z-spread shifts can in principle assume any value and therefore do
not belong to a discrete set, we are not dealing with a classification problem.

Regression Problems
The bond credit spreads proxy belongs to the class of regression problems, in
which the output variable can take continuous values. A regression problem with
multiple input variables, as the 7 different categories we presented, is often called
a multivariate regression problem. For this type of problem, since the output
variable is a quantity, i.e. a real number, there is a vast tool-kit of evaluation metrics
that can be used such as those described in Section 4.2.1. The simplest and most
popular regression algorithm is linear (or multiple linear) regression, like the model
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used in Chourdakis et al., 2013 which is the benchmark model for this thesis. In
multiple linear regression, several explanatory variables are used to predict the
outcome of a target variable. In our analysis the explanatory variables x1,i, ...xk,i
are the categorical variables such as rating, region or tenor for the ith bond and yi
is the shifted z-spread of the same bond. The model in this case for k explanatory
variables can be formulated as:

yi = β0 + β1x1,i + ... + βkxk,i + ε, (4.27)

where β0 is the intercept, β j is the slope coefficient of the jth category and ε is the
error term or residual. Equation (4.27) assumes that there is a linear relationship
between the dependent variables and the independent variable, i.e. it does not con-
sider nonlinearities in the model. Others assumptions of linear regression models
are that the independent variables are not highly correlated between each other, the
yi observations are selected independently and randomly from the population and
the residuals are normally distributed with zero mean.
The residual εi = yi − ŷi, is the difference between the true value of the dependent
variable and the predicted one. Linear regression estimates the parameters β such
that the sum of the squared residuals SSR := ∑n

i=1 ε2
i is minimized, where n is the

number of data points. This procedure is called Ordinary Least Squares approxima-
tion (OLS).
The vector containing the β coefficients is therefore estimated as:

β̂ = (X′ X)−1X′ y. (4.28)

Under the assumption that the error term has constant variance, the residual vari-
ance can be estimated as:

σ̂ε =
SSR

n− k− 1
. (4.29)

Therefore in a multiple linear regression model the error terms are assumed to be
independent identically distributed as εi ∼ N (0, σ̂ε).
Multiple linear regression is the beginning of our analysis. All more complex algo-
rithms that are presented in this thesis: Catboost, Random Forest and Support Vector
Machines, are described in the following subsections and still belong to the regres-
sion problem algorithms.
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4.2.4 Ensemble Learning

Ensemble learning models make predictions based on several different models. By
the combination of individual models, often called ’weak learners’, the ensemble
model is more flexible. Therefore, it allows for a lower bias and also it results in a
lower variance.
The goal of learning algorithms is to approximate an underlying function f that
maps the matrix of features X to a label or a continuous output y. Ordinary machine
learning algorithms search in a space of possible functions, called hypothesis, to find
the one f̂ that optimally approximate the unknown function f .
Ensemble models can overcome three major problems of ordinary learning algo-
rithms: the statistical problem, the computational problem and the representation
problem.
The statistical problem is present when the algorithm searches a space of functions
or hypothesis that is too vast for the number of training data available. In this kind
of situation, there could be many different functions that have the same performance
in terms of RMSE, R2 coefficient or others error metrics. The algorithm has to select
one among these and the choice might not be optimal for a new data set. A learning
algorithm that presents this type of issue is said to have high variance. Ensemble
learning overcomes this issue incorporating all these functions in a ’democratic’ vot-
ing system.
The computational problem emerges when the algorithm cannot select the best ap-
proximating function in the function space. For example with neural networks and
decision tree algorithms it is computationally cumbersome to find the function that
best fits the training data, therefore heuristic methods like gradient descent have
to be implemented. These methods can get stuck in local minima and hence fail
the search for the best function. An algorithm that exhibits this problem is described
as having ’computational variance’. Within ensemble learning, a weighted combina-
tion of different local minima reduces the risk of selecting the wrong local minimum.
The representation problem arises when the function space does not contain good
approximations of f . An algorithm that suffers from the representation problem is
said to have high bias. Within ensemble learning, a weighted sum of these approxi-
mation functions can expand the function space such that the algorithm may be able
to obtain a more accurate approximation function f̂ .
This is why ensemble methods can reduce both bias and variance of learning algo-
rithms, this has empirically been shown (Liu and Yao, 1999).
Two most popular ensemble methods are bagging, which includes Random Forest
and boosting that includes Catboost.

Bagging

Bagging stands for bootstrap aggregating and it is one of the simplest and most in-
tuitive ensemble learning based algorithms. The diversity of classifiers in bagging
is obtained through bootstrapped samples from the training data. Different train-
ing data are randomly drawn, with replacement, from the entire training set. Each
data subset is used to train a different decision tree, which is an algorithm that only
contains conditional control statements. These individual trees or weak learners are
then combined by taking the majority vote of their decisions in case of classification
problems, or by averaging the outputs in case of regression problems to obtain the
output of the ensemble model.
Bagging considers homogeneous weak learners and learns independently from each
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other in parallel combining their output. In this way, bagging not only contributes
to reduce the variance, but it can help avoiding overfitting as well.

Boosting

Similarly as bagging methods, boosting methods build a family of weak models that
are aggregated to obtain a strong learner that outperforms them. However, while
bagging mainly aims for reducing the variance, boosting fits multiple weak learn-
ers sequentially and not independently. Each model in the sequence is fitted giv-
ing more importance to the observations for which the previous weak learners per-
formed worse, i.e. wrong classification for classification problems and high RMSE
for example in regression problems. Because of this process the stronger learner has,
not only a lower variance like with bagging method, but specially a lower bias.
Since boosting is mainly focused on reducing bias, the base models considered for
boosting are generally models with low variance and high bias. This choice is mo-
tivated by the fact that weak learners with low variance and high bias are generally
less computationally expensive for fitting as they have fewer degrees of freedom
for the parameterization. In fact, since computations to fit different models are not
done in parallel, unlike in bagging, it is computationally expensive to fit sequentially
several complex models.

FIGURE 4.2: Illustration of the bagging and boosting procedures

In Figure 4.2, the bagging and boosting procedures are shown. Both ensemble meth-
ods use N learners from 1 data set, but while in bagging these are built indepen-
dently, boosting adds new models that focus on improving what was not captured
in the previous models. Both methods generate several training data sets by boot-
strapping, but boosting determines weights for the data to tip the scales in favor of
the most difficult cases. Also the final decision for both methods is taken by averag-
ing the N learners but in boosting the weights are not equally distributed.
Overall boosting and bagging significantly reduce the variance and provide higher
stability. Boosting also reduces the bias but it is more prone to over-fitting.

4.2.5 Random Forest

The random forest method is an ensemble model using bagging as ensemble method
and decision trees as individual model.
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A decision tree is an algorithm which uses a recursive procedure to divide sample
observations of the response variable into sub-groups based on a set of input fea-
tures. When the belonging sub-space of each observation is determined, the mean
of the elements in each sub-group is taken to make predictions. These predictions
rely on the homogeneity of the target variables in each subset. These subsets are the
result of the splits in the data which aim to optimize the loss function in each group.
In case of regression problems, such as the one we are dealing with, the response
variable is continuous and the loss function is the mean squared error (MSE). This
procedure is often referred to as reducing the tree’s impurity.

Why Decision Trees

Decision trees are non-parametric models, henceforth they can model arbitrarily
complex nonlinear relations between the dependent and independent variables,
whereas standard linear regression, for example, can not handle nonlinearities. Fur-
thermore, non-parametric models make fewer assumptions about the data gener-
ating process and do not assume posteriori requirements such as normality of the
residuals. In addition, decision trees are capable of handling categorical data such
as those provided for this analysis and automatically implement features selection.
Decision trees are robust concerning numerical instabilities which enables us to not
remove features with little variance and provide estimates for missing data. De-
cision trees are also easy to interpret which makes them attractive for explanatory
purposes. The conditional control statements, which are if-then rules are also quite
fast comparing to other machine learning algorithms.
On the other hand, the major drawback of decision trees is the tendency to overfit
the training set which can lead to poor out of sample performance. A key task to
avoid overfitting is hyperparameters tuning which is discussed in the following.

Classification And Regression Trees

The first tree-based algorithm to include statistical theory is the Classification And
Regression Trees (CART) method, introduced by Breiman et al., 1984. The random
forest algorithm uses a slightly modified version of CART to construct the singular
decision trees that are used in its ensemble.
Suppose that we have a training set with N observations: (xi, yi), i = 1, ..., N, with
xi = (xi,1, ..., xi,k) where k is the number of features in the explanatory variable for
the target variable yi. N in our case is the number of bonds available on a certain
day.
The CART algorithm selects, for example, the variable x1 for every observation i
and tries to find recursive cut points( Hastie, Tibshirani, and Friedman, 2009). This
procedure is referred to as ’splitting variable’ . The CART algorithm finds recursive
cut points by splitting xj, j = 1, ...k in a way that the MSE is minimized. This is
called ’splitting criterion’ and defines the subset of the predictor xj that are sent to
the right node NR or the left node NL. These children nodes together with the cut
point threshold sj are defined as:

NL(j, sj) = {(x, y) : xj ≤ sj} and NR(j, sj) = {(x, y) : xj > sj}. (4.30)

This CART algorithm grows a tree by selecting among all possible splitting variables
and splitting criterion pairs (j, sj) , the optimal pair (j∗, sj∗) such that the MSE at the
node is minimized, i.e. the node impurity is minimized. In a regression tree, the
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responses in the node N are modeled using a constant and under MSE loss, this
constant is estimated as the mean of the target variables in the node:

ĉ(N ) =
1
|N | ∑

i∈N
yi. (4.31)

Hence, the CART grows a regression tree by splitting a mother node NM on the
splitting variable and a splitting criterion pair (j∗, sj∗) such as:

(j∗, s∗j ) = argmin(j,sj)

[
∑

xj∈NL(j,sj)

(yi − ĉ(NL))2 + ∑
xj∈NR(j,sj)

(yi − ĉ(NR))2]. (4.32)

After the optimal split has been selected, the process is repeated for new children
nodes.

Random Forest Regression

Introduced by Breiman, 2001, the random forests method is an ensemble learning
algorithm that overcome the tendency of individual trees to overfit the training set.
This is carried out through the use of bagging and a slight modification of the CART
algorithm and generates a large collection of independent decision trees. Each sub-
set of the data set obtained with bootstrapping is used to train a different CART,
which produces an ensemble of different models. The final prediction is then given
by an average across all the predictions obtained by the singular CART. This allows
for a more robust method than using a single CART in which both variance and
overfitting are significantly reduced. The random forest algorithm not only draws
a random subset of the training data set but also picks a random subset of features
(randomized trees) instead of using all the available ones like in the Cross Sectional
model.
In this way, the algorithm is able to build different bucket classes from the pre-
defined (rating, region,sector etc.) buckets. This can be seen in Figure 4.3, where
two different decision trees are both capable of producing an estimate for a bond
that belongs to the (AAA, Northwest Europe, financial) bucket. The prediction for
the bonds belonging to this bucket is calculated in two steps. First, the mean of the
z-spreads shifts in the leafs is calculated and these are ∑1 and ∑2 in the figure up to
∑m where m is the number of decision trees. Then the final prediction is given by the
average of all the ∑ that contain at least one instance of an AAA rated bond listed in
Northwest Europe in the financial sector.
Random forest regression aims at estimating f̂ that better approximates the un-
known function f such that f (x) = y given the data D.
The random forest predictor consists of a collection of randomized base regression
trees { f̂tree(x, Θm,D ), m ≤ 1}, where {Θm}M

m=1 are i.i.d. outputs of a randomiz-
ing variable Θ that represents the bagging within D and the random selection of
the features vector in x1, ...xk to build the randomized tree m (Biau, 2012). We de-
note the random sample instances drawn given the random object Θm from the data
set D as D̂(Θm). The random trees are aggregated to calculate the mean regres-
sion estimate across every CART. We define the leaves of the m-th regression tree as
Lm(x1, ..xk; Θm,D), which denotes the leaf constructed in the m-th tree by only using
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FIGURE 4.3: Two different random decision trees both produce a
proxy spread for the bucket: (AAA, Northwest Europe, Financial)

xn ∈ x and D̂(Θm). Then, the prediction of the m-th tree is given by:

f̂tree(x, Θm,D ) = ∑
i∈D̂(Θm)

yi1{xi ∈ Lm(x1, ..xk; Θm,D)}
|xi ∈ Lm(x1, ..xk; Θm,D)| , (4.33)

where Lm is the leaf to which the features of the data point i belong. The numerator
contains the sum of the target variables for the xi that belong to the leaf Lm, while
the denominator is the total number of data points in the leaf.
Finally the output of the random forest regression is obtained by taking the mean
across all the random trees for any sample observation in D which belong to any
leaf Lm:

f̂ (x, Θ,D ) =
1
M

M

∑
m=1

f̂tree(x, Θm,D ), (4.34)

where M is the number of trees in the forest and x is a predictor vector for the target
variable y. This estimator is asymptotically consistent, i.e. it is justified by the law of
large numbers for M→ ∞ , see Biau, 2012.

Random Forest Hyperparameters

In this subsection we present the hyper-parameters that have to be manually tuned
in order to optimize the random forest algorithm.

Number of Estimators: It is the number of trees in the forest which we defined
as M. A larger number of forests reduces the overfitting issue of singular trees but
it also slows down the training process.

Maximum Depth: It is the maximum number of splits allowed in each CART.
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Minimum Samples Split: It is the minimum number of data points required to
have a splitting node.

Minimum Samples Leaf :It represents the minimum number of bonds required
in each leaf. It controls the trade-off between having too many bonds in each leaf,
i.e. low accuracy and having a small number of bonds in each leaf, which can lead
to overfitting.

Bootstrapping: It allows to choose whether bootstrapping on the training data
set has to be performed or not.

The procedure used for the selection of the hyperparameters is explained in a
later section.

4.2.6 Gradient Boosting Regression

Gradient boosting, which was introduced by J. H. Friedman (2001), combines two
different techniques, one is boosting that we previously described, which is com-
bined with the gradient descent method, also known as the steepest descent method.
The idea of averaging the weak learners, that can be CART, resembles what we men-
tioned for the random forest. However, differently from random forests, the weights
of the weak learners are not equally distributed, i.e.,

f̂ (x, Θ,D, β ) =
M

∑
m=1

βm f̂tree(x, Θm,D ). (4.35)

Another major difference between boosting and bagging algorithms is that instead
of building independent trees, the CART are built sequentially. This allows to min-
imize the loss function according to the previous trees in the sequence. In case of
regression problems the loss function can be the least-squares loss:

L(y, f̂ (x)) = (y− f̂ (x))2, −∂L
∂ f̂

= 2 (y− f̂ (x)) f̂ ′(x) (4.36)

Since the stronger learner f̂ (x, Θ,D, β ) is composed of the M weak learners
f̂tree(x, Θm,D), the loss function has to be minimized in the space of the parameters
{β, Θ} = {(β1, Θ1), ...(βM, ΘM)}. This optimization can be performed by using the
iterative “greedy” forward stage additive modeling approach, see Friedman, 2001.
The idea is to optimize the parameters according to the loss function of the trees that
were previous in the sequence:

(β∗m, Θ∗m) = argmin(β,Θ) L
(

y, f̂m−1(x) + β f̂tree(x, Θ )

)
, (4.37)

which results in:

f̂m(x) = f̂m−1(x) + βm f̂tree(x, Θm )

=
m−1

∑
j=1

β j f̂tree(x, Θj ) + βm f̂tree(x, Θm )

=
m

∑
j=1

β j f̂tree(x, Θj ).

(4.38)
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Here f̂m(x) is the ensemble learner built from the previous m trees and f̂tree(x, Θm )
is the m-th weak learner or the m-th decision tree.

Gradient Descent Optimization

The second important step in gradient boosting is to combine the previous boosting
algorithm with gradient descent iterations. The update for iteration m with the usage
of gradient descent is given by:

f̂m(x) = f̂m−1(x)− βm
∂L(y, f̂m−1(x))

∂ f̂m−1(x))
. (4.39)

The optimal weight βm can be obtained by minimizing the loss with respect to the
decision tree m:

βm = argminβ L
(

y, f̂m−1(x)− βm
∂L(y, f̂m−1(x))

∂ f̂m−1(x))

)
. (4.40)

However, from (4.38) and (4.39) we have the following constraint for the m-th deci-
sion tree:

f̂tree(x, Θm ) =
∂L(y, f̂m−1(x))

∂ f̂m−1(x))
. (4.41)

This can be obtained by tuning Θm in order to select the weak learner f̂tree(x, Θm )
that resembles the highest decrease of the loss:

Θm = argminΘ L
(

f̂tree(x, Θ ),
∂L(y, f̂m−1(x))

∂ f̂m−1(x))

)
. (4.42)

The loss function here is the quadratic loss, as every regression learner can be fitted
via quadratic loss and solving it is numerically efficient.

CatBoost Regressor

Among the several gradient boosting algorithms, we selected the CatBoost algo-
rithm, which successfully handles categorical features and outperforms existing
publicly available implementations of gradient boosting in terms of quality on a set
of popular publicly available data sets (Dorogush, Ershov, and Gulin, 2018).
Categorical features consist of a discrete set of values called categories that can not
be used directly in binary decision trees. Therefore, it is common to convert cat-
egorical features in numerical values at the preprocessing time. For features with
low cardinality, like those considered in this thesis, it is appropriate to use so-called
one-hot encoding, which converts the categories into binary variables. The one-hot
encoding procedure is described in Section 4.2.8.
When the cardinality of the features is high, CatBoost uses an efficient strategy which
reduces overfitting by performing a random permutation of the data set, more infor-
mation can be found in Dorogush, Ershov, and Gulin, 2018.
CatBoost also effectively implements feature combinations. The feature combina-
tions methodology is one of the main reasons machine learning algorithms outper-
form linear regression. An example is considering ’AAA’ together with Financial
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sector and Northwest Europe as a single feature. However, the number of combi-
nations grows exponentially with the number of categorical features in the data set
and it is often not possible to consider them all in one algorithm. CatBoost considers
combinations in a greedy way, i.e., no combinations are considered for the first split
of the decision tree, but in the next split all the combinations and the categorical fea-
tures in the current tree are combined with all the categorical features in the data set.
In gradient boosting algorithms, each new tree is built to approximate the gradients
of the current model. This generally leads to over-fitting, because the gradients used
at each step are estimated using the same data points the current model is built on.
This causes a shift of the distribution of the estimated gradients in comparison with
the true distribution of the gradients which leads to over-fiting.
CatBoost proposes a modification of standard gradient boosting algorithms that
does not suffer from this prediction shift. This is done by not using the target vari-
able of the current step in the gradient estimation and it is comprehensively de-
scribed in Prokhorenkova et al., 2018.

4.2.7 Support Vector Machines

In machine learning, Support Vector Machines (SVM) are nonparametric supervised
learning models for both classification and regression problems. SVM were orginally
introduced in Cortes and Vapnik, 1995 to solve classification problems. Support Vec-
tor Regression (SVR) was introduced later in order to extend the same concept to
continuous target variables.
The main idea of SVM is to apply a linear model to the training data but in a higher-
dimensional space, such that the model can still capture nonlinearities between de-
pendent and independent variables.
The higher-dimensional model is a hyperplane, SVM builds a set of hyperplanes that
are used as decision boundaries between two groups and the best hyperplane is the
one that maximizes the distance between the margins, i.e. the distance between the
two closest elements of each group. The data points that are closest to the bound-
aries are called support vectors.
Similarly to the ensemble learning models that we discussed, SVM models are capa-
ble to learn complex nonlinear functions and do not rely on any posteriori assump-
tion. Another point of strength of SVM is the possibility to apply regularization to
prevent over-fitting.
In Figure 4.4 an illustration of SVM in a very simple case is presented. The goal is
to classify the two features, circles and triangles. In the first sub-figure this is simply
done in the two-dimensional space and the hyperplane is the line that maximizes
the margins. In the second sub-figure it is not possible to separate the two tags with
a single line. Therefore, a third dimension is added in the third sub-figure, which
is the z-axis such that the two classes can be separated by a hyperplane, i.e. a two-
dimensional plane. The final step is transforming the hyperplane back to the original
plane by means of a kernel such that a non linear hyperplane is obtained.
This is the idea that underlines the SVM procedure both for classification and regres-
sion problems. The latter is explained in more detail in the following.
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FIGURE 4.4: Explanation of the SVM procedure for a binary classifi-
cation problem. In the top-left figure, the best hyperplane that sep-
arates the two classes is a line. In the top-right figure, a nonlinear
hyperplane is required. This is done in the bottom figures by means
of a kernel that maps the features space in a higher space in order to
separate the two classes and then maps it back to the original features

space.

Support Vector Regression (SVR)

For a given data set D = {(xi, yi), i = 1, ..., N}, where xi = (xi,1, xi,2, ..., xi,k) is the
vector containing the k features for the i-th bond and yi is the z-spread shift of the
i-th bond, the goal of SVR is to learn a function f (x) that does not deviate from y
by a value greater than a threshold ε. This means that SVR uses a symmetrical loss
function, which equally penalizes high and low misestimates.
The generalization from SVM to SVR is therefore obtained by introducing this ε-
insensitive region around the function, called ε-tube. The optimization problem
transforms from finding the best hyperplane that separates the different classes, to
find the ε-tube that best approximates the continuous valued function in terms of
prediction error and model complexity (Awad and Khanna, 2015).
The simplest case is the linear one:

f (xi) = β0 + x′i β, with β ∈ χ , β0 ∈ R, (4.43)

where χ is the input features space that contains the vector β. From Hastie, Tibshi-
rani, and Friedman, 2009, the data feature x′i β is called the margin and β0 denotes
the intercept. The problem is a minimization problem of the squared L2 norm of β:

argmin(β,β0)
1
2
||β||2, (4.44)
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with the aforementioned constraint:

|yi − (β0 + x′i β|) ≤ ε ∀i. (4.45)

Often, there is no such function f (x) capable of satisfying this requirement for every
i, this is also called a hard-margin.
In order to overcome this impediment, the soft-margin concept has been introduced
in Smola and Schölkopf, 2004. This is done by the introduction of slack variables ξi
and ξ∗i which allow for larger regression residuals and the problem formulation can
be stated as:

argmin(β,β0,ξi ,ξ∗i )
1
2
||β||2 + C

N

∑
i=1

(ξi + ξ∗i ), (4.46)

which is now subject to the ’softer’ constraints:

yi − (β0 + x′i β|) ≤ ε + ξi ∀i,
(β0 + x′i β|)− yi ≤ ε + ξ∗i ∀i,

ξiξ
∗
i ≤ 0 ∀i.

(4.47)

Here the constant C > 0 is the cost parameter and determines the trade-off between
the flatness of f and the amount up to which deviations larger than ε are tolerated.
The soft margin concept is visually displayed in Figure 4.5.
Similarly to what we showed for classification problems in SVM, sometimes a linear

FIGURE 4.5: Illustration of the soft margin concept. The figure shows
the ε-tube and one of the slack variables ξ

model cannot properly handle the regression problem. In this case SVR fits a curve
instead of a line by using a nonlinear kernel φ(x) that maps the dependent variable
into a higher-dimensional space.
Following Platt et al., 1999, we consider the Lagrangian dual formulation of Equa-
tion (4.46) because it is simpler to optimize. To do this, the Lagrangian multipliers
αi and α∗i are introduced for every i, and this leads to the minimization quadratic
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problem:

argmax(αi ,α∗i )
1
2

N

∑
i=1

N

∑
j=1

(α∗i − αi)((α
∗
j − αj)H(xi, xj) + ε

N

∑
i=1

(α∗i − αi)−
N

∑
i=1

yi(α
∗
i − αi).

(4.48)

Here H(xi, xj) = φ(xi)
′ φ(xj), and the problem is defined by the contraints:

N

∑
i=1

(α∗i − αi) = 0,

0 ≤ αi, α∗i ≤ C ∀i,
αiα
∗
i = 0 ∀i.

(4.49)

In Smola and Schölkopf, 2004, it is shown that β can be written as:

β =
N

∑
i=1

(α∗i − αi)φ(xi). (4.50)

In addition to the constraints in (4.49), a set of Karush-Kuhn-Tucker (KKT) con-
straints is required and these are given by:

αi(ε + ξi − yi + f (xi)) = 0 ∀i,
α∗i (ε + ξ∗i − yi − f (xi)) = 0 ∀i,

ξi(C− αi) = 0 ∀i,
ξ∗i (C− α∗i ) = 0 ∀i.

(4.51)

The function to be trained is now:

f (x) = β0 +
N

∑
i=1

(α∗i − αi)H(xi, x). (4.52)

If the model is just the linear model, H(x, x) is the dot product xx′. The KKT con-
straints imply that when αi = C, the observations with these multipliers are located
outside the ε-tube . The dominance of the multipliers is controlled by the parameter
C which performs regularization. Observations inside the ε-tube do not require reg-
ularization and therefore αi, α∗i vanishes for |yi − (β0 + x′i β|) ≤ ε. Observations with
a vanishing multiplier are called Support Vectors.

SVR Hyperparameters

Here we present the three main hyperparameters that are necessary to use SVR:

ε: It is the threshold below which no penalty is given to the error. It is the ra-
dius of what is called ε-tube. A large ε means that the regression would be less
accurate as large errors are not penalized, i.e. under-fit. Conversely, is ε is too small,
the number of support vectors increases and this leads to over-fit.

C: the regularization parameter C allows to tune the hardness or softness of
the margin transition. When C is low, margin samples are less penalized . A larger
C improves the training error but it carries the risk of losing generalization and



46 Chapter 4. Methodology

leads to over-fitting.

Kernel: The choice of the kernel H(x, x) can be considered as an hyperparam-
eter since it has to be decided from the data scientist. Here we present four popular
choices according to Hastie, Tibshirani, and Friedman, 2009:

• Linear: H(x, x) = x′x

• k-th Degree Polynomial: H(x, x) = (θ + x′x)k

• Gaussian Radial Basis Function: H(x, x) = exp(−γ||x− x′||2)

• Sigmoid H(x, x) = tanh(κ1x′x + κ2)

The mapping φ(x) does not require to be explicitly computed. This is called the
’kernel trick’. In fact, the kernel function H(x, x) inner product is applied in the
transformed space (Hastie, Tibshirani, and Friedman, 2009).
Also the parameters of the different kernels are hyperparameters. These depend on
the kernel choice and therefore are not singularly discussed.

4.2.8 Models Framework and Data Processing

In this subsection, the general framework common to all the algorithms is presented.
This includes the modified cross-sectional model structure, the procedure that trans-
forms the categorical features into numerical values together with the standardiza-
tion of the dependent variable, i.e. the z-spread shift.
Afterwards we present the criteria for filtering the outliers from the fitting of the
model that significantly improves the accuracy.

Improved Cross-Sectional Model

As already mentioned in Section 3.1, the cross-sectional model proposed for CDSs in
Chourdakis et al., 2013 has been improved by the addiction of three extra categorical
features. These are Tenor, Currency and Market Indicator, the latter is a binary vari-
able that discriminates between developed and emerging markets. Together with
the existing categorical variables Rating, Region, Sector and Seniority, the improved
cross-sectional model accounts for 7 categorical features. The inclusion of all these
additional factors improved the accuracy of the proxy together with the others met-
rics such as the correlation, R2 coefficient, AIC and BIC scores. In order to avoid the
possible multicollinearity problem presented in Chourdakis et al., 2013, we define
a benchmark intercept. This means that we remove one categorical level from each
feature. These categorical levels form a benchmark bucket which is the intercept of
the regression model. A common choice in statistical analysis is to pick the levels
with the highest number of observations as benchmark. Our benchmark bucket is
formed by the categorical levels: [Rating: A, Region: Northwest Europe, Sector: Fi-
nancial, Seniority: Senior Unsecured Debt (SNRFOR), Tenor: 1 year, Currency: Euro,
Market Indicator: Developed].
The improved cross-sectional method to proxy bond z-spreads can be described by
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the linear relationship:

∆zi = βbenchmark +
NRat−1

∑
a=1

βRat
a IRat

a (i) +
NReg−1

∑
b=1

β
Reg
b IReg

b (i) +
NSec−1

∑
c=1

βSec
c ISec

c (i)+

NSen−1

∑
d=1

βSen
d ISen

d (i) +
NTen−1

∑
e=1

βTen
e ITen

e (i) +
NCur−1

∑
f=1

βCur
f ICur

f (i) + βEme IEme(i) + εi.

(4.53)

The interpretation of the beta coefficients here is slightly different from the cross-
secctional model. In fact, since we are using a benchmark bucket, the beta coeffi-
cients represent the changes in the z-spread shift when moving from the benchmark
categorical level to the selected level.
The summation on each category contains one instance less than the cross-sectional
method because that instance is included in the benchmark bucket. This is also why
the last categorical feature ’market indicator’, which is a binary variable, has only
one term in the model.
For what concerns the machine learning algorithms that we presented, the general
framework is the same. Even though the machine learning algorithms do not use
a linear regression model, the same benchmark bucket and categorical features are
used.

One-Hot Encoding

Many machine learning algorithms cannot operate on categorical data directly. They
require all input variables and output variables to be numerical values. Since the
number of categorical levels we are dealing with is not particularly high (34 cate-
gorical levels after the exclusion of the benchmark bucket), it is reasonable to use
one-hot encoding. One-hot encoding and label encoding are the two most popular
ways to work with categorical data. However, in label encoding, to each label is as-
signed a number, e.g. ’Developed market’ is marked with 1 and ’Emerging market’
with 2. In this way the two categories have a natural ordered relationship which
wrongly influences the model construction so it is not desirable.
With one-hot encoding, instead, categories are binary represented as dummy vari-
ables. This means that instead of having 7 columns in the X matrix of the categorical
features, we have 34 columns, one for each categorical level and each entry is filled
with a 1 if the categorical level of the bond corresponds with the respective column,
and it is zero otherwise.
For example, if a bond is categorized as :[’BBB’, ’South-west Europe’, ’Consumer’,
’Junior Subordinated’,’2 years to maturity’, ’Euro’, ’Emerging’ ], its features matrix
X is filled with ones in these aforementioned 7 columns and zeros in the other 27
columns. An example of a one-hot encoded matrix is presented in figure 4.6. Only
the rating part is shown, in order to keep the figure readable. Here the identity col-
umn refers to the bond ISIN and so it uniquely represents every bond. The other
columns are those that encode the rating. The rows in which all entries are zero are
those bonds belonging to the benchmark bucket, i.e. ’A’ rated bonds.

MinMax Scaler

Many machine learning algorithms perform better when numerical input variables
are scaled to a standard range. For what concerns the explanatory variables X, since
we used one-hot encoding, no scaling is required as the ’dummy’ variables can take
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FIGURE 4.6: One-hot encoding matrix for rating columns. Each row
corresponds to a different bond.

values x ∈ {0, 1}.
We are interested, instead, in standardizing the target variable y as z-spread shifts
are clustered in a really small range around zero and this is problematic for both SVR
and RF.
The MinMaxScaler is probably the most famous scaling algorithm, and it allows
SVR and RF to work properly. It is described by the following formula for a target
variable yi referred to the i-th bond:

yscaled
i =

yi −min(y)
max(y)−min(y)

. (4.54)

The MinMaxScaler shrinks the range in the interval: yscaling
i ∈ [0, 1]. This scaler

works better than others specially when the standard deviation is small, as in our
case.
The scaled z-spread shifts are then used for the model fit and prediction and af-
terwards an inverse transformation is applied to measure the performance on the
original scale. For what concerns Linear Regression and CatBoost, the scaling is not
necessary and does not provide any improvement/deterioration. Anyway, MinMax
scaling is applied to all the algorithms to maintain the same common framework.
However, this method is sensitive to outliers and this issue is tackled in the following
section.

Outliers Filtering

Linear regression and the machine learning algorithms that are used in this thesis
are dramatically sensitive to outliers (Géron, 2019). In Chapter 5 we show that re-
moving outliers from the fitting of the model significantly improves the quality of
the proxied z-spreads shifts in term of accuracy, correlation and R2 coefficient.
It is important to underline that outliers are only removed from the fitting and not
from the prediction of the model, i.e. the bond proxy predicts z-spread shifts also for
the outliers and these are included in the performance measurements. The reason
why this procedure is justified is that we want the proxy to be as accurate as possible
and modelling jumps is not the objective.
The objective of the proxy is to model systematic risk and therefore to capture the



4.2. Credit Spreads Proxy Methodology 49

general behaviour of the bond in examination. Outliers are considered as idiosyn-
cratic risk which is not in scope of the proxy model. The inclusion of outliers in the
fitting of the model only provides noise that reduces the accuracy of the proxy. The
analysis has been carried out with and without outliers filtering in the fitting of the
model and the results are shown in Chapter 5.
We considered as outliers and removed from the fitting of our model those observa-
tion that fall outside 3 standard deviations from the mean of the z-spread shift.
The major drawback derived from this approach is that our proxy Value at Risk is
generally underestimated. In Chapter 5, this problem is discussed in more detail
and a possible solution is provided.

4.2.9 Hyperparameters Selection Procedure

As mentioned in the previous subsections, machine learning algorithms require hy-
perparameters tuning. In contrast with model parameters, which are learned by the
algorithm, hyperparameters are set a-priori in order to configure the model and con-
trol the learning process.
The configuration of hyperparameters is a challenging task within machine learning
applications. In fact, the goal is to find an optimal combination among the hyperpa-
rameters set, such that the loss function is minimized. The resulting performance of
the model is strongly influenced by the hyperparameters choice. The objective is to
generalize the model performance in order to obtain an out of sample performance
which is comparable with the in sample or training set performance.

Grid Search vs Random Search

The traditional technique used for hyperparameters tuning is the Grid Search strat-
egy. Grid Search sequentially inspects all the possible combination defined by a
manually set up hyperparameters set.
Grid Search performance is assessed on the training set. In our case, since K-Fold
Cross-Validation is applied, the average loss across the validation samples is used
to rank each hyperparameter set. This quantity is often referred as generalization
error and in this case is the average RMSE is computed across the K folds. However,
Grid Search suffers from the known problem called curse of dimensionality (Hastie,
Tibshirani, and Friedman, 2009). This is a significant drawback as the number of
hyperparameter combinations grows exponentially. This makes the process really
cumbersome even if the number of parameters to tune is relatively low.
In order to overcome this issue, the Random Search strategy has been proposed in
Bergstra and Bengio, 2012. In this paper, Bergstra and Bengio show empirically and
theoretically that random search is more efficient for parameter optimization than
grid search. This is because only few hyperparameters actually affect the perfor-
mance for a given data set and finding the optimal values of these hyperparameters
has more impact than obtaining the optimal combination for all hyperparameters.
Within Random Search, the combinations of hyperparameters are randomly se-
lected. The number of random draws for each hyperparameter value is previously
set by the user.
In Figure 4.7, we show a visual demonstration that Random Search searches over a
larger space of hyperparameters combinations given the same computational bud-
get.
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FIGURE 4.7: Illustration of the Grid Search and Random Search strate-
gies for 2 parameters.

Two Steps Selection Strategy

Since the model is calibrated daily, running the hyperparameters search for every
day would require excessive time and would lose generality. Therefore, we applied
the following two steps procedure.
First, 5 days across the entire time span (2 years) have been homogeneously selected
and we ran the randomized grid search on those days. The grid has been empirically
adapted over a range of several possible values for each hyperparameter. Every hy-
perparameter value has been drawn 100 times in the Random Search process.
Secondly, the resulting 5 best hyperparameters combinations from the Random
Search strategy have been implemented over the whole time span. Finally, the com-
bination that best performed over the 2 years under examination has been used as
final hyperparameter set. More details about the analysed parameters and the se-
lected ones are given in Chapter 5.
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Chapter 5

Results and Models Optimization

This chapter presents the framework used to build the models together with the
results from the Shit Types Assessment and the Credit Spreads Proxy. Similarly as
we did in Chapter 4, the first part of the chapter concerns the Shift Type Assessment,
while the second part is dedicated to the Credit Spreads Proxy.

5.1 Shift Types Assessment

In this section we visualize the different shift types and assess the criteria to per-
form the parameter turning for arcsinh and displaced relative shifts. Afterwards,
we present a comparison of the different shift type performance results.

5.1.1 Parameters Tuning

As we explained in the Shift Type Assessment Methodology, Section 4.1, the mixed
type shifts that we proposed, i.e. arsinh shifts and displaced relative shifts, both
need one parameter to be tuned.
The main assumption of Historical VaR is that price changes are i.i.d and therefore
we tune the shift types parameters in order to better satisfy this assumption. In par-
ticular, the risk factor shift should not depend on the risk factor level.
This means that the "correct" type of shifts should be homoschedastic with respect
to the level, i.e. shifts should be homogeneously distributed along the z-spread level
line. This is not the case for relative shifts as we can easily see from Figure 5.1.
Note that the y-axis has been cut in order to show the distribution of the points but
shifts explode to infinity for levels that approach 0. The behaviour of relative shifts
is clearly undesirable for this type of product as it generates completely unrealistic
scenarios.
Definitely more in line with the HVaR assumption of i.i.d. is the behaviour of the
absolute shifts as can be seen from Figure 5.2.
For the previous figures and for all tests performed in this section, we used the 438
bonds for which we have complete history out of the total 8432 bonds.
A standard procedure in shift type assessments is to tune shift types parameters
based on Unconditional Coverage or other backtesting procedures. However, for
the period under consideration which runs from August 2017 to August 2019, HVaR
generally underestimates the risk. This means that the number of observed ex-
ceedances, i.e., the number of times an observation is more extreme than predicted
by our VaR model, is higher than expected.
This underestimation is due to the nature of historical VaR and it can be summa-
rized as "the past does not predict the future", in fact HVaR’s only assumption is
that future scenarios are drawn from the past, in this case, 260 observations that
are supposed to be identically independently distributed. This is clearly a strong
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FIGURE 5.1: Scatter plot of relative changes (on the y axis) against
levels of the z-spread (on the x axis)

FIGURE 5.2: Scatter plot of absolute changes (on the y axis) against
levels of the z-spread (on the x axis)

assumption and, in the period as the one under study, in which the volatility of z-
spreads and of z-spread shifts sharply increase, it leads to an underestimation of the
risk.
This can be understood from Figure 5.3, in which we plot the standard deviation of
the z-spread and z-spread daily changes (or absolute shifts) with a moving window
of 260 days, which is exactly where for HVaR we expect constant values.
This volatility increase is the main driver for the HVaR underestimation and also the
reason why the Unconditional Coverage test should not be used in order to tune the
parameters of arcsinh and displaced relative shifts.
The reason is that Unconditional Coverage (and other backtesting procedures) re-
ward the unrealistic behaviour of relative shifts because it allows for a smaller num-
ber of exceedances compared to the absolute shifts. In this way it "compensates" the
higher number of exceedances observed. Keep in mind that the parameter choice for
the arcsinh and displaced relative shifts make the shift closer to absolute or relative
shifts. In line with the aforementioned findings, we decided to perform a linear re-
gression on the modulus of the shifts with respect to the levels and use the regression
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FIGURE 5.3: In blue the standard deviation of z-spreads level over the
last 260 days from the data point on the x axis, z-spread level on the
left vertical columns. In orange, the daily change standard deviation,

which refers to the right vertical axis.

coefficient of the z-spread level as the criterion to optimally select the parameters for
the arcsinh and displaced relative changes. This means that we choose the parame-
ters for the shifts such that we obtain a zero regression coefficient for the dependent
variable which is the z-spread level.
In fact, the general problem with absolute shifts is that they tend to systematically
increase in modulus with the increase of the levels. This can be observed from Fig-
ure 5.4 where the regression line has a slightly positive coefficient. The choice of

FIGURE 5.4: Fitted regression line on the modulus of absolute shifts
with respect to the z-spread levels

using the modulus of the shifts is given by the fact that, since shifts have zero mean,
having negative and positive values results for both absolute and relative shifts in a
zero coefficient regression line. With the modulus function we can easily show why
relative shifts are definitely not recommended (Figure 5.5) and we have a measure
to assess the parameters for the mixed shift types.
The measure we choose is to select the parameter for the shift type such that the
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FIGURE 5.5: Fitted regression line on the modulus of relative shifts
with respect to the z-spread levels, note that the y axis is cut, but

shifts explode to infinity.

regression line has a zero coefficient, which means, since shifts have mean equal
to zero, that on average we removed linear dependence from shifts and levels. In
formulas, we define the dependent variable:

yi, t = ∆xi, t

= f
(
xi, t−1 , xi, t, γ

)
.

(5.1)

Where yi,t can be any shift type (in this case is either displaced relative or arcsinh)
for the bond i at time t and γ is the parameter we want to tune. Then, the dependent
variable is just the z-spread level: Xi, t = xi, t. Grouping together the 438 bonds with
full history and 2 years of data (521 days) we obtain the Ordinary Least Squares
regression line :

y = β0 + β1X,
y = {y(0, 0), y(0, 1), ..., y(1, 0), ..., y(438, 521)},
X = {X(0, 0), X(0, 1), ..., X(1, 0), ..., X(438, 521)}.

(5.2)

From here we tune the parameter γ in Equation (5.1), for each shift type such that
the linear dependence coefficient β1 goes to zero. This procedure is in line with the
HVaR model and it is shown in Figure 5.6.
It is important to note from the figure that the β1 coefficient goes to zero for large
values of the parameter, but this is just due to scaling reasons. After a certain thresh-
old we are actually using absolute shifts, just scaled by a factor 1/γ. For displaced
relative shifts we have:

lim
γ→∞

∆xdisp
t+1 =

xt+1 − xt

(xt + γ)
∼ xt+1 − xt

γ
=

∆xt+1

γ
. (5.3)

For the arcsinh shifts, by keeping in mind that the arcsin hyperbolic function behaves
like a linear function when the argument is close to zero, we obtain:

lim
γ→∞

∆xarcsinh
t+1 = arcsinh(

xt+1

γ
)− arcsinh(

xt

γ
) ∼ xt+1

γ
− xt

γ
=

∆xt+1

γ
. (5.4)
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The β1 coefficient approaches zero at the limit because the magnitude of the shifts is
inversely proportional to the magnitude of the parameter, while the z-spread levels
remain unchanged.

FIGURE 5.6: On the y axis the value of the linear regression coefficient
β1 and on the x axis the shift parameter γ

Following the aforementioned method we set the parameters for the displaced
relative and arcsinh shifts respectively to a = 0.0147845 and b = 0.0108211, we use
two different variable names such that it is easier to recall each of them.
In figures 5.7 and 5.8 the resulting distribution of the parameterized shifts versus
levels is shown. Again, we can notice a higher dispersion of shifts values for lower
levels, but this is due to a much larger number of observations for lower levels.

FIGURE 5.7: Scatter plot of displaced relative changes (on the y axis)
against levels of the z-spread (on the x axis)

5.1.2 Testing Results

In this section we present the testing results among the three shift types that are
considered for our analysis. The main comparison about shift types is going to
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FIGURE 5.8: Scatter plot of arcsin hyperbolic changes (on the y axis)
against levels of the z-spread (on the x axis)

be presented with the proxy, however, the results presented in this section are the
standard tests for banks.
We perform the statistical test in this section across the 438 bonds with full data
history and we report the result of these tests following the ING, 2020 internal
documentation. In order to summarize the information collected among these tests
we report the percentage of non rejected tests with a significance level of 5% Even
though we mentioned that we cannot rely on the Unconditional Coverage test due
to the significant increase of standard deviation across z-spreads levels in the 2
years period under examination, we report it for completeness together with the
Statistical Independence test in the backtesting results.

Backtesting Results
Absolute Shifts Displaced Relative

Shifts
Arcsinh Shifts

Expected # of
Exceedances

5.14 5.14 5.14

Observed # of
Exceedances

8.89 8.26 8.74

Unconditional
Coverage

72.8 % 76.7 % 74.6 %

Statistical
Independence

74.8 % 76.2 % 74.1 %

TABLE 5.1: Results of backtesting tests. The percentages in the table
are percentages of non-rejected test with a significance level of 5%.

The expected and observed number of excedancees is averaged across the 438
bond with full time history. For the reasons explained in the previous section the
number of observed excedancees is always significantly higher than expected. The
results of these tests are comparable as expected. Displaced relative shifts slightly
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outperform the other two shift types.
For what concerns the econometric tests, we adopt the same strategy that we used
for backtesting tests and we present the percentage of non rejected tests across the
set of 438 bonds with full data.

Econometric Tests Results
Absolute Shifts Displaced Relative

Shifts
Arcsinh Shifts

White Test 16.5 % 24.5 % 19.2 %
BP test 19.1 % 27.3 % 22.4 %
ADF and PP test
on levels

95.1 % 87.8 % 95.1 %

ADF and PP test
on shifts

0 % 0 % 0 %

TABLE 5.2: Results of econometric tests. The percentages in the table
are percentages of non-rejected test with a significance level of 5%.

The homoschedasticity assumption tested by the White test and the Breush-
Pagan test are violated in general. This is commonly observed in practice given that
the real-world data series are generally more complicated than a simple random
walk. Nevertheless, the mixed shifts are generally less frequently rejected in these
homoschedasticity tests, as we expect from our parameters tuning.
From the Augmented Dickey-fuller (ADF) and Phillips Perron (PP) test results, we
find it reasonable to assume that the z-spread level has a unit root in place, which
means that it has a random walk type behaviour, i.e. it is non-stationary. The
performed unit root test on levels is the ADF in case we use absolute or arcsinh
shifts and PP in case of displaced relative. Overall, it mainly confirms that the risk
factor follows the theoretically correct random walk dynamics. This means that it
is correct to simulate future risk factor values by applying historical shifts on top
of the current risk factor level. The ADF and PP test results on the shifts are the
same across all the shift types and it always rejects the null hypothesis that there is
a unit root, i.e., shifts are stationary. These unit root tests do not help to discriminate
between different shifts but confirm that the modelling procedure is correct.
The presented results are quite similar across the different shift types and this allows
us to consider all of them in the z-spreads proxy implementation and have a second
comparison.
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5.2 Credit Spreads Proxy

In this section we present the main results of this thesis. The chosen combinations
of hyperparameters for the machine learning algorithms are first presented. After-
wards, we present the performance of the bond credit spreads proxy with and with-
out outliers in the fitting. Finally, a comparison of the true VaR, i.e. the VaR obtained
with the real data, against the VaR given by the proxied data is provided.

5.2.1 Hyperparameter Optimization

As mentioned in Section 4.2.9, finding the optimal hyperparameters combination is
essential in machine learning algorithms. Therefore following the two-steps proce-
dure explained in Section 4.2.9, we first selected 5 days and tune the hyperparame-
ters on these days by random search.
In order to perform the random search, we define a finite set of reasonable values
for each hyperparameter. For a continous hyperparameter θ, we construct the grid
as follows: θ ∈ [a, b] where |a|, |b| < ∞ with step size s. Through the step size we
determine the number of equally spaced elements (in linear or logarithmic scale) in
the grid.
In the following subsections we specify the grids for the machine learning algo-
rithms and we present the result of the two-steps procedure. As previously men-
tioned, the first step is the application of the random search across 5 days homo-
geneously selected across the two years in examination: (14-11-2017, 03-04-2018,
21-08-2018, 08-01-2019, 28-05-2019). Afterwards, the models are ranked based on
the performance on the validation set and the best hyperparameters configuration is
picked for each day.
The second step involves testing the 5 best hyperparameter combinations across the
whole time-frame and selecting the one that provides the best performance.

Optimizing Random Forest

For what concerns the optimization of the random forest algorithm the following
hyperparameters have to be tuned: number of trees, maximum depth, minimum
samples split, minimum samples leafs, bootstrapping. The meaning and implica-
tions of these hyperparameters are explained in Section 4.2.5.
The Table 5.3 below presents the grid of reasonable hyperparameters for the random
forest. The choice of the extremes for the grid has been tested by earlier experiments.

Hyperparameter Grid Step Size

# of Trees [200, 2000] 100

Max Depth [10, 110] 10

Min Samples Split [2, 10] 1

Min Samples Leafs [1, 4 1

Bootstrap [True, False] -

TABLE 5.3: Grid and step size for the random forest hyperparameters
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The chosen hyperparameter combinations in terms of RMSE are presented in the
Table 5.4 below for the 5 days under examination. These 5 combinations are then
tested across the covered 2 years period.

Date # of Trees Max Depth Min Samples Split Min Samples Leafs Bootstrap

14-11-2017 400 60 10 2 True

03-04-2018 200 20 10 4 False

21-08-2018 1200 10 5 4 False

08-01-2019 600 110 10 2 True

28-05-2019 1800 50 5 4 True

TABLE 5.4: Selected hyperparameters for the 5 tested days

Across these 5 combinations the first one slightly outperforms the others when tested
over the full 2 years period. It is important to mention that the obtained accuracy is
comparable across these combinations and therefore we reckon it to be sufficient to
have the preliminary study across these 5 days only.
For clarity, the selected hyperparameter combinations are presented below.

Selected Hyperparameters for Random Forest

Number of Trees: 400.
Maximum Depth: 60.
Minimum Samples Split: 10.
Min Samples Leafs: 2.
Bootstrap: True.

Optimizing CatBoost

The CatBoost regressor offers a flexible tool that automatically selects the best hyper-
parameters set composed of the number of trees, learning rate and tree depth. This is
done automatically every day, therefore no single combination of hyperparameters
is required.
Anyway, the two-steps procedure used for the other machine learning algorithms
has been implemented for CatBoost as well. However, the result of the aforemen-
tioned automatic feature provides a better performance than the two-steps proce-
dure. The time required to implement these automatic features does not significantly
increase comparing to the usage of predetermined hyperparameters, therefore it has
been used across the full 2 years period.

Optimizing Support Vector Regression

In SVR we implemented the two-steps procedure for the selection of the best
hyperparameter combinations. The hyperparameters that we need to tune are: ε, C
and the kernel type. Details on these hyperparameters are given in Section 4.2.7.
The Table 5.5 presents the grid of reasonable hyperparameters for the SVR algo-
rithm. As for the random forest, the choice of the extremes for the grid has been
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tested by earlier experiments.

Hyperparameter Grid Step Size

ε [0.0001, 10] log10 scale

C [0.001, 1000] log10 scale

Kernel Linear, Polynomial, RBF, Sigmoid -

TABLE 5.5: Grid and step size for the SVR hyperparameters

In Table 5.6 we show the best hyperparameters combination for the 5 days under ex-
amination. As previously, these combinations are tested over the full 2 years period.
What we mentioned only holds for similar periods, as two years is a relatively short
amount of time and it is characterized by a specific behaviour.

Date ε C Kernel

14-11-2017 0.1 10 RBF

03-04-2018 0.01 1 RBF

21-08-2018 0.01 1 RBF

08-01-2019 0.1 100 RBF

28-05-2019 0.001 0.1 Polynomial

TABLE 5.6: Selected hyperparameters for the 5 tested days

Most of the combinations are similar however, the Gaussian Radial Basis Function
(RBF) seems to outperform the other kernels in the majority of cases. The second
(and third) combination are the ones that outperform the others when tested across
the 2 years period. The final choice of hyperparameters is shown below.

Selected Hyperparameters for SVR

ε: 0.01.
C: 1.
Kernel: Gaussian Radial Basis Function.
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5.2.2 Proxy Performance

In order to measure the performance of our proxy for bond credit spreads we used
the various metrics presented in Section 4.2.1.
We do not report the results obtained with AIC and BIC as these have been used
to check that adding new explanatory variables, e.g. tenor, currency and market
indicator, always decreased these coefficients.
The results obtained across the three different shift types are significant, absolute
and arcsinh shifts outperform displaced relative shifts. In this section we report
only the results for absolute shifts across different algorithms. The results for the
others shift types can be found in Appendix A.
The most significant error metrics are reported in this section and these are: RMSE,
the R2 coefficient and the correlation, respectively measured on the training and test
sets. For what concerns the standard deviation, of the proxy results, it systematically
increase by the addition of new explanatory variables. With the 7 used explanatory
variables, our proxy obtained a standard deviation measure σ that is approximately
half of the one obtained with the real data. However, the benchmark model, i.e.
the intersectional method with 4 regressors obtained a standard deviation that is
approximately one fourth of the true one. This result is in favour of a more realistic
proxy given by the addition of new information.
The tables in this section present the results obtained by the benchmark model, i.e.
the original cross-sectional model, compared with the 4 proposed algorithms: the
improved-cross sectional model, which uses linear regression (LR), the random for-
est algorithm (RF), the CatBoost algorithm (CAT) and the support vector regression
algorithm (SVR). See Table 5.7.

Performance of different algorithms on absolute shifts
Train
RMSE

Test
RMSE

Train R2 Test R2 Train Cor Test Cor

benchmark 4.6e-4 4.6e-4 0.041 0.013 21.2% 16.7%
LR 4.3e-4 4.4e-4 0.108 0.082 31.4 % 28.9%
RF 4.0e-4 4.1e-4 0.272 0.117 56.6 % 33.8%
SVR 4.0e-4 4.1e-4 0.159 0.110 39.5% 33.7%
CAT 4.1e-4 4.3e-4 0.122 0.096 53.8% 29.5%

TABLE 5.7: Performance metrics for the various ML algorithms across
the 2 years under examination with the usage of absolute shifts.

It is noticeable that all the proposed algorithms significantly outperform the
benchmark model, which is the original cross-sectional model, in all the considered
metrics.
Among the 4 proposed algorithms, random forest and support vector regression are
those that perform best. This can be seen from the performance on the out of sample
set, which is unbiased. CatBoost and the random forest algorithm show some
over-fitting even after the hyperparameter tuning. However, despite the tendency
to overfit the dataset, the random forest algorithm is the one that provides the best
performance on the test set.
As mentioned in Section 4.2.8, removing outliers from the fitting of the model,
drastically improved the proxy performance. Outliers are part of idiosyncratic risk
and since the proxy is supposed to replicate systematic risk, the presence of outliers
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behaves like noise for the proxy as these do not represent the average behaviour of
the market.
Table 5.8 below shows a significant boost in the proxy accuracy due to the removal
of outliers from the fitting of the regression model.
This strategy comes with a trade-off between accuracy in terms of the predicted
shift and accuracy in terms of standard deviations. In fact, removing outliers from
the fitting increased the accuracy in terms of RMSE, R2 coefficient and correlation,
however, the proxy without these outliers is more conservative and the VaR calcu-
lation is underestimated. This problem is tackled in the next subsection.

Performance on absolute shifts without outliers in the fitting
Train
RMSE

Test
RMSE

Train R2 Test R2 Train Cor Test Cor

benchmark 2.3e-4 2.4e-4 0.095 0.076 28.0% 25.4%
LR 2.1e-4 2.2e-4 0.237 0.216 47.1 % 45.0%
RF 1.9e-4 2.1e-4 0.413 0.277 65.8 % 51.4%
SVR 2.0e-4 2.1e-4 0.320 0.280 56.2% 51.7%
CAT 2.3e-4 2.3e-4 0.268 0.242 51.4% 46.3%

TABLE 5.8: Performance metrics of ML algorithms and benchmark
model across the 2 years under examination with the usage of abso-
lute shifts after remove from fitting the outliers. The removed outliers

are those far more than 3 standard deviations from the mean.

The improvement of the performance obtained by this outlier filtering is remarkable:
the RMSE is approximately halved, the R2 coefficient is almost tripled and the cor-
relation significantly increased for all the algorithms considered.
As in the previous scenario, the random forest and support vector machine algo-
rithms are those that better perform on the out of sample test.
Similarly to the Table 5.7, the correlation generally doubled in the comparison with
the benchmark model, which is a highly satisfactory result. Overall, the results ob-
tained both in the scenarios with and without outliers are remarkable as they present
a net improvement with respect to the current proxy model for bond credit spreads.
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5.2.3 VaR Comparison

The main application of the bond credit spreads proxy is to approximate the VaR
that one would obtain with the real data. In order to test it, we selected the bonds
with full history, which are 438, and calculate the VaR obtained for these bonds
together with the VaR obtained by our proxy.
Our claim is that, for a large portfolio of bonds, the VaR obtained with real data and
the VaR obtained with proxied data should converge. In order to mathematically
express this reasoning we decompose the portfolio risk in a systematic risk com-
ponent, which resembles market risk and an idiosyncratic risk component, which
is the individual risk of each counterparty and we assume it to be independent
from the others. Our proxy is supposed to model systematic risk and should not
incorporate idiosyncratic risk.
We define Yi := ∆zi as the change in the z-spread of the i-th bond on a certain date.
Then Yi can be modelled as:

Yi = Ysyst
i + Yidio

i , ∀i,

Ysyst
i = β0 +

N f eatures

∑
k=1

Nk

∑
j=1

βk
j Ik

j (i), ∀i,

Yidio
i ∼i.i.d N (0, σidio

i ), ∀i.

(5.5)

The result of our proxy, here reported in case of modelling with linear regression, is
Ysyst

i , the systematic risk component. The equation for the systematic risk compo-
nent model is explained in detail in Section 4.2.8. Here, it is summarized first in a
summation on the number of features, e.g. seniority, currency etc, and then an inter-
nal summation on the levels within each category, e.g. EUR, USD, GBP.
The indicator function takes the value one when the i-th bond is in the same cate-
gorical level of the j-th level. β0 is the benchmark bucket that has been explained
in detail in the aforementioned section. In order to proceed with our modelling, we
need to explain the relation between z-spread and VaR.

VaR and Z-spread

We recall that the theoretical price of a zero coupon bond and the z-spread are linked
by the following relationship:

P(t0) = FVe−r(T−t0)
(T−t0),

MV(t0) = FVe−(r+z)(T−t0)
(T−t0).

(5.6)

Where P(t0) is the theoretical price of a risk-free bond at time t0, FV is the face value
of the bond, MV(t0) is the market value, r is the zero coupon rate taken from the
treasury yield curve and z is the z-spread.
Then in order to calculate HVaR we need n observations of MV in order to generate
the n scenarios. ∆MV = {MV0, MV1, ..., MVn}.
We can derive the change in MV of the bond by shocking z, i.e. by a sensitivity
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analysis on the variation of z:

∆MV = FVe−(r+z)(T−t)0)
(T−t0)(e−∆z(T−t0) − 1)

=
∂MV

∂z
(

1− e−∆z(T−t0)

T − t0
)

=
∂MV

∂z
(∆z + o(∆z)2)

≈ ∂MV
∂z

(∆z).

(5.7)

Where in the last equation a first-order Taylor approximation has been used. From
here it can be seen that the variation in the market value of a bond is proportional to
the variation in the z-spread.
Now we consider a multi-bond portfolio composed of NBonds, in which the i-th bond
is weighted by ωi. The sum of the weights in the portfolio should be finite and
for simplicity we set it to one, i.e. ∑NBonds

i=1 ωi = 1. We can then define the P&L for
this portfolio as the sum of the daily change in the market value of every i-th bond
weighted by the respective ωi:

P&L(t) =
NBonds

∑
i=1

ωi∆MVi. (5.8)

As we previously showed in (5.7), this is proportional to the variation in the
z-spread of each bond: P&L(t) ∝ ∑NBonds

i=1 ωi∆zi = ∑NBonds
i=1 ωiYi.

Now we consider an infinitely large portfolio such that limNBonds→∞ ωi = 0.
An infinitely large portfolio is not a realistic assumption but it serves for our scope,
in fact, now we can invoke the Law of Large Numbers and apply it to our P&L:

lim
NBonds→∞

NBonds

∑
i=1

ωiYi = lim
NBonds→∞

NBonds

∑
i=1

ωiY
syst
i + lim

NBonds→∞

NBonds

∑
i=1

ωiYidio
i

= E[Ysyst] + 0.

(5.9)

This means that for an infinitely large portfolio, the P&L and therefore also the VaR
of the real-data portfolio converges to the deterministic value that is the systematic
risk contribution, which is exactly the result of our proxy. This result is of crucial
importance and it means that for VaR purposes the approach is correct in the limit
of an infinite number of bonds.
In this analysis the number of bonds that have full z-spread history is 438 and in
the following we show that this number might be sufficient to have convergence
between the ’true’ VaR and the ’proxy’ VaR.

VaR comparison for bonds with full history

Following the previous reasoning, we can calculate the VaR for our portfolio com-
posed of 438 bonds in which we assume that the weights are homogeneously dis-
tributed across the bonds. The VaR resulting from the calculation is only propor-
tional to the actual VaR, but it serves for our purpose since we are interested in a
comparison of the same portfolio with real and proxied data and therefore the scal-
ing factor is not necessary.
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In Figure 5.9, a plot of the VaR calculated in the two years period for each algorithm
is shown together with the plot of the ’true’ VaR in purple.

FIGURE 5.9: VaR comparison in the period from September 2017 to
September 2019, between the real data and proxied data. The prox-
ied data are calculated with Linear Regression (blue), Random Forest

(orange), Support Vector Regression (green) and CatBoost (red).

Similarly as in the previous section: the random forest (orange line) and support vec-
tor regression (green line) are those that better resemble the behaviour of the ’true’
VaR. Generally, this plot shows a very satisfying result, all the algorithms similarly
replicate the VaR obtained with real data, despite the fact that we are not considering
idiosyncratic risk. This is in favour of the previous reasoning: for a large number of
bonds the VaR is given by the systematic risk contribution.
This is a remarkable result for this thesis, it basically confirms that the approach used
is theoretically and empirically correct if the purpose is the VaR calculation and the
portfolio is large enough.
Neglecting idiosyncratic risk introduces an underestimation error in the ’proxy’ VaR,
which converges to zero for an increasing number of bonds. In Figure 5.10, we plot
the mean percentage underestimation error (UE) for an increasing number of bonds
considered in the portfolio. The aforementioned error is calculated as follows:

UE =
1
T

T

∑
i=1

VaRTrue
i −VaRProxy

i

VaRTrue
i

. (5.10)

Here T is the number of days in examination, because the VaR is calculated daily
and the error is averaged on the time span. The VaRTrue

i and VaRProxy
i are calculated

across the 438 bonds for every day.
The plot shows that the underestimation error (UE) approaches zero for an in-
creasing number of bonds and the random forest (orange line) and support vector
regression (green line) are the faster in this convergence with just a 1% underesti-
mation error, against linear regression and CatBoost that reach approximately 5%.
Again this result confirms our claim. However, in this calculation outliers have not
been filtered out from the fitting and therefore the accuracy obtained with the proxy
is lower as seen in Section 5.2.2.
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FIGURE 5.10: VaR underestimation error in function of an increasing
number of bonds for different ML algorithms. The error is calculated

as a percentage of the error mean across time.

VaR comparison for bonds with full history and outliers filtering

Whenever outliers are filtered out from the fitting of the proxy model, the VaR
obtained suffers from a stronger underestimation. This is due to the fact that
removing the more extreme observations produces a less conservative VaR. This
is not in contradiction with the previous reasoning. In fact, the VaR should still
converge to the true one, but it requires a larger number of bonds. Figure 5.11,
shows the VaR calculation across the 2 years period after removing outliers from
the fitting of the model. It is easily noticeable that the result is quite different from
the previous case. The underestimation worsened, as expected, and it is the case
specially for random forest and support vector regression which better performed
in the previous scenario.
The removal of outliers from the fitting strongly affects the performance of random
forest and support vector regression algorithms. Whereas CatBoost and Linear
Regression performance is less penalized, in terms of VaR underestimation, by the
removal of the outliers.
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FIGURE 5.11: VaR comparison in the period from September 2017 to
September 2019, between the real data and proxied data after remov-
ing outliers from the fitting. The proxied data are calculated with
Linear Regression (blue), Random Forest (orange), Support Vector

Regression (green) and CatBoost (red).

Similarly as before, we plot the mean percentage underestimation error for an in-
creasing number of bonds in Figure 5.12. The plot shows a drastically higher under-
estimation for random forest and specially for support vector regression algorithms.
The performance of CatBoost and linear regression is almost not affected by the out-
liers removal in terms of underestimation error. This result implies that, despite the
fact that support vector regression and random forest perform better in term of accu-
racy, the usage of linear regression or CatBoost is recommended for VaR calculation
in case of outliers filtering.
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FIGURE 5.12: VaR underestimation error in function of an increasing
number of bonds for different ML algorithms after removing outliers
from the fitting. The error is calculated as a percentage of the error

mean across time.

Idiosyncratic Risk Simulation

Another possibility that allows to improve the convergence of our ’proxy’ VaR to the
’true’ VaR is to simulate idiosyncratic risk.
For an infinite number of bonds this procedure has no effect as we showed with the
law of large numbers, but for a countable portfolio, it speeds up convergence.
Following our previous assumption that idiosyncratic risk is independently nor-
mally distributed across bonds we decided to simulate it by looking at the main
bond categorical feature: the rating class.
The procedure we follow in order to simulate idiosyncratic risk is to apply Gaussian
noise by first calculating the mean standard deviation for different rating classes
σrating, e.g. σAAA is the mean standard deviation of ’AAA’ rated bond z-spread shifts.
Secondly, for every predicted time series, the difference between the time series stan-
dard deviation and the standard deviation related to the respective rating class is
calculated:

∆σi = σrating(i)− σi, i = 1, ..., NBonds

∆σi = max(0, ∆σi).
(5.11)

Then we simulate a multivariate normal matrix Q ∼ N(0, ∆σi) with NBonds columns
and T rows, where T is the number of days in exam which is 520.
Finally, this multivariate Gaussian noise is added to the output prediction of our
proxy (in which outliers are filtered from the fitting).
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FIGURE 5.13: VaR comparison in the period from September 2017
to September 2019, between the real data and proxied data after re-
moving outliers from the fitting and the addition of idiosyncratic risk
simulation. The proxied data are calculated with Linear Regression
(blue), Random Forest (orange), Support Vector Regression (green)

and CatBoost (red).

Figure 5.13 shows a net improvement in the performance of random forest and sup-
port vector regression after the inclusion of the simulated idiosyncratic risk contri-
bution. The underestimation effect is still heavier than the scenario with the outliers
included in the fitting, but the improvement is remarkable.
Similarly as we done previously, the mean percentage underestimation error is
shown in Figure 5.14.
This method is not robust for a small number of bonds (n < 200), but it gains sta-
bility for a larger portfolio. This means that a realistic portfolio that accounts for a
number of bonds larger than 200 can strongly benefit from this approach as it gen-
erally decreases the underestimation error even for a medium-sized portfolio.
Overall, it is not straightforward to assess which strategy is the best one, as it re-
ally depends on the size of the considered portfolio and the main application of the
proxy. In general this idiosyncratic risk simulation allows for a great accuracy, as the
noise is applied only afterwards, for VaR purposes where the underestimation error
is reduced.
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FIGURE 5.14: VaR underestimation error in function of an increasing
number of bonds for different ML algorithms after removing outliers
from the fitting and adding simulated idiosyncratic risk. The error is

calculated as a percentage of the error mean across time.
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Chapter 6

Further Developments

In this chapter some further developments of the bond credit spreads proxy are dis-
cussed. The main room for improvement relies in including time information, which
was not considered in the actual state of the proxy.
In fact, the proxy built so far is fitted with daily z-spread shifts and therefore, it uses
only the information available on a single day across the bonds to proxy missing
data points.
Time information can be included in our proxy by means of an auto-regressive (AR)
model. This can be done if bond z-spread time series present some significant auto-
correlation as it is shown in the following section.
The auto-regressive model implementation can be a great support for this analy-
sis. However, the results obtained so far by the ’daily’ proxy are satisfactory and
therefore, the goal of this chapter is to combine the two model without losing the
achievements obtained with the previous model.
In this chapter we are only considering the 438 bonds that have full history. For this
reason the reported performance of the ’daily’ proxy is different from the previous
section. Also, the analysis is presented only on absolute shifts. Anyway, similar
conclusions can be drawn for the other suggested shift types.

6.1 Bond Z-Spread Shift Autocorrelation

In order to implement the AR model, we first need to verify the presence of auto-
correlation in the bond z-spread shifts. The autocorrelation is derived from the au-
tocovariance, which is nothing more than the covariance computed for a time-series
variable. It is the covariance of yt with itself in the past, i.e.

γy(s, t) = cov(ys, yt) with 0 < t < s,
γy(h) = cov(yt+h, yt).

(6.1)

Given the autocovariance, we can define autocorrelation as:

ρy(s, t) =
γy(s, t)√

γy(s, s)γy(t, t)
with 0 < t < s. (6.2)

Autocorrelation can be verified by an autocorrelation function (ACF) plot. The ACF
is the function that describes how the autocorrelation varies with time lags. For the
bond z-spreads time series, one lag correspond to one day.
The ACF plot for a single bond is shown in Figure 6.1. This plot correspond to one
out of the 438 bonds with full history analysed in this section.
It is clearly infeasible to analyse one by one each of the 438 bond z-spread shift
time series. Therefore, a larger scale approach has been implemented. This is the
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Ljung–Box test, which has been introduced by Greta M. Ljung and George E. P. Box
in 1978. A brief overview of the test methodology and target is presented in the
following, while a more extensive explanation can be found in Ljung and Box, 1978.

FIGURE 6.1: On the y axis the value of the autocorrelation for a single
bond with respect to the lag that is shown on the x axis.

The Ljung-Box test is a statistical test for checking if for a certain number of lags
the time-series exhibits autocorrelations different from zero. The null-hypothesis
H0 assumes that data are independently distributed and therefore the correlation is
zero. Conversely, the alternative hypothesis H1 is that data are not independently
distributed, i.e., data exhibit serial correlation.
The test statistic of the Ljung-Box test is defined by:

Q = n(n + 2)
h

∑
k=1

ρ̂2
k

n− k
, (6.3)

where n is the sample size, h is the number of tested lags and ρ̂k is the autocorre-
lation at lag k. Under the null-hypothesis the test statistic Q follows a chi-squared
distribution with h degrees of freedom, i.e. Q ∼ χ2(h, 0).
The Ljung-Box test has been implemented on all the 438 bonds with h = 5 lags,
which means that all the lags up to 5 are tested. The results of the test, i.e. the p-
values, are summarized in Figure 6.2.
The histogram shows that for more than 350, out of 438 bonds, the null hypothesis is
rejected at a significance level of 5%, i.e. serial correlation is present in the majority
of the z-spread shift time-series. The result obtained with the Ljung-Box test implies
the presence of an autoregressive component in the bond z-spread shift time-series.
Therefore, it opens the door for an autoregressive (AR) model implementation.
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FIGURE 6.2: Histogram showing the result of the Ljung-Box test. On
the x axis the p-values obtained for each bond and on the y axis the

number of bonds contained in each bin.

6.2 Bond Z-Spread Shift Autoregressive Model

After verifying the existance of autocorrelation in bond z-spread shifts, an AR model
has been built. The chosen number of autoregressive lags is 5, same as those tested in
the previous section. An autoregressive model predicts the future behaviour based
on the past behaviour. It is basically a linear regression of the current data against
h = 5 past values of the same time-series.
An autoregressive model of order 5 is often written with the notation: AR(5). This
model is defined as:

Yt = c +
h=5

∑
i=1

φiYt−i + εt. (6.4)

Where c is a constant, φi is the parameter related to the i-th lag and εt is white noise.
The model has been fit sequentially on each of the 438 bonds with full-history. In
order to have a realistic framework for our prediction we applied a ’mask’ on the
438 bonds time-series such that these include missing values as well. This has been
done by randomly selecting 438 bonds time-series containing at least 80% of the
data and apply this mask on the 438 full-history bonds. Therefore, the complete
data-set has been used for the fitting but a mask has been applied for the prediction.
Bond z-spread shift time-series are stationary, therefore no train-test split has been
applied in this exploratory part.
The performance obtained by the AR(5) together with that obtained with our
previous proxy is presented in the following table. For what concerns the proxy
we present the performance of the random forest algorithm without outliers in the
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fitting, which together with support vector regression provided the best results in
terms of accuracy.

Performance of AR(5) model and RF proxy algorithm
RMSE R2 Cor AIC BIC

AR(5) 2.4e-4 0.07 25.7 % -7333 -7304
RF 2.0e-4 0.29 60.2% -9024 -7192

TABLE 6.1: Performance metrics of AR(5) model and Random Forest
proxy algorithm for the 438 bonds with full-history.All metrics pre-
sented in this table are calculated as mean across the 438 time-series.

It is clear from Table 6.2 that the ’daily’ proxy significantly outperforms the autore-
gressive model. The only metric in which AR(5) model performed better than the
proxy is the BIC and this is due to the higher penalization on the number of param-
eters in the BIC calculation.
We can definitely say that the ’daily’ proxy is a better model than the AR(5), but an
opportune combination of the two models could yield a better performance.

6.3 Bond Z-Spread Shift Mixed Model

The purpose of this section is to combine the results of the two model into a single
mixed model that outperform the previous two.
We define Yproxy

i (t) as the z-spread shift of the i-th bond at time t calculated by
means of the daily proxy. Conversely, we define YAR

i (t) as the z-spread shift
calculated with the autoregressive model with 5 lags.
Two possible approaches have been analysed in order to combine the result of the
two models: unconstrained linear regression (URL) and LASSO regression, i.e.
constrained linear regression. In the following these two approaches are described.

Unconstrained Linear Regression
This method consists in estimating the parameters β1 and β2, defined by the
following equation, by means of linear regression.

Ymixed = β1Yproxy + β2YAR, (6.5)

where Yproxy and YAR are vectors containing all bonds z-spread shifts across the
two years under examination. No constraint has been imposed on the parameters
β1 and β2. The resulting parameters are β1 = 1.13 and β2 = 0.76

Lasso Regression
Least Absolute Shrinkage and Selection Operator formulated in Tibshirani, 1996,
allows to perform linear regression with a regularization term. The parameters are
defined by the following equation:

(β1, β2) = argminβ[(YTrue − β1Yproxy)2 + (YTrue − β2YAR)2 + α(|β1|+ |β2|], (6.6)

in which α can be opportunely tuned such that the model equation results in:

Ymixed = β1Yproxy + β2YAR with β1 + β2 = 1. (6.7)



6.3. Bond Z-Spread Shift Mixed Model 75

The parameters resulting from the constrained linear regression are β1 = 0.81 and
β2 = 0.19. Fixing the sum of the two parameters to be one has been proposed
because of its interpretation but it is not mandatory.
The performance obtained with these two mixed models is presented below.

Performance of the mixed model with URL and LASSO
RMSE R2 Cor AIC BIC

ULR 1.9e-4 0.32 63.0% -9057 -9049
LASSO 2.0e-4 0.29 62.1% -9028 -9020

TABLE 6.2: Performance metrics of the mixed model with uncon-
strained linear regression and LASSO approaches. All metrics pre-
sented in this table are calculated as mean across the 438 time-series.

Table 6.3, shows that unconditional linear regression slightly overcome LASSO ap-
proach as a mixing procedure for the autoregressive and proxy models. This is re-
lated to the issue of standard deviation underestimation presented in Chapter 5. In
fact, since both models are generally conservative, a mixed approach that increase
the standard deviation of the model is preferred.
Both mixed models improved the stand-alone performance of the ’daily’ proxy
which is a satisfactory result.
The methods used and the results obtained in this section need to be formalized and
aim to be a suggestion for possible further improvements of the ’daily’proxy model.
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Chapter 7

Conclusions

In this chapter, we summarize the main aspects of our research and draw conclu-
sions from the obtained achievements.
We start from the shift types assessment, which is the foundation of our proxy
methodology. The shift types assessment has a crucial role in the main application of
this thesis which is the historical Value at Risk (HVaR). Many financial institutions
adopted the usage of relative shifts for bond z-spreads modelling. In our research we
showed this to be an undesirable choice since relative shifts have a vertical asymp-
tote for value of the z-spread that are close to 0. This violates the main assumption
of HVaR, i.e. market price changes are identically independently distributed (i.i.d).
To overcome this issue we provided a methodology in which, by analysing the be-
haviour of the modulus of the z-spread shifts in relation with the z-spread level, we
set the shift fluctuations to be homogeneously distributed on the different z-spread
levels. This resulted in the proposal of three different possible shift types: absolute,
displaced relative and arcsinh shifts. These provide similar results and each one fits
well with the HVaR foundation. During the course of the analysis we mainly ap-
plied absolute shifts as these provide a more simple and intuitive framework and do
not require parameters tuning.
Once the choice of the shift type has been made, we can start calibrating our model
on top on that. The reason why the shift type choice is crucial for the credit spreads
proxy goes beyond the HVaR application. In fact, one of the main differences be-
tween the approach of this research and the previous proxy models such as the In-
tersectional Method introduced in EBA, 2013 and the Cross-Sectional Method pre-
sented in (Chourdakis et al., 2013), is that we decided to directly proxy the shifts or
daily changes in the z-spread value instead of the z-spread values themselves.
This choice provided better performances and it also fits better with the HVaR ap-
plication, as in HVaR the shifts are directly used to generate the possible future sce-
narios for the z-spread values.
The Cross-Sectional Method has been used in this thesis as benchmark model. The
reason for this is that it significantly overcome many of the limitation of the Inter-
sectional Method and furthermore its application is wide-spread across financial
institutions. However, the Cross-Sectional Method provides quite poor predictive
accuracy. This has been significantly improved by the inclusion of extra regressors
in our proxy model, such as currency, time to maturity and market indicator, which
is a binary variable that discriminates between emerging and developed market. In
Chapter 3, we visually showed that these extra regressors provide useful informa-
tion to more completely represent the bond features. Another major improvement in
terms of predictive accuracy relies in the inclusion of non-linearties and interacting
terms in the regression model by means of different machine learning algorithms
such as Random Forest (RF), CatBoost and Support Vector Regression(SVR). Among
these three algorithms the RF and SVR are those that better performed. However,
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the performance of each of the proposed algorithm significantly outperformed the
benchmark model.
A crucial step in the enhancement of the proxy accuracy was found in the removal
of outliers from the fitting of the proxy model. The removal of the outliers from
the fitting was justified by the aim of the proxy, which is modelling and replicating
systematic risk, i.e. the average behaviour of the market. Outliers are part of id-
iosyncratic risk which is the risk incorporated by a specific entity and therefore it is
not supposed to be modelled by the bond credit spreads proxy. Specially, after the
removal of outliers from the fitting, the performance of RF and SVR obtained a strik-
ing performance, the correlation more than doubled with respect to the benchmark
model and the R2 coefficient was almost 4 times higher.
The main result of this thesis from a financial and statistical point of view, relies in
the VaR comparison between the ’true VaR’ and the ’proxy VaR’, i.e. the VaR ob-
tained with real data and the VaR obtained with proxied data on the same portfolio
composition. We theoretically proved that neglecting idiosyncratic risk does not pro-
vide drawbacks in terms of VaR calculation if the portfolio is infinitely large. And we
empirically proved that for a sufficiently large portfolio the VaR underestimation is
small, up to 1% for RF and SVR by considering a portfolio composed by 438 bonds.
This result is of vital importance for this thesis as it basically confirms the correctness
of our approach for VaR calculation purposes, i.e. the VaR of the real-data portfolio
converges to a deterministic value which is given by the systematic risk component
that is what our proxy model aims to predict.
The performed outliers filtering in the model fitting brought an impressive improve-
ment in the accuracy of the proxy, but it generated a smaller predicted volatility
which resulted in a significant underestimation of the predicted VaR. This has been
compensated by an idiosyncratic risk simulation that can be adopted for the VaR
calculation only. However, the removal of outliers from the fitting, necessarily de-
crease the ability of the proxy to predict large fluctuations in the z-spread shifts. The
inclusion of a idiosyncratic noise component improved the aforementioned issue re-
sulting in a VaR underestimation clustered around 5% for a portfolio composed by
438 bonds.
This completes the main part of our research, i.e. the construction and application of
a bond credit spreads proxy, in order to significantly improve the current method-
ologies for illiquid markets and partially solved the shortage of liquidity problem.
It is necessary to mention that our analysis concerned a 2 years period from August
2017 to August 2019, which is a relatively short amount of time for financial analy-
sis. Therefore, our conclusions hold for similar periods that are characterized by a
specific market behaviour.
Our research expanded beyond the improvement of the ’daily’ proxy, which refers
to the fact that the existing proxy methodology and those that we presented are fit-
ted day-by-day and use only the information available on each single day to make
predictions. This is one of the main limitation of existing proxy methodology, the
contribution brought by information across time should not be ignored in order to
obtain a more sophisticated and effective proxy. For this reason in the further devel-
opments section, Chapter 6, we showed the presence of autoregressive components
in the bond z-spreads shifts. This opened the doors to a vast majority of possible
approaches. Among these, we focused on a simple one, the construction of an au-
toregressive (AR) model with 5 time lags. The AR model by itself did not obtained
a performance comparable with the ’daily’ proxy that uses ML algorithms, however
we showed that a combination of the two models can indeed improve the perfor-
mance of the single models.
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Overall, the research provided satisfying results. The main goal of the project, which
was the realization of an improved proxy framework that can be easily applied by
financial institution, has been accomplished. On top of that, we provided an exten-
sive research on the best shift types for bond z-spreads, which is an uncovered topic
in the financial research documentation.
Finally we shed light on a new possible approach for credit spreads proxying, which
relies in the inclusion of historical data (potentially from past and future) for the
modelling and prediction of the bond z-spreads. Our analysis on this topic aims to
be an introduction for a more sophisticated and formal procedure that can dramati-
cally increase the potential of future proxy.
We believe that the new insights provided by this research can be a significant bene-
fit for the financial industry with relevant content also for the scientific community.
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Appendix A

Performance of Other Shift Types

A.1 Performance of Arcsinh Shifts

Performance of different algorithms on arcsinh shifts
Train
RMSE

Test
RMSE

Train R2 Test R2 Train Cor Test Cor

benchmark 2.92e-2 2.98e-2 0.034 0.021 18.0% 15.3%
LR 2.68e-2 2.73e-2 0.110 0.104 31.3 % 30.6%
RF 2.54e-2 2.64e-2 0.265 0.126 54.8 % 34.6%
SVR 2.61e-2 2.64e-2 0.165 0.128 39.8% 35.1%
CAT 2.61e-2 2.74e-2 0.213 0.108 50.4% 31.4%

TABLE A.1: Performance metrics for the various ML algorithms
across the 2 years under examination with the usage of arcsinh shifts.

Performance on arcsinh shifts without outliers in the fitting
Train
RMSE

Test
RMSE

Train R2 Test R2 Train Cor Test Cor

benchmark 1.62e-2 1.63e-2 0.078 0.061 27.7% 24.7%
LR 1.46e-2 1.47e-2 0.234 0.216 46.8 % 45.1%
RF 1.28e-2 1.40e-2 0.406 0.282 65.3 % 52.0%
SVR 1.34e-2 1.37e-2 0.323 0.285 56.3% 52.4%
CAT 1.54e-2 1.57e-2 0.243 0.226 52.0% 47.0%

TABLE A.2: Performance metrics for the various ML algorithms
across the 2 years under examination with the usage of arcsinh shifts
after removing outliers (3 or more standard deviations far from the

mean) from the fitting.
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A.2 Performance of Displaced Relative Shifts

Performance of different algorithms on displaced relative shifts
Train
RMSE

Test
RMSE

Train R2 Test R2 Train Cor Test Cor

benchmark 2.09e-2 2.10e-2 0.035 0.004 17.9% 14.9%
LR 2.01e-2 2.00e-2 0.104 0.082 30.4 % 29.6%
RF 1.84e-2 1.85e-2 0.255 0.100 53.9 % 33.2%
SVR 1.97e-2 1.84e-2 0.152 0.106 38.0% 33.6%
CAT 1.87e-2 1.89e-2 0.203 0.098 50.2% 30.1%

TABLE A.3: Performance metrics for the various ML algorithms
across the 2 years under examination with the usage of displaced rel-

ative shifts.

Performance on displaced relative shifts without outliers in the fitting
Train
RMSE

Test
RMSE

Train R2 Test R2 Train Cor Test Cor

benchmark 1.08e-2 1.09e-2 0.076 0.060 26.8% 24.3%
LR 0.97e-2 0.98e-2 0.224 0.207 45.9 % 44.1%
RF 0.86e-2 0.94e-2 0.398 0.270 64.9 % 51.0%
SVR 0.92e-2 0.94e-2 0.312 0.275 55.3% 51.4%
CAT 1.04e-2 1.07e-2 0.243 0.226 52.0% 47.0%

TABLE A.4: Performance metrics for the various ML algorithms
across the 2 years under examination with the usage of displaced rel-
ative shifts after removing outliers (3 or more standard deviations far

from the mean) from the fitting.
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