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Abstract
Motivation: Metabolic kinetic models are widely used to model biological systems.
Despite their widespread use, it remains challenging to parameterize these Ordinary Dif-
ferential Equations (ODE) for large scale kinetic models. Recent work on neural ODEs
has shown the potential for modeling time-series data using neural networks, and many
methodological developments in this field can similarly be applied to kinetic models.
Results: We have implemented a simulation and training framework for Systems Biology
Markup Language (SBML) models using JAX/Diffrax, which we named jaxkineticmodel.
JAX allows for automatic differentiation and just-in-time compilation capabilities to speed
up the parameterization of kinetic models, while also allowing for hybridizing kinetic
models with neural networks. We show the robust capabilities of training kinetic mod-
els using this framework on a large collection of SBML models with different degrees of
prior information on parameter initialization. We furthermore showcase the training frame-
work implementation on a complex model of glycolysis. Finally, we show an example
of hybridizing kinetic model with a neural network if a reaction mechanism is unknown.
These results show that our framework can be used to fit large metabolic kinetic models
efficiently and provides a strong platform for modeling biological systems.
Implementation: Implementation of jaxkineticmodel is available as a Python package at
https://github.com/AbeelLab/jaxkineticmodel.

Author summary
Understanding how metabolism works from a systems perspective is important for many
biotechnological applications. Metabolic kinetic models help in achieving understand-
ing, but their construction and parametrization have proven to be complex, especially
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for larger metabolic networks. Recent success in the field of neural ordinary differential
equations in combination with other mathematical/computational techniques may help
in tackling this issue for training kinetic models. We have implemented a Python pack-
age named jaxkineticmodel that can be used to build, simulate, and train kinetic models,
as well as compatibility with the Systems Biology Markup Language. This framework
allows for efficient training of kinetic models on time-series concentration data using
a neural ordinary differential equation inspired approach. We show the convergence
properties on a large collection of SBML models, as well as experimental data. This shows
a robust training process for models with hundreds of parameters, indicating that it can
be used for large-scale kinetic model training.

and dsm-firmenich, and is fully funded by
dsm-firmenich (https://www.dsm-
firmenich.com/en/home.html) and the RVO
(Rijksdienst voor Ondernemend Nederland)
(https://www.rvo.nl/). J.S. was under
dsm-firmenich employement at the time of the
study. The funders had no role in study design,
data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: I have read the journal’s
policy and the authors of this manuscript have
the following competing interests: J.S. was
under dsm-firmenich employement at the time
of the study. Introduction

Kinetic modeling is a useful tool for describing biological systems in a quantitative manner,
with many applications in the biotechnological and medical domain [1,2]. In the biotechno-
logical domain, the application of kinetic models includes assessing metabolic control of path-
ways [3], simulation of metabolic engineering scenarios [4,5], and optimizing feeding strate-
gies on the bioprocess level [6]. Effective deployment of kinetic models for these purposes
requires a representative description of the biological process in mathematical equations, as
well as fitting the model parameters to available data. The encountered data in this domain is
typically limited and either steady-state or dynamic in nature.

Metabolic kinetic models are described by ODEs that describe the change over time of
metabolites (m) by a right-hand-side formula that consists of the mass balances imposed by
the stoichiometric matrix (S) and a vector of reaction flux functions (v⃗) (Eq 1). The process
of finding a model that reproduces observed data therefore consists of establishing the stoi-
chiometric matrix [7,8], determining kinetic mechanisms [9], and parametrization of the flux
functions.

dm(t)
dt
= S ⋅ v(t,m(t),𝜃) (1)

Fitting parameters to large-scale kinetic models can be challenging [10]. While biologi-
cal systems operate on many different timescales, biologically relevant parameters can vary
orders of magnitude [11]. Additionally, the ODEs observables might be insensitive to many of
these parameters, sometimes referred to as sloppiness [12]. Furthermore, many kinetic mod-
els in systems biology have unidentifiable parameters, which complicates the fitting process
even more [13]. Finally, many biological systems are known to be stiff [14], which leads to
problems when numerically solving the ODEs [15]. These challenges complicate the use of
standard parameter estimation methods.

Several parameter estimation methods have been proposed and implemented in pub-
licly available software packages to tackle this difficult task (see S1 text). Some methods focus
specifically on fitting steady-state fluxomics and metabolomics data; through gradient-based
optimization [16,17], sampling-based approaches [18,19], generative modeling [20,21], or
Bayesian approaches [22]. Other toolboxes provide more general purpose parameter infer-
ence methods for metabolic modeling, such as pyPESTO [23]. pyPESTO provides an interface
to many different optimization methods: local versus global, gradient-free versus gradient-
based optimizers. A particular efficient method that is integrated in pyPESTO are the multi-
start gradient-based methods, which uses AMICI for efficient sensitivity computation [24].
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These multi-start, gradient-based methods have shown to perform well on large-scale fitting
problems [25,26].

Recently, Neural ODEs were introduced [27] and applied to modeling time-series con-
centration data [28], as well as in other applications in the biological domain [29]. The idea
behind a neural ODE is to replace the right-hand-side of Eq 1 by a neural network and then
use a numerical solver to predict a time-series. The neural network is then trained using
back-propagation with the adjoint state method; a very efficient method for estimating gra-
dients. These methods are efficient compared to forward gradient computation, as they do
not scale with the number of model parameters: a feature that is important in neural net-
works or large kinetic models (see Fig A and Table C in S1 text) [20,27]. Even though neural
ODEs lack the necessary mechanistic structure required in biotechnological/medical appli-
cations, many of the techniques for training, such as memory efficient adjoint gradient com-
putation for time-series data, can similarly be applied to metabolic kinetic models. Further-
more, hybrid approaches, where a mechanistic model is augmented with a neural network to
model dynamics that are not mechanistically understood, are increasingly being studied and
used [30–32].

In this work, we have implemented a JAX-based training and model building frame-
work [33] for systems biology models, which we named jaxkineticmodel (Fig 1). JAX has just-
in-time compilation, automatic differentiation, and parallelization capabilities, which paves
the way to large-scale kinetic model training. Even though similar features have been imple-
mented in packages for the Julia programming language [75], having Python packages for sys-
tems biology purposes is valuable due to its widespread use and support [67]. Furthermore,
while a previous python package SBMLtoODEjax was developed that provides an interface
between SBML and JAX [67], several unique features are implemented. First, jaxkineticmodel
supports a larger set of SBML models (see Table D in S1 text), is compatible with numeri-
cal solvers from Diffrax [34], optimizers from Optax [35] and has the capability to integrate
mechanistic and neural network components [32]. The default training framework is tai-
lored to systems biology, with support for the Systems Biology Markup Language, as well
as manual model building using predefined kinetic mechanisms.[36]. As a default setting,
training is performed by gradient descent in log parameter space [11] with a stiff numeri-
cal solver [37] and a custom loss function to deal with metabolic scale differences. Gradients
are calculated using an efficient adjoint state method from the Diffrax package [34]. To fur-
ther stabilize training, we perform gradient clipping, a method that is used in stabilizing the
training process of recurrent neural networks and neural ODEs [38]. We apply this imple-
mentation on a large collection of SBML models to answer questions on robustness of the
training procedure in terms of convergence properties. Furthermore, we show the training of
a large-scale kinetic model of glycolysis (141 parameters) to model feast/famine feeding strat-
egy datasets [39]. Finally, we show how jaxkineticmodel can be used for hybrid models that
have mechanistic and neural network components, an increasingly important application of
universal differential equations in systems biology [30,32].

Design and implementation
Implementation
An overview of the training framework is shown in Fig 1. All experiments, code, and results,
as well as documentation are publicly available. Internally, jaxkineticmodel uses Sympy [41],
JAX [33], and LibSBML [36] for compatibility with many numerical solvers in Diffrax [34].
Documentation is available on Github.
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Fig 1. Overview of the implemented simulation tool and training framework inDiffrax. Latin Hypercube sampling is used to initialize parameters given a lower-
and upper bound value (1). The initial conditions are retrieved from the observed dataset (2) and the ODEs are set up based on an imported SBML model, or a
self-implemented model (3). After predicting a time-series dataset given the initial guess (4), the mean-centered loss is calculated (5). The gradients that are calcu-
lated through the adjoint state method (6) are then used to update parameters using AdaBelief (7)[40]. This process is repeated for X steps or until convergence (8).
Implementation details on specific aspects are discussed in Design and Implementation.

https://doi.org/10.1371/journal.pcbi.1012733.g001

Kinetic model setup. We provide two options to set up the system of ODEs required
prior to training. A model can be constructed by using kinetic mechanisms that have been
provided in jaxkineticmodel (see Table A in S1 text), or by using the SBML-to-JAX converter.
Kinetic models can also be exported to the SBML format after parameterization [36].

Scaling of species in the loss function. Biological systems exhibit large-scale differences
in metabolite concentrations, therefore resulting in mean squared error loss J being domi-
nated by large absolute error, even though relative error might be small [15]. We therefore
implemented as a default a mean-centered loss function (Eq 2), but other loss functions can
be passed as well.

J(mpred,mobserved) =
1
N
∑(mpred –mobserved

⟨mobserved⟩
)2 (2)

Specifics of the gradient descent algorithm. The AdaBelief optimizer was used during
training [40]. Training was further stabilized by clipping the gradient global norm to pre-
vent the exploding gradient problem often encountered in neural ODEs and recurrent neural
networks[38]. This requires setting a maximum global norm hyperparameter ( ̂g), which was
set to ̂g = 4. As previous reports show that systems biology models are better fitted in a log-
transformed parameter space [11,42], we applied the log-transformation of parameters before
passing it through AdaBelief. We note however that users can change the optimizer to any
optimizer provided in Optax [35].

Specifics of the solver. Simulations were performed using the Kvaerno5 stiff ODE solver,
which was already implemented in Diffrax [37]. The relative and absolute error tolerances
were 10–8 and 10–11, respectively. The initial time step dt0 was set to 10–10. Jaxkineticmodel is
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compatible with many numerical solvers for ODEs in Diffrax. For the adjoint state method,
the default implementation provided by Diffrax is used, but users can also change this accord-
ing to their preferences [34].

Data
SBMLmodels. To rigorously test properties of jaxkineticmodel, we generate time-series

metabolomics datasets from SBML models. The advantages of using synthetic data are that we
can: 1) compare learned parameters against true parameters; and 2) test the method against
a large collection of biological systems. The twenty-six models were retrieved from a previ-
ously reported set of benchmark models [11] and the Biomodels database [43]. These models
are both dynamic models and steady-state models. Relevant properties of the models are sum-
marized in Table 1. Models were simulated on a time interval t = [0, tend] with ten data points
per specimen for the ground truth parameters. We chose ten observations as in many biotech-
nological domains, time-series data is only sparsely sampled. No noise model was used for the
observations.

Feast/famine cycle and steady-state data. Along synthetic data, we applied the param-
eterization framework to datasets of a feast/famine cycle that was previously reported [39].
Feast/famine experiments are a stimulus-response experiment that consists of a 20 second
feeding phase, followed by 380 seconds without feed. Three datasets were available for fitting
a glycolysis model.

Table 1. Overview of the SBMLmodels used in this study.The collection of models was retrieved from Biomod-
els [43] and a previously reported collection of SBML benchmark models [11]. The number of parameters,
number of species, simulated range, and data points are reported.
Model Parameters Species tend Data points
Garde et al. 2020 [44] 6 6 6 60
Smallbone et al. (2013) [45] 10 2 10 20
Bruno et al. (2016) [46] 10 6 100 60
Beer et al. (2014) [47] 12 4 8000 40
Patil et al. (2023) [48] 13 12 200 60
Palani et al. (2011) [49] 15 5 2500 50
Crauste et al. (2017) [50] 16 5 15 60
Sneyd et al. (2002) [51] 16 6 2 60
Becker et al. (2010) [52] 17 6 15 60
Brannmark et al. (2010) [54] 18 9 50 90
Ray et al. (2013) [55] 20 6 25 60
Elowitz et al. (2000) [56] 22 8 30 80
Fiedler et al. (2016) [57] 24 6 10 60
Borghans et al. (1997) [58] 24 3 3 30
Fujita et al. (2010) [59] 26 9 2000 90
Bertozzi et al. (2020) [60] 36 3 200 30
Hass et al. (2017) [61] 37 9 100 90
Raia et al. (2011) [62] 45 14 150 140
Smallbone et al. (2011) [63] 52 6 10 60
Weber et al. (2015) [64] 53 7 10 70
Zheng et al. (2012) [65] 62 15 100 150
Isensee et al. (2018) [66] 63 25 100 250
Chassagnole et al. (2002) [68] 117 36 10 360
Messiha et al. (2014) [69] 192 28 10 280
Mosbacher (2023) [70] 280 95 10 980

https://doi.org/10.1371/journal.pcbi.1012733.t001
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Evaluation of training framework
Gradient averaging for parameterization using multiple datasets. To showcase the

practical usability of Neural ODEs, we aim to fit multiple datasets to the glycolysis model
(see S1 text). These datasets are both steady-state metabolomics for different dilution rates, as
well as dynamic data in the form of a glucose pulse. In order to simultaneously fit all datasets,
we calculate the gradient dJ/d𝜃 for each individual dataset and average them before updat-
ing using AdaBelief. This is a popular method to train a global model from local datasets in
federated learning [71].

Evaluating the training process on simulated data
Three properties of the training process are tested after training: 1) the initialization success
rate of parameters; 2) the convergence properties through the relative improvement over the
initialization; and 3) the distance of trained parameters to the true optimum. All experiments
are performed three times.

Initialization success percentage. Datasets are simulated with the true parameters (𝜃true)
that are specified in each SBML model. Latin hypercube sampling [72] is used to initialize
100 parameters within lower and upper bounds of the true parameter values, i.e., 𝜃true/X≤
𝜃true ≤ X𝜃true. To investigate the effect of priors on initialization success, we chose priors for
five different values of X: 2, 5, 10, 50, and 100. The initialization success rate, that is, the first
iteration of stochastic gradient descent that leads to an estimate of the error, is calculated as a
percentage of the total number of initializations.

Convergence of successful parameter initializations. For successful initializations, train-
ing is performed with 3000 iterations of stochastic gradient descent (AdaBelief) per initial
parameter guess. To reduce computation time, training is stopped early when the loss func-
tion is below the loss threshold 𝜆 = 10–6 . To quantify convergence properties, we look at the
relative improvement in the mean squared error after training with respect to the initializa-
tion loss, as well as the percentage of successful training (𝜆 < 0.001).

Global norm of gradients. Themagnitude of the gradients with respect to the parameters
is followed during the training process using the L2 norm (Eq 3). This allows to investigate the
training process in more detail for different models.

||∇J(𝜃)|| =
√
( 𝜕J𝜕𝜃1

)2 + ( 𝜕J𝜕𝜃2
)2 + ... + ( 𝜕J𝜕𝜃n

)2 (3)

Fitting the glycolysis model
To showcase the usefulness of the proposed framework we fit feast/famine datasets to a previ-
ously established kinetic model of glycolysis [73]. The model was reimplemented to be com-
patible with JAX to make parameters trainable [33]. The parameter initialization was done
from parameters retrieved from literature. The model consists of 29 metabolites and 38 reac-
tions, totaling 141 parameters. Twenty distinct rate laws were implemented as reusable JAX
classes. Details on the implementation are reported in Table A in S1 text.

Hybrid modeling example
A minimal model of metabolic oscillations in biofilms was used to showcase the usefulness
of automatic differentiation capabilities in JAX/Diffrax [44]. Reaction names in the original
model were replaced by symbolic names for conciseness (v1-v10). In this setup, we assume that
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a certain reaction and its stoichiometry are unknown, a scenario that is often encountered in
real-world applications. The i-th reaction of the model of the fully mechanistic description
(Eq 1) is then replaced by a neural network (Eq 4).

dm(t)
dt
= S(–i) ⋅ v(–i)(t,m(t),𝜃) +NN(t, y,w, b) (4)

We perform a masking experiment for every reaction in the model, with 100 time-points
and a noise percentage of 0.05%. All reactions and the stoichiometry were individually
masked.

Results
Training SBMLmodels usingDiffrax
In order to analyze the behavior of the parametrization using techniques from neural ODEs,
an efficient and easy-to-use ODE simulation tool for systems biology models with automatic
differentiation options for calculating adjoint sensitivities was required. We have imple-
mented a JAX-based simulation tool and training framework that is compatible with Systems
Biology Markup Language (SBML) models in Diffrax [33,34] (Fig 1). SBML models are the
standard accepted format for saving systems biology models in a reproducible manner [36].

The training input consists of three information modes. The kinetic model is loaded from
an SBML format or a manually implemented JAX-compatible class that allows for Just-In-
Time (JIT) compiling. The observed time-series data that is used for fitting is used to get the
initial conditions from t0. Finally, an initial parameter guess is required, which was obtained
using Latin Hypercube Sampling [72]. Due to nonlinearities and potential non-convexity of
the solution space, multiple initialization are typically required.

For the training process, the ODEs are solved for timepoints that are observed in the
dataset and the loss function is calculated. Due to large differences in metabolite concentra-
tion ranges, a mean-centered loss function was used to ensure roughly equal contribution
of metabolites to the mean squared error. Finally, N iterations of stochastic gradient descent
using AdaBelief can be performed [40].

While kinetic models typically have a mechanistic structure of the right-hand-side of
dm(t)/dt, similar tools that are used to train Neural ODEs (e.g., the adjoint state method) can
be applied. The goal of the study performed here is to address properties on the convergence
of local gradient-based methods for a large collection of systems biology models.

Loss convergence analysis reveals robust training of systems biology
models
Training kinetic models by gradient descent requires an initial guess of parameters. This
requires setting a lower- and upper bound of parameters for the initialization and sampling
the space using any sampling method. Due to the dependency of the loss function on numer-
ical integration of the ODEs, not every parameter initialization might be successful. This
can be attributed to either stiffness of the dynamical system or unstable behavior of the sys-
tems given that particular initial guess [15]. We therefore aim to understand how loss conver-
gence is affected by parameter priors and model size, as well as how robust the training pro-
cess is to these features by quantifying the percentage of successfully trained models given the
parameter initializations.

To motivate the main analysis of SBML models, we show the influence of parameter
bounds on one model when sampling 100 initializations using Latin Hypercube Sampling
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(Fig 2A) [72]. The percentage of models that are below the loss threshold are reported for five
different parameter bound priors. It is observed for most models that with larger bounds,
the percentage of succesfully trained models is either negatively affected or not affected. This
behavior is expected, as starting your parameter initialization closer to the true optimum
would be an easier problem. We also compare the convergence success among five differ-
ent systems biology models with a fixed prior bound ( 1

10𝜃true ≤ 𝜃true ≤ 10𝜃true) (Fig 2B). This
allows for comparing the performance of the parametrization framework across a large col-
lection of Systems Biology models. In order to compare many models across different bounds,
we chose a loss threshold of 10–3.

Initialization success and the training process is stable across
models and priors
Fig 2C shows a heatmap for 25 SBML models for five different priors. The left column of each
model is the initialization success percentage, while the right column is the percentage of
models after training that were below the loss threshold (10–3). Overall, we see a high ini-
tialization success percentage for most SBML models. For many models, the loss function
can be calculated independent of the bounds used in this study. For six models, the behav-
ior of decreasing initialization success given the priors is observed, in line with what would
be expected [47,54,56,58,68,70]. Interestingly, a reversed pattern is observed for two mod-
els, where the initialization success increases with larger bounds [66,69]. For one model, the
initialization success is low, independent of the prior [50].

The training process consists of 3000 iterations of stochastic gradient descent using
AdaBelief and a global norm clipping with a learning rate of 10–3, without any batching of
training data [38,40]. The right column of each model for Fig 2C shows the percentage of
successfully trained parameter given the initialization success. Here, the effect of priors is
observed more clearly. For the smallest bounds ([1/2𝜃true, 2𝜃true]), we observe good conver-
gence to the global minimum for most models. In some cases [70], the loss during the ini-
tialization is already below the chosen loss threshold, therefore having a similar percentage
of successful initializations to successful training convergence. Parameter initializations that
are not successfully trained can occur due to several reasons. First, the number of steps of the
optimizer might not be enough for the loss to be below the threshold. Second, during opti-
mization the gradient descent might lead to a parameter set that is not numerically solvable
due to stiffness or divergence issues. When we increase the parameter bounds, it is typically
observed that a decreasing number of parameter initializations are successfully trained. Gen-
erally speaking, we do not observe a clear relation between the number of parameters (or
state variables) and the difficulty of training these models, except that the computation time
increases for larger scale models.

To further observe whether the models fit data such that it properly captures the metabo-
lite concentration dynamics, we simulate three models with losses below the threshold given
in the heatmap for their best fit parameters with bounds [ 110𝜃true, 10𝜃true] and compare it to
the simulated data points (Fig 2D–2F). It can be observed that for the model from Beer et al.
(2014) and Messiha et al. (2014) the dynamics are fairly close if not perfectly matching the
simulated data points (Fig 2D, 2E). For the model from Garde et al. (2020), despite the loss
being below the threshold, the trained dynamics are not close to the true dynamics, but rather
finds a heavily oscillating parameter set that then matches the data. This behavior is not
observed when the prior is between one-fifth and five of the true parameters. This suggests
that evaluating the fit only based on the objective can be misleading and visual inspection of
the dynamics might be preferred. Furthermore, for some models prior information could be
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Fig 2. Analysis of convergence properties for a collection of SBMLmodels. Latin hypercube sampling is performed for five different lower and upper bound priors of
the parameters and training is performed. A) Percentage of successful convergence of an example model, where success is defined as the percentage of models below the
loss threshold on the x-axis. B) A similar plot, but now with a fixed prior and five SBML models. C) Heatmap for the initialization success percentage (upper diagonal)
and training success (lower diagonal) for loss < 10–3. The number of successfully trained models is dependent on the initialization success and is therefore always a lower
percentage. D,E,F) Examples of fitted SBML models after training.

https://doi.org/10.1371/journal.pcbi.1012733.g002
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more important than for others, and methods to filter parameters based on spectral analysis
of the Jacobian matrix [18,20] could be beneficial.

Overall, initialization success is stable across a wide variety of models, which increases the
likelihood of effectively learning parameters. While we see for some models a dependency on
the bounds, this effect can be mitigated by increasing the initial sampling size. The loss after
training shows a clearer effect of the priors. This indicates that when parameterizing kinetic
models, the prior can be of high importance. Although it might in practice be difficult to
define strict bounds for parameters a priori, using kinetic databases like Brenda might be a
way to guess an initial parameter. Additionally, analysis of sloppiness in systems biology, as
well as identifiability analysis, might aid in increasing success of model fitting (see Fig D in S1
text) [12,74].

Large scale kinetic models can be trained using jaxkineticmodel: an
example of glycolysis
While we have shown that neural differential equations could be used for a large variety of
different SBML models, real time-series metabolomics data has additional complexity in
terms of heterogeneity of the measured metabolites as well as noise. We therefore reimple-
mented a kinetic model of glycolysis in JAX [33,73]. This model consists of 20 metabolites, 37
reactions, and 141 parameters. The kinetic mechanisms used are implemented as JAX com-
patible classes for well-known equations (e.g., Michaelis Menten) that can be reused for other
purposes (see Table A in S1 text).

The model was initialized with literature values reported in the previous MATLAB imple-
mentation [73]. 10000 iterations of stochastic gradient descent using AdaBelief were per-
formed, resulting in the fit as reported in Fig 3. The panels show the dynamic response of
a glucose pulse during a feast-famine cycle for some previously reported datasets [39]. The
striped lines are inferred dynamic responses of metabolites, for which no training data was
available. The glucose pulse obviously leads to an increase through the upper- and lower gly-
colysis, as well as a pulse through the glycerophospholipid pathway. In the first steps ATP is
formed, which is well-captured by the dynamic response of the model. There is also a drop in
NAD+ due to an increased activity through the lower glycolysis, where NAD+ is consumed by
glyceraldehyde-3-phosphate dehydrogenase.

Overall, a good fit is observed between modeled and measured data. Even though this
is a relatively large and complicated model of glycolysis, the fitting process for one dataset
took approximately four hours (for 10000 update steps) on one CPU with 10GB memory.
This shows that the implementation could be used to fit large-scale kinetic models. Further-
more, the training process is easy to extend to fit multiple datasets simultaneously (see Fig C
in S1 text).

Flexibility of automatic differentiation with jaxkineticmodel allows for
hybridizing kinetic models with neural ODEs.
Although jaxkineticmodel is capable of parameterizing large kinetic models, several other
parameterization methods reported in the literature can perform similarly for mechanis-
tic models (see S1 text). One package that is methodologically similar to jaxkineticmodel is
PyPESTO with gradient computations from AMICI [23,24]. Instead of automatic differenti-
ation, AMICI uses symbolically derived parameter sensitivity equations in combination with
the efficient CVODE solver to perform the forward and adjoint simulation [53]. This results
in PyPESTO/AMICI outperforming jaxkineticmodel in terms of computation time, which
can primarily be attributed to the use of CVODE (see Tables B and C in S1 text). However,
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Fig 3. Fitting a feast/famine cycle to a glycolysis model. A simplified schematic of glycolysis, along with panels of
the dynamic response of glycolysis to a glucose pulse [39]. Intracellular (IC) and extracellular (EC) metabolite con-
centrations that were measured are shown as dots in the panels, while lines indicate model predictions. Metabolites
that were included in the model, but for which there was no available data, are represented as dashed lines.

https://doi.org/10.1371/journal.pcbi.1012733.g003
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integrating neural networks with mechanistic models, an aspect that is of increasing inter-
est to the scientific machine learning community when modeling biological systems [30–32],
becomes practically impossible when the neural network components need to be symbolically
derived.

To present this flexibility of automatic differentiation, we show an example of how mech-
anistic models can be combined with neural networks, using a minimal model of metabolic
oscillations in biofilms [44]. The original model consists of six species and ten reactions with
an oscillatory dynamic (Fig 4A). Suppose that a stoichiometry and mechanism of a reaction
are unknown, for example the reaction that transforms Gm into Ai (v9). This missing reaction
mechanism changes the dynamic behavior of the model (Fig 4B). By hybridizing the kinetic
model with a neural network for v9, the dynamic behavior of the original model can be recov-
ered after training (Fig 4C). This can be performed for all reactions in the model, where for
eight out of ten reactions the expected dynamic behavior could be recovered (Fig F in S1 text).
In the other two reactions, the dynamics of the masked model is diverging and get stuck in a
local minimum when training. Further work is required to understand how training hybrid
models can be successful in all cases.

Fig 4. Jaxkineticmodel allows for hybridizing kinetic models with neural networks. Due to automatic differentiation capabilities of JAX/Diffrax, integrating neural
networks with kinetic models becomes straightforward. As an example, we show how kinetic mechanisms can be replaced with a neural network. A) A schematic rep-
resentation (upper) and time-series plot (lower) of a minimal model of metabolic oscillations in a biofilm [44]. B) Schematic and time-series plot of the same model
without v9. C) The hybrid kinetic model, where v9 is replaced with a neural network. The time-series plot shows the dynamics of the hybrid model after training.

https://doi.org/10.1371/journal.pcbi.1012733.g004
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Availability and future directions
Large-scale kinetic models have the potential to explain systems level behavior of biologi-
cal systems, but their parametrization has proven to be challenging [10]. Furthermore, the
dynamics of biological systems are often only partially understood from a mechanistic per-
spective, stressing the need for hybrid approaches [30–32]. In this work, we have implemented
a training framework, inspired by techniques from neural ODEs, tailored to systems biology
models. Due to the JAX-based simulation using Diffrax, the training is relatively fast, which
paves the way to large-scale kinetic model training [33,34]. Furthermore, due to support for
Neural ODEs by Diffrax, flexibility in using mechanistic and neural network approaches offers
a useful approach to modeling biological systems.

Our default implementation of the jaxkineticmodel training framework mitigates param-
eter fitting challenges caused by characteristics of biological systems [11–13], as well as solu-
tions from the field of neural ODEs [15,27,38]. As fitting kinetic models often requires a mul-
tiple starting approach, we note that the current approach is easy to parallelize, and will be
a future direction. The implementation is publicly available as a Python package at https://
github.com/AbeelLab/jaxkineticmodel. All data, source code, and results are available on the
4TU repository (https://data.4tu.nl/datasets/3662eca5-7077-4ca3-8f66-d051e2c79cbe).

We showcase the methodology on a large collection of SBML models of varying sizes [11,
43] and perform a principled analysis on the effect of parameter priors on the performance.
We furthermore show that jaxkineticmodel is useful for parameterizing large kinetic models
in real-world applications by fitting a glucose pulse dataset from a feast/famine experiment to
a previously established glycolysis model [39,73]. Finally, we show that due to automatic dif-
ferentation capabilities in JAX, kinetic models can be hybridized with neural network compo-
nents when a systems is only partially understood [30,31]. This feature makes jaxkineticmodel
different from other parameterization methods. Future work will aim to make these hybrid
modeling capabilities more accessible to the user through tutorials and documentation.

Supporting information
S1 Text. Supporting information on neural ordinary differential equations and jaxkinetic-
model. This contains Figs A–F and Tables A–D.
(PDF)
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