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HIGHLIGHTS

e We introduce robust optimization using
DEM-based metamodels.

o Deterministic and robust metamodel-
based design optimization (MBDO) are
compared.

e The error of optimal designs is below
5% for verification and 10% for
validation.

e The quality of MBDO highly relies on
the quality of the metamodel and
training data.

e Robust optimization leads to accurate
mean performance and exhibits low
variance.
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ABSTRACT

In design optimization of bulk handling equipment (BHE) we generally focus on the mean performance of the
equipment. However, granular materials behave stochastic due to irregularities in particle shape and size which
leads to stochastic performance of the equipment. To include the stochastic performance we propose robust
metamodel-based design optimization (MBDO). The used metamodels are trained with stochastic performance
data from randomly repeated discrete element method (DEM) simulations and predict mean and variance of the
equipment performance. This method is compared to the conventional deterministic optimization method by
means of a case study of a discharging hopper including verification and validation. The robust MBDO shows
more distinctive optimal designs compared to the deterministic approach. In addition, the DEM-based meta-
model is a relatively accurate method to predict DEM-model simulation results. However, the validation in-
dicates that differences between DEM-model and experimental results highly affect the reliability of the found
optima.

1. Introduction

In design of Bulk Handling Equipment (BHE) the use of Discrete
Element Method (DEM) models to predict and evaluate performance in
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equipment design is increasing. The major advantage of this approach is
the ability to evaluate a wide range of equipment designs without the
need of conducting expensive experiments. The major downside is that if
the number of particles [3], complexity of the equipment kinematics
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[10,17], and interaction complexity [4,11] increases, the computation
time of simulations increases as well. In addition, DEM models require
calibration which also becomes a computationally intensive process if
the number of calibration parameters is increased [2,5,7].

To counteract these high computational costs, metamodels are used
in both calibration of and design of bulk handling equipment. Richter &
Will introduced a metamodel-based global calibration (MBGC) frame-
work and showed how metamodels can be effectively used in calibration
[15]. Most DEM calibration optimization problems are multi-objective
optimization problems (MOOP) with multiple calibration parameters
[5]. Furthermore, a number of metamodeling approaches were suc-
cessfully used in calibration of DEM models. Artificial neural networking
(ANN), Gaussian process regression (GPR), multi-adaptive regression
splines (MARS), and universal kriging (UK) were applied by Richter
et al., [14]. An iterative Bayesian framework including a Gaussian
mixture model (GMM) is used by Cheng et al., [2]. Based on the findings
by Fransen et al. [7] it is recommended to use regression-based meta-
models for the mean prediction to obtain accurate calibration results at
low costs. Similar benefits are expected in using metamodels for design
optimization where typically a large number of performance evaluations
is required. However, it is important to note the limitations of the use of
metamodels as they are approximations of the DEM model and therefore
inherit a model error. Overall, metamodels perform well when used to
interpolate but poor in extrapolation. Therefore, quality of the data and
the sampling are important for the performance of a metamodel.
Metamodel-based design optimization (MBDO) is referred to by Wang &
Shan, [19] but in design of bulk handling equipment metamodels have
not been used extensively [6]. In design, we generally have to deal with
similar problems as in DEM model calibration: multiple design param-
eters and performance characteristics, which requires similar solving
techniques.

Currently, the focus of optimization of BHE designs is on the mean
performance of the equipment [8,17], i.e. the deterministic approach.
However, granular systems are stochastic in nature resulting in uncer-
tainty of design performance. To achieve an optimal design which has a
good match to the mean performance and a minimized variance robust
optimization strategies can be applied [9,12]. As indicated for the
calibration of DEM models it is an effective approach to use DEM-based
metamodels in MBDO instead of DEM simulations in the loop for cali-
bration parameter estimation. In the case of robust design optimization,
metamodels can be used in a similar fashion because they can predict
both mean and variance. To the authors’ knowledge, robust MBDO has
not been investigated in relation to bulk handling equipment design.

The aim of this study is to show how robust metamodel-based design
optimization can be applied to bulk handling equipment design with
DEM-based metamodels and, to show how this method compares to a
conventional deterministic approach and to identify application chal-
lenges. In this study, we present a methodology/framework for robust
Metamodel-based Design Optimization (MBDO) for design of bulk
handling equipment in Section 2. Next, Section 3 describes the design
problem for a discharging hopper starting with a description of the
experimental setup and DEM model, followed by the analysis of exper-
imental and DEM results and sampling of the design space. It continues
with a description of training the DEM-based metamodel and a formu-
lation of the optimization problem. Lastly, the two design case studies
are described to which the robust MBDO approach and deterministic
MBDO are applied. In Section 4, the resulting DEM training set is eval-
uated as well as the resulting metamodel. This is followed by the results
of the two design case studies where deterministic and robust optimi-
zation are compared. This section ends with a discussion on the obtained
results related to the quality of the DEM data compared to experiments,
mismatch between DEM metamodel predictions and the verification
results, and the discrepancies observed between DEM metamodel pre-
dictions and experimental results.
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2. Methodology

Bulk handling equipment is used to transport or process wide vari-
eties of granular material. However, the behaviour of a granular mate-
rial in general is stochastically distributed. This stochastic behaviour is
caused by differences in particle packing’s, sizes and in variations of
material properties. Additionally, properties of the bulk material such as
consolidation, moisture content, and temperature might affect the inter-
particle physics leading to variable bulk strength and cohesion. This
leads to distributed performance of the BHE around a certain mean
performance. Even though this is known, the stochastic behaviour of the
granular material and its effect on the equipment performance is not
considered in the design process. Therefore, we introduce a methodol-
ogy that includes the stochastic behaviour of granular materials in the
bulk handling equipment design process.

In this section the global implementation of robust metamodel-based
design optimization (MBDO) including verification and validation to
design of bulk handling equipment is explained. The scheme in Fig. 1
shows the steps taken in the design process of BHE if MBDO, verification,
and validation are included. A bulk handling equipment design problem
starts with describing the system or problem where design and key
performance indicators (KPIs) are defined. The next step in the approach
is to create a numerical model of the equipment and the material that
needs to be handled. For this purpose the Discrete Element Method
(DEM) is used which can simulate behaviour of the bulk and interaction
with the equipment. However, DEM models are generally a simplifica-
tion of the physical system and are therefore reliant on calibration of
material and contact parameters of the DEM model. After the calibration
of the DEM model, this model needs to be validated to demonstrate that
the model possesses a satisfactory range of accuracy consistent with the
intended application of the model within its domain of applicability
[16]. The calibrated and validated DEM model of a hopper used in this
study is adopted from Fransen et al., [7]. DEM simulations take a
considerable amount of time, which makes direct use of DEM models in
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Fig. 1. Framework for Metamodel-based Design Optimization (MBDO) (red
area) included in the process for bulk handling equipment design. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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optimization inconvenient. To overcome this, a metamodel-based
design optimization (MBDO) procedure can be used. This procedure
uses a DEM data set to train a metamodel which gives predictions on
BHE performance at low cost.

The first block in MBDO is design space sampling and DEM data gen-
eration shown in Fig. 1. After sampling the data, the DEM model can be
used to generate the data. As the DEM model is stochastic due to the
random initial packing of material this means that the simulations need
to be repeated for each sampling point. This gives information about the
average performance and the standard deviation of the design perfor-
mance prediction. For a metamodel to be able to predict both mean and
variance, it is essential that both are included in training the metamodel.

The second step in MBDO is metamodel training, which has been
thoroughly described by Fransen et al. for a DEM case study [6]. For the
proposed robust optimization it is required that information on the
standard deviation of a KPI is supplied during training of the metamodel
such that the metamodel can be trained to give predictions of both mean
and variance of the KPI. In training the metamodel, hyper-parameter
optimization is included such that the best fit of the metamodel to the
data is obtained [13]. Moreover, a common step is to use resampling to
improve the quality of the metamodel. However, when the set verifi-
cation and validation tolerances are not violated by the initial sample
resampling is not required. In Section 3.4 the metamodel training pro-
cedure and the relation to the case study is discussed in more detail.

After training the metamodel, the next step is design optimization
which can be further divided in two types, deterministic and robust
optimization. In deterministic optimization, only the mean performance
of the BHE is used to find the optimal design whereas in robust opti-
mization the standard deviation of the BHE performance is also
included. These differences are further discussed in Section 3.5, which
also elaborates, on solving the optimization problem leading to the
optimal design(s). Next, the found optima need to be verified by car-
rying out DEM simulations of the found designs. For the verification of
the results, a tolerance is set for the maximum error of the designs’
performance relative to the optimization target. If the tolerances are not
met, resampling of the design space can be carried out or the weights in
the optimization problem can be adjusted. When the results have
reached the desired accuracy, the next step is to validate the optimal
designs using an experimental setup. For the validation, an additional
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tolerance is set which should be higher than the verification tolerance
because there is a probability of error propagation through the subse-
quent steps. If the design reaches the criteria, a design with the desired
performance is obtained and the design procedure is successful. Verifi-
cation, validation, and the case studies are further discussed in Section
3.6.

3. DEM-based metamodel design optimization for a discharging
hopper

The metamodel-based design optimization (MBDO) method
described in Section 2 is applied to a hopper case study that will be
described in this section in more detail. Specific choices made for the
various steps are also detailed here. Hoppers are pieces of bulk handling
equipment that are frequently used in processing plants to regulate flows
of material. In the design of a hopper there are many restrictions such as
occupied space and which construction materials can be used in com-
bination with the bulk being processed. However, the key performance
indicator (KPI) that is most frequently used to assess the effectiveness of
a hopper is the discharge rate.

3.1. Experimental setup and DEM model of hopper

In this study, an experimental setup of a semi two-dimensional
hopper is considered which has been shown in Fig. 2. This setup con-
sists of four adjustable stainless steel wall sections which can be used to
change the geometry of the hopper. These four adjustable walls are
clamped between two 5 mm Perspex plates. The setup is positioned on
load cells such that the force exerted by the bulk can be measured. For
further information on the experimental setup the reader is referred to
Fransen et al., [7]. The load cell data from the experiments is used to
determine the discharge rate. In addition, the setup is used to validate
the results from the deterministic and robust MBDO. Gravel is used as a
bulk material in this experimental setup and was modelled in DEM using
spherical particles. The gravel has been stored in a dry environment with
a low humidity, therefore we assume the material can be regarded as dry
and has no cohesion. In addition, the material falls under the well-
graded gravel category for which it is common to take zero cohesion
into account (Swiss Standard SN 670010b, Characteristic Coefficients of

Hy

(b)

Fig. 2. Experimental hopper setup (a) and dimensions (b) Wy, = 602mm, d = 5mm. The fill height depends on the mass inserted.
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soils, Association of Swiss Road and Traffic Engineers). After calibration
of the DEM model, the hopper discharge was validated for a hopper
configuration with a hopper angle a of 45° and a discharge opening W,
of 100mm. The model from this study showed an overestimation for the
mean of 2,15% and 42% higher standard deviation. Even though the
error in standard deviation is large it is only 1% of the mean. We assume
that this level of error is in the same range in the selected design space.
The DEM model is used to replicate the experimental setup and to
generate a DEM data set for the metamodel. In Fig. 2 (a) an image of the
experimental setup of the hopper is shown and a description of the ge-
ometry in Fig. 2 (b). In Fig. 3 (a) a still from the initial configuration of
an experiment captured with thehigh speed camera is shown and the
DEM simulation is shown in Fig. 3 (b).

3.2. Analysis of experimental and DEM simulation results

The KPI of the case study is the steady-state discharge rate ¢ for
which both the mean and standard deviation are used. From the hopper
discharge experiment the force (Flpqdcenr) €xerted by the bulk material on
the load cell over time is obtained which can be used to determine the
steady-state discharge rate. In Fig. 4 (a,b) the process of determining the
discharge rate is illustrated for the experimental and DEM data respec-
tively. A difference between the experimental and DEM data is the
presence of spikes in the force data. This is explained by the difference in
measurement location. The force measurement in the experiment is not
located on the walls as is the case for the simulation result but under the
base of the setup. The structure between the walls and the load cells has
a dampening effect on the forces on the wall and therefore the
measurement.

To obtain the average discharge rate in kg/s the average force
exerted per second needs to be determined. Assuming this value is stable
we can divide this force by the gravity constant (g) to obtain the average
mass discharged per second. This value approximates the discharged
mass that cannot be measured exactly in the experiment. Even though it
is possible to determine the exact mass discharged in a DEM simulation
we use the force-based approach because this gives results for experi-
ments and simulations that can be compared. The fitted data between
the force based and mass based discharge rate in the DEM simulation
showed small deviations and are therefore representative for the
performance.

3.3. Sampling of design space and number of repetitions

The design space in this case study is sampled in an irregular spaced
rectangular grid for discharge openings of 50, 75, 100, 150, and 200 mm
and angles 20, 30, 45, 60, 75, 82.5, and 90 degrees as shown in Fig. 5.
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For the hopper angles, a minimum of 20 degrees was chosen because of
the limits of the experimental setup. At the high end of the angles, an
additional sample was added at 82.5 degrees to have a higher infor-
mation density in this location. The used sample consists of 35 points

which means that this sample has a sampling density of 352 = 5,92 per
unit length in the normalized design space. This is approximately in the
same range as the sampling density used in previous work for a three-
dimensional calibration case [7]. For each design point in the sam-
pling we carry out five repetitions to get an average and a standard
deviation. This number is enough considering that the discharge rate is
already a steady-state value averaged from time dependent discharge
data. The results of these simulations are discussed in Section 4.1.

The sample shown in Fig. 5 has also been carried out using the
experimental setup. To be consistent with the experiments the number
of repetitions is kept the same as with the experiments. At a 150 mm
discharge opening and 75 degree angle the number of repetitions is
equal to four because of a failed experiment. The same holds for one of
20-degree angle and 75 mm discharge opening experiment. For the 50
mm experiments it was decided to use five repetitions as a basis and
extend to ten if arching occurred. In the 60-degree case, arching
occurred five times and therefore the additional 5 repetitions were not
conducted. The 20-degree case was repeated 10 times but two of those
experiments failed. To be consistent with the experiments that have
been carried out we used the same initial mass of bulk material con-
tained in the experiment in the simulations and used the same number of
repetitions for each design in the sample. In calculating the mean,
standard deviation, and confidence intervals the different number of
repetitions accounted for.

3.4. Metamodel training

The generated DEM data for the sample of the design space is used to
train a Gaussian Process Regression (GPR) type stochastic metamodel
[13]. Before the data is used, feature scaling based normalization is used
which shifts the data to a [—1,1] range. The standard deviation corre-
sponding to the mean values is converted to the coefficient of variation :

which is input for the 6, component in the training procedure.

The metamodel is denoted by GKpI(x*) for any given KPI where x'isa
vector containing the design variables for which a prediction of the
mean and variance of the KPI is desired. In the case study, the KPI is the
discharge rate and the design variables are the hopper angle a and the
size of the discharge opening W,, x* = [a* W,*]. The metamodel is
trained with the DEM data generated for the sample presented in Section
3.3 which consist of a mean and variance value of the KPI at the data
points in the sample. By including both mean and variance in training
the metamodel we allow the metamodel to predict the mean and

N

(b)

Fig. 3. (a) Picture of experiment where the block at the bottom prevents the discharge of material (b) Picture of simulation where only the walls and bottom of the

experimental setup are modelled.



M.P. Fransen et al.

30r
Exp. (o =45°, d=100mm, run = 1)
¢ =3.66 kg/s
25¢ o start and end data linear fit
— linear fit
o
& 20
C)
B15F
]
g
= 10
g
5 |-
0 | | | | J
2 4 6 8 10
t(s)
(@

Powder Technology 425 (2023) 118526

30
DEM (a =45°, d=100mm, run = 1)
2 ¢ =3.77 kg/s
5 O start and end data linear fit
linear fit
2 20t
—
2
BI5}
=}
2
= 10
g
5 |
0 1 L L L J
2 4 6 8 10
t(s)
(b)

Fig. 4. Determining discharge rate from load cell data (a) and from the simulation of the same experiment (b).

variance. In training the metamodel we assume that the variance ob-
tained in the data points from the training set is the true variance [7].
Thus, the trained DEM-based metamodel gives a prediction of the mean
and the variance in the design space.

The GPR metamodel uses a basis function to obtain the correlation
between two points x; and xp. Here x; and x5 can both be training

-1
VKPI(x.) = kKPl(x}x) _kKPl(x:x‘ )T (KKPI(x7x) + G?QJMI) kKPI(xvx )T

- W(xl,x#) ! l//(xl,xl) y/(xl’xn)
— ke x) = | R VR

I//(xnﬁx*) W(xnaxl) V’(xnrxn)

points, two prediction points, or a training and a prediction point. In this
case the basis function is a squared exponential Gaussian y in R?,

W= O.fe*ﬁ'(nxz)z

@

where o7 and 12 represent the first two hyper parameters and r(x;,x2),

r(xr = o Wou] 22 = [ W0 ) = \/01(011 — ) +er (W, - Wo,2)2
()

is a function which determines the Euclidian distance between two
points, x; and x,. This distance is determined based on the two design
variable values in the two points which are adjusted by the second two
hyperparameter values c¢; and cy. Here ¢; and cy function as a shape
parameter for the basis function on the design variables a and W,,.

The metamodel Ggpi(x*) is used for mean and variance prediction of

2
Okpi,1

consists of the correlation between the training points x; to x,, and the
predicted point x*, kal(x,x*). Based on the summation of the Gram
matrix Kgpy(x,x) and the variances ()'[2(}21’ n of the system and the reference
values ygp; in the training points a prediction is made for the mean value.
The variance predictor,

o0 yix,x)
0 P @
O 6?(,,,‘” W(xn X )

is a correction based on the prior covariance of the predicted point
kaI(x*, x*) minus the information the training points give about the
function [13].

As shown in Egs. (1) and (2), the metamodel has tunable parameters
that can be used to improve the quality of the model. The parameters oy,
lz, c1, and cg are the hyper-parameters of the basis function and need to
be optimized for a good fit of the metamodel to the training data. The o
parameter balances the effect of the added noise and I2 controls the
shape of the function. However, the [2 term is kept constant because the
hyper-parameters c; and c3 in the basis function have the same function
of controlling the shape of the basis function. Therefore optimizing these
three would lead to an undetermined problem. To optimize the hyper-
parameters the marginal log-likelihood function,

-1 1 N
logp (yi|X) = —0.5y" <KKP, + 6?(131'”1) yi— Elogll(;(pl + Ogpradl — Elog(Zﬂ')

the KPI. The mean prediction function, (5)
51 20 0 1)
. , wienx) | ([wee) — plex)] | "
G (x7) = ket (x,x7) (Km(x,x) + aﬁ(,,,_nl) Yipr = P : : +1 0 0 : 3)
y/(xmxu) W(xmxl) W(xmxu) 0 0 J?(PI.n Yn
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Fig. 5. Sampling grid with five discharge opening sizes and seven hop-
per angles.

of the metamodel is maximized. Here 100 random initial guesses in a
range from 0 to 100 are used to find the optimal set of hyper-parameter
values because the log-likelihood function is expected to be nonconvex.
To find this set the interior point method is used [1]. The resulting
metamodels are discussed in Section 4.2.

3.5. Formulation optimization problem

In essence, the optimization problem for the design of the hopper is
similar to the calibration problems described in previous studies [5].
Therefore, most solving methods used in these studies can also be
applied in the optimization of design. However, there are distinct dif-
ferences in the type of solutions that are obtained. When genetic algo-
rithms or other types of swarm methods are used, the design domain is
populated with samples which generally evolve over time to a set of
solutions. These solutions can form a Pareto-front on which a designer
can pick a design which gives the best-balanced solution. A different
approach is to let the optimizer find single or several local optimal de-
signs and converge to a set limit as used by Fransen et al. [7] with the
interior-point method. This is the method that is used in solving this
optimization problem. This optimization is repeated with 100 random
initial guesses spread around the design space using Latin Hypercube
Sampling (LHS). Using a 100 random initial points ensures that the
majority of the local optima is found.

To define the optimization problem we define objective function f for
the described optimization problem. This objective function is formu-
lated using the weighted-sum method [12] which is used in robust
optimization because of its ease and simplicity. In this case study the
multi-objective problem consists of two objectives. The first part of the
objective function describes the discharge rate constraint which needs to
reach a specified value. The second part of the objective function is the
variance objective. The relative importance of these two parts is
controlled by the factor 4. The solution will focus more on an exact
match to the mean if f moves to one whereas a higher focus on the
variance is achieved with a small 8. This formulation has been chosen
because it shows a clear relation between the importance of the mean
and its variance. The objective function,

2 2
f=p ”—} +(1—ﬂ){"—i} 6)
1 0

consists of two components, a mean and standard deviation objective for
each KPI. The first component,

B - %)
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is the square of the relative error between the mean prediction of the
discharge rate by the metamodel and the discharge rate target ¢(x) — ¢
which is divided by the discharge rate target ¢;. The second component,

o] - Gt ®

is the square of the ratio between the predicted standard deviation of the
discharge rate and the maximum standard deviation of the discharge
rate present in the model. This ensures that the standard deviation is
minimized in a range from zero to one.

3.6. Case studies including verification and validation

In this paper we will look at two case studies which are representa-
tive of a hopper design case. The optimization problem described in the
previous section will be solved for these two cases. For both cases we
will use a threshold in the verification error of 5% and for the validation
the results should remain within a 10% threshold to cover error prop-
agation between the verification and validation step. These cases will be
a discharge rate target of 4 kg/s (Case 1) and 8 kg/s (Case 2). For the
deterministic optimization, the coefficient f is equal to one and for the
robust optimization case the coefficient g = 3 which corresponds to a 5:1
ratio between the mean and variance. This ratio has been chosen
because the actual discharge rate of the hopper is the essential perfor-
mance indicator. The variance is an additional measure that focusses the
optimization into the direction of a reliable design and therefor has a
smaller coefficient. Using a ratio of 1:1 would likely result in a design
optimum with a large mismatch to the targeted discharge rate. The two
discharge rate cases are used to show difference between deterministic
and robust optimization by only considering the discharge rate KPIL
These results will be discussed in Section 4.2.

To put the case studies into context with an industrial setting we
have to address the following. Relative to industrial scale hoppers, the
size of the hopper used in this case study is small. However, results from
this study serve as a proof of concept and might lead to opportunities for
research focussed on scaling and validation on a pilot-scale, and later on
to the industrial scale. In addition, more complex bulk materials
including cohesion and other inter-particle behaviour are interesting
topics.

4. Results

In this chapter the results from the metamodel training and optimi-
zation studies described in Section 3 are presented. First we analyse the
DEM simulation data and evaluate the trained DEM-based metamodel.
Next, the results of deterministic and robust design optimization ap-
proaches for the discharge rate and its standard deviation as the objec-
tives are discussed. This section also includes the verification and
validation of the optimization results.

4.1. DEM data and DEM-based metamodel

The training data for the DEM-based metamodel consists of DEM
data for the discharge of a hopper. In Fig. 6(a) the discharge rates ob-
tained from the DEM data set used for metamodel training is shown
combined with a surface plot of the trained metamodel. For the
discharge rate in Fig. 6 (a) we can observe an approximately linear
relation between the hopper angle and the size of the discharge opening
but with different gradients. Fig. 6 (b) depicts the standard deviation of
the average discharge rate from the simulations and the predictions by
the metamodel. This clearly shows that the standard deviation is high for
the 50 mm discharge openings. This is most likely related to the slow and
irregular discharge process and the possibility of arch formation as is
discussed in more detail in Appendix A.1. For the 75 and 100 mm
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Fig. 6. Surface plots of the mean and standard deviation predictions by the metamodel (a,b) contour plots of the mean and standard deviation (c,d) and the per-
centage error between the DEM-based metamodel predictions and DEM data for mean and standard deviation (e,f).

Table 1

Coefficients of Gaussian Process Regression Metamodel
Metamodel o & ¢1 (a dir) o (W dir.)
Gpr Discharge rate 1.797 1 1.201 0.166

discharge openings we see similar levels of variation, up to 0,1 kg/s,
which starts to increase again with increasing discharge openings. At the
60- and 75-degree hopper angles we see low variation in the discharge
rate for the higher discharge openings.

Based on the mean and standard deviation of the discharge rate the
Gaussian Process Regression (GPR) metamodel is trained as described in

Section 3.1. This leads to the coefficients for the GPR for the discharge
rate listed in Table 1. Together with the provided dataset, these values
allow the GPR metamodel, Gpg, to be reconstructed. Based on the large
difference between c; and cy the included flexibility for different pa-
rameters is justified.

In Fig. 6 (c,d) the contour plots of the mean and standard deviation
predictions by the DEM-based metamodel are shown. Fig. 6 Fig. 1 (c)
shows isolines of constant discharge rate and exhibiting a near linear
relation with the discharge openings based on the distance between the
isolines as was also visible in the DEM data. The dependency on the
hopper angle shows a slightly curved relation. Fig. 6 (d) shows the
standard deviation where regions of low standard deviations are visible
indicating areas containing reliable designs.
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Visually it is difficult to assess the errors made in predicting mean
and standard deviation of the discharge rate in the design space.
Therefore the percentage error in prediction is depicted in Fig. 6 (e,f) for
the mean and standard deviation respectively. Here the error percent-
ages for the 50 mm discharge opening are left out because these per-
centages are very high for both mean and standard deviation. This can
be explained because all simulations at the 50 mm discharge opening
encountered arching at one point during the simulation leading to high
errors. This is highly undesirable in a hopper design and therefore it is
not likely that design solutions for the prescribed cases will be found in
this region. In the remainder of the design space, the variance prediction
is reasonably accurate and follows the trend in the data and therefore
deemed good enough to be included in the optimization. For further
information on the arching phenomena in the simulations we refer to
Appendix A.1. In Fig. 6 (e) it is seen that the error for the 75 mm
discharge opening varies greatly with the hopper angles. An over or
under estimation of at most 6% of the discharge rate is expected for most
angles except for the 30, 75, and 82.5 degree angles. As is the case with
the 50 mm opening, the 75 mm opening DEM simulations encountered
arching as well but not for all simulations. For the 100 mm discharge
opening we see that the fit is accurate within 1.5%. At 150 mm the
metamodel is accurate except for the 60 and 75-degree hopper angles
which look at errors of at most 6%. For the 200 mm discharge opening
the error is within 1.5% except for the 90-degree angle.

In Fig. 6 (f) the error in standard deviation prediction shows signif-
icantly higher values than for the mean prediction. This was already
clearly visible in Fig. 6 (a) where large differences between the training
data and the metamodel surface were seen. As a results the error fluc-
tuates quite severely between —40 and +40% throughout the design
space. Even with these high fluctuations, Fig. 6 (a) shows that the
metamodel is able to follow the trend in the data which is essential for
robust optimization. However, for the application it is important that the
prediction of the standard deviation is also accurate. Even though it can
be used, the analysis of the metamodel and DEM-data clearly indicates
that for quantitative prediction, the reliability of the standard deviation
should be increased by increasing the number of repetitions of the DEM
simulations in each data point.

Overall, in most regions of the design space the mean prediction
error is well below 3% with some exceptions reaching 6%. Based on
these errors in mean prediction and the trend presented by the meta-
model for the standard deviation, we proceed with using the metamodel
in deterministic and robust optimization.

4]

W (mm)

DEM det. DO ¢ =4 kg/s
DEM rob. DO ¢ =4 kg/s
DEM det. DO ¢ = 8 kg/s
DEM rob. DO ¢ = 8 kg/s
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4.2. Deterministic vs robust design optimization

To identify the effect of using deterministic and robust design opti-
mization (DO) two case studies are investigated. In these case studies we
optimized a hopper design using deterministic and robust optimization
for a discharge rate of 4 kg/s (Case 1) and 8 kg/s (Case 2). In Fig. 7 the
contours of the discharge rate (a) and standard deviation (b) are visu-
alized in the design space. The magenta and red coloured dots are the
results from the deterministic optimization for Case 1 and 2. The yellow
and blue dots represent the solutions for the robust optimization for Case
1 and 2.

The deterministic optimization results clearly show that solutions are
not unique and present a wide variety of design options with the same
performance. Based on the single objective for the discharge rate in both
cases the solver will return solutions on the isoline for the corresponding
discharge rate, which represents designs of equal performance. How-
ever, the solutions for both cases are all located in the middle of the
isolines and not at the outer hopper angles even though the solutions
would give the same result. This can be explained by the interior point
method which uses a barrier function that initially promotes searching
the interior of the domain.

The robust optimization results for cases 1 and 2 including the
variance as a second objective clearly show more distinct solutions
compared to the deterministic results. The robust optimization results
for case 1 show three distinct optima of which the 81 degree and 104
mm design has the lowest variance followed by the 44-degree and 103
mm and 31-degree and 98 mm design. The location of the robust designs
in Fig. 7 (b) shows a clear minimum in variance for the 45-degree so-
lution in Case 2 and shows that the other solutions are located at points
where there is large curvature in the isoline of the standard deviation.
The exact designs and performance of the robust optima are shown in
Table 2. Comparing the two cases shows that there are two solutions
with a similar angle in both cases: the 45- and 81-degree hopper angle
where only the size of the discharge opening is different. The 31-degree
angle present in case 1 is not present in Case 2. Additionally, it is visible
that there is a small difference between the target discharge rate
compared to the deterministic results. This is caused by the additional
objective for which the optimizer has to start making a trade-off. The 81-
degree solution for Case 2 shows a discharge rate difference of about 2%
and also the largest standard deviation, which indicates this is a poor
local minimum.

Comparing the deterministic and robust optimization results, we see
that only the 45-degree solutions in the robust optimization are present
in the deterministic results. The solution at 31 and around 80 degrees are
not present when using the interior-point-method but might become

200 - .
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150
g
8
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Fig. 7. Deterministic and robust optimization results for both the 4 kg/s and 8 kg/s discharge rate target.
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Table 2
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Local optima for robust optimization results with the corresponding average and standard deviation of the discharge rate

Hopper angle a (°) Discharge opening W,(mm)

Average discharge rate ¢(k?g) Standard deviation discharge rate 6(¢) (k?g)

(kg 30.77 98.42

Case 1: 4 (?) 4411 103.2
81.45 104.1

k 44.96 149.8

Case 2: 8 <?) 81.23 151.8

3.994 0.05

3.999 0.051
3.997 0.032
7.993 0.039
7.84 0.147

visible when different search algorithms are used. In the deterministic
case, the standard deviation information from Fig. 7 (b) is not used but
by projecting the solutions it can be seen that using the standard devi-
ation by means of robust optimization could be used to make design
decisions from the deterministic optimization results.

Based on the deterministic optimization results a design between 42-
and 69-degree hopper angles with their corresponding widths would
result in a hopper with the right performance for both Case 1 and 2. For
the robust optimization, we would have three hopper designs for Case 1
and two solutions for Case 2. For both Cases there are solutions around a
44- and 81-degree hopper angle that would be suitable where the 44-de-
gree design is equally reliable for Case 1 and 2 but the 81-degree design
only for Case 1. However, these designs are only based on the perfor-
mance of the design and do neglect other aspects which would be
encountered in engineering and operation of the equipment. For
example, with an 81-degree angle stagnant zones would form on the
slopes of the hopper walls because friction with the wall keeps the
material in place. This would lead to a core flow dominated hopper
which decreases wear of the equipment but might increase material
wear. On the contrary, a 44- or 31-degree angle would lead to flow along
the walls and a mass flow dominated hopper performance with
increased equipment wear for abrasive materials but less material wear.
Numerically, it would be clear that the 44/45 degree angle would lead to
the most reliable performance for Case 2 but if engineering and opera-
tional aspects are considered one of the other designs might be chosen.
In Appendix A.2, an elaboration can be found on design considerations
in hopper design.

4.2.1. Verification of deterministic and robust optima

As part of the method described in Section 2 the results from the
deterministic and robust optimization are verified. The metamodel
predicted a discharge rate isoline for both cases in the design space of the
hopper. This resulted in the deterministic optimization procedure to find
a distribution of points on this isoline. Instead of verification of all these
points on the isoline we decided to verify the metamodel prediction at 8
points along the isoline distributed from 20 to 90 degrees with a 10-de-
gree interval with their corresponding discharge openings as found in
Table 3. For each of these points the DEM simulation is repeated 5 times
with an initial random packing of particles.

In Fig. 8 (a) and (b) the mean (blue dots) and 95% confidence in-
terval (CI) of the mean (blue envelope) are shown as predicted on the
isoline by the DEM-based metamodel for both cases. In addition, the
verification results of the mean and 95% CI of the mean are shown.
Overall, it can be seen that the verification results show good resem-
blance with the predicted results by the DEM-based metamodel for the
isolines of 4 and 8 kg/s. Most of the designs on this isoline will be within
2,5% of the prediction which is acceptable looking at the set tolerance of
5%. The 95% CI from the verification results shifts with the location of

the mean but overall the behaviour in variance is similar to the pre-
dictions by the DEM-based metamodel. Some exceptions in the behav-
iour are discussed below. Considering the limited number of repetitions,
these results are promising for use of DEM-based metamodels in design
optimization for bulk handling equipment.

In Case 1 it is clearly visible that at the 90-degree hopper angle the
mean has an error of 5% as well as a wide 95% CI. The second simulation
for the 20-degree point encountered arching directly at the start of the
simulation, therefore it is not included in calculating the discharge rate
in this point. For the third simulation the same occurred but when the
half of the hopper had already discharged. This was long enough for
calculating the discharge rate and is therefore included. However, it
must be noted that with the 20-degree case there is a high likelihood of
arching so it is not a reliable design point. Another simulation that shows
a large error with the predicted discharge rate is the second simulation
for the 90-degree angle case. During the discharge of the hopper the
mass flow slows down halfway during the discharge but comes up to
speed again, leading to a lower average discharge rate. This slight
plateau forming also occurred with the second and third simulation for
the 30-degree angle. The likelihood of arching increases with decreasing
discharge opening sizes which is clearly the case for the 20-degree
hopper angle. Plateau forming or stalling during discharge is a phe-
nomenon that can ultimately lead to arching so it is not strange that this
occurs at the 30-degree angle and is likely to become more severe with a
decreasing discharge opening size. In the 8 kg/s case we do not observe
arching which can be explained by the fact that the discharge openings
never reach the sizes in which arching starts to occur. This case shows
that at 20-, 50- and 60-degree angles the verification results are
matching the DEM-metamodel prediction. For the 40-, and 70- to 90-de-
gree angles we see an overestimation of approximately 2.5% for the
mean discharge rate. One exemption is the 30-degree angle, which
shows a 5% overestimation. The confidence interval shows approxi-
mately the same behaviour as predicted but is on average wider than
predicted.

In addition to the verification of the deterministic results the robust
optima are also verified. Therefore 5 repetitions of the DEM model
simulation for each local optimal design have been carried out as was
the case for the generation of the DEM data for the metamodel. The error
percentages for the verification of the robust optima are shown in
Table 4. For visualization, these results are combined with the deter-
ministic results in Fig. 8 where in (a) the verification results for Case 1
are shown and (b) shows Case 2. The green dot represents the predicted
mean for each optimum and the green rectangle represents the 95% CI of
the mean in this location. The Case 1 discharge rate verification results
show that the mean for the 31 degree hopper angle is a closely matches
the predicted optimal mean. However, the 95% CI is 1.7 times wider
than for the predicted mean. For the other two optima it can be observed
that the metamodel predicts a higher mean than the verification results.

Table 3

Verification design points along the 4 and 8 kg/s discharge rate isoline predicted by the metamodel
a(®) 20 30 40 50 60 70 80 90
Case 1 W, (mm) 87.9 97.9 102.4 103.9 104.9 105.2 104.4 103.4
Case 2 W,(mm) 131.5 145.1 149.6 149.8 150.8 152.8 153.7 152.4
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Fig. 8. Verification results of isoline verification points for 4 kg/s (a) and 8 kg/s discharge rate (b).

Local optima for verification of the robust optimization results with the corresponding average and standard deviation of the discharge rate
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Fig. 9. Mean and 95% CI predicted by DEM-based metamodel, verification and validation from the deterministic and robust optimization with 5 and 10% error
margins with respect to the mean target for Case 1 and 2 in (a) and (b) respectively.
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The difference between prediction and verification is 1.6% and 2% for
the 45- and 81-degree case, respectively. The CI of the 44-degree case is
the same in magnitude but shifted due to the error in the mean. For the
81-degree case the CI is 35% wider than predicted and shifted due to the
large error in the mean.

For Case 2 we see that at the 45-degree hopper angle the verified
mean is 0,8% higher than predicted. In the 81-degree case this is 3,2%
but here it should be observed that the found optima was already slightly
off from the target and that the verification results are closer to the
initial optimization target. In terms of the CI it can be seen that it is
wider in both cases up to 4.5 times for the 45-degree angle. Considering
the mean prediction we would accept these optima because they are
within the 5% tolerance that we have set even though the confidence
intervals show significant errors. However, for a full evaluation it is
important to study how the optima of both cases behave when these are
experimentally validated.

4.2.2. Validation of deterministic and robust optima

We performed validation of the deterministic and robust optimiza-
tion results by means of experiments using the setup introduced in
Section 3.1. For the validation of the DEM-based metamodel prediction
the same designs as for the verification simulations are used. Here it is
important to notice that the hopper angle and size of the discharge
opening in the points presented in Table 3 cannot be set exactly because
of the measurement error of the angle (+/— 0,1 degree) and discharge
opening (+/— 1 mm) of the physical setup. In Fig. 9 (a) and (b) the DEM-
based metamodel prediction for the discharge rate for Cases 1 and 2 are
shown combined with the verification results. These are the same as
shown in Fig. 8 but the validation results for the deterministic and robust
optimization are added. The validation results for the deterministic
optimization are represented by the red triangles for the mean and the
red shaded area for its 95% confidence interval. For the robust optimi-
zation results yellow triangles are used and the yellow shaded area
represents its 95% confidence interval. Fig. 9 In addition to these visual
results the percentage errors with the optimization target are presented
in Table 5.

Overall we can see that the DEM-based metamodel and the DEM
model itself underestimate the actual discharge rate of a design in both
the deterministic and robust cases. However, in the preceding verifica-
tion it was found that the DEM-based metamodel is relatively accurate in
predicting the outcome of a DEM simulation for both the mean and its
confidence interval. The validation results indicate that the DEM-based
metamodel predictions are closer to experimental results in the region of
Case 2 of the design space than for Case 1.

For deterministic Case 1 the largest mean error between the DEM-
based metamodel prediction and the experimental results is present at
a 20-degree angle and is about 13%. In the 30- to 60-degree angle range
the error fluctuates between 3.5 and 6.5%. At 70 degrees it is observed
that the error in mean prediction is around 4%. Remarkably, this is the
only design for which an underestimation of the discharge rate is
observed in the validation even though the load cell data is consistent.
For the 80- and 90-degree angles we see 6 to 7.5% errors. The robust
Case 1 validation results show an error of 12% for the 31,8-degree
hopper angle, 7,5% for the 45-degree angle and 16,5% for the 81-degree

Table 5
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angle. All of these results show that the found robust optima underes-
timate the actual discharge rate. Relative to the deterministic validation
results the robust validation result shows an higher error. In terms of the
95% confidence interval it can be seen that this is similar for the pre-
dicted 95% CI by the DEM-based metamodel and even slightly smaller.

The validation results of deterministic Case 2 shown in Figure 9 (b)
show a maximum error at the 90-degree hopper angle of around 9%. At
the 40-degree hopper angle the error in mean prediction is around —8%.
All the other errors are within the 5% error margin. In terms of the 95%
confidence interval we see that it is twice as small as the predicted width
of the confidence intervals by the DEM-based metamodel. For Case 2 the
DEM-based metamodel predicts local optima at the 45 and 80-degree
hopper angles. The validation results seem to show the same behav-
iour which reinforces the idea of quantatively using the variance in
robust optimization. For the robust optima it can be seen that the 45-de-
gree optimum has an error of around 4% and the 81-degree angle a 9%
error. The 95% CI of the first optima is 230% as wide as the prediction by
the DEM-based metamodel whereas for the second optimum the error is
only 33% wider than predicted. This indicates that predicting confi-
dence intervals is difficult, especially with a low number of repetitions.

In both cases relatively large errors are observed in the validation
results whereas the verification results did not show these to the same
extent. The source of this difference can be explained by comparing the
DEM data to experimental results in the same data points. This shows
that the 2% error obtained from the calibrated DEM model at a 45-de-
gree hopper angle and 100 mm discharge opening is not consistent
throughout the design space. In Appendix A.3 these results are
compared in more detail. These results showed that the error between
DEM and experimental data is not consistent throughout the design
space. When the DEM model cannot produce accurate predictions in the
entire design space, increased errors in the performance of optimized
designs can be expected.

Comparing the validation results from both cases it is observed that
the validation error of the mean prediction by the DEM-based meta-
model stays within the 10% error threshold for Case 2. For Case 1 we see
that in most locations the error stays within 10% of the DEM-based
metamodel prediction except for the 20-degree hopper angle and the
first and third robust optima. In terms of acceptance of the solutions on
the isolines we would accept most solutions if the 10% error threshold
for the validation was considered. However, the results clearly show that
the error at the 20-degree angle is significantly larger than for the other
solutions. These results indicate that there is a significant error between
the experiment and the DEM-model even though it has a 2% error based
on the calibration [7]. Based on the trajectory of the isoline results it is
clear that the error is not consistent throughout the design space. This
means that the assumption of uniform errors throughout the design
space cannot be made. Explanations for this inconsistency are the
different flow velocity regimes in the different designs which are not
considered in the calibration.

Based on the validation results we can assume that the DEM-based
metamodel optimization results for Case 2 can all be used and for
Case 1 only in the range from 30 degrees and higher even though the
robust optima showed errors higher than 10%. From a deterministic
optimization perspective all designs in these regions would be

Local optima for validation of the robust optimization results with the corresponding average and standard deviation of the discharge rate.

Average discharge rate Standard deviation discharge rate

o) (<€)

% error with mean robust optima DEM-based
metamodel prediction

% error with standard deviation in
robust optima

Case 1: 4.46 0.042 11.67
4 (kfg) 4.29 0.042 7.36
s 4.66 0.072 16.52
Case 2: 8 8.32 0.127 4.08
0.196 11.49

kg 8.74
s

-16.75
-18.35
124.11
226.45
33.35
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acceptable. For the robust optimization results only the 45-degree reliability of the used mean and variance training data. In addition, the
design for Case 1 would be acceptable as are both solutions for Case 2. optimization results are affected by a mismatch between DEM model
A question that should be asked is whether the optimization is actually and experiments. These errors became clearly visible in the verification
robust if errors seep in the method by means of the quality of the data, and validation stage of the deterministic and robust optimization results.
DEM-model, and metamodel. However, the small errors between DEM- Overall, the use of DEM-based metamodels gives insight on the
based metamodel predictions and the verification results for a small behaviour of bulk handling equipment which can be used for finding
number of repetitions shows that MBDO using a DEM-based metamodel suitable designs in the design space. For bulk handling systems with
has potential. multiple design and performance parameters and similar problems in
other domains, design optimization strategies such as the deterministic
5. Conclusions and robust approach are good options to find a range of optimal designs.
The robust optimization finds designs which in addition to optimized
In design of bulk handling equipment the stochastic nature of gran- mean performance also exhibit low variance. However, the quality of
ular material behaviour is rarely included as is the use of metamodel- the optimization relies highly on the quality of the mean and variance
based design optimization (MBDO). Therefore this study investigates data that is available for the metamodel. This is one of the biggest
the effect metamodel-based deterministic and robust optimization challenges in applying robust MBDO in design of bulk handling
strategies have on hopper design optimization. Both strategies use DEM- equipment.
based metamodels for the prediction of mean and variance and are
verified and validated by the DEM equipment model and experiments, CRediT authorship contribution statement
respectively. The goal of this study is to introduce a robust MBDO,
identify the differences between deterministic and robust optimization Marc P. Fransen: Conceptualization, Methodology, Software, Vali-
strategies and the challenges that might be encountered. dation, Formal analysis, Investigation, Writing — original draft, Project
The deterministic and robust design optimization case studies show administration, Visualization. Matthijs Langelaar: Supervision,
that for deterministic optimization a multitude of local optima are Writing — review & editing. Dingena L. Schott: Supervision, Writing —
distributed over the isoline of the desired discharge rate whereas the review & editing.

robust optimization zones produces more specific solutions by using the
variance. The verification of the deterministic optimization results

showed an error in mean prediction within a 5% bandwidth, whereas Declaration of Competing Interest
the errors found in robust optimization results did not exceed 2,5%. The
confidence intervals showed more fluctuation and are therefore less The authors declare that they have no known competing financial
reliable. However, based on the mean prediction it seems that robust interests or personal relationships that could have appeared to influence
optimization leads to better performing optima. the work reported in this paper.
One common issue in the use of metamodels in a design process is the
effect of error propagation due to a mismatch between the metamodel Data availability
and the data it is trained on. This is true for metamodels that predict a
mean or both mean and variance and is directly affected by the Data will be made available on request.

Appendix A. Appendix

In the article we focussed on the differences between MBDO in case of deterministic and robust optimization. However, in designing bulk handling
equipment specific phenomena occur such as arching which is possible in all equipment where narrowing channels for granular flow are used. In
Appendix A.1 the occurrence and causes of arching in both simulations and experiments are evaluated. Next, Appendix A.2 discusses the design
considerations one can make in deciding which design is optimal for a specific application. Lastly, Appendix A.3 discusses the mismatch between the
DEM-data and the experimental data which was also apparent in the presented verification and validation results.

A.1. Arching

As mentioned at the beginning of this section arching may occur at small discharge openings if the discharge opening is smaller than ten times the
average particle diameter [18]. For the case study this means that the minimum size of the discharge opening should be 100,4 mm. However, in the
design space also 50 a 75 mm size samples are included. In Fig. 10 the occurrence of arching in both experiments and simulations is shown for each
hopper angle for the 50 mm discharge opening in (a) and 75 mm discharge opening in (b). In the experiments it was observed that at a 60-degree angle
and 50 mm discharge opening arching occurs at each instance. For an increasing and decreasing angle we see that the probability of forming of arches
reduces. In contrast, in the DEM simulations arches form for each simulation at 50 mm discharge openings. Looking at the 75 mm discharge opening
results it can be seen that the simulations show arching at small and large angles but no arching at a 75-degree angle. This behaviour is exactly opposite
to the experimental results with a 50 mm discharge opening. These results indicate that the DEM model is not able to reproduce a phenomenon such as
arching accurately. Moreover, these results show that validation of calibration results is important and that multiple KPIs should be verified and
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Fig. 10. Arching in the hopper for experiments and simulations for 50 mm discharge opening (a) and 75 mm discharge opening (b).
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A.2. Design considerations

In design optimization of bulk handling equipment it is important to consider additional behaviour of material and equipment in assessing the
found optima. One of these phenomena was arching which was described in A.1. In bulk handling equipment the interaction between material and
structure is not only determined by the geometry but also by the condition of the structure. The stainless steel wall in the hopper geometry is impact
loaded and has a friction coefficient of 0,52 which results in a friction angle of 27,5-degrees. In Fig. 7 showing the contour plots, this means that all
points around the 62,5-degree angle are likely to show stick slip behaviour. For angles below 62,5-degrees there is continuous movement of particles
and possibility of mass flow. Whereas, above 62,5-degrees, stable stagnation zones and core flow will occur. In Fig. 7 showing the optimization results
for Case 1 we see that the 30 and 45-degree solutions for the DEM data will likely be mass flow. However, the third solution for the DEM data is at an
80-degree angle which is likely in the core flow regime. With respect to the design choice in the DEM solution of Case 1 the choice is not limited to the
discharge rate and its variance but also to the type of system that is desired. If the material that is put through the hopper has an abrasive nature, the
mass flow designs are not convenient because they would increase equipment wear. This means that the core flow design would be the correct choice.
However, it can be argued that friction between particles is not desired because of material wear making the mass flow designs the better option
despite the lower variance in the core flow design. It is important that when the design is chosen the optimization result is not blindly accepted because
other aspects of the design in operation should be considered.

A.3. Comparing DEM results and experiments

The validation results in this study showed differences in predicted discharge rates between the DEM-model simulation results and experiments.
Based on the calibrated DEM-model an overestimation of 2% was expected by the DEM-model compared to the experiments. However, this error
seemed to be inconsistent throughout the design space as shown by the validation results. In Fig. 11 (a,b) we have shown the average discharge rate
and its standard deviation based on the DEM-data and their equivalent experiments using five repetitions for the sampled design space along with the
respective errors for each discharge opening and angle in Fig. 11 (c). As can be seen the results from the calibration is a 2% error at a 45-degree angle
and 100 mm discharge opening. As can be seen for the other angles for the 100 mm discharge-opening errors up to 6% are present. This means that if
the DEM model is used to predict the discharge rate for a 20-degree angle and 100 mm discharge opening the result is 5% higher than the value
obtained from the experiments. However, getting closer to the 75 mm discharge opening leads to an underestimation of 5%. This means that
significantly larger errors between DEM-model and experiment are present in different parts of the design space than expected from the calibration
[7]. Combined with the introduced error by the DEM-based metamodel this can lead to additional errors in the different steps in the methodology. To
prevent this, additional calibration experiments can be used to resemble the physics of the system.

13



M.P. Fransen et al.

* (o) Exp. data
* u(¢) DEM data

20 ~
L]
15 i : L]
. []
L] .
@ : i
210+ .
< d ] .
o .
54 T
. ° °
. . . > LI
.
N2 s 200
40 60 * . 100 150
80 50
a(®) W, (mm)
(a)
101
g © !
noor
g L]
<
Q
S .
= ]
S .
5 Sl e 75mm . . s
* 100 mm N
150 mm
* 200 mm .
10 i | | | | | J
20 30 40 50 60 70 80 90
a(®)
©

Powder Technology 425 (2023) 118526

o(¢) Exp. data
0.8 4 * o(¢) DEM data|
0.6

200

400 r
e 75mm
* 100 mm
L 150 mm .
;\3\ 300 ° 200 mm
=
]
=200
£ i
3 .
E 100 -
@ ®
-
S
&
or . : :
. . .
-100 L L L I I . | ® ]
20 30 40 50 60 70 80 90
a(®)
(d)

Fig. 11. DEM training data for metamodels (a) discharge rate (b) relative standard deviation discharge rate where the calibration results from [7] is shown by an
additional circle.
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