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Deterministic vs. robust design optimization using DEM-based metamodels 

Marc P. Fransen a,*, Matthijs Langelaar b, Dingena L. Schott a 

a Department of Maritime and Transport Technology, TU Delft, the Netherlands 
b Department of Precision and Microsystems Engineering, TU Delft, the Netherlands   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• We introduce robust optimization using 
DEM-based metamodels. 

• Deterministic and robust metamodel- 
based design optimization (MBDO) are 
compared. 

• The error of optimal designs is below 
5% for verification and 10% for 
validation. 

• The quality of MBDO highly relies on 
the quality of the metamodel and 
training data. 

• Robust optimization leads to accurate 
mean performance and exhibits low 
variance.  

A R T I C L E  I N F O   
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A B S T R A C T   

In design optimization of bulk handling equipment (BHE) we generally focus on the mean performance of the 
equipment. However, granular materials behave stochastic due to irregularities in particle shape and size which 
leads to stochastic performance of the equipment. To include the stochastic performance we propose robust 
metamodel-based design optimization (MBDO). The used metamodels are trained with stochastic performance 
data from randomly repeated discrete element method (DEM) simulations and predict mean and variance of the 
equipment performance. This method is compared to the conventional deterministic optimization method by 
means of a case study of a discharging hopper including verification and validation. The robust MBDO shows 
more distinctive optimal designs compared to the deterministic approach. In addition, the DEM-based meta
model is a relatively accurate method to predict DEM-model simulation results. However, the validation in
dicates that differences between DEM-model and experimental results highly affect the reliability of the found 
optima.   

1. Introduction 

In design of Bulk Handling Equipment (BHE) the use of Discrete 
Element Method (DEM) models to predict and evaluate performance in 

equipment design is increasing. The major advantage of this approach is 
the ability to evaluate a wide range of equipment designs without the 
need of conducting expensive experiments. The major downside is that if 
the number of particles [3], complexity of the equipment kinematics 

* Corresponding author. 
E-mail address: m.p.fransen@tudelft.nl (M.P. Fransen).  

Contents lists available at ScienceDirect 

Powder Technology 

journal homepage: www.journals.elsevier.com/powder-technology 

https://doi.org/10.1016/j.powtec.2023.118526 
Received 11 November 2022; Received in revised form 12 March 2023; Accepted 4 April 2023   

mailto:m.p.fransen@tudelft.nl
www.sciencedirect.com/science/journal/00325910
https://www.journals.elsevier.com/powder-technology
https://doi.org/10.1016/j.powtec.2023.118526
https://doi.org/10.1016/j.powtec.2023.118526
https://doi.org/10.1016/j.powtec.2023.118526
http://crossmark.crossref.org/dialog/?doi=10.1016/j.powtec.2023.118526&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Powder Technology 425 (2023) 118526

2

[10,17], and interaction complexity [4,11] increases, the computation 
time of simulations increases as well. In addition, DEM models require 
calibration which also becomes a computationally intensive process if 
the number of calibration parameters is increased [2,5,7]. 

To counteract these high computational costs, metamodels are used 
in both calibration of and design of bulk handling equipment. Richter & 
Will introduced a metamodel-based global calibration (MBGC) frame
work and showed how metamodels can be effectively used in calibration 
[15]. Most DEM calibration optimization problems are multi-objective 
optimization problems (MOOP) with multiple calibration parameters 
[5]. Furthermore, a number of metamodeling approaches were suc
cessfully used in calibration of DEM models. Artificial neural networking 
(ANN), Gaussian process regression (GPR), multi-adaptive regression 
splines (MARS), and universal kriging (UK) were applied by Richter 
et al., [14]. An iterative Bayesian framework including a Gaussian 
mixture model (GMM) is used by Cheng et al., [2]. Based on the findings 
by Fransen et al. [7] it is recommended to use regression-based meta
models for the mean prediction to obtain accurate calibration results at 
low costs. Similar benefits are expected in using metamodels for design 
optimization where typically a large number of performance evaluations 
is required. However, it is important to note the limitations of the use of 
metamodels as they are approximations of the DEM model and therefore 
inherit a model error. Overall, metamodels perform well when used to 
interpolate but poor in extrapolation. Therefore, quality of the data and 
the sampling are important for the performance of a metamodel. 
Metamodel-based design optimization (MBDO) is referred to by Wang & 
Shan, [19] but in design of bulk handling equipment metamodels have 
not been used extensively [6]. In design, we generally have to deal with 
similar problems as in DEM model calibration: multiple design param
eters and performance characteristics, which requires similar solving 
techniques. 

Currently, the focus of optimization of BHE designs is on the mean 
performance of the equipment [8,17], i.e. the deterministic approach. 
However, granular systems are stochastic in nature resulting in uncer
tainty of design performance. To achieve an optimal design which has a 
good match to the mean performance and a minimized variance robust 
optimization strategies can be applied [9,12]. As indicated for the 
calibration of DEM models it is an effective approach to use DEM-based 
metamodels in MBDO instead of DEM simulations in the loop for cali
bration parameter estimation. In the case of robust design optimization, 
metamodels can be used in a similar fashion because they can predict 
both mean and variance. To the authors’ knowledge, robust MBDO has 
not been investigated in relation to bulk handling equipment design. 

The aim of this study is to show how robust metamodel-based design 
optimization can be applied to bulk handling equipment design with 
DEM-based metamodels and, to show how this method compares to a 
conventional deterministic approach and to identify application chal
lenges. In this study, we present a methodology/framework for robust 
Metamodel-based Design Optimization (MBDO) for design of bulk 
handling equipment in Section 2. Next, Section 3 describes the design 
problem for a discharging hopper starting with a description of the 
experimental setup and DEM model, followed by the analysis of exper
imental and DEM results and sampling of the design space. It continues 
with a description of training the DEM-based metamodel and a formu
lation of the optimization problem. Lastly, the two design case studies 
are described to which the robust MBDO approach and deterministic 
MBDO are applied. In Section 4, the resulting DEM training set is eval
uated as well as the resulting metamodel. This is followed by the results 
of the two design case studies where deterministic and robust optimi
zation are compared. This section ends with a discussion on the obtained 
results related to the quality of the DEM data compared to experiments, 
mismatch between DEM metamodel predictions and the verification 
results, and the discrepancies observed between DEM metamodel pre
dictions and experimental results. 

2. Methodology 

Bulk handling equipment is used to transport or process wide vari
eties of granular material. However, the behaviour of a granular mate
rial in general is stochastically distributed. This stochastic behaviour is 
caused by differences in particle packing’s, sizes and in variations of 
material properties. Additionally, properties of the bulk material such as 
consolidation, moisture content, and temperature might affect the inter- 
particle physics leading to variable bulk strength and cohesion. This 
leads to distributed performance of the BHE around a certain mean 
performance. Even though this is known, the stochastic behaviour of the 
granular material and its effect on the equipment performance is not 
considered in the design process. Therefore, we introduce a methodol
ogy that includes the stochastic behaviour of granular materials in the 
bulk handling equipment design process. 

In this section the global implementation of robust metamodel-based 
design optimization (MBDO) including verification and validation to 
design of bulk handling equipment is explained. The scheme in Fig. 1 
shows the steps taken in the design process of BHE if MBDO, verification, 
and validation are included. A bulk handling equipment design problem 
starts with describing the system or problem where design and key 
performance indicators (KPIs) are defined. The next step in the approach 
is to create a numerical model of the equipment and the material that 
needs to be handled. For this purpose the Discrete Element Method 
(DEM) is used which can simulate behaviour of the bulk and interaction 
with the equipment. However, DEM models are generally a simplifica
tion of the physical system and are therefore reliant on calibration of 
material and contact parameters of the DEM model. After the calibration 
of the DEM model, this model needs to be validated to demonstrate that 
the model possesses a satisfactory range of accuracy consistent with the 
intended application of the model within its domain of applicability 
[16]. The calibrated and validated DEM model of a hopper used in this 
study is adopted from Fransen et al., [7]. DEM simulations take a 
considerable amount of time, which makes direct use of DEM models in 

Bulk handling equipment

design problem

Design space sampling 

and DEM data generation

Metamodel Training

Design Optimization

Validated Optimal 

Design

resampling

yes

error ≤ tolval 

Verification

no

DEM model development

Problem Definition

Calibrated DEM model

Experimental setupValidation

yes

error ≤ tolver 
no

Deterministic Robust

mean/variancemean

Fig. 1. Framework for Metamodel-based Design Optimization (MBDO) (red 
area) included in the process for bulk handling equipment design. (For inter
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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optimization inconvenient. To overcome this, a metamodel-based 
design optimization (MBDO) procedure can be used. This procedure 
uses a DEM data set to train a metamodel which gives predictions on 
BHE performance at low cost. 

The first block in MBDO is design space sampling and DEM data gen
eration shown in Fig. 1. After sampling the data, the DEM model can be 
used to generate the data. As the DEM model is stochastic due to the 
random initial packing of material this means that the simulations need 
to be repeated for each sampling point. This gives information about the 
average performance and the standard deviation of the design perfor
mance prediction. For a metamodel to be able to predict both mean and 
variance, it is essential that both are included in training the metamodel. 

The second step in MBDO is metamodel training, which has been 
thoroughly described by Fransen et al. for a DEM case study [6]. For the 
proposed robust optimization it is required that information on the 
standard deviation of a KPI is supplied during training of the metamodel 
such that the metamodel can be trained to give predictions of both mean 
and variance of the KPI. In training the metamodel, hyper-parameter 
optimization is included such that the best fit of the metamodel to the 
data is obtained [13]. Moreover, a common step is to use resampling to 
improve the quality of the metamodel. However, when the set verifi
cation and validation tolerances are not violated by the initial sample 
resampling is not required. In Section 3.4 the metamodel training pro
cedure and the relation to the case study is discussed in more detail. 

After training the metamodel, the next step is design optimization 
which can be further divided in two types, deterministic and robust 
optimization. In deterministic optimization, only the mean performance 
of the BHE is used to find the optimal design whereas in robust opti
mization the standard deviation of the BHE performance is also 
included. These differences are further discussed in Section 3.5, which 
also elaborates, on solving the optimization problem leading to the 
optimal design(s). Next, the found optima need to be verified by car
rying out DEM simulations of the found designs. For the verification of 
the results, a tolerance is set for the maximum error of the designs’ 
performance relative to the optimization target. If the tolerances are not 
met, resampling of the design space can be carried out or the weights in 
the optimization problem can be adjusted. When the results have 
reached the desired accuracy, the next step is to validate the optimal 
designs using an experimental setup. For the validation, an additional 

tolerance is set which should be higher than the verification tolerance 
because there is a probability of error propagation through the subse
quent steps. If the design reaches the criteria, a design with the desired 
performance is obtained and the design procedure is successful. Verifi
cation, validation, and the case studies are further discussed in Section 
3.6. 

3. DEM-based metamodel design optimization for a discharging 
hopper 

The metamodel-based design optimization (MBDO) method 
described in Section 2 is applied to a hopper case study that will be 
described in this section in more detail. Specific choices made for the 
various steps are also detailed here. Hoppers are pieces of bulk handling 
equipment that are frequently used in processing plants to regulate flows 
of material. In the design of a hopper there are many restrictions such as 
occupied space and which construction materials can be used in com
bination with the bulk being processed. However, the key performance 
indicator (KPI) that is most frequently used to assess the effectiveness of 
a hopper is the discharge rate. 

3.1. Experimental setup and DEM model of hopper 

In this study, an experimental setup of a semi two-dimensional 
hopper is considered which has been shown in Fig. 2. This setup con
sists of four adjustable stainless steel wall sections which can be used to 
change the geometry of the hopper. These four adjustable walls are 
clamped between two 5 mm Perspex plates. The setup is positioned on 
load cells such that the force exerted by the bulk can be measured. For 
further information on the experimental setup the reader is referred to 
Fransen et al., [7]. The load cell data from the experiments is used to 
determine the discharge rate. In addition, the setup is used to validate 
the results from the deterministic and robust MBDO. Gravel is used as a 
bulk material in this experimental setup and was modelled in DEM using 
spherical particles. The gravel has been stored in a dry environment with 
a low humidity, therefore we assume the material can be regarded as dry 
and has no cohesion. In addition, the material falls under the well- 
graded gravel category for which it is common to take zero cohesion 
into account (Swiss Standard SN 670010b, Characteristic Coefficients of 

(a) (b)

Fig. 2. Experimental hopper setup (a) and dimensions (b) Wh = 602mm, d = 5mm. The fill height depends on the mass inserted.  
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soils, Association of Swiss Road and Traffic Engineers). After calibration 
of the DEM model, the hopper discharge was validated for a hopper 
configuration with a hopper angle α of 45◦ and a discharge opening Wo 
of 100mm. The model from this study showed an overestimation for the 
mean of 2,15% and 42% higher standard deviation. Even though the 
error in standard deviation is large it is only 1% of the mean. We assume 
that this level of error is in the same range in the selected design space. 
The DEM model is used to replicate the experimental setup and to 
generate a DEM data set for the metamodel. In Fig. 2 (a) an image of the 
experimental setup of the hopper is shown and a description of the ge
ometry in Fig. 2 (b). In Fig. 3 (a) a still from the initial configuration of 
an experiment captured with thehigh speed camera is shown and the 
DEM simulation is shown in Fig. 3 (b). 

3.2. Analysis of experimental and DEM simulation results 

The KPI of the case study is the steady-state discharge rate ϕ for 
which both the mean and standard deviation are used. From the hopper 
discharge experiment the force (Floadcell) exerted by the bulk material on 
the load cell over time is obtained which can be used to determine the 
steady-state discharge rate. In Fig. 4 (a,b) the process of determining the 
discharge rate is illustrated for the experimental and DEM data respec
tively. A difference between the experimental and DEM data is the 
presence of spikes in the force data. This is explained by the difference in 
measurement location. The force measurement in the experiment is not 
located on the walls as is the case for the simulation result but under the 
base of the setup. The structure between the walls and the load cells has 
a dampening effect on the forces on the wall and therefore the 
measurement. 

To obtain the average discharge rate in kg/s the average force 
exerted per second needs to be determined. Assuming this value is stable 
we can divide this force by the gravity constant (g) to obtain the average 
mass discharged per second. This value approximates the discharged 
mass that cannot be measured exactly in the experiment. Even though it 
is possible to determine the exact mass discharged in a DEM simulation 
we use the force-based approach because this gives results for experi
ments and simulations that can be compared. The fitted data between 
the force based and mass based discharge rate in the DEM simulation 
showed small deviations and are therefore representative for the 
performance. 

3.3. Sampling of design space and number of repetitions 

The design space in this case study is sampled in an irregular spaced 
rectangular grid for discharge openings of 50, 75, 100, 150, and 200 mm 
and angles 20, 30, 45, 60, 75, 82.5, and 90 degrees as shown in Fig. 5. 

For the hopper angles, a minimum of 20 degrees was chosen because of 
the limits of the experimental setup. At the high end of the angles, an 
additional sample was added at 82.5 degrees to have a higher infor
mation density in this location. The used sample consists of 35 points 
which means that this sample has a sampling density of 351

2 = 5,92 per 
unit length in the normalized design space. This is approximately in the 
same range as the sampling density used in previous work for a three- 
dimensional calibration case [7]. For each design point in the sam
pling we carry out five repetitions to get an average and a standard 
deviation. This number is enough considering that the discharge rate is 
already a steady-state value averaged from time dependent discharge 
data. The results of these simulations are discussed in Section 4.1. 

The sample shown in Fig. 5 has also been carried out using the 
experimental setup. To be consistent with the experiments the number 
of repetitions is kept the same as with the experiments. At a 150 mm 
discharge opening and 75 degree angle the number of repetitions is 
equal to four because of a failed experiment. The same holds for one of 
20-degree angle and 75 mm discharge opening experiment. For the 50 
mm experiments it was decided to use five repetitions as a basis and 
extend to ten if arching occurred. In the 60-degree case, arching 
occurred five times and therefore the additional 5 repetitions were not 
conducted. The 20-degree case was repeated 10 times but two of those 
experiments failed. To be consistent with the experiments that have 
been carried out we used the same initial mass of bulk material con
tained in the experiment in the simulations and used the same number of 
repetitions for each design in the sample. In calculating the mean, 
standard deviation, and confidence intervals the different number of 
repetitions accounted for. 

3.4. Metamodel training 

The generated DEM data for the sample of the design space is used to 
train a Gaussian Process Regression (GPR) type stochastic metamodel 
[13]. Before the data is used, feature scaling based normalization is used 
which shifts the data to a [− 1,1] range. The standard deviation corre
sponding to the mean values is converted to the coefficient of variation σμ 
which is input for the σn component in the training procedure. 

The metamodel is denoted by GKPI(x*) for any given KPI where x* is a 
vector containing the design variables for which a prediction of the 
mean and variance of the KPI is desired. In the case study, the KPI is the 
discharge rate and the design variables are the hopper angle α and the 
size of the discharge opening Wo, x* = [α* Wo*]. The metamodel is 
trained with the DEM data generated for the sample presented in Section 
3.3 which consist of a mean and variance value of the KPI at the data 
points in the sample. By including both mean and variance in training 
the metamodel we allow the metamodel to predict the mean and 

(a) (b)

Fig. 3. (a) Picture of experiment where the block at the bottom prevents the discharge of material (b) Picture of simulation where only the walls and bottom of the 
experimental setup are modelled. 
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variance. In training the metamodel we assume that the variance ob
tained in the data points from the training set is the true variance [7]. 
Thus, the trained DEM-based metamodel gives a prediction of the mean 
and the variance in the design space. 

The GPR metamodel uses a basis function to obtain the correlation 
between two points x1 and x2. Here x1 and x2 can both be training 

points, two prediction points, or a training and a prediction point. In this 
case the basis function is a squared exponential Gaussian ψ in ℝ2, 

ψ = σf e−
1

2l2
r(x1 ,x2)

2
(1)  

where σf and l2 represent the first two hyper parameters and r(x1,x2), 

r
(
x1 =

[
α1 Wo,1

]
, x2 =

[
α2 Wo,2

] )
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c1(α1 − α2)
2
+ c2

(
Wo,1 − Wo,2

)2
√

(2)  

is a function which determines the Euclidian distance between two 
points, x1 and x2. This distance is determined based on the two design 
variable values in the two points which are adjusted by the second two 
hyperparameter values c1 and c2. Here c1 and c2 function as a shape 
parameter for the basis function on the design variables α and Wo. 

The metamodel GKPI(x*) is used for mean and variance prediction of 
the KPI. The mean prediction function, 

consists of the correlation between the training points x1 to xn and the 
predicted point x*, kKPI(x,x*). Based on the summation of the Gram 
matrix KKPI(x,x) and the variances σKPI, n

2 of the system and the reference 
values yKPI in the training points a prediction is made for the mean value. 
The variance predictor,  

is a correction based on the prior covariance of the predicted point 
kKPI(x*,x*) minus the information the training points give about the 
function [13]. 

As shown in Eqs. (1) and (2), the metamodel has tunable parameters 
that can be used to improve the quality of the model. The parameters σf, 
l2, c1, and c2 are the hyper-parameters of the basis function and need to 
be optimized for a good fit of the metamodel to the training data. The σf 
parameter balances the effect of the added noise and l2 controls the 
shape of the function. However, the l2 term is kept constant because the 
hyper-parameters c1 and c2 in the basis function have the same function 
of controlling the shape of the basis function. Therefore optimizing these 
three would lead to an undetermined problem. To optimize the hyper- 
parameters the marginal log-likelihood function, 

logp (yi|X) = − 0.5yT
i

(
KKPI + σ2

KPI,nI
)− 1

yi −
1
2
log∣KKPI + σ2

KPI,nI∣ −
N
2

log(2π)

(5) 
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Fig. 4. Determining discharge rate from load cell data (a) and from the simulation of the same experiment (b).  

GKPI (x*) = kKPI(x, x*)
T
(

KKPI(x, x) + σ2
KPI,nI

)− 1
yKPI =
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⋮
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⎦

T⎛

⎜
⎜
⎝

⎡

⎢
⎣

ψ(x1, x1) ⋯ ψ(x1, xn)

⋮ ⋱ ⋮
ψ(xn, x1) ⋯ ψ(xn, xn)

⎤

⎥
⎦+

⎡

⎢
⎢
⎣

σ2
KPI,1 0 0
0 ⋱ 0
0 0 σ2

KPI,n

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

− 1⎡

⎢
⎣

y1
⋮
yn

⎤

⎥
⎦ (3)   

VKPI(x*) = kKPI(x*, x*) − kKPI(x, x*)
T
(

KKPI(x, x) + σ2
KPI,nI

)− 1
kKPI(x, x*)

T
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of the metamodel is maximized. Here 100 random initial guesses in a 
range from 0 to 100 are used to find the optimal set of hyper-parameter 
values because the log-likelihood function is expected to be nonconvex. 
To find this set the interior point method is used [1]. The resulting 
metamodels are discussed in Section 4.2. 

3.5. Formulation optimization problem 

In essence, the optimization problem for the design of the hopper is 
similar to the calibration problems described in previous studies [5]. 
Therefore, most solving methods used in these studies can also be 
applied in the optimization of design. However, there are distinct dif
ferences in the type of solutions that are obtained. When genetic algo
rithms or other types of swarm methods are used, the design domain is 
populated with samples which generally evolve over time to a set of 
solutions. These solutions can form a Pareto-front on which a designer 
can pick a design which gives the best-balanced solution. A different 
approach is to let the optimizer find single or several local optimal de
signs and converge to a set limit as used by Fransen et al. [7] with the 
interior-point method. This is the method that is used in solving this 
optimization problem. This optimization is repeated with 100 random 
initial guesses spread around the design space using Latin Hypercube 
Sampling (LHS). Using a 100 random initial points ensures that the 
majority of the local optima is found. 

To define the optimization problem we define objective function f for 
the described optimization problem. This objective function is formu
lated using the weighted-sum method [12] which is used in robust 
optimization because of its ease and simplicity. In this case study the 
multi-objective problem consists of two objectives. The first part of the 
objective function describes the discharge rate constraint which needs to 
reach a specified value. The second part of the objective function is the 
variance objective. The relative importance of these two parts is 
controlled by the factor β. The solution will focus more on an exact 
match to the mean if β moves to one whereas a higher focus on the 
variance is achieved with a small β. This formulation has been chosen 
because it shows a clear relation between the importance of the mean 
and its variance. The objective function, 

f = β
[

μ1

μ*
1

]2

+(1 − β)
[

σ1

σ*
1

]2

(6)  

consists of two components, a mean and standard deviation objective for 
each KPI. The first component, 
[

μ1

μ*
1

]2

=

(
ϕ(x) − ϕt

ϕt

)2

(7)  

is the square of the relative error between the mean prediction of the 
discharge rate by the metamodel and the discharge rate target ϕ(x) − ϕt 
which is divided by the discharge rate target ϕt. The second component, 
[

σ1

σ*
1

]2

=

(
σ(ϕ(x) )

max(σ(ϕ(x) ) )

)2

(8)  

is the square of the ratio between the predicted standard deviation of the 
discharge rate and the maximum standard deviation of the discharge 
rate present in the model. This ensures that the standard deviation is 
minimized in a range from zero to one. 

3.6. Case studies including verification and validation 

In this paper we will look at two case studies which are representa
tive of a hopper design case. The optimization problem described in the 
previous section will be solved for these two cases. For both cases we 
will use a threshold in the verification error of 5% and for the validation 
the results should remain within a 10% threshold to cover error prop
agation between the verification and validation step. These cases will be 
a discharge rate target of 4 kg/s (Case 1) and 8 kg/s (Case 2). For the 
deterministic optimization, the coefficient β is equal to one and for the 
robust optimization case the coefficient β = 5

6 which corresponds to a 5:1 
ratio between the mean and variance. This ratio has been chosen 
because the actual discharge rate of the hopper is the essential perfor
mance indicator. The variance is an additional measure that focusses the 
optimization into the direction of a reliable design and therefor has a 
smaller coefficient. Using a ratio of 1:1 would likely result in a design 
optimum with a large mismatch to the targeted discharge rate. The two 
discharge rate cases are used to show difference between deterministic 
and robust optimization by only considering the discharge rate KPI. 
These results will be discussed in Section 4.2. 

To put the case studies into context with an industrial setting we 
have to address the following. Relative to industrial scale hoppers, the 
size of the hopper used in this case study is small. However, results from 
this study serve as a proof of concept and might lead to opportunities for 
research focussed on scaling and validation on a pilot-scale, and later on 
to the industrial scale. In addition, more complex bulk materials 
including cohesion and other inter-particle behaviour are interesting 
topics. 

4. Results 

In this chapter the results from the metamodel training and optimi
zation studies described in Section 3 are presented. First we analyse the 
DEM simulation data and evaluate the trained DEM-based metamodel. 
Next, the results of deterministic and robust design optimization ap
proaches for the discharge rate and its standard deviation as the objec
tives are discussed. This section also includes the verification and 
validation of the optimization results. 

4.1. DEM data and DEM-based metamodel 

The training data for the DEM-based metamodel consists of DEM 
data for the discharge of a hopper. In Fig. 6(a) the discharge rates ob
tained from the DEM data set used for metamodel training is shown 
combined with a surface plot of the trained metamodel. For the 
discharge rate in Fig. 6 (a) we can observe an approximately linear 
relation between the hopper angle and the size of the discharge opening 
but with different gradients. Fig. 6 (b) depicts the standard deviation of 
the average discharge rate from the simulations and the predictions by 
the metamodel. This clearly shows that the standard deviation is high for 
the 50 mm discharge openings. This is most likely related to the slow and 
irregular discharge process and the possibility of arch formation as is 
discussed in more detail in Appendix A.1. For the 75 and 100 mm 
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Fig. 5. Sampling grid with five discharge opening sizes and seven hop
per angles. 
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discharge openings we see similar levels of variation, up to 0,1 kg/s, 
which starts to increase again with increasing discharge openings. At the 
60- and 75-degree hopper angles we see low variation in the discharge 
rate for the higher discharge openings. 

Based on the mean and standard deviation of the discharge rate the 
Gaussian Process Regression (GPR) metamodel is trained as described in 

Section 3.1. This leads to the coefficients for the GPR for the discharge 
rate listed in Table 1. Together with the provided dataset, these values 
allow the GPR metamodel, GDR, to be reconstructed. Based on the large 
difference between c1 and c2 the included flexibility for different pa
rameters is justified. 

In Fig. 6 (c,d) the contour plots of the mean and standard deviation 
predictions by the DEM-based metamodel are shown. Fig. 6 Fig. 1 (c) 
shows isolines of constant discharge rate and exhibiting a near linear 
relation with the discharge openings based on the distance between the 
isolines as was also visible in the DEM data. The dependency on the 
hopper angle shows a slightly curved relation. Fig. 6 (d) shows the 
standard deviation where regions of low standard deviations are visible 
indicating areas containing reliable designs. 
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Fig. 6. Surface plots of the mean and standard deviation predictions by the metamodel (a,b) contour plots of the mean and standard deviation (c,d) and the per
centage error between the DEM-based metamodel predictions and DEM data for mean and standard deviation (e,f). 

Table 1 
Coefficients of Gaussian Process Regression Metamodel  

Metamodel σf l2 c1 (α dir.) c2 (W0 dir.) 

GDR Discharge rate 1.797 1 1.201 0.166  
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Visually it is difficult to assess the errors made in predicting mean 
and standard deviation of the discharge rate in the design space. 
Therefore the percentage error in prediction is depicted in Fig. 6 (e,f) for 
the mean and standard deviation respectively. Here the error percent
ages for the 50 mm discharge opening are left out because these per
centages are very high for both mean and standard deviation. This can 
be explained because all simulations at the 50 mm discharge opening 
encountered arching at one point during the simulation leading to high 
errors. This is highly undesirable in a hopper design and therefore it is 
not likely that design solutions for the prescribed cases will be found in 
this region. In the remainder of the design space, the variance prediction 
is reasonably accurate and follows the trend in the data and therefore 
deemed good enough to be included in the optimization. For further 
information on the arching phenomena in the simulations we refer to 
Appendix A.1. In Fig. 6 (e) it is seen that the error for the 75 mm 
discharge opening varies greatly with the hopper angles. An over or 
under estimation of at most 6% of the discharge rate is expected for most 
angles except for the 30, 75, and 82.5 degree angles. As is the case with 
the 50 mm opening, the 75 mm opening DEM simulations encountered 
arching as well but not for all simulations. For the 100 mm discharge 
opening we see that the fit is accurate within 1.5%. At 150 mm the 
metamodel is accurate except for the 60 and 75-degree hopper angles 
which look at errors of at most 6%. For the 200 mm discharge opening 
the error is within 1.5% except for the 90-degree angle. 

In Fig. 6 (f) the error in standard deviation prediction shows signif
icantly higher values than for the mean prediction. This was already 
clearly visible in Fig. 6 (a) where large differences between the training 
data and the metamodel surface were seen. As a results the error fluc
tuates quite severely between − 40 and +40% throughout the design 
space. Even with these high fluctuations, Fig. 6 (a) shows that the 
metamodel is able to follow the trend in the data which is essential for 
robust optimization. However, for the application it is important that the 
prediction of the standard deviation is also accurate. Even though it can 
be used, the analysis of the metamodel and DEM-data clearly indicates 
that for quantitative prediction, the reliability of the standard deviation 
should be increased by increasing the number of repetitions of the DEM 
simulations in each data point. 

Overall, in most regions of the design space the mean prediction 
error is well below 3% with some exceptions reaching 6%. Based on 
these errors in mean prediction and the trend presented by the meta
model for the standard deviation, we proceed with using the metamodel 
in deterministic and robust optimization. 

4.2. Deterministic vs robust design optimization 

To identify the effect of using deterministic and robust design opti
mization (DO) two case studies are investigated. In these case studies we 
optimized a hopper design using deterministic and robust optimization 
for a discharge rate of 4 kg/s (Case 1) and 8 kg/s (Case 2). In Fig. 7 the 
contours of the discharge rate (a) and standard deviation (b) are visu
alized in the design space. The magenta and red coloured dots are the 
results from the deterministic optimization for Case 1 and 2. The yellow 
and blue dots represent the solutions for the robust optimization for Case 
1 and 2. 

The deterministic optimization results clearly show that solutions are 
not unique and present a wide variety of design options with the same 
performance. Based on the single objective for the discharge rate in both 
cases the solver will return solutions on the isoline for the corresponding 
discharge rate, which represents designs of equal performance. How
ever, the solutions for both cases are all located in the middle of the 
isolines and not at the outer hopper angles even though the solutions 
would give the same result. This can be explained by the interior point 
method which uses a barrier function that initially promotes searching 
the interior of the domain. 

The robust optimization results for cases 1 and 2 including the 
variance as a second objective clearly show more distinct solutions 
compared to the deterministic results. The robust optimization results 
for case 1 show three distinct optima of which the 81 degree and 104 
mm design has the lowest variance followed by the 44-degree and 103 
mm and 31-degree and 98 mm design. The location of the robust designs 
in Fig. 7 (b) shows a clear minimum in variance for the 45-degree so
lution in Case 2 and shows that the other solutions are located at points 
where there is large curvature in the isoline of the standard deviation. 
The exact designs and performance of the robust optima are shown in 
Table 2. Comparing the two cases shows that there are two solutions 
with a similar angle in both cases: the 45- and 81-degree hopper angle 
where only the size of the discharge opening is different. The 31-degree 
angle present in case 1 is not present in Case 2. Additionally, it is visible 
that there is a small difference between the target discharge rate 
compared to the deterministic results. This is caused by the additional 
objective for which the optimizer has to start making a trade-off. The 81- 
degree solution for Case 2 shows a discharge rate difference of about 2% 
and also the largest standard deviation, which indicates this is a poor 
local minimum. 

Comparing the deterministic and robust optimization results, we see 
that only the 45-degree solutions in the robust optimization are present 
in the deterministic results. The solution at 31 and around 80 degrees are 
not present when using the interior-point-method but might become 
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visible when different search algorithms are used. In the deterministic 
case, the standard deviation information from Fig. 7 (b) is not used but 
by projecting the solutions it can be seen that using the standard devi
ation by means of robust optimization could be used to make design 
decisions from the deterministic optimization results. 

Based on the deterministic optimization results a design between 42- 
and 69-degree hopper angles with their corresponding widths would 
result in a hopper with the right performance for both Case 1 and 2. For 
the robust optimization, we would have three hopper designs for Case 1 
and two solutions for Case 2. For both Cases there are solutions around a 
44- and 81-degree hopper angle that would be suitable where the 44-de
gree design is equally reliable for Case 1 and 2 but the 81-degree design 
only for Case 1. However, these designs are only based on the perfor
mance of the design and do neglect other aspects which would be 
encountered in engineering and operation of the equipment. For 
example, with an 81-degree angle stagnant zones would form on the 
slopes of the hopper walls because friction with the wall keeps the 
material in place. This would lead to a core flow dominated hopper 
which decreases wear of the equipment but might increase material 
wear. On the contrary, a 44- or 31-degree angle would lead to flow along 
the walls and a mass flow dominated hopper performance with 
increased equipment wear for abrasive materials but less material wear. 
Numerically, it would be clear that the 44/45 degree angle would lead to 
the most reliable performance for Case 2 but if engineering and opera
tional aspects are considered one of the other designs might be chosen. 
In Appendix A.2, an elaboration can be found on design considerations 
in hopper design. 

4.2.1. Verification of deterministic and robust optima 
As part of the method described in Section 2 the results from the 

deterministic and robust optimization are verified. The metamodel 
predicted a discharge rate isoline for both cases in the design space of the 
hopper. This resulted in the deterministic optimization procedure to find 
a distribution of points on this isoline. Instead of verification of all these 
points on the isoline we decided to verify the metamodel prediction at 8 
points along the isoline distributed from 20 to 90 degrees with a 10-de
gree interval with their corresponding discharge openings as found in 
Table 3. For each of these points the DEM simulation is repeated 5 times 
with an initial random packing of particles. 

In Fig. 8 (a) and (b) the mean (blue dots) and 95% confidence in
terval (CI) of the mean (blue envelope) are shown as predicted on the 
isoline by the DEM-based metamodel for both cases. In addition, the 
verification results of the mean and 95% CI of the mean are shown. 
Overall, it can be seen that the verification results show good resem
blance with the predicted results by the DEM-based metamodel for the 
isolines of 4 and 8 kg/s. Most of the designs on this isoline will be within 
2,5% of the prediction which is acceptable looking at the set tolerance of 
5%. The 95% CI from the verification results shifts with the location of 

the mean but overall the behaviour in variance is similar to the pre
dictions by the DEM-based metamodel. Some exceptions in the behav
iour are discussed below. Considering the limited number of repetitions, 
these results are promising for use of DEM-based metamodels in design 
optimization for bulk handling equipment. 

In Case 1 it is clearly visible that at the 90-degree hopper angle the 
mean has an error of 5% as well as a wide 95% CI. The second simulation 
for the 20-degree point encountered arching directly at the start of the 
simulation, therefore it is not included in calculating the discharge rate 
in this point. For the third simulation the same occurred but when the 
half of the hopper had already discharged. This was long enough for 
calculating the discharge rate and is therefore included. However, it 
must be noted that with the 20-degree case there is a high likelihood of 
arching so it is not a reliable design point. Another simulation that shows 
a large error with the predicted discharge rate is the second simulation 
for the 90-degree angle case. During the discharge of the hopper the 
mass flow slows down halfway during the discharge but comes up to 
speed again, leading to a lower average discharge rate. This slight 
plateau forming also occurred with the second and third simulation for 
the 30-degree angle. The likelihood of arching increases with decreasing 
discharge opening sizes which is clearly the case for the 20-degree 
hopper angle. Plateau forming or stalling during discharge is a phe
nomenon that can ultimately lead to arching so it is not strange that this 
occurs at the 30-degree angle and is likely to become more severe with a 
decreasing discharge opening size. In the 8 kg/s case we do not observe 
arching which can be explained by the fact that the discharge openings 
never reach the sizes in which arching starts to occur. This case shows 
that at 20-, 50- and 60-degree angles the verification results are 
matching the DEM-metamodel prediction. For the 40-, and 70- to 90-de
gree angles we see an overestimation of approximately 2.5% for the 
mean discharge rate. One exemption is the 30-degree angle, which 
shows a 5% overestimation. The confidence interval shows approxi
mately the same behaviour as predicted but is on average wider than 
predicted. 

In addition to the verification of the deterministic results the robust 
optima are also verified. Therefore 5 repetitions of the DEM model 
simulation for each local optimal design have been carried out as was 
the case for the generation of the DEM data for the metamodel. The error 
percentages for the verification of the robust optima are shown in 
Table 4. For visualization, these results are combined with the deter
ministic results in Fig. 8 where in (a) the verification results for Case 1 
are shown and (b) shows Case 2. The green dot represents the predicted 
mean for each optimum and the green rectangle represents the 95% CI of 
the mean in this location. The Case 1 discharge rate verification results 
show that the mean for the 31 degree hopper angle is a closely matches 
the predicted optimal mean. However, the 95% CI is 1.7 times wider 
than for the predicted mean. For the other two optima it can be observed 
that the metamodel predicts a higher mean than the verification results. 

Table 2 
Local optima for robust optimization results with the corresponding average and standard deviation of the discharge rate   

Hopper angle α (◦) Discharge opening Wo(mm) 
Average discharge rate ϕ

(
kg
s

)

Standard deviation discharge rate σ(ϕ)
(

kg
s

)

Case 1: 4
(

kg
s

)
30.77 98.42 3.994 0.05 
44.11 103.2 3.999 0.051 
81.45 104.1 3.997 0.032 

Case 2: 8 
(

kg
s

)
44.96 149.8 7.993 0.039 
81.23 151.8 7.84 0.147  

Table 3 
Verification design points along the 4 and 8 kg/s discharge rate isoline predicted by the metamodel  

α(◦) 20 30 40 50 60 70 80 90 

Case 1 Wo (mm) 87.9 97.9 102.4 103.9 104.9 105.2 104.4 103.4 
Case 2 Wo(mm) 131.5 145.1 149.6 149.8 150.8 152.8 153.7 152.4  
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Fig. 8. Verification results of isoline verification points for 4 kg/s (a) and 8 kg/s discharge rate (b).  

Table 4 
Local optima for verification of the robust optimization results with the corresponding average and standard deviation of the discharge rate   

Average discharge rate 

ϕ
(

kg
s

)
Standard deviation discharge rate 

σ(ϕ)
(

kg
s

)
% error with mean robust 
optima 

% error with standard deviation in robust 
optima 

Case 1: 

4
(

kg
s

)
3.992 0.084 -0.044 70 
3.936 0.051 -1.575 4 
3.917 0.043 -1.999 35 

Case 2: 8 
(

kg
s

)
8.056 0.216 0.786 453 
8.091 0.368 3.199 150  

Fig. 9. Mean and 95% CI predicted by DEM-based metamodel, verification and validation from the deterministic and robust optimization with 5 and 10% error 
margins with respect to the mean target for Case 1 and 2 in (a) and (b) respectively. 
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The difference between prediction and verification is 1.6% and 2% for 
the 45- and 81-degree case, respectively. The CI of the 44-degree case is 
the same in magnitude but shifted due to the error in the mean. For the 
81-degree case the CI is 35% wider than predicted and shifted due to the 
large error in the mean. 

For Case 2 we see that at the 45-degree hopper angle the verified 
mean is 0,8% higher than predicted. In the 81-degree case this is 3,2% 
but here it should be observed that the found optima was already slightly 
off from the target and that the verification results are closer to the 
initial optimization target. In terms of the CI it can be seen that it is 
wider in both cases up to 4.5 times for the 45-degree angle. Considering 
the mean prediction we would accept these optima because they are 
within the 5% tolerance that we have set even though the confidence 
intervals show significant errors. However, for a full evaluation it is 
important to study how the optima of both cases behave when these are 
experimentally validated. 

4.2.2. Validation of deterministic and robust optima 
We performed validation of the deterministic and robust optimiza

tion results by means of experiments using the setup introduced in 
Section 3.1. For the validation of the DEM-based metamodel prediction 
the same designs as for the verification simulations are used. Here it is 
important to notice that the hopper angle and size of the discharge 
opening in the points presented in Table 3 cannot be set exactly because 
of the measurement error of the angle (+/− 0,1 degree) and discharge 
opening (+/− 1 mm) of the physical setup. In Fig. 9 (a) and (b) the DEM- 
based metamodel prediction for the discharge rate for Cases 1 and 2 are 
shown combined with the verification results. These are the same as 
shown in Fig. 8 but the validation results for the deterministic and robust 
optimization are added. The validation results for the deterministic 
optimization are represented by the red triangles for the mean and the 
red shaded area for its 95% confidence interval. For the robust optimi
zation results yellow triangles are used and the yellow shaded area 
represents its 95% confidence interval. Fig. 9 In addition to these visual 
results the percentage errors with the optimization target are presented 
in Table 5. 

Overall we can see that the DEM-based metamodel and the DEM 
model itself underestimate the actual discharge rate of a design in both 
the deterministic and robust cases. However, in the preceding verifica
tion it was found that the DEM-based metamodel is relatively accurate in 
predicting the outcome of a DEM simulation for both the mean and its 
confidence interval. The validation results indicate that the DEM-based 
metamodel predictions are closer to experimental results in the region of 
Case 2 of the design space than for Case 1. 

For deterministic Case 1 the largest mean error between the DEM- 
based metamodel prediction and the experimental results is present at 
a 20-degree angle and is about 13%. In the 30- to 60-degree angle range 
the error fluctuates between 3.5 and 6.5%. At 70 degrees it is observed 
that the error in mean prediction is around 4%. Remarkably, this is the 
only design for which an underestimation of the discharge rate is 
observed in the validation even though the load cell data is consistent. 
For the 80- and 90-degree angles we see 6 to 7.5% errors. The robust 
Case 1 validation results show an error of 12% for the 31,8-degree 
hopper angle, 7,5% for the 45-degree angle and 16,5% for the 81-degree 

angle. All of these results show that the found robust optima underes
timate the actual discharge rate. Relative to the deterministic validation 
results the robust validation result shows an higher error. In terms of the 
95% confidence interval it can be seen that this is similar for the pre
dicted 95% CI by the DEM-based metamodel and even slightly smaller. 

The validation results of deterministic Case 2 shown in Figure 9 (b) 
show a maximum error at the 90-degree hopper angle of around 9%. At 
the 40-degree hopper angle the error in mean prediction is around − 8%. 
All the other errors are within the 5% error margin. In terms of the 95% 
confidence interval we see that it is twice as small as the predicted width 
of the confidence intervals by the DEM-based metamodel. For Case 2 the 
DEM-based metamodel predicts local optima at the 45 and 80-degree 
hopper angles. The validation results seem to show the same behav
iour which reinforces the idea of quantatively using the variance in 
robust optimization. For the robust optima it can be seen that the 45-de
gree optimum has an error of around 4% and the 81-degree angle a 9% 
error. The 95% CI of the first optima is 230% as wide as the prediction by 
the DEM-based metamodel whereas for the second optimum the error is 
only 33% wider than predicted. This indicates that predicting confi
dence intervals is difficult, especially with a low number of repetitions. 

In both cases relatively large errors are observed in the validation 
results whereas the verification results did not show these to the same 
extent. The source of this difference can be explained by comparing the 
DEM data to experimental results in the same data points. This shows 
that the 2% error obtained from the calibrated DEM model at a 45-de
gree hopper angle and 100 mm discharge opening is not consistent 
throughout the design space. In Appendix A.3 these results are 
compared in more detail. These results showed that the error between 
DEM and experimental data is not consistent throughout the design 
space. When the DEM model cannot produce accurate predictions in the 
entire design space, increased errors in the performance of optimized 
designs can be expected. 

Comparing the validation results from both cases it is observed that 
the validation error of the mean prediction by the DEM-based meta
model stays within the 10% error threshold for Case 2. For Case 1 we see 
that in most locations the error stays within 10% of the DEM-based 
metamodel prediction except for the 20-degree hopper angle and the 
first and third robust optima. In terms of acceptance of the solutions on 
the isolines we would accept most solutions if the 10% error threshold 
for the validation was considered. However, the results clearly show that 
the error at the 20-degree angle is significantly larger than for the other 
solutions. These results indicate that there is a significant error between 
the experiment and the DEM-model even though it has a 2% error based 
on the calibration [7]. Based on the trajectory of the isoline results it is 
clear that the error is not consistent throughout the design space. This 
means that the assumption of uniform errors throughout the design 
space cannot be made. Explanations for this inconsistency are the 
different flow velocity regimes in the different designs which are not 
considered in the calibration. 

Based on the validation results we can assume that the DEM-based 
metamodel optimization results for Case 2 can all be used and for 
Case 1 only in the range from 30 degrees and higher even though the 
robust optima showed errors higher than 10%. From a deterministic 
optimization perspective all designs in these regions would be 

Table 5 
Local optima for validation of the robust optimization results with the corresponding average and standard deviation of the discharge rate.   

Average discharge rate 

ϕ
(

kg
s

)
Standard deviation discharge rate 

σ(ϕ)
(

kg
s

)
% error with mean robust optima DEM-based 
metamodel prediction 

% error with standard deviation in 
robust optima 

Case 1: 

4
(

kg
s

)
4.46 0.042 11.67 -16.75 
4.29 0.042 7.36 -18.35 
4.66 0.072 16.52 124.11 

Case 2: 8 
(

kg
s

)
8.32 0.127 4.08 226.45 
8.74 0.196 11.49 33.35  
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acceptable. For the robust optimization results only the 45-degree 
design for Case 1 would be acceptable as are both solutions for Case 2. 
A question that should be asked is whether the optimization is actually 
robust if errors seep in the method by means of the quality of the data, 
DEM-model, and metamodel. However, the small errors between DEM- 
based metamodel predictions and the verification results for a small 
number of repetitions shows that MBDO using a DEM-based metamodel 
has potential. 

5. Conclusions 

In design of bulk handling equipment the stochastic nature of gran
ular material behaviour is rarely included as is the use of metamodel- 
based design optimization (MBDO). Therefore this study investigates 
the effect metamodel-based deterministic and robust optimization 
strategies have on hopper design optimization. Both strategies use DEM- 
based metamodels for the prediction of mean and variance and are 
verified and validated by the DEM equipment model and experiments, 
respectively. The goal of this study is to introduce a robust MBDO, 
identify the differences between deterministic and robust optimization 
strategies and the challenges that might be encountered. 

The deterministic and robust design optimization case studies show 
that for deterministic optimization a multitude of local optima are 
distributed over the isoline of the desired discharge rate whereas the 
robust optimization zones produces more specific solutions by using the 
variance. The verification of the deterministic optimization results 
showed an error in mean prediction within a 5% bandwidth, whereas 
the errors found in robust optimization results did not exceed 2,5%. The 
confidence intervals showed more fluctuation and are therefore less 
reliable. However, based on the mean prediction it seems that robust 
optimization leads to better performing optima. 

One common issue in the use of metamodels in a design process is the 
effect of error propagation due to a mismatch between the metamodel 
and the data it is trained on. This is true for metamodels that predict a 
mean or both mean and variance and is directly affected by the 

reliability of the used mean and variance training data. In addition, the 
optimization results are affected by a mismatch between DEM model 
and experiments. These errors became clearly visible in the verification 
and validation stage of the deterministic and robust optimization results. 

Overall, the use of DEM-based metamodels gives insight on the 
behaviour of bulk handling equipment which can be used for finding 
suitable designs in the design space. For bulk handling systems with 
multiple design and performance parameters and similar problems in 
other domains, design optimization strategies such as the deterministic 
and robust approach are good options to find a range of optimal designs. 
The robust optimization finds designs which in addition to optimized 
mean performance also exhibit low variance. However, the quality of 
the optimization relies highly on the quality of the mean and variance 
data that is available for the metamodel. This is one of the biggest 
challenges in applying robust MBDO in design of bulk handling 
equipment. 
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Appendix A. Appendix 

In the article we focussed on the differences between MBDO in case of deterministic and robust optimization. However, in designing bulk handling 
equipment specific phenomena occur such as arching which is possible in all equipment where narrowing channels for granular flow are used. In 
Appendix A.1 the occurrence and causes of arching in both simulations and experiments are evaluated. Next, Appendix A.2 discusses the design 
considerations one can make in deciding which design is optimal for a specific application. Lastly, Appendix A.3 discusses the mismatch between the 
DEM-data and the experimental data which was also apparent in the presented verification and validation results. 

A.1. Arching 

As mentioned at the beginning of this section arching may occur at small discharge openings if the discharge opening is smaller than ten times the 
average particle diameter [18]. For the case study this means that the minimum size of the discharge opening should be 100,4 mm. However, in the 
design space also 50 a 75 mm size samples are included. In Fig. 10 the occurrence of arching in both experiments and simulations is shown for each 
hopper angle for the 50 mm discharge opening in (a) and 75 mm discharge opening in (b). In the experiments it was observed that at a 60-degree angle 
and 50 mm discharge opening arching occurs at each instance. For an increasing and decreasing angle we see that the probability of forming of arches 
reduces. In contrast, in the DEM simulations arches form for each simulation at 50 mm discharge openings. Looking at the 75 mm discharge opening 
results it can be seen that the simulations show arching at small and large angles but no arching at a 75-degree angle. This behaviour is exactly opposite 
to the experimental results with a 50 mm discharge opening. These results indicate that the DEM model is not able to reproduce a phenomenon such as 
arching accurately. Moreover, these results show that validation of calibration results is important and that multiple KPIs should be verified and 
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validated.
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Fig. 10. Arching in the hopper for experiments and simulations for 50 mm discharge opening (a) and 75 mm discharge opening (b).  

A.2. Design considerations 

In design optimization of bulk handling equipment it is important to consider additional behaviour of material and equipment in assessing the 
found optima. One of these phenomena was arching which was described in A.1. In bulk handling equipment the interaction between material and 
structure is not only determined by the geometry but also by the condition of the structure. The stainless steel wall in the hopper geometry is impact 
loaded and has a friction coefficient of 0,52 which results in a friction angle of 27,5-degrees. In Fig. 7 showing the contour plots, this means that all 
points around the 62,5-degree angle are likely to show stick slip behaviour. For angles below 62,5-degrees there is continuous movement of particles 
and possibility of mass flow. Whereas, above 62,5-degrees, stable stagnation zones and core flow will occur. In Fig. 7 showing the optimization results 
for Case 1 we see that the 30 and 45-degree solutions for the DEM data will likely be mass flow. However, the third solution for the DEM data is at an 
80-degree angle which is likely in the core flow regime. With respect to the design choice in the DEM solution of Case 1 the choice is not limited to the 
discharge rate and its variance but also to the type of system that is desired. If the material that is put through the hopper has an abrasive nature, the 
mass flow designs are not convenient because they would increase equipment wear. This means that the core flow design would be the correct choice. 
However, it can be argued that friction between particles is not desired because of material wear making the mass flow designs the better option 
despite the lower variance in the core flow design. It is important that when the design is chosen the optimization result is not blindly accepted because 
other aspects of the design in operation should be considered. 

A.3. Comparing DEM results and experiments 

The validation results in this study showed differences in predicted discharge rates between the DEM-model simulation results and experiments. 
Based on the calibrated DEM-model an overestimation of 2% was expected by the DEM-model compared to the experiments. However, this error 
seemed to be inconsistent throughout the design space as shown by the validation results. In Fig. 11 (a,b) we have shown the average discharge rate 
and its standard deviation based on the DEM-data and their equivalent experiments using five repetitions for the sampled design space along with the 
respective errors for each discharge opening and angle in Fig. 11 (c). As can be seen the results from the calibration is a 2% error at a 45-degree angle 
and 100 mm discharge opening. As can be seen for the other angles for the 100 mm discharge-opening errors up to 6% are present. This means that if 
the DEM model is used to predict the discharge rate for a 20-degree angle and 100 mm discharge opening the result is 5% higher than the value 
obtained from the experiments. However, getting closer to the 75 mm discharge opening leads to an underestimation of 5%. This means that 
significantly larger errors between DEM-model and experiment are present in different parts of the design space than expected from the calibration 
[7]. Combined with the introduced error by the DEM-based metamodel this can lead to additional errors in the different steps in the methodology. To 
prevent this, additional calibration experiments can be used to resemble the physics of the system. 
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