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Abstract

Monitoring the release logs of modern online software is a challenging topic be-
cause of the enormous amount of release logs and the complicated release process.
The goal of this thesis is to develop a pipeline that can monitor the release logs and
find anomalous logs, automating this step with anomaly detection and reducing the re-
quired manual effort. We improve the pipeline from the recent work of Microsoft [34],
enabling it to monitor logs with different severity levels and extremely long sequences.

We first use IPLoM and its reconciling step for raw logs to obtain log events and
then use log event sets, a simplified version of log sequences, for anomaly detection.
The outlier scores of log event sets are calculated using anomaly detection algorithms,
and those with an outlier score higher than the threshold are clustered to reduce the
number of output. In the final output result, we propose two ranking functions to sort
the potential anomalous clusters and only show the top 10 results. Another comple-
mentary step beside anomaly detection is designed to capture recurrent anomalies in
known clusters that have seen before. By finding the optimal parameters for hierarchi-
cal clustering, nearest neighbor distance, and LOF, we test the performance of pipeline
on Adyen log data and make our suggestions. Finally, we also test the robustness of
the pipeline with two types of artificial data sets.
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Chapter 1

Introduction

Monitoring the release of modern online software is a quite challenging topic as there may
be hundreds or even thousands of developers working on one software. Changes to the
code and configuration may work in the test environment, but anything could go wrong in
the production environment. The release is generally a manually intensive process, which
requires experienced developers who have the expertise of the whole software to monitor
the process. The goal of this thesis is to develop a pipeline that can monitor the release
using logs as input, automating this step and reducing the required manual effort.

The log data set in this thesis is provided by Adyen, a financial-technology company
based in Amsterdam. Some of the hosts in Adyen can generate millions of log entries with
different verbosity levels from various applications during a release. For this thesis, we
develop a pipeline that utilize anomaly detection to capture logs that may cause problems
for the release and compare it with recent research from Microsoft [34].

Some fundamental background concepts within the thesis, such as deployment, release,
logs and anomaly detection, are first introduced in this chapter. Research questions are then
proposed as the guidelines of the thesis. Finally, the structure of the thesis is stated briefly
in the last section.

1.1 Deployment and Release

The deployment of software is a repeated process where new software is introduced to the
infrastructure to address the business need [49]. The release of software is the final step of
bringing the code changes to the end users [1] and is the step when the code is updated,
compiled, and launched on the hosts for online systems. In other words, the release is an
important step in the deployment process.

A deployment pipeline is used to describe the deployment process, from software de-
velopment to the release. An example of a designed pipeline is shown in Figure 1.1 from
[26]. The deployment process consists of building, deploying, testing and releasing soft-
ware [26]. Being the first step of the pipeline, the commit stage in the leftmost makes sure
that the code meets the lowest standard of requirements, which consists of successfully
compiling the code, passing the automatic unit tests, and running code analysis. The second

1



1. INTRODUCTION

step is the automatic acceptance testing that checks if the system meets basic needs of users
or functions. Later, automatic capacity testing is used to model the production environment
as much as possible to make sure the system is of high performance. The fourth step in the
pipeline is the manual testing which runs to capture errors that are not captured by the au-
tomatic tests. The release is the last step and might be the scariest step for most developers
because any error within the pipeline would likely lead to failure of the release step. This
includes run-time errors, performance issues and even failure of the systems. As suggested
in [26], the deployment of the software and configuration management should all be done
automatically to reduce the errors in the release in the production environment.

Figure 1.1: A deployment pipeline example from [26]. The first step is the commit stage
where code is compiled and goes through basic unit tests. The second step is the automatic
acceptance testing for basic functions, after which software would be tested for capacity
using data similar to production environment. Later manual testing in the fourth step can
further capture errors neglected by automatic tests. The release is the final step of the
pipeline, bringing the software to production to the end users.

1.2 Logs for Monitoring Release

Software logs, where status and actions of the software are logged into, are a useful resource
for developers to understand the behavior of software and thus play an essential role in
monitoring the status of the hosts for companies with online services systems. Logs mainly
consist of plain text attributes that are written by developers to record information using
different logging formats.

Besides being used in daily monitoring, logs can also be used for monitoring code re-
lease. Release monitoring is typically a manual step, which can be time-consuming and
tedious because of the need to inspect logs and the statistic data of the hosts, such as con-
nection timeout frequency and warnings number. Also, a manual procedure has to be re-
peated for each deployment and does not scale well when the number of hosts in the system
continues to increase.

As shown in Figure 1.1, most tests and steps including the release step should be au-
tomatic for the scalable growth of the business. Though different companies may have
different deployment pipelines, deployment should follow the automatic patterns as much
as possible. Manually monitoring release should be replaced by automatic monitoring to
achieve a more smooth and less risky deployment as stated by [26].

2



1.3. Log Abstraction Methods

1.3 Log Abstraction Methods

Given the massive log data generated during the release of the production environment, it
is best to use anomaly detection techniques to automate the release monitoring. However,
the logs need to be preprocessed into numerical feature vectors from plain text attributes
before being used as the input of anomaly detection algorithms. Rarely two logs would be
exactly the same because logs also contain variable information that is changed whenever
a log is generated. Thus, analyzing raw logs directly is barely possible and may lead to
curse of dimensionality. To solve this problem, a log abstraction method is used to parse the
raw log messages and generate log templates. Each template is a plain text that is shared
by multiple logs and represents an event or status of the system after filtering out irrelevant
information. Compared to the actual number of raw logs, the number of templates is much
smaller since it would be very close to the actual number of code lines that generate logs in
an ideal situation.

2008-11-09 20:35:32,146 INFO

Receiving block blk -1608999687919862906 src: /10
.251.31.5:42506 dest: /10.251.31.5:50010

Figure 1.2: A log example from [22]. “2008-11-09 20:35:32,146” is the the times-
tamp that the log is generated. “INFO” is the verbosity level of the log, indicating the
severity level. The text in light grey background is the log message. In the log message,
constant parts are of blue font color and variable parts of black font color.

Raw logs stored in hosts usually consists of multiple attributes, including timestamp,
verbosity level, and log message. In the log example in Figure 1.2 [22] , “2008-11-09
20:35:32,146” is the timestamp that the log has been generated and “INFO” is the
verbosity level or severity level. The log message is the text in the grey background, which
consists of two parts: constant parts of blue font color and variable parts of black font color.
Constant parts are originally written by developers and are shared by multiple logs. Variable
parts carry run-time information such as the system status or a task ID. In this message, we
have two types of variable parts block ID and IP address. “blk -1608999687919862906” is
the block ID in Hadoop File System. “/10 .251.31.5:42506” and “/10.251.31.5:50010” are
IP addresses. The raw log message should be parsed into a log event as “Receiving block *
src: * dest: *” by replacing the variable parts including block ID, source and destination IP
address in the raw message.

Based on whether to use source code or not, log message abstraction methods can be
divided into two categories. If the source code is available, it is possible to find the code
line that generates logs depending on the language and generate log events directly from the
source code, for example by finding print statements. If the source code is not available, log
events can also be found by analyzing solely the raw logs and still achieve a high accuracy
[22]. One of the common strategies of such method with only raw logs as input is to use

3



1. INTRODUCTION

heuristic rules, such as assuming that tokens in front may have a higher chance to be constant
and pure digits may be more likely to be variable parts [27][28][23]. The other common
strategy is to use a clustering algorithm suitable for raw logs [19][36][37][50].

More details about the log abstraction methods can be found in Chapter 2.

1.4 Log Event Sequences and Log Event Sets

A task in software usually refers to a job to achieve a particular purpose, such as one pay-
ment task in Adyen or a Map-Reduce job in Hadoop. Adyen uses two type of task IDs, PSP
references and thread IDs, to track one task in the systems. PSP references are the unique
task IDs generated for tasks such as payment processes and are shared by logs among dif-
ferent hosts. Thread IDs are more general task IDs if PSP references are missing. Other
software can have different task IDs. The log with same task IDs can form into a log
event sequence, which represents a specific step that the logs go through. When a task
goes through an entirely different log event sequence, this may be an unwanted error in the
system.

To further simplify the log event sequences, the permutations and order of the log events
are ignored. In other words, only the occurrence of the log events is considered. All log
event sequences would become log event sets. If two log event sequences have the same
combination of log events, they would end up with the same log event sets.

1.5 Weighting Log Events

Different events have different significance in identifying the potential problems in a release,
for example, an ERROR event is more likely to be a bug in most of the case than an INFO
event. Thus, three intuitive weights are proposed in the pipeline.

1. Frequency weight: the less frequent events indicate more important information.

2. Contrast-based weight: events which never occur before release should be more
important than those which have showed up before.

3. Severity weight: events with higher severity have more discriminative power than
those with lower severity.

After calculating each weight for one event, the three weights can be combined as shown
in Equation 4.7. More details about the weighting can be found in Section 4.4.

1.6 Anomaly Detection Using Log Event Sets

After using log abstraction methods to parse the raw logs and get log event sets features, an
anomaly detection algorithm needs to monitor the release using the log events. Anomaly
detection is a technique that finds patterns in normal data and captures data points that
behave differently from the expectation [10]. The goal of anomaly detection is to build

4



1.7. An Example Data Set for the Pipeline

a model that represents the normal data points well and to label any point that deviates far
away from normality an anomaly. Thus the key points are how to build the model for normal
log data and how to measure the deviation of the new log data points from the normal log
data.

Anomaly detection can be categorized as classification based, clustering based, nearest
neighbor based, statistical based, information theoretic based, and spectral based [10]. It
has broad applications in industries, such as intrusion detection systems, credit-card fraud,
medical diagnosis, and law enforcement [2].

New log events are generated because of the update of the source code, which means
new features are created after release. It is hard to determine which log events are anomalies
based merely on the severity. Extracting features from logs is an essential challenging part
in the pipeline. Besides, the chosen anomaly detection algorithm should be able to give
an interpretable result and provide feedback to the developers. More details on anomaly
detection algorithms using logs as input can be found in Chapter 2.

1.7 An Example Data Set for the Pipeline

In this section, we use an example data set from [34] as the input of the designed pipeline.
Only some essential steps are included in this section to give a rough introduction. Other
detailed designs of pipeline can be found in Chapter 4.

First, we use a log abstraction method to map every log to a log template by its message
attribute. Logs with the same task ID would be linked together to build a log sequence.
Later, we divide log sequences into history log data and new log data based on the times-
tamp. We would use log event sets in history log data to detect anomalies in new log data.
At last, nearest neighbor distance is used as the anomaly detection algorithm to calculate
outlier scores for new log data.

1.7.1 From Log Event Sequences to Weighted Vectors

After applying a log abstraction method to the raw logs and tracking the task ID to form
log sequences, we obtain three log sequences from our data set: [2,1,1,2,3], [1,3,1,4]
and [1,2,4]. The digits in the sequences represent the event IDs obtained from the log
abstraction method. The order of the digits in log sequences represent the relative order
within the sequences according to timestamp. Taking [1,3,1,4] as an example and assuming
its task ID is 2, the task ID 2 goes through event 1, then event 3, later again event 1 and
finally event 4.

As shown in Figure 1.3a [34], three log sequences are first processed into log event sets
by removing all duplications and ignoring the internal order of events. For example, we
first neglect the original orders in the left sequence [2,1,1,2,3] from Figure 1.3a and sort it
in the event IDs, the sequence then turns into [1,1,2,2,3]. Later, the duplicates are again
removed, finally a log event set [1,2,3] is obtained.

Because there are in total 4 types of log events in our data set, each log event set is
converted into a 4-dimensional feature vector.

5



1. INTRODUCTION

(a) Constructing weighted vectors from log event sequences in history log data.
The uppermost part consists of the original log event sequences formed by track-
ing the task IDs. The middle rectangles are log event sets derived from the log
event sequences by removing duplications and permutations. The last part con-
sists of weighted vectors where the weights are calculated based on Section 1.5.

(b) Constructing weighted vectors from log event sequences in new log data.
Weights of log events are from [34]. Log event sequences are not shown in this
example. The uppermost part consists of log event sets derived from the log
event sequences by removing duplications and permutations. The bottom part
consists of weighted vectors where the weights are calculated based on Section
1.5.

Figure 1.3: Constructing weighted vectors from log event sequences in history log data and
new log data [34].

6



1.8. Adyen and Its Deployment Strategy

1.7.2 Anomaly Detection Using Nearest Neighbor Distance

After obtaining the 4-dimensional vectors in Figure 1.3a, anomaly detection algorithms can
be used to calculate the outlier scores for new log sequences. The history log data consists
of three log event sets: [1,2,3], [1,3,4] and [1,2,4] from Figure 1.3a. We assume that new
log data consists of [1,2,3,4], [1,2], [1,4] and [3,4] as shown in Figure 1.3b [34]. We use
2-nearest neighbor average distance as an outlier score for each new log event set. There
are also other anomaly detection algorithms to calculate outlier scores as shown in Section
4.6.

For each new log event set, we find the 2 nearest neighbors in the history log data, and
calculate the average distance between the new log data and the 2 nearest neighbors. The
result is shown in Table 1.1. [1,4] and [3,4] have a higher outlier score of 0.410 and 0.436.
Thus they would be more likely to be anomalies in this data set.

Table 1.1: 2-nearest neighbor average distance on example data set

New Log Event Sets 2-Nearest Neighbor Average Distance
[1,2,3,4] 0.185
[1,2] 0.185
[1,4] 0.410
[3,4] 0.436

1.8 Adyen and Its Deployment Strategy

In this thesis, research is conducted using log data from Adyen. Before building the pipeline,
it is important to understand the deployment strategy of Adyen and how developers in
Adyen monitor release.

1.8.1 About Adyen

Our industry partner Adyen is a fast growing financial technology company. It aims at pro-
viding merchants with one single payment platform solution that allows them to do business
around the globe. Since Adyen is growing fast, the code is frequently updated which re-
quires scalable release monitoring during the deployment.

1.8.2 Deployment Strategy and Using Logs for Debug

There are three types of code releases each week in Adyen which are in the order of Beta,
Test and Live as shown in Figure 1.4. Depending on the type of release, Beta Hosts, Test
Hosts or Live Hosts would go through the release processes at each release day separately.
Beta Hosts are internal hosts where artificially generated payments and other processes are
used to test for any deviations from the expected behavior with the new code version. Test
Hosts are also used to test new functions but with real processes. Live Hosts are the hosts
in the production environment.
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Figure 1.4: Code releases in Adyen. The first release is the Beta release where new functions
are tested with artificial data. The second release is the Test release, allowing part of the
users actually test the new functions. The Live release is the last one, where all users can
get access to the new functions.

In this thesis, only log data collected in the live environment is used for analysis and
experiments. At Adyen, an enormous amount, currently over 1 billion, of logs are generated
every day using a Java logging framework Log4j1. A detailed log entry example is shown
in Figure 3.1. The logs from different hosts are stored in an Elasticsearch database and
visualized using Kibana dashboard as shown in Figure 1.52. Elasticsearch is a distributed
search engine which provides fast search on JSON-like documents [14]. Elasticsearch is
convenient for searching logs as users can filter values in certain keys.

Figure 1.5: A Kibana dashboard example from Elasticsearch official website. The his-
tograms show the frequency of a certain searching query. The details of each log entry are
not shown in this example, but they are usually at the bottom of the histograms.

Adyen uses the green-blue deployment pattern to manage releases. In the green-blue
deployment pattern, we keep two same production environments; one is called the blue
environment, and the other one is called the green environment [26]. For example, if the
current release fails in the blue environment, we can use the load-balancer to switch back
to the green environment which is still running code from the previous release. During the
release process, a newly released host is compared with other hosts running the previous

1https://logging.apache.org/log4j/2.x/
2https://www.elastic.co/guide/en/beats/metricbeat/current/view-kibana-dashboards.html
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release in the platform. Release monitoring has manual involvement of developers and
operations staff. Developers and operations staff are responsible for monitoring logs of the
current host and the performance of the whole platform. They would investigate for signs
of new issues or newly introduced bugs of the platform. This monitoring method requires
knowledge of the whole platform.

Adyen uses an inhouse developed tool to monitor individual host during a release. This
is a rule-based method that requires expertise of the code and system. A web interface tool
named Logness [17], which collects all history WARN and ERROR logs and clusters them
together according to the similarity of the message strings, are also used to monitor release
by sending a notification about new log clusters. More details about these tools can be found
in Section 2.1.

1.9 Research Questions

The goal of this research is to develop a log monitor pipeline that captures the most prob-
lematic logs during a release. Those may be the cause of problems such as failures or per-
formance issues. Based on the previous works and current monitoring method of Adyen, we
propose three research questions to help develop a useful and robust pipeline using anomaly
detection.

Since the most challenging part of the pipeline is to model the log events after applying
a log abstraction method, our first question is:

RQ1: Is it useful to apply the weighted vector model to log event sets in monitoring
release logs of Adyen by anomaly detection?

After modeling log events, an anomaly detection algorithm needs to be chosen to dis-
cover the log events that may lead to problems in the host. Based on simplicity and inter-
pretability, three proximity based algorithms are tested in an experiment with corresponding
optimal parameters. Apart from these parameters, a distance metric needs to be chosen to
define the proximity or similarity of different data points. As most of the data points are
quite sparse compared to the number of features, the choice of distance metrics affects the
performance of the anomaly detection algorithms greatly. Our second research question is:

RQ2: What are the optimal parameters and distance metrics for proximity-based anomaly
detection algorithms that are used in release log monitoring?

As shown in Section 1.5, the basic assumptions of anomaly detection are that events
with lower frequencies, higher severities and newly seen in the release have a higher chance
to be anomalies. After all the optimal distance metrics and corresponding parameters are
found for anomaly detection algorithms, the anomaly detection algorithms need to be tested
with the cases when one of the assumptions of anomalies does not hold.

To this end, two additional artificial data sets are generated with the original data set
separately and used to see if the pipeline is robust enough. The first artificial data set is
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INFO anomalies data set where all anomalous log events are all set to INFO severity. The
other artificial data set is recurrent old anomalies data set, where the start time of the release
is changed in such way to make the anomalies occur for the first time just before the release
and happen again during release or after release. With these two data sets, the robustness of
the pipeline can be tested. The final research question is:

RQ3: Is the anomaly detection pipeline robust in the release when assumptions of the
anomaly do not hold?

1.10 Structure of the Thesis

The structure of the thesis is listed as follows: Related work is discussed in Chapter 2. In
Chapter 3 we explore log patterns in release and discuss how to extract features from release
logs. The whole pipeline is stated in Chapter 4. Experiment results regarding different
metrics and parameters are shown in Chapter 5. Later some reflections on the project itself
are stated in Chapter 6. In Chapter 7, conclusions and potential future work are discussed.
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Chapter 2

Related Work

Quite a few works have used different anomaly detection algorithms on log analysis. In
order to understand how anomaly detection can help with monitoring release logs, recent
works of related topics, such as log abstraction and anomaly detection of logs, are described
in this chapter. Firstly, previous studies in Adyen focusing on log analysis are introduced in
Section 2.1. In Section 2.2, we discuss some message abstracting methods that parse raw
logs and reduce the number of logs for analysis. Finally, log anomaly detection algorithms
are presented in Section 2.3.

2.1 Previous Log Analysis Work in Adyen

Adyen already conducts a few research that focuses on log analysis. Peter Evers [17] builds
a tool called Logness with a web interface, which utilizes Longest Common Subsequence
algorithm to cluster logs with a severity level of WARN and ERROR together. Logness
would send a notification to developers if a new log cluster is created, which can be used
to monitor release as well. Rick Wieman [51] evaluates different passive learning methods
and uses them to detect anomalies in Point of Sale transaction. Joop Aué [5] researches
WEB API usage in Adyen and recommends ways of avoiding API faults.

All these works provide an insight into logs with Adyen from a different perspective
and provide helpful ideas for this thesis project.

2.2 Log Abstraction Methods

Reducing the size and dimension of input data is crucial to analyze log efficiently and ac-
curately when dealing with a large amount of log data. Logs consist of two different parts,
commonly-shared constant parts, which are typically plain texts written by developers, and
variable parts that change with different variable values and system status. Each log con-
sists of a certain number of tokens that are separated by delimiters, for example Adyen uses
space, and the number of tokens is defined as the length of its log message.

Log abstraction methods are algorithms that remove variable parts of logs and output
general patterns based on constant parts. Dimension would reduce dramatically if we use
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parsed logs since the number of code lines that generate logs are much smaller than the
actual number of raw logs in a system.

There are two types of methods for log abstraction, one solely focuses on parsing raw
logs, and the other one needs to parse source code. Methods which only need logs as the
input are discussed in this section for three reasons. First of all, log abstraction algorithms
that need parsing source code have to run twice because code would change after release.
Besides, such algorithms need to be modified to adjust to different languages and frame-
works. The source code may not even be available sometimes. Thus the log abstraction
methods that only parse raw logs are chosen for broader application usage.

2.2.1 SLCT: Simple Logfile Clustering Tool

Vaarandi et al. [50] introduce a clustering algorithm called Simple Logfile Clustering Tool
(SLCT) where logs are clustered based on density in sub-spaces. First, frequent words at
same positions of logs are identified as dense regions. Then a pair of cluster candidates is
chosen for all combinations of frequent words. In this way, raw logs are clustered with a
line pattern representative. For example, a cluster with frequent words of {(1,‘Password’),
(2,‘Authentication’), (3,‘for’), (5,‘accepted’)} would have a line pattern of “Password au-
thentication for * accepted”. SLCT is costly for a large log data set because it is a clustering
method.

2.2.2 A Bin-based Method

Jiang et al. [27][28] introduce a bin-based algorithm for message abstraction. The algorithm
mainly consists of four steps: anonymizing, tokenizing, categorizing and reconciling steps.

Variable parts in the logs would be replaced by a generic token in the first anonymizing
step using regular expressions, after which the logs are separated into different groups based
on the number of words and estimated variables in the tokenizing step. Log lines with the
same number of tokens and parameters would be placed in the same bin. Later, logs within
each bin are abstracted into one log template, and there may exist multiple log templates
in one bin. After three heuristic steps, a reconciling step is applied at the end to merge log
templates that differ from each other by one token at the same position.

The algorithm outperforms SLCT in precision, recall and running time. One of the
drawbacks of the algorithm, however, is that the accuracy of anonymizing should be quite
high so that logs would be put into the correct bin and abstracted to the correct template.

2.2.3 IPLoM: Iterative Partitioning Log Mining

IPLoM [36][37] is a heuristic algorithm that uses hierarchical clustering process to parse
logs into abstract events.

The first step of IPLoM is to divide logs into different groups based on the length of the
tokens within logs. Logs are again put into different partitions according to tokens at the
position that has the lowest number of unique values in the second step.

Later, different mappings with a set of unique tokens in two positions that have the
lowest number of unique words are captured in the final step of the heuristic process. For
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example, bijective relation or 1-1 relation usually indicate a strong relationship between two
elements and logs with such relation would be put into one partition. As for 1-M relations or
M-1 relations, the M side may be a variable or constant part, depending on the ratio between
the number of unique values in the set and the number of logs that have these values at the
corresponding position. M-M relations would be split into several 1-M relations.

Final message event descriptions would be created for each partition where common
constant tokens are kept, and variable parts are replaced by asterisk symbols. Also, the time
complexity of IPLoM is of O(n) where n is the number of inputting logs.

2.2.4 HELO: Hierarchical Event Log Organizer

HELO [19] is a hierarchical process that mines a template “description” for each log parti-
tion by extracting the constant parts and variable parts from log messages. It has an offline
version and an online version.

Starting with one cluster, the first step of HELO is to recursively partition logs at the
token position that has the highest number of constant words in current iteration until all
log groups have the cluster goodness above a certain threshold, where the cluster goodness
equals to the percentage of common words in all event descriptions over the average mes-
sage length. HELO considers that different tokens have different priorities: English words
have the highest priority to be constant parts and numeric values, such as 166632, have the
lowest priority. The authors claim that the threshold of cluster goodness should set to 40%
for most log data sets. The offline version of HELO has a time complexity of O(nlog(n))
and n is the number of logs.

The online version is similar to the offline version except for an extra online component.
The online component checks if a new log message meets description of group templates
and ends the search when it meets. If not, the cluster goodness is computed for each log
clusters to see if the new message can be inserted into the corresponding cluster. If no
cluster has the goodness higher than the threshold, a new cluster needs to be created. Since
the goodness needs to be computed for each log cluster, the worst time complexity for n
new coming logs is O(n2).

2.2.5 Drain: Fixed Depth Tree Based Online Log Parsing Method

Drain [23] is an log abstraction algorithm that uses a fixed depth tree to parse incoming logs
and clusters them into different log groups in an online streaming manner which can reduce
memory usage. The basic idea is to use a tree to store the parsed logs and keep updating the
tree when new logs are coming and also avoid storing all the history logs.

The first step of Drain is to use regular expressions to remove variables like pure digits
and IP addresses to improve performance. Then, logs of the same length are traversed to
the same first layer node from the shared root node in step two. Nodes after the second
layers represent a unique token at each position of logs in the third step and logs with same
token at the position are traversed toward the same node. However, the maximum number
of child nodes of one node and the depth of the tree is set to a limit in advance. New coming
tokens are traversed to an asterisk “*” node instead of the actual tokens when the number
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of child nodes exceeds the limit of the maximum number of children. Similarly, the leaf
nodes are reached when the depth exceeds the maximum depth. Leaf nodes consist of a list
of log groups. After reaching the leaf nodes, the fourth step is to calculate the similarity of
log message and the log event of a log group to determine whether it should be put in the
corresponding log group or a new log group. If tokens within one layer in a log group are
different, the parse tree needs to be updated to asterisk “*”.

The time complexity of Drain is O(n), where n is the number of the logs for constant
maximum depth and a constant maximum number of the child node. The authors claim
Drain has better parsing accuracy and time efficiency than IPLoM. The authors make an
assumption that tokens at the beginning positions of log messages are more likely to be
constant parts. However, if log data fails to meet this assumption, it may hinder the perfor-
mance of Drain.

2.3 Anomaly Detection Algorithms

There are quite some studies that focus on using log data for anomaly detection or system
diagnosis. Most of the works, nevertheless, only deal with systems that are somewhat static,
where no new types of logs are generated during the process. During releases, new logs are
generated because of the new logging positions in source code. Related papers about log
anomaly detection are listed below according to anomaly detection algorithms.

It is worthwhile to note that anomaly detection algorithms sometimes are also called
outlier detection. As stated in [2], outliers are data points that can be potential anomalies
and are labeled as outliers based on the different behavior from other data points, while
anomalies in this thesis are more related to problematic logs. However, outliers can either
be regular logs that are generated by the new code or new problematic logs that reflect some
problems in the new release.

2.3.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionality reduction method that captures
patterns in high dimensional space by finding a k-dimension hyperplane, or k principal
components, with a minimum squared projection error [2].

Xu et al. [53][54][55] use a PCA-based method to detect anomalies within Hadoop
File System logs and Darkstar online game server logs. In [53], [54] and [55], the authors
first use abstract syntax tree to parse source code and generate all possible log templates.
Besides the constant string parts in logs, variable parts also carry essential information.
Identifiers is one type of variables that identify an object or a task in the software. The
state variables are the other type of variables that represent a certain state of an object or
system, such as “COMMITTING” or “ABORTING”, “OPENING” or “CLOSING”. The
identifiers are variables that are reported many times and in several log templates but have
many distinct values. State variables should frequently be reported in raw logs, but the total
unique number are constant even the number of logs increases. By defining thresholds for
frequency and unique values, the identifiers and state variables can be found automatically
in logs.
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Then two types of feature vectors, state ratio vector and message count vector, are
constructed from state variables or identifiers respectively. An m× n state ratio matrix
consists of state ratio vectors from m time windows, where n is the number of distinct state
variables, and the value in one dimension of state ratio vectors equals to the number of
appearance of a state variable in a time window. The constructing of message count vectors
is more complicated than that of state ratio vectors. By finding identifiers in the raw logs,
the logs with the same identifiers values would be grouped as one message group. For each
message group, a message count vector is created, where the value at each dimension is the
number of appearance of one log template. An m× n message count matrix consists of m
message count vectors, where m is the number of message groups and n is the number of log
templates. In the end, PCA is used to build a k-dimensional normal subspace. The outlier
scores are calculated using the distance between data points and the normal subspace.

2.3.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a classifier that minimizes the margin. In anomaly de-
tection or other binary classification problems, margin is defined as the smallest distance
between the decision boundary and data points from two classes [41].

Kimura et al. [31] extract four features from each log template of network logs: fre-
quency, periodicity, burstiness and the ratio between the number of observed logs during
monitoring and the number of logs in a whole period for each log event obtained in log ab-
straction. The authors then use a supervised SVM with the Gaussian kernel to find anoma-
lies.

2.3.3 Decision Trees

As stated in [21], a decision tree is a classifier that has a flowchart-like tree structure, where
an input goes through the nodes and branches and eventually is classified at the bottom of
the tree in a leaf node. Inside a tree structure, each internal node represents a test on an
attribute, and each branch represents a result of the corresponding test. In the end, each leaf
node holds a class label for the input [21]. When used in anomaly detection, the leaf node
in a decision tree indicate whether it is an anomaly or not.

Reidemeister et al. [43] improve the SLCT clustering algorithm from [50] by mining
frequent regions, which are tokens in log messages, and applying further clustering based
on Levenshtein distance between the frequent regions. One common subsequence of tokens
is then chosen as a representative pattern for each log cluster. Later, the authors treat each
log file within an hour as a finite sequence and use a bit-vector to encode the log file. Each
dimension in a vector represents one log template from SLCT, and the value is 1 if one log
template exists in the current log file. At last, a decision tree is applied to find recurrent
faults in the system using log files generated by fault-injection experiments.

Bose et al. [6] use decision trees and class association rules to select proper features
from individual log events and sequence features in X-ray logs. The authors treat each
log event associated with one activity or action as one data point and construct feature
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vectors. They also suggest using clustering, k-nearest neighbor and one-class support vector
machines to assist with class labeling using instances with known labels.

2.3.4 Finite State Automation (FSA)

Finite state automaton (FSA) or finite state machine (FSM) is an abstract model with a
limited number of possible states, inputs, outputs, transitions from a state to an other and
actions performed to each transition [32]. It can be used to model log event sequences and
find anomalies.

Mariani et al. [38] build FSA models to detect anomalous event sequences in logs.
They first generate log events using SLCT and rewrite concrete variable parts of events to
the order ID based on the appearance order of concrete variables. Then event sequences
are used to build FSA. Event sequences which differ from the ones observed in previous
executions would be considered as anomalies. Fu et al. [18] use similar method to build
FSAs to find the low performance issues in log sequences by counting the execution time
of each state transition in state sequences.

2.3.5 Hidden Markov Model (HMM)

According to [29], Hidden Markov models (HMMs) is an extension of the FSA model.
When using an HMM to assign label to each unit in a sequence, the HMM computes a
probability distribution over possible label sequences and find the most possible label se-
quence [29].

Yamanishi et al. [56] leverage HMM mixtures which is a linear combination of HMMs
to detect anomaly in network logs in real-time. Each component in HMM mixutres repre-
sents a specific log pattern. They train HMM mixtures with different number of components
at the same time and choose the best one. For each incoming sequence of logs, an outlier
score is computed based on the probability and any log sequence with a score above a
threshold would be labeled as anomalous. Salfner et al. [45] applied Hidden Semi-Markov
models (HSMM) to detect anomalies in telecommunication system after clustering the log
sequences.

2.3.6 Associative Rule Mining

Association rule mining is a type of data mining technique that can extract frequent pat-
terns, associations or causal structures within a data set [58]. Lou et al. [35] build linear
relationships among logs to detect anomalies. The authors first group log events based on
the parameter values and build program invariants from log message counts in each log
message group. Invariants are conditions in the software that always hold in normal run-
ning situations. For example, the number of logs that indicate open a file should be equal
to that of close a file. The authors use either a brute force searching algorithm or a greedy
searching algorithm for invariants mining. When the expected computation complexity is
high, the authors choose the greedy algorithm over the brute force algorithm. Any new log
that does not meet the requirement of related invariants is considered as anomalous.
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Huang et al. [25] use associative classification methods to find anomalies in log se-
quences. In feature extraction, they compare the abstracted log model with the non-abstracted
model. They choose SLCT as the log abstraction method. As for the non-abstracted model,
the “word-columnID pairs” are used to build the feature matrix. For instance, the log “Open
the file in resources” is transformed into “Open-1 the-2 file-3 in-4 resources-5”. The feature
matrix is of M×N dimension, where the M is the number of word-columnID pairs that
have occurred more than once, and N is the number of logs in the log file. Their experiment
result shows that applying the abstraction method SLCT would improve the performance of
classifiers compared with the non-abstracted model.

2.3.7 Multi-Instance Learning (MIL)

In [47], the authors treat the log anomaly detection problem as a Multi-Instance Learning
problem where logs of one week are considered as a bag and logs of each day are considers
as multiple instances in the bag. Also the bag is only considered as normal if all instances
inside the bag are not anomalous. More than 300 to 400 features are extracted from logs
using bootstrapped feature selection. This work may be too general for logs that do not
contain enough features. Moreover, this method takes much manual work to select the
features for the classifier.

2.3.8 Clustering

Clustering is a popular unsupervised method in the field of anomaly detection [2]. It would
assign similar objects into the same cluster and detect anomaly based on the clustering
result. Kc and Gu [30] are able to detect anomalous instance in a cloud system. The
authors first use hierarchical clustering based on Message Appearance Vector, which is a
binary vector, in each instance from the distributed system. The small clusters are defined
as anomalies. Furthermore, anomalies in large clusters are detected by using the nearest
neighbor technique based on graph edit distance in Message Flow Graph in each instance.

Shang et al. [46] process the Hadoop logs into log sequence sets without repetition and
permutation and show the new sequence sets generated in production environment com-
pared to experiment environment. However, the number of resulting sequences that is shown
to the developers may still be a lot. To solve this, Lin et al. [34] improve this method by
considering the history sequence. After getting the log sequence sets, the authors assign
weight to each event. The less frequent events which are measured by Inverse Document
Frequency are of more importance. Moreover, the events showing up only in the production
environment are of more importance. Then the different sequence sets are used to construct
weight vectors, which is then further used by hierarchical clustering. Outliers are labeled
when the distance between a new production cluster with all old clusters exceeds a certain
threshold.

2.3.9 LSTM-based Methods

A long short-term memory (LSTM) network is a Recurrent Neural Network (RNN) that is
able to capture long-term dependency on inputs [57].
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Zhang et al. [57] extract tf-idf features for each pattern of logs in a time window and
constructed a feature vector based on this. They treat the anomaly detection as a binary
classification problem, and their LSTM network outperforms other state-of-art supervised
learning classifiers such as Logistic Regression, SVM and Random Forest in the log data
set collected from a web server cluster and a mailer server cluster.

Taking the timestamp and parameter values which exist in the logs into consideration,
Du et al. [15] have trained an LSTM neural network to detect not only execution path
anomaly but also parameter value and performance anomaly in log sequence generated
from Hadoop. Also, the algorithm also needs to parse the source code.

2.3.10 Statistical Methods

Besides machine learning methods, some papers use a more intuitive statistical method to
find anomalies in logs. According to Lim et al. [33], one can detect anomalies simply
getting into log frequency by inspecting the slope, average and maximum in the time win-
dows for simple systems such as telephony systems. While for a more complex system, this
method may not work because there may be more correlated logs.

Nagaraj et al. [39][40] present a method for performance analysis in a distributed sys-
tem, they divide logs into two types: event log messages and state log message. The authors
use a t-test to find different distribution between two log sets and dependency networks to
model the relationship between events and states. The final anomaly result would be shown
to users in a direct graph plot indicating the cause. The main disadvantage of this method
is that heavy manual works are needed to divide log messages into events and states in
advance. Another more sophisticated method can be found in [20], the authors can find
execution flow outliers and execution performance outliers after constructing log events for
each log statements from source code and tracking log sequences.
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Chapter 3

Feature Extraction

Logs mainly consist of plain-text attributes that are not suitable to be processed directly by
machines. Extracting meaningful features is essential for downstream anomaly detection
algorithms and the cornerstone of this thesis project. This chapter mainly discusses the con-
struction of feature vectors from logs within the release process using Adyen log data set.
First, we go over log structure in Adyen and explore log behaviors during release. Moreover,
we use log event sets before and after release as data set, and choose to detect anomalous
log sequences within release. In the end, based on the chosen features, assumptions and
definitions are proposed in the last section.

3.1 Data: Logs in Adyen

As mentioned before, the primary goal of this thesis is to design a pipeline that can detect
anomalous logs, which may indicate a problem in a host during release. To this end, it is
necessary to explore the log data first. Adyen mainly uses Log4j, a Java logging framework,
to generate log statements that are stored in hosts. The logs are later stored within LogSearch
in a JSON format. We sometime refer a raw log as a log entry.

Log Structure

Each log consists of multiple fields, and several important fields are listed below. Although
Adyen uses Log4j for logging which provides a somewhat structured log framework for
Java, the most significant parts of the logs, message and extra attributes, are still in plain
text. Some fields are optional like extra and PSP reference. Besides, each log does not
contain the information about the logging line in the source code, which means raw logs
need to processed first to find the exact logging positions. An example of a log in Adyen is
shown as in Figure 3.1, though some information has been left out deliberately.

• Host: host name of the log.

• App: application name of the log.

• Class name: Java class name of the log.
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• Severity: severity that the log has. Either of severity INFO, WARN or ERROR.
Most logs are of INFO level, less than 0.3% of logs generated are of WARN and
ERROR level. Usually Adyen developers assign WARN for logging problems outside
company, such as wrong or missing values in certain forms from merchants, and
assign ERROR to problems that caused by platform itself.

• Timestamp: timestamp when the log is generated.

• Message: main part of the log and is usually of plain-text written by developers. It
consists of variable parts and constant parts.

• Extra (Optional): stores the extra information when message is too long, usually is of
JSON format or traceback from the compiler.

• PSP reference (Optional): currently 16 digits that represent a specific task along the
platform, can be considered as a task ID that is shared by a few log entries.

• Thread ID: sometimes is the same as the PSP reference, sometimes is the generally
Thread name that generates the log, which can be shared by quite a lot of different
logs. For example, more than twenty thousand logs are shared with one common
thread ID in one host from a log data of 30 minutes.

Figure 3.1: A log detail from LogSearch in Adyen. The fields and their value of log entry
are shown in this figure. Some values are hidden because of security reasons.
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3.2 Parsing Logs or Not?

It is vital to extract appropriate features from logs as the input of anomaly detection algo-
rithms. There are different anomaly detection algorithms, and they require different ways
of constructing feature vectors, such as log sequences or time windows. We usually use the
term message to indicate the combination of message and extra attributes of Adyen logs in
the scope of the thesis. In fact, we use message and extra together as the input of Iterative
Partitioning Log Mining algorithm (IPLoM, Section 2.2.3) as shown in Figure 4.2.

Depending on whether to parse the logs with log abstraction methods, there are a few
possible options. One of the options is to consider all logs in a host during the release as a
long discrete sequence and find anomaly sub-sequence within it. If we consider the order of
the logs in the sequence, we need to deal with logs with nearly the same timestamp as online
systems usually have multiple threats generating logs in parallel. Alternatively, we can
use log counting vectors which record the number of different log events within each time
window. The log counting vectors have M dimensions, where M is the total number of log
events and each dimension in the log counting vector represents the occurrence number of
one type of log event. A time window is considered anomalous when the counting deviates
significantly from history.

The following sections describe some intuitive thoughts in extracting the most appro-
priate features from release logs. There are mainly two ways of extracting the features from
the logs. One is to parse the raw logs and the other to use other fields of the logs along with
some other system information. Since this project focuses on using logs only, all extracted
features are confined with the information obtained from logs.

3.2.1 Not Parsing Logs

If we choose not to parse the logs, we have to use combinations of other attributes in raw
logs such as app, class name or severity to distinguish different log events.

Log Counting Vectors

There are generally multiple threads from different applications running at the same host in
Adyen, which would generate logs in a concurrent mode. As shown in figure 3.2, there are
high correlations among the log frequencies from different Java Classes. The data are from
all the hosts during one release. Each host has different applications running on them and
logs on each host are always from the Java Classes in each host. It is more reasonable to
build a model for each host considering the different distribution of logs.

It is possible to do an anomaly detection only based on the attributes like app, class
name and severity from the logs. The combination of these three fields can be considered as
one feature, for example (app1, classname1, INFO), (app1, classname2, INFO) and (app2,
classname3, WARN) are all different features and the number of occurrence of logs with
the same combination in a time window is recorded as the corresponding feature value. One
m dimension vector is built based on the m different combination of app, class name and
severity for each time window per host.
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Figure 3.2: A heat map of the correlation matrix of occurrence number of logs from different
classes in Adyen. If the color of one point in the heat map gets close to red, it indicates that
the two classes are positively correlated, meaning logs from the two classes tend to show up
together. When the color of one pixel gets close to dark blue, this means the two classed are
negatively correlated, meaning the number of logs from one class tends to decrease when
logs from the other class occur.

Time windows before the release belong to the history set, and we can use the history
set to build the anomaly detection model. Time windows after the release are considered as
anomalies when they do not fit into the model. Some experiments based on the toy example,
nevertheless, have shown that such model would result in a very high false positive because
there are always logs from new app and class name generated when the code updates. The
intuitive idea is to assign different weights to features. However, expertise is again needed
to determine which features are more important than the rest. Merely assigning a higher
weight to features with a higher level of severity would also result in poor result according
to the toy data set.

The benefit of not parsing logs is that we can extract features directly from other fields of
logs. However, there is also cost of not parsing log messages: it may not guarantee sufficient
granularity to distinguish different log events for anomaly detection because same class may
have several logging points.
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3.2.2 Parsing Logs

The granularity of the anomaly analysis is better when parsing the log messages than using
log counting vectors described in 3.2.1 because one class name may be able to generate
multiple different log templates. In [25], the authors state that log abstraction methods
would improve the performance of anomaly detection classifiers and reduce the size of data
to analyze. Thus, we decide to use log message abstraction in prepossessing step. Also each
template represents a type of event. In the scope of the thesis, log event and log template
are used interchangeably.

Same template may be from different app and class name, this may either be the devel-
oper using the same log statement in two different places or the different Java Class execute
the same code to generate the code. While there is no way to distinguish the two reasons
without parsing the source code. In the experiment, the method abstraction algorithm takes
only the concatenation of the fields message and extras as input for parsing to get fewer
templates.

Each log entity, as shown in Figure 3.1, is now associated with one log template that
represents a kind of system behaviour or status. With the other attributes like timestamp,
host, PSP reference and thread ID, we can extract features based on parsing results. More
detailed information of parsing logs is discussed in Chapter 4.

3.2.3 Conclusion

In the thesis, log templates obtained by parsing raw log messages are chosen to build the
features. The message and extra attributes provide most information among all attributes,
and utilizing the two features would result in better granularity. It makes no sense to neglect
the most informative part of the data set.

3.3 After Parsing: Extracting Features from Release Logs

After preprocessing the logs into events, the dimension would generally decrease dramati-
cally. For example, in Adyen data set five million of logs could be parsed into around one
thousand events in one experiment using IPLoM. After this, features need to be built for the
release procedure and use the feature vectors to capture anomaly behavior.

There are different feature models for anomaly detection, i.e., sequence anomaly de-
tection, time series anomaly detection, or normal feature vector anomaly detection. To
construct a proper feature model, some factors need to be taken into consideration.

3.3.1 Release Sections and Log Data Sets

During a release the host behaves differently from the ordinary working status. Logs related
to the release are generated while other tasks are halting or pausing. As shown in figure 3.3,
the release process can be divided into three rough time sections.

• Before release: the host would download the release code and be taken out of load-
balancer.
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(a) The frequency of INFO logs per second.

(b) The frequency of WARN logs per second.

Figure 3.3: The frequency of INFO and WARN logs per second within one host in a release.
The x-axis is the time in seconds and y-axis represents the number of logs of one severity
per second. The grey dashed line represents the time when the host is taken out of load-
balancer, and the blue dashed line represents the time when the host is brought back to
load-balancer
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• During release: the host would install the release and start software.

• After release: the host would be brought back to load-balancer.

There may exist anomalies in two sections: the during release and the after release.
In the during release section fewer logs are generated because on-going tasks are halted or
stopped and new tasks stop coming. After finishing the release, the host is back to load-
balancer, restarting the tasks that are paused before and enabling new features. Thus more
logs would be generated in the after release section.

To detect anomalies, we need to split each log based on its time stamp and put them into
different data sets. We refer to the release that needs to be monitored as current release.
For better reducing the impact of noise in release, previous releases can also be collected
in advance and be included in the history log data.

Here, we define two types of log data:

• History log data: Logs that are generated before the grey dash line in Figure 3.3,
including the before release section in current release and all logs in previous releases.

• New log data: The during release and after release sections in current release.

As mentioned above, now the task can be rephrased as: we use the history log data to
detect anomalous logs in new log data.

3.3.2 Noise in Release Logs

The logs provide rich information about status and performance of hosts. Nevertheless,
there is noise during the release that would mask the actual anomalies and make a success-
ful release look like an abnormal one. The authors of [2] state that noise lies within the
“boundary between normal data and anomalies”. As in the case of monitoring release logs
with anomaly detection, noise is a collection of logs different from history log data, but
actually is novel patterns related to release process. For instance, the WARN logs related
to connection time-out complaints that would not hinder the performance, an ERROR logs
that happened before or the new INFO logs related to release may all be considered as noise
points. One of the intuitive solutions is to get rid of duplicate log events and only look into
new log events.

According to the experience of developers, most logs are not anomalies. Moreover, di-
rectly using the event frequency as features would yield an unsatisfactory result when we
apply popular anomaly detection approaches such as One-class SVM or PCA, according to
our explorations. The possible reason is that the frequency of different events is somewhat
random in the release. Therefore taking the noise into consideration would hinder the per-
formance considerably. It is also stated that the message appearance vector is more robust
than message frequency feature because some normal log message happens very frequent
and has nothing to do with anomalies [30].
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3.3.3 Utilize Temporal Attributes: Time Windows

Each Log is generated in a specific timestamp as shown in Figure 3.1. It is natural to
utilize this temporal attribute of logs in anomaly detection. We can build features from
logs within certain size of time windows during release. There are few features that can
be used to construct feature vectors. For example, the number of occurrence of log events
during release, or important statistic information fields, such as connection time or payment
processing time, in some log events. However, given the fact that normal points behave
very differently in three release sections, models need to be robust to the sudden change of
behavior or three separate models need to be built for these three sections.

Besides, each time window is now labeled as normal or anomaly, which requires the
labeling to be very accurate. For instance, we may need to take into consideration that if the
release is anomalous, whether we should consider all time windows during release and after
release as anomalies or only consider time windows which consist of an anomalous event
as anomalies. The duration of the time windows also needs to be determined. Moreover,
time windows during release may have much fewer logs generated that the other two release
sections. Thus, the length of time windows within during release section might need to be
larger.

In fact, finding the anomaly log sequences is sufficient for debugging and monitoring
purpose during release. Determine which time window is behaving normally or not is more
suitable for daily system monitoring when the hosts are more stable as in some papers
[53][54][55]. Moreover, showing developers the anomalous log time window can be a
problem because there may exist hundreds of log events in one time window causing it
difficult for developers to spot the errors immediately.

In the following sections, we discuss methods that can be used for anomaly detection
with time windows.

Prediction-based Methods

During exploration some logs are observed to be periodic, such as generating reports in the
back office the internal system in Adyen for further data analysis. Some other logs related
to payment tasks are more of a stochastic process, which would be generated on the request
of the merchants and would go through a series of procedure, giving the logs a long-term
dependency across multiple hosts in the platform. However, the latter type of logs which
belong to one particular payment method or merchant may also have a specific pattern. For
example, the frequency of the logs within a particular day in a week may have a value close
to a constant and any deviation from the mean value is an indicator of an anomaly.

One could use time series to model logs with certain patterns and to detect abrupt
changes in log behaviors, such as counting the occurrence of certain log events in a du-
ration of time, by using regression methods such as ARMA [8]. Other logs do not have this
kind of behavior, but can be occasionally seen and not affect the system behavior much,
which should be viewed as noise that needs to get rid of in order not to affect the accuracy
of the model. Nevertheless, different time series model needs to be built for every type of
logs. Expertise is needed to choose which type of logs are more decisive during release.
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Distance-based Methods or Linear Methods

Besides regression methods, we can also leverage nearest neighbor distance method or PCA
for anomaly detection of time windows [2]. The nearest neighbor distance method is similar
as we described in the Section 4.6.2, and PCA-based methods were already discussed in
Section 2.3.1. There are also other possible algorithms for temporal anomaly detection, we
refer interested readers to Chapter 9 in [2].

3.3.4 Anomaly Detection in Log Sequences

As mentioned in Section 3.3.3, instead of looking for anomalies in time windows, we choose
detecting anomalous log sequences directly.

In its logging framework, Adyen uses three customized log severity levels: INFO,
WARN, and ERROR. As mentioned in Log Structure of Section 3.1, INFO logs are usu-
ally normal logging statements. WARN logs are usually indicator of outside problems, and
ERROR logs are logging problems caused by payment platform itself. In release monitor-
ing, nevertheless, we cannot determine whether logs are related to release problems directly
based on severities. Not all WARN logs or ERROR logs are the indicators of release prob-
lems. Besides, INFO logs may also represent bugs in a release. In manual log monitoring
procedure, developers tend to dive into ERROR and WARN logs and try to find out if they
are generated by, or related to new functions in the platform. Sometimes they would also
search for log messages with keywords such “exception”. If these logs are found caused by
new code in release, it means they are probably release related.

Logness, the internal log clustering tool in Adyen, would send a notification to the devel-
oper when a new WARN or ERROR log event occurs. The key lies on how to distinguish
which log event is more critical or problematic quantitatively if several new ERROR or
WARN events occur in a release. We can mine context information in log sequences such
as frequency of events and timestamps of the first occurrence of the events to assign differ-
ent weights to log events. The log sequences consist of log entries with the same task ID,
for example, same PSP reference or thread ID.

Each log sequence can be represented in an m-dimensional vector, where m is the num-
ber of total log events in the data set. The vector is either frequency-based or appearance-
based vector. Frequency feature vector records the number of occurrence of each event in
the log sequences, and appearance feature vector consists of values of either 1 or 0 depend-
ing on the appearance of log events within sequences.

During release monitoring, developers in Adyen send notifications in public channel
once they spot one problematic log. The anomalous sequences are sequences that consist of
such anomalous log events. There are two types of anomalous log sequences:

1. Log sequences consist of at least one new event.

2. Log sequences consist of only old events.

Usually, new log events that have never been seen before release are generated by new
log lines due to updating of code. Anomalous log sequences consist of new events are easily
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being spotted. The new log sequences with only old events sometimes may also indicate
problems because release in other hosts might cause the anomalous event occurs before the
current host starts releasing.

After forming log sequences by tracking task IDs in logs, we can construct binary vec-
tors and later assign weights to each event. The details of calculating weights and simplify-
ing log sequences are introduced in Chapter 4.

3.3.5 Supervised or Unsupervised

While it is normal to solve anomaly detection in an unsupervised way, it is also possible to
use a supervised algorithm. It is hard to treat the problem directly as a binary classification
problem because we have a very biased data set without enough anomalies. Although there
are other methods to deal with the bias distribution of different categories like cost-sensitive
learning and adaptive re-sampling [2], we choose to use unsupervised methods for anomaly
detection of log sequences.

This project has focused on using unsupervised methods for anomaly detection. Proximity-
based algorithms are used to compare with the work in [34]. Using a supervised algorithm
can, however, lead to future projects that could build a more accurate pipeline and update
the labels each time when new data points are labeled.

3.4 Definitions and Assumptions in Anomaly Detection

As stated before, the goal of this thesis is to develop a pipeline that uses anomaly detec-
tion algorithms to capture the most problematic log event sets during release. This section
presents the fundamental definitions and assumptions that we made in anomaly detection.
Two types of log data sets used in anomaly detection are first introduced. Later, assumptions
of the anomalies are made based on requirements of release monitoring. We also propose
the definitions of anomalies and outliers in the scope of the thesis.

3.4.1 Data Sets

As already discussed in Section 3.3.1, based on timestamp logs from one host can be divided
into two data sets: history log data and new log data.

All logs are parsed and transformed into a log sequence by putting logs with the same
PSP reference or same thread ID into one sequence. Log event sequences are further sim-
plify into log event sets by removing permutations and duplicates, reducing the number of
the log sequences in analysis. The message appearance vector is used because of its ro-
bustness to noise [30]. All log event sets in new log data are compared with the sets in the
history log data to compute a quantities outlier score. More details of the process can be
found in Chapter 4.
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3.4.2 Assumptions

The underlying assumption is that the logs in history log data should be considered as nor-
mal or contain very rare anomalies because a host is usually of normal state before starting
its release according to our observations. This is the essential requirement for anomaly
detection being used in release monitoring. If the majority of logs in history log data are
not normal data, the unsupervised methods proposed in this project does not work, and a
binary classification algorithm can be used if the logs are all labeled. Moreover, new logs
are compared with the history to determine whether there is an anomaly.

One of the assumptions of anomalies is that the previously unseen log events provide
more information than those old log events [34]. Another assumption is that log events
with low frequency also have more discriminative power than those with high frequency
[34]. This is based on the experience of developers that most regular log events should be
generated by routine procedures. Rarity indicates that the logs belong to a unique process
and needs more attention.

Moreover, log events with higher verbosity levels like WARN or ERROR also provide
more information than those with lower verbosity level. We propose this assumption of
log severity to address the fact that different severity levels have different discriminative
power. There may also be cases when INFO log events would be labeled as anomalies by
developers. In most cases, however, the anomalies are still of WARN and ERROR severity
levels according to our observations.

We believe that log events that provide more information or have more discriminative
power would also be more likely to be anomalies. Some of the assumptions may not be true
during a release. We use two artificial data sets to test the robustness of the pipeline when
one of the assumptions does not hold in Chapter 5. For example, when an anomalous event
is of INFO or an anomalous event is first seen before release, we would like to see if the
pipeline is still able to detect it.

3.4.3 Definition of Anomalies and Outliers

An anomaly is defined as a log event set that has a significant deviation from the previous
history log data and is indicating a problem during release. Those with a significant devia-
tion from the previous history log data but not problematic are considered as noise. During
release two types of noise might occur: the first one is new normal log templates added after
the release, and the other one is recurrent error log messages that are not related to release.
Noise and anomalies together are called outliers.
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Chapter 4

Pipeline of Monitoring Release Logs

This chapter mainly introduces the design of the pipeline for monitoring release logs, which
is based on the recent work of [34] and [46]. An illustrative diagram of the pipeline is
shown in Figure 4.1. In the first step of the pipeline, history log data is used to build
an anomaly detection model after logs being preprocessed into log event sets. Later the
anomaly detection model is used to filter new log data. Anomalous event sets are log event
sets with an outlier score greater than the filter threshold. Important known sets are log
event sets with an outlier score less than the filter threshold but have an average weight
(Equation 4.19) greater than the weight threshold. Filtering important known sets are a
complementary step of anomaly detection that helps capture anomalies that occur before
release. In the final steps, potential anomalous event sets and known important event sets
would be clustered separately and displayed according to a ranking function.

Though the original work in [34] and [46] are designed for monitoring errors in pro-
duction environment based on the logs in the test environment of big data applications such
as Hadoop, their frameworks are also suitable for release monitoring because it can capture
the log anomalies in a different status based on the history log data.

The main contributions of this work are improving the pipeline in [34] by adding extra
severity weight of log events, and preprocessing steps of log sequences, making the pipeline
suitable for monitoring Adyen release logs, a more complex release log data. Moreover, we
test the pipeline with three anomaly detection algorithms on Adyen logs.

There are some essential problems that we need to solve when extracting features from
Adyen logs. For example, log data sets that are used in [34] and [46] only have one severity,
which is simpler than Adyen log data set that has three verbosity levels, including INFO,
WARN, and ERROR. Moreover, compared with the rest of the log sequences, some logs in
Adyen can form surprisingly long sequences due to general thread IDs. Those differences
require extra preprocessing steps before anomaly detection and solutions to deal with such
problems are also included in this chapter.

In [34], the authors first cluster new log data and then calculate outlier scores of each
cluster by measuring its distance with the nearest cluster in history log data. This method
is not suitable in Adyen data set because calculating outlier score based on clusters instead
of each log event set would provide poor granularity that masks true anomalies. Besides
anomaly detection, one additional step is added to capture important known event sets
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Figure 4.1: The diagram of pipeline of monitoring release logs. Logs from one host are
divided into two data sets based on timestamp. New log data consists of logs from during
release section, and after release section within current monitoring release. The history log
data consists of previous releases and before release section of the monitoring release. The
logs within two data sets go through the same preprocessing step and are abstracted into
log events. Later log event sequences which consist of log entries with same task ID are
further simplified to log event sets. Unsupervised anomaly detection algorithms are used
to detect anomalous event sets in new log data according to the deviation from history log
data. Any log event set from new log data with an outlier score higher than a threshold
would be considered as a potential anomaly, and clustered to show to developers in the end
according to a ranking function. Log event sets with an outlier score lower than threshold
but important according to the average weight of the events would also be clustered, and
shown to the developers according to the same ranking function.

that happen again in the monitoring release that may be neglected by the anomaly detection
algorithms. Important known clusters mainly consist of event sets in new log data that
are similar to that of history log set but have a high average weight, indicating the event
sets might include important events, such as WARN events, ERROR events, or rare INFO
events. In the end, a ranking function is chosen to print out the clusters that are most likely
to reflect problems in the release.

A more detailed explanation of each step is listed as follows in each section. Since
different hosts have different applications and different distribution of logs, each host should
have its anomaly detection model. All the following parts are done host-wise.
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4.1 Collecting Log Data

Logs of two previous releases and current monitoring release in one host are collected in
advance. Related attributes of each log entry, including timestamp, PSP reference, Thread
ID, host, message and extra, are stored in the experiment for further usage in the process.
A unique ID is assigned for each log entry for further reference task. In this experiment,
we choose to collect logs of the previous two releases. It is also possible to collect more
releases if possible, we stick with two releases mainly because of efficiency because too
many logs would slow down the log abstraction method and anomaly detection process.

There are two data sets in the pipeline. All the previous releases logs and logs before
releasing in the monitoring release altogether are considered as history log data, and all the
logs after release are called new log data. The basic idea is to use collected history log data
to predict anomalous event sets in new log data.

In real application, old logs should be cleaned up after new logs are collected because
of efficiency reasons.

4.2 Parsing Logs to Templates

In this section, we discuss the first log message abstraction step in the pipeline: preprocess-
ing of raw logs, abstraction, and its reconciling step.

Templates can also be called events as they represent an event of logging system status
or certain actions. There are generally two ways of parsing logs to templates: using source
code along with raw logs, or using solely raw logs. Parsing source code to generate log
events would be more efficient and accurate than abstraction methods that use solely raw
log messages because the abstraction methods that utilize source code can avoid ambigu-
ity by getting code information to distinguish variable parts and constant parts in raw logs.
However, experiment results in Chapter 5 show using raw logs from log abstraction meth-
ods already have high accuracy and satisfying performance of anomaly detection in Adyen
release logs. In this work, we focus on one message abstracting method that solely relies on
input of raw logs. Other methods can be explored in future work.

When talking about log messages, we are referring to two attributes in Adyen log struc-
ture: message and extra. Because extra in Adyen is initially part of message, the message
attribute is concatenated with extra attribute together with a space delimiter as the input
for the log abstracting algorithm as shown in Figure 4.2. In this figure, Message attribute,
“There is an exception:”, along with extra attribute, “Detailed exception Id *” where an as-
terisk replaces pure digits ID, are concatenated into the final input “There is an exception:
Detailed exception Id *” for log message abstraction.

Extra attributes are optional and do not exist in all logs. Besides, if extra attributes have
multiple lines, only the first two lines are put into the concatenated string. All message
attributes with a token number exceed a length limit, which is 300 for the Adyen data set,
would be truncated to have better efficiency. The number 300 is a reasonable choice because
most log templates in Adyen have far less token numbers than that.

After concatenation, logs would be processed in advance to remove evident variable
parts in the inputs. Then, IPLoM (Iterative Partitioning Log Mining) is applied to logs from
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Input = Message + Extra (Optional)

Figure 4.2: An input example of concatenation of message and extra attributes for the mes-
sage abstracting method IPLoM (Iterative Partitioning Log Mining). The message and extra
are both plain-text attributes in a log entry. The extra is an optional attribute and is gener-
ated when the original message is too long and get truncated into message and extra. In
this example, “There is an exception:” is the message, and “Detailed exception Id *” is the
extra with the pure digits replaced by “*”. The final input for this log entry is “There is
an exception: Detailed exception Id *”, where the message and extra are concatenated and
separated by a space.

both history log data and new log data to obtain log templates. Finally, similar logs are
clustered together and considered as the same template to further correct the possible error
in the message abstraction process.

All logs from both history log data and new log data now belong to one specific log
template, and the number of features is significantly reduced, for example in one release the
three million logs are abstracted into two thousand log templates.

4.2.1 Prepossessing the Logs

At this step, variable parts such as pure digits or special symbols in raw logs are replaced
with a wildcard “*” symbol by simple regular expressions beforehand to improve the per-
formance [22]. Also, JSON parts can also be parsed in advance to get the meaningful parts
only because they have very different structures from plain-text strings and not suitable for
message abstraction. We use the keys of JSON parts to construct a plain-text string, and use
it as an input of message abstraction. Different prepossessing methods need to be applied
to achieve a better abstraction result for other log data.

Pure digit parts in logs from Figure 4.3, for instance, can be replaced in advance. The
five raw log messages would have the same anonymizing result “Example function (*)
should not be bigger than *!” before abstraction, which would prevent message abstraction
methods putting them into different templates. Another preprocessing example in Figure 4.4
shows how keys from JSON format are extracted and listed in the final result. The prepro-
cessing of JSON is based on the idea that keys are more meaningful and can be considered
as constant parts.

We try to avoid complicated regular expressions in this step as regular expression pack-
age in Python can be extremely slow because it uses backtracking instead of using finite
automata-based techniques [13]. Moreover, the number of raw logs is significantly greater
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than the number of parsed log templates. Using regular expressions directly on raw logs is
more efficiently than using regular expressions on the reconciling step in Section 4.2.3.

1. Example function (35) should not be bigger than 31!
2. Example function (40) should not be bigger than 31!
3. Example function (32) should not be bigger than 31!
4. Example function (33) should not be bigger than 31!
5. Example function (41) should not be bigger than 31!
After anonymizing:
1. Example function (*) should not be bigger than *!
2. Example function (*) should not be bigger than *!
3. Example function (*) should not be bigger than *!
4. Example function (*) should not be bigger than *!
5. Example function (*) should not be bigger than *!

Figure 4.3: An example of anonymizing pure digits with wildcards in log messages. Five
log messages and their anonymizing results are shown in this figure. The digits before
log messages are log IDs used for reference. As we can see, after anonymizing, five log
messages have the same format: “Example function (*) should not be bigger than *!”. They
belong to the same template even before log abstraction.

JSON: {"currency": "EURO", "link": "https://www.example.com", "method": "PAY",
"response-time": 210, "status": "SUCCESS"}
After extracting keys:
JSON: currency link method response-time status

Figure 4.4: An example of extracting keys from JSON format logs. A log message and its
preprocessing result are shown in this figure. We extract the keys from the JSON part, and
list them based on the original order within in JSON.

4.2.2 Log Message Abstraction Method: IPLoM

There are many algorithms[18][19][28][36][37][50] for abstracting the logs to obtain log
events. Iterative Partitioning Log Mining (IPLoM)[36][37] is chosen in this step to abstract
logs in the pipeline. IPLoM is based on heuristic rules and scales linearly with the number
of logs [36][22]. IPLoM first divides logs with the equal number of tokens in its message
into one cluster. Then different clusters are partitioned according to the position with the
least number of unique words, and logs which have the same unique word in that position
would be put into one partition. At last, partitions are further split based on different map-
pings found in the same position. The output results of IPLoM are a list of abstracted log
templates, as well as corresponding log IDs in each template. Log templates represent the
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pattern of logs within the partition. As shown in Figure 4.5, if tokens at certain position in
the partition are the same, the templates would use the common token at the correspond-
ing position, such as “Payment”, “does”, “not”, “contain”, and “ID”. However, if there are
multiple unique tokens at one position, the templates would use “*” to represent for various
unique tokens. In this example, “*” is used to represent for “merchant”, and “shopper”.

1. Payment X does not contain merchant ID
2. Payment Y does not contain merchant ID
3. Payment X does not contain shopper ID
After abstraction:
Payment * does not contain * ID

Figure 4.5: An example of log message abstraction. Three log messages and their template
are shown in this figure. The digits before log messages are log IDs that used for reference.
In the template, positions where all logs have same common word would keep the common
word in the corresponding positions. For example, “Payment”, “does”, “not”, “contain”,
and “ID” are all kept in the template. At the 2nd token position, there are two unique
tokens: “X” and “Y”. Similarly, at the 6th token positions, there are multiple unique words
among logs: “merchant” and “shopper”. Thus the template has a “*” symbol at the 2nd and
6th token.

Compared with the data set used in original IPLoM work [36][37] or the evaluation
paper [22], Adyen has a more complicated log structure. We have logs from different sever-
ities, apps, or class names. Logs of different severity levels are abstracted separately to
avoid them being put into one log event. Logs of INFO severity are abstracted by IPLoM,
generating INFO templates. While WARN logs are also abstracted by IPLoM in parallel at
the same time and we obtain WARN templates as well.

Logs with different app and class names, however, are not abstracted separately. We
observe that logs of different apps or class names can have same log template. They may
either be from two same logging line in source code, or Java methods calling the same
logging line from different applications. We still treat these logs with different apps, or
class names as same event considering log messages are the essential feature in logs.

The accuracy of abstraction in this step would affect the performance of the anomaly
detection. When IPLoM assigns logs generated from the same log line into different tem-
plates, we can merge similar templates in the reconciling step. Nevertheless, if logs from
different events are assigned with the same template, we need to add another separating
step to split templates. Great care must be taken to avoid putting two different logs into one
template. The suggested parameters of IPLoM in [22] are used, and the result turns out to
be very strict for the Adyen data set. In the experiment of 14 releases in Table 5.1, usually
few different logs are put into the same template, but many logs from the same log code line
are in several templates because of the strict parameters. Further analysis of the message
abstracting result is shown in Chapter 5.

Sometimes similar templates are not merged into one template in IPLoM, which may
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hinder the performance of the anomaly detection algorithms. The first leading cause is that
some similar templates are of the same length. The other cause is that IPLoM does not
recognize some variables. It is not possible to use more complicated regular expressions
on the raw logs directly because of the vast number of raw logs. Because the number of
log templates is far less than the number of raw logs, it is more reasonable to apply the
complex regular expressions to the log templates instead. Thus a reconciling step is added
after IPLoM to improve efficiency and to avoid duplicate templates in the final output.

4.2.3 Reconciling Clustering after IPLoM

In this section, we propose a reconciling step to merge templates that are very similar. We
first use regular expressions to further process log templates and then use a hierarchical
clustering on templates based on the defined similarity in Equation 4.2.

Regular Expression

First more complex regular expressions are leveraged to find variable parts in templates and
to replace them with wildcards “*”. These variables include file paths, web URLs, email
addresses, dates, timestamps, and other complicated parameters. This step is similar to the
example shown in 4.3, but instead of using regular expressions for matching variables in
raw logs, we apply them to log templates.

Similarity of Templates

Moreover, the similarity between two log templates is calculated according to Equation 4.2.
X , Y are log templates. |Wild| is the number of positions that are represented by wildcard
asterisks “*”. |X | and |Y | are the number of tokens in the templates. Xi is the token from
X at the index of i. equ(Xi,Yi) equals to 1 when token Xi and Yi are the same, and none of
them is asterisk. The defined similarity is to calculate the same token at each index.

equ(Xi,Yi) =

{
1, if Xi = Yi and Xi 6= ∗ and Yi 6= ∗
0, otherwise

(4.1)

Similarity(X ,Y ) =
∑

min(|X |,|Y |)
i=1 equ(Xi,Yi)
|X |+|Y |

2 −|Wild|
(4.2)

Clustering of Similar Templates

Logness clusters logs together if the length of the longest common subsequence is greater
than 0.6 of the whole length of the message [17]. We also use 0.6 as the similarity threshold
of clustering. Because wrongly clustering logs together would affect the performance of
anomaly detection, any similarity lower than 0.6 would be assigned to 0. Later, agglomer-
ative hierarchical clustering is used with the same similarity threshold to cluster templates
obtained from IPLoM together. Moreover, the template with the smallest ID in one cluster
is chosen as the representative template for the cluster.

37



4. PIPELINE OF MONITORING RELEASE LOGS

An example of reconciling clustering is shown in Figure 4.6, where each cluster is
separated by a dashed line. The digits at the beginning of the cluster are the cluster IDs,
and the digits in front of log templates are the template IDs. In Cluster 5, for example,
there are four templates: Template 62, 78, 91, and 315, among which Template 62 is the
representative template. All logs that used to belong to Template 78, 91, or 315, would now
be considered as Template 62 in further steps of the pipeline.

Noted that the similarity calculated by Equation 4.2 is stricter than the definition of
[17] to prevent any wrong clustering. In fact, no templates are falsely clustered together in
our training set. Details of performance of this step can be found in Chapter 5. The time
complexity of calculating the similarity matrix is O(m2), where m is the number of tem-
plates. Because some templates are already the same after removing remaining variables,
the similarity can be reused before actually being calculated.

4.3 From Log Sequence to Binary Feature Vector

In this section, we describe the step of creating binary feature vectors from the log sequences
for history log data and new log data.

First, log sequences are formed with logs with same task ID. Compared with the rest,
some log sequences may be much longer because general thread IDs are continuously gen-
erating logs. Long sequences would be more likely to be considered as outliers because
they have much more log templates than normal sequences. The long sequences are cut
into short sequences using a specific length threshold, making all sequences comparable in
length.

As already mentioned before, authors in [30] state that message appearance feature is
more robust than message frequency feature because some normal log messages happen
very frequently and have nothing to do with anomalies. Thus we ignore the permutations
and duplicates in the log event sequences and construct log event sets based on log event
sequences. There may exist the same log event set within history log data, or new log data
respectively. We only store unique log event sets in data sets. Occurrences of log event
sets are considered, while the occurrence frequencies of event sets are ignored. Each log
template is one feature, and every log event set can be represented by an m-dimension binary
feature vector where m is the total number of log templates. If there is one template in the
log event set, the value of the corresponding dimension in a binary vector is one.

Eventually, the history log data or new log data would have different log event sets in
the form of binary feature vectors, and can be used to create weighted feature vectors.

4.3.1 Task ID

Task ID can either be PSP reference attribute or thread ID attribute from log entries. Logs
with the same PSP reference, which is a 16 digit length at the moment that can be viewed
as a task ID in Adyen, belong to the same log sequence. Almost 88% of the logs has a
PSP reference in our data set. For the rest without a PSP reference, a thread ID is used
as the task ID. Thread IDs can be very specific and still considered as the task IDs. How-
ever, general thread IDs such as “main”, “thread 1”, or “Processor 2” are not confined to
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Cluster 1
320: Modified new id= * (was null) for Shopper * reason: *
321: Modified new id= * (was *) for Shopper * reason: *
---------------------------------------------------------------
Cluster 2
318: Process with type * and ref= * scheduled with id= *
319: Process with type 'example' and ref= * scheduled with id= *
---------------------------------------------------------------
Cluster 3
161: Processing * Label: example id: * as Successful with reason: * * * * *
317: Processing X* Label: example id: * as Successful with reason: [example]
---------------------------------------------------------------
Cluster 4
152: Processing * Label: * id: * as Successful with reason: * *
316: Processing * Label: * id: -* as Successful with reason: *
---------------------------------------------------------------
Cluster 5
62: ListDetails for example1= * example2= *
78: ListDetails for example1= * example2= * *
91: ListDetails for example1= * example2= * * *
315: ListDetails for example1= * example2= * * - ***
---------------------------------------------------------------
Cluster 6
321: DateDetail * * (*% of total time)
313: DateDetail Reader[ * (*% of total time)
---------------------------------------------------------------
Cluster 7:
308: Search: regex * matches * allow: false
309: Search: regex .*X.* matches EXAMPLE allow: false
---------------------------------------------------------------
Cluster 8:
306: PathName: * ; using fold: *
307: PathName: * ; using example: *
---------------------------------------------------------------
CLuster 9:
304: Stopping task with label *
305: Stopping task with label 'Example'

Figure 4.6: An example of template clustering. Clusters are separated with dashed lines.
Each cluster is shown with its cluster members, and the digits before log templates are the
assigned template IDs.
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one specific task. Therefore, they can generate surprisingly long sequences compared with
specific thread IDs or PSP references.

4.3.2 Cutting Long Log Sequence

Log sequences with general thread IDs mentioned in Section 4.3.1, may consist of up to
30,0000 log entries and last for one hour in the experiments. Long sequences need to be
split into subsequences to make them comparable to other ordinary log sequences.

There is no guarantee that log entries in a log sequence are stored in a sorted time order
because logs are extracted from several different log files in the host. It is thus not able to cut
the long sequences directly because of the unordered sequence. For cases where ordered log
sequences are possible, the following sorting step is optional and can be cut directly based
on the chosen length threshold.

Sorting the long list of length n is too time-consuming because it needs a time complex-
ity of O(nlog(n)). However, a complete sorting of the long log sequences can be avoided
by dividing all log entries into different groups based on its rounded timestamp. Logs gen-
erated in the same minute are put in one sub-list. This splitting is reasonable because almost
all log sequences with a regular length only last for less than 10 seconds. The sub-lists can
be sorted with an overall time complexity of O(nlog(l)), where l is the average expected
length of the sub-list and usually is smaller than 100 in the experiments.

After sorting the long sequences, logs can be safely cut into regular length sequences
using a threshold that equals to the 99th percentile of the length of log sequences.

4.3.3 Log Event Set: Further Simplifying Log Sequence

There are still many log event sequences after the previous section. To further decrease
the amount of input data for anomaly detection, log event sequences need to be simplified.
Thus we remove all duplicates and permutations of the event sequence, keeping unique
combinations of log events. In other words, all log sequences are converted into unordered
log event sets. Although this simplification step ignores the extra information containing the
order and occurrence numbers of log templates within the sequence, the appearance feature
of the log event is sufficient for anomaly detection as shown in Chapter 5.

4.3.4 Binary Feature Vector

If we obtain m templates after IPLoM and its reconciling step, we use m-dimensional binary
vectors to represent unordered log event sets. The history log data and new log data would
each have a set of binary feature vectors and can be used further to create weighted feature
vectors. All binary vectors are rather sparse because on average each log sequence consists
of less than 10 templates, and usually there are more than one thousand templates during
release in each host.
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4.4 Weighted Feature Vector

Ignoring the fact that different log events have different importance from the perspective
of release may lead non-ideal performance of anomaly detection. For instance, when com-
pared with a rare log template indicating unexpected interruption of the current payment,
a frequent generated log event that marks the successful ending of the payment is less sig-
nificant in anomaly detection in release logs. Thus log templates should be assigned with
different weights.

Three types of weights are calculated for every template, and their final weights are
calculated using Equation 4.7. Three types of weights align with our assumptions of im-
portance of log events in anomaly detection mentioned within Section 3.4.2. The first two
weights are calculated the same as in [34]. The weights are listed below:

• The first weight is the frequency weight using inverse document frequency (idf ) to
measure how often one template occurs in different sequences. Templates which ap-
pear in fewer log sequences have more discriminative power and should have higher
weights [34].

• Another weight is the contrast-based weight to show whether one template is first
seen after release. Templates which first occur after release would have more dis-
criminative power and thus have a higher contrast weight [34].

• The last one is the severity weight. It is based on the assumption that the higher the
severity, the more likely a log template reflects a potential problem or failure of the
release. Therefore, templates with higher severity should have higher severity weight.

4.4.1 idf -based Event Weight

Inverse document frequency (idf ) was originally proposed in [48] and is wildly used in
information retrieval field to show how important a word is considering the number of doc-
uments where a word shows up. Quite some papers [12][42][44] argue that idf is not only
a heuristic feature but also has a good theoretical justifications from statistics, information
theory and other perspectives.

The events that appear less in log sequences would be regarded as rarer and have a
greater chance to reflect an anomaly during release [34]. For event i, the idf -based event
weight are calculated as below,

widf(i) = log
N

ni +1
(4.3)

where N is sum of total number of task IDs, and ni is number of task IDs where the
event i appears. In the experiment, the base of 2 is used. In fact, the logarithm base is
not important according to [44]. The tf-idf (term frequencyinverse document frequency)
is not used here because we want to prevent assigning a higher weight to frequent events.
Moreover, idf is more align with the purpose of release monitoring, which is to find rarely
occurred suspicious log events. There may be cases when the anomalous log event during
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release occur frequently. However, compared with normal log events, their frequencies
are still not high. We find anomalous event confined to limited task IDs during a release,
generally fewer than 10, or even only 1. Therefore, we use idf instead to focus on more
discriminative events with a relatively low frequency.

4.4.2 Contrast-based Event Weight

New events that have not appeared before the release can either be noise, i.e., a new function
in the system, or an anomaly that represents problems during release. Either way, new log
events are more discriminative in finding possible anomalies in the monitoring release [34].
Contrast weight aligns with the experience of developers that new log events after release
are more relevant to release and provide more information than old events.

wcontrast(i) =
{

1, if i 6∈ History
0, otherwise

(4.4)

where History represents the history log data that consists of all three time sections men-
tioned in 3.3.1 of previous releases, as well as before release section in the current monitor-
ing release.

4.4.3 Severity Event Weight

Logs with different severities have different importance. According to experience of devel-
opers, generally the higher the severity, the more likely it would be the problematic logs
during the release. Thus different weights are assigned to logs with different severities as
shown in Equation 4.5, where the severity ratio is a constant number that should greater or
equal to 1. Moreover, a grid search is conducted in Chapter 5 to find the suitable severity
ratio based on Adyen data set.

wseverity(i) =


1, if i is INFO

1 · severity ratio, if i is WARN
1 · severity ratio2, if i is ERROR

(4.5)

4.4.4 Overall Weight

In the original work of [34], the overall weight of each event is calculated as follows:

w(i) = 0.5 ·Norm(wid f (i))+0.5 ·wcontrast(i) (4.6)

We add severity event weight to this equation. A weighted feature vector is used to
represent each log event set. When considering the severity, the overall weight of one event
i is calculated by

w(i) = wseverity(i) · (0.5 ·Norm(wid f (i))+0.5 ·wcontrast(i)) (4.7)

where Norm is a Sigmoid function for normalizing the idf -based event weight:

Norm(x) =
1

1+ e−x (4.8)
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After abstraction, each sequence is transformed into an m-dimensional binary event ap-
pearance vector, where m is the number of all events after applying message abstracting
methods. We note the binary vector as vbinary. Its values are set to 1 only if corresponding
events appear in the log sequence, otherwise 0. The final weighted event appearance vector
vweighted is calculated as follows

vweighted = vbinary ·wT
weight (4.9)

where wweight is also an m-dimensional vector, and value in each dimension is the overall
weight of each event.

4.5 Distance and Similarity

A distance metric needs to be chosen to quantify the difference in log sequences for the
proximity-based algorithms, such as clustering and nearest neighbor. Given the fact that the
matrix consisting of weighted vectors is rather sparse and that the log event sets should be
shown to the developers in a ranking of according the possibilities of indicating a problem,
this pipeline is very similar to information retrieval: log event sets are documents, and
log events are words. Finding anomalous event sets during release is similar to finding
relevantly new documents using the old documents data set. In this light, we test distance
metrics that are popular in document retrieval in Chapter 5 to see which one would perform
the best in release monitoring. Related work about metrics is listed below.

In the original pipeline [34], Lin et al. use cosine distance in the paper without compar-
ing to other distance metrics.

Aggarwal et al. [3] state that Manhattan distance performs better than Euclidean dis-
tance in high dimensional space k-means clustering and that fractional distance is even
better at preserving the meaningfulness of proximity measure. Huang et al. [24] compare
Euclidean distance, KL divergence, Pearson coefficient, cosine similarity and the Jaccard
coefficient on text document clustering and finds that Jaccard and Pearson coefficient mea-
sures find more coherent clusters while average KL divergence, Pearson coefficient would
give more balanced clusters. Choi et al. [11] conduct a survey about 76 binary similar-
ities and divided them into 3 categories: Correlation Based, Non-Correlation Based and
Distance-Based.

In Chapter 5, we test six distance metrics, including Cosine, Pearson, Jaccard, Eu-
clidean, Hamming, and Manhattan.

4.6 Anomaly Detection

After building weighted feature vectors, two more steps that include filtering and clustering
are used to find anomalies in log event sets. We also propose complementary steps of
anomaly detection when anomalies occur before release. The two steps include filtering
important known sets, and clustering them. The important known sets are log event sets
that are similar to history log data but they are still important and provide information about
release. The details of important known sets are described in Section 4.7.
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Providing feedback of anomaly detection is essential. Instead of labeling log event sets
as normal or anomalous directly, we assign each event set with an quantitative outlier scores
to indicate their chance of representing release errors. Though various types of anomaly de-
tection algorithms exist, proximity-based algorithms are tested for the sake of simplicity
and used to compare with the benchmark [34]. In anomaly detection, data points are oc-
currence feature vectors of log event sets. We describe details of filtering and clustering
in three anomaly detection algorithms respectively: hierarchical clustering (Section 4.6.1),
nearest neighbor distance (Section 4.6.2), and LOF (Section 4.6.3)

Filtering Anomalies

The first step is filtering anomalies. An anomaly detection algorithm is used to calculate
outlier scores that measure how far log event sets (data points) within new log data deviate
those from history log data. Log event sets with an outlier score which exceeds a filter
threshold are captured as potential anomalies. The filter threshold is calculated as a per-
centile of the outlier score as shown in Equation 4.6.1, Equation 4.6.2, or Equation 4.17.
The filter threshold is a local outlier factor value for LOF algorithm, but is a distance for
clustering and nearest neighbor distance.

For those log event sets with an outlier score lower than the filter threshold, they are
usually consider similar to data in history log data and called known event sets. We also
filter them according to a threshold on average template weight (Equation 4.19), and obtain
important known event sets.

Clustering Anomalies

After obtaining potential anomalies, we use a hierarchical clustering algorithm to cluster
anomalous event sets, where log event sets with distance lower than anomaly cluster dis-
tance are clustered together. A representative log event set in each cluster is chosen in a
way that the representative event set should have the minimum average distance to the rest
event sets in a cluster and can be considered as the center of the cluster [34].

Similar to clustering anomalies, we also cluster important known event sets using the
same anomaly cluster distance. Known clusters and potential anomalous clusters would
be sorted and shown to developers in the end, according to a ranking function described in
Section 4.7.1.

4.6.1 Agglomerative Hierarchical Clustering

As already mentioned in section 4.5, each log event set can be regarded as a document, and
the result can be viewed as relevant document clusters in an information retrieval system.
The purpose of clustering here would be very similar to document clustering in this sense.

There are two popular clustering algorithms for document clustering: one is k-means
clustering and its variants and the other one is hierarchical clustering. Although hierarchical
clustering is of quadratic time complexity, the value of k need to be determined before run-
ning the k-means clustering, and it may vary from the different hosts and different releases.
Besides, hierarchical clustering can provide a more hierarchical structure for analysis while
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result from k-means is flat. Thus agglomerative hierarchical clustering is chosen in our
experiment.

There are some commonly used linkage algorithms for hierarchical clustering that are
used to determine how distance is calculated between sets of observation, such as single
linkage, complete linkage, average linkage, and Ward’s linkage. [52]

According to [52], definitions of linkages are listed as follows: The distance between
two clusters calculated by single linkage is the distance of two closest objects from the
two clusters. On the contrary, the complete linkage uses the farthest distance of the ob-
jects within the two clusters. The average linkage uses the average distance between all
pairs of objects within the two clusters. The unweighted version of average linkage is
called unweighted pair group method average (UPGMA). There is also a modified version,
a weighted pair group method average (WPGMA), which considers the number of objects in
two clusters and uses them to calculate the weighted average distance. The Ward’s linkage
is to minimize the increase of the squared errors within one cluster.

Complete linkage is chosen in the pipeline because complete linkage is more robust to
outliers and not sensitive to the shape and size of clusters according to [4]. Also, authors
in [16] state that complete linkage has better retrieval effectiveness in document retrieval
application.

Clustering History Log Data

First, log event sets from history log data are clustered using a first cluster distance and a
center is chosen as the representative center of the cluster [34]. The representative event sets
not only are used to calculate the outlier score in the filtering procedure but also represent
its potential anomalous cluster in Section 4.7.

Outlier Score

The distance between a log event set and a cluster is defined as the distance between the
log event set and the representative event set within the cluster [34]. For each data point in
new log data, there is one closest representative event set and the corresponding minimum
distance is recorded as an outlier score and is calculated by [34]

Outlier(Y ) = minR∈R{dist(Y ,R)} (4.10)

where Y is one data point in new log data, R is a representative log event set for one cluster,
R represents a collection consisting of all representative log event sets in history log data,
Outlier(Y ) is the outlier score of data point Y .

We assume that data points within history log data are normal log events, and c number
of clusters are obtained after cluster. For n log event sets in new log data, a distance matrix
with the shape of n · c dimension can be computed and the minimum distances are derived
from the matrix, resulting an outlier score matrix of n · 1 dimension, which is noted as
outlier score array (OA).

Zeros in the outlier score array show that the corresponding data point is exactly at the
center of the clusters. After exclude those zeros, filter threshold and cluster distance can
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be computed from outlier score array using the filter percentile and cluster percentile as
percentile separately:

Filter threshold = Percentile(non-zero OA, filter percentile) (4.11)

Cluster distance = Percentile(non-zero OA, cluster percentile) (4.12)

However, using a constant value for the filter threshold and cluster distance is also possible,
which would be discussed more in Chapter 5.

4.6.2 Nearest Neighbor Distance

Nearest neighbor is a supervised algorithm that determines the label of one data point based
on the labels of its nearest neighbors. We use nearest neighbor distance to denote its un-
supervised version. Nearest neighbor distance algorithm is similar to clustering algorithm,
instead of clustering history log data in the beginning, each data point in history log data is
used directly to calculate the distances. The average distance to k nearest neighbors of each
data point in new log data is recorded as outlier score as shown in Equation 4.13, which is
more robust than using single kth distance according to [2].

Outlier(Y ) =
∑

k
i=1 dist(Y ,Ni)

k
(4.13)

where Y is one data point in new log data, and Ni is one of Y ’s k nearest neighbors.
The non-zero outlier score array (OA) is constructed similarly to clustering in Section

4.6.1. Afterward, a filter threshold is calculated by Equation 4.11. Data points with an out-
lier score exceeding the threshold would continue with the next step for clustering anoma-
lies.

Ideally, nearest neighbor distance algorithm would have a better granularity than cluster-
ing algorithm because instead of measuring one nearby event set cluster, nearest neighbor
distance considers k closed neighbor event sets, though clustering has a better time effi-
ciency.

4.6.3 LOF: Local Outlier Factor

Nearest neighbor distance and clustering all tend to detect anomalies that have a higher
distance from the normal data points. However, when the distribution of the data varies
dramatically in different parts of feature space, distance-based algorithms might fail to cap-
ture the anomalies [2]. Local Outlier Factor [7] is a density-based algorithm that can detect
anomalies based on the local density of data points.

The original LOF algorithm detects anomalies in one data set by computing local den-
sity of one point compared with other points in the data set. Here we make a slight modifi-
cation of denotations in [2] that allows us to use history log data to find anomalies in new
log data. A history data point in history log data is denoted by X , and a new data point in
new log data is denoted by Y . Dk(X) is the k-nearest neighbor distance of the history data
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point X , which only considers neighbors in the history log data. Lk(Y ) denotes a collection
of history data points within Dk(Y ). The reachability distance, the essential concept of LOF,
of Y respect to X is defined as the greater value of Dk(X) and the distance of X and Y [2]:

Rk(Y ,X) = max{dist(Y ,X),Dk(X)} (4.14)

The reachability distance in Equation 4.14 can be asymmetric for X and Y because the
Dk(X) may not equal to Dk(Y ) [2]. In the next step, we calculate the average reachability
distance of Y by computing the mean value of the reachability distances of Y and history
data points X that are within its k-nearest neighbor distance Dk(Y ) [2]:

ARk(Y ) = MEANX∈Lk(Y )Rk(Y ,X) (4.15)

The reachability density of Y is defined as 1/ARk(Y ) [7]. Finally, we use the average
value of average reachability distance of Y divided by the average reachability distance of
history data points X that belong to Lk(Y ) to compute local outlier factor of Y [2]:

LOFk(Y ) = MEANX∈Lk(Y )
ARk(Y )
ARk(X)

(4.16)

Outlier Score

We use LOF directly as outlier score:

Outlier(Y ) = LOFk(Y ) (4.17)

The higher the LOF value, the higher the outlier score and the chance a data point would
become an anomaly. The filter threshold can be computed similarly to Equation 4.11. The
cluster distance, however, needs to be assigned with a constant value.

4.7 Final Output of Potential Anomalous Clusters and Known
Clusters

After the filtering step and clustering step, we obtain a collection of potential anomalous
clusters. We would also obtain known clusters similarly as the complementary output.
However, given the large log data in Adyen, the number of clusters after the two steps
is still large, sometime more than a thousand. A ranking function is used to show the most
problematic clusters among the collection for manual inspection.

We first propose two ranking functions in Section 4.7.1. Then we use ranking functions
to sort potential anomalous clusters in 4.7.2. Finally we leverage known clusters to capture
potential anomalies that first occur before release in Section 4.7.3.

4.7.1 Ranking Functions

A ranking function needs to be used to sort the collection of final potential anomalous clus-
ters and should reflect the possibility that a cluster may indicate a problem for the release.
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For log data set in Adyen, we propose two ranking functions. The first ranking function is
outlier scores computed from anomaly detection algorithms as shown in Equation 4.18, rep-
resenting how dissimilar the new log event set to the log event sets in history log data. The
other intuitive option is the average weight of events in each log event set, which is shown
in Equation 4.19. The average weight is the mean value of the weight of events within a
log event set and shows the importance of the log event set. For each potential anomalous
cluster or known cluster, the ranking score is calculated by its representative log event set.

Ranking function 1 : Rset = Outlier(set) (4.18)

Ranking function 2 : Rset =
∑i∈set wi

|set|
(4.19)

where the set is the representative log event, |set| is the number of events in the log event
set, i is an event within the log event set and w(i) is computed by Equation 4.7.

As shown later in Chapter 5, the average weight function in Equation 4.19 would
achieve a better result than outlier score in capturing of anomalous clusters. We only use
average weight (Equation 4.19) in the ranking of known clusters because the original design
purpose of known clusters is to capture log event sets that are not that different from event
sets in history log data but still important.

4.7.2 Potential Anomalous Clusters

A maximum of 10 potential anomalous clusters with the highest ranking score are shown
with a detailed representative log event set to the developer for manual inspection whether
it is an anomaly. The number, 10, is chosen to decrease the manual work as much as
possible. This choice is further supported by experiment result in Chapter 5 that 10 is
enough to capture most anomalous event sets. Most anomalies should be captured already
in the potential anomalous clusters.

4.7.3 Known Clusters

All algorithms mentioned above mainly deal with log event sets that vary greatly from
history log data. However, there may exist potential anomalies that happen right before the
release and can be overseen by anomaly detection algorithms. A complementary process
is designed to capture the known event sets that may indicate recurrent old errors in the
system. It is an intuitive process that uses the average weight (Equation 4.19) to show
the top 10 known clusters in monitoring release. If developers cannot find anomalies in
potential anomalous clusters, they can check top 10 of known clusters. Again the number
10 is sufficient enough to capture known clusters according to Chapter 5.
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Chapter 5

Experiment Results

This chapter mainly describes experiments that help us to choose the suitable parameters
and evaluate the performance of our monitoring pipeline, enabling us to address and answer
the research questions proposed in Chapter 1.

First we introduce our experiment setup in Section 5.1, including data sets, labels,
benchmark, and evaluation metrics. The log data we collect directly from Adyen is the
original data set, which is used to test the performance of the pipeline in general cases.
However, anomalies in the release sometimes do not meet our assumptions. For example,
anomalous logs are of INFO severity instead of higher severity levels, or logs related to
release problems occur before the release rather than after release in one host. Two types
of artificial data sets are built based on the original data set to test the robustness of the
pipeline and answer RQ3 (Research Question 3). Thanks to developers in Adyen, we can
label anomalous log events during release and use them to evaluate the performance of
anomaly detection algorithms.

To answer RQ2, parameters and distance metrics are then evaluated using the clustering
algorithm in this chapter. Later, the parameters of the nearest neighbor distance algorithm
and LOF are also determined by experiments. In the end, the test set is used to evaluate the
performance of anomaly detection algorithms to answer RQ1.

All experiments are conducted host-wise. In other words, we use our pipeline to monitor
release logs from the monitoring host and display potential anomalous clusters sorted by the
possibility of indicating a releases problem in that host. Although logs with the same PSP
reference can appear across multiple hosts within the platform in Ayden, experiment results
show that log data from the monitoring host is adequate for monitoring release.

5.1 Experiment Setup

5.1.1 Data Sets

Release log data from hosts is collected in advance for experiments. The training set
includes 14 problematic log events from 13 separate releases of live hosts as shown in Table
5.1. The test set as shown in Table 5.2 consists of 10 problematic log events from 7 releases.
Moreover, log data from previous two releases of the same host is also collected to better
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remove noise points during the release. We use the training set to choose parameters in the
pipeline and test set to evaluate the actual performance of the anomaly detection algorithms.
Release log data of each host is processed separately in the pipeline. In other words, the
experiments are done host-wise. We use only logs which belong to the monitoring host as
the input of the pipeline.

During our observations most anomalous log events are generated within 20 minutes
after the release. Although there are a few examples when an anomalous log event is first
spotted an hour later than the release, developers can always rerun the pipeline when trying
to find suspicious log event sets outside the 20-minute scope. Therefore in our experiments
we always choose a before release section and an after release section. These two sections
last both 20 minutes. The length of during release section varies from a few minutes to half
an hour, depending on when it is taken out and brought back to the load-balancer.

Within each release section mentioned in 3.3.1, we choose a starting time of 20 minutes
before the specific host is taken out of the load-balancer and an ending time of 20 minutes
after the host is back to load-balancer. The logs generated between the starting time and
ending time of the release would be collected. We divide the collected logs into two types
of data set: new log data and history log data. New log data includes the logs generated
in the during release section and after release section of the monitoring release. History
log data includes logs that are generated within the before release section from the current
monitoring releases and all log data in three sections from previous releases.

As shown in Table 5.1 and Table 5.2, we show information of the release instances that
are used in the training set and the test set. A release instance in every row includes the
monitoring release and its two history releases in one host. Each release instance is assigned
with a release instance ID. There might be multiple anomalous log events in a monitoring
release, such as Release Instance 1, 14, 15 and 16. We list severity of all anomalous log
events of the release instance in the second column. The total number of logs of different
severity levels are shown from the third to the fifth column. We use # to denote the number
of logs of one severity. For instance, # INFO represents the number of INFO logs in one
release instance. We notice that INFO logs usually account for the majority of raw logs in
release instance.

In Table 5.1 and Table 5.2, most anomalies are of severity WARN or ERROR. To test the
performance of anomaly detection algorithms for INFO anomalies, artificial INFO anoma-
lies data set is generated and used in experiments. The experiments are done with the
original data set shown in the Table 5.1 and Table 5.2, unless mentioned explicitly using
artificial data sets.

Artificial Data Sets

We propose assumptions in Section 3.4.2 that log events have different importance in help-
ing us to find problems in the release. Log events that are of high severity or unseen before
release are believed to have a higher chance of indicating problems during the release. It is
quite essential to consider cases when the assumptions do not hold. Two artificial data sets
are constructed based on the original data set to test the robustness of anomaly detection
algorithms if one of the assumptions is not true.
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Release Instance ID Anomalous Log Event Severity # INFO # WARN # ERROR

1
WARN

269273 1167 110
WARN

2 WARN 3561232 22714 81
3 WARN 535771 2157 235
4 WARN 50168 98 0
5 INFO 22822 292 4
6 INFO 25132 324 0
7 WARN 4492877 83317 1
8 ERROR 1082705 739 216
9 WARN 4815530 36353 1
10 WARN 1774316 1523 13
11 WARN 513840 108 0
12 WARN 527054 93 0
13 WARN 78325 253 0

Table 5.1: Release instance information in training set, including 13 monitoring releases
and 26 history releases from 12 hosts. Each row in the table represents one release instance,
consisting of a monitoring release and two history releases in one host. Release instance
ID is a manually assigned ID for each monitoring release and its two history releases. Each
monitoring release might consist of a few anomalous log events, such as Release Instance
1. The number of logs within the release instance of each severity are listed separately
using the # symbol. For example, # INFO represents the number of INFO logs in the three
releases of the corresponding release instance.

• INFO Anomalies Data Set
Since most anomalies in the data set are of WARN or ERROR severity, the INFO
anomalies data set is constructed by making all anomalous log events into INFO
severity. If the anomalous log event is already of INFO severity, such as Release In-
stance 5 and 6, this release instance would not be included in this data set. Moreover,
this data set also does not consist of release where the anomalous log events are ac-
companied with other WARN or ERROR log templates in an event set because the
remaining higher severity logs would still make it has a high average weigh.

• Recurrent Anomalies Data Set
It is possible that an anomalous log event is both in history log data and new log data.
This makes it hard to capture anomalies by filtering anomaly step for its low outlier
score. The starting time of the new log data is also at the start of the during release
section when the host is taken out of the load-balancer. The recurrent anomalies data
set is constructed by postponing the starting time of the new log data right after the
first occurrence time of corresponding anomalous log event so that it would have a
contrast weight of 0 in Equation 4.4 instead of 1. If there are multiple anomalous log
events in one release instance, we delay the start time until the latest first occurrence
time of anomalous log events when all of them have a contrast weight of 0.
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Release Instance ID Anomalous Log Event Severity # INFO # WARN # ERROR

14
WARN

69395 210 0
WARN

15
WARN

73053 239 1
WARN

16
WARN

72998 132 1
WARN

17 WARN 6732349 11054 9
18 WARN 4674690 2240 4
19 WARN 9240947 842460 9
20 WARN 11892 61 1

Table 5.2: Release instance information in test set, including 7 monitoring releases and 14
history releases from 6 hosts. Each row in the table represents one release instance, con-
sisting of a monitoring release and two history releases in one host. Release instance ID
is a manually assigned ID for each monitoring release and its two history releases. Each
monitoring release might consist of a few anomalous log events, such as Release Instance
14. The number of logs of different severities are listed separately using the # symbol. For
example, # INFO represents the number of INFO logs in the three releases of the corre-
sponding release instance.

We utilize the total recall that considers both top 10 rankings of potential anomalous
clusters and known clusters to evaluate the performance of pipeline on this data set.
However, the drawback of this method is that the noise would be less because we
move some logs from new log data to history log data by postponing the monitoring
start time. In other words, the distributions of original data set and artificial data
set are different. In this chapter, we construct a recurrent anomalies data set using
7 releases in the training set, including Release Instance 2, 3, 4, 7, 8, 9 and 11.
The reason to choose them is that they still have more than half of unique log event
sets remaining in new log data after postponing the starting time of the new log data.
Another reason is that their anomalous log event have a severity of WARN or ERROR.

5.1.2 Labels

Developers would publish the anomalous logs during each release of the host in the public
channel of Adyen. There are usually one or two anomalous log events in one release. We
manually label anomalous log events and consider the rest as normal log events in a release.

Log events that the anomalous logs belong to are manually labeled as anomalous log
events. Similarly, a log event set that consists of an anomalous log event is considered as
an anomalous event set. Clusters are called actual anomalous clusters when they have an
representative event set that is anomalous. The potential anomalous clusters mentioned
before in Chapter 4 are the suspicious clusters and consist of only a few actual anomalous
clusters. When a cluster in the ranking consists of an anomalous event set but has a normal
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representative event set, it is not an actual anomalous cluster.

5.1.3 Benchmark

The parameters from [34] are used as the benchmark, where the authors use an agglomera-
tive hierarchical clustering with Cosine distance. The authors first cluster log event sets in
history log data and new log data respectively using the same cluster distance of 0.5. The
distance between clusters is computed using their representative log event sets, which are
the log event set in the cluster that has the smallest average distance to other members of
the cluster. Later, the outlier score of each cluster in new log data is defined as its distance
to its nearest cluster in history log data. Clusters with an outlier score greater than the fil-
ter threshold 0.5 are shown to developers for manual inspection. The filter threshold, first
cluster distance, and anomaly cluster distance in [34] are all set to a constant value 0.5.

The work of [34] clusters the new log data first then filters the anomalies. This has
been shown not ideal in the preliminary experiment because the anomalous event sets get
clustered with normal event sets, and the anomalous log event may not be representative of
the cluster. In [34] long sequences would be processed directly in the clustering. This may
lead to a low recall in Adyen logs as the long sequences tend to have a higher outlier score as
they considered quite different from the short sequences. [34] also does not distinguish the
different severity levels. To make a reasonable comparison, the benchmark in this chapter
also goes through the cutting long sequences step and uses the same severity ratio value. In
this light, the benchmark in this chapter is an improved version of [34] for Adyen logs.

5.1.4 Ranking functions

In our experiments two different ranking functions are used for the final output of anomalous
clusters and known clusters. The first one is the outlier score computed by each anomaly
detection algorithm in Equation 4.18. The second one is the average weight of the repre-
sentative log event set of anomalous clusters or known clusters in Equation 4.19. Although
earlier experiments show that the ranking function of average weight would be better than
the outlier score, the outlier score ranking function is still used in experiments to reflect the
actual performance of anomaly detection algorithms.

5.1.5 Packages

The experiments and visualization are completed using Python 2.7.10 with some Python
packages:

• scipy (1.0.0)

• numpy (1.14.1)

• scikit-learn (0.19.1)

• seaborn (0.8.1)
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IPLoM algorithm code is modified from Github repository 1 written by [22].

5.1.6 Evaluation Metric

In this chapter, we propose three evaluation metrics (MAP, recall and effort reduction) to
evaluate the performance of the anomaly detection algorithms. As mentioned in 4.7, the
final result returned by the pipeline would be an ordered list of potential anomalous clus-
ters or known clusters. They are all obtained by clustering similar log event sets. The
effort reduction metric is chosen to measure how well this final clustering of log event sets
is working to merge the similar results. Because one of the important goals of the pipeline
is to reduce the manual work for developers. The mean average precision (MAP) is chosen
to evaluate the performance of the pipeline because MAP also considers the rankings of the
result for precision. The recall metric is used to evaluate the ability of the pipeline to cap-
ture the real anomalies. A high recall is crucial for anomaly detection because the fraction
of anomalies within the data is usually small. A low recall and a high accuracy indicate the
pipeline is not able to detect anomalies.

As mentioned, only the top 10 are shown to developers, which means any log event
cluster with a ranking lower than 10th would not be considered as anomalies. This is based
on the idea that developers are generally like users who would be reluctant to go to the
second page in the searching results of the search engine.

The recall@10 is calculated using the anomalous event sets. An anomalous event set
is only captured when it belongs to an actual anomalous cluster within top 10 rankings
of potential anomalous clusters. To avoid duplicate rankings of log event sets within the
same cluster, potential anomalous clusters instead of log event sets are used to calculate
MAP@10 of the anomaly detection. In the scope of the thesis, all MAP and average recall
values are referred to MAP@10 and recall@10 unless mentioned explicitly otherwise. In
summary, anomalous log events, anomalous event sets, or actual anomalous clusters are
derived based on labels given by Adyen developers. The potential anomalous clusters are
returned by the pipeline. We evaluate the performance of the pipeline by computing the
number of captured actual anomalies and their rankings in the potential anomalous clusters.

Recall

The captured anomalous event sets are anomalous event sets that belong to an actual anoma-
lous cluster within a certain ranking threshold. The recall is then defined as the fraction of
captured anomalous event sets over the total number of anomalous event sets. The recall R
is calculated as [2]

R(k) =
|S(k)∩G|
|G|

(5.1)

where k is a predefined ranking threshold, S(k) represents event sets from potential
anomalous clusters within top k, and G is all anomalous event sets. For instance, the

1https://github.com/logpai/logparser
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recall@10 in our experiments would only consider the first 10 results in the rankings as
captured anomalies.

MAP: Mean Average Precision

An actual anomalous cluster is captured only when it has a ranking within a defined thresh-
old. Precision is defined as the fraction of captured actual anomalous clusters over the total
number of potential anomalous clusters. Given a predefined ranking threshold k, the po-
tential anomalous cluster S(k) within top k, and all anomalous event sets G, precision P is
calculated as [2]

P(k) =
|S(k)∩G|
|S(k)|

(5.2)

Average precision (AP) is the mean of precision values of all captured actual anomalous
clusters at certain position. Average precision is calculated as [9]

AP =
n

∑
k=1

(Rk−Rk−1)Pk (5.3)

where Pk is the precision, Rk is the recall, and k represents the kth position. Instead of
treating the output results as unordered, the average precision also takes the rankings of the
anomalies into consideration.

Mean Average Precision (MAP) is equal to the mean value of AP obtained from multiple
queries, according to [9]. In our example, finding anomalies in each release instance is one
query. Therefore, we calculate the average value of AP from release instances as the MAP.
The formal definition of MAP is listed as follows [9]:

MAP = MEANr∈RAP(r) (5.4)

where r represents one release instance, and R is a collection of release instances in our
data set.

Effort Reduction

When we detect multiple anomalous event sets, it is crucial to cluster them correctly to
reduce the number of similar log event sets in the output in case they would mask other
anomalies by occupying too many high ranks. The clustering of log event sets also prevents
duplicate results in the final output. We borrow the concept of effort reduction from [34].
However, instead of considering all log events, we only examine anomalous log events for
simplicity reasons. Given anomalous event sets E, and the collection of their corresponding
clusters G, the effort reduction is computed as

Effort reduction =
|E|
|G|

(5.5)

When there are multiple anomalous log events, the average effort reduction is calculated.
The smaller the effort reduction is, the better the performance would be. There exists an
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optimal minimum value for each release instance as the number of anomalous log events
are a constant number for one release. This minimum effort reduction is obtained when all
of the anomalous event sets are put into one cluster.

Besides simplicity, another reason that effort reduction is not calculated for normal log
event sets is that it is hard to measure objectively whether they should be clustered together
or not. Anomalous log events in the anomalous event sets are usually, at least in our data
set, the templates with the highest weight computed by Equation 4.7. This means the corre-
sponding anomalous event sets should be cluster together because the anomalous event sets
share the same highest weight templates.

5.1.7 Distance Metrics

Some popular metrics are compared to choose the suitable metric. In the following defini-
tions, D represents for distance, and X , Y represent for vectors with N dimensions. Ham-
ming distance and Jaccard distance are generally calculated for binary vectors, the weighted
versions are used instead for better comparison.

1. Cosine distance

DCosine = 1− X ·Y
||X ||2||Y ||2

= 1−

n
∑

i=1
xiyi√

n
∑

i=1
x2

i

√
n
∑

i=1
y2

i

(5.6)

2. Manhattan distance or city block distance

DManhattan = d1(X,Y) = ‖X−Y‖1 =
n

∑
i=1
|xi− yi| (5.7)

3. Hamming distance

DHamming =
∑

n
i=1 |xi− yi|

n
(5.8)

4. Euclidean distance
DEuclidean = ||X−Y ||2 (5.9)

5. Jaccard distance

DJaccard =
|X ∩Y |
|X ∪Y |

=
|X ∩Y |

|X |+ |Y |− |X ∩Y |
(5.10)

6. Pearson distance

DPearson = 1− (X−X) · (Y −Y )
||X−X ||2 · ||Y −Y ||2

= 1− ∑
n
i=1(xi− x)(yi− y)√

∑
n
i=1(xi− x)2

√
∑

n
i=1(yi− y)2

(5.11)
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5.2 Feature Extraction Results

5.2.1 Log Abstraction Methods

Since the primary research questions focus on the modeling the logs in the release, we are
not going to compare different log abstracting methods. Because it requires much manual
work to inspect if each log is abstracted into the correct corresponding template. The Itera-
tive Partitioning Log Mining (IPLoM) described in [36][37] is chosen because its efficiency
and accuracy stated in [22] where multiple message abstracting methods are compared with
different log data sets. IPLoM is a heuristic algorithm and runs at O(n) time complexity,
where n is the number of logs.

IPLoM is quite accurate in Adyen date set. A template is correctly abstracted if it does
not consist of logs from other templates. An average of 92.1% log templates are correctly
abstracted, according to our manual inspection with logs from five releases. There are
mainly two causes for the uncorrected abstracted templates. The first is that log messages
are too short, making the IPLoM falsely finding the mapping among unrelated pairs. The
second is that some log messages are of JSON format, it is hard to abstract the templates
in the JSON format. Because they are quite different from other message strings written by
developers. Although the keys of the JSON format are extracted beforehand and are used
input of abstraction, the performance is still not ideal because the order of keys and number
of keys can affect the result of IPLoM.

The Reconciling Clustering Step of Similar Templates

In this step, similar templates are clustered using the threshold of 0.4 based on the simi-
larity calculated in Equation 4.2. The recall of the reconciling step is used to measure the
performance of this reconciling step. According to our manual inspection of logs from 5
releases, the reconciling step reaches an average recall of 88.8% by measuring how many
similar templates are correctly clustered.

Two ratios are used to measure the performance of IPLoM and its reconciling step with
reducing the size of log data for analysis. We use the training set to calculate two ratios.
On average, the number of log events is only 0.4% of the number of raw logs. Moreover,
after reconciling step, the number of template clusters are further reduced to 74.2% of the
number of the log templates.

# Log Templates
# Raw Logs

= 0.00402

# Template clusters
# Log Templates

= 0.742

5.2.2 The Weight Distribution of Log Templates

The idf distribution from Release Instance 1 is shown in Figure 5.1. When a log template
appears in fewer task IDs, it would have a higher id f weight. This figure clearly shows that
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Figure 5.1: The distribution normalized idf weight of log templates from Release Instance
1. The x-axis represents the value of idf weight, y-axis is the frequency of log events with a
certain idf weight. Green columns represent INFO logs, yellow columns represent WARN
logs, and red columns represent ERROR logs.

(a) Distribution of overall weights of INFO log templates (b) Distribution of overall weights of all log templates

Figure 5.2: The distribution of overall weights of log templates from Release Instance 1.
The severity ratio is set to 10. The left figure shows only the INFO log templates weight,
and the right figure shows all three type of log templates. Green columns represent INFO
logs, yellow columns represent WARN logs, and red columns represent ERROR logs.
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WARN and ERROR templates are less frequent than most INFO templates and therefore
have a higher idf weight.

The overall weight of each template calculated by Equation 4.7 is shown in Figure
5.2. The severity ratio is set to 10 here as an example. In Figure 5.2b, the WARN and
ERROR templates have a higher overall weight than INFO templates because they have a
higher severity weight. In Figure 5.2a, the overall weights of INFO templates are separated
into two group. One group has an overall weight lower than 0.5 and another group has an
overweight higher than 0.5. This difference is caused by the contrast weights. The group on
the left with a smaller overall weight consists of log templates that have been seen before
the release. While the group on the right side of the figure consists of new log templates
that have a contrast weight of 1. The splitting of two groups caused by contrast weights can
also be found in the WARN templates as shown in Figure 5.2b. In Figure 5.2b, if a lower
severity ratio is assigned in Equation 4.7, templates with different serveries would have a
closer overall weight.

5.2.3 The Distributions of Length and Time Duration of Sequences

The time duration of one log sequence equals the difference between the timestamp of the
latest log and that of the earliest log in the sequence. The distribution of time duration of log
sequences from Release Instance 1 is shown in Figure 5.3a. The length of a log sequence is
equal to the number of raw logs in the sequence. The distribution of length of log sequences
from Release Instance 1 is shown in Figure 5.3b. We only consider log sequences formed
by PSP references rather than thread IDs here, which allows us to compute the threshold
with sequences with normal length.

As stated before, we use the 99-percentile length value of log sequences that formed
by PSP references as the threshold to cut the long sequences. However, sometimes the 99-
percentile threshold is still too long, such as 64 in Release Instance 1. To solve this, we also
utilize threshold of time duration. We find the 99-percentile values of the time duration of
log sequences have a PSP reference are all less than 2. We cut the long sequences using the
two thresholds. If a sequence lasts longer than the time threshold, it would be cut into short
sequences based on the timestamp. If the sequence is not cut according to the time duration
threshold, we check if the sequence is longer than the length threshold. It would still be cut
into short sequences if its length exceeds the threshold.

5.3 Anomaly Detection Algorithms

This section mainly discusses the choice of different parameters of anomaly detection algo-
rithms, including clustering, nearest neighbor, and LOF. Corresponding experiment results
are used to support the choice by using the three evaluation metrics from Section 5.1.6.

At first, six distance metrics are compared by how well they cluster the bug event sets
together, after which three distance metrics are chosen for the other experiments. Later,
clustering is used to find the optimal values for two general parameters, filter threshold
and anomaly cluster distance which are shared by all three anomaly detection algorithms.
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(a) Time duration of log sequences in seconds (b) Length of log sequences

Figure 5.3: The distributions of length and time duration of log templates weights from
Release Instance 1. The distribution only include the log sequences formed with a PSP
reference. The amber dashed lines represent 99-percentile values in each distribution.

Moreover, the influence of severity ratio in Equation 4.5 is also shown for each anomaly
detection.

Besides the shared parameters in the pipeline, the specific parameters for each anomaly
detection algorithm are also tested, such as the first clustering distance in the hierarchical
clustering and the value of k in nearest neighbor or LOF. We use the training set from Table
5.1 to get the optimal parameters in this section.

5.3.1 Effort Reduction of Distance Metrics

A proper distance metric is essential for the performance of proximity algorithms. Hierar-
chical clustering is used as the anomaly detection algorithm in this experiment to compute
the effort reduction of each distance. The values of average effort reduction of releases in
the training set with different distance metrics are compared under different cluster thresh-
olds (Equation 4.12); the result is shown in Figure 5.4. The x-axis is the cluster percentile;
the y-axis represents the value of effort reduction that is calculated by dividing the number
of actual anomalous clusters with the number of anomalous event sets.

Unsurprisingly, Euclidean distance does not work well in the outlier clustering because
it generally suffers from the curse of dimensionality [3]. Hamming distance and Manhattan
distance also do not perform well. Usually anomalous event sets are not clustered together
unless a very high cluster distance is chosen for these three distance metrics. The Pear-
son distance and Cosine distance give the best results among different distances by having
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the lowest cluster number. When cluster distance increases, more anomalous event sets
are clustered together; the effort reduction of Euclidean distance, Hamming distance, Man-
hattan distance, and Jaccard distance decrease. The performance of Pearson and Cosine,
however, is not affected significantly by choice of cluster threshold.

The distribution of outlier scores of Release Instance 1 computed by hierarchical clus-
tering (Equation 4.10) is shown in Figure 5.5 to get a better idea of why some metrics fail
to cluster similar log sequences. The outlier scores from hierarchical clustering are the dis-
tance between new data points with the corresponding nearest cluster. The yellow dashed
lines represent for 12.5%, 25%, 50%, 75% and 87.5% percentile, the columns represent the
frequency in the column, the short blue lines on the bottom is the actual appearance of the
distance, and the blue curves are the kernel density estimation. The Cosine distance (5.5a)
and Pearson distance (5.5b) almost have the same distribution, while Manhattan distance
(5.5f) and Hamming distance (5.5e) are more similarly. Jaccard distance (5.5c), Cosine dis-
tance and Pearson distance have a flatter distribution and a maximum value of 1, while the
other three distance metrics have a big spike on the left.

Conclusion

Therefore Cosine, Pearson, and Jaccard distance metrics are chosen for further experiments.

5.3.2 Impact of Filter Threshold

In this section we again use a hierarchical clustering algorithm in anomaly detection to
choose the optimal value for filter threshold in Equation 4.11. Any data point with an
outlier score that exceeds the filter threshold would be considered as potential anomalies.
A strict filter threshold can neglect actual anomalies. On the other hand, a low value of filter
threshold would generate too many false positives.

Before choosing the suitable value for filter threshold, we plot outlier scores of anoma-
lous event sets in each release instance from the training set in Figure 5.6. Almost all
anomalous event sets have an outlier score which is greater than 0.5 when using Cosine,
Pearson, or Jaccard. Data points with a low outlier score shown in this figure are anomalous
event sets of Release Instance 3 and 8. They have low outlier scores because they have sim-
ilar log event sets before the release. INFO anomalies of Release Instance 5 and 6 still have
a high outlier score in three distance metrics; in Cosine distance, for example, the outlier
scores are 0.6212 and 0.5545 respectively.

In order to determine the exact values of filter distance and cluster distance calculated
from the percentiles, percentile distances are plotted in Figure 5.7. As shown in the Figure
5.7, when a large percentile is chosen, the actual distance value calculated from different
hosts may vary greatly.

Conclusion

In order not to miss the potential anomaly sequences, a filter percentile of 50 is used, and
the corresponding filter distance is calculated from Equation 4.11. The filter distance can
be up to 0.76 with the percentile of 50 for Jaccard, which may lead to the decreasing of
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Figure 5.4: The average effort reduction of releases in the training set with different distance
metrics under different cluster percentiles. The x-axis is the cluster percentile in Equation
4.12. The y-axis represents the value of effort reduction that is calculated by dividing the
number of actual anomalous clusters with the number of anomalous event sets. We use lines
with markers to show metrics that are overlapped by others.

Recall @ 10. A high filter threshold means a strict condition on choosing anomalies and
may overlook actual anomalies. Thus the filter threshold is necessary to compare with 0.50.
We choose the smaller value between the two as shown in Equation 5.12, which is used for
later other experiments.

Filter threshold = min(0.5, Percentile(non-zero OA,50)) (5.12)

5.3.3 Impact of Anomaly Cluster Distance

Besides the filter threshold, another important parameter in the pipeline is the anomaly clus-
ter distance. The anomaly cluster distance is set as the distance threshold of hierarchical
clustering to cluster the suspicious event sets that are detected by the algorithms. If this
cluster distance is too small, it would prevent the suspicious event sets from clustering to-
gether. On the other hand, if this distance is set too large, clusters can get big and mask the
potential anomalies because they may not be the representative event sets in the anomaly
cluster.
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(a) Cosine distance (b) Pearson distance

(c) Jaccard distance (d) Euclidean distance

(e) Hamming distance (f) Manhattan distance

Figure 5.5: The distribution of outlier scores of Release Instance 1 computed by hierarchical
clustering (Equation 4.10). The yellow dashed lines represent for 12.5%, 25%, 50%, 75%
and 87.5% percentile values of the outlier scores, the columns represent the frequency in
the column, the short blue lines on the bottom is the actual appearance of the distance, and
the blue curves are the kernel density estimation.
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Figure 5.6: Boxplot of outlier scores of anomalous event sets in each release instance form
the training set, which is computed by hierarchical clustering in different metrics. Distance
values of three distance metrics are separated into three groups.

We choose to use hierarchical clustering for anomaly detection again in this experiment.
The performance of pipeline using different anomaly cluster distances, both on the original
data set and INFO anomalies data set, is plotted in Figure 5.8 and Figure 5.9. In these
types of experiments, we utilize MAP and average recall to evaluate the performance of
the pipeline under different values of a specific parameter. The MAP is computed as the
average AP of each release instance using the rankings of actual anomalous clusters in
the data set. Similarly, the value of recall is also calculated using the average recall of
anomalous log event sets in release instances. It is worth noting that we only consider the
potential anomalous clusters here, ignoring known clusters.

Usually we would use Cosine, Jaccard, and Pearson distance metrics along with two
ranking functions in Equation 4.18 and Equation 4.19. In total, we have six combinations
of distance metrics and ranking functions. For example in Figure 5.8, the legend on the right
represents the six combinations: the colors represent the corresponding distance metric, and
the dots represent average ranking function (Equation 4.19), and triangles are outlier score
ranking function (Equation 4.18). A “Cosine weight” legend entry means using Cosine
distance metric for the distance and the average weight for computing the rankings of po-
tential anomalous clusters. On the other hand, “Cosine distance” means that we use the
outlier score as the ranking function, even though in LOF the outlier score is not the dis-
tance. The purpose of keeping outlier score as the ranking function is to evaluate the actual
performance of anomaly detection algorithms.

As shown in the Figure 5.8 and Figure 5.9, the performance of using average weight
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Figure 5.7: Boxplot of percentile values of outlier score of new log data in the training
set, which is computed by hierarchical clustering in different metrics. The x-axis is the
percentile and y-axis is the distance value computed by the corresponding percentile. In
each percentile value, distance values of three distance metrics are separated into three
groups.

scores as the ranking function is almost always better than using outlier score, considering
both MAP and average recall. This is mainly because new log events are added in every code
release, and a high outlier score represents the novelty of the log event sets. For example,
log event sets that consists of only new INFO logs may be of high rank when considering
the distance score. However, when the average weight is used as the ranking function, the
logs with higher rankings are those event sets with more critical log events, for example,
new ERROR and WARN logs.

Usually, average weight ranking works. When there are a lot of new WARN and ER-
ROR logs detected, nevertheless, log event sets with only INFO events may get neglected
because they do not have a high average weight due to the low severity score. There is a
compromise between getting severer logs and getting more INFO errors.

Conclusion

In Figure 5.8 and Figure 5.9, the best performance of the clustering is also obtained by
setting the cluster distance directly to 0.4, considering three distance metrics.

65



5. EXPERIMENT RESULTS

(a) MAP of distance metrics (b) Average recall of distance metrics

Figure 5.8: MAP and average recall of clustering for original data set in the training set
using different anomaly cluster distances, where x-axis is the anomaly cluster distance,
and y-axis is the value of MAP or recall. We use lines with dots to represent the average
weight ranking function (Equation 4.19) and lines with triangles to represent the outlier
score ranking function (Equation 4.18).

(a) MAP (b) Average recall

Figure 5.9: MAP and average recall of clustering for INFO anomalies data set using differ-
ent anomaly cluster distances, where x-axis is the anomaly cluster distance, and y-axis is
the value of MAP or recall. We use lines with dots to represent the average weight rank-
ing function (Equation 4.19) and lines with triangles to represent the outlier score ranking
function (Equation 4.18).
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5.3.4 Impact of First Cluster Distance

When using the hierarchical clustering for anomaly detection, we would cluster history log
data and use first cluster distance as the distance threshold. The benchmark from [34] uses
a first cluster distance of 0.5 for Cosine distance. The value of first cluster distance would
also affect the performance of the pipeline. If we choose first cluster distance strictly, the
fewer clusters we obtain in the clustering of history log data. If this distance is large enough,
eventually only one cluster is obtained, and all new data point would have the same outlier
scores. If this distance is small enough, the number of clusters would equal the number
of history log data points, generating the same result as the 1-nearest neighbor distance
algorithm. The reasonable choice is to choose also 0.4 because it is better to use the same
value as the anomaly cluster distance. In order to see if 0.4 is also an optimal choice for
the first cluster distance, several experiments are done below.

The ratio between the number of history clusters and the number of history event sets
is computed for each release as in Figure 5.12. We use this figure to visualize the influence
which first cluster distance exerts on the clustering of the history log data. In this figure
the curved lines with triangles are the average value of ratios in every release instance, and
each distance metric is assigned with one color. The dots are ratios from different release
instances. The colored zones are the standard deviation of the ratios with respect to release
instances under different metrics. This ratio is a number in the range of [0,1]. When the
number of clusters gets closer to the number of event sets, the ratio becomes closer to 1. In
Figure 5.12, the average ratio value lines of Cosine and Pearson are almost overlapping. On
the other hand, Jaccard has more clusters as it has a higher ratio compared to Cosine and
Pearson.

The performance of the pipeline using different values of first cluster distance is shown
in Figure 5.10. Moreover, the performance of the pipeline to detect INFO anomalies is
shown in Figure 5.11. MAP and average recall in Figure 5.10 for the original data set
are quite robust to first cluster distance when the value of first cluster distance is smaller
than 0.5. The MAP of the outlier score ranking function and the recall of both ranking
functions decrease as the clustering increase. As expected, MAP and average recall of
INFO anomalies data set are lower than that of original data set, but they are still robust to
the choice of first cluster distance.

Conclusion

The recommended value for the first cluster distance is 0.4 for Adyen data set because the
recall is almost the highest for both original and INFO anomalies data set.

5.3.5 Impact of Severity Ratio

One of the assumptions of the anomaly detection is that the higher the severity of the log
event, the more likely it is anomalous. Log events of different severities should be assigned
with different weights. Different severity ratios in Equation 4.5 would affect both the fil-
tering and clustering steps described in Section 4.6. When we use a high severity ratio, log
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(a) MAP (b) Average recall

Figure 5.10: MAP and average recall of clustering for original data set in the training set
using different first cluster distances, where x-axis is the first cluster distance, and y-axis is
the value of MAP or recall. We use lines with dots to represent the average weight rank-
ing function (Equation 4.19) and lines with triangles to represent the outlier score ranking
function (Equation 4.18).

(a) MAP (b) Average recall

Figure 5.11: MAP and average recall of clustering for INFO anomalies data set in the
training set using different first cluster distances, where x-axis is the first cluster distance,
and y-axis is the value of MAP or recall. We use lines with dots to represent the average
weight ranking function (Equation 4.19) and lines with triangles to represent the outlier
score ranking function (Equation 4.18).
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Figure 5.12: Ratio of history cluster number and history log event set using different first
cluster distances in the training set, where the x-axis represents the first cluster distance,
the y-axis represents the value of the ratio. The curved lines with triangles are the average
value of ratios in every release instance. The dots are ratios from different releases. The
colored zones are the standard deviation of the ratios with respect to release instances under
different metrics.

event sets that consist of WARN or ERROR events would get a higher ranking in the final
output. On the other hand, the pipeline tends to oversee INFO anomalies.

We choose to use hierarchical clustering for anomaly detection again in this experiment.
To find the suitable severity ratio, we evaluate the performance of the pipeline using differ-
ent values of severity ratio. The result is shown in Figure 5.13. MAP and average recall
also increase when severity ratio increases, as shown in Figure 5.13 because the majority of
anomalous event sets have a severity of WARN or ERROR.

To test how severity ratio would affect the capability of the pipeline to capture INFO
anomalies, we also use the INFO anomalies data set. The result is shown in Figure 5.14. As
expected, the MAP of both ranking functions decreases in Figure 5.14a. The outlier score
ranking outperforms the average weight ranking for INFO anomalies although the average
weight is more robust to the changing of severity ratio. However, recall of using average
weight is slightly worse than using outlier distance in Figure 5.14b. When considering
different distance metrics, Jaccard performs far from ideal compared with the other two
metrics.

The severity ratio is set to 4 because MAP and average recall are already the quite
high for original data set at this value. So there is no need to increase the severity ratio
further. Although the MAP would not be the highest for INFO anomalies when severity
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(a) MAP (b) Average recall

Figure 5.13: MAP and average recall of clustering for original data set using different sever-
ity ratios, where x-axis is the severity ratio, and y-axis is the value of MAP or recall. We use
lines with dots to represent the average weight ranking function (Equation 4.19) and lines
with triangles to represent the outlier score ranking function (Equation 4.18).

(a) MAP (b) Average recall

Figure 5.14: MAP and average recall of clustering for INFO anomalies data set using dif-
ferent severity ratios, where x-axis is the severity ratio, and y-axis is the value of MAP or
recall. We use lines with dots to represent the average weight ranking function (Equation
4.19) and lines with triangles to represent the outlier score ranking function (Equation 4.18).
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ratio equals 4, average recall is always at the range from 0.32 to 0.41 for Cosine and Pearson
distances despite the value of severity ratio. This means the pipeline can still capture the
INFO anomalies, but they are in a lower rank.

Conclusion

Thus the severity ratio is set to 4 for Equation 4.5 because of the reasons mentioned above,
the final calculation equation is shown in Equation 5.13. This severity ratio value might
not be suitable for other anomaly detection algorithms such as nearest neighbor distance or
LOF. We are going to explore the impact of severity ratio for these algorithms separately in
the following sections.

wseverity(i) =


1, if i is INFO
4, if i is WARN

16, if i is ERROR
(5.13)

5.3.6 Detecting Recurrent Anomalies in Known Clusters

Logs generated after the release are more likely to be anomalies. However, it is likely that
there are already anomalies generated before the release because the current monitoring host
is affected by the release process of other hosts. Unfortunately, according to the assumption
stated in 3.4.2, the logs happened before the release before despite the high severity would
be considered as normal data, which may make the algorithms fail to capture the potential
anomalies that happen right before the release. We show that the pipeline is still robust
against recurrent anomalies with the help of known clusters, which is a complementary step
we design to capture recurrent anomalies.

In this experiment, we focus on recurrent anomalous log events that appear in both
history log data and new log data. We try to understand how the ranking of known clusters
would help the pipeline to deal with the recurrent anomalous log events. The starting time
of log data are changing accordingly with the first occurrence time of the labeled anomaly
log events so that they are first seen right before the release, which would lead to contrast
weight of 0 in Equation 4.4 and a rather low outlier score. By doing so, we would get a
recurrent anomalies data set from the original data set as already discussed in Section
5.1.1.

We choose to use hierarchical clustering for anomaly detection again in this experiment.
Solely recall is used to evaluate the performance in Table 5.3 because some anomalies are
captured in both rankings of potential anomalous clusters and known clusters. We use
average recall and average overall recall to evaluate the performance. Recall is computed
similarly as before by computing the rankings of only potential anomalous clusters. On the
other hand, overall recall considers both the rankings of potential anomalous clusters and
known clusters. It is worthwhile to mention that the overall recall top 10 in two rankings of
clusters, which would be in total 20 results that would be shown to developers.

As we can see in Table 5.3, the average overall recall is much higher of than the average
recall of the pipeline, indicating most anomalies are captured in known clusters. The com-
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plementary step indeed improves the robustness of the pipeline when dealing with recurrent
anomalies.

Ranking Function Metric Average Recall Average Overall Recall

Average Weight
Cosine 0.0714 0.9286
Jaccard 0.1119 0.6952
Pearson 0.0714 0.9286

Outlier Score
Cosine 0 0.8571
Jaccard 0 0.6119
Pearson 0 0.8571

Table 5.3: Average recall and average overall recall of the pipeline with recurrent anomalies
data set, using hierarchical clustering for anomaly detection. The recurrent anomalies data
set consists of 7 release instances from the training set. The ranking function in the first
column only indicate the ranking function used by potential anomalous clusters. The aver-
age recall is computed using the rankings of potential anomalous clusters. The average
overall recall is computed using the rankings of both potential anomalous clusters and
known clusters.

5.3.7 Nearest Neighbor Distance

Clustering can be viewed as the 1-nearest neighbor using the representative log event sets.
Nearest neighbor distance would perform in a more robust way when compared with mul-
tiple nearest neighbor distance to get a better granularity of how far new event sets are
actually deviate from the history log data.

Impact of k

The MAP@10 and recall@10 of the nearest neighbor algorithm with different k values are
plotted in Figure 5.15. The performance using average weight are quite robust to the choice
of k. While the performance of the using outlier distance could be affect greatly by the value
of k.

As shown in Equation 4.13, outlier scores which are computed using nearest neighbor
distance are equal to the average distance of k nearest neighbor. Though in Figure 5.17
outlier scores of anomalous event sets increase as the number of neighbors increase, the
outlier scores of all new event sets shown in Figure 5.18 also increase. This makes the recall
of using outlier distance decrease a lot because when the number of considered neighbors
increase, most new log event sets would be considered as far away from the old event sets.

The recommended k value is 5 as the recall for both ranking functions using Cosine and
Pearson metrics are nearly optimal.
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(a) MAP (b) Average recall

Figure 5.15: MAP and average recall of nearest neighbor distance for original data set using
different k values (severity ratio = 6), where x-axis is k, and y-axis is the value of MAP or
recall. We use lines with dots to represent the average weight ranking function (Equation
4.19) and lines with triangles to represent the outlier score ranking function (Equation 4.18).

(a) MAP (b) Average recall

Figure 5.16: MAP and average recall of nearest neighbor algorithm for INFO anomalies
under different k values (severity ratio = 6), where x-axis is k, and y-axis is the value of MAP
or recall. We use lines with dots to represent the average weight ranking function (Equation
4.19) and lines with triangles to represent the outlier score ranking function (Equation 4.18).
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Figure 5.17: Distance of anomalous event sets with different k values, where x-axis is k,
and y-axis is the outlier score of anomalous event sets.

Figure 5.18: Distance of new log event sets with different k, where x-axis is k, and y-axis is
the outlier score of anomalous event sets.
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Severity Ratio

Unlike clustering algorithm, the nearest neighbor need severity ratio greater than 6 to get
an maximum recall as shown in Figure 5.19. As most anomalous events are considered as
higher severity, nearest neighbor algorithm use 5 nearest neighbors data points to calculate
the distance threshold, would make new log sequences have a higher outlier score despite
their severity.

For nearest neighbor, the severity ratio of 6 is chosen instead.

wseverity(i) =


1, if i is INFO
6, if i is WARN

36, if i is ERROR
(5.14)

(a) MAP with different severity ratios (b) Average recall with different severity ratios

Figure 5.19: MAP and average recall of nearest neighbor algorithm with different severity
ratios (k = 5), where x-axis is the severity ratio, and y-axis is the value of MAP or recall.
We use lines with dots to represent the average weight ranking function (Equation 4.19) and
lines with triangles to represent the outlier score ranking function (Equation 4.18).

5.3.8 Local Outlier Factor

As the LOF value is a bit different than the distance, it makes no sense to compare with 0.5
and get the minimum filter threshold as in Equation 5.12.

Filter threshold = Percentile(non-zero OA,50) (5.15)
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(a) MAP (b) Average recall

Figure 5.20: MAP and average recall of nearest neighbor to capture INFO Anomalies under
different severity ratios (k = 5), where x-axis is the severity ratio, and y-axis is the value
of MAP or recall. We use lines with dots to represent the average weight ranking func-
tion (Equation 4.19) and lines with triangles to represent the outlier score ranking function
(Equation 4.18).

Impact of k

As stated in [2] the value of k exerts more significant influence on the performance of
LOF than on nearest neighbor distance algorithm. According to Figure 5.21, the MAP
and recall values would be influenced more by the value of k. The larger the k, the more
nearest neighbor the algorithm needs to take into consideration. If the value of k is too low,
for example, lower than 10, then the LOF would fluctuate dramatically as the k changes
according to [7]. The recall of the Cosine and Pearson distance metrics get maximum
when the k equals 10, although the MAP using the outlier score ranking increase as the k
change from 10 to 15. The recommended value for k is 15 for higher recall and more robust
performance.

Severity Ratio

Different severity ratio would affect the performance of LOF as well as shown in Figure
5.23. While the performance of LOF after chaining all anomalies to INFO verbosity is
shown in Figure 5.24. The severity ratio of 4 is chosen for LOF as the same as clustering in
Equation 5.13.
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(a) MAP (b) Average recall

Figure 5.21: MAP and average recall of LOF for original data set under different k (severity
ratio = 4), where x-axis is k, and y-axis is the value of MAP or recall. We use lines with dots
to represent the average weight ranking function (Equation 4.19) and lines with triangles to
represent the outlier score ranking function (Equation 4.18).

(a) MAP (b) Average recall

Figure 5.22: MAP and average recall of LOF for INFO anomalies data set under different
k (severity ratio = 4), where x-axis is k, and y-axis is the value of MAP or recall. We use
lines with dots to represent the average weight ranking function (Equation 4.19) and lines
with triangles to represent the outlier score ranking function (Equation 4.18).
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(a) MAP with different severity ratios (b) Average recall with different severity ratios

Figure 5.23: MAP and average recall of LOF for original data set using different severity
ratios (k = 15), where x-axis is the severity ratio, and y-axis is the value of MAP or recall.
We use lines with dots to represent the average weight ranking function (Equation 4.19) and
lines with triangles to represent the outlier score ranking function (Equation 4.18).

(a) MAP (b) Average recall

Figure 5.24: MAP and average recall of LOF for INFO Anomalies using different severity
ratios (k = 15), where x-axis is the severity ratio, and y-axis is the value of MAP or recall.
We use lines with dots to represent the average weight ranking function (Equation 4.19) and
lines with triangles to represent the outlier score ranking function (Equation 4.18).
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Method Distance metric Filter threshold First cluster distance k Anomaly cluster distance
Benchmark Cosine 0.5 0.5 - 0.5
Clustering Pearson Equation 5.12 0.4 - 0.4
Nearest neighbor Pearson Equation 5.12 - 5 0.4
LOF Pearson Equation 5.15 - 15 0.4

Table 5.4: Optimal Parameters for Anomaly Detection Algorithms. The filter threshold
is to use to filter out potential anomalies. The first cluster distance is used as the distance
threshold by hierarchical clustering to cluster history log data. The anomaly cluster distance
is the threshold to cluster potential anomalies in the new log data.

5.4 Final Test Result

After choosing the optimal parameters for each anomaly detection shown in Table 5.4, we
use test sets (Table 5.2) to evaluate the performance of different anomaly detection algo-
rithms. Like in training set, the INFO anomalies test set is also constructed by changing the
anomalous template into INFO severity.

The optimal parameters and the Pearson distance are chosen for each algorithm. Except
for benchmark, all other anomaly detection algorithms use a Pearson distance metric. For
clustering, the first cluster distance is set to 0.4 and a severity ratio of 4. For nearest neigh-
bor, the k is chosen to 5 and a severity ratio of 6. For LOF, the k is set to 15 and a severity
ratio of 4.

The final result is shown in 5.5, clustering provides a MAP of 0.359 and a recall of
0.547, but a total recall of 0.952 if the Old Bug Cluster also consider as captured. The
reason why benchmark clustering and LOF fail to capture some anomalies in original test
set is that anomalies are already seen before the the release in Release14, Release15 and
Release16. By comparing the distance of multiple neighbors, nearest neighbor distance
method can capture recurrent anomalies in these three releases. However, nearest neighbor
is not good at capturing INFO anomalies.

Considering the fact that INFO anomalies are quite rare in Adyen releases (only 5 INFO
anomalies out of 77 anomalous releases within 5 month), the nearest neighbor distance
method is suggested for Adyen data set. The nearest neighbor is capable of providing a
more robust performance in anomaly detection even for recurrent anomalies.
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Ranking function Method
Original test set INFO anomalies test set

MAP Recall Overall Recall MAP Recall Overall Recall

Average weight

Benchmark 0.359 0.548 0.952 0.082 0.333 0.452
Clustering 0.359 0.548 0.952 0.070 0.321 0.405

Nearest neighbor 0.520 1.000 1.000 0.060 0.321 0.321
LOF 0.413 0.548 0.809 0.055 0.321 0.321

Outlier score

Benchmark 0.290 0.333 0.595 0.084 0.333 0.452
Clustering 0.274 0.333 0.595 0.082 0.321 0.405

Nearest neighbor 0.307 0.619 0.619 0.088 0.417 0.416
LOF 0.023 0.071 0.333 0.059 0.143 0.143

Table 5.5: Test Set Results. The ranking function in the first column only indicate the ranking function
used by potential anomalous clusters. The average recall is computed using the rankings of potential
anomalous clusters. The average overall recall is computed using the rankings of both potential
anomalous clusters and known clusters.
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Chapter 6

Experiment Thoughts

In this chapter, we discuss our experiment thoughts with the setting of the pipeline and some
ideas beyond experiments.

6.1 Data Set

Collecting log data is the most time-consuming process as there are millions of release logs
in one host. Moreover, for each anomalous release, two more history releases need to be
collected. We collect logs in the monitoring host by querying the LogSearch website. The
labeling of log events is done manually. Although there are in total 77 anomalous release
claimed by developers from September 2017 to February 2018, some anomalies are not
related to release or false positives.

6.1.1 Release Instances

In the end, we use 20 releases with their previous two history releases. In total, 60 releases
from 17 Live hosts are in as our data set. We call one monitoring release and its previous
two releases as one release instance. Each release instance consists of logs from the same
host. Because each host has different applications and settings of the environment, they
generate different numbers or types of logs. At first, we are worried that the model and
parameters designed for one host may not be suitable for the rest. This is also the main
reason why we want to use anomaly detection algorithms with fewer parameters that can be
extended to other hosts.

Each release consists of a different number of logs, from twenty thousand logs to more
than 9 million logs. Even though we have many logs in one release instance, we still do
not have enough log data to cover all hosts in Adyen platform. We divide our 20 release
instances into training and test sets with a ratio of 13:7. Moreover, the training set and
test set only have one shared host. This can be used to check if anomaly detection can be
extended to unseen hosts.

Because we have limited release instances that are available in the experiments, the
training set and test set have different distributions of anomalies. For instance, there are two
INFO anomalies in the original training set and zero in the original test set. There are two
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recurrent anomalies in the original training set and three in the original test set. We want to
make our training set as difficult as possible. Thus, giving The test set itself consists of two
recurrent anomalies, and we construct INFO anomalies data set based on the original test
set. Therefore, we believe the test set as long with its INFO anomalies version can help us
to evaluate the actual performance of the pipeline.

6.1.2 Artificial Data Sets

To address RQ3, two artificial data set are constructed. Those two artificial data sets help
us to evaluate the performance of different parameters or algorithms more thoroughly.

The INFO anomalies data set are used in parameters tuning section to see if the cur-
rent value would overlook INFO anomalies. However, most anomalies have high severities.
Within 5 months, we only spot 5 INFO anomalies out of 77 anomalous releases of Adyen.
Therefore INFO anomalies only account for 6.5% of the total number of anomalies. This
ratio may different in other log data. When we make the compromise between INFO anoma-
lies and high severity anomalies, we should consider this ratio.

Recurrent anomalies are more frequent than INFO anomalies in our data set. Within our
data sets, we have 5 release instances out of 20 have a recurrent anomaly. Therefore, 25% of
the release instances might have recurrent anomalies, though this data is not accurate. There
are fewer data points in the new log data because we postpone the starting time of new log
data. In other words, we also delay the ending time of history log data. This may reduce
the number of log event sets in the new log data, making it easy for anomaly detection to
capture anomalies. We would suggest using a more sophisticated error injection method to
produce recurrent anomalies, without affecting the distribution of the noise.

6.2 Extracting Features from Logs

6.2.1 Log Abstraction Methods

Although we use IPLoM to abstract raw logs directly, it is also applicable to apply more
sophisticated online log abstraction methods in the literature to reduce the processing time
of abstraction. In Adyen, other on-going projects are using the source code to generate log
templates. In theory, this should be more accurate if the source code is available. If we use
the source code to generate log templates beforehand, we can match incoming logs into the
templates directly. The drawback of this method is that we need to generate templates again
after release.

6.2.2 Feature Construction

The logs are unstructured in the Adyen data set. Extracting appropriate features from the
logs is essential. The most natural way is to construct feature vectors from time windows
during release to capture anomalies. However, this method needs labeling each time win-
dow which can be troublesome. Feature vectors constructed using log sequences are quite
intuitive for developers. We can map the original log sequences in plain-text directly.
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Besides, log sequences represent the process of one task. Log event sets are simplified
log sequences, and we use log event sets in anomaly detection. Because we ignore the order
of the sequence in our pipeline, we are trying to capture combination anomalies. One of the
problems that we meet in this project is that there are always previously unseen log events
in new log data. By putting the log events into the sequences, we can calculate the distance
of different log event sets.

6.2.3 Severity Ratio

Different developers have different opinions of what is WARN and ERROR. The severity
ratio around 5 is suggested in Adyen data set. This indicates that high severities log event
indeed have a higher chance to be anomalies. This severity ratio should be tuned separately
with other log data, by checking experimental results.

6.2.4 Logs of Different Applications

Different Java applications in the platform have different significance to the software. A
WARN logs of back-office might be less important than those from core application. As
the anomalous data is scarce in releases considering the total number of logs, this value
might be hard to mine statistically. Different customized weights can be assigned to the log
templates by developers themselves.

6.3 Anomaly Detection

6.3.1 Distance Metrics

In total, we test six different distance metrics in experiments. We exclude three distance
metrics in the beginning because they cannot cluster similar log event sets together. Because
we want to measure the actual performance of algorithms, all experiments are done using
three distance metrics: Cosine, Pearson, and Jaccard. There might also be other suitable
distance metrics. Because we need to retrieval most anomalous clusters in the final output,
our problem is similar to an information retrieval problem. Besides, we also have a sparse
matrix and need to measure the similarity of the sparse vectors. Therefore we only test
metrics that are popular in information retrieval.

6.3.2 Anomaly Detection Algorithms

We explore the performance of three anomaly detection algorithms, including hierarchical
clustering, nearest neighbor distance, and LOF. LOF is not robust enough as shown in Table
5.5 and Figure 5.21a because the performance of LOF is quite sensitive to the value of k.
The k of LOF might need to be tuned for each host separately.

We use a different filtering threshold (Equation 5.12) from the constant distance value
0.5 that used by benchmark. This method allows us not to neglect the anomalies when it is
of recurrent anomalies or INFO anomalies as our filter rule is less strict.
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6.4 Log Practice

In this section, we discuss the possible improvement that would help with monitoring re-
lease logs.

6.4.1 Avoid Similarly Log Statement

Similar log statements in different logging points are possible to make their logs end up with
the same template. Similar logging statements may hinder the performance of the anomaly
detection or confuse other developers. Besides avoiding adding unnecessary logging points,
developers are suggested to use different logging messages in different logging points.

6.4.2 More customized Severity Levels

We suggest that companies use more customized severity levels. For instance, Adyen now
uses three customized severity levels: INFO, WARN, and ERROR. WARN indicates a prob-
lem is caused by external parties, such as misuse of APIs, or wrong operation of the mer-
chant account. ERROR represents a problem caused by Adyen system, which should be
more critical.

It is possible to add more customized severity levels. In this way, we can distinguish
a mild WARN from a moderate WARN. Moreover, we can also use more types of severity
weights in our pipeline. However, using more severity levels also requires the developers to
understand correctly of the meaning of logging statements. Therefore, they can choose the
suitable severity level for each logging statement.
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Chapter 7

Conclusions and Future Work

This chapter gives an overview of our contributions to this project. After this overview, we
discuss the limitations of this project and draw some conclusions based on the experimental
results. Finally, some ideas for future work are discussed.

7.1 Contributions

The main contribution of the thesis is to develop a pipeline that can detect anomalies in
release logs using enterprises data set from Adyen. Inspired by [34], we are the first to ad-
dress the problem of release logs monitoring on an enterprise data set with different severity
levels.

We design a feature extraction step that does not require the input of source code. We
use IPLoM to abstract log templates from raw logs. Later, we apply a reconciling step to
help further clustering similar templates. To make long sequences comparable with short se-
quences, we propose a method to cut long sequences based on the threshold of 99-percentile
log length or time duration. To improve the performance of proximity-based anomaly de-
tection, we introduce the severity ratio to assign different severity weights to templates.

Besides hierarchical clustering as used in [34], we use nearest neighbor distance algo-
rithm and LOF as the anomaly detection algorithms. We find the optimal values for different
anomaly detection algorithms successfully. We also propose two ranking functions that sort
the final output clusters. The average weight ranking (Equation 4.19) performs better in
finding anomalies which meet with our assumptions (Section 3.4.2).

Finally, we test the performance of the pipeline on Adyen data set. The average recall
of nearest neighbor distance of the test set is higher than its average recall of the training
set. We choose nearest neighbor distance as our recommended algorithm for Adyen.
According to the result of the test set, the nearest neighbor distance outperforms the other
two algorithms if recurrent anomalies present in the release. For nearest neighbor distance
in the test set, the average recall is 100% for the original data set, and 32.1% for INFO
anomalies data set. This result shows that we can capture most anomalies if the anomalies
are of higher severity. Besides, we can capture around 1/3 of INFO anomalies.
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7.2 Limitations

There are some limitations of this thesis, which might make the pipeline fail to detect
anomalies in release logs.

7.2.1 Data Set

The first problem of the data set is that we only test on the data set of Adyen. It might not
be suitable for other log data sets. This pipeline needs to be tested with other log data set in
the future. Secondly, we should have collected more release instances in Adyen.

Because of the limited available release instances as discussed in Section 6.1.1, the
training set and test set have different distributions of types of anomalies. This average recall
of nearest neighbor distance for training set is 76.9%, which is lower than the average recall
for the training set. The lower average recall is because of two recurrent anomalies, release
instance 3 and 8, in the training set. To find out the reasons for failure, we list the number of
new log events that we do not spot in history log data in Table 7.1. The column “# New Log
Event” shows the number of previously unseen log events in the current monitoring release.
The column “# New WARN or ERROR” represents the number of previously unseen log
events of WARN or ERROR.

These two recurrent anomalies, release instance 3 and 8, cannot be detected by all three
anomaly detection algorithms. Release instance 3 cannot be captured because of the high
number of new log events, according to Table 7.1. Release instance 8 is exceptional because
it does not consist of any new log events. Release instance 8 consists of two consecutive
releases. The host failed for the first release and restarted a few minutes later after fixing
the issues. In this way, history log data in this release instance also consists of log events
that are produced by newly released code.

7.2.2 The Number of New Log Events

When we have many new log events as shown in Table 7.1, the anomaly detection algo-
rithms might be affected by the noise and have a poor performance. In future work, it is
possible to study the relation between the number of new log events and the performance of
the pipeline.

If there are less then 10 log events in each release, we do not need to put them directly
into the sequence. Although we detect anomalies on simplified log sequences level, it is also
possible that we can detect anomalous log event directly. We can calculate the overall event
weight in Equation 4.7 and sort them based on the overall event weight. Detecting directly
anomalous events can be more useful if the number of newly added logging statement in
each release is quite low.

7.2.3 Log Abstraction

The parameters of IPLoM and its reconcile step need to be tuned again for different log
data. After reconciling, some similar logs are still not clustered. The main problem of log
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7.2. Limitations

Release Instance ID # New Log Event # New WARN or ERROR
1 103 3
2 28 8
3 424 17
4 39 9
5 39 6
6 24 1
7 43 10
8 0 0
9 91 9
10 224 14
11 46 1
12 38 2
13 85 3
14 53 11
15 44 13
16 44 10
17 17 3
18 69 10
19 150 8
20 14 4

Table 7.1: The number of new log events in release instances. Each row in the table rep-
resents one release instance, consisting of a monitoring release and two history releases in
one host. The column “# New Log Event” represents the number of previously unseen log
events in the current monitoring release. The column “# New WARN or ERROR” represents
the number of previously unseen log events of WARN or ERROR in the current monitoring
release.

abstraction is the JSON format log messages. Although we already use the key fields for
IPLoM, it may need a more sophisticated method to extract the JSON templates.

7.2.4 Anomaly Detection Assumptions

The underlying assumptions in this thesis are that those newly seen log events with a higher
severity level and less frequent would be more likely to be anomalous. When the assump-
tions do not hold in some cases, the pipeline may fail to capture the anomalies. For example,
when we have INFO anomalies, it is harder for the pipeline to capture it.

Another problem is that we only consider combination anomalies. When there are per-
formance issues or a sudden change in the number of critical log events, our pipeline cannot
detect such anomalies. More features such as the number of occurrences need to be taken
into consideration.
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7.3 Conclusions

After feature extraction and anomaly detection in experiments, we can answer the research
questions which are proposed in Chapter 1.

RQ1: Is it useful to apply the weighted vector model to log event sets in monitoring
release logs of Adyen by anomaly detection?

In the test set, we achieve a recall of 100% in the original data set and a recall of
32.1% INFO anomalies data set using the recommend algorithm: nearest neighbor distance
method. The pipeline can successfully detect most anomalies and one-third of the INFO
anomalies.

We evaluate the performance of the pipeline with different severity ratios. If we set the
severity ratio to 1, it is the same as not use the severity ratio. When we set a higher severity
ratio, we would achieve higher values of MAP and average recall in the original data set.
The result means that the severity ratio indeed improves the performance of the pipeline
when compared with setting severity ratio to 1.

RQ2: What are the optimal parameters and distance metrics for proximity-based
anomaly detection algorithms that are used in release log monitoring?

The optimal parameters are shown in Table 5.4. To conclude, we use Pearson distance
metrics for all three methods: clustering, nearest neighbor, and LOF. For clustering distance,
we all use a distance of 0.4. For filtering threshold, clustering and nearest neighbor use
Equation 5.12, where the filtering score is calculated as the minimum value of 50-percentile
of outlier scores between 0.5. LOF uses Equation 5.15 which is using the 50-percentile of
outlier score of new log event sets directly.

RQ3: Is the anomaly detection pipeline robust in the release when assumptions of the
anomaly do not hold?

To test the robustness, we construct INFO anomalies data set and recurrent old anoma-
lies data to test the performance of anomaly detection algorithms. In the test set, the rec-
ommend algorithm nearest neighbor can detect 32.1% of INFO anomalies and 100% recall
of the recurrent old anomalies in Release14, Release15 and Release16. The clustering al-
gorithm performs better on INFO anomalies and has an overall recall of 0.405%. There are
also two recurrent anomalies in the training set. However, our pipeline is not able to capture
these recurrent anomalies because there are many new log events in those two monitoring
releases.

7.4 Future work

7.4.1 Data Sets

As discussed in previous sections, the pipeline should also be tested on other log data to
evaluate its performance. On the other hands, the number of collected release instances
is quite limited. We only use 20 release instances that belong to 16 hosts. When the in-
frastructure allows, we should conduct a more thorough study on the release logs of other
hosts.
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7.4.2 Abstraction Methods

IPLoM is a batch processing step. In experiments, this step is the most time-consuming step
in the pipeline. To overcome this shortcoming, we can use an online algorithm to increase
the efficiency. Moreover, extra attention needs to be taken to JSON format messages in the
raw logs as it is quite different than normal string messages written by developers.

This pipeline can also be processed using the events parsed from source code, like the
on-going project in Adyen to obtain better accuracy.

7.4.3 Considering the Numbers of Occurrence

After choosing the log sequences to extract feature, we again need to choose features be-
tween message appearance vectors and message counting vectors. The message appearance
vectors are bit vectors only which consists of 1 and 0. While message counting vectors are
vectors consists the occurrence number of each template. In this thesis, we choose message
appearance vectors to simplify the analysis data. However, it is also possible to use message
counting vectors which allow the pipeline to detect anomalies related to the sudden change
of occurrence number.

7.4.4 Updating Labels of the Logs After Releases

In this pipeline, we do not store the information of future labeling, unlike Logness. The
labeling information can help improve the performance of anomaly detection if a supervised
algorithm is chosen in the future.
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