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A B S T R A C T

Abrupt depth transitions (ADTs) have been shown to induce the release of bound waves into free waves, which
results in spatially inhomogeneous wave fields atop ADTs. Herein, we examine the role of free-wave release in
the generation and spatial distribution of higher-harmonic wave components and in the onset of wave breaking
for very steep periodic waves upon interaction with an ADT. We utilise a Smoothed Particle Hydrodynamics
(SPH) model, making use of its ability to automatically capture breaking and overturning surfaces. We validate
the model against experiments. The SPH model is found to accurately reproduce the phase-resolved harmonic
components up to the sixth harmonic, particularly in the vicinity of the ADT. For the cases studied, we conclude
that second-order free waves released at the ADT, and their interaction with the linear and second-order bound
waves (beating), drive higher-order bound-wave components, which show spatial variation in amplitude as a
result. For wave amplitudes smaller than the breaking threshold, this second-order beating phenomenon can
be used to predict the locations where peak values of surface elevation are located, whilst also predicting the
breaking location for wave amplitudes at the breaking threshold. Beyond this threshold, the contributions of
the second-order and higher harmonics (second-harmonic amplitudes are up to 60% and sixth-harmonic up
to 10% of the incident amplitude) cause breaking to occur nearer to the ADT, and hence the wave breaking
onset location is confined to the region between the ADT and the first anti-node location of the second-order
components. Counter-intuitively, we find that, at the point of breaking, steeper incident waves are found to
display reduced non-linearity as a result of breaking nearer to the ADT.
1. Introduction

Abrupt depth transitions (ADTs) exist in the form of natural and
man-made bathymetric features, such as seamounts, continental
shelves, steep beaches, reefs, and breakwaters. The effect of variations
in depth on the properties of surface waves in coastal waters has been
the subject of an extensive literature (e.g., Newman, 1965; Kirby and
Dalrymple, 1983; Booij, 1983; Beji and Battjes, 1993a; Zheng et al.,
2020; Belibassakis and Athanassoulis, 2002, 2011). ADTs have been
shown to release free waves (Byrne, 1969; Massel, 1983), transfer
energy to higher frequencies (Young, 1989; Kojima et al., 1991; Beji
and Battjes, 1993b), and, recently, induce rogue wave events (Trulsen
et al., 2012, 2020; Zheng et al., 2020). Wave fields atop ADTs can
be highly spatially variable and exhibit extreme crests, and as such
have significant implications for the loading on structures placed on
the shallower (or lee-) side of the ADT. This paper investigates the

∗ Corresponding author.
E-mail address: samuel.draycott@manchester.ac.uk (S. Draycott).

nonlinear behaviour of steep monochromatic waves atop ADTs with
and without wave breaking.

For steep monochromatic waves in intermediate and uniform depth
without breaking, wave nonlinearity is well understood. Most impor-
tantly, bound wave components are forced, which do not obey the
(linear or nonlinear) dispersion relationship (Fenton, 1985). In the
presence of an ADT, additional nonlinear phenomena occur, some of
which have been explained by Massel (1983) for weakly nonlinear
monochromatic waves, up to second order in wave steepness. Waves
are both transmitted and reflected by the ADT, and when the incident
wave is weakly nonlinear, a release of bound waves into additional
free waves at second order takes place. These free wave components do
obey the linear dispersion relationship. The free superharmonic waves
therefore travel at a phase speed different from the phase speed of
the linear transmitted free waves (and their second-order superhar-
monic bound waves). This leads to a spatial beating pattern in the
vailable online 1 November 2021
378-3839/© 2021 Elsevier B.V. All rights reserved.
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superharmonic surface elevation with a beating length of 𝜋∕(𝑘2𝑓0 ,𝑠 −
2𝑘0,𝑠), where 2𝑘0,𝑠 denotes the wavenumber of the transmitted second-
rder superharmonic bound wave and 𝑘2𝑓0 ,𝑠 the wavenumber of the

second-order superharmonic free wave in the shallower depth. The first
anti-node is observed at 𝜑2𝑠∕(𝑘2𝑓0 ,𝑠−2𝑘0,𝑠), where 𝜑2𝑠 denotes the phase
shift between the superharmonic bound and free waves. For second-
order waves in the limits of a small change in depth or very deep water
on the deeper side 𝜑2𝑠 = 𝜋. This behaviour predicted by Massel (1983)
has been observed experimentally by Monsalve Gutiérrez (2017).

By extending the theory of Massel (1983) to narrow-banded
wavepackets, Li et al. (2021c,a) have demonstrated that beating of
the second-order superharmonic waves only occurs within a limited
distance from the top of the ADTs for non-monochromatic waves and
that, in addition, second-order subharmonic free waves are generated.
Based on the deterministic model developed by Li et al. (2021c,b) have
proposed a mechanism for the formation of rogue waves atop ADTs by
developing a second-order stochastic model. This model can explain the
non-homogeneous statistical properties of irregular waves (e.g., skew-
ness, kurtosis) atop ADTs observed in numerical simulations (Gramstad
et al., 2013; Viotti and Dias, 2014; Ducrozet and Gouin, 2017; Zhang
et al., 2019; Zheng et al., 2020) and experiments (Trulsen et al., 2012;
Zhang et al., 2019; Bolles et al., 2019; Trulsen et al., 2020).

Experiments and numerical simulations have also been used to
examine the behaviour of steep monochromatic waves propagating
over ADTs, including effects up to third order. In Ohyama and Nadaoka
(1994), a boundary element code is used to study nonlinear wave
transformation over a submerged shelf, where significant third-order
wave components are observed in addition to those at second order.
Using a Boussinesq-type model for the shallower side, Grue (1992)
concluded that the second and third harmonic waves on the lee-side
of an obstacle can, in some cases, be comparable to the amplitude of
the incoming first harmonic.

Several experimental studies have demonstrated that higher-
harmonic generation occurs as waves propagate over various types of
depth transitions (both finite-length and stepped). The generation of
higher harmonics were noticed on the lee-side of submerged break-
waters whose crests are near to the free surface in Dattatri et al.
(1978). In Kojima et al. (1991), a similar phenomenon is observed
for finite and infinite length submerged plates, concluding that energy
is transferred to higher frequencies. Highly irregular wave forms are
observed after the depth increase for the finite-length plate case. This
phenomenon is described as ‘harmonic de-coupling’ in Beji and Battjes
(1993b), which occurs when waves propagate over the downward
slope of a submerged bar. For the cases presented they conclude that
this phenomenon is more dominant than wave breaking in terms of
the redistribution of energy. In a subsequent numerical study by Beji
and Battjes (1994), a Boussinesq model was developed and found to
accurately describe the wave transformations observed in Beji and
Battjes (1993b). These experimental and numerical studies support
findings from early field work by Byrne (1969), where additional
wave components were observed due to shallow-water wave interaction
with a natural submerged offshore bar. Similar findings were found in
another field study by Young (1989) assessing wave propagation over
coral reefs.

It is clear from the aforementioned studies that second and third-
harmonic components of the wave field can be significantly amplified
when monochromatic waves travel over an ADT and that, separately,
ADTs can be the cause of wave breaking. Through a comparison of
new experiments and numerical simulations using Smoothed Particle
Hydrodynamics (SPH) this paper will examine why steep monochro-
matic waves break atop ADTs and what the role of higher harmonics is
in causing this breaking process and setting the breaking location.

In order to model steep waves interacting with varying bathymetry,
numerical solvers that provide direct numerical solutions of the fully
nonlinear potential flow (FNPF) equations can be used. However, such
2

models are incapable of fully capturing wave breaking due to the
potential flow assumption, which is violated in breaking waves. In
FNPF models, waves are modelled as either a single-valued free surface
or as a Lagrangian free surface, modelling the overturning jet to the
point of re-connection with the surface below. A spilling-breaker model
was successfully incorporated into a FNPF code in Grilli et al. (2019)
to prevent overturning and used to predict wave shoaling over mild
slopes. However, to model the complete breaking process, compu-
tational fluid dynamics (CFDs) codes are required to solve the full
Navier–Stokes equations. In Chella et al. (2015), the incompressible
Reynolds-averaged Navier–Stokes (RANS) are solved with a 𝑘-𝜔 tur-
bulence model to assess the breaking wave profile asymmetry over
a submerged reef. They conclude that the water depth over the reef
largely determines the wave breaking behaviour and breaker char-
acteristics. A CFD study by Srineash and Murali (2018) showed an
increase in higher-harmonic content with increasing steepness as waves
propagate over a mild-slope ramp. No breaking cases were carried out
in Srineash and Murali (2018).

In conventional Eulerian grid-based CFD models, maintaining mass
conservation with overturning free surfaces is problematic, and al-
ternative Lagrangian-particle approaches are increasingly used. The
Lagrangian Smoothed Particle Hydrodynamics (SPH) framework is one
such method, offering major advantages to modelling these free-surface
flows (e.g., Altomare et al., 2017). There are essentially two main
variants of SPH: the weakly compressible form where fluid pressure
and density are explicitly related through the Tait equation of state
(Eq. (7)), and the incompressible form which maintains a divergence-
free velocity field through the projection method (e.g., Lind et al.,
2012). Due to pressure noise resulting from the stiff equation of state,
and the numerical diffusion techniques employed to resolve this (e.g., 𝛿-
PH, Antuono et al., 2012), weakly-compressible SPH is known to suffer
rom non-physical pressure noise and excessive dissipation (You et al.,
021). In contrast, the incompressible form of SPH has higher accuracy
nd better conservation properties (see e.g., Gotoh and Khayyer, 2018),
ut at greater computational expense. Recent advances in weakly com-
ressible (𝛿)-SPH have, however, demonstrated notable improvements
n field quantities, energy and volume conservation, and in the reduc-
ion of non-physical dissipation (You et al., 2021). In this paper we use
he weakly compressible SPH code DualSPHysics (Crespo et al., 2015;
omínguez et al., 2021) with a more standard 𝛿-SPH scheme, described

further in Section 2.2.
With particles of constant mass, the SPH approach models breaking

without special treatment of the free surface (e.g., Dalrymple and
Rogers, 2006; Colagrossi, 2005). SPH has also been used to model
waves interacting with underwater obstacles. In Gotoh et al. (2004)
a SPH model with large-eddy simulation (see Gotoh, 2001) was used
to model wave interaction with a partially submerged breakwater to
assess turbulence and vortical flow. SPH has also been used to model
shallow-water solitary waves interacting with a curtain-type breakwa-
ter in Shao (2005), and Han and Dong (2020) used SPH to assess
shallow-water solitary waves interacting with a submerged breakwater,
assessing breakwater performance and energy transmission coefficients.
The performance of berm breakwaters after potential reshaping by
storms was assessed using SPH in Akbari and Torabbeigi (2021). Ad-
ditionally, the interaction of waves with submerged porous obstacles
has been successfully modelled in Khayyer et al. (2018) and Tsuruta
et al. (2019) using incompressible SPH models. None of these SPH-
based studies focus on the ability of the model to capture the (higher-)
harmonic waves and the resulting interaction on the shallower (or lee-
) side of the ADT. This leads to the third objective of the paper: to
validate SPH for the generation of higher harmonics, specifically due
to an ADT. This will allow us to assess the nature and origin of the
higher harmonics and their role in the onset of wave breaking.

The paper is laid out as follows. In Section 2, the experimental set-
up and numerical method are described, and the test cases are defined.
Section 2.4 presents a convergence study along with example outputs.

Results are presented in Section 3, where in Section 3.1 and Section 3.2
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Table 1
Positions of the wave gauges relative to the depth transition (𝑥 = 0), as indicated in
Fig. 1.

Gauge no. 1 2 3 4 5 6 7 8 9 10 11 12

Position [m] −1.865 −0.1 0 0.1 0.3 0.5 0.7 0.9 1.1 5 7.5 10

a harmonic analysis is presented comparing between SPH simulations
and experiments. Section 3.1 focuses on time and frequency-domain
analysis, whilst Section 3.2 presents a spatial analysis of the transmitted
superharmonics. Section 3.3 explores the role of the harmonics in
determining the breaking onset and location. Concluding remarks are
offered in Section 4.

2. Methodology

2.1. Experimental set-up

Experiments were carried out in the COAST (Coastal, Ocean and
Sediment Transport) laboratory at the University of Plymouth, UK. A
false floor was installed in the 35 m long flume, which has a width
of 0.6 m. The water depth, ℎ𝑑 , was set to 0.55 m, and the false floor
installed with a height ℎstep = 0.35 m from 7.5 m to 22.5 m away from
the wavemaker. Hence, the shallower side water depth, ℎ𝑠 = ℎ𝑑−ℎstep =
0.2 m. A diagram of the test set-up is shown in Fig. 1, including the 12
resistance-type multiplexed wave gauges installed and used for analysis
and model validation. All gauges are sampled at 128 Hz, and their
positions are defined in Table 1.

2.2. Numerical method

2.2.1. SPH implementation
The open-source code DualSPHysics (Crespo et al., 2015; Domínguez

et al., 2021) is used for all SPH simulations, and both the fluid and solid
domains are defined as discrete particles. The weakly-compressible
form of the SPH equations are solved. In DualSPHysics, and SPH in
general, the discrete approximation for a physical quantity, 𝛽, for
particle 𝑖 is given by:

𝛽𝑖 =
∑

𝑗∈𝛺
𝛽𝑗𝑊𝑖,𝑗𝑉𝑗 , (1)

where 𝑗 ∈ 𝛺, and 𝛺 is the set of neighbouring particles. The kernel
function is denoted by 𝑊𝑖,𝑗 = 𝑊 (|𝒙𝑖,𝑗 |, ℎ) and is calculated as a function
of the distance between particles (|𝒙𝑖,𝑗 | = |𝒙𝑖 − 𝒙𝑗 |) and the smoothing
length, ℎ. The volume of a neighbouring particle 𝑗 is denoted by 𝑉𝑗 ,
and 𝑉𝑗 = 𝑚𝑗∕𝜌𝑖 with 𝑚𝑗 and 𝜌𝑗 the mass and density of particle 𝑗,
respectively.

For all simulations a quintic Wendland kernel (Wendland, 1995) is
used, defined as:

𝑊𝑖,𝑗 = 𝛼𝐷 (1 −
𝑞
2
)4 (2𝑞 + 1) for 0 ≤ 𝑞 ≤ 2, (2)

where 𝑞 = |𝒙𝑖,𝑗 |∕ℎ, and 𝛼𝐷 is a normalisation term. For the 2D
imulations presented in this paper 𝛼𝐷 = 7∕(4 𝜋ℎ2), and ℎ is set to
1.2

√

2 𝑑𝑝, where 𝑑𝑝 is the particle spacing.

.2.2. Governing equations
Fluid quantities are calculated based on the principles of conserva-

ion of mass (continuity) and momentum.:
D𝜌
D𝑡

+ 𝜌𝛁 ⋅ 𝐮 = 0, (3)

D𝐮
D𝑡

= −1
𝜌
𝛁𝑝 + 𝐠 + 𝛤 , (4)

where 𝜌 is the fluid density, 𝐮 = (𝑢, 𝑣,𝑤) is the velocity vector with
omponents in the (𝑥, 𝑦, 𝑧)-directions, 𝑝 is the fluid pressure, and 𝐠 is
3

ravitational acceleration. D∕D𝑡 denotes the material derivative and 𝛤
represents the dissipative terms.

The weakly-compressible SPH form of the continuity equation, in-
cluding the 𝛿-SPH density diffusion term of Fourtakas et al. (2019), is
given by:
d𝜌𝑖
d𝑡

=
∑

𝑗∈𝛺
𝑚𝑗𝒗𝑖,𝑗 ⋅ 𝛁𝑊𝑖,𝑗 + 𝛿ℎ𝑐0

∑

𝑗∈𝛺
𝑉𝑗𝜳 𝑖,𝑗 ⋅ 𝛁𝑊𝑖,𝑗 , (5)

here 𝒗𝑖,𝑗 = 𝒗𝑖−𝒗𝑗 and 𝛁𝑊𝑖,𝑗 is the kernel gradient. The speed of sound
0 is set to 20

√

𝑔ℎ𝑑 for these simulations, where
√

𝑔ℎ𝑑 is the phase
speed for a shallow-water wave in a water depth ℎ𝑑 . The acceleration
due to gravity is denoted by g. The 𝛿-SPH coefficient, 𝛿, is taken to
e the standard value of 0.1 (e.g. Kanehira et al., 2020). The diffusion
erm, 𝜳 𝑖,𝑗 is given by (as in Molteni and Colagrossi, 2009):

𝑖,𝑗 = 2(𝜌𝐷𝑗 − 𝜌𝐷𝑖 )
𝒙𝑖,𝑗
|𝒙𝑖,𝑗 |

= 2(𝜌𝑇𝑖,𝑗 − 𝜌𝐻𝑖,𝑗 )
𝒙𝑖,𝑗
|𝒙𝑖,𝑗 |

, (6)

which is the formulation first described in Fourtakas et al. (2019).
The superscripts 𝐷, 𝑇 and 𝐻 denote the dynamic, total and hydrostatic
densities, respectively. For weakly-compressible SPH, the pressure and
density, and hence conservation of mass and momentum equations, are
coupled using the Tait equation of state:

𝑝 =
𝑐20𝜌0
𝛾

[(

𝜌
𝜌0

)𝛾
− 1

]

, (7)

where 𝜌0 = 1000 kg m−3 is the reference density of water, and
𝛾 = 7 is the polytropic index. Eq. (7) is a very stiff equation, and
oupled with particle disorder, results in significant non-physical den-
ity fluctuations. In our simulations, the aforementioned 𝛿-SPH density
iffusion term in Eq. (5) is therefore introduced to reduce these density
luctuations.

The momentum equation, including artificial viscosity, is given by:

d𝒗𝑖
d𝑡

= −
∑

𝑗∈𝛺
𝑚𝑗

( 𝑝𝑗 + 𝑝𝑖
𝜌𝑖𝜌𝑗

+𝛱𝑖,𝑗

)

𝛁𝑊𝑖,𝑗 + 𝒈, (8)

where 𝒈 is the gravitational acceleration vector, and 𝛱𝑖,𝑗 is the artificial
viscosity term, which is defined as in Dalrymple and Rogers (2006),
namely:

𝛱𝑖,𝑗 =
−𝛼𝛱 𝑐0
𝜌𝑖 + 𝜌𝑗

ℎ𝒗𝑖,𝑗 ⋅ 𝒙𝑖,𝑗
|𝒙𝑖,𝑗 |2 + 0.01ℎ2

, (9)

where 𝛼𝛱 is set to 0.01 (typically between 0.01 and 0.1).
Time-stepping is carried out using a symplectic explicit second-

order time-integration method using a predictor and corrector stage.
The Courant number is set to 0.2.

2.2.3. Numerical wave flume set-up
The numerical wave flume is depicted in Fig. 2, and a summary of

key parameters used for the simulations is provided in Table 2. The
numerical flume is set up to have the same 𝑥 and 𝑧-dimensions as the
physical flume depicted in Fig. 1. However, the numerical flume is a 2D
model of the physical flume in order to obtain the high particle density
required to capture wave breaking onset.

Based on preliminary validation studies, waves were simulated
using a second-order wavemaker (Madsen, 1971) without active wave
absorption. To minimise reflected waves from the end of the computa-
tional domain, a large passively absorbing damping zone was defined
from 𝑥 = 17.5 m to 𝑥 = 27 m (25 m to 34.5 m from the wavemaker).
This damping zone reduces fluid velocities quadratically to zero over
the length of the damping zone. A convergence study (Section 2.4)
showed that a particle spacing 𝑑𝑝 = 0.005 m is sufficient for capturing
the appropriate physics, particularly near to the depth transition. Sur-
face elevation values were extracted every 𝑑𝑝 from −6.5 m to 12.5 m,
enabling detailed spatial assessment of the wave fields. Velocities of
SPH particles are also extracted over the same 𝑥-range to enable
assessment and visualisation of breaking wave cases.
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Fig. 1. Diagram of experimental wave flume and set-up.
Fig. 2. Diagram of numerical wave flume. Black regions denote solid boundaries.
Table 2
Key parameters and formulations used for the SPH simulations.

Parameter Value

SPH kernel Quintic Wendland
Particle spacing (𝑑𝑝) 0.005 m
Smoothing length (ℎ) 1.2

√

2 𝑑𝑝
Density diffusion (𝛿) 0.1
Diffusion term (𝜳 𝑖,𝑗 ) Fourtakas et al. (2019)
Particle shifting Off
Speed of sound (𝑐0) 20

√

𝑔ℎ𝑑
Reference density (𝜌0) 1000 kg m−3

Polytropic index (𝛾) 7
Artificial viscosity (𝛼𝛱 ) 0.01
Time integration Predictor–corrector
Courant number 0.2
Simulation time 30 s
Simulation output frequency 20 Hz
Dynamic boundary condition mDBC (English et al., 2021)

In order to provide improved estimates of fluid pressures near solid
boundaries, all solid boundaries (tank walls, floor and wavemaker)
are defined using the modified dynamic boundary conditions (mDBC)
recently implemented in DualSPHysics (English et al., 2021).

2.3. Experimental and numerical test cases

For all test cases, monochromatic (regular) waves are generated
with frequency, 𝑓0 = 19∕32 ≈ 0.594 Hz. The corresponding wavenum-
bers on the deeper (𝑘0𝑑) and shallower (𝑘0𝑠) sides are 1.85 m−1 and 𝑘0𝑠
= 2.80 m−1, respectively. Hence, 𝑘0𝑑ℎ𝑑 = 1.02 and 𝑘0𝑠ℎ𝑠 = 0.559, and
waves are in intermediate water depth both before and after the step.

Waves are generated for a range of amplitudes in both experiments
and the numerical model, each for a duration of 30 s. In order to
compare experimental and numerical wave parameters, measurements
taken at gauge 1 from the experiments are initially assessed relative
to equivalent measurements from the numerical model extracted at the
same location (𝑥 = −1.865 m). The ‘ramp-up’ of the wave generation
differs between the experimental and numerical wavemakers as does
the sampling frequency. To remedy this, the wave gauge measurements
are down-sampled to 20 Hz and, through cross-correlation analysis, the
lag associated with the maximum cross-correlation value (measured at
gauge 1 location) is removed from the start of all gauge measurements.
4

This reduces both sets of measurements to a length of 29.15 s on a
synchronised time base, 𝑡.

To enable assessment of the incident wave amplitudes in the nu-
merical model and experiments, the mean wave amplitude measured
at gauge 1 (or SPH equivalent) from 𝑡 = 17.9 s to 29.15 s is used
and referred to as 𝑎1. This corresponds to the time window used for
frequency-domain analysis in Section 3.1. These mean amplitudes will
include reflections from the step and the effects of nonlinear waves,
but enable fair comparison between the model and the experimental
test cases.

The extracted experimental and numerical reference wave ampli-
tudes 𝑎1 are presented in Fig. 3. The high-density region of wave
amplitudes for the experimental cases was used to identify the thresh-
old amplitude(s) at which waves begin to break, which is highlighted
by the grey transparent patch. The left-hand side of the patch defines
the amplitude where breaking occurs infrequently, not for every crest
and if so very gently, and the right hand-side corresponds to consistent
breaking for consecutive waves. Very large amplitudes are generated
in the SPH model to assess how breaking behaviour changes and limits
shallower-side amplitudes. For direct comparison, a breaking (B) and
a non-breaking case (NB) for which amplitudes are very similar are
identified and are encircled by a blue box in Fig. 3. These cases are
used for the convergence study (Section 2.4) and for more detailed
comparisons and analysis throughout Section 3.1.

As will become apparent in Section 3.2, the values of 𝑎1 are not
exactly equal to the incident wave amplitude, as values of 𝑎1 include re-
flections from the step. Due to the wave gauge placement (single gauge
on the deeper-side), it was not possible to calculate the true incident
amplitudes for the experiments. For the SPH simulations, however, the
high-resolution surface elevation outputs facilitate reflection analysis
to isolate the incident and reflected waves, the results of which are
presented in Appendix. Reflected wave amplitudes are found to be
22%–28% of the incident wave amplitude. In Section 3, results are
presented relative to 𝑎1 when both SPH and experiments are included,
and relative to the calculated value of the incident amplitude from SPH
simulations, 𝑎1,𝑖, when only SPH results are presented.

2.4. Model convergence and example outputs

In order to assess convergence and model performance, the initial
particle spacing 𝑑 was varied for the breaking (B) and non-breaking
𝑝



Coastal Engineering 171 (2022) 104041S. Draycott et al.
Fig. 3. Mean amplitudes measured from experiments and the SPH model from 17.9 s to 29.15 s, showing breaking (B) and non-breaking (NB) cases used for direct comparison.
The grey transparent patch denotes the region where breaking is observed (the left-hand side of the patch corresponds to where mild inconsistent breaking is observed and the
right-hand side to where breaking became persistent). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Coefficient of determination (𝑟2) between SPH model and experiments as a function of gauge position and for three values of the particle spacing 𝑑𝑝. Both non-breaking
(NB, left) and breaking (B, right) cases are shown. The inserts within each plot show 𝑟2-values in the region near to the step.
(NB) validation cases. Particle spacing values of 𝑑𝑝 = 0.02 m, 0.01 m
and 0.005 m were used. Fig. 4 shows the difference between wave
gauge measurements and SPH measurements, represented by the coef-
ficient of determination 𝑟2 for both the breaking (B) and non-breaking
(NB) cases and for three values of 𝑑𝑝. Values of the coefficient of
determination 𝑟2 are based on the second half of the time signal (𝑡 =
17.9 s to 29.15 s) to ensure waves, including second-order free waves
have reached all wave gauges. This window also corresponds to the
section used for frequency-domain analysis in Section 3.1.

In general, decreasing 𝑑𝑝 serves to improve the comparison. Very
good agreement is observed between the simulations and wave gauges
near to the step for 𝑑𝑝 = 0.005 m; 𝑟2-values between 0.98 and 0.995 are
calculated for gauges 1–9 for both B and NB cases. Mean 𝑟2-values over
all gauges are approximately 0.96 and 0.93 for the non-breaking and
breaking cases, respectively. Although poorer performance is observed
further from the wavemaker (and step), this is deemed as acceptable
agreement, particularly considering the measured discrepancy in input
amplitude as presented in Fig. 3. The increased discrepancy between
the experimental and numerical surface elevations with increasing 𝑥
on the shallower side (𝑥 > 0) for the non-breaking case is likely due to
the non-physical large artificial viscosity required to keep simulations
stable along with the dissipative effects of the density diffusion scheme.
For the breaking case, this, in combination with the three-dimensional
and turbulent nature of the breaking itself, contributes to the discrep-
ancy. As will become apparent, the surface elevations near to the step
are of most interest, and in this region there is very good agreement. A
value of 𝑑𝑝 = 0.005 m was used for all subsequent simulations.

Detailed analysis in Sections 3.1 and 3.2.1 largely focuses on ex-
tracted superharmonics, and hence some example outputs of complete
spatial and temporal measurements are shown in this section. Fig. 5a, b
show the SPH particle velocities in the 𝑥-direction, 𝑣𝑥, for the breaking
(B) case. Also presented are the interpolated surface elevations from the
5

SPH simulations and the wave gauge measurements from experiments,
between which good agreement is demonstrated. The aforementioned
free second-order superharmonic is visible as are the associated large
crest amplitudes near to the depth transition, prior to breaking. Wave
breaking is subsequently apparent between gauges 9 and 10. Fig. 5c
shows time series of surface elevations for the breaking case at gauge
9. Synchronisation, as mentioned in Section 2.3, is based on gauge
1 measurements. Gauge 9 is at a location where the free and bound
second-order superharmonics are coming into phase; hence the surface
elevation is highly asymmetric, and indeed the wave form indicates
the presence of additional free components. The SPH model agrees
well with the experimental measurements, although the difference in
wavemaker ‘ramp-up’ is evident for the first measured wave.

3. Results

3.1. Frequency and time-domain analysis

This section assesses the release of wave harmonics due to nonlinear
monochromatic waves transitioning over an ADT and validates the SPH
model through comparisons of the extracted superharmonics from the
SPH simulations to those from experimental observations.

To assess the superharmonics, Fast Fourier Transforms (FFTs) are
used to extract harmonic amplitudes, and for all harmonic analysis,
the synchronised time window between 17.9 s to 29.15 s is used (see
Section 2.3) to ensure wave components have had time to travel across
the measurement domain. This precise section length also minimises
spectral leakage, enabling harmonics to be extracted readily from the
FFTs. Fig. 6 shows amplitude spectra for several wave gauges for the
non-breaking (NB, top row) and breaking (B, bottom row) cases. SPH
equivalents are also shown.
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Fig. 5. Panels (a) and (b) show particle velocities in the 𝑥-direction, 𝑣𝑥, along with interpolated free surfaces from SPH simulations and experiments at the gauge locations (Exp.)
for the breaking case defined in Fig. 3 at a simulation time of 14.5 s. Panel (c) shows a time-domain comparison between the SPH and experimental measurements at gauge 9
for the breaking case.
Fig. 6. Discrete amplitude spectra of the surface elevations measured at the different gauge positions in the experiments compared to analogous spectra obtained from SPH
simulations for breaking (B) and non-breaking (NB) cases.
Assessing the non-breaking (NB) case shown in Fig. 6, it is apparent
that on the deeper side (gauge 1) the waves are only weakly non-
linear, as the second superharmonic amplitude is over an order of
magnitude smaller than the first harmonic and the third and fourth
superharmonic waves are negligibly small. Compared to the deeper
side (gauge 1), an increase in the amplitude of the second harmonic
is shown at the step interface (gauge 3), whereas an increase in all
superharmonic amplitudes is shown for all gauges further downstream
6

from the step (gauges 5 to 9). At gauge 9, up to the sixth-harmonic
component become notable. Further from the step, at gauge 10, all
superharmonic amplitudes are reduced compared to those measured at
gauge 9. Fig. 6 clearly indicates a spatially in-homogeneous wave field
with a localised peak. This in-homogeneity is a result of the second-
order effects that are investigated by Massel (1983) and Li et al. (2021c)
and, in addition, their higher-order counterparts. Following Massel
(1983) and Li et al. (2021c), we know free waves with frequency 2𝑓
0
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Fig. 7. Comparison of separated harmonic time series for the non-breaking case showing experiments and SPH simulations for several gauge positions.
are released at the step, where 𝑓0 denotes the incident linear wave
frequency. The transmitted free wave obeys (approximately for waves
of larger steepness) the linear dispersion relation

16𝜋2𝑓 2
0 = 𝑔𝑘2𝑓0 ,𝑠 tanh 𝑘2𝑓0 ,𝑠ℎ𝑠, (10)

where 𝑔 is gravitational acceleration, and 𝑘2𝑓0 ,𝑠 denotes the wavenum-
ber of the transmitted second-order superharmonic free wave on the
shallower side. This free wave generally has a phase shift of 𝜑2𝑠 ≈ 𝜋
relative to the second-order superharmonic bound wave that also exists
in the absence of the step (Li et al., 2021c). The superharmonic free
and bound waves can be linearly superimposed, leading to a spatial
beating pattern in the surface elevation, which reaches its first peak in
the vicinity of gauge 9. Li et al. (2021c) suggests that the first peak
location, 𝑥𝑝, measured from the step interface, appears in the region

0.9𝜋
𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠

≲ 𝑥𝑝 ≲
1.1𝜋

𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠
, (11)

here 𝑘0,𝑠 denotes the wavenumber of the linear transmitted wave on
he shallower side. The lower and upper limits, 0.9𝜋 and 1.1𝜋, were
hosen in this paper as the phase shift, 𝜑2𝑠, between the bound and
ree is not exactly 𝜋 and Massel (1983) and Li et al. (2021c) can only
rovide a leading-order estimate for the steep waves we consider here.
or the case presented in this paper, 𝜑2𝑠 is predicted to be 0.92𝜋 based
n Massel (1983) and Li et al. (2021c). Furthermore, the locations of
he maximum (anti-node) and minimum crests (node) associated with
he beating pattern can be estimated by (𝜑2𝑠 + (2𝑛− 2)𝜋)∕(𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠)

and (𝜑2𝑠 + (2𝑛 − 1)𝜋)∕(𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠), respectively, where 𝑛 is a positive
integer and 0.9𝜋 ≲ 𝜑2𝑠 ≲ 1.1𝜋. These locations will be examined in
Section 3.2, and we will show in Section 3.3 that the first anti-node
location, 𝑥𝑝, is a good estimate of the location at which the waves start
to break when the incident wave amplitude is gradually increased.

The spatial beating pattern of the second-order free and bound
waves also appears to correlate with an increase in amplitude of higher
harmonics (third to sixth). In Section 3.2.1 the higher harmonics are
explored in more detail, before assessing how this influences breaking
behaviour in Section 3.3. SPH measurements compare favourably to
experiments for all gauges, however, minor deviation is noted for gauge
7

10, particularly for fourth and higher superharmonic amplitudes. This
may be attributed to the aforementioned excessive dissipation in the
SPH simulations, the effects of which accumulate downstream from the
step and disproportionately affect the higher frequencies.

Similar results are evident for the breaking case (B), as shown
in Fig. 6. Compared to the deeper side, superharmonic amplitudes
increase up to gauge 9, then decrease for gauge 10. In this case,
however, as shown in Fig. 5, the waves break between gauge 9 and
10. Again, good agreement is found between the SPH model outputs
and experiments for gauges 1 to 9, with significantly poorer agreement
for gauge 10. The wave breaking process, which results in energy
dissipation and re-distribution, is imperfectly modelled, resulting in
small errors in both the frequency and amplitude of higher-frequency
components (at gauge 10, downstream of breaking).

To assess wave harmonics in the time domain, inverse Fourier
Transforms applied to each isolated harmonic are computed, with the
results for the breaking (B) and non-breaking (NB) cases shown in
Figs. 7 and 8. Harmonics are normalised by the deeper-side reference
amplitudes, 𝑎1, presented in Fig. 3. The increase in superharmonic
amplitudes locally at gauge 9 is clearly significant and is captured
well by the SPH model for both cases. The change in wave profile
and amplification of the crest amplitude from gauge 1 to gauge 9 is
quite striking, and the subsequent reduction in crest amplitude at gauge
10 highlights the localised nature of the phenomenon. As observed in
Fig. 6, the SPH results at gauge 10 for the breaking case do not agree
well with the experiments for the higher superharmonics (fifth and
sixth).

Fig. 9 shows the amplitudes for the different harmonics, extracted
from the spectra, as a function of 𝑎1 for experiments and SPH simula-
tions at several gauge positions. Results from all experimental cases are
shown in addition to the SPH simulations up to 𝑎1 = 0.05 m. From Fig. 9
it is evident that for all 𝑎1 values shown the deeper-side incident wave
fields remains weakly non-linear with second-order contribution up to
0.1𝑎1. Higher superharmonics become increasingly significant near to
the step on the shallower side, where at gauge 9 even the contribution
of the sixth superharmonic component becomes significant for larger

amplitudes. The amplitudes of all superharmonics are reduced at gauge



Coastal Engineering 171 (2022) 104041S. Draycott et al.

1
p
s
f
i
f
i
w
a
p
p
n

3

i
c
p

Fig. 8. Comparison of separated harmonic time series for the breaking case showing experiments and SPH simulations for several gauge positions.
Fig. 9. Extracted normalised higher-harmonic amplitudes 𝑎𝑛∕𝑎1 at different gauge positions as a function of input amplitude 𝑎1 comparing experiments and SPH simulations.
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0, where free and bound second-order components are no longer in
hase, and after 𝑎1 ≈ 0.04 m it is clear that breaking is limiting the
uperharmonic amplitudes further. Overall, reasonable agreement is
ound between SPH simulations and experiments for all harmonics,
nput amplitudes and wave gauge positions. The notable disagreement
ound at second order for gauge 3 is perhaps expected as the gauge
s located at the depth transition where any minor position error
ill result in large differences in the harmonic content. Disagreement
t gauge 10 is more significant than at other gauges, and is more
ronounced at higher values of 𝑎1, which can be explained by the
resence of wave breaking, which is three-dimensional, turbulent, and
ot perfectly modelled in the SPH simulations.

.2. Spatial analysis

In the SPH simulations the harmonics presented in the time domain
n Figs. 7 and 8 can also be plotted as a function of space and
ompared to gauges at the measurement locations. Figs. 10 and 11
8

resent this for the non-breaking and breaking cases, respectively. The o
ynchronised time presented of 𝑡 = 17.9 s ensures the free second-
rder superharmonic has had time to propagate to the end of the
easurement domain. For both the non-breaking (Fig. 10) and breaking

Fig. 11) cases excellent agreement is found between experiments
nd SPH simulations for the phase-resolved harmonics. Assessing the
econd-order superharmonic in Figs. 10 and 11, the approximate node
nd anti-node locations, measured from the step interface, are seen
ear 𝑥 = 3 m, 6 m, and 9 m. These locations agree well with the
stimates from Eq. (11) and Massel (1983), Li et al. (2021c) for the
ase considered: with 𝑥𝑝 ≈ 2.86 m using 𝑘2𝑓0 ,𝑠 = 6.67 m−1, 2𝑘0,𝑠 =
.66 m−1, and the phase difference between free and bound second-
rder components at the step ≈ 0.92𝜋 based on Li et al. (2021c). For
he apparent node at 𝑥 = 6 m there is an almost perfect cancellation
f the surface elevation at the time presented, which suggests that the
ree and bound waves are of very similar amplitude. At this node, the
mplitudes of the higher harmonics are also significantly reduced. For
he breaking case presented in Fig. 11, the first anti-node is clearly
bserved, with significantly larger superharmonic amplitudes than in
he non-breaking (NB) case, however, a clear second anti-node is not

bserved after the breaking location.



Coastal Engineering 171 (2022) 104041S. Draycott et al.

1

Fig. 10. Separated harmonics from SPH simulations as a function of space and compared to experiments at the wave gauges for the non-breaking case at synchronised time 𝑡 =
7.9 s.
Fig. 11. Separated harmonics from SPH simulations as a function of space and compared to experiments at the wave gauges for the breaking case at synchronised time 𝑡 = 17.9 s.
Fig. 12 presents the amplitudes associated with the first to the sixth
harmonics as a function of space for four incident wave amplitudes
including the breaking (B) and non-breaking (NB) cases, with both
SPH simulations and experimental values shown in panels b–d. Also
presented for panels a–c are the values expected from the second-order
theory by Massel (1983), as implemented in Li et al. (2021c).
9

It is evident from Fig. 12 that the higher-harmonic components
appear to have the same beating pattern as the second-order compo-
nents. This suggests the origin of these components; i.e. the third and
higher harmonics are bound to the second harmonic. If these were free
components released at the ADT, one would expect higher-wavenumber
beating patterns than those observed. For the lower amplitude cases
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Fig. 12. Spatial distribution of the amplitude of wave harmonics for select cases. (a) 𝑎1,𝑖 = 0.0102 m, (b) 𝑎1,𝑖 = 0.0177 m, (c) non-breaking case 𝑎1,𝑖 = 0.0243, and (d) breaking
ase 𝑎1,𝑖 = 0.0388 m. Experiments and SPH outputs are presented for cases b–d, along with second-order theoretical predictions by Massel (1983) for the non-breaking cases (a–c).
ransparent grey patches represent the expected node and anti-node locations.
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panels a–c) there is a clear second anti-node, which is not apparent in
he breaking (B) case (panel d) as high-frequency surface motion is dis-
ipated by breaking. On the shallower side, there is modulation of the
mplitude of the first harmonic, which may be a result of third-order
nteraction, considering that the cross-interaction of the second-order
ree and transmitted linear would lead to a third-order bound wave
f frequency 𝑓0 but a wavenumber (𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠 ≈ 1 m−1) different
rom the wavenumber of the first harmonic. It is also noteworthy that
mplitude of the second harmonic exceeds the amplitude of the first
armonic for the breaking (B) case at 𝑥 ≈ 3 m. For 𝑥 < 0, there is a
lear oscillation of the amplitude of the first harmonic due to the partial
tanding wave formed as a result of wave reflection from the step. It is
vident that 𝑎1 is, therefore, not a representation of the true incident
mplitude as gauge 1 is located where the incident and reflected wave
omponents are in phase. A further assessment of the incident and
eflected waves are presented in Appendix with transmitted waves
ssessed further in Section 3.2.1. It is also noteworthy that amplitude
f the second harmonic exceeds the amplitude of the first harmonic for
he breaking (B) case at 𝑥 ≈ 3 m.

A number of observations can be made when comparing the ex-
racted spatial distribution of harmonics from the SPH model (solid
ines) to those expected based on the theory by Massel (1983) (dashed
ines). On the deeper side, good agreement between theory and SPH
imulations is found for the linear wave amplitude and the spatial
tanding wave pattern that arises due to reflections from the step. On
he shallower side, both the predicted linear and second-order har-
onic amplitudes from Massel (1983) are larger than those measured

n experiments and extracted from the SPH model. This is due to the
10

mission of higher-order effects in the theory, which would result in the
orcing of higher modes. The predicted pattern of second-order beating,
owever, is consistent with the SPH simulations and experiments and is
learly the dominant mechanism at play. The near-perfect cancellation
t 𝑥 ≈ 6 m arises because the theoretical bound and free second
armonic amplitudes are approximately equal, as also observed in
he SPH simulations. The two lower-amplitude cases (panels a and b)
emonstrate that, as the incident wave amplitude is decreased, the
PH simulations and experiments approach the second-order solutions
f Massel (1983). Despite the omission of higher-order effects, it ap-
ears that the second-order beating effect described in Massel (1983)
nd Li et al. (2021c) can be used to predict where the maximum
alues of the surface elevation will be found. This is explored further
n Section 3.3.

.2.1. Transmitted waves
To better assess the harmonic content of the waves obtained from

he SPH simulations upon transmission over the step, spatio-temporal
𝑘-𝑓 ) amplitude spectra have been computed for the total surface

elevations on the shallower region over the synchronised time 𝑡 =
17.9 s to 29.15 s. This enables the assessment of all present harmonic
components, and is shown in Fig. 13 for four different cases. In Fig. 13
the linear dispersion relation is indicated by a blue dotted line, and a
1:1 relationship between 𝑓∕𝑓0 and 𝑘∕𝑘0𝑠 is shown by a red dotted line,
indicating a constant phase speed equal to that of the first harmonic
and thus the location of bound waves. In Fig. 13, the amplitudes
are normalised by the maximum value at the first harmonic and are
compensated (scaled) by the ratio of 𝑓∕𝑓0 to aid visual clarity of the
(much smaller) higher-harmonic amplitudes on the colour scale. Due



Coastal Engineering 171 (2022) 104041S. Draycott et al.
Fig. 13. Spatio-temporal amplitude spectra for four cases with increasing amplitudes: (a) 𝑎1,𝑖 = 0.0102 m, (b) 𝑎1,𝑖 = 0.0177 m, (c) 𝑎1,𝑖 = 0.0243 m (NB), (d) 𝑎1,𝑖 = 0.0388 m (B).
Panels e-h show zoomed-in regions for 𝑓∕𝑓0 = 1–3 to assess second-order free wave content and correspond to panels a-d, respectively. Amplitudes have been scaled (compensated)
by the ratio of 𝑓∕𝑓0 to enable visualisation the higher-harmonic amplitudes, and are normalised by the maximum value at the first harmonic. Blue dotted lines denote the linear
dispersion relation, and red dotted lines indicate a 1:1 relationship between 𝑓∕𝑓0 and 𝑘∕𝑘0𝑠 and hence a constant phase speed equal to the phase speed of the first harmonic and
thus the location of bound waves. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
to the limited length of the shallower-side SPH domain (12.5 m), the
wavenumber resolution is relatively coarse at 𝛥𝑘 = 0.503 m−1.

Despite the relatively coarse wavenumber resolution, several obser-
vations can be made assessing the 𝑘-𝑓 spectra presented in Fig. 13.
It is clearly seen that, as we increase the incident amplitude (moving
from panels a to d and e to h), the higher harmonics become more
visible, demonstrating an increased ratio of their amplitudes to the
transmitted first harmonic amplitude. Both free and bound second
harmonics are present, corresponding to non-zero amplitudes lying on
the blue and red dashed lines, respectively. It is also evident that the
higher harmonics (third to sixth) are not free waves but bound, as
indicated by their coincidence with the red dotted lines. Fig. 13e–
g show that for the non-breaking cases, the free and bound second
harmonics are of similar amplitude, as also noted in Section 3.2 and
predicted by Massel (1983). For the breaking case (d, h), the distinction
between the free and bound wavenumbers of the second harmonic
is less clear. As the spatio-temporal spectra are essentially averages
over the spatial domain, the distinction between pre- and post-breaking
frequency–wavenumber spectra is not evident. This distinction could be
made more visible by reducing the domain length over which spectra
are computed. However, this will reduce the wavenumber resolution
too much to resolve the separate components.

3.3. Harmonic-induced wave breaking

For suitably large incident waves, the second-order beating phe-
nomenon and the coupled local increase in the magnitude of the higher
harmonics previously discussed will lead to breaking, as examined
further in this section.

In Fig. 14, the wave evolution is shown for several wave amplitudes
along with the corresponding velocity in the 𝑥-direction, 𝑣𝑥, for one
instant in time. Increasing the wave amplitude (non-breaking cases),
and hence the amplitude of the free and bound second-order waves
(and higher-harmonic bound waves) serves to significantly alter the
wave profiles and velocity. Crests become amplified and narrower;
the effect of the free second-order harmonic on the surface elevation
becomes clearly visible; amplitudes become more spatially variable,
and velocities in the crest increase non-linearly with amplitude.

The 𝑎1,𝑖 = 0.032 m case (𝑎1 = 0.039 m) corresponds approximately
to the lower breaking threshold identified in experiments (as shown
in Fig. 3). For this case, the wave crest reaches over 2.5 times the
11
incident wave amplitude before starting to spill over gently at around
𝑥 = 3 m, roughly at the location of the first anti-node (𝑥 ≈ 3.12 m).
As breaking is observed for this amplitude in the SPH simulations,
this demonstrates that the SPH model appears to capture the breaking
threshold well. For the 𝑎1,𝑖 = 0.039 m case (B, 𝑎1 = 0.048 m), the
wave crest also exceeds 2.5 times the incident wave amplitude, but
this occurs much closer to the step before breaking more violently. As
the wave amplitude increases, the breaking location moves nearer to
the step, and for 𝑎1,𝑖 = 0.051 m occurs at 𝑥 ≈ 1 m. For this case, the
normalised surface elevation (𝜂∕𝑎1,𝑖) is greatly limited by breaking and
does not significantly exceed 1.0.

To assess this harmonic-induced wave breaking further, we examine
the maximum surface elevation as a function of the incident wave
amplitude 𝑎1,𝑖 along with the locations of the maxima (as a proxy
for breaking onset location, beyond the breaking threshold). This is
presented in Fig. 15, along with the experimentally identified breaking
onset thresholds highlighted in Fig. 3 (approximately converted to 𝑎1,𝑖
values). The dashed lines indicate the expected location of the first anti-
node, 𝜋∕(𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠), with dotted lines bounding 0.9𝜋∕(𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠)
to 1.1𝜋∕(𝑘2𝑓0 ,𝑠 −2𝑘0,𝑠) as an ad-hoc estimation of the uncertainty of the
true phase of the second-order free waves at the ADT for very steep-
amplitude waves. Large values of the normalised surface elevation are
calculated for values close to, and exceeding, the breaking amplitude
threshold. The larger values of 𝜂∕𝑎1,𝑖 recorded just beyond the breaking
threshold are likely due to jetting/spray. It is evident that the locations
of the maxima agree well with the expected location of the first anti-
node of the second-order beating pattern for amplitudes up to breaking,
and hence define the expected breaking onset location for wave ampli-
tudes at the breaking threshold. Past this threshold, the maximum value
of the surface elevation occurs closer to the step (smaller 𝑥), as the
combination of the first and higher harmonics even before the anti-node
location increase the elevation to a value above the breaking limit.

Fig. 16 shows the amplitudes of the superharmonics at the locations
of maximum surface elevation as a function of incident amplitude 𝑎1,𝑖.
For values of 𝑎1,𝑖 below the breaking threshold, the normalised super-
harmonic amplitudes all increase with 𝑎1,𝑖. At the breaking threshold
(grey patch) significant higher-harmonic contribution is observed and
the location of the higher-harmonic maxima moves closer to the step.
For incident amplitudes larger than the breaking threshold, the relative
value of higher harmonics increase further with 𝑎1,𝑖 up to a limiting
value after the breaking threshold (and prior to the anti-node location).
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Fig. 14. Left: evolution of surface elevation for different wave amplitudes (rows). Right: corresponding horizontal velocity fields for 𝑡 = 11.6 s (corresponding to the yellow and
black dashed lines in the left-hand side panel). The second and fourth rows correspond to the NB and B cases, and the third corresponds to an input amplitude associated with
the breaking limit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Hence, for incident wave amplitudes slightly above the breaking limit,
at the point of breaking there is increased higher-order contribution
to the wave form. For waves with incident amplitudes much larger
than the breaking threshold, however, the higher-order contribution
decreases with amplitude. This is a result of waves breaking prior to
the anti-node location (indicated by the location of maximum sur-
face elevation in Fig. 15), where the harmonics are observed to be
a maximum. Hence, somewhat counter-intuitively, the incident waves
with the highest steepness are found to be significantly less non-linear
at the point of breaking. The presence or lack of higher-harmonic
contributions at the breaking onset will define the kinematics and affect
the resulting breaker characteristics.

4. Conclusions

In this paper we have experimentally and numerically assessed how
harmonics generated at an abrupt depth transition (ADT) cause spatial
12
variability of the wave field, and induce breaking on the shallower
side of the ADT. The SPH model presented is found to agree well with
experiments, and the high resolution of the model is used to explore
the spatial distribution of harmonics and the onset of wave breaking.

From the SPH model results, we observe for the non-dimensional
water depths considered that the higher harmonics (third to sixth)
follow the spatial beating pattern of the free and bound second-order in-
teraction predicted by Massel (1983) and are made up predominantly of
bound components. We therefore conclude that these spatially variable
bound higher harmonics fundamentally result from the second-order
free-bound interaction. For incident wave amplitudes smaller than the
breaking threshold, the locations of peak values of surface elevation,
and the location where superharmonic amplitudes (second to sixth
harmonic) are found to be at a maximum, are all predicted by this
second-order beating phenomenon, despite significant higher-harmonic
contributions to the wave fields. For incident wave amplitudes at the
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Fig. 15. Panel a shows the maximum value of surface elevation normalised by incident amplitude as a function of incident amplitude. Panel b presents the corresponding locations
of maximum surface elevation. The grey transparent area denotes the breaking threshold, and the dotted lines indicate the region 0.9𝜋∕(𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠) to 1.1𝜋∕(𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠).
Fig. 16. Values of normalised harmonic amplitudes at the location of maximum surface elevation (see Fig. 15) as a function of incident amplitude. Panels (a) to (f) correspond
to values for the second to sixth harmonic, respectively. The grey transparent area denotes the breaking threshold.
breaking threshold, breaking onset is also found to occur at this second-
order anti-node location, whilst increasing amplitude above this limit
serves to move the breaking onset location nearer to the ADT. The
contribution of higher harmonics at the breaking onset is found to vary
significantly depending on the breaking location: waves which have
larger incident wave amplitudes break closer to the ADT and are as-
sociated with reduced higher-harmonic contribution. This observation
has significant implications for the breaking wave kinematics and any
associated loading on structures placed atop abrupt depth transitions.

For waves breaking due to ADTs, the breaking onset, location
and associated kinematics are therefore dominated by the second-
order free-bound interaction and associated local increase in the am-
plitude of higher harmonics. The breaking onset location beyond the
breaking threshold is confined between the ADT (𝑥 = 0 m) and 𝑥 =
𝜑2𝑠∕(𝑘2𝑓0 ,𝑠 − 2𝑘0,𝑠), where 2𝑘0,𝑠 denotes the second-order superhar-

onic bound wavenumber, 𝑘2𝑓0 ,𝑠 the second-order superharmonic free
avenumber in the shallower depth, and 𝜑2𝑠 is the free-wave phase

hift which is approximately equal to 𝜋 (predicted to be 0.92𝜋 for the
ase presented based on second-order theory). Future work will extend
his understanding to more realistic offshore scenarios, including multi-
hromatic wave conditions and the effect of oblique angles of incidence
nd directional spreading.
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Appendix. Incident and reflected waves

In Section 3.2 it was noted that the value of 𝑎1 does not represent the
linear incident amplitude. Hence, a simple frequency-domain reflection
analysis was carried out on the SPH simulation data to identify the
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Fig. A.17. Desired gauge spacing based on a 12th-order Golomb ruler along with SPH model output locations used for analysis.
Fig. A.18. Desired co-array separation based on a 12th-order Golomb ruler along with the obtained co-array using SPH model output locations.
Fig. A.19. Reflection analysis outputs for all SPH simulations. Panel (a) shows the relationship between the reference amplitude 𝑎1 and the true linear incident amplitude 𝑎1,𝑖.
anel (b) presents the reflection coefficient as a function of the incident amplitude.
rue incident amplitude. To separate the linear incident and reflected
omponents, we use the approach detailed in Zelt and Skjelbreia (1993)
o resolve left and right-travelling wave components. This analysis
s only carried out on the SPH simulation data, as having only a
ingle gauge on the deeper side makes this analysis impossible for the
xperiments.

A subset of the SPH surface elevation data is used for analysis to
void duplicate separations arising between measurement locations,
nd a target wave gauge array is defined based on a 12th-order Golomb
uler (similar to the approach implemented in Draycott et al., 2018).
ata is extracted at model-output locations closest to the target loca-

ions. The desired array, and co-array, defining the separations between
ll array locations, are presented in Figs. A.17 and A.18 (black circles)
long with the locations used for analysis (red diamonds).

Fig. A.19 presents the outputs of the reflection analysis. Assessing
ig. A.19a, it is evident that the values of 𝑎1 taken at gauge 1 are larger
hen the true incident amplitude (𝑎1,𝑖) due to being at a constructive
nterference location. The reflection coefficient for the first harmonic
Fig. A.19b) is calculated to be between 0.22 and 0.28 and increases
ith incident amplitude. These values of 𝑎1,𝑖 are used to contextualise

the breaking analysis presented in Section 3.3.
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