

Delft University of Technology

Evolvability degeneration in multi-objective genetic programming for symbolic regression

Liu, Dazhuang; Virgolin, Marco; Alderliesten, Tanja; Bosman, Peter A.N.

DOI
10.1145/3512290.3528787
Publication date
2022
Document Version
Final published version
Published in
GECCO 2022 - Proceedings of the 2022 Genetic and Evolutionary Computation Conference

Citation (APA)
Liu, D., Virgolin, M., Alderliesten, T., & Bosman, P. A. N. (2022). Evolvability degeneration in multi-objective
genetic programming for symbolic regression. In GECCO 2022 - Proceedings of the 2022 Genetic and
Evolutionary Computation Conference (pp. 973-981). (GECCO 2022 - Proceedings of the 2022 Genetic and
Evolutionary Computation Conference). ACM. https://doi.org/10.1145/3512290.3528787
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3512290.3528787
https://doi.org/10.1145/3512290.3528787

Evolvability Degeneration in Multi-Objective Genetic
Programming for Symbolic Regression

Dazhuang Liu

Marco Virgolin

dazhuang.liu@cwi.nl

marco.virgolin@cwi.nl

Centrum Wiskunde & Informatica

Amsterdam, the Netherlands

Tanja Alderliesten

t.alderliesten@lumc.nl

Leiden University Medical Center

Leiden, the Netherlands

Peter A. N. Bosman

peter.bosman@cwi.nl

Centrum Wiskunde & Informatica

Amsterdam, the Netherlands

Delft University of Technology

Delft, the Netherlands

ABSTRACT
Genetic programming (GP) is one of the best approaches today

to discover symbolic regression models. To find models that trade

off accuracy and complexity, the non-dominated sorting genetic

algorithm II (NSGA-II) is widely used. Unfortunately, it has been

shown that NSGA-II can be inefficient: in early generations, low-

complexity models over-replicate and take over most of the popula-

tion. Consequently, studies have proposed different approaches to

promote diversity. Here, we study the root of this problem, in order

to design a superior approach. We find that the over-replication

of low complexity-models is due to a lack of evolvability, i.e., the

inability to produce offspring with improved accuracy.We therefore

extend NSGA-II to track, over time, the evolvability of models of

different levels of complexity. With this information, we limit how

many models of each complexity level are allowed to survive the

generation. We compare this new version of NSGA-II, evoNSGA-II,
with the use of seven existing multi-objective GP approaches on ten

widely-used data sets, and find that evoNSGA-II is equal or superior

to using these approaches in almost all comparisons. Furthermore,

our results confirm that evoNSGA-II behaves as intended: models

that are more evolvable form the majority of the population.

Code: https://github.com/dzhliu/evoNSGA-II

CCS CONCEPTS
• Computing methodologies→ Genetic programming; • Ap-
plied computing→Multi-criterion optimization and decision-
making.

KEYWORDS
Symbolic regression, genetic programming, multi-objective opti-

mization, evolvability

ACM Reference Format:
Dazhuang Liu, Marco Virgolin, Tanja Alderliesten, and Peter A. N. Bosman.

2022. Evolvability Degeneration in Multi-Objective Genetic Programming

for Symbolic Regression. In Genetic and Evolutionary Computation Confer-
ence (GECCO ’22), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY,

USA, 9 pages. https://doi.org/10.1145/3512290.3528787

GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9237-2/22/07.
https://doi.org/10.1145/3512290.3528787

1 INTRODUCTION
In recent years, we are seeing a renewed interest in symbolic re-

gression (SR), the sub-field of machine learning (ML) which con-

cerns searching for ML models in the form of mathematical ex-

pressions [7, 8, 26, 34]. These models are appealing because, by

their very nature, they stand a chance of being interpretable. This

is increasingly considered important, e.g., to ensure that ML is used

in a fair and responsible manner [1, 12, 17].

Today, genetic programming (GP) [16] is one of the best ap-

proaches to discover SR models [7]. GP is a bio-inspired meta-

heuristic that works by evolving a population of solutions that,

differently from traditional genetic algorithms, need be executed
to be evaluated, i.e., they are programs. In the case of SR, the so-

lutions evolved by GP encode functions as symbolic models that

are evaluated in terms of their accuracy in fitting a (training) data

set [16]. However, when maximizing accuracy alone, GP tends to

generate solutions that become unnecessarily large in the number

of components (arithmetic operations, variables, constants, etc.), a

phenomenon known as bloat, which harms interpretability [20].

To deal with this problem, GP can be set to optimize different

objectives at the same time. Multi-objective GP (MOGP) is typi-

cally used with the intention to search for solutions with different

trade-offs between accuracy and interpretability [15]. At the end

of a single run of MOGP, decision makers can choose the model

that strikes the right balance between accuracy and interpretability.

Since interpretability is hard or impossible to define (in general

terms) [19, 30], the common way by which interpretability in pur-

sued in MOGP for SR is by minimization of solution size (or deriva-

tions thereof, see e.g., the related work section in [29]), i.e., the

number of components that constitutes the solution. Minimizing

size is typically in conflict with maximizing accuracy in (MO)GP,

because (MO)GP typically discovers better solutions by refining

the function approximation they represent, i.e., by incorporating

additional components [18].

The second version of the non-dominated sorting genetic al-

gorithm [10] (NSGA-II) is the most adopted framework to realize

MOGP. Unfortunately, as it has been shown by several works be-

fore [3, 9, 32, 33] and is confirmed once more in this paper, NSGA-II

can be inefficient when adopted for MOGP when one of the objec-

tives is solution size. In particular, small solutions are observed to

take over the majority of the population in a few generations, while

larger and more accurate solutions are hardly discovered.

In this paper, we tackle this problem at its root. Specifically, we

identify that the reason why small solutions over-replicate and

hamper the discovery of larger but more accurate solutions is the

973

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

https://github.com/dzhliu/evoNSGA-II
https://doi.org/10.1145/3512290.3528787
https://doi.org/10.1145/3512290.3528787
https://creativecommons.org/licenses/by-nc-sa/4.0/

GECCO ’22, July 9–13, 2022, Boston, MA, USA Liu, et al.

fact that, besides obviously minimizing size well and thus having

high chances of survival, small solutions lack evolvability. Here,
by evolvability of a solution we mean the likelihood that variation

(e.g., subtree crossover and mutation) produces a relatively accurate

offspring when using that solution as a parent. We call this cause of

inefficiency of NSGA-II evolvability degeneration. Consequently, we
present a new algorithm, named evoNSGA-II, which improves upon

standard NSGA-II by restraining the over-replication of solutions

whose size is identified to be unhelpful in terms of discovering more

accurate solutions. Thanks to this, we find evoNSGA-II to be far

more efficient than NSGA-II as well as other algorithms designed

to deal with this issue.

2 BACKGROUND & RELATED WORK
2.1 Brief recall on SR and (MO)GP
In SR, we seek a model (or equivalently, function approximation)

𝑓 that is accurate in terms of fitting a given data set. Accuracy is

typically measured in terms of minimizing a loss function, such

as the mean-squared-error (MSE). Formally, given a data set D =

{(x𝑖 , 𝑦𝑖)}𝑛𝑖=1, where 𝑛 is the number of observations, x𝑖 ∈ R𝑑 is the

vector of d feature values x𝑖 =
(
𝑥
(1)
𝑖

, . . . , 𝑥
(𝑑)
𝑖

)⊤
, and 𝑦𝑖 ∈ R the

label or target variable, we seek an optimal 𝑓 ★ such that:

𝑓 ★ := argmin

𝑓 ∈𝐹
{MSE (D, 𝑓)} = argmin

𝑓 ∈𝐹

{∑𝑛
𝑖=1 (𝑦𝑖 − 𝑓 (x𝑖))2

𝑛

}
.

An SR algorithm searches in the space of functions 𝐹 that is defined

in terms of an encoding (see next paragraph), and what atomic

sub-functions (+, −, ×, ÷, exp, log, etc.), variables (𝑥 (1) , 𝑥 (2) , etc.),
and constants (

1

2
, −𝜋 , 42, etc.) appear in what order in that en-

coding. Alongside maximizing accuracy, we wish the model to be

interpretable. Various metrics have been proposed to seek inter-

pretable/simplermodels, see e.g., [29, 31]. However, reducingmodel

size remains a simple and popular approach (e.g., it was recently

used in a large SR benchmark [7]).

GP is a popular and often top-performing method for SR [7]. In

this work, we adopt traditional GP, where solutions are encoded by

trees in which each node contains one of the possible sub-functions,

variables, and constants [16, 24]. To discover of multiple solutions

with trade-offs between accuracy and interpretability, GP is set to

work in a multi-objective fashion (MOGP), where the concept of

Pareto-dominance is used to rank solutions. Specifically, we say that

solution 𝐴 Pareto-dominates solution 𝐵 if 𝐴 is equal or better than
𝐵 in all objectives, and strictly better in at least one objective. The

outcome of MOGP is the best-found front, i.e., the set of solutions
that are not Pareto-dominated by any other ever found.

NSGA-II is widely considered to be the most popular multi-

objective evolutionary algorithm (MOEA). We conducted a small

literature survey to assess whether this is indeed the case for MOGP.

We detail how the survey was conducted in the supplementary

material. We found that, in the last five years, NSGA-II was typically

adopted as MOGP algorithm in approximately 70% of the works

that we surveyed, either as the main algorithm or as a baseline. We

thus believe that our intent of improving NSGA-II for MOGP is

amply justified.

2.2 Prior works on improving NSGA-II for GP
Several works in the literature have identified the problem of small

solutions over-replicating and hampering further evolution, which

we refer to as evolvability degeneration. A very-closely related con-

cept was discovered almost twenty years ago in [9], and termed

later as population collapse [3]. Population collapse refers to the

process where the entire population converges to copies of a single

solution that has a single component, i.e., the population is unable

to evolve any further. As it will be shown in this paper (in Sec. 3),

the behavior we observe is less extreme: even though copies of

small solutions do initially occupy most of the population in early

generations, NSGA-II remains able to recover, i.e., larger solutions

are discovered later on, albeit at a very slow rate. To prevent pop-

ulation collapse, the use of a diversity preservation mechanism is

advised in [9]. Instead, in [3] it is argued that employing mutation is

enough. Here, we find that even if one employs mutation, NSGA-II

still suffers from evolvability degeneration.

Other works have also noted, and proposed means to deal with,

the problem of small solutions flooding the population. In [4], it is

proposed to use SPEA2 for MOGP[35], to overcome the problem

just mentioned as well as bloat. SPEA2, which we also consider

in our experiments, works in a fundamentally different way than

NSGA-II. For example, SPEA2 maintains two separate populations

during the search, and measures the performance of a solution

based on how many solutions are dominated by that solution.

Recently, [32] and [33] explored the idea of using 𝛼-dominance.

Instead of the original objectives (here, accuracy and size), these

algorithms use linear combinations of the original objectives which

are weighted by coefficients (𝛼) that vary over time, so as to be

able to put more pressure on finding solutions of a certain trade-off.

In particular, 𝛼 is adapted to increase the importance of accuracy

over the importance of size. In the first work [32], fixed schedules

are considered to adapt 𝛼 , according to a function of the number

of generations that is linear, a cosine, or a sigmoid. In the second

work [33], 𝛼 is adapted dynamically based on the state of the popu-

lation: if more small than accurate (and vice versa, accurate than

small) solutions are detected, then 𝛼 is adapted to give more weight

to accuracy (respectively, to size).

For NSGA-II applied to discrete optimization, in [13] strategies

are explored to remove duplicate solutions from the population.

One such strategy is used for MOGP in [30], where NSGA-II is

modified so that duplicate solutions are assigned the lowest priority

to survive selection. Together with classic NSGA-II, SPEA2, and the

𝛼-dominance based algorithms, we also include this algorithm in

our comparisons.

To the best of our knowledge, our work differs from the previous

ones because it makes an explicit link between the over-replication

of small solutions and their lack of evolvability, and proposes an

algorithm that uses this information to improve the search.

3 EVOLVABILITY DEGENERATION
In this section, we analyze the phenomenon of evolvability degen-

eration in NSGA-II for MOGP. First, we describe it by considering a

use case. Then, we show what causes it. The latter is done by means

of an experiment in which we trace how solutions of different sizes

contribute to finding offspring solutions that are relatively accurate.

974

Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression GECCO ’22, July 9–13, 2022, Boston, MA, USA

0 20 40 60 80 100
Generation

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 s
ol

ut
io

ns
 in

 p
op

ul
at

io
n Solution size

1
2 - 5
6 - 10

11 - 20
21 - 40
41 - 100

Figure 1: Proportion of solutions of different sizes during the
evolution for 30 runs of NSGA-II on Airfoil. Lines indicate
means and shaded areas represent standard deviations. Note
the exponential scaling of solution size intervals.

3.1 Over-replication of small solutions
We begin by reporting how the size of solutions changes over time

when using NSGA-II on an examplary use case. The parameter

settings for NSGA-II are those in bold font in Table 1, except for the

population size, which is set to 500. We show the behavior of NSGA-

II on the data set Airfoil (see Sec. 2 of the supplementary material).

We use this data set as a recurring example for no particular reason

other than it being first in alphabetic order among the data sets we

considered; we observe similar trends also on the other data sets.

Fig. 1 shows that, at the initial stages of the evolution, the pro-

portion of small solutions grows to occupy the majority of the

population. Only later small solutions start to diminish and slightly

larger solutions start to appear and compete. However, the largest

solutions, in this case the ones with more than 20 nodes, are basi-

cally not discovered. Importantly, the solutions of size one always

occupy a rather large portion of the population (above 30%). This

abundance of small solutions can be explained by the fact that, rea-

sonably, small solutions of relatively high accuracy and duplicates

thereof are produced by GP relatively quickly; in particular, before

larger and more accurate solutions are discovered. Because of how

NSGA-II works, solutions that have the best-so-far accuracy for any

given size are set to survive the generation with high priority, no

matter if they are duplicates or not. Now, this abundance of small

solutions would not necessarily be a problem if small solutions

would represent fertile grounds to discover larger, more accurate

solutions. In the next section, we show that this is not the case.

3.2 Evolvability of small and large solutions
A simple way to understand whether evolution stagnates or pro-

ceeds well is to measure evolvability in terms of the frequency by

which well-performing offspring solutions are discovered. Here, we

particularly want to measure the frequency with which solutions

of different size contribute to offspring solutions with an accuracy

that is relatively high. Since we aim to improve NSGA-II, we would

ideally do this within an NSGA-II evolution. However, as shown

in Fig. 1, larger solutions are hardly ever discovered, making it

impossible for us to estimate their evolvability. Thus, we design a

workflow to collect enough solutions of various sizes.

First, we repeatedly run single-objective GP, 100 times, with

different maximal size limitations, for up to a certain number of

generations (e.g., 40). This allows us to collect best-found solutions

of various sizes which are relatively accurate, and can be imagined

to contribute to a best-found front at a certain stage of an “ideal”

NSGA-II evolution, where evolvability degeneration does not occur.

Second, we collect these solutions in different buckets, based on

their size. We also record the 90
th

percentile of accuracy (acc90)
out of all solutions collected, irrespective of their size; we use this

information later. Next, for each bucket, we repeatedly (100 times)

take a random solution to act as parent, and generate an offspring

solution via subtree mutation. We do the same for subtree crossover,

this time considering pair of buckets and, importantly, generating

a single offspring instead of two (this is rather common in GP [24]).

Specifically, the offspring is generated by cloning the first parent

and transplanting a random subtree from the second parent (which

from now on will be called donor to avoid confusion) to replace

a random subtree of the first parent (which from now on will be

simply called parent). We perform crossover this way because, for a

sufficiently large parent, in expectation the majority of the nodes in

the offspring comes from the parent instead of the donor; this may

play an important role in terms of evolvability. Lastly, we measure

how frequently parents of different sizes produce relatively accurate

offspring, using acc90 as a threshold.

Figure 2: Frequency (normalized betweenmin andmax, color
coded as depicted by the legend on the right) of producing
an offspring with a good accuracy (above the 90th percentile
of those obtained in all runs) based on the size of the parent
and donor solutions. Left: For subtree crossover. Right: For
subtree mutation. Note that a solution of size 2 (to be used
as a parent or donor) was never returned by single-objective
GP because a more accurate solution of size 1 exists and was
systematically discovered.

We apply the proposed workflow and display the result in Fig. 2

(all the parameter settings are as per Sec. 3.1), which concerns Air-

foil and best-found solutions at generation 40. We remark that we

repeated the same approach on the second data set we consider,

Boston, as well as with other termination limits (generation 10, 20,

and 30), and means of assessing whether an offspring is relatively

975

GECCO ’22, July 9–13, 2022, Boston, MA, USA Liu, et al.

accurate (e.g., with respect to the accuracy of the parent); we ob-

served the same general trends as shown in Fig. 2. Note that the

heat-map for subtree crossover is not symmetric due to the reasons

explained in the previous paragraph. The frequencies found for

subtree crossover indicate that the parent needs to be sufficiently

large for variation to be successful with large probability, while

the donor can be of any size. Similarly, also for mutation larger

solutions are more evolvable.

The result just shown confirms our hypothesis that smaller solu-

tions hamper the search. Therefore, the fact that in the early stages

of an NSGA-II run, the population is flooded by copies of small

solutions, is highly undesirable. We remark that penalizing dupli-

cates altogether, as in fact was done in some earlier approaches

(see Sec. 2.2), is not necessarily the optimal strategy. In fact, having

duplicates of highly-evolvable solutions may be the best option.

This idea is explored in our algorithm, presented in the next section.

4 IMPROVING NSGA-II BASED ON
EVOLVABILITY

We now present our proposal to improve NSGA-II, i.e., evoNSGA-II.

Since evoNSGA-II mostly follows NSGA-II, we begin by recalling

the workings of NSGA-II. Next, we explain what is new in evoNSGA-

II, i.e., the estimation of the evolvability of solutions of different

size, and the use of this information to prevent the over-replication

of solutions with low evolvability.

4.1 NSGA-II
Algorithm 1 shows the pseudo-code of NSGA-II, as well as that of

evoNSGA-II: In fact, the only change we apply is regarded to how

the population is updated at the end of a generation. In every gener-

ation of (evo)NSGA-II, firstly an offspring population O is generated

from promising solutions of the current population P. Promising

solutions are typically chosen with tournament selection, and then

undergo variation, typically by means of subtree crossover and

subtree mutation. In (evo)NSGA-II, tournament selection compares

solutions based on their non-domination rank (explained below)

and, if the solutions share the same rank, based on their crowding
distance (explained below too).

Next, P and O are merged and undergo non-dominated sorting.

Non-dominated sorting is a process that subdivides all solutions into

layers called fronts, such that for any two solutions in a same front,

those two solutions do not Pareto-dominate each other; moreover,

for each solution in the 𝑖th front, there exists at least one solution in

the (𝑖 − 1)th front that Pareto-dominates it. The rank of a solution

represents the front to which that solution belongs, rank 1 being the

best. The algorithm proceeds by parsing each front and assigning

to each solution in that front a crowding distance. The crowding
distance is a measure of sparseness (the more a solution is isolated

the better) that is computed in the objective space using the L1

norm. A solution for which an objective has the maximum value for

that front is assigned an infinite (and thus best) crowding distance.

Finally, the population is updated for the next generation, using

an NSGA-II-specific form of truncation selection. This is where

NSGA-II and evoNSGA-II differ. In NSGA-II, the new population

is formed by selecting the solutions with rank 1, then those with

rank 2, and so on, until the selection of all solutions with a certain

rank would result in exceeding the population size. In that case,

the crowding distance is used to discern which subset of solutions

with that certain rank still to select for the new population. The

remaining solutions are discarded.

Algorithm 1 Workflow of NSGA-II and evoNSGA-II

Note: Truncation is the only step that is different between the two.

Require: Pop_size, stop_criteria
1: P ← Initialize_population(Pop_size)

2: Evaluate(P)
3: Fronts←Fast_non-dominated_sorting(P)
4: for front in Fronts do
5: Crowding_distance(front)
6: end for
7: while ¬ stop_criteria do
8: P ′ ← Tournament(P)
9: O ← Variation(P′)
10: Evaluate(O)
11: Fronts← Fast_non-dominated_sorting(P ∪ O)
12: for front in Fronts do
13: Crowding_distance(front)
14: end for
15: P ← Truncation(Fronts)
16: end while

evoNSGA-II additionally uses estimates of evolvability for each

size of solution to decide whether a solution should be selected.

Specifically, we generate a table of bounds B that tells how many

solutions of a certain size can be selected in the truncation selection

step. This way we can prevent the over-replication of small, non-

evolvable solutions. We proceed by explaining how B is built.

4.2 Construction of B
We keep track of the evolvability of solutions in terms of their

capability of generating accurate offspring of different sizes. Namely,

we build a table B containing pairs (𝑠 ,𝑏), where 𝑠 is a size and 𝑏

is a bound on the number of times that solutions of size 𝑠 can be

selected by truncation selection to form the new population of

evoNSGA-II. We want the number 𝑏 to be proportionate to the

(estimated) evolvability of the solutions of size 𝑠 .

Algorithm 2 shows the construction of B in detail. For each

offspring, the size of its parent 𝑠 is considered. Then, a counter

(successes) that is dedicated to that 𝑠 is increased if the accuracy of

the offspring is larger than that of the median accuracy computed

over P (we choose the median over the mean because outliers are

common in GP for SR). Note that we do not need to re-compute

the accuracy of solutions, as they can simply be cached when solu-

tions are evaluated. We also keep track of the number of offspring

solutions that was generated from parents of size 𝑠 (attempts). Fi-
nally, a simple measure of evolvability is computed for 𝑠 , as the

ratio between the number of successes and the number of attempts

(similarly to the concept of success ratio in [2]). This ratio is in [0, 1]
and the larger its value, the better it is. We fill B with these ratios,

for each size.

Recall that we wish to use B in the truncation selection process,

which is applied toP∪O. Importantly,P∪O contains both solutions

976

Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression GECCO ’22, July 9–13, 2022, Boston, MA, USA

that were not selected as parents, and offspring solutions: for those,

there may exist a size that is not in B, i.e., for which we have no

information on its evolvability. Therefore, we artificially fill this

information for potentially-missing sizes in B (line 13). Namely,

for each missing size, we take the weighted average of the ratios

observed for the closest smaller and closest larger size. Last but

not least, we perform a normalization step on B, transforming the

ratios so that their sum amounts to the population size (|P |). This
way, for any size 𝑠 , B[𝑠] defines how many solutions should be

selected at most. In the next section, we illustrate how B is used in

the truncation selection of evoNSGA-II.

Algorithm 2 Build_B
Require: P, O
1: max_size←Max_size(P ∪ O)
2: attempts[i]← 0 for 𝑖 ∈ {1, . . . ,max_size}
3: successes[i]← 0 for 𝑖 ∈ {1, . . . ,max_size}
4: median_accuracy←Median_accuracy(P)
5: for 𝑜 ∈ O do
6: 𝑠 ← Fetch_parent_size(𝑜)
7: if Accuracy(𝑜) > median_accuracy then
8: successes[𝑠] ← successes[𝑠] + 1
9: end if
10: attempts[𝑠] ← attempts[𝑠] + 1
11: end for
12: B[𝑖] ← successes[𝑖]

attempts[𝑖] for 𝑖 ∈ {1, . . . ,max_size} : attempts[i] ≠ 0

13: B ← Fill_missing_sizes(B,P,O)
14: B ← Normalize(B, |P |)
15: return B

4.3 Use of B during truncation selection
The way truncation selection works in evoNSGA-II is the same as

in NSGA-II (as described before, in Sec. 4.1), except for the fact that

we will now use B to decide how many solutions of a certain size

can be selected. We build B after the offspring population O has

been evaluated, so that it is ready to be used for truncation selection.

Like in NSGA-II, our truncation selection parses the solutions pro-

gressively, based on their rank. Different from NSGA-II, we do not

immediately copy the solution that is currently in consideration;

first, we consider the size of 𝑠 of that solution, and the respective

bound B[𝑠]. If the number of solutions of size 𝑠 copied so far is less

or equal to B[𝑠], then the solution is selected; else, the solution is

skipped, and the next solution is considered.

It can happen that, in Algorithm 2, large evolvability values are

estimated for sizes for which there is a limited number of solutions

in P ∪ O, while low values are estimated for sizes for which there

is an abundant number of solutions. Consequently, to respect the

bounds inB, the number of selected solutionsmay be lower than the

population size. If that happens, we reset the counters for howmany

solutions of each size have been copied, and start the truncation

selection process anew, from rank 1 onwards. This way, even if

the bound for the size 𝑠 is exceeded, we maintain an approximate

proportionality between estimated evolvability of 𝑠 and the number

of selected solutions of size 𝑠 .

Lastly, we remark that a single generation of evoNSGA-II is

basically as fast as NSGA-II, as it entails minimial overhead. In fact,

from the perspective of computational complexity, all operations

needed to build and use B are linear in the population size, and

thus subsumed by the complexity of other operations, particularly

non-dominated sorting and evaluation of accuracy.

5 EXPERIMENTAL SETUP
We consider ten data sets that are commonly used in recent litera-

ture on GP for SR. The information for these data sets is reported in

the supplementary material due to space limitations. For any run,

we use a traditional Monte-Carlo split of the data set into training

and test set, with respective proportions of 75-25%. Moreover, all

data sets are standardized (based on the information in the training

set) by subtracting the mean and dividing by the standard deviation

for each feature separately, as advised in [11].

For comparison, we consider seven algorithms besides evoNSGA-

II: classic NSGA-II [10], SPEA2 [35], 𝛼-dominance-based NSGA-

II [32] with 𝛼 varied with a linear (𝛼-dom. lin.), cosine (𝛼-dom.

cos.), or sigmoid (𝛼-dom. sig.) schedule, as well as its adaptive

version [33] (Adap. 𝛼-dom.), and a simple extension of NSGA-II

as mentioned in [30], where non-dominated sorting assigns an

artificial worst-possible rank to duplicate solutions. We refer to the

latter as NSGA-II with penalization of duplicates, NSGA-II+PD in

short. For each algorithm, we keep track of the best-ever found

non-dominated solutions (with respect to the training set) in an

external archive, and return that archive at the end of the evolution.

Solutions are evaluated in terms of accuracy (to maximize) and

size (to minimize). To maximize accuracy, we minimize the MSE

(Sec. 2.1) augmented by linear scaling [14]. Linear scaling effectively

enables to optimize in terms of a form of absolute correlation to

the target variable 𝑦, typically causing a large improvement when

GP is applied on real-world SR data sets [27]. Many state-of-the-art

GP algorithms use linear scaling during the evolution [7].

To evaluate the quality of multi-objective search, we compute

the hypervolume (HV) of the archive of best-found non-dominated

solutions [36]. The HV indicates, for a set of solutions, the area in

objective that is Pareto-dominated by that set of solutions, bounded

by a reference point. The reference point represents an artificial

solution with (very) poor performance in terms of all considered

objectives, and should be chosen to be commensurate to the ranges

of the objectives at play. We set the reference point to be (1.1, 1.1)
(meaning that the best-possible HV will be 1.12 = 1.21) and nor-

malize the MSE and size to be within 0 and 1. Even though the

MSE would normally be unbounded from above, performing linear

scaling guarantees that the maximal training error corresponds

to predicting the mean of 𝑦; thus we can achieve the desired nor-

malization by dividing by the variance of 𝑦. Regarding size, since

very large solutions will likely not be interpretable, we enforce a

maximal solution size of 100 (see Table 1) by deleting any offspring

that exceeds that limit (and cloning the parent in its place); size is

then normalized by dividing by 100.

We perform 30 repetitions for each run, to account for the ran-

domness of train-test splitting and the stochasticity inherent to

GP. We strive to present our results in terms of a typical parameter

configuration that appears often in GP literature. To that end, we

977

GECCO ’22, July 9–13, 2022, Boston, MA, USA Liu, et al.

Table 1: Parameter settings considered for evoNSGA-II and
the other algorithms. Tournament size of 1 corresponds to
random parent selection. SPEA2 does not employ tourna-
ment selection. For parameters with multiple possible set-
tings (i.e., the first three), the settings in bold correspond to
those that result in evoNSGA-II achieving the average overall
performance in terms of hyper-volume on the training set.

Parameter Considered settings

Population size 250, 500, 1000, 2000, 5000
Tournament size 1, 2, 7
Crossover-mutation proportion 0.5-0.5, 0.9-0.1
Initialization Ramped half-&-half (2–6)

Maximum solution size 100

Function set {+,−,×,÷∗,√∗, log∗ }
Terminal set {𝑥 (1) , . . . , 𝑥 (𝑑) , ERC}

actually consider a number of typical configurations; see Table 1,

where some parameters have different possible settings (namely,

population size, tournament size, and proportion between crossover

and mutation). Note that starred operators (e.g., ÷∗) implement pro-

tection and ephemeral random constants (ERC) [24] are sampled

withinU(−5, +5) ×max𝑖, 𝑗 |𝑥 (𝑗)𝑖
|. For each algorithm, we find the

configuration that leads to the average performance for that al-

gorithm (on the training set). The configuration that leads to the

average performance for an algorithm is found as follows. First,

for each data set, we consider the training HV (averaged across

30 runs) obtained on that data set by the different configurations.

Configurations are sorted based on their HV, and their sort order

is taken as a score. Next, an overall, single score is assigned to

each configuration, by averaging the scores across the data sets

of that configuration. Finally, we select the configuration whose

overall score is closest to the one obtained by averaging the scores

of all configurations. For example, the parameter settings in bold

in Table 1 represent the configuration obtained for evoNSGA-II;

The configurations for the other algorithms are reported in the

supplementary material.

We use the Mann-Whitney-U test [21] to assess whether the

distribution of HVs obtained by an algorithm is better than that of

another, determining significance for 𝑝-value < 0.05, with Bonfer-

roni correction [5].

6 RESULTS
6.1 Benchmarking results
6.1.1 Results and analysis. Tables 2 and 3 show the results obtained

when considering the accuracy as measured on the training set and

on the test set, respectively, for the parameter settings that result in

the average performance. At training time, evoNSGA-II performs

significantly better than any other algorithm in a vast number of

cases, sometimes substantially so (e.g., when compared to Adap. 𝛼-

dom., NSGA-II, and SPEA2 on several data sets). In fact, evoNSGA-II

is found to be significantly better than another algorithm 64 times,

worse only 1 times, and not significantly different 5 times. When it

comes to the test set, evoNSGA-II remains vastly superior, although

the number of statistical comparisons that are not significantly

different raises to 19 (better 50 times, worse 1 time). This is due to

the generalization gap between the training and the test set. In fact,

improving generalization is not on focus in this paper.

Overall, only NSGA-II+PD is capable of coming close to the

performance of evoNSGA-II. At training time, evoNSGA-II is better

than NSGA-II+PD on 1 data sets, worse on 4, and equal on 5. At

test time, the difference between the two shrinks even more, due to

the generalization gap. Nevertheless, except for in one case (Yacht),

evoNSGA-II is essentially equal or better than NSGA-II+PD.

We proceed by briefly describing what we observe for the other

parameter configurations. More detailed information is reported in

the supplementary material. Across the algorithms, using a larger

population size and larger tournament size contribute to improve

the performance, while it is unclear whether using more or less

crossover than mutation is preferable. Across the configurations,

evoNSGA-II remains the best-performing approach, although it is

sometimes matched by NSGA-II+PD. However, we observe that

with larger population sizes, the gap between evoNSGA-II and

NSGA-II+PD grows in favor of the former. For example, at training

time with the best-possible parameter configurations (for both algo-

rithms, using a population size of 5000), evoNSGA-II is significantly

superior to NSGA-II+PD on 6 data sets, equal on 4, and worse on

none. This is likely because larger population sizes allow for better

estimations of evolvability.

6.1.2 Further analysis: convergence of HV. To provide further evi-

dence that evoNSGA-II is typically superior to the other algorithms,

Fig. 3 (left) shows the convergence of the (training) HV, again with

using parameter configurations that represent average performance,

on Airfoil. Due to space limitations, we show the respective plots for

other data sets in the supplementary material. For clarity, since the

non-adaptive 𝛼-dominance algorithms perform similarly, we report

only the one with linear scheduling (𝛼-dom. lin.) in Fig. 3. As can be

seen, the HV obtained by NSGA-II, SPEA2, and Adap. 𝛼-dom. tends

to converge to a suboptimal value very soon after the first dozen

generations. The other algorithms, i.e., evoNSGA-II, 𝛼-dom. lin.,

and NSGA-II+PD perform similarly, however evoNSGA-II is slightly

superior throughout the whole search.

Furthermore, Fig. 3 (right) shows the distribution of the solutions

in the final archives (for the 30 runs). The most apparent result is

that only evoNSGA-II is capable of reliably discovering accurate

solutions with a larger size than 30 (approximately). Interestingly,

NSGA-II and NSGA-II+PD can be better than evoNSGA-II in discov-

ering some relatively accurate solutions of size between 10 and 20

(approximately). This is because the search of NSGA-II and NSGA-

II+PD can concentrate more in that area, as they discover larger

and even more accurate solutions less frequently than evoNSGA-II.

6.2 Did it work as expected?
As last result, we show that evoNSGA-II does not, in fact, exhibit

evolvability degeneration. Fig. 4 shows, on Airfoil, the evolvability

that is estimated using the workflow proposed in Sec. 3.2 (left

panel), and also the proportion of solutions of different sizes in

the population of evoNSGA-II during the evolution (right panel),

again using the parameter configuration that represents average

performance. As can be seen, the proportion of solutions of larger

978

Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression GECCO ’22, July 9–13, 2022, Boston, MA, USA

Table 2: Mean (standard deviation) of the HV computed on the training set for 30 runs of the considered algorithms. This
table corresponds to the settings in bold in Table 1. The symbols +,−,= indicate, for each algorithm other than evoNSGA-II,
whether the corresponding distribution of results for evoNSGA-II is, respectively, significantly better, worse, or not significantly
different. The last row summarizes this information.

Data set evoNSGA-II Adap. 𝛼-dom. 𝛼-dom. cos. 𝛼-dom. lin. 𝛼-dom. sig. NSGA-II NSGA-II+PD SPEA2

Airfoil 0.799(0.021) 0.595(0.023)- 0.744(0.016)- 0.745(0.019)- 0.736(0.016)- 0.652(0.035)- 0.780(0.017)- 0.624(0.049)-

Boston 1.023(0.012) 0.895(0.024)- 0.984(0.010)- 0.986(0.014)- 0.980(0.014)- 0.954(0.015)- 1.017(0.010)= 0.929(0.019)-

Concrete 0.939(0.018) 0.684(0.033)- 0.884(0.029)- 0.876(0.025)- 0.864(0.030)- 0.792(0.037)- 0.941(0.018)= 0.725(0.053)-

Dow chemical 0.972(0.013) 0.714(0.043)- 0.914(0.013)- 0.914(0.018)- 0.908(0.023)- 0.779(0.057)- 0.977(0.007)= 0.836(0.037)-

Energy: cooling 1.119(0.008) 1.043(0.013)- 1.094(0.010)- 1.094(0.010)- 1.088(0.014)- 1.058(0.009)- 1.097(0.015)- 1.040(0.013)-

Energy: heating 1.152(0.004) 1.076(0.017)- 1.125(0.010)- 1.125(0.008)- 1.117(0.012)- 1.098(0.010)- 1.131(0.010)- 1.054(0.014)-

Tower 1.027(0.013) 0.824(0.046)- 0.994(0.012)- 0.985(0.027)- 0.984(0.024)- 0.941(0.030)- 1.029(0.006)= 0.867(0.047)-

Wine: red 0.513(0.005) 0.446(0.007)- 0.491(0.004)- 0.490(0.008)- 0.486(0.008)- 0.461(0.009)- 0.509(0.004)- 0.459(0.009)-

Wine: white 0.449(0.005) 0.378(0.008)- 0.426(0.007)- 0.422(0.008)- 0.416(0.009)- 0.403(0.007)- 0.446(0.004)= 0.387(0.010)-

Yacht 1.177(0.004) 1.141(0.019)- 1.174(0.001)- 1.174(0.001)- 1.174(0.001)- 1.163(0.013)- 1.178(0.001)+ 1.150(0.011)-

Total +/−/= — 0/10/0 0/10/0 0/10/0 0/10/0 0/10/0 1/4/5 0/10/0

Table 3: Results for the test set, formatting similar to that of Table 2.

Data set evoNSGA-II Adap. 𝛼-dom. 𝛼-dom. cos. 𝛼-dom. lin. 𝛼-dom. sig. NSGA-II NSGA-II+PD SPEA2

Airfoil 0.813(0.021) 0.669(0.027)- 0.781(0.018)- 0.782(0.017)- 0.781(0.013)- 0.708(0.030)- 0.795(0.019)- 0.690(0.041)-

Boston 0.969(0.019) 0.895(0.028)- 0.966(0.013)= 0.951(0.073)= 0.959(0.017)= 0.949(0.012)- 0.976(0.019)= 0.923(0.023)-

Concrete 0.930(0.025) 0.692(0.040)- 0.892(0.027)- 0.883(0.025)- 0.875(0.025)- 0.815(0.040)- 0.939(0.015)= 0.734(0.056)-

Dow chemical 0.920(0.020) 0.696(0.050)- 0.864(0.016)- 0.862(0.017)- 0.855(0.025)- 0.752(0.055)- 0.927(0.026)= 0.785(0.036)-

Energy: cooling 1.111(0.009) 1.033(0.017)- 1.092(0.009)- 1.089(0.012)- 1.082(0.016)- 1.052(0.009)- 1.097(0.016)- 1.028(0.016)-

Energy: heating 1.144(0.007) 1.087(0.016)- 1.128(0.010)- 1.126(0.009)- 1.124(0.012)- 1.101(0.009)- 1.136(0.009)= 1.067(0.013)-

Tower 1.022(0.020)) 0.812(0.049)- 0.986(0.035)- 0.981(0.039)- 0.985(0.025)- 0.941(0.037)- 1.031(0.005)= 0.859(0.050)-

Wine: red 0.629(0.059) 0.591(0.009)- 0.634(0.009)= 0.633(0.013)= 0.632(0.011)= 0.615(0.014)- 0.647(0.013)= 0.613(0.011)-

Wine: white 0.359(0.074) 0.354(0.010)= 0.390(0.020)= 0.378(0.050)= 0.387(0.012)= 0.379(0.006)= 0.400(0.025)= 0.361(0.012)=

Yacht 1.170(0.002) 1.131(0.024)- 1.167(0.004)- 1.167(0.002)- 1.167(0.003)- 1.155(0.013)- 1.172(0.001)+ 1.137(0.013)-

Total +/−/= — 0/9/1 0/7/3 0/7/3 0/7/3 0/9/1 1/2/7 0/9/1

0.2 0.4 0.6 0.8
Training MSE

0

20

40

60

80

100

So
lu

tio
n

siz
e

0 50 100
Generation

0.4

0.5

0.6

0.7

0.8

Hy
pe

rv
ol

um
e

α-dom. lin.
Adap. α-dom.
evoNSGA-II

NSGA-II
NSGA-II+PD
SPEA2

Figure 3: Comparison between the algorithms in terms of
HV during the evolution (left) and final front (right) for 30
runs on Airfoil at training time. Left: Lines represent means
and shaded areas represent standard deviations. Right: All
solutions in the archives from the 30 runs are shown.

Figure 4: Left: Each column of the heat-map shows, for a
given generation, the average evolvability between crossover
and mutation computed with the workflow of Sec. 3.2 on
Airfoil, and normalized across solution size (dashed entries
represent absent sizes). Right: Proportions of solutions of
different sizes in evoNSGA-II during 30 evolutions on Airfoil
(lines are means, shaded areas are standard deviations).

979

GECCO ’22, July 9–13, 2022, Boston, MA, USA Liu, et al.

sizes increases over time during the evolution process of evoNSGA-

II, which is in agreement with the expected evolvability from our

analysis. This result is in stark contrast with the one displayed in

Fig. 1 (note the different scale in sizes), where NSGA-II could not

discover larger and more accurate solutions.

We produced the same plots for the other algorithms and in-

cluded them in the supplementary material; there, it can be seen

that SPEA2 and Adap. 𝛼 dom., like NSGA-II, suffer from evolvability

degeneration. The other algorithms perform better, yet still assign

less copies to larger solutions than evoNSGA-II.

7 DISCUSSION
In this work, we investigated evolvability degeneration, i.e., the
phenomenon by which small solutions over-replicate and hamper

search progress because they represent unfruitful parents for the

discovery of larger and more accurate offspring. Next, we proposed

to extend NSGA-II into evoNSGA-II, which estimates the evolv-

ability of solutions based on their size and, based on this, bounds

how many solutions of any given size can be selected for the next

generation. Lastly, we found that evoNSGA-II is largely superior to

other recent MOGP algorithms, and is indeed capable of allowing

solutions of highly-evolvable size to thrive.

The reason for evolvability degeneration can be linked to the fact

that the algorithm has insufficient time to discover more accurate

solutions (because the probability that variation succeeds is low)

compared to the speed by which small solutions duplicate. Such

hypothesis is strongly supported by the findings of [25], where it is

shown that GP tends to fail when the pressure surpasses a certain

threshold. It is thus natural that MOGP algorithms that improve

the diversity of the population perform better than classic NSGA-II.

In fact, the algorithms that we used in our comparisons that were

built to improve NSGA-II, essentially realize some form of diversity

preservation. However, none of them considers tracking and using

evolvability to decide which solutions to keep and which to dis-

card. In our view, this is the fundamental reason why evoNSGA-II

performed best. Interestingly, NSGA-II+PD, which is perhaps an

even simpler approach than evoNSGA-II, performed similarly to

evoNSGA-II in many data sets. Still, evoNSGA-II performed typ-

ically equal to or better than NSGA-II+PD, suggesting that one

may not always want to discard all duplicate solutions: keeping a

number of copies for highly-evolvable solutions seems to be gen-

erally more helfpul. Moreover, we observed that the performance

gap between evoNSGA-II and NSGA-II+PD tends to increase when

the population size is larger. We believe that this happens because

larger population sizes allow for better estimations of evolvability.

There exist a number of limitations in this paper that call for

future research. Firstly, our estimations of evolvability are repeated

every generation, using solely the current population.We attempted

to use exponential-moving-averages to incorporate estimations

from previous generations but preliminary findings indicated no

statistically significant improvement. However, one could study

whether other approaches can lead to an improvement, such as

learning an accurate model of evolvability of solution size across

multiple data sets and parameter configurations, and using that

model as starting point when dealing with a new problem. A second

important limitation is that we considered minimizing solution size,

which is a simple but coarse way of pursuing interpretability. Future

work should consider other and better proxies of interpretability

(e.g., [6, 29]), and assess whether the good performance found

here for evoNSGA-II transfers to those settings. Transferability

of the quality of our approach should also be assessed when other

variation operators are used, such as geometric semantic- [22, 23]

or linkage-based ones [28], as well as, e.g., gradient descent to

optimize coefficients [11]. A third limitation is that evoNSGA-II

makes no attempt to limit bloat. If bloated solutions have larger

evolvability, they will replicate more than others. For SR this is not

necessarily a problem, since it is reasonable to impose a cap on the

maximally allowed size, above which solutions would certaintly not

be interpretable. However, capping the size might not be desirable

for other problems. There, evoNSGA-II might keep discovering

larger and larger solutions, and thus fail to find medium-sized ones.

Thus, bloat-control mechanisms may need to be considered.

Finally, we conclude this work by reflecting on the fact that our

results may, in principle, transfer to problems of very different na-

ture than GP for SR. Indeed, we remark that maximizing accuracy

and minimizing solution size is an imbalanced multi-objective prob-

lem: on the one hand, minimizing solution size is easily done, since

random deletion of components suffices to improve this objective;

on the other hand, maximizing accuracy is almost always challeng-

ing, since the right components need to appear in the right order

to obtain an accurate model. There might exist a number of prob-

lems where a similar situation happens, i.e., the objective that is

easy-to-optimize inhibits the search of solutions with respect to the

objective that is hard-to-optimize. For any given problem, tracking

and exploiting information on the evolvability in terms of the hard-

to-optimize objective that is associated with the easy-to-optimize

objective might be a consistent way to improve multi-objective

evolutionary search.

8 CONCLUSION
We studied an important cause of inefficiency in the use of the non-

dominated sorting genetic algorithm II (NSGA-II) for the discovery

of symbolic regression models with trade-offs between accuracy

and simplicity. Namely, we experimentally found that simpler mod-

els over-replicate and take over the majority of the population,

because they lack evolvability, i.e., they represent infertile grounds

for larger but more accurate models to be discovered.We named this

phenomenon evolvability degeneration, and proposed evoNSGA-II,
an algorithm that is explicitly built to prevent it. With compar-

isons to NSGA-II and six other algorithms, upon ten real-world

data sets, and across different parameter configurations, we found

evoNSGA-II to be the superior approach. The working principles

of evoNSGA-II are not limited to symbolic regression: studying

their transferability to other imbalanced multi-objective problems

represents an interesting avenue for future research.

ACKNOWLEDGMENTS
This research was funded by the European Commission within the

HORIZON Programme (TRUST-AI Project, Contract No.:952060).

We further thank Maurits and Anna de Kock Foundation for financ-

ing a high-performance computing system.

980

Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression GECCO ’22, July 9–13, 2022, Boston, MA, USA

REFERENCES
[1] Amina Adadi and Mohammed Berrada. 2018. Peeking Inside the Black-box: A

Survey on eXplainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138–
52160.

[2] Michael Affenzeller and Stefan Wagner. 2005. Offspring selection: A new self-

adaptive selection scheme for genetic algorithms. In Adaptive and Natural
Computing Algorithms. Springer, 218–221.

[3] Khaled M. S. Badran and Peter I. Rockett. 2007. The Roles of Diversity Preserva-

tion and Mutation in Preventing Population Collapse in Multiobjective Genetic

Programming. In Proceedings of the 9th Annual Conference on Genetic and Evolu-
tionary Computation. Association for Computing Machinery, 1551–1558.

[4] Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckart Zitzler. 2001. Multiobjec-

tive Genetic Programming: Reducing Bloat using SPEA2. In Proceedings of the
2001 Congress on Evolutionary Computation, Vol. 1. IEEE, 536–543.

[5] Carlo Bonferroni. 1936. Teoria Statistica delle Classi e Calcolo delle Probabilita
´
.

Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di
Firenze 8 (1936), 3–62.

[6] Bogdan Burlacu, Gabriel Kronberger, Michael Kommenda, and Michael Affen-

zeller. 2019. Parsimony Measures in Multi-Objective Genetic Programming for

Symbolic Regression. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion. Association for Computing Machinery, 338–339.

[7] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de

Franca, Marco Virgolin, Ying Jin, Michael Kommenda, and Jason H. Moore. 2021.

Contemporary Symbolic Regression Methods and their Relative Performance.

In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track.

[8] Stéphane d’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and

François Charton. 2022. Deep Symbolic Regression for Recurrent Sequences.

arXiv:2201.04600

[9] Edwin D. De Jong and Jordan B. Pollack. 2003. Multi-Objective Methods for Tree

Size Control. Genetic Programming and Evolvable Machines 4, 3 (2003), 211–233.
[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[11] Grant Dick, Caitlin A. Owen, and Peter A. Whigham. 2020. Feature Standardi-

sation and Coefficient Optimisation for Effective Symbolic Regression. In Pro-
ceedings of the 22th Annual Conference on Genetic and Evolutionary Computation.
Association for Computing Machinery, 306–314.

[12] David Gunning and David W. Aha. 2019. DARPA’s Explainable Artificial Intelli-

gence (XAI) Program. AI Magazine 40, 2 (2019), 44–58.
[13] Hisao Ishibuchi, Kaname Narukawa, and Yusuke Nojima. 2005. An Empirical

Study on the Handling of Overlapping Solutions in Evolutionary Multiobjec-

tive Optimization. In Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation. Association for Computing Machinery, 817–824.

[14] Maarten Keijzer. 2003. Improving Symbolic Regression with Interval Arithmetic

and Linear Scaling. In European Conference on Genetic Programming. Springer,
70–82.

[15] Michael Kommenda, Gabriel Kronberger, Michael Affenzeller, StephanMWinkler,

and Bogdan Burlacu. 2016. Evolving Simple Symbolic Regression Models by

Multi-objective Genetic Programming. In Genetic Programming Theory and
Practice XIII. Springer, 1–19.

[16] John R Koza. 1992. Genetic programming: on the programming of computers by
means of natural selection. Vol. 1. MIT press, Cambridge, MA, USA.

[17] William La Cava and Jason H. Moore. 2020. Genetic programming approaches

to learning fair classifiers. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference. 967–975.

[18] William B. Langdon. 2021. Genetic programming convergence. Genetic Program-
ming and Evolvable Machines (2021), 1–34.

[19] Zachary C Lipton. 2018. The Mythos of Model Interpretability: In machine

learning, the concept of interpretability is both important and slippery. Queue
16, 3 (2018), 31–57.

[20] Sean Luke and Liviu Panait. 2006. A Comparison of Bloat Control Methods for

Genetic Programming. Evolutionary Computation 14, 3 (2006), 309–344.

[21] Henry B. Mann and Donald R. Whitney. 1947. On a Test of Whether One of

Two Random Variables is Stochastically Larger than the Other. The Annals of
Mathematical Statistics (1947), 50–60.

[22] Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. 2012. Geometric

semantic genetic programming. In International Conference on Parallel Problem
Solving from Nature. Springer, 21–31.

[23] Tomasz P. Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. 2014. Semantic

backpropagation for designing search operators in genetic programming. IEEE
Transactions on Evolutionary Computation 19, 3 (2014), 326–340.

[24] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008. A Field
Guide to Genetic Programming. Lulu Enterprises, UK Ltd.

[25] Terence Soule and James A. Foster. 1998. Effects of Code Growth and Parsimony

Pressure on Populations in Genetic Programming. Evolutionary Computation 6, 4

(1998), 293–309.

[26] Silviu-Marian Udrescu and Max Tegmark. 2020. AI Feynman: A physics-inspired

method for symbolic regression. Science Advances 6, 16 (2020).
[27] Marco Virgolin, Tanja Alderliesten, and Peter A. N. Bosman. 2019. Linear Scaling

with and within Semantic Backpropagation-based Genetic Programming for

Symbolic Regression. In Proceedings of the Genetic and Evolutionary Computation
Conference. 1084–1092.

[28] Marco Virgolin, Tanja Alderliesten, Cees Witteveen, and Peter A. N. Bosman.

2021. Improving Model-based Genetic Programming for Symbolic Regression of

Small Expressions. Evolutionary Computation 29, 2 (2021), 211–237.

[29] Marco Virgolin, Andrea De Lorenzo, Eric Medvet, and Francesca Randone. 2020.

Learning a formula of interpretability to learn interpretable formulas. In Interna-
tional Conference on Parallel Problem Solving from Nature. Springer, 79–93.

[30] Marco Virgolin, Andrea De Lorenzo, Francesca Randone, EricMedvet, andMattias

Wahde. 2021. Model Learning with Personalized Interpretability Estimation (ML-
PIE). Association for Computing Machinery, 1355–1364.

[31] Ekaterina J. Vladislavleva, Guido F. Smits, and Dick den Hertog. 2009. Order

of Nonlinearity as a Complexity Measure for Models Generated by Symbolic

Regression via Pareto Genetic Programming. IEEE Transactions on Evolutionary
Computation 13, 2 (2009), 333–349.

[32] Shaolin Wang, Yi Mei, and Mengjie Zhang. 2020. A Multi-Objective Genetic

Programming Hyper-Heuristic Approach to Uncertain Capacitated Arc Routing

Problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation
(CEC). 1–8.

[33] Shaolin Wang, Yi Mei, and Mengjie Zhang. 2021. A Multi-Objective Genetic Pro-

gramming Approach with Self-Adaptive 𝛼 Dominance to Uncertain Capacitated

Arc Routing Problem. In Proceedings of the 2021 IEEE Congress on Evolutionary
Computation (CEC). 636–643.

[34] Hengzhe Zhang and Aimin Zhou. 2021. RL-GEP: Symbolic Regression via Gene

Expression Programming and Reinforcement Learning. In 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1–8.

[35] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the

Strength Pareto Evolutionary Algorithm. TIK-report 103 (2001).
[36] Eckart Zitzler and Lothar Thiele. 1998. Multiobjective optimization using evo-

lutionary algorithms — A comparative case study. In International Conference
on Parallel Problem Solving from Nature, Agoston E. Eiben, Thomas Bäck, Marc

Schoenauer, and Hans-Paul Schwefel (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 292–301.

981

https://arxiv.org/abs/2201.04600

	Abstract
	1 Introduction
	2 Background & related work
	2.1 Brief recall on SR and (MO)GP
	2.2 Prior works on improving NSGA-II for GP

	3 Evolvability degeneration
	3.1 Over-replication of small solutions
	3.2 Evolvability of small and large solutions

	4 Improving NSGA-II based on evolvability
	4.1 NSGA-II
	4.2 Construction of B
	4.3 Use of B during truncation selection

	5 Experimental setup
	6 Results
	6.1 Benchmarking results
	6.2 Did it work as expected?

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

