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Robotic Grasping of Harvested Tomato Trusses Using Vision and
Online Learning

Luuk van den Bent,1 Tomás Coleman1 and Robert Babuška2

Abstract— Currently, truss tomato weighing and packaging
require significant manual work. The main obstacle to au-
tomation lies in the difficulty of developing a reliable robotic
grasping system for already harvested trusses. We propose
a method to grasp trusses that are stacked in a crate with
considerable clutter, which is how they are commonly stored
and transported after harvest. The method consists of a deep
learning-based vision system to first identify the individual
trusses in the crate and then determine a suitable grasping
location on the stem. To this end, we have introduced a grasp
pose ranking algorithm with online learning capabilities. After
selecting the most promising grasp pose, the robot executes a
pinch grasp without needing touch sensors or geometric models.
Lab experiments with a robotic manipulator equipped with
an eye-in-hand RGB-D camera showed a 100% clearance rate
when tasked to pick all trusses from a pile. 93% of the trusses
were successfully grasped on the first try, while the remaining
7% required more attempts.

I. INTRODUCTION
During the last decades, crop production has significantly

increased in volume and efficiency thanks to mechanization
and automation [1]. However, a substantial amount of manual
work is still required in the difficult-to-automate processes
such as crop harvesting, manipulation or packaging. This
presents a serious problem, given the rising demand for food
and the decreasing number of people willing to work in
agriculture [2]. This paper focuses on the automated handling
of truss tomatoes, also known as vine tomatoes. A tomato
truss refers to the bundle of tomatoes that are still attached
to the fruiting stem after harvesting.

We focus on grasping trusses from a crate where they
are transported from the harvesting location; see Fig. 1. The
purpose is to inspect the tomatoes for damage, weigh them,
and finally place them on a transportation belt for automatic
packaging. The main challenge is to identify a suitable grasp-
ing pose, given the trusses’ diverse and unpredictable shapes
and the cluttered conditions in the crate. The grasping pose
must guarantee safe handling of the tomato truss without
damaging it.

This work’s main contribution is the development, imple-
mentation and validation of a perception method to identify
suitable grasp poses so that the trusses can be reliably
grasped. We introduce a learning-based grasp pose ranking
algorithm to select the most suitable grasp pose out of several

1Luuk van den Bent and Tomás Coleman are with the Department of
Cognitive Robotics, Delft University of Technology, 2628 CD Delft, The
Netherlands, luukbent@gmail.com, t.coleman@tudelft.nl.

2Robert Babuška is with the Department of Cognitive Robotics, Delft
University of Technology, 2628 CD Delft, The Netherlands and with the
Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical
University in Prague, Czech Republic, r.babuska@tudelft.nl.

Fig. 1: Harvested tomato trusses are stacked in a crate before they
enter the packaging process.

candidate poses and to adapt the selection model based on
the success or failure of the executed grasp. Extensive lab
experiments have been carried out to validate the approach
using a Franka Emika Panda manipulator equipped with the
Intel Realsense D405 RGB-D (red-green-blue-depth) camera.
More than 1300 grasp attempts have been carried out within
these experiments on real tomato trusses. The data acquired
have been used to develop and train the deep-learning models
and to validate the approach. To the best of our knowledge,
such extensive truss tomato grasping experiments have never
been documented in the literature.

The remaining sections of this paper are structured as
follows: Section II provides an overview of the related
research on grasping tomato trusses. Section III describes
the proposed perception method for finding suitable grasp
poses. Section IV reports validation experiments done in a
lab environment to test the proposed method. The results
are analyzed and discussed in Section V, and Section VI
concludes the paper.

II. RELATED WORK

Although numerous studies are devoted to the detection
and grasping of tomatoes [3]–[18], the majority focuses on
the harvesting or grasping of single tomatoes instead of
trusses. Grasping the entire truss by just one tomato results
in a high chance of the stem detaching from the tomato,
which makes all these methods infeasible. Instead, the truss
must be grasped by the stem (called the peduncle).

The first step to finding suitable grasp poses commonly
relies on identifying the stem, which is considered a seg-
mentation problem. Common methods are based on color,
where thresholds are set by hand [10] or with the use of
adaptive thresholding methods, like Otsu [11] or k-means
thresholding [17]. Color-based methods usually achieve poor
results in varying lighting conditions and cannot cope with
cluttered environments.

2024 IEEE International Conference on Robotics and Automation (ICRA)
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More recently, deep learning methods have been proposed.
Rong et al. [16] use a YOLO (You Only Look Once) network
to first identify tomato trusses in an image, and then a second
YOLO network produces masks for the part of the stem
above the tomatoes where grasping and cutting is feasible.
Although good results have been reported, the downside
of this approach is that generating segmentation masks for
training is time and labor intensive.

Other recent methods include deep learning-based 6D-
pose estimation. Kim et al. [9] find the 6D-pose of tomato
and stem to harvest individual tomatoes by using a known
3D model. Such a model would likely not work for truss
tomatoes since they have more variance in their appearance.
Also, this method requires training within a simulator to
determine ground-truth 6D poses.

Zhang et al. [14], [15] focus on trusses where the 6D-pose
is found using keypoints. The tomato trusses are modeled
with 11 keypoints: six for the tomatoes and five for the
peduncle and stem. However, having a fixed number of
keypoints is unsuitable when dealing with different types
of trusses, which can have varying numbers of tomatoes.
Furthermore, many of the methods used in harvesting are not
directly applicable when it comes to grasping out of a crate.
This is because they rely on the assumption that the trusses
in a harvesting environment are hanging vertically. Then,
the grasping position can be chosen on the stem above the
highest tomato and at an angle perpendicular to the direction
of gravity. This assumption does not hold for grasping trusses
from a crate.

To grasp trusses in a horizontal position, de Haan et
al. [17] proposed a graph-based method that finds a grasp
pose closest to the calculated center of mass along the pedun-
cle with sufficient space from junctions; the locations where
pedicels are attached to the peduncle. The grasp angle is
chosen to be perpendicular to the peduncle. After segmenting
the stem, the peduncle is found under the assumption that it
is the longest path on the graph with a limited curvature.
This method is a claimed improvement over the method
by Gray and Pekkeriet [18], which uses a random sample
consensus (RANSAC) regressor to identify the peduncle by
assuming that it makes up the longest continuous area present
in the stem segment. Although this method could suffice, this
approach ignores other parts of the stem and tomatoes, such
as the calyxes. This results in grasp failures, as reported by
the authors. Also, this method of finding the peduncle is
sensitive to its hyperparameters and fails for oddly shaped
trusses. Lastly, this method requires segmentation of the
stem. For good performance in clutter and varying lighting
conditions, stem segmentation should be based on deep
learning, which again requires extensive labeling to train.
None of the above methods is capable of learning from the
success or failure of the executed grasp.

III. PERCEPTION

We assume a setting where tomato trusses are stacked on
top of each other with the peduncle facing upwards, which
is how they are commonly stored in a crate after harvesting.

The manipulator’s end-effector with the Intel Realsense
D405 RGB-D camera is initially positioned approximately
0.75± 0.1m above the tomatoes to fit the entire crate in the
camera’s field of view. The problem is a top-down grasping
problem, where the grasp pose is defined in 4D: the 3D
position and the wrist roll angle (in the sequel also called
the orientation).

A major challenge in grasping tomato trusses is the
requirement of a more accurate grasping pose than with many
other simpler and less delicate objects. With parallel grippers,
damage typically occurs when grasping by a tomato or the
weaker parts of the stem, such as the pedicels or calyxes. A
suitable grasp pose should be located on the peduncle, with
as much space as possible from the other parts of the stem
and tomatoes, as shown in Fig. 2. Also, when identifying a
suitable grasping pose, it is crucial to consider obstructions.
A truss should not be grasped if it is overlapped or obstructed
by other trusses.

Fig. 2: Suitable grasp poses on the peduncle for grasping a tomato
truss. The yellow dots represent the positions, and the purple
rectangles indicate the orientations of the grasps.

To find suitable grasp poses, we propose a three-stage
perception method consisting of A) tomato truss detection,
B) grasp pose identification, and C) grasp pose ranking.
The individual stages are discussed below and visualized in
Fig. 3.

A. Tomato Truss Detection

This step aims at finding an unobstructed tomato truss.
This is achieved by training a detection model on data in
which only unobstructed trusses are labeled. When multiple
such trusses are detected, the algorithm selects the one with
the lowest average depth from the camera’s perspective.

a) Architecture: We utilize a variant of the YOLOv5
[19] architecture which outputs an oriented bound-
ing box defined by the coordinates of all its corners
(x1, y1, x2, y2, x3, y3, x4, y4). This format provides a precise
fit, which is beneficial in the cluttered environment consid-
ered.

b) Dataset: We collected and labeled 225 images to
train the model: 200 were used for training and 25 for vali-
dation. The images contained varying numbers and types of
tomato trusses, and we varied the height and the angle from
which the image was captured, as well as the background
and lighting conditions. We have not recorded the exact
variations, however, we have chosen them to approximately
cover the robot’s normal operating conditions. All images
were resized to 640x640, and black borders were added if
needed to preserve the aspect ratio.

13948

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2024 at 11:19:45 UTC from IEEE Xplore.  Restrictions apply. 



Take Closeup

Automatic
success/

failure
detection

A: Tomato Truss
Detection

Pre-process
Execute best 

graspC: Grasp Pose
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Fig. 3: Overview of the method. First, the truss to be grasped is detected (steps A). The robot arm then moves the end-effctor with
camera above this truss to take a close-up image, in which suitable grasp poses on the peduncle are identified (step B). Finally, the grasp
pose ranking algorithm finds the most suitable pose (step C) and the robot executes the grasp. Based on the the grasp success or failure,
the ranking model is adapted (dashed line in step C).

c) Training: The network was trained for 300 epochs
with a learning rate of 0.001 and a batch size of 32. The
Adam optimizer was used with a momentum of 0.937 and
weight decay of 0.0005. To reduce overfitting and improve
generalization, the model weights were pre-trained on the
COCO 2017 (Common Objects in Context) dataset [20].
We also applied common data augmentation techniques such
as variations in the HSV (hue, saturation, value) channels,
random rotation, translation, and scaling, and flipping upside-
down and left-right.

d) Performance Evaluation: The model performance
evaluated on the validation set resulted in Mean Average
Precisions MaP@0.5 of 0.952 and MaP@0.5:0.95:0.05 of
0.693. During inference, the Non-Maximum Suppression
(NMS) confidence and NMS IOU (Intersection over Union)
thresholds were kept at the standard values of 0.25 and 0.45,
respectively. This resulted in the precision of 0.935, the recall
of 0.967, and the F1 score of 0.95.

B. Grasp Pose Identification

The next step is to identify candidate grasp poses on
the tomato truss detected. We use a learning-based pose-
estimation model, which takes an RGB image as its input
and directly outputs the candidate grasp poses without the
need for segmentation.

To get more precise depth information, we first control the
robot arm to approach the truss to get a close-up view. The
position of the arm is chosen so that the camera is 0.1 m
above the center of the bounding box. The orientation α of
the camera is calculated so that it aligns horizontally with
the longest side of the bounding box:

α = arctan 2 (y2 − y1, x2 − x1)

where arctan 2 is the four-quadrant inverse tangent.
a) Preprocessing: The closeup view mostly contains a

single truss. However, this truss is usually still surrounded by
parts of other trusses and parts of the underlying trusses can
also be seen in the background. Therefore, two preprocessing

steps are applied to the point cloud generated from the RGB-
D image: 1) filter out the surrounding trusses by reusing
the previously found bounding box of the truss of interest
to remove points that lay outside the bounding box; 2)
remove the background trusses by fitting a plane to the
points remaining after step 1 by using the RANSAC method
and removing points that have a distance larger than dp. A
suitable value for dp depends on the size of the tomatoes
and is generally in the same range as their diameter. During
experiments, dp = 0.05m was used.

b) Architecture: To identify possible grasp poses on
the preprocessed RGB image, we modified the Yolov7-Pose
[21] architecture to detect for each potential grasping pose a
bounding box containing a single keypoint and the respective
orientation of the gripper. To get a 3D position for the grasp
poses, the pixel locations of the keypoints are deprojected,
and the grasp angles are taken directly as the keypoint
orientations.

c) Dataset and Training: A dataset of 50 preprocessed
images was gathered and hand-annotated to train the model.
This dataset was split into 40 training and 10 validation
images. The same data augmentation and hyper-parameters
were used as for the tomato truss detection model described
in Section III-A.

d) Performance Evaluation: The performance of the
model is evaluated by comparing the keypoint predictions
with the manually annotated ones (ground truth). A keypoint
is considered correctly predicted if the distance to the ground
truth is less than 0.003 m, which is a little less than half the
typical distance between junctions on the peduncle. Figure 4
shows an example image with ground truth and predictions.
A precision and recall score of 0.89 and 0.98, respectively,
were obtained for the validation set. Figure 5 shows a box
plot of the location and angle errors of correctly predicted
keypoints.

C. Grasp Pose Ranking

The last step in the perception method is the ranking of the
identified grasp poses in terms of the expected grasp success.

13949
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Fig. 4: Example of the grasp pose identification network evaluation.
The ground truth grasp poses are shown as orange dots with a green
line for the orientation whilst the predictions are shown in blue.
The green circles show the distance threshold in which the position
prediction has to be located to be considered correct.

0 1 2
(a) distance error (mm)

0 50
(b) angle error (degrees)

Fig. 5: Boxplots displaying the distance and angle errors of the
correctly predicted keypoints on the validation set of the grasp pose
identification network.

De Haan et al. [17] chose the grasp pose to be as close
as possible to the estimated truss’ center of mass to retain
the truss’s horizontal position after lifting it up. However,
this method fails to account for possible collisions of the
gripper with the pedicels or tomatoes. To overcome this
limitation, we propose a model that estimates the suitability
of a grasping pose by a number between 0 and 1. To prevent
the repetition of unsuccessful grasp attempts, this model is
continuously updated online. In this way, the failure of recent
grasp attempts leads to trying alternative grasp poses.

To get the input for the ranking method, for every possible
grasping pose, the preprocessed point cloud gets rotated by
the grasping angle, and points with an L∞ distance of more
than dr to the grasping position get removed. This distance
dr, should be chosen so that all necessary local information
remains. During experiments, this was set at 0.02m. Finally,
these resulting point clouds get projected back into the depth
images, which are normalized and have a resolution of 128×
128 pixels.

To be able to quickly adapt the model to new data, we
use a KNN (k-nearest neighbors) classifier applied to features
extracted by an auto-encoder, as depicted in Fig. 6. While the
auto-encoder is not updated online, the KNN classifier can
easily be adapted in real time, even on a CPU. Utilizing an
auto-encoder introduces an additional advantage over a direct
neural network for the classification; although only one of
the detected grasp poses can be executed and labeled, all the
grasp proposals can be used for training the auto-encoder
since this training does not require any labels.

a) Dataset: To train the auto-encoder and KNN, an
initial offline training phase is performed where one of the
sampled grasping poses is randomly executed. Measuring the
grasp success is automated by using the load force estimate
provided by the manipulator; the change in force before and
just after releasing the potentially grasped tomato truss is
compared. The grasp is considered successful if this change
is more than a predefined threshold. A total of 962 grasps
on roughly 50 different trusses were recorded over multiple
experiments within a period of several weeks. This resulted
in 4807 grasp poses used to train the auto-encoder. This
dataset was split into 70% samples for training and 30%
samples for validation.

b) Training: To train the autoencoder, we used the
Adam optimizer with a learning rate of 0.0001, weight decay
of 0.0001, and β of 0.9. The model was trained for 40 epochs
with a batch size of 512 using a mean squared error loss.
For the KNN, the number of neighbors was set to 10, and
the weights of each were set inversely proportional to their
distance. For both steps, the dataset was augmented by using
a combination of flipping upside-down, left-right and rotating
by 180 degrees.

c) Performance Evaluation: Of the 290 validation im-
ages, a total of 172 true positives (59.3%), 72 true negatives
(24.8%), 14 false negatives (4.8%), and 32 false positives
(11.0%) were obtained. This results in an F1 score of 0.88.

IV. EXPERIMENTS

To evaluate the proposed learning-based method, lab
experiments were performed. An example video1 and the
codebase2 are available online.

A. Experimental Setup

We used the Franka Emika Panda3 manipulator equipped
with the Intel Realsense D4054 RGB-D camera, mounted
close to the end-effector in the ”eye-in-hand” configuration.
Custom, 3D-printed slim gripper fingers accommodate the
limited space available for grasping and lower the chance
of the end-effector getting stuck on parts of the stem.
The fingers were covered with grippy, deformable foam to
minimize potential damage to the stem and tomatoes. A
Cartesian impedance controller [22] is used to move the arm.
The physical setup, along with a close-up of the end-effector
and the dimensions of the fingers, can be seen in Fig. 7.

The setup is mounted on a table where one or more tomato
trusses are placed and potentially stacked next and on top of
each other, depending on the experiment. The trusses were
not placed inside a crate since we focus on perception and
do not consider collision with the crate walls. We assume
that i) the peduncle is facing upward (this is normally the
case in practice), ii) the perception system performance is not
influenced by the presence of the crate (this can be ensured

1https://youtu.be/AnTaVYxz63c
2https://github.com/LuukvandenBent/learning approach to robotic

grasping of vine tomatoes
3https://www.franka.de/research
4https://www.intelrealsense.com/depth-camera-d405/
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Fig. 6: Architecture used for grasp pose ranking; a KNN classifier on the latent space of an auto-encoder.

by proper lighting using special lamps, which is a common
industrial practice), and iii) the controller perfectly executes
the commanded movement of the arm (which again is a
reasonable assumption with current industrial robot arms).

(a) Setup (b) End-effector

1mm

2.5mm

(c) Front view

5mm

(d) Side
view

Fig. 7: Experimental setup, with a closeup of the end-effector. The
dimensions of the gripper fingers are shown from the side and front.
The red area represents the deformable material.

B. Pick and Place Routine

To evaluate the method, a pick-and-place routine is carried
out. It consists of five consecutive steps: (i) localizing a
single truss to be grasped, (ii) approaching the truss with the
eye-in-hand camera to take a close-up image, (iii) identifying
a suitable grasping pose, (iv) reaching towards the peduncle
and grasping it, (v) lifting the truss and placing it at a desired
location.

We have conducted three types of experiments to evaluate
how well the proposed method is able to grasp previously
unseen tomato trusses:

1) Grasping in a non-cluttered environment. Here, only
one truss was placed on the table at a time. The
goal of this experiment is to evaluate the impact of
the proposed grasp pose ranking method, compared
to randomly selecting one of the candidate poses or
selecting the one closest to the center of the truss’
bounding box. The center of the bounding box is an
approximation of the center of mass, which should
provide the most stable grasp.

2) Grasping in a cluttered environment. Trusses are ar-
ranged to form a single underlying layer on top of
which a single target truss placed. Here, the tomato
truss detection and preprocessing part of the perception

process are tested to see how well they are capable of
dealing with the cluttered environment.

3) Pile clearing. Lastly, multiple trusses are randomly
stacked next to and on top of each other, which
resembles a filled crate after harvesting. In this test,
the purpose is to see if the system is able to one-by-
one grasp all trusses that are present and not get stuck
by repeatedly trying the same failing grasp pose.

In the first two experiments, if a grasp is successful, the
truss is placed back on the surface with a random pose near
the center of the workspace by the manipulator. However, if a
grasp fails, the truss is not moved by hand and is reattempted
as is. The online learning capabilities of the proposed method
are disabled to evaluate the performance of the model trained
offline. Only in the pile-clearing experiment the online
learning capability is enabled.

C. Failure Modes

Two types of failures were observed during experiments:
1) Perception: the perception system provided an inap-

propriate grasping pose.
2) Gripper: the truss slips out of the fingers during lifting

or mid-air manipulation. This error indicates weakness
in the pinch grasping method used.

The type of failure was automatically determined during
the grasping attempt by checking the width between the
fingers after closing but before lifting. A width of (near)
zero indicates that there is nothing between the fingers,
signifying a failed grasping pose. If something was initially
held between the fingers before lifting but not when placing,
the error is assumed to be caused by slipping.

D. Results

The previously described pick and place tasks were ex-
ecuted on 25 different tomato trusses. For the first non-
cluttered experiment, each truss was attempted with the
three strategies: randomly picking a candidate grasp pose,
picking the one closest to the center of the bounding box,
and using the highest-scored pose ranked by the proposed
method. Per truss, each strategy was repeated 20/10/10 times
for the three methods, respectively, for a total of 1000
attempts. The outcomes displayed respective failure rates of
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47.6% (238/500), 20% (50/250), and 7.2% (18/250) and are
summarized in Tab. I.

In the remaining experiments, only the proposed grasp
pose ranking strategy is used. In the cluttered-environment
experiment, all 25 different tomato trusses were tested and
repeated 10 times each. For each truss, a new single layer of
the underlying trusses was formed using a random selection
of the remaining trusses. A failure rate of 4.4% (11/250) was
observed, as shown in Tab. II.

The pile-clearing experiment was also performed 10 times.
Each time, 10 out of the 25 tomato trusses were randomly
selected and stacked by hand next to and on top of each
other. In this experiment, the online learning of the grasp
pose ranking method was enabled, but we removed the
samples from the last attempts after each trial to make sure
the trusses were unseen by the system at the beginning of
each trial. Unlimited grasping attempts were allowed until
the system was able to fully clear the pile in all 10 attempts.
93% (93/100) of the trusses were successfully grasped at the
first attempt, 6% took two attempts, and one truss took six
attempts.

TABLE I: Failure rates in the non-cluttered environment experi-
ment (Experiment 1)

grasp pose
selection

trials
trusses*attempts total failures gripper perception

random 25 ∗ 20 = 500 238 (47.6%) 117 (23.4%) 121 (24.2%)
center 25 ∗ 10 = 250 50 (20.0%) 35 (14.0%) 15 (6.0%)
ranking 25 ∗ 10 = 250 18 (7.2%) 13 (5.2%) 5 (2.0%)

TABLE II: Failure rates of ranking-based method for grasping in
isolation or clutter (Experiments 1 and 2, respectively)

scenario trials
trusses*attempts total failures gripper perception

isolated 25 ∗ 10 = 250 18 (7.2%) 13 (5.2%) 5 (2.0%)
clutter 25 ∗ 10 = 250 11 (4.4%) 9 (3.6%) 2 (0.8%)

V. DISCUSSION

The results of the first experiment in the non-cluttered set-
ting show that the proposed ranking-based method achieves
a lower failure rate compared to selecting the pose randomly
or close to the truss center of mass.

In the second experiment, a lower failure rate was ob-
tained when grasping tomato trusses in the cluttered setting
compared to isolated trusses. Intuitively, the latter should be
an easier task, which likely means that the difference is not
statistically significant. However, these results show that the
tomato truss detection and preprocessing steps effectively
simplify the cluttered problem to essentially grasping in
isolation. Most perception failures were a result of inade-
quate proposals by the grasp pose identification network.
Therefore, the overall performance could be further improved
by increasing the amount of data used to train this network.

After the experiments, no visual damage was observed on
the tomatoes. However, after repeatably gripping and releas-
ing the same trusses, some abrasion damage was observed on

the skin of the peduncles. This will clearly not be an issue in
the industrial setting, where each truss will be handled only
once and, in addition, a specialised gripper can be used.

A limitation of our validation experiments is that they
were performed with only one tomato variety. Although the
system was during its development tested on other tomato
varieties, no reliable conclusions can be drawn about the
success rate of the proposed method for other varieties, for
instance, cherry tomatoes.

The perception steps, tomato truss detection, preprocess-
ing, grasp pose identification, and grasp pose ranking take
approximately 0.05 ± 0.01, 2.00 ± 0.24, 0.64 ± 0.21, and
5.15 ± 0.60 seconds, respectively, on a computer with an
Intel i7-8750H processor and NVIDIA GeForce GTX 1060
GPU. Note that the grasp pose ranking autoencoder was run
on the CPU due to GPU memory constraints. The whole
pick-and-place cycle, including returning the manipulator to
the initial pose, takes around 30 seconds.

VI. CONCLUSION AND FUTURE WORK

This paper presents a learning-based method for grasping
tomato trusses in a cluttered environment. First, we use an
object-detection model to identify an unobstructed truss to
be grasped. Next, we employ an extension of the Yolov7-
pose detection algorithm to allow the pose angle to be
learned along with the keypoints, which is used to identify
candidate grasping poses. In the last step, an autoencoder
with a KNN classifier is trained offline and updated online to
select the most promising grasp pose, based on the success of
previous similar grasping attempts. Pile-clearing experiments
conducted on a physical setup using real tomato trusses
demonstrated a clearance rate of 100% when allowed to
retry after a failed attempt. Of all the trusses, 93% were
successfully grasped on the first try, while the remaining 7%
required more attempts.

Since many of the grasping failures were a result of the
peduncle slipping out of the fingers, future work should
focus on specialized grippers that can more effectively grip
the trusses while avoiding damage to the stem. We further
hypothesize that an enhanced gripper design can improve the
grasp success also when attempting sub-optimal grasp poses,
so reducing the influence of perception errors. Another topic
for future research is the extension of our work to become
collision-aware, solving the original problem of grasping out
of a crate.

While the current models have been specifically trained for
picking tomato trusses, the proposed method can be applied
to a wide range of other objects. We verified this by testing
it on bananas and silverware, which included knives, forks,
and spoons. The preliminary results were promising and will
serve as a basis for our future publications.
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