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Abstract 

Background and aims 

 

The timing of extubation is a difficult decision for the medical team on the PICU. With 

negative impact on patient outcome when extubating too late or too early. The aim of 

this study was to create machine learning models for extubation failure prediction after 

surgery in patients with congenital heart disease. The goal was to assess the influence of 

time variant features on the performance. 

 

Methods 

 

Data from post cardiac surgery patients admitted to the PICU of the University Medical 

Centre Utrecht, The Netherlands, between 2009 and 2018 was collected. Ventilator and 

monitor parameters were extracted in 12-hour segments. Different representations of 

time-variant features were calculated (per hour/ per 12-hour segment), these 

representations were tested against machine learning trained on only time-invariant 

features (age, weight diagnosis). Machine learning algorithms tested were: long short-

term memory network (LSTM), logistic regression and random forest model. Models were 

evaluated by comparing the areas under the receiver operator curves 

 

Results 

 

With only time invariant features a performance of 75% [95%CI 81%-90%] using logistic 

regression. Adding the time-variant features to a LSTM model a performance was 

reached 77% [95%CI 80%-90%]. Important features from the logistic regression models 

were age, weight, heart rate and respiratory rate.   

 

Conclusions 

Based on the overall results we concluded that the chosen representations of time variant 

features did not significantly improve the performance of the models. To improve 

performance and implementation of machine learning models in the future, transparent 

and externally validated models need to be developed.  
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Introduction 

The incidence of severe congenital heart disease (CHD) that will require expert 

cardiologic care is quite stable at about 2.5 to 3/1,000 live births (1). This group 

generally needs surgery in the first year of life, which always requires mechanical 

ventilation during and after the procedure. Patient outcome can be negatively impacted 

by prolonged mechanical ventilation (2). Prolonged mechanical ventilation is associated 

with infection, airway/ lung injury, increased exposure to sedatives, analgesic 

medications and increased intensive care unit utilization (3). On the contrary, extubation 

failure (defined as the need for reintubation within 48 hours) has also been 

independently associated with increased mortality, longer hospitalization, and more days 

on oxygen and ventilatory support (4). The experience of the medical team is a key 

factor in the success rate of extubation. Shinkawa, et al. found that the anaesthesiologist 

who performed the anaesthetic care during surgery was a significant predictor for 

immediate extubation after heart surgery (5). Scoring systems were developed to aid the 

medical teams in the evaluation of morbidities in the adult ICU. Schlapbach, et al tried to 

adapt these scores to age, since these scores were not validated for paediatric patients 

(6). They came to the conclusion that the scores lack specificity for children and thus 

new scores specifically designed for children are needed. Furthermore, these types of 

scores are  created on data which is recorded sparsely and manually (6).  With the 

adaptation to Electronic Health Records (EHR) an abundance of data is collected with a 

higher frequency. This exponential growth of available data could improve the monitoring 

and prediction of a better moment for extubation. The constant availability of large 

amounts of data, creates the possibility of dynamic predictions. Dynamic predictions 

could help with early recognition of extubation readiness as well as extubation 

unreadiness.   

To improve extubation failure prediction, the aim of this study was to create machine 

learning models for extubation failure prediction after surgery in patients with congenital 

heart disease. The goal was to assess the influence of time variant features on the 

performance. In machine learning, the choice of what data to use is debatably more 

important than the choice of which algorithm. Therefore, the influence of time was 

investigated, alongside different algorithms. The influence of time was researched by 

choosing different representations of time variant features in the same period of time. 

The main algorithms which were investigated are a recurrent neural network (RNN) with 

a long-short-term memory (LSTM) layer, logistic regression and random forest.  

A recurrent neural network is a type of neural network which can handle variable length 

sequences, which is the case in medical data (7). At every timestep it updates the 

importance (weight) of features, which results in good trend analysis over time. A 

diagram of a standard RNN is displayed in figure 1. An improvement on the standard 

RNN is the LSTM layer which can handle long sequences better due to a forget gate, 

which prevents a vanishing gradient (near zero gradient, which prevents weights from 

updating) (8). The vanishing gradient originates from the gradients in the derivatives of 

the activation functions in an RNN. If the gradients are small or high, the gradient over 

time will become nearly zero or nearly infinite. This makes the weights in the model 

unusable. Since the derivative of the forget gate does not have such a gradient it 

prevents it from vanishing  (9).  
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Due to these properties of the RNN-LSTM, this type of artificial neural network has good 

time discriminant properties, which makes it suitable for medical prediction problems.  

Logistic regression uses a logistic function to calculate the relation between an input 

variable and an outcome variable for every variable in a dataset. The logistic fuction 

produces a value between 0 and 1 for a binary classification problem. Optimisation can 

be performed by choosing the right boundary. The random forest classifier consists of a 

combination of tree classifiers where each classifier is genareted using a random vector 

sampled independently from the input vector and each tree casts a unit vote for the most 

popular class to classigy an input vector.  

The main patient cohort in this study were the post-surgical patients with congenital 

heart disease (CHD), more specific, cardiac surgeries which required cardiopulmonary 

bypass. Predicting extubation failure in patients with CHD is complicated, since different 

conditions cause different stable values for several parameters (i.e., blood pressure, 

saturation, respiratory rate) due to the differences in physiology/ anatomy. To assess the 

influence of this heterogeneity, a control cohort was investigated. The cohort was 

patients with bronchiolitis caused by respiratory syncytial virus (RSV). In the US 

bronchiolitis due to RSV causes approximately 125.000 hospitalisations and 250 deaths 

every year. Most children will have encountered the virus at least once between 3 

months and 2 years, with the bulk of the patients being younger than 1 year (10). These 

patients generally have the same stable values for different parameters, thus creating a 

more homogenous cohort than the congenital heart disease cohort. 

Related work 

Factors associated with extubation failure on the PICU 

In a large multi-centre study by Kurachek, et al. several patient factors were associated 

with extubation failure: <24months, dysgenic or syndromic condition, chronic respiratory 

or neurological disorder, epinephrine use, steroid use and length of mechanical 

ventilation. Factors that were not significantly associated with extubation failure were: 

gender, weight, race, intubating personnel, nasal or oral tube placement, cuff vs uncuffed 

tube,  trauma patients, cardiac patients, oncology patients, RSV patients and oxygen 

therapies (11).  In a study from Laham, et al. no association between ventilator settings 

and extubation failure or blood gas results and extubation failure were found, except for 

low respiratory rates on the ventilator (<8) within only 1 day of mechanical ventilation 

(12). Wratney, et al showed that the air leak test did not predict extubation failure in 

critically ill paediatric patients (13). Frutos-vivar, et al showed a weak predictive 

performance of the spontaneous breathing trial for extubation failure (14). 

 

Research utilising machine learning for prediction of extubation failure 

Machine learning has already been applied in several studies to predict extubation failure 

in adults or neonates/ preterm infants. Models either use a small number of vital signs or 

everything measured at the ICU (vital signs, medication, ventilator data, laboratory 

values). TingTing, et al used all measured parameters on the ICU and calculated the 

mean, minimum and maximum value per time variant parameter over the whole length 

of an admission. They achieved an AUROC of 81% with the XGBoost algorithm on an 

adult population (mimic-III dataset). Important features of the algorithm were pO2, 

haemoglobin level, paCO2, mean heart rate and age (15).  



 
6 

Kuo, et al. reached a similar performance with an AUROC of 83% on an adult population 

with an artificial neural network. They used age, intubation reason, APACHE II score and 

ventilator data to train their model. They used ventilator data from 30 minute 

spontaneous breathing trial, which was the only time variant representation used (16). 

Mikhno, et al investigated a neonatal population, 2 hours prior to the first extubation 

event, they used the minimum or the maximum value of a parameter based on the 

Youden index. They reached an AUROC of 87% with logistic regression using only 6 

features (17). Mueller et al investigated extubation failure in premature infants, they 

used the whole admission from preterm infants with data directly from the EHR and all 

measurements from the neonatal ICU. It was unclear, how they handled the time 

variance of the features. They reached an AUROC of 76% (18). 

 

 

Methods 

Database 

The PICU of the WKZ is one of seven Dutch PICUs, the data in their database called 

PICURED dates back to 2008. The database contains patient monitor data, ventilator 

settings, ventilator measurements and lab values.  All parameters were stored once per 

minute, if there was no data available at a certain time point a NULL value was stored for 

every variable. 

Patients with congenital heart disease were identified using a list made by the perfusion 

specialists at the WKZ. Operation date, surgeons, procedure, diagnosis and hospital 

number were registered by the perfusionists. Potential selection bias is introduced by 

this, since only patients (with CHD) which were connected to the cardiopulmonary bypass 

during surgery were included on the list. Some of the simpler surgical cardiac 

interventions were not included in this study. The operation dates and patient numbers 

were used to match the list with the PICURED database. To identify the bronchiolitis 

patients the Dutch Paediatric Intensive Care Evaluation (PICE) was used (19). PICE is an 

anonymized dataset of admission and treatment outcome information. The PICURED 

database was matched with the PICE database based on patient number and admission 

period. 

The definition used for extubation failure in this report was the need for reintubation 

within 48 hours of the extubation, which conforms to other published works (16, 20, 21). 

The need for non-invasive ventilation after extubation was not considered as extubation 

failure. Identification of admissions with extubation failure was done by extracting all 

ventilator parameters from PICURED. Per admission the sections without ventilator data 

were identified. These sections were flagged if the gap was longer than 15 minutes and 

did not exceed 48 hours (based on the extubation failure definition). If a patient had a 

flagged section, the admissions were manually checked in the physician notes of the 

electronic health record to confirm extubation failure. Only the admission after surgery 

was checked for extubation failure for the CHD cohort. Only the bronchiolitis admission 

was checked for the bronchiolitis cohort. The flagging procedure was the same for both 

cohorts. If a patient had a failed extubation during admission, all 12-hour segments in 

the same admission were registered as extubation failure. This as opposed to only 

labelling the specific window before reintubation as extubation failure.  
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This prevents extensive imbalance, since the segments on the ventilator without 

extubation failure were abundantly more frequent than the segments with extubation 

failure.  

Exploratory data analysis 

Prior to the development of the prediction models an exploratory data analysis was 

performed, to learn about the dataset and to reduce the number of parameters from 

PICURED (~70 parameters, appendix A). Reducing the parameters was performed to 

improve interpretability of the models. To remove features and keep performance an 

informed decision should be made which parameters to keep and which to discard. The 

numeric columns were investigated using Pearson correlation. To complement the 

exploratory data analysis discussions with physicians about valuable and redundant 

parameters were performed, to also address the variable selection from a medical 

perspective. We arbitrary chose to use only the top ten physical parameters which came 

from the correlation analysis and the discussions with physicians. Aside from the top ten 

features, demographic features such as age, weight and diagnosis were added to the 

dataset. Gender was not added, since it was not present in the dataset. 

Data preparation 

The first pre-processing step we took was eliminating physiologically impossible values. 

Impossible values are for example a heart rate below 0 or over 300 or a saturation value 

below 0% or above 100%. These values were replaced by the maximum accepted value 

(i.e., 0 or 300 for heart rate). Weight data was not available for every patient. To 

generate a weight the formulas in the article from Tinning, et al. were used which 

calculate the weight based on a combination of exact age and age category. The 

diagnosis of each patient (i.e., ventricle septum defect, pulmonary stenosis) were 

transformed into a risk score using the risk score of the PICU of the Wilhelmina children’s 

hospital, as seen in table 1. After the outlier removing, z-score standardization was 

applied to every continuous numerical variable.  

The admissions were subdivided in periods of 12 hours, thus a 72-hour admission results 

in 6 different segments. If extubation failure happened during one of those segments, as 

mentioned before, all 6 segments were considered as extubation failure. Admissions not 

fully divisible in 12-hour segments were padded with zeros. As stated before, every 

segment in an admission in which reintubation occurred was labelled as reintubation. No 

oversampling or under sampling methods were applied to solve the imbalance in group 

size.  The 12-hour segments were further subdivided into 1-hour segments to provide to 

the models as timesteps. all data where a patient was not connected to the ventilator 

was discarded, since the goal was to predict extubation failure before a patient is 

extubated. This was done by removing the timepoints where the ventilator did not 

measure a respiratory rate and an expiratory tidal volume. This created some gaps in 

time in the data. To correct for the created gaps a parameter was added which was 

defined as the time needed to get 720 data points (12 hours’ worth of data, one point 

each minute). If a gap existed of 10 minutes in one segment block, the added parameter 

would thus have a value of 730 (before z-score standardization). 
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Model building and training 

As a base RNN-LSTM model the model from Kaji,et al. was chosen (22). Kaji et al created 

a model to predict daily sepsis, myocardial infarction (MI), and vancomycin antibiotic 

administration over two-week patient ICU courses in the MIMIC-III dataset.  

These models achieved next-day predictive AUC of 0.876 for sepsis,0.823 for MI, and 

0.833 for vancomycin administration. The RNN-LSTM was implemented in Keras with a 

TensorFlow backend. 3-dimensional data with patient ICU admissions, time steps (n = 

12), and features (n=14) served as input. This input layer was put into an attention layer 

(23) that weights the inputs. The output of the input layer was put into a masking layer 

which disregard empty timesteps (for segments without 12 hours’ worth of data). This 

produces variable length sequences which an RNN-LSTM model can handle. Lastly, the 

output of the masking layer was fed directly to an LSTM layer with 256 hidden units. A 

hyperbolic tangent was used as an activation function. The output of the network 

features one dense neuron with a SoftMax activation. A RMSProp optimizer with a 

learning rate of 0.001, rho of 0.9, epsilon of 1e-08 and no decay were used in all models. 

From this base model, tuning of the RNN was done manually. The layer types, the 

number of hidden nodes and the type of activation function were tuned. Binary cross-

entropy was used as the loss function for all models. 

Simpler models like logistic regression and random forest were used as control. The input 

for the simpler models needed some extra pre-processing steps then the steps described 

in the previous paragraph. The simpler models cannot create their own features from the 

pre-processed data, the features needed to be created manually. We chose to calculate 

the mean and the standard deviation for each feature for each hour of data. Additionally, 

the slope of a fitted linear regression for each hour of the data was used to analyse the 

trend over the time period. Meaning each observation/ sample consisted of 3 values per 

feature for every hour in 12 hours of an admission. 12-hour segments of a failed 

extubation and successful extubation for each parameter are shown in appendix B. No 

extra feature selection method was applied. The hyperparameters of both models were 

tuned using a 3-fold cross validated randomised search, 20 hyperparameter 

combinations were evaluated per fold. For logistic regression the following 

hyperparameters were optimised: solver type, class weight, penalty method and the 

regularization parameter. For random forest the hyperparameters which were optimised 

are: the number of estimators, the maximum depth of the tree, minimum samples per 

split, minimum samples per leaf node. Added characteristic of the simpler models is the 

ability to identify feature importance. Feature importance refers to techniques that assign 

a score to input features based on how useful they are at predicting a target variable. For 

logistic regression this is the weight of each input feature. Feature importance in random 

forest corresponds to the reduction of the impurity (uncertainty) on average for a feature 

in all decision trees in a random forest. 

Model validation and evaluation 

 

Hold-out validation was chosen to validate the models (after cross-validated 

optimization). This was chosen to separate the training and evaluation to prevent 

overfitting due to leakage. It was opted to split the data in three parts training/ 

validation/ testing with a percentage split of 70%/ 10%/ 20%.  
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The train set will be used to train the data. the validation set was used to tune the 

hyperparameters of the RNN_LSTM. For the simpler models the validation set was added 

to the training set, since cross validation of the complete training set was used to 

optimise the hyperparameters. The main performance measure of the model was the 

area under the receiver operating curve (AUROC). The secondary outcome measures 

include: F1 Score, average precision score and recall. Accuracy was disregarded as a 

performance measure due to the imbalance in the data.  

F1 score is a measure for accuracy of the model, calculated from the precision and recall, 

it is sometimes referred to as the harmonic mean between precision and recall. Precision 

is the ability of the classifier to recognise a negative sample as not a positive sample 

(distinction between true and false positives). Recall is the ability of the classifier to find 

all the positive samples. 

Experimental set ups 

During evaluation of the models, the choice of data was also evaluated. The models 

reviewed data from the entire admission in 12-hour segments. From a medical 

perspective this choice was argued, since patients in both groups (failed/ successful 

extubation) could have had the same ventilator settings at the start of the admission, but 

could have very different settings at the moment of extubation. Having the same setting 

in the beginning of the admission results in similar segments, but different outcomes, 

which could cause a bad performance. Hence why, if the overall performance of most 

models with 12-hour segments of the entire admission as input was considered bad 

(maximum AUROC <70%) the choice will be made to only research the 12 hours before 

the first extubation attempt. In the patient group with failed extubation this means the 

last 12 hours before the first extubation attempt will be investigated, in the group 

without extubation failure, it indicates the last 12 hours on the ventilator. Medically, 

patients are most stimulated to breath on their own when the ventilator settings are the 

lowest (little support). This is generally right before the extubation moment, thus 

analysing the last segment could provide better results. 

 

To investigate the influence of time variant features on the model, several 

representations of the 12 hours were tested. The representations are: Static features, 

12-hour features, per hour features and RNN-LSTM. Static features refer to the features 

which do not change over time during an admission (time invariant). For this study the 

static features were diagnosis, weight, age and size of the time gap (indication for 

missingness). The 12-hour features were the mean, SD and slope calculated over the 

whole 12-hour segment for each parameter, instead of the per hour described above. 

The per hour features were the mean, SD and slope for every parameter for every hour 

of the 12-hour segment. The static features were also a part in both the 12-hour features 

models and the hourly features models. RNN-LSTM creates its own features for the same 

12-hour segments as the other models, the static features were also a part of this 

model.   

 

Python version 3.7.9 was used for the creation of the models/ processing the data. The 

following python packages were used: Anaconda (version 4.10.3), Keras (version 2.4.3), 

TensorFlow (version 2.5.0), Scikit-learn (version 0.23.4), SciPy (version 1.5.4), pandas 

(version 1.2.4) and NumPy (version 1.19.5). The python scripts will be made available on 

git-hub repository: Berend789/ Extubation_Failure_Prediction 
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Results 

Patient cohorts 

After matching the list of the perfusionists and PICURED, 2149 admissions with 

congenital heart disease were identified. From the 2149 admissions, extubation failure 

was registered in 127 admissions (5.9%). Detailed information about the patient group is 

displayed in table 2. On a group level several significant differences were seen between 

the groups. Since the parameters in the table are not corrected for age, the difference 

between groups might be exaggerated. The simpler group of bronchiolitis patients 

consisted of 327 admissions of which 36 admissions (11%) reported extubation failure. 

Detailed information about the patient group is displayed in table 3. On a group level, 

less significant differences are seen in comparison with the patients with CHD. This could 

have resulted from the small group size of the bronchiolitis cohort.  

Feature selection 

In the PICURED database (parameters in appendix A) laboratory values, ventilator 

parameters, observations and monitor data are gathered. The sparsity of the laboratory 

values created an artificially high correlation, due to the high number of zeros in the 

data. All laboratory values were discarded due to the lack of availability. In the PICURED 

database, the ventilator parameters are divided in two large groups. The settings as 

chosen by the medical team and the measured parameters from the machine. High 

correlation (>90%) was seen between the settings and the measured parameters. 

Therefore, we chose to discard all settings parameters and keep only the measured 

ventilator parameters. After discussion with physicians, positive end expiratory pressure 

(PEEP), peak pressure, respiratory rate, inspired oxygen percentage (fio2) and expiratory 

tidal volume were selected as parameters. These parameters were complemented by the 

monitor parameters: heart rate, respiratory rate, end-tidal CO2, saturation and invasive 

blood pressure (which was only measured if arterial line was present). Other parameters 

such as blood gas parameters, blood measurement and urine measurement were not 

incorporated, due to sparse availability of data. In table 4 all used parameters are noted. 

In appendix B, patient trajectories of various parameters are shown over the 12 hours for 

both the failed extubation as the successful extubation group. 

Full admission 

As mentioned in the method section, the choice of time period was also evaluated. In 

figures 2 and 3, 4 receiver operator curves are seen of different models tested with the 

12-hour segments for the entire admission. For both datasets, the models learn relatively 

little, with the best performing models having AUROC’s of around 60-66%. Based on 

these results, the choice was made to investigate only the last 12 hours on the ventilator 

or the 12 hours before the first extubation attempt as mentioned in the methods. 

Simple models 

In figures 4 and 5 the results for the best performing model per time representation for 

both the CHD cohort and bronchiolitis group respectively are displayed. The performance 

for the different simpler models were very similar.  
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The static features in the CHD and bronchiolitis cohorts reached a similar performance to 

the RNN-LSTM with an AUROC 75% and 71% respectively. The addition of the time 

variant features for both the 12-hour representation as the hourly corresponded with a 

marginal improvement of the AUROC for the CHD cohort. In the bronchiolitis cohort 

dynamic features resulted in a loss of AUROC, with the hourly representation reaching an 

AUROC of 54% 95%CI [38%-68%]. The overall performance for the bronchiolitis cohort 

was worse than the CHD cohort. The best performing algorithm in the bronchiolitis cohort 

was the static feature model, thus the model basing its prediction only on age, weight, 

time gap and diagnosis. Figures 6, 7 and 8 show the important features for the best 

performing models on the CHD cohort for the static model, the 12-hour representation 

and the hourly representation, respectively. In all models weight and age were important 

features. Moreover, in the 12-hour model and the per hour model, heart rate also was an 

influential feature. Expiratory tidal volume and the positive end-expiratory pressure 

(PEEP) were the most influential ventilator parameters.  

RNN-LSTM 

Figure 9 shows the results for different RNN-LSTM configurations on the CHD cohort. The 

configurations shown are the base RNN-LSTM with a different optimizer called Adam 

(24), the base RNN-LSTM with forward and back propagation (bidirectional) (25), a 

simple RNN without LSTM layer, a RNN with a gated recurrent unit (LSTM without an 

output gate and fewer parameters) (26) and the base RNN-LSTM without an attention 

layer (23). Without the attention layer the AUROC dropped from 77% 95%CI [76%-

78%] to about 59% 95%CI [57%-61%]. Altering the standard forward propagated 

recurrent neural network to a bidirectional neural network did not improve performance 

with an AUROC of 74% 95%CI [72%-75%]. It was clear that the base model from Kaji, 

et al. reached the highest AUROC on this cohort (22).  

The results for the bronchiolitis cohort are displayed in figure 10. Performance for all 

models ranged between 48%-68%. It was clear that the neural networks performed 

better on the CHD cohort. The best performing model on the bronchiolitis group is the 

bidirectional RNN-LSTM with an AUROC of 68% 95%CI [64%-71%].  

 

The best model of the report was the base RNN-LSTM model on the CHD cohort. In figure 

11 the distribution of the probabilities of the prediction (the probability of extubation 

failure) for the successful extubations and the failed extubations are shown as 

percentage of the group. The spread of the distribution is a measure of uncertainty 

around the prediction. Mean probability for the failed extubation group was 0.6 95%CI 

[0.40-0.78], for the successful extubation group the mean probability was 0.33 95%CI 

[0.001-0.71] The sensitivity and specificity of the model were 0.935, 0.527 respectively. 

The positive predictive value (PPV) and negative predictive value (NPV) were 0.094, 

0.993, when the model was optimized for the highest AUROC.  In table 5, precision, 

recall and f1 score are shown.  
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Discussion 

Main findings 

 

the aim of this study was to create machine learning models for extubation failure 

prediction after surgery in patients with congenital heart disease. The goal was to assess 

the influence of time variant features on the performance. The best model was the base 

RNN-LSTM with an AUROC of 77%, the best performing simpler model was a logistic 

regression model on the per hour feature data. This model had an AUROC of 76%. The 

performance of the models was worse than some of the models reported in the 

introduction where model performances were between 76%-87%, although these results 

were on adults and neonate populations (15-18).  

 

The models performed well without the usage of the dynamic features, the static model 

for the CHD cohort reached an AUROC of 75% 95%CI [67%-82%] and for the 

bronchiolitis cohort the AUROC was 71% 95%CI [60%-82%]. The influence of all added 

dynamic features was marginal. The separability within the features could not generalise 

to the whole population due to the limited size of the data and especially the limited size 

of the failed extubation group. This lack of generalisation could be enhanced by the 

differences in physiology between age groups. However, the incorporation of weight and 

age in the feature set should counteract the physiological differences between the age 

groups. Secondly, patients are challenged the most with low ventilator settings and high 

patient effort one or two hours before extubation. The overlap between ventilator 

measurements and monitor parameters in the first half of the 12 hours between the 

failed and successful extubation group might have added noise to the prediction, which 

caused the bad performance. Analysing different time windows could give a definitive 

answer.  

 

The results of the bronchiolitis cohort were not comparable with the CHD cohort. This is 

probably due to the limited size of the bronchiolitis group. The number of extubation 

failures in the test group became too small for reliable prediction and comparison with 

the CHD cohort. It was therefore difficult to form a conclusion about the influence of the 

heterogeneity in the congenital heart disease cohort on the performance.   

 

Analysing the 12 hours before the first extubation attempt instead of the full admission 

leaded to improved AUROC. Medically, this choice does not impact the simpler 

procedures like VSD and ASD corrections since the majority of patients would not have 

received more than 12 hours of ventilation (3). However, after more complicated surgery 

or after a postoperative complication, large amounts of data were lost. Physicians do not 

usually incorporate detailed information (i.e., heart rate at admission) of the full 

admission into their decision to extubate, especially when a patient is admitted weeks/ 

months. They do incorporate a previous extubation attempt, postoperative complication 

and surgical procedure. So, from current medical views it is relevant to analyse only the 

last 12 hours of extubation with the addition of such impactful information. Nevertheless, 

the question could be asked if a baseline should be incorporated for better performance. 

 

 

 



 
13 

Age, weight, heart rate and respiratory rate seemed to be the most influential 

parameters across the different models.  

It is noteworthy that in the static model, weight and age are counteracting each other, 

but in the dynamic models the features complement each other. From a medical 

perspective younger age is associated with a lighter weight, which both are associated 

with a worse extubation outcome (11). The difference could have originated from the 

interactions between features. 

 

Limitations 

 

Without external validation the performance of machine learning models cannot be 

reliably determined. The 1 centre data as used in this study cannot prevent overfitting or 

bias. Despite using techniques like hold-out or cross-validation since the test population 

is probably very similar to the training population, overfitting cannot be completely 

disregarded. National external validation and international external validation could prove 

the worth of the machine learning model.  

 

Configuration tuning of the RNN-LSTM was not done optimally. The aim of the research 

was to investigate the influence of the dynamic representations. Because of this, 

optimisation of the neural network was done manually and not every possible 

configuration was considered. Further optimization could result in an algorithm which 

performs a bit better. However, with extensive optimisation, there is also an increased 

risk of overfitting. 

 

Due to the mathematical background of the LR/ RF the input is restricted. The model 

essentially needs a 1D representation of an observation. The observation in this study 

was chosen as 12-hour intervals for every admission. This 1D representation limits the 

amount of temporal information that can be given per variable. The representation as 

done in this report gives the information in feature form. The algorithm does not know 

the temporal relation between the features, so a heart rate at 1 hour will also be linked 

to a respiratory rate at 9 hours, while this linkage is not considered relevant. Adding to 

many features/ temporal information could therefore cause noise in the data, which could 

possibly result in a worse performance. A countermeasure could be to use features 

derived from simpler trend analysis, like the slope of the fitted linear regression used in 

this model. 

 

The used data currently lacks one major aspect of care, namely interventions. If a 

patient gets worse during admission, the medical team will intervene to prevent the 

patient from getting sicker. One of the main interventions on the PICU is medication. 

Types of medication groups used on the CHD cohort are inotropes and sedatives. Both of 

these medication groups will directly impact a variety of the used parameters (i.e., 

respiratory rate/ heart rate). Moreover, if at a certain point medication is given, it could 

possibly mean that a patient is not ready to be extubated yet or have an influence on the 

extubation readiness. Knowing this could improve the models. Dosage information and 

precise medication (i.e., noradrenaline or phenylephrine) will probably not be of use, 

since this information will be widely dispersed over time and different for most patients. 

Knowing which medication group is given at a certain time point will probably have 

enough information to be used by a machine learning algorithm. With a dataset 

sufficiently large it could possibly learn the interactions between the medication and the 
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other parameters. Diagnostic interventions like a thorax x-ray will probably have less 

predictive value, since it will mostly indicate a bad or worsened state of the patient.  

A risk with implementing intervention in prediction models is that physicians change or 

wait with their interventions based on the model, which could lead to poor predictions of 

the model and suboptimal healthcare. For example, unnecessary risk can be taken with 

lowering the dosage of sedatives, since a lowering the dose could be associated with 

better outcome. However, quickly lowering the dose of sedatives could lead to delirium 

and other withdrawal symptoms which could prolong the ventilator duration. 

Prospective research and a good implementation plan could identify and potentially 

prevent such a relation. 

 

Future research 

 

The influence of the different representations in time as shown by this article, raised the 

question if analysing 12 hours before extubation is relevant. From a medical perspective, 

the patient is stimulated/ challenged the most just before extubation. At this point in 

time the ventilator parameters are at their lowest and the patient needs to show the 

physicians that he/ she can breathe on his/ her own. The tests performed by some 

physicians such as the aforementioned spontaneous breathing trial are not predictive 

enough for extubation failure, even when analysed with machine learning (13, 14). 

Devising a new protocol for the last hours for a weaning test may be an option to 

improve prediction. Prospectively collecting the data and comparing with the 

retrospective data could provide valuable insight in the mechanisms behind extubation 

failure. 

 

Furthermore, besides the 12 hours before extubation which was chosen, it was also 

chosen to represent those 12 hours in hourly segments. A popular open source database 

for machine learning on adult ICU data is the mimic-III database only contains 

measurements per hour (27). Research with this database has led to good predictive 

performance for various subject (17, 28-30). However, it is imaginable that calculations 

per half-hour or quarters could lead to better results. The so-called dimensionality 

reduction from the minute data in the PICURED database was not investigated in this 

study, but is a field of interest to potentially increase performance. The choice of how 

data is presented is very important. This was partially shown in this report by the 

difference in results between analysing the full admission and only the last 12 hours 

before extubation. 

 

External validation is a big problem in medical machine learning research. In a 

systematic review by Shillan, et al. only 10 of 258 studies (4%) were externally validated 

(31). The lack of externally validated methods hinders the implementation of machine 

learning methods in the hospital. Hospitals are hesitant in sharing their data, since the 

information is heavily privacy sensitive. To counteract the negatives of sharing data the 

idea is to send the machine learning algorithm across the world. With this method every 

hospital keeps control over their data and external validation is made possible. Future 

research should focus on minimizing or solving the differences in data between different 

hospitals to make wide spread external validation possible. 
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Furthermore, Van de Sande, et al. performed a systematic review and found that only 10 

out of 494 studies (2%) clinically evaluated the machine learning model with most 

studies in the report not progressing after than the testing and prototyping environment 

(32). They identified several boundaries for further progression or implementation of 

machine learning models besides boundaries related to or solvable by external validation. 

Boundaries they named were: variations in local practices, transparency of models and 

patient safety. Transparency and patient safety are heavily correlated, if machine 

learning makes understandable predictions (transparency), physicians can make 

informed decisions on how to handle on the results (i.e., patient safety). Before model 

building it may be a useful step to create a clinical evaluation plan and possibly also an 

implementation plan. Doing this could prevent the creation of clinically irrelevant or 

infeasible models. It will also simplify incorporating commercial algorithms into the 

general workflow is a similar plan is already in place on the ward. 

 

Conclusion 

In this report machine learning models were created for extubation failure prediction 

after surgery in patients with congenital heart disease. The goal was to assess the 

influence of dynamic features (time variant) on the performance. Using an RNN-LSTM an 

AUROC was reached of 77%, while a simpler model with only static features (time 

invariant) reached an AUROC of 75%. Based on the overall results we concluded that the 

chosen representation of time in the datasets did not significantly improve the 

performance of the models. To improve performance and implementation of machine 

learning models in the future, transparent and externally validated models need to be 

developed. Furthermore, before developing machine learning models, a clinical 

evaluation/ implementation plan should be in place to objectively test actual performance 

of models. 
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Figures 

 

Figure 1: Diagram of standard recurrent neural network. X is the input at a certain timestep, A 
corresponds to a recurrent layer, h is the output at a certain timepoint. In a long short-term neural 
network (LSTM), A would correspond with the LSTM layers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ROC of base RNN-LSTM on bronchiolitis cohort ROC of base RNN-LSTM on CHD cohort 

Figure 2: Results from the base RNN-LSTM model on the data from the full admission divided in 12 hour segments for 

CHD cohort (left figure) and bronchiolitis cohort (right figure). 

ROC of RF on CHD cohort, per hour features ROC of RF on bronchiolitis cohort, per hour features

Figure 3:Results from the random forest models (RF) on the data from the full admission dividid in 12-
hour segments. Results for the features calculated per hour (per 12-hour segment) on the left for the 
congenital heart disease cohort and for the bronchiolitis 
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Figure 4:Receiver operating curves (ROC) of the control models, logistic regression (LR) and 
random forest (RF), on the congenital heart disease cohort.  (AUC=Area under receiver operating 
curve, RNN-LSTM = recurrent neural network with long short-term memory) 

 

 

Figure 5: Receiver operating curves (ROC) of the control models, logistic regression (LR) and 

random forest (RF), on the bronchiolitis cohort.  (AUC=Area under receiver operating curve, RNN-

LSTM = recurrent neural network with long short-term memory) 
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Figure 6: Feature importance’s of control models for 
static models, 12 hour feature models and the per 

hour feature. Feature names are displayed as 
parameter_statistic (Abbreviations for parameters are 

explained in appendix A). 

Figure 7:Feature importance’s of control model for the 12 hour 
feature models and the per hour feature. Feature names are 

displayed as parameter_statistic (Abbreviations for parameters are 
explained in appendix A).  (lin_reg_coef= Slope of fitted linear 

regression, std = standard deviation) 
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Figure 8: Feature importance’s of control models for the per hour feature. Feature names are 
displayed as parameter_statistic_hour of admission (Abbreviations for parameters are explained in 
appendix A). Hour of admission 1 corresponds with 12 hours before extubation 

 

 

Figure 9: Receiver operating curves (ROC) of 5 different recurrent neural networks (RNN) layouts 
fitted on the congenital heart disease (CHD) cohort. (GRU= Gated recurrent unit, AUC=Area under 
receiver operating curve, LSTM= long short-term memory) 
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Figure 10: Receiver operating curves (ROC) of 5 different recurrent neural networks (RNN) layouts 
fitted on the bronchiolitis cohort. (GRU= Gated recurrent unit, AUC=Area under receiver operating 

curve, LSTM= long short-term memory) 

 

 

Figure 11: Probability distribution for the base RNN-LSTM model on the CHD cohort. Probabilities 
shown as percentage of the total group size for both successful extubation and failed extubation. 
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Tables 

Table 1: Risk score table based on the diagnosis/ surgical procedure 

 

Table 2: The demographics and distribution of the congenital heart disease cohort. Used features 
and their units are stated on the left. Mean and standard deviation (SD) are shown for each 
feature. The mean/ SD were calculated over the overall population, the group without reintubation 
(group 0) and the group with reintubation (group 1). The p-value displayed for the continuous 

numerical variables was calculated using the two-sample t-test, for the categorical value the chi-
squared test was used. 

 
                                      Extubation 

 
Overall Success Failure P-Value 

n (%) 2149 (100) 2022 (94.1) 127 (5.9) 
 

Age (years), mean (SD) 2.9 (4.5) 3.0 (4.6) 1.1 (3.0) <0.001 

Diagnosis, n (%) 0 826 (38.4) 794 (39.3) 32 (25.2) <0.001 

1 1194 (55.6) 1115 (55.1) 79 (62.2) 
 

2 129 (6.0) 113 (5.6) 16 (12.6) 
 

Weight (kgs), mean (SD) 13.0 (12.3) 13.4 (12.5) 7.4 (7.6) <0.001 

End tidal CO2 (mmHg), mean (SD) 40.3 (6.0) 40.4 (6.0) 39.2 (5.9) 0.028 

Heart rate (bpm), mean (SD) 124.8 (23.1) 124.0 (23.1) 138.1 (18.9) <0.001 

Invasive blood pressure (mmHg), mean (SD) 64.8 (13.8) 65.0 (13.9) 60.8 (10.7) <0.001 

Respiratory rate (freq/min), mean (SD) 29.1 (8.6) 28.7 (8.6) 34.4 (7.2) <0.001 

Saturation (%), mean (SD) 95.7 (7.2) 95.8 (7.2) 94.2 (7.5) 0.023 

Inspiratory oxygen (%), mean (SD) 33.9 (9.5) 33.9 (9.4) 34.4 (11.0) 0.630 

Ventilator PEEP (mmHg), mean (SD) 5.0 (0.8) 5.0 (0.8) 5.3 (1.0) 0.003 

Ventilator peak pressure (mmHg), mean (SD) 15.7 (3.5) 15.7 (3.5) 16.2 (3.2) 0.095 

Ventilator respiratory rate (freq/min), mean 

(SD) 

26.6 (14.7) 26.2 (14.7) 33.2 (13.8) <0.001 

Ventilator expiratory tidal volume (mL), 
mean (SD) 

95.1 (107.2) 97.9 (108.5) 50.7 (69.0) <0.001 

Time gap (min), mean (SD) 466.6 (292.8) 457.7 (295.4) 608.5 (201.4) <0.001 

 

 

High risk (score =2) Medium risk (score=1) Low risk (score=0) 

Norwood/ Single Ventricle Transposition of the great 
arteries, corrected using 
arterial switch operation. 

Atrial/ ventricle septal 
defect (ASD/ VSD) 

Biventriculair repair Correction Tetralogy of Fallot Partial Cavo 
Pulmonary Connection 
(PCPC) 

Neonatal arch recontruction Atrial-Ventral Septal Defect 
correction 

Total cavopulmonary 
connection (TCPC) 

Neonatale valvereconstruction (i.e. 
Ross-konno procdure or mitral valve 
reconstruction) 

Homograft replacement Coarctation of the 
aorta 

Truncus arteriosus Arch reconstruction   



 
23 

Table 3: The demographics and distribution of the bronchiolitis cohort. Used features and their 

units are stated on the left. Mean and standard deviation (SD) are shown for each feature. The 

mean/ SD were calculated over the overall population, the group without reintubation (group 0) 
and the group with reintubation (group 1). The p-value displayed for the continuous data was the 
two-sample t-test. 

 
Extubation 

 
Overall Success Failure P-

Value 

n (%) 327 (100) 291 (89.0) 36 (11.0) 
 

Age (years), mean (SD) 0.3 (0.5) 0.3 (0.5) 0.4 (0.5) 0.407 

Weight (kgs), mean (SD) 5.7 (2.5) 5.6 (2.4) 6.3 (2.7) 0.169 

Respiratory rate, mean (SD) 39.1 (6.9) 39.1 (7.0) 39.2 (6.6) 0.990 

Heart rate, mean (SD) 140.5 
(16.9) 

141.2 
(16.7) 

135.1 
(17.2) 

0.049 

Saturation (%), mean (SD) 96.8 (3.4) 96.7 (3.5) 96.8 (1.7) 0.940 

End tidal CO2 (mmHg), mean (SD) 40.9 (6.1) 41.0 (6.1) 39.9 (6.1) 0.308 

Inspiratory oxygen (%), mean (SD) 35.4 (10.2) 35.1 (10.3) 37.6 (8.9) 0.124 

Ventilator peak pressure (mmHg), mean (SD) 16.2 (5.3) 15.9 (5.2) 18.8 (5.1) 0.002 

Ventilator PEEP (mmHg), mean (SD) 5.6 (1.5) 5.6 (1.4) 5.8 (2.0) 0.579 

Invasive blood pressure (mmHg), mean (SD) 66.8 (9.6) 66.5 (9.0) 69.0 (13.3) 0.294 

Ventilator respiratory rate, mean (SD) 38.9 (12.7) 39.0 (12.8) 37.7 (12.0) 0.543 

Ventilator expiratory tidal volume (mL), mean 
(SD) 

34.1 (24.8) 33.6 (24.9) 38.2 (23.7) 0.282 

 

Table 4: Used features in the model after feature selection with the corresponding units. A 
distinction is made between the static (time invariant) and time variant features (features which 
change over time) 

All features 

Static features (time invariant) 

 Age (years) 

Weight (kgs) 

Diagnosis (risk score) 

Dynamic features (time variant) 

End tidal CO2 (mmHg) 

Heart rate (bpm) 

Invasive blood pressure (mmHg) 

Respiratory rate (freq/min) 

Saturation (%) 

Inspiratory oxygen (%) 

Ventilator PEEP (mmHg) 

Ventilator peak pressure (mmHg) 

Ventilator respiratory rate (freq/min) 

Ventilator expiratory tidal volume (mL) 

Time gap (min) 
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Table 5: Precision, recall and f1-score calculated for the base RNN-LSTM model on the congenital 

heart disease cohort. 

 
Precision Recall F1-score 

Successful extubation 0.99 0.50 0.67 

Failed extubation 0.09 0.94 0.17 
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Appendix A 

Table 10: Parameters in PICURED database. 

Origin of 

variable 

Name  Explanation Kind of Variable Data Type 

Laboratory lab_bg_be Blood gas Base Excess Continuous Float 

Laboratory lab_bg_hco3 Blood gas HCO3 Continuous Float 

Laboratory lab_bg_mode Laboratory mode Continuous Float 

Laboratory lab_bg_origin Origin of blood sample Continuous Float 

Laboratory lab_bg_pco2 Blood gas pCO2 Continuous Float 

Laboratory lab_bg_ph Blood gas pH Continuous Float 

Laboratory lab_bg_po2 Blood gas pO2 Continuous Float 

Laboratory lab_bg_sat Blood gas Saturation Continuous Float 

Laboratory lab_bl_b2m Beta-2-microglobulin (in 

blood) 

Continuous Float 

Laboratory lab_bl_bil_d Direct bilirubin (in blood) Continuous Float 

Laboratory lab_bl_bil_i Indirect bilirubin (in blood) Continuous Float 

Laboratory lab_bl_ca2 Ionized calcium (in blood) Continuous Float 

Laboratory lab_bl_catot Total calcium (in blood) Continuous Float 

Laboratory lab_bl_cc Cystatin C (in blood) Continuous Float 

Laboratory lab_bl_cl Chloride (in blood) Continuous Float 

Laboratory lab_bl_cr Creatinin (in blood) Continuous Float 

Laboratory lab_bl_CRP C-reactive protein (in blood) Continuous Float 

Laboratory lab_bl_f Phosphate (in blood) Continuous Float 

Laboratory lab_bl_gluc Glucose (in blood) Continuous Float 

Laboratory lab_bl_hb Hemoglobulin (in blood) Continuous Float 

Laboratory lab_bl_ht Haematocrit (in blood) Continuous Float 

Laboratory lab_bl_k Kalium (in blood) Continuous Float 

Laboratory lab_bl_lactate Lactate (in blood) Continuous Float 

Laboratory lab_bl_leuco Leucocytes (in blood) Continuous Float 

Laboratory lab_bl_mg Magnesium (in blood) Continuous Float 

Laboratory lab_bl_na Natrium (in blood) Continuous Float 

Laboratory lab_bl_tr Thrombocytes (in blood) Continuous Float 

Laboratory lab_bl_ur Ureum (in blood) Continuous Float 
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Table 11: Parameters in PICURED (continued) 

Origin of 

variable 

Name  Explanation Kind of 

Variable 

Data Type 

Monitor mon_etco2 End tidal CO2 Continuous Float 

Monitor mon_hr Heart rate Continuous Float 

Monitor mon_ibp_dia Invasive diastolic blood 

pressure 

Continuous Float 

Monitor mon_ibp_mean Invasive mean blood pressure Continuous Float 

Monitor mon_ibp_sys Invasive systolic blood 

pressure 

Continuous Float 

Monitor mon_nibp_dia Non-invasive diastolic blood 

pressure 

Continuous Float 

Monitor mon_nibp_mean Non-invasive mean blood 

pressure 

Continuous Float 

Monitor mon_nibp_sys Non-invasive systolic blood 

pressure 

Continuous Float 

Monitor mon_rr Respiratory rate Continuous Float 

Monitor mon_sat Oxygen saturation Continuous Float 

Monitor mon_temp Body temperature Continuous Float 

Monitor mon_temp_mode Body temperature mode Nominal  Object 

Monitor mon_temp_skin Skin temperature Continuous Float 

Observation obs_pup_dia Pupillary diameter Continuous Float 

Observation obs_pup_light Pupillary light response Binary Object 

Patient pat_adm_start Start date of admission Date DateTime 

Patient pat_datetime Timestamp of observations Date DateTime 

Patient pat_hosp_id Unique hospital ID Discrete Int 

Ventilator vent_cat Patient category on ventilator Nominal  Object 

Ventilator vent_fio2 Percentage of oxygen therapy Continuous Float 

Ventilator vent_fio2_flow Flow Continuous Float 

Ventilator vent_fio2_mod Modality oxygen therapy Nominal  Object 

Ventilator vent_m_fio2 Oxygen therapy (measured) Continuous Float 

Ventilator vent_m_no NO therapy (measured) Continuous Float 

Ventilator vent_m_peep PEEP (measured) Continuous Float 

Ventilator vent_m_ppeak Peak pressure (measured) Continuous Float 

Ventilator vent_m_pplat Plateau pressure (measured) Continuous Float 

Ventilator vent_m_rr Respiratory rate (measured) Continuous Float 

Ventilator vent_m_tv_exp Expiratory Tidal Volume 

(measured) 

Continuous Float 

Ventilator vent_m_tv_insp Inspiratory Tidal Volume 

(measured) 

Continuous Float 

Ventilator vent_machine Machine type Nominal  Object 

Ventilator vent_mode Ventilator mode Nominal  Object 

Ventilator vent_tube Tube size Continuous Float 
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Appendix B 

Patient trajectories for different parameters 

Patient trajectories for all parameters used in the study. Last 12 hours on the ventilator 

are displayed for the successful extubation group, and 12 hours before first attempt are 

shown for the failed extubation group.  

Figure 12: Patient trajectories for the mean 
invasive blood pressure. (min = minutes) 

Figure 13: Patient trajectories for the ventilator 

respiratory rate. (min = minutes) 

Figure 14: Patient trajectories for the saturation. 
(min = minutes) 

Figure 15: Patient trajectories for the inspired 
oxygen percentage (min = minutes) 

Figure 16: Patient trajectories for the monitor 
respiratory rates (min= minutes) 

Figure 17: Patient trajectories for the heart rate 
(min= minutes) 
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Figure 18: Patient trajectories for the end-tidal 
CO2. (min= minutes) 

Figure 12: Patient trajectories for the positive 
end-expiratory pressure. (min= minutes) 

Figure 20: Patient trajectories for the expiratory 
tidal volume. (min= minutes) 

Figure 21: Patient trajectories for the peak 
pressures of the ventilator (min= minutes) 


