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An Ideal-Theoretic Criterion for Localization of an
Unknown Number of Sources

Matthew W. Morency∗, Sergiy A. Vorobyov† and Geert Leus∗
∗Faculty of Electrical Engineering, Delft University of Technology, Delft, The Netherlands
† Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland

Abstract—Source localization is among the most fundamental
problems in statistical signal processing. Methods which rely
on the orthogonality of the signal and noise subspaces, such
as Pisarenko’s method, MUSIC, and root-MUSIC are some of
the most widely used algorithms to solve this problem. As a
common feature, these methods require both a-priori knowledge
of the number of sources, and an estimate of the noise subspace.
Both requirements are complicating factors to the practical
implementation of the algorithms, and sources of potentially
severe error. In this paper, we propose a new localization criterion
based on the algebraic structure of the noise subspace. An
algorithm is proposed which adaptively learns the number of
sources and estimates their locations. Simulation results show
significant improvement over root-MUSIC, even when the correct
number of sources is provided to the root-MUSIC algorithm.

I. INTRODUCTION

The problem of source localization in a noisy environment
is one of the oldest and most well-studied problems in ar-
ray processing [1]. Among the algorithms devised to solve
this problem, subspace-based algorithms such as Pisarenko’s
method, MUSIC, and root-MUSIC have become ubiquitous
[2]– [6]. Subspace based methods require two steps. First, the
signal and noise subspaces must be estimated. Second, given
the estimates of the signal and noise subspaces, the source
locations are then derived with respect to some criterion,
e.g. minimization of a cost function, or peak-finding. Most
subspace based methods differ only in how to approach the
second step. For example, MUSIC and root-MUSIC differ
only in the criterion used to derive the target locations.
However, it has been argued that the first step - estimating
the signal and noise subspace - is far more crucial [4].
As such, substantial research efforts have been invested into
providing robust estimates of signal and noise subspaces in
a variety of challenging scenarios [4]– [6]. Estimation of
the signal and noise subspaces is typically done through the
eigen-decomposition of the autocorrelation matrix of a set
of observations. Subspace estimation is thus reduced to a
selection problem [4]– [6]. However, as vector spaces, the
signal and noise subspaces have a dimension which is either
assumed to be known a-priori, or, perhaps more practically,
must first be estimated.

While the estimate of the signal and noise subspaces is
taken from the eigenvectors of the observation autocorrelation
matrix, the dimension of the signal subspace is typically
inferred from the distribution of the eigenvalues [6]– [7]. For
example, the dimension of the signal subspace can be taken

to be the number of “dominant” eigenvalues. In recent work,
the estimation of the number of sources has been considered
as a multiple hypothesis test on the equality of eigenvalues
[7]. In order to do this, multiple instances of the observation
autocorrelation matrix must be generated, and multiple eigen-
decompositions performed. The assumption which underlies
both of these methods is that information about the number of
sources is contained in the eigenvalues, while the eigenvectors
themselves are ignored. In this paper we argue that, under
certain assumptions, the algebraic structure of the eigenvectors
themselves contains a great deal of information about the num-
ber of sources, as well as their locations. Specifically, the noise
eigenvectors are argued to lie in a univariate polynomial ideal
generated by a single element in the univariate polynomial
ring. The degree of the generator is thus the number of targets,
and the roots of the generator are their locations.

Throughout this paper bold upper case letters are matrices,
bold lower-case letters are vectors, K is a base field, upper
case letters are constants, lower case letters are variables, and
(·)H is the Hermitian transpose.

II. PRELIMINARIES

A. Algebraic Geometry

Algebraic geometry is concerned with the relations between
sets of polynomials called ideals (algebraic objects) and their
associated zero loci called varieties (geometric objects) [8].

Definition II.1. An ideal I in a commutative ring R(+, ·) is
a subgroup of R(+, ·) with the property that ∀a ∈ I, r ∈
R(+, ·), a · r ∈ I.

As an example, take the commutative ring of univariate
polynomials over C, written C[x], and as a subset, take the
set of all polynomials with a common root at α ∈ C [9].

Definition II.2. An algebraic variety is a subset of KN such
that V (I) , {p ∈ KN |f(p) = 0, ∀f ∈ I}.

Thus, an algebraic variety is described by the polynomials
vanishing on it. One can similarly describe an ideal by the set
on which every member vanishes [8].

Definition II.3. A polynomial ideal given a variety V ∈ KN
is a set of polynomials with the property that I(V ) = {f ∈
K[x1, · · · , xN ]|f(p) = 0, ∀p ∈ V }.

Ideals are generated by elements contained within them,
much the same way that a vector space is spanned by linearly



independent vectors contained in the space. An ideal which is
generated by a single element is a principal ideal [8].

Definition II.4. A principal polynomial ideal generated by
f is a set 〈f〉 , {h ∈ K[x1, · · · , xN ]|h = f · g, g ∈
K[x1, · · · , xN ]}.

All univariate polynomial ideals are principal.

B. Data Model

Consider L independent Gaussian sources in the far-field
impinging upon a uniform linear array of N antenna elements
with inter-element spacing λc/2. The signal observed at the
antenna array at time t can be written as

x(t) = As(t) + n(t) (1)

where A , [a(θ1), · · · ,a(θl)], [a(θ)]n , αn−1, α ,
ejπsin(θl), s(t) ∼ N (0, σ2

sIL) are the source signals, and
n(t) ∼ N (0, σ2

nIN ) is the sensor noise. Collecting T obser-
vations x(t), the sample covariance matrix (SCM) is written
as

Rxx ,
1

T

T∑
t=1

x(t)xH(t) (2)

≈ ASAH + σ2
nIN . (3)

Under the aforementioned assumptions, Rxx has full rank
almost surely if T ≥ N . Since Rxx is Hermitian by definition,
it has a full set of real eigenvalues, and an eigenbasis, allowing
us to write

Rxx = QΛQH (4)

= QsΛsQ
H
s + QnΛnQH

n (5)

where Qs,Λs, and Qn,Λn are the matrices of eigenvectors and
eigenvalues for the signal and noise subspaces respectively.

C. Subspace Based Methods

Based on the properties of (5), Qs ⊥ Qn, and as either T →
∞ or σ2

n → 0 C(Qs) = C(A). This implies that QH
n a(θl) =

0,∀l where θl are the source directions of arrival (DOA). It is
this property which is exploited by subspace based methods
such as Pisarenko’s method, MUSIC, and root-Music. As was
mentioned earlier, MUSIC and root-MUSIC differ only in how
the DOA are retrieved from the subspace estimates. Given an
estimate of the noise subspace Qn, both algorithms form the
polynomial J(θ) = aH(θ)QnQH

n a(θ). The MUSIC algorithm
provides its estimates as

θ̂MUSIC = argmax
θ

1

J(θ)
(6)

The root-MUSIC algorithm first treats each column of Qn

as the coefficients of a polynomial in C[x], and factors each
polynomial using a root-finding algorithm. Then, the roots
which are closest to the unit circle are taken to be the roots
which correspond to the targets.
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Fig. 1. Eigenvalues for one instance of Rxx. ULA of N = 10 elements,
T = 10 snapshots, 10dB SNR, two sources located at 31o and 32o.

ẑroot−MUSIC = argmin
z∈C

aH(z)QnQH
n a(z) (7)

Clearly, knowledge of the number of sources is required
by both algorithms. As was discussed earlier, this knowledge
is typically based on the distribution of the eigenvalues of
Rxx. However, this strategy quickly breaks down in non-ideal
scenarios. Fig. 1 shows the eigenvalue distribution of a single
instance of Rxx corresponding to a ULA of N = 10 elements,
at 10 dB SNR, with two sources impinging from 31o and 32o.
The difference between the second eigenvalue and the last
eigenvalue is 0.1412, while the first eigenvalue is roughly 100
times larger than the second eigenvalue. It would be difficult
to conclude that there is more than one target in this scenario
on the basis of the eigenvalues alone.

However, under the data generation assumptions in subsec-
tion II-B, or more generally, the eigenvectors themselves have
an algebraic structure which allows for the identification and
separation of closely located sources.

III. ALGEBRAIC STRUCTURE OF THE NOISE SUBSPACE

Consider the root-MUSIC polynomial aH(z)QnQH
n a(z).

The matrix X = QnQH
n is positive semidefinite (PSD) and

thus aH(z)QnQH
n a(z) is a globally non-negative function

over C. Hilbert proved that a univariate polynomial is globally
non-negative if and only if it is a sum of squares (SOS)
polynomial [10]. Introducing a new variable yk(θ) , a(θ)qk,
where qk is the the k-th column of Qn, it becomes clear that

aH(θ)QnQH
n a(θ) =

N−L∑
k=1

|yk(θ)|2 (8)

from which one can observe the SOS nature of the root-
MUSIC polynomial. From (6) and (7) it’s clear that root-
MUSIC and MUSIC are searching for the points where (8)
is 0. Since the matrix X has rank N − L by definition, the
quadratic form in (8) is a sum of N−L globally non-negative
functions, (8) can be 0 if and only if yk(θ) are 0 for all k.



Clearly, yk(θ) =
∑N−1
i=1 qk,iα

∗i, and so yk(θ) can be zero if
and only if the polynomial whose coefficients are those of qk
has a root at α. That is, J(θ) = 0 if and only if the columns of
Qn lie in a univariate polynomial ideal. Under the assumptions
mentioned in the previous section, due to the fact that Rxx has
an eigenbasis, Qn ⊥ Qs which implies that a(θl)Qn = 0,∀l.
Specifically, the polynomial ideal which describes the noise
subspace is a function of the target locations, parametrized by
αl, and thus the generator of the polynomial ideal is

Q(x) =

L∏
l=1

(x− αl). (9)

This yields an alternative subspace selection criterion: given
N polynomials (the N eigenvectors of Rxx), select a subset
of polynomials which are closest to being in a univariate ideal.

IV. PROPOSED ALGORITHM

In the infinite sample case, the model of Rxx would be
exact. That is, Rxx = ASAH + σ2

nI exactly, and thus the
noise subspace would lie in a polynomial ideal. Thus one could
blindly estimate the noise subspace by computing the great-
est common divisor (GCD) between two randomly selected
columns of Q. If two noise eigenvectors were selected, then
the GCD would be a polynomial, and its factors, αl, would be
the complex generators corresponding to the source locations.
Any other selection (signal-signal, signal-noise) would result
in a constant GCD, which would require another iteration of
the algorithm, with new choices of columns of Q.

However, one only has access to finite samples and thus the
noise eigenvectors are perturbed from being in a univariate
ideal, and thus lie in an ε-ideal [12].

The ε-ideal structure of Qn implies that each noise eigen-
vector has, as a factor, the perturbed generator

Q(x) =

L∏
l=1

(x− αl + εl) (10)

where εl are small, random perturbations [2]. Then, the prob-
lem of finding an approximate GCD can be seen as finding α̂l
such that

Q̂(x) =

L∏
l=1

(x− α̂l) (11)

is as “close” to (10) as possible, in some appropriate sense.
What we observe are the coefficients of (10) as some of the
columns of Q. However, it does not necessarily follow that
small perturbations in coefficients correspond to small pertur-
bations in roots. It is indeed possible for small perturbations
in roots to result in large perturbations in the coefficients
of a polynomial, e.g. Wilkinson’s polynomial. Furthermore,
what we’re interested in most is α̂l which best explain the
target locations. As such, we opt to deal with the roots of the
eigenvectors as polynomials to decide “closeness” to (10), as
opposed to the coefficients themselves.

Towards this end, we adopt the approach of root-clustering.
There is a wide variety of clustering algorithms within the
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Fig. 2. Root dendrogram corresponding to ULA with N = 10 elements,
L = 2 targets at 30o and −40o. Target clusters are highlighted with red
ellipses.

literature of Machine Learning [13]. Because we are looking
for tight clusters, we adopt the hierarchical approach of
agglomerative clustering. Agglomerative clustering starts by
considering each data point as its own cluster. At each step, it
calculates for each cluster the closest neighbor data point. The
cluster which has the closest neighbor is then merged with this
neighbor to form a new cluster, while the distance between
the original cluster and the new member is stored. This
distance is called a “dissimilarity,” and can, in general, be any
pseudonorm. This process continues until all the data points
are in one large cluster, with all clusters are ranked by their
dissimilarity in a tree-structure known as a “Dendrogram.” Fig.
2 shows a dendrogram for a system consisting of a ULA with
N = 10 elements, and L = 2 sources impinging from 30o and
−40o. Two clusters of 8 roots each with a dissimilarity close
to 0 are observed.

Assuming there are L distinct targets, then there must
be N − L eigenvectors of the form (10). Thus, the roots
corresponding to the source locations form L tight clusters
of N − L roots each. Thus, not only do the roots contain
information about the source location, but the number of
roots in each cluster contains information about the number
of sources. It is this information which is used to separate
closely located sources. Specifically, if two sources are closely
located, they will be grouped into the same cluster. According
to (10), a valid cluster cannot have more than N−1 roots, since
the signal must occupy a subspace with at least dimension 1
to which the resulting N − 1 dimensional subspace must be
orthogonal. Thus, tight clusters with more than N − 1 roots
are deemed to correspond to multiple closely located targets.
An algorithm which exploits this criterion to simultaneously
learn the number of sources, and estimate their locations is
given in Algorithm 1 given the roots of every eigenvector of Q
stored in a vector r. The dissimilarity within a cluster, and the
cardinality of a cluster are given by d(·) and | · | respectively.

The algorithm searches for tight clusters, that are below a
(small) dissimilarity level δ. Then, among these, it searches
for clusters with 3 or more roots to filter roots which are
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Fig. 3. Performance comparison between Algorithm 1 and root-MUSIC.

1: procedure ROOT CLUSTERING(r)
2: Agglomerative clustering on r into clusters d(ci) < δ
3: while ∃ |ci| > 2 do
4: if |ci| > N − 1 then
5: Separate ci using linear classifier
6: Return median coordinates of resulting clusters
7: else
8: Return median coordinates of ci
9: end if

10: end while
11: end procedure

randomly clustered together. The if condition checks whether
the number of roots in the detected cluster is consistent with
(10), and splits them using a linear classifier if the number
of roots is inconsistent. The estimate of the target location αl
is then the Karcher mean of the roots in each cluster, as the
solution set is the unit circle which is a Riemannian manifold.

V. SIMULATION RESULTS

To test the performance of Algorithm 1, we consider the
following scenario: two Gaussian uncorrelated, equal power
sources are impinging upon a ULA of 10 elements from
θ1 = 31o and θ1 = 32.5o respectively. The SCM is formed
from T = 100 snapshots. Fig. 1 presents the eigenvalue
distribution of a single instance of the SCM in this sce-
nario. We compare the performance of Algorithm 1 with the
root-MUSIC algorithm provided with the correct number of
sources. Algorithm 1 learns the number of sources by detecting
a cluster of roots larger than 9. It then splits the detected cluster
using a linear classifier defined by the line between the origin
and the mean coordinates of the cluster. Figure 3 demonstrates
a significant performance gain compared to the root-MUSIC
algorithm in both the low and high SNR regions. In the low
SNR region, the sources have merged, and thus Algorithm 1
only detects the single composite target specified by the model.
In the high SNR region, Algorithm 1 correctly separates the
sources and produces an estimate based on all of the available
information, as opposed to only a single root in the case of
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Fig. 4. Probability of correctly learning the number of sources from the
number of roots in the detected clusters.

root-MUSIC. At 10dB SNR, the proposed algorithm correctly
separates the targets 99% of the time.

VI. CONCLUSIONS

A new criterion for the simultaneous detection and localiza-
tion of an unknown number of sources has been introduced,
and a new algorithm which leverages this criterion was pro-
posed. The proposed algorithm leverages underlying algebraic
structure in the array processing model. The proposed algo-
rithm has been compared to root-MUSIC, where the correct
number of sources was provided to root-MUSIC. Significant
performance benefits were observed in the case of closely
located targets, in both high and low SNR conditions.
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