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Abstract

This report is concerned with the control and optimization of lateral escape
trajectories in a microburst wind field for an aircraft on final approach. The performance
index being minimized is the peak value of altitude drop. An extensive numerical effort
has been undertaken to investigate the characteristics of open-loop extremal solutions for
different locations of the microburst. If a sufficiently large bank angle limit is specified
and the center of the microburst is not too far offset from the centerline extension of the
approach runway, typically three trajectories can be found that satisfy the first-order
necessary conditions of optimality, namely one trajectory that passes the microburst center
to the left, one trajectory passing the center to the right and one trajectory passing right
through the center. The results bear out that trajectories that feature lateral maneuvering to
turn the aircraft away from the microburst center, generally offer a significant
improvement in the escape capability of the aircraft in comparison to a trajectory that
passes through the center. In contrast to non-turning escape maneuvers, lateral escape
maneuvers often exhibit an initial climb, rather than a descent. It is conjectured that this
behavior is a result of optimal energy management. A positional advantage within the flow
field can be obtained by directing the flight away from the microburst center. On the other
hand, the specific energy bleed-off rate should be kept as modest as possible. The
optimization process establishes the optimal compromise between those two conflicting
requirements. In addition to examining open-loop extremals, this report also describes the
initial efforts to develop a closed-loop (feedback) guidance scheme that closely approxima-
tes the open-loop trajectories, but requires a relatively modest amount of information.
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Aerodynamic coefficients
- Drag force

- Specific energy

- Acceleration of gravity

- Hamiltonian

- Altitude

- Performance index

- Feedback gain : -
- Lift force

Radial distance to microburst center

- Wing area

- Thrust

- Time

- Airspeed

- Aircraft gross weight

- Vertical windspeed :

- Radial (horizontal) windspeed

Horizonal windspeed components

Horizontal position coordinates of aircraft

- Horizontal position coordinates of microburst center
- Angle-of-attack

- Throttle response

Flight path angle

- Attitude

- Adjoint variable corresponding to state variable s

- Bank angle

- Air density

Time constant of throttle response

- Heading angle

- Horizontal wind direction
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- initial value

- center of microburst
- final value

- maximum value

- target value
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* - optimal value




1. Introduction

Weather phenomena that cause windshear, in particular the so-called "microburst",
present a significant safety hazard during the take-off and landing of an aircraft. Such a
microburst is a strong downdraft that strikes the ground, producing winds that diverge
radially from the impact point (see Fig. 1). An airplane which penetrates the center of a
microburst in straight flight will initially experience an increasing headwind and conse-
quent upward force. As the aircraft proceeds along the glide slope, the downdraft increases
and the headwind shifts into a tailwind causing the aircraft to loose speed and altitude (see
Fig. 2). -

Figure 1 : Microburst encounter during final approach.

Reactive windshear warning systems, which are gradually becoming standard fit
aboard modern jet airliners, are capable of detecting such hazardous situations. When
- during final approach an aircraft is flying along the glide slope and such a potentially
dangerous windshear situation is detected at a sufficiently early stage, the pilot may abort
the landing and initiate an escape maneuver.

Research efforts which aim at establishing the optimal control strategy for such
escape procedures have been conducted far some time now™. However, most of these
studies have focussed on controlling and optimizing flight trajectories in a vertical plane.
Of particular interest in this context is the work of Miele et al. In addition to considering
control strategies to improve the take-off and penetration landing performance during
microburst encounter™”, Miele also specifically deals with the abort landing®. In Ref. 4
Miele et al. consider optimal (open-loop)trajectories through windshears and downdraft
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that minimize the peak value of the altitude drop, as well as closed-loop guidance
strategies that closely approximate these open-loop optimal trajectories.

Escape
Increasing Maneuver
Headwind e
— p Glide
. "lncreasingy _Slope
= _Tailwind

No Pilot Action

Ground

Figure 2 : Straight flight through a microburst.

In Refs. 5 and 6, Zhao and Bryson propose an alternative formulation for the
optimization of flight paths through microbursts, using a different performance measure.
More specifically, paths are determined through windshears and downdrafts that maximize
the final value of specific energy, while taking into account a minimum altitude constraint.
It turns out that for strong-to-severe microbursts, the computed optimal paths are not
essentially different from those found by Miele. In both cases the optimal strategy is (i) to
initially descend to the minimum altitude, (i) to remain in the vicinity of that minimum
altitude, and (iii) to ascend once the aircraft has passed through the shear region.

Other dynamic optimization and flight guidance studies of considerable interest
include those performed by Psiaki and Stengel, and by Hinton. The extensive parametric
investigations of Psiaki and Stengel”® have been particularly aimed at achieving a broad
understanding of the factors that most strongly affect a microburst recovery, including
variations in the microburst characteristics. Hinton® has examined a set of candidate
strategies for recovery from microburst encounter, using both batch and piloted simulation.
His findings indicate that in piloted operations, the performance of advanced optimal
~ guidance laws (such as those developed by.Miele et al.) is not significantly better than the
performance of simple strategies, such as the constant pitch technique. On the other hand,
improving the alert-time by just a few seconds was shown to lead to a significant
performance increase. The above optimization studies clearly indicate that early detection
and warning of dangerous windshear significantly increases the survivability during final
approach. For this reason substantial research efforts are currently being undertaken to
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develop so-called forward looking windshear detection systems which allow to look ahead
of the aircraft®®. In addition to improving the alert time, the availability of the
information on the location of a microburst also offers the possibility of applying escape
procedures involving lateral maneuvering. By turning the aircraft away from the
microburst center, rather than flying straight through (see Fig. 3), the hazards caused by
the penetration of a microburst can. be reduced. These potential improvements were
recently confirned by a simulation study®, in which flights with and without lateral
maneuvering were compared. In this simulation study, the longitudinal strategy as
- recommended by the FAA Windshear training aid"® was used, while lateral maneuvering
was performed by commanding a constant bank angle of specified magnitude. Encouraged
by these findings, the aim of the present study is to extend the work of Miele et al. by
computing optimal abort landing trajectories that feature lateral maneuvering. The
characteristics of these trajectories are analyzed for the purpose of developing near-optimal
escape guidance strategies. The actual starting point for the present effort is the work
reported in Ref. 1. Reference 1 documents the outcome of an effort to replicate the results
of Miele et al. with some minor modifications in both model and problem formulations,
but using a completely different numerical method.

%F straight flight

T

tun away from
microburst center

maximumn outflow .
velocity contour

Figure 3 : Escz‘lpe with and without lateral maneuvering.

In comparison to escape procedurgs which are restricted to flight in a vertical
plane, the present formulation introduces an additional control variable, namely, bank
angle. Although banking generally reduces the performance. of an aircraft due to the
required additional lift, banking may also lead to a "positional advantage" within the
microburst flow field. In addition to establishing an optimal escape strategy, it will also be
of considerable interest to investigate to what extent lateral and longitudinal dynamics are




actually coupled for such escape maneuvers.

2. Microburst Encounter Modeling
2.1 Equations of Motion
Using a relative wind-axes reference-frame, the equations of motion, describing the

aircraft dynamics (represented by a point-mass model) in the three-dimensional space can
-be written as: :

& = Vcosycosy + W, ¢y
y = Vcosysing + W, 2
h = Vsiny + W, 3
E = E%)X + W, - Z_[chosycosx + W, cosysiny + W,siny] 4
¥ = %[chc‘)/sp - cosy] + %[Wxsinycosx + W sinysiny - W, cosy] (5)

g Lsinp 1

= W siny - W.c (6)
Vcosy W Vcosy[ +SIX o5l

B = l[B, - B] )
T

where x, y and h are the position coordinates, E is the specific energy, ¥ is the flight path
angle, x is the heading angle and P the throttle response. The wind velocity vector has
three components, viz., W,, W, and W,. The above equations embody the following
assumptions: (i) a flat non-rotating earth, (ii) thrust T is aligned with the airspeed vector,
(iii) the wind flow field is steady, (iv) the aircraft weight is constant. The throttle response
is modeled as a first-order lag with a time constant 1. Note that since specific energy E is
used here as a state variable, the airspeed V should be merely regarded as a function of
energy E and altitude h, to be obtained from the relation:
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E=h+;_ (8)
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In the mathematical model the controls are:
(i) The throttle setting B, constrained by:

0<B <1 ' )]

t

(ii) The bank angle p which is limited by:

(1ii) The angle-of-attack o which is forced to remain within the range:

0<a<a ' ' ‘ (11)

max

The aerodynamic forces (lift L and drag D) are functions of airspeed V, altitude h and the
angle-of-attack o

pv3s

L =C/() 3

- (12)

pVis

D = C,(a) (13)

Since the trajectories under investigation involve relatively modest variations in altitude,
the maximum thrust is assumed to be a function of airspeed only, i.e.:

(14)
T =BT, (V)

Although the aim of the present work is to extend the work of Miele et al. to flight in
three dimensions, there are some slight modifications incorporated in the current model,
relating to the throttle and angle-of-attack dynamics. In the work of Miele et al. not only a

bound is imposed on the maximum value the angle-of-attack o can attain, but also the rate-

of change of this variable is limited. In order to enforce these constraints indirectly, Miele
et al. use a transformation technique that results in a system model in which the angle-of-
attack has acquired the status of state variable. Moreover, an auxiliary variable, which
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essentially controls the rate of change of the angle-of-attack, is introduced to replace
angle-of-attack as the control variable. Since in the present study we have not imposed
such an upper limit on the rate of change of the angle-of-attack, the angle-of-attack can
continue to serve as a control variable in the system model. However, it needs to be
realized that the current assumption of an instantaneous angle-of-attack response is indeed
fairly unrealistic in performance studies of the type considered here and a critical review
of -the basic assumptions is therefore clearly warranted in future research. Incidentally, the
present assumption of an instantaneous bank angle response clearly should be included in
such a "refinement process"”.

Another simplification in the present study relates to the already mentioned
assumption that the thrust T is aligned with the airspeed vector. Clearly, this assumption is
questionable for maneuvers in which high angles of attack are employed. For the
microburst escape maneuvers considered here this may indeed be the case. However, a
comparison of simulated (constant pitch) guidance solutions revealed that, although
performance is affected by the assumption, the characteristic behavior of the escape -
maneuvers based on the equations of motion (1) through (7) is not significantly different
from maneuvers which are computed on the basis of equations of motion in which the
thrust T has a fixed direction relative to the body-axis system of the aircraft. Also with
respect to this particular issue, it will be relatively simple to modify the system model in
future research. ~

In the abort landing study of Miele et al.*’ the throttle response is not modeled as a
first order lag, but rather as "ramp function”. This slight difference in modeling approach
is not expected to lead to a significantly different behavior.

2.2 Aerodynamic and Thrust Characteristics
In this study a Boeing 727 point-mass model has been used, that has been adapted

from a model originally developed by Miele et al.**¥. The main characteristics of this
aircraft model are:

T =T, + T,V +T,V? (15)
C, =D, + D,a + D,o? (16)
C,=L,+Lo+L(a-a, 17)

Details of the aerodynamic and thrust data are summarized in Table 1.




Table 1 : aerodynamic and thrust data of the B-727 aircraft model.

W = 667233N, S = 1449 m?®, 1 = 3 sec

T, = 198280 N

T, = -350.08 N(m/s)"

T, = 0.69063 N(m/s)?

D, = 0.15751

D, = '0.0768 rad™

D, = 2.524 rad?

L, = 0.7076

L, = 5.97 rad’

L, =.0 _ if 0 "s o < O
= -5.95 rad? if Oy € &0 < Oy

O = 0.2269 rad |

Olnax = 0.3002 rad -

2.3 The Microburst Wind Model

The microburst model used herein is an axisymmetric three-dimensional extension
of the two-dimensional model presented in Ref. 1. Due to the axisymmetric character of
the microburst model, it is convenient to use polar coordinates to describe the flow field in
a horizontal plane (see Fig. 4). The employed analytic approximation of the flow field
characteristics actually features separate models for the radial flow (which may lead to
horizontal shear) and the downdraft. The induced radial and vertical wind velocities at any
point in the three-dimensional space can be computed through the following relations: '

100 100

W, =1l - I
DRy DR (18)
200 200




0.4k

" ) +10
400

W;. = _f;,[

1.
(19)
(

where r is the radial distance from the microburst center (axis of symmetry) located at the
point (X, y.), 1.e.:

r=yx-x -y 20)

Figure 4 : Geometry of microburst encounter.

Note that in the present study the origin of the coordinate frame is located at the
runway threshold. The parameter D in Eq. (18) specifies the diameter of the peak radial
outflow-velocity contour (in this study D is always taken as 2000 m). The parameters f,
and f, characterize the intensity of the horizontal shear and downdraft respectively. This
implies that not only the absolute strength of the burst can be a priori selected, but also’
the relative strength of the horizontal and vertical winds components can be changed if
desired. However, in all examples presented in this work the parameters f and f, have
been set at the value 2. The wind profiles corresponding to the model given in Eqgs.(18)
and (19) are shown in Fig. 5, for the above indicated values of the parameters. Note that




the horizontal wind component W, is only a function of the radial distance to the
microburst center, whereas the vertical wind component W, also depends on altitude to
ensure that W, decreases with decreasing altitude and satisfies the continuity condition, i.e.
zero vertical windspeed at ground level. Clearly, the vertical windspeed model (at least in

- the neighborhood of the microburst center) is valid at low altitudes only.

(m/s)
15

10

horizontal wind profile

o} 1000 2000 3000

Radial distance (m)

vertical wind profile

1000 2000

Radial distance (m)

Figure 5 : Horizontal and vertical wind velocity profiles

The wind model given by Eqs.(18) and (19) differs from the model used by Miele

et al.%**¥. The present model has the (mathematical) advantage that it is very smooth.

Using polar coordinates, the horizontal wind components W, and W, can be readily

related to the radial windvelocity W.:

where Y, is the direction of the radial wind velocity vector. In viewof assumption (iii) in
the previous Section, the total derivatives of these wind velocity components satisfy the

W, =cosy W) ; W =sing W) ,

relations:

21)

3000
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(23)

An important characteristic parameter used in the evaluation of windshear perfor-
mance is the so-called Bowles F-factor. Here we define this windshear hazard factor as:

(24)

w | %

paT-D) _E

Defining the F-factor in this particular fashion permits its use in the analysis of
both two-dimensional and three-dimensional windshear encounters. A Comparison of
Egs.(4) and (24) reveals that the F-factor can be readily interpreted as the loss or gain in
available excess thrust-to-weight ratio due to the combined effect of downdraft and
horizontal windshear. The F-factor therefore represents a direct measure of the degradation
of an aircraft’s climb gradient capability at constant speed caused by the presence of
windshear/downdraft. Note that positive values of the F-factor indicate a performance
decreasing situation. Substitution of Eq.(4), combined with the use of polar horizontal
position coordinates, allows the F-factor in Eq.(24) to be conveniently expressed as:

ow w ow
F = SV {ycosy[—cos?(y - %) + —sin®(x - %)) + W,—cos(x - %)}
g or r or
iny . OW ow w
+ Sy [W, + Vcosycos(x -%,)] + ——[W, + Vsinyl} - —Vi @)

g or oh

In the derivation of Eq.(25) use is made of the partial derivatives evaluated in Appendix
A. Appendix A also presents the equations of motion written in polar coordinates.

It is noted that the F-factor does not merely depend on the spatial location within
the flow field, but rather on all state variables. In Fig. 6 the F-factor is plotted as a
function of the radial distance r and the "wind incidence angle" (¥, - %), using values for
altitude, speed and flight path angle, representative of a final approach. It is observed that
for the present wind model the peak value of the F-factor is not generally reached at the
center of the microburst, but rather at some distance away from the center. It can also be
seen that ‘an energy gain due to windshear is also possible. However, from Fig. 6 it is
readily clear that this can never be the case if the wind incidence angle (Y, - %) is 90°.
When an aircraft is flying well outside the peak radial outflow-velocity contour, the best
performance is achieved by flying along a "wind radial’.




11

0.30

0.20

0.10

0.00

-0.10

-0.20 :
1000

2000 - 3000

Radial distance (m) .

Figure 6:

The F-factor as a function of the radial distance r, for several values
of the wind incidence angle ¥,
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3. Optimal Control Formulation
3.1 Optimization Criterion

Similar to Ref.4, the objective in this study is to maximize the minimum altitude
reached by an aircraft at any point along the trajectory, or, in other words, to minimize the
peak value of the altitude drop (see Fig. 7):

I = min / = min | max (h,, - k(1)) | (26)

Following the approach of Ref.4, the minimax criterion in Eq.(26) (Chebyshev
performance index), is approximated by a Bolza performance index:

- h)"dr , (27)

I = win J = min [(h,,
0

where n is a large positive, even exponent. Note that for the best possible computational
results, the reference altitude h, should be chosen as small as possible, but such that the
right-hand side of Eq.(26) remains positive at all times. The numerical values of the
constants in Eq.(27) that have been used here are: n = 6 and h,; = 400 m.

It is noted that in addition to the above approximation, it is also possible to apply
another transformation technique which can solve the original minimax problem (26).
More specifically, the minimax problem can be converted into an equivalent optimal
control problem with state variable inequality constraints">'®. In conjunction with the
presently used multiple-shooting algorithm, this technique appears to be particularly suited
for numerical treatment of the Multiple-Boundary-Value-Problem which arises from the
optimal control analysis. Although this approach is mathematically extremely complicated,
it definitely merits further consideration in future research.

3.2 Boundary Conditions

The following initial conditions (at which the escape procedure is commenced)
have been assumed in this study:

%x(0) =x%,=-2500m, y(0)=y,=0m,
h(0) =h, =131 m, E(0) = E, = 384.326 m ,
¥0) =7 =-3°% x0) =% = 0°,

B(0) = B, = 0.333

s AR
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Figure 7 : Illustration of Performance Index

These values correspond to a situation in which an aircraft would fly during a
stabilized approach (V = 70.5 m/s) without winds or windshear. It needs to be realized
that in the presence of winds, the required values for y and B will be somewhat different.
However, since different locations of the microburst will be considered in the numerical
examples, the above stated values will be assumed to apply in all situations, merely to
achieve some degree of consistency. The final time t; has been set to 50 seconds, which is
sufficiently long to allow a transition of the shear region. No terminal boundary conditions
have been imposed. Such conditions would mainly affect the extremal solution in the
after-shear region. Our primary interest is in the control behavior during the passage of the

shear region.
3.3 Necessary Conditions for Optimality

To summarize, the optimal control problem to be solved is to determine the opti-
mal controls B°, p* and o such that starting from the initial conditions, the performance
index of Eq.(27) is minimized for a given final time t,.

In the following the first-order necessary conditions for optimality®® are given.
First, the variational Hamiltonian of the problem is defined as:
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H=~(h ~hy
+ A {Veosycosy + W } + A {Vcosysiny +W,} + A, {Vsiny + W, }

+ A d &W.ﬂ +W, - %[cho's"ycosx + W, cosysiny +W,siny]} o8

g Lcosp _ 1o TR
+ ?»Y{V[ - cosy] +_‘7[Wxsmycosx + W sinysiny W, cosyl}

. . . ]
A8 LS, 1 1w iny - W cosx]) + A {=[B, -B])
T Vcosy W ’ Vcos‘y[ sing = Wcos]} + 2y t[B' Pl

The system of adjoint equations and corresponding transversality conditions arises from
the necessary conditions for optimality:

oH
SRR NORL (29)
i = "aa% L A() =0 | (30)
A, = -OH| O L8Oy ) =0 31)

TR on ' Vv

i, = -3_2’_|h - -%%%Ih S Ag(5) = 0 | (32)
%, = -%? L A1) =0 | . 33
%, = -%” . A1) = 0 (34)
%y = -g_’g L Ay(1) = 0 | (35)

Note that the transversality conditions result in a zero terminal value for all the adjoints as
a consequence of the fact that no terminal boundary conditions on the state variables have
been imposed. Also note that the Appendix presents a complete overview of all the partial
derivatives needed to evaluate the right-hand-sides of Eqs.(29) through (35).
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The optimal control functions p* and o are found by applying the Maximum
Principle. Assuming these "optimal aerodynamic controls”" are within the interior of their
admissible range, the following conditions apply:

; (A, /cos
OH _ .y glsimm o 8 Leosn o g, o /000 (36)
dp 'V W YVecosy W A, .
2 oC 2 aC
a_H=7»£pVScosp o N pVSsinp L
da 'V 2W dau *Vcosy 2W oo - , (37)
2, PV %
CEFT2W Toa ’

where from Eqs.(16) and (17) it follows that:

ac, oC

a_aL =L + 2L?(a—a,¢,) : aof =D, +2D,a - 3
Let us define ®(p) as:

<I>(ﬁ) e Acosp + (A /cosy)sinp : ‘ | (39)
Substitution of Egs.(38) and (39) into Eq.(37) allows to solve for a:

o« = AD (V?g) - [L, -2L,0,]® | 40)

-2A,D,(V*/g) + 2L, ®

It needs to be realized that the control solution of Eq.(36) is ambiguous in the sense that it
has multiple roots. The Legendre-Clebsch Condition can be used to solve this ambiguity.
In particular, for a maximum we must have that:

’H _ _g

L . _ g : ' .
W AT [Acosp + (A, /cosy)sinp] = - d<0 = &20 , (4D

L
W

where @ > 0 must apply since physically it is clear that L > 0. From Eq.(36) it can be
seen that: ' '

}
4
8
i
;
i
|
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1 (A, /cosyy?
= =

o A7 @
AS ., (A /cosy)’

; sin’p =
(?\.]L/cosy)2 + A} 2}1’ (7Lx/cos7)2 + Al

tanp = - 1 +

cos’y =

The appropriate roots of Eqs.(42) are:

A A
cosp = !  simp = OV 43)

\/(kx/cosy)2 + ?»72 ‘/(7\. /cosy)? + }.72

which can be readily verified by substitution of Eq.(43) into eq.(41):

P = ‘ﬁk)‘/cosy)2 +A2 20 (44)

If the control constraints in Eqs.(10) and (11) are taken into account, the optimal control
solutions p” an o are ultimately given by:

A
p* = min{p _____( x/ COSY)

arctan [ 11} -sign(},) (45)

max’l
Y

D (V?/g) - [L,-2L d(p*
o' = max {0, min[ o AeD, ( /g) [L, 20, 1 P(p7)

s , 1) (46)
=24,D,(V¥/g) + 2L, ®(p")

The third control variable is the throttle setting B,. Again, from physical considerations it
is clear that full throttle should be applied during a microburst escape maneuver.
Mathematically this fact needs to be checked by verifying that:

;20 | (47)

The above stated Two-Pbint-Boundary-Value-Problem (TPBVP) consisting of the 7
state equations and 7 adjoint equations, is of considerable mathematical complexity. In the
present study the extremals (solutions to the TPBVP) have been obtained iteratively using
a highly accurate multiple-shooting algorithm™®. At this point it is important to note,
however, that such extremal solutions are merely candidates for local optimality. As a
matter of fact, we have been able to find up to three extremals for a given set of boundary
conditions in most cases. It is imperative to verify local optimality of these candidate
extremals, by checking for the second-order necessary conditions (Jacobi-test). Such a test,
together with the Legendre-Clebsch condition (which is easily verified) can provide

[
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assurance concerning the local optimality of candidate extremals.. We emphasize, however,
that, as yet, we have only concerned ourselves with computing candidate extremals.

4. Extremal Solutions
4.1 Reference Solution

In order to investigate the characteristic features of the optimal escape trajectories,
the principal parameters that have been varied in this study are the position coordinates
(X, Yo of the microburst center. The reference situation that has been selected to serve as
a baseline concerns a microburst of which the center is located at (-1500 m, O m). This
implies that for the given initial conditions, an aircraft in straight flight will fly exactly
along the x-axis of the reference frame (see Fig.4), passing right through the microburst
center. Relative to this "symmetric" reference situation both the distance of the microburst
center to the runway threshold (x.-coordinate position) and the lateral offset distance y,
have been varied within the range [-500 m, +500 m]. It is noted that extending this range
is of limited value in the sense that such an extension will result in a situation which is
either not survivable or does not pose a real safety hazard. Moreover, such an extension
may also lead to numerical complications, as will be discussed below.

In the Figs. 8 the results pertaining to the reference situation have been
summarized. Due tot he symmetry in the geometry of this microburst-encounter, it is not
really surprising that the first converged extremal that was obtained simply was the
optimal trajectory established earlier in the two-dimensional analysis™, i.e. a straight flight
along the x-axis, during which an aircraft does not experience any cross-wind. Initial
efforts to compute lateral escape trajectories were unsuccessful in the sense that the
TPBVP solutions failed to converge. It soon turned out that the only way in which lateral
escape trajectories could be generated at all, was by specifying a fairly low value for the
bank angle limit p_,,. Indeed, for most of the considered encounters the maximum bank
angle limit that can be specified is typically in the order of 15°. At this stage, it is
suspected that one of the main reasons for the lack of convergence of the algorithm for
higher values of the bank angle limit is related to the presently used Bolza performance
index, as defined in Section 3.1 (recall that altitude should remain below the specified
value of h., at all times). As a matter of fact, by increasing the value of h., in Eq.(27)
from 400 m to 450 m, we have been able to obtain converged solutions for a bank angle
limit exceeding 15°. Unfortunately, this measure had a rather adverse impact on the
accuracy of the extremal solutions, in the sense that it resulted in a considerably lower
minimum altitude. It is clear that in order to be able to perform a parametric study in
which extremal solutions for different locations of the microburst are compared, the
parameters in the Bolza performance index given by Eq.(27) must be uniquely defined.
For the present study the selection of parameters as presented in Section 3.1, therefore
represents a compromise between: trajectory accuracy and the ability to perform a
meaningful parametric investigation. :

To demonstrate the impact of the bank angle limit on the solution behavior,
three different values for the bank angle limit have been considered in Figs. 8, namely 5°,
10° and 15°. Moreover, due to symmetry considerations it is clear that lateral escape
maneuvers can be performed by making either a left or a right turn. Consequently, it can
be concluded that for any given (non-zero) value of the bank angle limit, three different
extremals can be found (left turn, right turn, straight flight).
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Figure 8a shows the ground tracks for the escape maneuvers. It is noted that for the
considered reference situation, the location of the microburst center is such that the initial
conditions for the trajectories are on the maximum radial outflow velocity contour.

Figures 8b "and 8c show the time-histories for the two control variables,
angle-of-attack and bank angle. As mentioned earlier, it is evident that all escape
maneuvers are performed at full throttle and for this reason no plots for this third control
variable have been included in this report. The most striking feature in the observed
angle-of-attack behavior is that in all cases about the same minimum value is reached at
about the same time. The higher the specified bank angle limit, the higher the initial

angle-of-attack, while the angle-of-attack limit is also reached earlier. With respect to bank
angle behavior, it can be observed that nearly all turning takes place in the initial phase.
At some instance bank angle leaves its limit and decays to zero. The higher the value of
the maximum bank-angle the earlier this decay sets in.

The behavior demonstrated by the turning extremals is fairly transparent. The
relatively high initial angle-of-attack for a lateral maneuver results in a relatively high lift
and drag. Due to the rather modest values of the bank angle limit, the increase in lift does
not only lead to a high turn rate, but it also results in an initial "zoom climb", as can be
observed in Figure 8d. In this initial (turning) phase, airspeed is reduced (see Fig. 8g)
which actually helps to counter the increase in drag. Clearly, an initial high turn rate is
desired to direct the aircraft away from the microburst center, such as to obtain a
positional advantage within the wind flow field. On the other hand, it is also desirable to
keep the energy bleed-off rate (and thus drag) as modest as possible. The optimization
process attempts to establish the overall best compromise between those two conflicting
requirements.

It is noted that there is a close correspondence between the angle-of-attack
behavior and the F-factor behavior (Fig. 8e). For example, maximum angle-of-attack is
generally reached at the end of shear region (region with high F-values). In Ref. 10 a
microburst is classified as hazardous if the average F-factor exceeds .1 over any 1 km
segment. Using this as a yardstick, it is readily clear that the microburst encounter
considered here easily qualifies as hazardous. Figure 8¢ also shows that turning the aircraft
away from the microburst center does not necessarily lead to a reduction in the peak value
of the F-factor, but rather the shear region is passed much quicker.

Figure 8f shows the typical behavior of the corresponding heading angle
time-history for one extremal. Generally speaking it can be observed that in the final stage
of an escape maneuver, an aircraft ends up flying along a "horizontal wind radial". For a
lateral escape maneuver this alignment takes place in the after-shear region. The F-factor
plot shown in Fig. 6, along with the associated comment in Section 2.3, help to provide
insight into this particular behavior.

Figure 8g compares the airspeed behavior of escape trajectories with and without
lateral maneuvering. Although in the initial phase the airspeed is lower for the lateral
escape maneuver, specific energy is actually well-managed in this maneuver. At
termination, the airspeed for both trajectories is about the same, but the altitude for the
lateral escape trajectory is significantly higher, implying that specific energy is higher.

The improvements in performance that can be obtained by executing a lateral
escape maneuver are significant, as can be observed from Fig. 8d. The minimum altitude
reached at any point along the trajectory has been plotted as a function of the specified
bank angle limit in Fig. 8h (the curve labeled exact solution). The results clearly indicate
that even better results can be expected for higher values of the specified bank angle limit.
As already mentioned earlier, we have as yet not been able to obtain such solutions.
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4.2 Effect of a Lateral Microburst Displacement

A second numerical example of extremal behavior concerns a situation in which
the center of the microburst is offset from the x-axis of the reference frame. In this
particular example, the lateral microburst displacement y, is set to 100 m. The results are
illustrated in Figs. 9. The ground tracks shown in Fig. 9a do no longer exhibit a symmetry
relative to the x-axis. In other words, there is now a need to distinguish between left and
right turns. However, we still have the situation that there are generally three different
extremals for a given value of the bank angle limit (provided this value is sufficiently
large, as will be shown).

First of all, there is an extremal, which, like in the reference solution, passes right
through the microburst center. This extremal has been labeled "unconstrained’, to indicate
that only some modest initial banking is required (see Fig. 9c). A second type of extremals
concerns escape trajectories involving a turn to the right, or, in other words, a turn
towards the microburst center. Finally, a third type of extremals that can be found
concerns trajectories featuring a turn to the left, or, in other words, a turn away from the
microburst center. For a given value of the bank angle limit, the optimal angle-of-attack
behavior is quite different for a left and a right turn, as can be observed from Fig. 9b,
where results are shown for p,, = 10°. Also here the angle-of-attack behavior of the
escape maneuver to the left results in an initial "zoom-climb", as can be seen in Fig. 9d.

Not surprisingly, escape maneuvers to the left, in which aircraft are turned away
from the microburst center, lead to a much better performance. In fact, Fig. 9d makes
clear that turning to the right even leads to a lower minimum altitude than not turning at
all! Figure 9¢ shows the minimum altitude reached at any point along the trajectory as a
function of the specified bank angle limit. Note that the curve shown in this figure is
interrupted. The reason for this is that it proved to be impossible to compute escape
trajectories that involve a turn to the right, but which pass the microburst center to the left.
Note that the minimum altitude obtained for the unconstrained solution (h , = 42.3m) is
about 1.7m higher than for the lowest minimum altitude obtained for a constrained
soluton (h,, = 40.6m, for a right turn with p_, = 10°). :

In addition to comparing the minimum altitudes achieved in tummg and
non-turning escape trajectories, we have also looked at alternative ways to express the
performance improvements. For example, the minimum altitude achieved in a lateral
escape maneuver to the left with p,, = 10° is about 15m higher than the minimum
altitude achieved in an escape maneuver with bank angle fixed at zero degrees. This
corresponds to a reduction in the required advance warning time of about 2.4 seconds.
This particular result has been obtained by delaying the initiation of the lateral escape
maneuver while proceeding along the glideslope, such that the resulting minimum altitude
is equal to the minimum altitude obtained for the non-turning trajectory. Alternatively, the
lateral escape maneuver can be flown with an 8% increase in the windshear intensity and
still achieve the same performance as the non-turning trajectory in this particular example.
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4.3 Effect of Displacing a Microburst Forward/Backward

This particular example serves to demonstrate the effect of displacing the center of
the microburst forward/backward relative to the runway threshold. In this example the
lateral microburst displacement y, is set to -150 m, while all escape maneuvers are
executed by making a right turn with ., = 10°. The results are illustrated in the Figs. 10.

Fig. 10a shows the ground tracks of the three considered extremals. Note that one
extremal starts well within the peak radial outflow velocity . contour (x, = -1750 m),
whereas another starts well outside this contour (x, = -1250 m)..

Figures 10b and 10c show the control solutions. It is readily observed that the
closer the microburst center is located to the threshold, the higher the initial
angle-of-attack. Indeed, if the maneuver is initiated well outside the maximum radial
outflow velocity contour, the aircraft can initially climb without experiencing a significant
downdraft. Since in the presently employed model the vertical windspeed depends linearly-
on the altitude, climbing is clearly not advisable with in the downdraft region. . This helps
to explain the relatively large differences in altitude behavior that can be observed
between the three extremals (Fig. 10d). Not surprisingly the differences in pcrformance are
also considerable.
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4.4 Influence of Initial Airspeed

The final example is intended to further illustrate the energy management features
of lateral escape maneuvers. In this example the same geometry of the microburst
encounter is considered as in the reference situation, but here the initial condition on
airspeed has been varied. The results pertaining to three different values of initial airspeed
are presented in the Figs. 11. Figure 11a shows that the lowest initial angle-of-attack is
found for the extremal with the highest initial airspeed. However, Fig. 11b reveals that the
overall influence of initial airspeed is such that a higher lift will be developed in the initial
phase of the escape maneuver, when it is initiated with a higher airspeed. In other words,
any increase in initial kinetic energy will be largely converted to potential energy such as
to improve the turn rate in the initial phase.
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5. Guidance Solutions

In this Section a closed-loop guidance scheme is derived which approximates the
open-loop optimal trajectories, relying on local (measurable) wind information only. With
respect to the angle-of-attack, several guidance laws have been developed for near-optimal
escape maneuvering in a vertical plane®, which could have been used as a starting-point
for the present analysis. However, in view of the findings of Ref.9, where advanced
guidance laws were shown to offer little performance improvement in piloted simulation in
comparison to a baseline constant pitch technique, it was decided to start out with the
latter approach.

The simple constant pitch technique is used here in conjunction with a newly
derived guidance law for the bank angle. From the behavior of the optimal trajectories
(see, e.g., Figs. 8c and 8f) it was inferred that the guldance law for the bank angle should
take the following simple form:

p=K@,-%) » Bl €SP (48)

with the gain coefficient K selected as 0.25 and where it is understood that:

-180° <y, < 180° , -180° <y < 180° (49)

The guidance law for the bank angle attempts to close the "heading error”. This heading

error being defined as the difference between the radial wind direction and the actual
heading. The constant pitch guidance is based on a target pitch:

a=0_,-v, 0sac<aq (50)

'max

with 6, selected as 15°. The feedback control scheme in Fig. 12 shows the implemen-
tation of the guidance laws. Clearly, the relatively modest (measured) information set
needed, is not likely to pose a major stumbling block for the implementation of these
guidance laws.

A substantial simulation effort has been undertaken to validate the proposed
guidance laws. Analysis of the simulated feedback trajectories reveals a characteristic
control behavior very similar to that of open-loop extremals (assuming these correspond to
turning in the "correct” direction). For a particular case, namely, the reference situation
with p,. = 15°, the Figs. 13a and 13b show a comparison of the control behavior. Figure
13c shows the corresponding altitude behavior. Although there is clearly room for
improvement, overall the proposed feedback strategy leads to a satisfactory performance.
Moreover, unlike for the optimal trajectory computation, in the feedback trajectory
simulations there are no numerical complications that prohibit specifying values for the
bank angle limit larger than 15°. This is shown in Fig.8h, where a comparison of the
minimum altitude as a function of the specified bank angle limit is made between
feedback approximations and exact open-loop solutions (reference situation). It is clear
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that in this particular case even further performance improvements can be expected, by
allowing bank angles in excess of 30°. Especially for higher values of the specified bank
angle limit, the simulated feedback results are remarkably close to the open-loop optimal
~ results. In other words, the relatively simple constant pitch strategy which already proved

- to work quite well for escape maneuvers in a vertical plane, even performs better in lateral

escape maneuvers. As a matter of fact, at this point it is felt that the guidance results are
so good that they do not warrant any effort to develop more advanced pltch strategies,
such as those developed by Miele et al. for flight in a vertlcal plane :

‘/% K / aircraft

ref ‘
.......... aircraft

)

Figure 12 : Feedback guidance laws.
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6. Conclusions

Optimal lateral escape trajectories in a microburst wind field were studied for an
aircraft on final approach. The performance index being minimized was the peak value of
altitude drop. A simple, yet realistic, microburst model was used and different microburst
locations were assumed. Full thrust was applied in all cases, so that only angle-of-attack
and bank angle remained as control variables in the point-mass model.

Unfortunately, we have not been able to generate optimal lateral escape trajectories
with a specified bank angle limit larger than 15°. However, for a specified value of the
bank angle limit of that magnitude, typically three extremal solutions can be found,
namely one trajectory passing the microburst center to the left, one trajectory passing the
center to the right and one that passes right through the center. This behavior is found,
regardless whether the microburst center is laterally displaced or not. Provided the aircraft
turns away from the microburst center, lateral maneuvering leads to a significant
improvement in the escape capability of the aircraft, even when the maneuver is initiated
within the peak radial outflow velocity contour. On the other hand, in case of a flight with
a lateral microburst displacement, incorrect lateral maneuvering may result in a
performance loss.

It is clear that further research is reqmred in order to obtain escape trajectories with
a larger bank angle limit than currently possible. Some preliminary results indicate that the
convergence-failure of the program can be possibly attributed to the currently employed
performance index. Indeed, specifying higher values of h,, in Eq.(27) has occasionally
allowed the use of slightly higher bank angle limits. On the other hand, the use of larger
values for h . was also shown to lead to considerably lower minimum altitudes. This raises
the question how good the Bolza performance index of Eq.(27) (with the currently selected
parameters) actually approximates the performance index of Eq.(26). Resorting to the
alternative approach by converting the minimax problem into an equivalent optimal control
problem with inequality constraints appears to have the potential to resolve these issues
satisfactorily.

One of the most striking results established in this study relates to the energy
management features of lateral maneuvering. In contrast to escape maneuvers that are
restricted to the vertical plane, lateral escape maneuvers often exhibit an initial climb. It is
believed that this climb results from the high initial lift which is needed to improve the
turn rate. In other words, in an optimal lateral escape maneuver the best overall
compromise between the conflicting requirements of a high initial turn rate (to take the
aircraft away from the microburst center) and a low energy bleed-off rate (to maintain
climb-gradient capability) is established.

A simple guidance scheme has been examined. Despite its 51mphc1ty, the guidance
scheme produces a control behavior which closely resembles that of open-loop optimal
solutions, in particular for higher values of the specified maximum bank angle. The
required (measured) information set for this feedback law 1s rather modest which should
enable a relatively simple on-board implementation.

It has been recognized that model improvements need to be incorporated in future
research. In particular, there is a need to make the response characteristics of the current

control variables angle-of-attack and bank angle more realistic by including higher order

dynamics in the model, i.e. by taking into account the time delay between the actual
control inputs (control surface deflections) and the aircraft response.

It should be noted that the present investigations are essentially theoretical in
nature and are primarily aimed at obtaining insight into the energy management features of
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optimal lateral escape maneuvers. It is clear that a substantial research effort is still
required before it is meaningful to address operational aspects.
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Appendix A : Evaluation of some Partial Derivatives

A.1 Partial Derivatives of the Hamiltonian with Respect to the State Variables

The following presents an overview of the right-hand sides of the adjoint equations (29)

through (35):
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- X__[Vcosp'C(cosZy - sin*y) + W _cosy]
g ox
1'%
Y W, - sin%y) + W cosy]
_ Voosy W iny + W,)} + A {__smy
4
oW
+ COSK s [Vcosx(coszy - sin%y) + W _cosy]
+ COSX ~ "= - sin*y) + W cosy]

+ SIX S Y [Vcosy (cos?y - sin*y) + W _cosy]
X

1%

iny OW
+ SIXI;X 8yy [Vsiny (cos¥y - sin*y) + W, cosy]

w

+ Slwa x + W) + o 2 (2Vcosysiny + W )]

W
+ 1 8 [V(smzy - cos?y) + W,siny]}
Y {[ gsm‘y Lsmp]

Vcos"y w

W
siny [( W aW'W )siny, Lt w, W )cosy]}
Vcos?y dy ’ ox dy
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- A, Vcosysiny + A Vcosycosy

iny oW
. )\'E{ VCOSY sy x

g ox

oW ;
_ Veosy ay"[Vcosx(cos"y - sin®y) - W, sin]
g

' ow_ -
- VCOSY[ = Y [Vcosy (cos*y - sin*y) + W _cosy]
g X

aw.
_ Vcosycosy ayr(z Vcosysiny + W)
! .

2 iy oW, oW
.+ V7cosy S (R siny - —" cosy)}
g ox dy

. . aW
At - Suy sy 5 Z(2Vcosycosy + W)
x

(2Vcosycosy + W)

+

. siny ow,
o
Sy =7y [Vcosy(cos*y - sin®) + W, cosy]

[Vcosy(cos*y - sin*() - Wysinx]

V ox
siny cos)( aW,
vV oy

ow
+ COSPY( et
ox

ow
RER Z[Vcosy(cos®y - sin%x) + W _cosy]
* Vcosy ox ¥

(2Vcosysiny + Wy)

h

iny il x)}
siny - COS
dy

oW - :
+ S05K ~(2Vcosysiny + W)
Vcosy oy - Y
iny oW
+ X 2(2Vcosycosy + W_)
Vcosy ox
1 oW . .
- Voot ay’[Vcosy(coszx - sin’y) - W siny]}

(56)

(57)
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A.2 Partial Derivatives of Thrust, Lift and Drag with Respect to the State Variables

The thrust, lift and drag functions are defined in the Eqs.(12) through (15). The following

partial derivatives of thrust, lift and drag arise in the equations (51) through (57):

oT aT

— =T i — = PI[T, + 2T,V
aB max aV B[l+ 2]
oL _ L dp

oh poh

b _DIp . D

=2D
oh pok = oV TV

A.3 Partial Derivatives of the Windvelocity Vector

Let us define:

AX & X —-X, ; Ay &Yy -,

Using thesc definitions it is clear that Eq.(20) can be expressed as:

r = yax? + ay?

The horizontal wind direction %, at a given spatiél location is given by (see Fig. 4):

X, = arccos(ax/r)-sign(ay)

The following partial derivatives of r with respect to x, y and h are needed:

(58)

(59)

(60)

(61)

(62)
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r _ (ay) dr _ (ax) d’r _ _ axay (65)
Ox2 r3 ’ ayz r3 ? 0xdy ' r?

dr _ _ 3(ay)ax r _ _ 3ay(ax) (66)
ox? rs ’ 3y3 rs

dr _ ay[2r? - 3(ay)] r _ ax[2r? - 3(ax)’] (67) '
ox’dy rs " 9xdy? rs

Using Eq.(18), the required partial derivatives of the radial windspeed W, with respect to
the radial distance r can be calculated as:

_(r-D/2) (r +D/2)
oW, 200 200 63
r =fr + ‘ 7 ) ( )
or (4 ';/2)2 c100 & ;o%/Z Y +10]
r =‘f‘r - -
o "0’2)2 f10] (222 0r
00 200 (69)
0.02 ( r +D/2)
_ 300 0.005
+ 3 + 2
1l 20%’2)2 T I (4 20’;’2)2 +10]

With the above information available and making use of Eq.(21), it is now possible to
calculate the partial derivatives of the radial wind velocuy W, with respect to the posmon
coordinates x and y:

W, W, 5 oW, W, 5

—_— T, L= (70)
ox or ox dy or oy




azwr - aZWr ar 2
ox? or? ox
FW, oW, ( or )2
Y or 2 E

W, W, or or .

xdy or? & oy
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aWr azr
+

“or ox?

. oW, &r
EICR
aWr azr
“or oxdy

(71)

(72)

(73)

Finally the partial derivatives of the horizontal wind components W, and W, are

computed:

ow,_ - oW, or . Pr
ox  ox ox " ox?
an - aWr ar 82r
9y oy ox " 9xay
PW. PW a5 W, 3y 3
= —_ 2 r — W —
ox? ox? ox ox ox? " ox?
IW, W, o W, Fr W r
= —_— — — ——
dy?2 dy? ox dy o0xdy " oxdy?
azWX azWr ar aWr azr + aWr azr
— S cn— — +
0xdy  0xdy ox dy ox?2 ox 0xdy " ox %y
W, Wy I
ox ox dy " dxady
i‘i’l = iv_'i):. + W z"_
dy dy dy " dy?
aZWy___azWrEi*.zﬂ 2 oW o
ox 2 ox2 dy ox 0xdy " ox 20y

or

(74)

(75)

(76)

(7n

(78)

(79)

(80)

(81)
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I, W o Wy o (82)
dy>  dy? oy d ay* oy

oW, FW, o . oW, o . oW, 52 oW as, -
oxdy oxdy dy oOx ogy?: Oy oxdy " 0xdy?

In an entire similar fashion, the required pamals of the vertical wmdspeed W can be
evaluated using Eq.(19) and the above relations:

(83)

0.0044 () . . .
ow, iy . 400 L 89
ar k [( r )4+10]2 ] ' .

5

-0. R 0.00003h ()2 . o
o, 000008# (70" 000003 (| .
oty e10) [Lys100 | 0 |

400 400

W, W, oW, _1W, ' | - (86)
S R ooh R o |
MWy _Wior oW, W, | | @D

ox or ox = dy  or oy

ath - ath (ar)2 . aW;. o*r ath - 52Wh (ar)2 . aW,, or (88)

ox? or: ox or ox? = Qy? or dy  or oy?

IW, _ W, ar or . oW, g | (89)
axdy  or® ox dy  or 0xdy

| FW,  FW, or FW, FW, 5
| oxok  Oroh ox

?

= il (90)
dyoh  droh dy :

A.4 Equations of Motion in Polar Coordinates

Instead of Cartesian coordinates, as used in Eqgs.(4) through) (6), it is also possible
to use polar coordinates to describe the windshear terms in the equations of motion. In
fact, this particular formulation has already been used to express the F-factor in Eq. (25).
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This Section presents the equations of motion in terms of polar coordinates:

o w
5= WD)V + W, - VC;SY{Vcosy[—a-r—'-COSZ(X‘Xw)

1774 : oW
+ rsinZ(x __xw)] + W, a rCOS(x —xw)} (91)
7 r ,
_ VSln’Y{_:[W + Vcosycos(x .._xw)] + h[Wh + VSin'Y]}
P or r oh
. oW w
g = %[ L‘;‘:/SP - cosy] + SI‘I/W{Vcosy[_gr_’cosz(x %)t T’Sinz(x - X))}
oW oW
o0 ooy n - 1w venpeosz) O
ow, .
v = [W, + Vsiny]}
g = g Lsinp . [BW, _ W’]sin(x - x.)cos(x - %)
Vcosy W or r X A (93)
W oW, ( )
. oy -
Vcosy or Snix T L,
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