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The eye is the lamp of the body.
If your eyes are healthy,

your whole body will be full of light.

Matthew 6:22, New International Version





Preface

This PhD research was part of the research project “Enhancing Water, Food and
Energy Security in the Lower Zambezi” (ZAMSECUR). The overall objective of this
project was to improve the water management in the Lower Zambezi basin by
enhancing knowledge on the water resources of its mostly ungauged tributaries
in Zimbabwe, Zambia and Mozambique. This project gave me many interesting
opportunities such that I enjoyed being part of it!
One of the great opportunities was the people I got to work with within this project.
This included Henry Zimba from Zambia, who focused his PhD research on the
evaporation in miombo woodlands in Zambia, and Hubert Samboko from Zimbabwe,
who focused his PhD research on using drones to derive river geometry information
and stream velocities which can be used to estimate the discharge. In addition,
multiple students were involved in this project including Felix Chabala from Zambia,
and Ivar Abas, Sylvia van Doorn, Geerten van der Zalm and Jan van Engelenhoven
from The Netherlands. I enjoyed getting to know them and being involved (some
more than others) in their research.
Another great opportunity was the traveling experience. Every year, I participated
with the WaterNet symposium to communicate my results with people involved in
the project which included people working at local water authorities or universities.
It was also interesting to get in touch with (non-)scientists who work in the same
or similar regions. This symposium was hosted by a different Sub-Saharan country
each year and included a field trip on the last day during which I learned some
very interesting facts. For example, did you know there is a plant in Namibia called
the welwitschia which can get more than 2000 years old? Also, did you know
the Victoria Falls was not always located at its current position? The huge gorges
downstream of the falls indicate its past locations.
All in all, I am thankful for having been part of the ZAMSECUR project and am
curious how it will proceed in the near future!

Petra Hulsman
The Hague, October 2020
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Summary

Throughout the world, many people have been affected by water related issues
in the past, some more extreme than others. In this context, hydrological models
have often been used to gain more insight into the situation and to limit negative
impacts as much as possible. There are many different types of hydrological models
with each their strengths and weaknesses, but all models need a certain amount of
reliable data. However, many river basins throughout the globe are poorly gauged
which means there are only limited reliable ground observations available. That is
why satellite observations provide many interesting opportunities to fill this gap of
which many are not yet explored. Therefore the goal of this research was to answer
the following main research question: What is the added value of satellite-based
observations for hydrological modelling in a semi-arid, data-scarce river basin?
This research focused on the Luangwa River in Zambia which is a large tributary of
the Zambezi River and has a basin area of 159,000 km2. This river basin is poorly
gauged, mostly unregulated and sparsely populated. In this semi-arid region, the
mean annual precipitation (970 mm yr 1) is lower than the potential evaporation
(1555 mm yr 1). During the dry season, the river meanders between sandy banks
while during the wet season from November to May it can cover flood plains sev-
eral kilometres wide. A process-based distributed hydrological model with sub-grid
heterogeneity was developed in this research and modified step-wise when explor-
ing the added value of different satellite observations for different aspects within
hydrological modelling.
First, the added value of satellite-based river water level, i.e. altimetry, from 18
virtual stations combined with total water storage observations according to GRACE
(Gravity Recovery and Climate Experiment) for model calibration was assessed by
testing different calibration strategies. As a benchmark, feasible model parameter
sets were identified using traditional model calibration with observed river discharge
data. The results indicated the flows were modelled well with the benchmark cali-
bration strategy. Assuming no discharge data is available, the discharge was repro-
duced best when calibrating with respect to GRACE and altimetry if the modelled
discharge was converted to stream levels using the Strickler-Manning equation and
river geometry information, hence cross-section and river gradient, extracted from
Google Earth. The identification of feasible parameter sets improved further when
using more accurate cross-section data and when increasing the number of virtual
stations used.
Second, the added value of satellite-based evaporation and GRACE data to increase
the understanding of hydrological processes through step-wise model structure
improvement and model calibration was assessed. For this purpose, the bench-
mark rainfall-runoff model was adjusted iteratively. It was shown that the bench-
mark model calibrated with respect to discharge, reproduced the discharge, basin-
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average evaporation and total water storage well, but poorly modelled the evapora-
tion in wetland dominated areas and the spatial pattern of the evaporation and total
water storage. By testing five alternative model structures, it was shown that all
variables, hence discharge, evaporation and total water storage, were represented
better when including the process of upwelling groundwater flow from a distributed
groundwater reservoir and calibrating with respect to all three variables simultane-
ously. These changes improved the spatial and temporal variability of the individual
variables with the exception of the temporal variation of the basin-average total wa-
ter storage.
Third, processes underlying long-term total water storage variations observed with
GRACE were identified through data analysis and model hypothesis testing. The
benchmark model did not reproduce the observed long-term storage variations.
However, this was improved by using different forcing data and by incorporating
regional groundwater export. The variation in the long-term annual maximum total
water storage improved by using different forcing data sources, while the annual
minima improved by allowing groundwater to seep into a deep groundwater layer
during wet conditions from where it leaks out of the basin.
In addition, analysing satellite observations provides new insights into the hydrolog-
ical system which can be implemented in hydrological models. In general, people
often adapt to dry conditions, depending on how they perceived them, by applying
drought coping mechanisms affecting the hydrological system. Comparing satellite
observations to local perceptions allows us to increase our understanding of fac-
tors influencing local perceptions. This was illustrated by analysing the drought of
2019 in the Zambezi River Basin using multiple satellite observations to determine
whether it was, as locally perceived, indeed the most extreme over at least 20 years.
It was shown this differed depending on the data variable, drought characteristic
and location within the basin. Data analysis indicated that it depends on the drought
characteristic, the hydrological variable considered, and on the location within the
basin. On the one hand, the drought of 2019 resulted in the lowest basin-averaged
annual rainfall over at least 27 years, most severe local rainfall deficit in the central
and north-western part of the basin for at least 25 years, and lowest reservoir level
since 1995. However, on the other hand, the spatially averaged rainfall deficit, as
well as locally in the north of the basin, was more severe in 2002. Also in 2004, the
spatially averaged total storage deficit, as well as locally in the central part of the
basin, was more severe. Similarly, the reservoir water level-based drought severity
was more extreme in 2015.
Overall, satellite-based observations have been used successfully to improve our un-
derstanding of the hydrological processes in the data-scarce Luangwa river basin,
to improve the hydrological model structure and to allow for more reliable parame-
ter identifications in the absence of reliable discharge data. This research focused
on a selection of satellite-based observations and hydrological model applications.
In other words, there remain many opportunities yet to be explored!
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1
Introduction

Do not insult a crocodile
while your feet are still in the water.

African proverb

This chapter is based on:
Hulsman, P., Winsemius, H. C., Michailovsky, C. I., Savenije, H. H. G., and Hrachowitz, M.: Using altimetry
observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce
region, Hydrol. Earth Syst. Sci., 24, 3331–3359, doi: 10.5194/hess-24-3331-2020, 2020a.

Hulsman, P., Savenije, H. H. G., and Hrachowitz, M.: Learning from satellite observations: increased
understanding of catchment processes through stepwise model improvement, Hydrol. Earth Syst. Sci.
Discuss., 2020, 1–26, doi: 10.5194/hess-2020-191, 2020b.

Hulsman, P., Savenije, H. H. G., and Hrachowitz, M.: Why are long-term storage variations observed but
not modelled in the Luangwa basin?, Water Resources Research, in review.

Hulsman, P., Savenije, H. H. G., and Hrachowitz, M.: Zambezi River Basin: Drought of 2019, Journal of
Hydrology: Regional Studies, submitted.
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2 1. Introduction

1.1. Hydrological modelling

T hroughout the globe, water related issues such as droughts or floods have
affected many people. According to ”The International Disasters Database” at

least 460 million people have been affected world-wide by riverine floods in 2010
– 2019 and 671 million people by droughts (EM-DAT and CRED, Accessed 2020).
This number is expected to increase in the future with climatic and socio-economic
changes (Di Baldassarre et al., 2017; Hallegatte et al., 2013; Markus et al., 2019).
In this context, hydrological models have often been used to gain more insight
into the situation and to limit negative impacts as much as possible. For instance,
hydrological models have been important tools to predict floods (Kauffeldt et al.,
2016; Price et al., 2012) and droughts (Hao et al., 2018; Trambauer et al., 2013),
but also to assess the effect of climate (Jahandideh-Tehrani et al., 2019; Krysanova
and Hattermann, 2017) and land-cover changes (Cuo, 2016; Nijzink et al., 2016a)
on the water availability.
In the past, many different types of hydrological models have been developed.
Some of the commonly used rainfall-runoff models are HBV (Bergström, 1992), SU-
PERFLEX (Fenicia et al., 2011), FLEX-Topo (Gao et al., 2014a), mHM (Samaniego
et al., 2010), SWAT (Arnold et al., 1998), VIC (Liang et al., 1994) and MIKE-SHE
(Refsgaard et al., 2010) to name a few. These models can be classified based
on for example the simplification strategy of the hydrological system (for example
conceptual or physically-based), spatial representation (lumped, semi-distributed
or distributed), model architecture (continuum or bucket-based) or model scaling
strategy (bottom-up or top-down) (Hrachowitz and Clark, 2017; Pechlivanidis et al.,
2011). In other words, there is an overabundance of hydrological models each with
their strengths and weaknesses without knowing whether there is a “correct” model
among them (Clark et al., 2011).
Within hydrological modelling, there are various challenges including 1) uncer-
tainties in data, model structure and model parameters (Bourdin et al., 2012;
Pechlivanidis et al., 2011), 2) equifinality problems as a result of a high number
of parameters and too limited data to identify feasible parameter combinations
representing the hydrological system well (Beven, 2006; Savenije, 2001), and 3)
changing hydrological conditions as a result of climate changes or human actions
such as land-use change or river regulations (Peel and Blöschl, 2011). To deal with
these challenges, sufficient good quality ground observations are required. How-
ever, in many poorly gauged river basins there are no or only very limited ground
observations available (see next section) such that these challenges become even
more difficult to tackle resulting in more uncertain predictions.
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1.2. Poorly gauged river basins
In many river basins world wide, there are only limited or no river discharge obser-
vations available such that they are poorly gauged or ungauged. According to the
Global Runoff Data Centre (GRDC, https://www.bafg.de/GRDC/EN/Home/
homepage_node.html), 9952 discharge stations exist throughout the globe of
which merely 208 stations provide data after 2010 which are mostly located in the
United States and Europe. In large parts of Africa and Asia on the other hand, there
are no discharge observations available after 2000 in the GRDC database. Please
note such online databases are not necessarily complete as local water authorities
often have more recent discharge time-series. However, this does illustrate the
large scale of poorly gauged river basins especially in Africa, Asia and some regions
in South-America.
This challenge was the focus of the research initiative ”Predictions in Ungauged
Basins” (PUB) in 2003 – 2012, initiated by the International Association of Hy-
drological Sciences (IAHS). According to the PUB initiative, high uncertainties in
model predictions were a result of incomplete understanding of hydrological pro-
cesses, spatial-temporal heterogeneity of processes and unsuitable regionalization
techniques (Hrachowitz et al., 2013). Therefore, the goal of this initiative was to
improve hydrological model predictions in ungauged basins by improving existing
models and by developing new models better reproducing the spatial-temporal
variability of hydrological processes (Hrachowitz et al., 2013). During the PUB
decade, advances were made in the fields of 1) data collection and processing,
2) modelling strategies, calibration techniques and uncertainty assessment, and
3) catchment classification methods. In the PUB synthesis book (Blöschl et al.,
2013) all findings of the PUB decade on predicting runoff signatures are organized.
Even though this PUB decade was completed in 2012, there remain many research
opportunities unexplored in the context of PUB to obtain reliable and robust pre-
dictions in ungauged basins.

1.3. Opportunities with satellite observations
Remote sensing products offer increasingly new opportunities in hydrological mod-
elling, especially in ungauged or poorly gauged basins, as they offer large-scale
spatially distributed observations on a regular temporal scale (Lakshmi, 2004; Xu
et al., 2014). For example, satellite data have been used to estimate precipitation,
evaporation, soil moisture, snow cover, water level, land surface temperature, river
width and total water storage (Jiang and Wang, 2019). In the context of hydrologi-
cal modelling, previous studies used satellite products among others to 1) describe
the basin characteristics such as landscape or land-cover (e.g. Fenicia et al., 2016;
Kiptala et al., 2013; Savenije, 2010), 2) provide forcing data such as precipita-
tion (Meier et al., 2011; Serrat-Capdevila et al., 2014; Winsemius et al., 2006a),
3) estimate parameters (Gao et al., 2014b; Wang-Erlandsson et al., 2016), or 4)
calibrate models (e.g. Immerzeel and Droogers, 2008; Kunnath-Poovakka et al.,
2016; Santhi et al., 2008). Despite the increased use of satellite observations for

https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
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hydrological modelling, many opportunities remain unexplored. For instance, the
full potential of satellite-based river water level observations from multiple missions
and at multiple locations for model calibration is yet to be exploited. In addition,
only limited studies used satellite observations to calibrate hydrological models
with respect to the temporal and spatial variability simultaneously (Dembélé et al.,
2020; Rajib et al., 2018). Also, spatial information available in satellite data have
rarely been used for step-wise model structure improvement (Fenicia et al., 2016;
Roy et al., 2017).

1.4. Research objectives
This research mainly focused on the semi-arid Luangwa river in Zambia which is
a large, poorly gauged tributary of the Zambezi in Sub-Saharan Africa. Accurate
estimations of the water availability are important for water allocation planning
especially during dry seasons (Hamududu and Ngoma, 2020), whereas reliable
flow estimations are important for the management of the Cahora Bassa dam
downstream(Gumindoga et al., 2016; Winsemius et al., 2008). However, the abil-
ity to estimate flows and water availability accurately is impeded by the limited
ground observations available (see Chapter 2 for more information). As a result,
the Luangwa river basin is an interesting study region to analyse the added value of
satellite observations to increase our understanding of local hydrological processes
and to improve hydrological model predictions despite the limited availability of
ground observations similar to many other poorly gauged river basins in the world.
Hence, the main research question was:

What is the added value of satellite-based observations for hydrologi-
cal modelling in a semi-arid, data-scarce river basin?

Several new opportunities of satellite observations in hydrological modelling not
yet fully explored in previous studies have been analysed in this research. For this
purpose, a selection of satellite observations have been used to improve our under-
standing of local hydrological processes through step-wise model improvement and
to calibrate hydrological models considering the temporal and spatial variability. As
a result, the main research question was divided into the following sub-questions:

1. What is the combined information content of satellite-based river water level
and total water storage observations to identify feasible parameter sets?
In the absence of reliable discharge data as commonly the case in poorly gauged
regions, alternative calibration methods are required. In a previous study, it was
shown hydrological models can be calibrated with respect to river water levels if
uncertain or no rating curve information is available (Hulsman et al., 2018). In that
study, Hulsman et al. (2018) developed a semi-distributed hydrological model for
the Mara river basin in Kenya and used the Strickler-Manning equation to convert
modelled discharges to river water levels calibrating the slope-roughness parame-
ter. This study illustrated that with this calibration method river water levels can be
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reproduced well and discharge-water level relations can be derived, even in basins
with unreliable rating curve information.
Following up on that study, satellite-based river water level observations, i.e.
altimetry, provide an interesting opportunity to calibrate hydrological models in
poorly gauged basins as they are available world-wide, near real-time and at mul-
tiple locations along the river depending on the river size and location (Calmant
et al., 2009; Musa et al., 2015; Schwatke et al., 2015). In previous studies, al-
timetry observations have been used to estimate discharge, calibrate/evaluate
models and for data assimilation typically using altimetry data from only a few
locations obtained from a single satellite mission (Getirana, 2010; Michailovsky
et al., 2012, 2013; Sun et al., 2012; Tourian et al., 2017). However, previous
studies did not use altimetry observations from multiple locations and satellite mis-
sions for model calibration comparing different calibration strategies. As altimetry
observations only describe water level dynamics without any information on dis-
charge amounts, total water storage estimates according to the Gravity Recovery
and Climate Experiment (GRACE) were used to support model calibration to re-
duce the uncertainty in modelled discharge arising from the missing information
on flow amounts (Bai et al., 2018; Rakovec et al., 2016). Therefore, the objective
was to explore the information content of altimetry observations and total water
storage data according to GRACE for the calibration of a hydrological model for
the Luangwa basin comparing different strategies. This was discussed in Chapter 3.

2. What is the added value of satellite-based evaporation and total water storage
data to increase the understanding of hydrological processes through step-wise
model structure improvement and model calibration for a large river system in a
semi-arid, data scarce region?
In the Luangwa Basin, there is a strong spatial heterogeneity in the landscape,
land cover and precipitation resulting in spatially varying rainfall-runoff processes.
Traditionally, hydrological models are developed and calibrated using discharge ob-
servations at the basin outlet only which can result in robust discharge predictions
in small catchments (Daggupati et al., 2015; Fenicia et al., 2011). However, for
large and heterogeneous river basins this could result in poor representations of the
spatial-temporal variability of model internal fluxes and states (Clark et al., 2008;
Garavaglia et al., 2017; Hrachowitz et al., 2014; Kirchner, 2006). In this context,
satellite-based spatial-temporal observations provide interesting opportunities for
model development and calibration to improve the overall representation of the hy-
drological system. Many previous studies have used satellite observations for model
calibration considering either the temporal or spatial variability (e.g. Demirel et al.,
2018; Kittel et al., 2018; Koch et al., 2016; Nijzink et al., 2018; Zink et al., 2018),
whereas only limited studies combined both aspects in the calibration procedure
(Dembélé et al., 2020; Rajib et al., 2018). In addition, many studies have used
spatial aggregated observations such as discharge to improve the model structure
(e.g. Fenicia et al., 2008; Hrachowitz et al., 2014; Kavetski and Fenicia, 2011), while
only limited studies used spatial information for this purpose (e.g. Fenicia et al.,
2016; Roy et al., 2017). Therefore, the objective was to explore the added value
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of satellite-based evaporation and total water storage observations for model de-
velopment and spatial-temporal model calibration. This was discussed in Chapter 4.

3. Why are long-term total water storage variations observed in the Luangwa
basin with satellite data but not modelled?
In the Luangwa river basin, long-term fluctuations were observed in the total water
storage similar to many river basin world-wide (Long et al., 2017; Scanlon et al.,
2018). However, this was not reproduced by a standard conceptual model encap-
sulating our current understanding of the regional hydrological processes. Similarly,
previous studies highlighted inconsistencies between the observed and modelled
long-term total water storage fluctuations in different river basins using various
rainfall-runoff models (Fowler et al., 2020; Scanlon et al., 2018; Winsemius et al.,
2006b). While several studies focused on identifying differences between observed
and modelled long-term storage variations (e.g. Jing et al., 2019; Leblanc et al.,
2009; Scanlon et al., 2018), only limited studies attempted to modify a hydrological
model to reproduce long-term storage variations (e.g. Grigg and Hughes, 2018).
Fowler et al. (2020) even concluded that commonly used conceptual hydrological
models cannot reproduce long-term storage variations as they lack long-term mem-
ory processes and hence should not be used for discharge predictions in for example
drying climates. Therefore, the objective was to identify processes underlying the
observed long-term storage variations in the Luangwa basin in a combined data
analysis and model hypothesis testing approach. This was discussed in Chapter 5.

With these three sub-questions, several new opportunities were explored using
satellite observations to improve our current understanding of local dominant
hydrological processes, improve hydrological model structures, and improve the
identification of feasible parameter sets in a data-scarce region. In addition,
satellite-based data analysis results provide valuable new information to improve
our understanding of the hydrological system which can then be implemented in
hydrological models. For example, satellite observations can be used to analyse
drought events in large regions with respect to the temporal and spatial variability
(e.g. Bayissa et al., 2018; Hao and Singh, 2015; Mishra and Singh, 2010). In gen-
eral, drought events can influence human activities with respect to drought coping
mechanisms, depending on how they perceived specific drought events, which can
affect the hydrological system (Haile et al., 2019; Iqbal et al., 2018; Van Loon
et al., 2016). That is why it would be interesting to compare local perceptions with
multiple satellite observations to increase our understanding of factors influenc-
ing local perceptions. As an illustration, multiple satellite observations were used
to analyse droughts in the Zambezi River Basin with the following research question:

4. Was the drought of 2019 in the Zambezi River Basin the most extreme in
at least 20 years according to multiple satellite observations as perceived by locals?
During the dry season of 2019, extreme low water levels were observed in the
reservoir upstream of the Kariba hydro-power dam resulting in frequent power
cuts of up to 18 hours for at least 3 months (Carlowicz, 2019; Matiashe, 2019;
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Tshili, 2019). According to popular news media, locals perceived this drought as
the worst in several decades (Brown, 2019; Edel, 2019). Previous studies illus-
trated discrepancies can occur between local perceptions and data observations for
different reasons including economic issues as farmers who suffered crop losses
were more inclined to perceive decreased rainfall even when that was not the
case (Albertini et al., 2020; Di Baldassarre et al., 2017; Foguesatto et al., 2020).
While previous studies compared local perceptions of drought events to rainfall
observations (e.g. Giordano et al., 2013; Iqbal et al., 2018; Osgood et al., 2018;
Ovuka and Lindqvist, 2000; Solano-Hernandez et al., 2020), they did not incor-
porate satellite-based total water storage and reservoir water level observations
which provide additional information on drought events. Therefore, the objective
was to analyse the drought of 2019 in the Zambezi River Basin upstream of the
Kariba reservoir using satellite-based precipitation, total water storage and reser-
voir water level observations to determine whether it was indeed the most extreme
drought in at least 20 years as perceived by locals. This was discussed in Chapter 6.
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Study area: Luangwa river

basin

If you have escaped the jaws
of the crocodile while bathing in the river,

you will surely meet a leopard on the way.

African proverb

9
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Figure 2.1: Map of the Luangwa River Basin in Zambia including available in-situ hydro-meteorological
stations.

2.1. Site description

T he Luangwa River in Zambia, a large tributary of the Zambezi River (Figure
2.1), has a basin area of 159,000 km2 which is about 10% of the Zambezi

River Basin. The Luangwa Basin is poorly gauged, mostly unregulated and sparsely
populated with about 1.8 million inhabitants in 2005 (The World Bank, 2010).
The mean annual precipitation is around 970 mm yr 1 and potential evaporation
around 1555 mm yr 1 (The World Bank, 2010). The main land cover consists
of broad-leaf deciduous forest (55%), shrub land (25%) and savanna grassland
(16%) (GlobCover, 2009). The irrigated area in the basin is limited to about 180
km2, i.e. roughly 0.1% of the basin area with an annual water abstraction of
about 0.8 mm yr 1 averaged over the entire basin which amounts to 0.6% of
the annual basin water balance (The World Bank, 2010). The landscape varies
between low lying flat areas along the river to large escarpments mostly in the
North West of the basin and highlands with an elevation difference up to 1850 m.
During the dry season, the river meanders between sandy banks while during the
wet season from November to May it can cover flood plains several kilometres wide.

2.2. Floods & droughts
The Luangwa drains into the Zambezi downstream of the Kariba Dam and upstream
of the Cahora Bassa Dam. The operation of both dams is crucial for hydropower
production, and flood and drought protection, but is very difficult due to the lack
of information from poorly gauged tributaries such as the Luangwa (SADC, 2008;
Schleiss and Matos, 2016; The World Bank, 2010). As a result of high rainfall
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variability and poor dam management, the local population suffered from severe
floods and droughts (Beilfuss et al., 2001; Hanlon, 2001; SADC, 2008; Schumann
et al., 2016; ZAMCOM et al., 2015). For example, severe droughts have occurred in
1995 and 2015 in multiple Sub-Saharan countries causing for instance reduced crop
production (Libanda et al., 2019; The World Bank, 2010). Between 2000 and 2009,
about 12.5 million people were affected by droughts in Mozambique, Zambia and
Zimbabwe (ZAMCOM et al., 2015). Limited water availability is expected to become
a more severe challenge due to population growth, increased water demand for
instance for irrigation, climate change and poor drought management planning
to cope with these changes (Kirchhoff and Bulkley, 2008; SADC, 2008; Schleiss
and Matos, 2016). In addition, about 9.5 million people were affected by floods
between 2000 and 2009 in Mozambique, Zambia and Zimbabwe (ZAMCOM et al.,
2015). According to previous studies, high flood risks were a result of poor flood
management planning, weak infrastructure, poor communication facilities and poor
real-time information exchange for flood warning systems (Schumann et al., 2016;
ZAMCOM et al., 2015).
To improve the flood and drought prediction in the Zambezi river basin, increased
understanding of the local hydrological processes is very important. This research
focused on the Luangwa river as it is a large and poorly gauged tributary flowing
into the Zambezi upstream of the Cahora Bassa dam. Improving the flow prediction
for the Luangwa river would contribute to a more accurate inflow prediction for the
Cahora Bassa reservoir which is valuable to improve its management.

2.3. Ground observations
In the Luangwa River Basin, daily hydro-meteorological observations were available
for the discharge, precipitation and temperature. In total, data was available for
11 gauge stations, 10 precipitation stations and 2 temperature stations. Their loca-
tions are visualised in Figure 2.1 and their characteristics are summarized in Table
2.1. Discharge data was obtained from the Global Runoff Data Centre (GRDC),
the local Department of Water Affairs (DWA) and Water Resources Management
Authority in Zambia (WARMA), precipitation data from the Zambia Meteorological
Department (ZMD) and the National Oceanic Atmospheric Administration (NOAA)
from where also temperature was obtained.
The discharge stations were located in the middle and lower part of the basin of
which 3 stations were located in the main river. The in-situ discharge observations
were available since 1948, but only limited data was available since 2002 resulting
in a temporal coverage for the time period 2002 – 2016 between 0% and 55%
(Table 2.1). One gauge station, the Luangwa Road Bridge gauging station, was
located near the confluence with the Zambezi river and had the largest temporal
coverage of 55% for the time period 2002 – 2016. In the following chapters,
discharge data from this station was used for model calibration and/or validation.
The precipitation and temperature stations were mostly located near the basin
border resulting in only limited information throughout the basin. Their temporal
coverage for the time period 2002 – 2016 varied between 0% and 51% (Table 2.1).
Especially with respect to temperature only limited information was available after
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2002.
For an improved understanding of the hydrological processes, it is crucial to cap-
ture the spatiotemporal heterogeneity in the precipitation and temperature well.
Especially with respect to precipitation, very local rainfall occurs frequently in the
Luangwa basin as observed by local inhabitants and confirmed through field visits.
Such local rain events cannot be observed by merely 10 precipitation stations for an
area of 159,000 km2. In addition, in the context of flood and drought protection,
it is more interesting to improve our understanding on the current situation rather
than the historic situation. That is why it is interesting to explore the added value
of satellite observations to improve our understanding of regional hydrological pro-
cesses in the Luangwa basin.

Table 2.1: Summary ground-observations available in the Luangwa basin

umber
of stations uration ime eriod em oral coverage

in

ischarge 11 16 – 68 years 1948 – 2017 0 – 55%
reci itation 10 5 – 42 years 1970 – 2011 0 – 51%
em erature 2 30 – 44 years 1970 – 2014 0 – 1%



3
Altimetry-based parameter

set identification

Smooth seas do not make skillful sailors.

African Proverb

This chapter investigated the potential of using remotely sensed river water
level, i.e. altimetry observations, from multiple satellite missions to iden-
tify parameter sets for a hydrological model in the semi-arid Luangwa River
Basin in Zambia. As a benchmark, feasible model parameter sets were iden-
tified using traditional model calibration with observed river discharge data.
For the parameter identification using remote sensing, data from the Gravity
Recovery and Climate Experiment (GRACE) were used in a first step to restrict
the feasible parameter sets based on the seasonal fluctuations in total water
storage. Next, three alternative ways of further restricting feasible model pa-
rameter sets using satellite altimetry time-series from 18 different locations
along the river were compared. These three strategies compare altimetry
observations to 1) modelled discharge by applying the Spearman Rank Cor-
relation coefficient, and to modelled stream levels by converting modelled dis-
charge using 2) rating curves whose parameters were treated as free model
calibration parameters and 3) the Strickler-Manning equation to infer water
levels directly from hydraulic properties of the river.

This chapter is based on: Hulsman, P., Winsemius, H. C., Michailovsky, C. I., Savenije, H. H. G., and
Hrachowitz, M.: Using altimetry observations combined with GRACE to select parameter sets of a hy-
drological model in a data-scarce region, Hydrol. Earth Syst. Sci., 24, 3331–3359, doi: 10.5194/hess-24-
3331-2020, 2020a.
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3.1. Introduction

R eliable models of water movement and distribution in terrestrial systems require
sufficient good quality hydro-meteorological data throughout the modelling pro-

cess. However, the development of robust models is challenged by the limited
availability of ground measurements in the vast majority of river basins world-wide
(Hrachowitz et al., 2013). Therefore, modellers increasingly resort to alternative
data sources such as satellite data (Dembélé et al., 2020; Demirel et al., 2018; Lak-
shmi, 2004; Nijzink et al., 2018; Pechlivanidis and Arheimer, 2015; Rakovec et al.,
2016; Sun et al., 2018a; Winsemius et al., 2008; Zink et al., 2018).
In the absence of directly observed river discharge data, various types of remotely
sensed variables provide valuable information for the calibration and evaluation of
hydrological models. These include, for instance, remotely sensed time series of
river width (Sun et al., 2012, 2015a), flood extent (Montanari et al., 2009; Revilla-
Romero et al., 2015), or river and lake water levels from altimetry (Garambois et al.,
2017; Getirana, 2010; Getirana et al., 2009; Pereira-Cardenal et al., 2011; Sun et al.,
2012; Velpuri et al., 2012).
Satellite altimetry observations provide estimates of the water level relative to a ref-
erence ellipsoid. For these observations, a radar signal is emitted from the satellite
in the nadir direction and reflected back by the earth surface. The time difference
between sending and receiving this signal is then used to estimate the distance be-
tween the satellite and the earth surface. As the position of the satellite is known
at very high accuracy, this distance can then be used to infer the surface level rel-
ative to a reference ellipsoid (Calmant et al., 2009; Łyszkowicz and Bernatowicz,
2017). Satellite altimetry is sensed and recorded along the satellite’s track. Altime-
try based water levels can therefore only be observed where these tracks intersect
with open-water surfaces; for rivers, these points are typically referred to as “vir-
tual stations” (Birkett, 1998; de Oliveira Campos et al., 2001; Jiang et al., 2017;
Schneider et al., 2017; Seyler et al., 2013). Depending on the satellite mission,
the equatorial inter-track distance can vary between 75 km and 315 km, the along-
track distance between 173 m and 374 m, and the temporal resolution between
10 days and 35 days (CNES, Accessed 2018; ESA, Accessed 2018; Schwatke et al.,
2015; Łyszkowicz and Bernatowicz, 2017). Due to this rather coarse resolution,
the application of remotely sensed altimetry data is at this moment limited to large
lakes or rivers of more than approximately 200 m wide (Biancamaria et al., 2017;
de Oliveira Campos et al., 2001; Getirana et al., 2009). Use of altimetry for hy-
drological models so far also remains rather rare due to the relatively low temporal
resolution of the data, with applications typically limited to monthly or longer mod-
elling time steps (Birkett, 1998).
In some previous studies, altimetry data were used to estimate river discharge
at virtual stations in combination with routing models (Michailovsky and Bauer-
Gottwein, 2014; Michailovsky et al., 2013) or stochastic models (Tourian et al.,
2017). Other studies either directly related river altimetry to modelled discharge
(Getirana and Peters-Lidard, 2013; Getirana et al., 2009; Leon et al., 2006; Paris
et al., 2016) or they relied on rating curves developed with water level data from
either in-situ measurements (Michailovsky et al., 2012; Papa et al., 2012; Tarpanelli
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et al., 2013, 2017) or, alternatively, from altimetry data (Kouraev et al., 2004). In
typical applications, radar altimetry data from one single or only a few virtual sta-
tions were used for model calibration, validation or data assimilation. These data
were mostly obtained from a single satellite mission, either TOPEX/Poseidson or
Envisat (Bauer-Gottwein et al., 2015; Fleischmann et al., 2018; Getirana, 2010; Liu
et al., 2015; Michailovsky et al., 2013; Pedinotti et al., 2012; Sun et al., 2012). In
previous studies, hydrological models have been calibrated or validated successfully
with respect to (satellite based) river water levels for example by 1) applying the
Spearman Rank Correlation coefficient (Jian et al., 2017; Seibert and Vis, 2016b),
or by converting modelled discharge to stream levels using 2) rating curves whose
parameters are free calibration parameters in the modelling process (Sikorska and
Renard, 2017; Sun et al., 2012) or 3) the Strickler-Manning equation to directly es-
timate water levels over the hydraulic properties of the river (Hulsman et al., 2018;
Liu et al., 2015).
In the Zambezi river basin, altimetry data has been used in previous studies for hy-
drological modelling (Michailovsky and Bauer-Gottwein, 2014; Michailovsky et al.,
2012). These studies used the altimetry data from the Envisat satellite in an assim-
ilation procedure to update states in a Muskingum routing scheme. Including the
altimetry data improved the model performance, especially when the model initially
performed poorly due to high model complexity or input data uncertainties.
Despite these recent advances in using river altimetry in hydrological studies, ex-
ploitation of its potential is still limited. Various previous studies have argued and
provided evidence based on observed discharge data that, in a special case of multi-
criteria calibration, the simultaneous model calibration to flow in multiple sub-basins
of a river basin, can be beneficial for a more robust selection of parameter sets and
thus for a more reliable representation of hydrological processes and their spatial
patterns (e.g. Ajami et al., 2004; Clark et al., 2016; Hasan and Pradhanang, 2017;
Hrachowitz and Clark, 2017; Santhi et al., 2008). Hence, there may be consider-
able value in simultaneously using altimetry data not only from one single satellite
mission but in combining data from multiple missions, which has not yet been sys-
tematically explored. While promising calibration results using data from Envisat
were found by Getirana (2010) in tropical and Liu et al. (2015) in snow-dominated
regions, altimetry data from multiple sources has not yet been used to calibrate
hydrological models in semi-arid regions.
As altimetry observations only describe water level dynamics, it does not provide di-
rect information on the discharge amount. In an attempt to reduce the uncertainty
in modelled discharge arising from the missing information on flow amounts, data
from the Gravity Recovery and Climate Experiment (GRACE), which provides esti-
mates of the total monthly water storage anomalies, were used to support model
calibration. With GRACE, discharge can be constrained through improved simula-
tion of the rainfall partitioning into runoff and evaporation as illustrated in previous
studies (Bai et al., 2018; Rakovec et al., 2016).
Therefore, the overarching objective of this study is to explore the combined in-
formation content (cf. Beven, 2008) of river altimetry data from multiple satellite
missions and GRACE observations to identify feasible parameter sets for the cal-
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ibration of hydrological models of large river systems in a semi-arid, data scarce
region. More specifically, in a step-wise approach we use GRACE observations
together with altimetry data from multiple virtual stations to identify model param-
eters following three different strategies and we compare model performances to
a traditional calibration approach based on in-situ observed river discharge. These
three strategies compare altimetry observations to 1) modelled discharge by ap-
plying the Spearman Rank Correlation coefficient, and to modelled stream levels
by converting modelled discharge using 2) rating curves whose parameters were
treated as free model calibration parameters and 3) the Strickler-Manning equation
to infer water levels directly from hydraulic properties of the river. These three
strategies are tested on a distributed process-based rainfall-runoff model with sub-
grid process heterogeneity for the Luangwa Basin. More specifically, we test the
following research hypotheses: 1) the use of altimetry data combined with GRACE
observations allows a meaningful selection of feasible model parameter sets to re-
produce river discharge depending on the applied parameter identification strategy,
and 2) the combined application of multiple virtual stations from multiple satellite
missions improves the model’s ability to reproduce observed hydrological dynamics.

3.2. Site description
The study area is the Luangwa River in Zambia, a tributary of the Zambezi River
(Figure 3.1). Its 159,000 km2 large basin area is poorly gauged, mostly unregu-
lated and sparsely populated with about 1.8 million inhabitants in 2005 (The World
Bank, 2010). The mean annual precipitation is around 970 mm yr 1, whereas the
potential evaporation is around 1555 mm yr 1. The landscape varies between low
lying flat areas along the river to large escarpments mostly in the North West of
the basin and highlands with an elevation difference up to 1850 m (see Figure 3.1B
and Section 3.4.2 for more information on the landscape classification). During
the dry season, the river meanders between sandy banks while during the wet
season from November to May it can cover flood plains several kilometres wide.
See Chapter 2 for more detailed information on the Luangwa basin.

3.3. Data availability
In-situ discharge and water level observations
In the Luangwa basin, historical in-situ daily discharge and water level observations
were available from the Zambian Water Resources Management Authority at the
Great East Road Bridge gauging station, located at 30o 13’ E and 14o 58’ S (Figure
3.1) about 75 km upstream of the confluence with the Zambezi. In this study, all
complete hydrological years of discharge data within the time period 2002 to 2016
were used; these are the years 2004, 2006 and 2008.
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Gridded data products
Besides the above in-situ observations, gridded data products were used in this
study for topographic description, model forcing (precipitation and temperature),
and model parameter selection/calibration (total water storage anomalies), as
shown in Table 3.1. The temperature data was used to estimate the potential
evaporation according to the Hargreaves method (Hargreaves and Allen, 2003;
Hargreaves and Samani, 1985).
Gravity Recovery and Climate Experiment (GRACE) observations describe the
monthly total water storage anomalies which includes all terrestrial water stores
present in the groundwater, soil moisture and surface water. Two identical satel-
lites observe the variations in the Earth’s gravity field to detect regional mass
changes which are dominated by variations in the terrestrial water storage once
atmospheric effects have been accounted for (Landerer and Swenson, 2012; Swen-
son, 2012). In this study, processed GRACE observations of Release 05 generated
by CSR (Centre for Space Research), GFZ (GeoForschungsZentrum Potsdam) and
JPL (Jet Propulsion Laboratory) were downloaded from the GRACE Tellus web-
site (https://grace.jpl.nasa.gov/; the average of all three sources were
used. The raw data were previously processed by CSR, GFZ and JPL to remove
atmospheric mass changes using ECMWF (European Centre for Medium-Range
Weather Forecasts) atmospheric pressure fields, systematic errors causing north-
south-oriented stripes and high frequency noise using a 300 km wide Gaussian
filter via spatial smoothening (Landerer and Swenson, 2012; Swenson and Wahr,
2006; Wahr et al., 1998). Processed GRACE observations describe terrestrial water
storage anomalies in “equivalent water thickness” in [cm] relative to the 2004 –
2009 time-mean baseline. In other words, the water storage anomaly is the water
storage minus the long-term mean (Landerer and Swenson, 2012).
All gridded information was rescaled to the model resolution of 0.1°. The temper-
ature and GRACE data were rescaled by dividing each cell of the satellite product
into multiple cells such that the model resolution is obtained, retaining the original
value. The precipitation was rescaled by taking the average of all cells located
within each model cell.

Table 3.1: Gridded data products used in this study

ime
eriod

ime
resolution

atial
resolution

roduct
name ource

igital elevation
ma n/a n/a 0.02o GMTED (Danielson and Gesch, 2011)

reci itation 2002 – 2016 Daily 0.05o CHIRPS (Funk et al., 2014)

em erature 2002 – 2016 Monthly 0.5o CRU
(University of East Anglia Cli-
matic Research Unit et al.,
2017)

otal ater
storage 2002 – 2016 Monthly 1o GRACE

(Landerer and Swenson,
2012; Swenson, 2012; Swen-
son and Wahr, 2006)

https://grace.jpl.nasa.gov/
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Altimetry data
The altimetry data used in this study was obtained from the following sources:
the Database for Hydrological Time Series of Inland Waters (DAHITI; https:
//dahiti.dgfi.tum.de/en/) (Schwatke et al., 2015), HydroSat (http://
hydrosat.gis.uni-stuttgart.de/php/index.php) (Tourian et al., 2013),
Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS; http:
//www.legos.obs-mip.fr/soa/hydrologie/hydroweb/; see Appendix A),
and the Earth and Planetary Remote Sensing Lab (EAPRS; http://www.cse.dmu.ac.uk/
EAPRS/). In total, altimetry data was obtained for 18 virtual stations in the Lu-
angwa basin (Figure 3.1A) for the time period 2002 – 2016 from the satellite
missions Jason 1 – 3, Envisat and Saral (Table 3.2, Figure A.2 in Appendix A).

River geometry information
In the Luangwa Basin, very limited detailed in-situ information was available on the
river geometry such as cross-section and slope. For that reason, this information
was extracted from global high-resolution terrain data available on Google Earth
as done successfully in previous studies for other purposes (Pandya et al., 2017;
Zhou and Wang, 2015). This was done for each virtual station and the basin outlet.
Google Earth only provides river geometry information above the river water level.
As the Luangwa is a perennial river, parts of the cross-section remain submerged
throughout the year and are thus unknown. To limit uncertainties arising from this
issue, the cross-section geometry for each virtual station was extracted from the
Google Earth image with the lowest water levels at each individual virtual station.
The dates of these images in general fall in the dry season, with flows at the Great
East Road Bridges gauging station on the respective days ranging from 1% to 4%
relative to the maximum discharge (see Table A.3 in Appendix A for the dates of the
satellite images and the associated flows at the Great East Road Bridges gauging
station). The database underlying the global terrain images in Google Earth origi-
nate from multiple, merged data sources with varying spatial resolutions. For the
Luangwa Basin these include the Shuttle Radar Topography Mission (SRTM) with
a spatial resolution of 30 m, Landsat 8 with a spatial resolution of 15 m and the
Satellite Pour l’Observation de la Terre 4/5 (SPOT) with a spatial resolution of 2.5 –
20 m (Drusch et al., 2012; Irons et al., 2012; Smith and Sandwell, 2003).
In addition to Google Earth data, the submerged part of the channel cross-section
was surveyed in the field on April 27th 2018 near the Great East Road Bridges river
gauging station at the coordinates 30o 13’ E and 15o 00’ S (Abas, 2018) with an
Acoustic Doppler Current Profiler (ADCP).

https://dahiti.dgfi.tum.de/en/
https://dahiti.dgfi.tum.de/en/
http://hydrosat.gis.uni-stuttgart.de/php/index.php
http://hydrosat.gis.uni-stuttgart.de/php/index.php
http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/
http://www.legos.obs-mip.fr/soa/hydrologie/hydroweb/
http://www.cse.dmu.ac.uk/EAPRS/
http://www.cse.dmu.ac.uk/EAPRS/
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3.4. Hydrological model development
3.4.1. General approach
The potential of river altimetry for model calibration was tested with a process-based
hydrological model for the Luangwa river basin. This model relied on distributed
forcing allowing for spatially explicit distributed water storage calculations. The
model was run on a daily time scale for the time period 2002 to 2016. To reach
the objective of this study, the following distinct parameter identification strate-
gies were compared in a stepwise approach: (1) traditional model calibration to
observed river flow as benchmark; (2) identification of parameter sets reproducing
the seasonal water storage anomalies based on GRACE data only; (3a) Altime-
try Strategy 1: identification of parameter sets directly based on remotely sensed
water levels combined with GRACE data; (3b) Altimetry Strategy 2: identification
of parameter sets based on remotely sensed water levels by converting modelled
discharges into water levels using calibrated rating curves combined with GRACE
data; (3c) Altimetry Strategy 3: identification of parameter sets based on remotely
sensed water levels by converting modelled discharges into water levels using the
Strickler-Manning equation and including river geometry information (cross-section
and gradient) extracted from Google Earth combined with GRACE data; (4a) Water
level Strategy 1: identification of parameter sets based on daily river water level at
the catchment outlet only using the Strickler-Manning equation and including river
geometry information extracted from Google Earth combined with GRACE data; and
(4b) Water level Strategy 2: identification of parameter sets based on daily river
water level at the catchment outlet only using the Strickler-Manning equation and
including river geometry information obtained from a detailed field survey with an
Acoustic Doppler Current Profiler (ADCP) combined with GRACE data. Note that (1)
is completely independent of (2) to (4) where no discharge data was used for the
identification of parameter sets.
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Figure 3.2: Sketch of the hydrological response units including the thresholds used in this analysis for
the slope and HAND (Height Above Nearest Drainage) and including their corresponding model struc-
tures. This spatial sub-grid discretization was applied to each grid cell. Symbol explanation: precipitation
(P), effective precipitation (Pe), interception evaporation (Ei), plant transpiration (Et), infiltration into
the unsaturated root zone (Ru), drainage to fast runoff component (Rf), delayed fast runoff (Rfl), lag
time (Tlag), groundwater recharge (Rr), upwelling groundwater flux (RGW), fast runoff (Qf), groundwa-
ter/slow runoff (Qs).

3.4.2. Hydrological model structure
In this study, a process-based rainfall-runoff with distributed water accounting and
sub-grid process heterogeneity was developed on daily time-scale (Ajami et al.,
2004; Euser et al., 2015). The river basin was discretized into a grid with a spatial
resolution of 10 x 10 km2. Each model grid cell was characterized by the same
model structure and parameter sets but forced by spatially distributed, gridded in-
put data (Table 3.1). Runoff was then calculated in parallel for each cell separately.
Subsequently, a routing scheme was applied to estimate the aggregated flow in
each grid cell at each time step.
Adopting the FLEX-Topo modelling concept (Savenije, 2010) and extending it to a
gridded implementation, each grid cell was further discretised into functionally dis-
tinct hydrological response units (HRU) as demonstrated by Nijzink et al. (2016b).
Each point within a grid cell was assigned to a response class based on its position in
the landscape as defined by its local slope and “Height-above-the-nearest-drainage”
(HAND; Gharari et al., 2011; Rennó et al., 2008). Similar to previous studies (e.g.
Gao et al., 2016; Nijzink et al., 2016b), the response units plateau, hillslope, terrace
and wetland were distinguished. Reflecting earlier work (e.g. Gharari et al., 2011),
all locations with slope of > 4% were assumed to be hillslope. Locations with lower
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slopes were then either defined as wetland (HAND < 11 m), terrace (11 m ≤ HAND
< 275 m) or plateau (HAND ≥ 275 m), see Figure 3.2. Following this classification
wetlands make up 8%, terraces 41%, hillslopes 28% and plateaus 23% of the total
Luangwa River Basin area as mapped in Figure 3.1B.
Each response class consisted of a series of storage components that are linked
by fluxes. The flow generated from each grid cell at any given time step is then
computed as the area-weighted flow from the individual response units plus a con-
tribution from the common groundwater component which connects the response
units (Figure 3.2). Finally, the outflow from each modelling cell was routed to down-
stream cells to obtain the accumulated flow in each grid cell at any given time step.
For this purpose, the mean flow length of each model grid cell to the outlet was
derived based on the flow direction extracted from the digital elevation model. The
flow velocity, which was assumed to be constant in space and time, was calibrated.
With this information on the flow path length and velocity, the accumulated flow
in each grid cell was calculated at the end of each time step. The relevant model
equations are given in Table 3.3. This concept was previously successfully applied
in a wide range of environments (Fovet et al., 2015; Gao et al., 2014a; Gharari
et al., 2014; Nijzink et al., 2016b; Prenner et al., 2018).

3.4.3. Parameter selection procedures
To evaluate the information content and thus the utility of altimetry data for the
selection of feasible model parameter sets, a step-wise procedure as specified in
detail below was applied (Table 3.4). Note that given data scarcity and the re-
lated issues of epistemic uncertainties (Beven and Westerberg, 2011; McMillan and
Westerberg, 2015) and equifinality (Beven, 2006; Savenije, 2001) we did not aim to
identify the “optimal” parameter set in what is frequently considered a traditional
calibration approach. In most hydrological applications the available data have
limited strength for rigorous model tests (Clark et al., 2015; Gupta et al., 2008;
Jakeman and Hornberger, 1993). Thus, to reduce the risk of rejecting good param-
eters when they should have been accepted (Beven, 2010; Hrachowitz and Clark,
2017), we rather attempted to identify and discard the most implausible parameter
sets (Freer et al., 1996) that violate our theoretical understanding of the system or
that are inconsistent with the available data (Knutti, 2008). This allowed us to iter-
atively constrain the feasible parameter space and thus the uncertainty around the
modelled hydrograph (Hrachowitz et al., 2014). To do so, a Monte-Carlo sampling
strategy with uniform prior parameter distributions was applied to generate 5⋅10
model realizations. This random set of solutions was in the following steps used as
baseline and iteratively constrained by identifying parameter sets that do not satisfy
pre-specified criteria (see below), depending on the data type and source used.

Benchmark: Parameter selection based on observed discharge data
As benchmark, and following a traditional calibration procedure, the model was cal-
ibrated with observed daily discharge based on the Nash-Sutcliffe efficiency (ENS,Q,
Eq.3.1 in Table 3.5) using all complete hydrological years within the time period
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Table 3.3: Equations applied in the hydrological model. Fluxes [mm d 1]: precipitation (P), effective
precipitation (Pe), potential evaporation ( p), interception evaporation ( i), plant transpiration ( t),
infiltration into the unsaturated zone ( u), drainage to fast runoff component ( f), delayed fast runoff
( fl), groundwater recharge ( r for each relevant HRU and r,tot combining all relevant HRUs), upwelling
groundwater ( GW for each relevant HRU and GW,tot combining all relevant HRUs), fast runoff ( f for
each relevant HRU and f,tot combining all relevant HRUs), groundwater/slow runoff ( s), total runoff
( m). Storages [mm]: storage in interception reservoir ( i), storage in unsaturated root zone ( u),
storage in groundwater/slow reservoir ( s), storage in fast reservoir ( f). Parameters: interception
capacity ( max) [mm], maximum upwelling groundwater ( max) [mm d 1], maximum root zone storage
capacity ( u,max) [mm], splitter (W) [-], shape parameter ( ) [-], transpiration coefficient ( e) [-], time
lag ( lag) [d], reservoir time scales [d] of fast ( f) and slow ( s) reservoirs, areal weights ( HRU) [-],time
step ( ) [d]. Calibration parameters are shown in bold letters in the table below. The equations were
applied to each hydrological response unit (HRU) unless indicated differently.
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(Euser et al., 2015; Gao et al., 2014a; Gharari et al., 2014)

2002 to 2016 (Nash and Sutcliffe, 1970); these are the years starting in the fall of
2004, 2006 and 2008.
To limit the solutions to relatively robust representations of the system while al-
lowing for data and model uncertainty (e.g. Beven, 2006; Beven and Westerberg,
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2011) only parameter sets that resulted in ENS,Q ≥ 0.6 were retained as feasible.
The hydrological model consisted of 18 free calibration parameters (Table 3.4, Fig-
ure A.1 in Appendix A) whose uniform prior distributions are given in Table A.1 in
Appendix A with associated parameter constrains as summarised in Table A.2.

Parameter selection based on the seasonal water storage (GRACE)
In a next step we assumed that discharge records in the Luangwa Basin were ab-
sent. The starting assumption thus had to be that all model realizations, i.e. all
sampled parameter sets, were equally likely to allow feasible representations of the
hydrological system. In a step-wise approach, confronting these realizations with
different types of data, we sequentially identified and discarded solutions that were
least likely to provide meaningful system representations, thereby gradually nar-
rowing down the feasible parameter space.
We first identified and discarded solutions that were least likely to preserve the ob-
served seasonal water storage (𝑆tot) fluctuations. To do so, the monthly modelled
total water storage (Stot,mod = Si + Su + Sf + Ss) relative to the 2004-2009 time-
mean baseline in each grid cell was compared to water storage anomalies observed
with GRACE where this same time-mean baseline was used (Fang et al., 2016; Fo-
rootan et al., 2019; Khaki and Awange, 2019; Tang et al., 2017).
The model’s skill to reproduce the seasonal water storage, i.e. Stot, was assessed
using the Nash-Sutcliffe efficiency ENS,Stot (Eq.3.1). Note that ENS,Stot,j was com-
puted at first from the time series of Stot in each grid cell j which were then averaged
to obtain ENS,Stot. If no additional data were available, a hypothetic modeller rely-
ing on ENS,Stot to calibrate a model, may choose only the solution with the highest
ENS,Stot or allow for some uncertainty. To mimic this traditional approach but to
balance it with a sufficient number of feasible solutions to be kept for the subse-
quent steps we here identified and discarded the poorest performing 75% of all
solutions in terms of ENS,Stot as unfeasible for the subsequent modelling steps.

Parameter selection based on satellite altimetry data
Next, the remaining feasible parameter sets were used to evaluate their potential to
reproduce time series of observed altimetry applying three distinct parameter selec-
tion and model evaluation strategies. Assuming again the situation of an ungauged
basin (i.e. no time-series of river flow available), we kept for each strategy as fea-
sible the respective 1% best performing parameter sets according to the specific
performance metric associated to that strategy.

ltimetry trategy irect com arison of altimetry data to modelled
discharge In the simplest approach, we directly used altimetry data to correlate
observed water levels with modelled discharge based on the Spearman rank corre-
lation coefficient ER,WL (Spearman, 1904) using Eq.3.2 (Table 3.5). This strategy,
hereafter referred to with subscript WL, i.e. water level, requires the assumption
that the relationship between water level and discharge is monotonic. The Spear-
man rank correlation was applied successfully in previous studies to calibrate a
rainfall-runoff model to water level time series (Seibert and Vis, 2016b). As there
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Table 3.5: Equations used to calculate the model performance

ame b ective function ymbol e lanation

ash- utcliffe
efficiency NS,

∑ ( mod( ) obs( ))
∑ ( obs( ) obs)

(3.1) : variable

earman- an
correlation
coefficient

R,WL
cov( Q,mod , WL,obs)
( Q,mod) ⋅ ( WL,obs)

(3.2)
Q,mod: ranks of the

modelled discharge
WL,obs: ranks of the

observed water levels

elative error R,
| mod obs|

obs
(3.3) : variable

uclidian
distance over
multi le virtual
stations

E, , √∑ i ⋅ ( , ) (3.4)

i: relative weight of
virtual station

: model performance
metric
: parameter selection

method

uclidian
distance over
multi le
signatures

E √ (∑( NS, ) ∑( R, ) )

(3.5)

: signature
: signatures evalu-

ated with Eq.3.1 with
maximum

: signatures evalu-
ated with Eq.3.3 with
maximum

were multiple virtual stations with water level data available in this study, the ER,WL
was computed at each location simultaneously. The individual values ER,WL were
weighted based on the record length of the corresponding virtual stations and then
combined into the Euclidean distance as aggregate metric DE,R,WL with Eq.3.4.

ltimetry trategy ating curves In the second strategy, as successfully
applied in previous studies (Getirana and Peters-Lidard, 2013; Jian et al., 2017),
model parameters were selected based on the models’ ability to reproduce water
levels by converting the modelled discharge to water levels, assuming these two
are related through a rating curve in the form of a power function (Rantz, 1982):

𝑄 = 𝑎 ⋅ (ℎ − ℎ ) (3.6)

Where ℎ is the water level, ℎ0 a reference water level, and 𝑎 and 𝑏 are two addi-
tional free calibration parameters, determining the shape of the function and lump-
ing the combined influences of different river cross-section characteristics, such as
geometry or roughness. Note, that here for each virtual station ℎ0 is the elevation
that corresponds to the water level of the Google Earth image with the lowest flow
available, corresponding to the assumption of no-flow at that time. This strategy
is hereafter referred to as with subscript RC, i.e. rating curve. As river-cross sec-
tions vary in space, each of the 18 virtual stations would require an individual set of
these parameters 𝑎 and 𝑏. To limit the number of additional calibration parameters,
we here classified the river-cross sections of the 18 virtual stations into 4 groups



3

28 3. Altimetry-based parameter set identification

(Figure 3.1A and Figure 3.3). For cross-sections within each class, i.e. geometri-
cally similar, the same values for 𝑎 and 𝑏 were used, resulting in 4 sets of 𝑎 and
𝑏 and thus a total of 8 additional calibration parameters. The river cross-sections
were extracted from global high-resolution terrain data available on Google Earth
(see Section 3.3). The modelled river water levels were evaluated against the ob-
served water levels at each virtual station using the Nash-Sutcliffe efficiency ENS,RC
(equivalent to Eq.3.1 in Table 3.5), weighted based on the record length of the cor-
responding virtual stations and then combined into the Euclidean distance DE,NS,RC
as an aggregated performance metric (Eq.3.4).

Figure 3.3: River profiles at 18 virtual stations (VS) divided into four groups. The reference level is equal
to the lowest water level in the river profile for each location separately.

ltimetry trategy tric ler- anning e uation As a third strategy, we
converted the modelled discharge to river water levels using the Strickler-Manning
equation (Manning, 1891):

𝑄 = 𝑘 ⋅ 𝑖 / ⋅ 𝐴 ⋅ 𝑅 / (3.7)

Where 𝑘 is a roughness parameter, here treated as free calibration parameter and
assumed constant for all virtual stations, 𝑖 is the mean channel slope, extracted
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here over a distance of 10 km, while 𝐴 and 𝑅 are the river cross-section area and
hydraulic radius. Assuming trapezoidal cross-sections (see Figure 3.4 as illustrative
example), 𝐴 and 𝑅 were calculated for each cross section according to:

𝐴 = 𝐵 ⋅ 𝑑 + 12 ⋅ 𝑑 ⋅ (𝑖 + 𝑖 ) (3.8)

𝑅 = 𝐴
𝐵 + 𝑑 ⋅ ((1 + 𝑖 ) / + (1 + 𝑖 ) / ) (3.9)

𝑑 = ℎ − ℎ (3.10)

Where 𝐵 is the assumed river bed width, 𝑖1 and 𝑖2 are the river bank slopes, 𝑑 the
water depth, ℎ the water level and ℎ0 the reference water level, here assumed to
be the lowest observed river water level to limit the number of calibration parame-
ters. In contrast to previous studies that use a similar approach but relied on locally
observed river-cross sections (Hulsman et al., 2018; Liu et al., 2015; Michailovsky
et al., 2012), here both, the river bed geometries (Figure 3.3) at and the channel
slopes upstream of the 18 virtual stations were computed using high-resolution ter-
rain data retrieved from Google Earth (see Section 3.3). Similar data sources were
already used in previous studies to extract the river geometry (e.g. Gichamo et al.,
2012; Michailovsky et al., 2012; Pramanik et al., 2010). The reader is referred to
Table A.3 in Appendix A for the values of the variables for each virtual station. This
strategy is hereafter referred to as with subscript SM, i.e. Strickler-Manning.
Equivalent to above, the modelled river water levels were then evaluated against
the observed water levels at each virtual station using the Nash-Sutcliffe efficiency
ENS,SM (equivalent to Eq.3.1), weighted based on the record length of the corre-
sponding virtual stations and then combined into the Euclidean distance DE,NS,SM
as an aggregated performance metric (Eq.3.4).

Figure 3.4: Example of approximating a trapezoidal cross-section (black) into the Google Earth based
cross-section data (red) for virtual station “VS4” (see also Figure 3.1A and Figure 3.3). The reference
level is equal to the lowest water level in the river profile.
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Parameter selection based on daily river water level at the basin outlet
For the previous parameter identification strategy (Altimetry Strategy 3), river ge-
ometry information was extracted from high-resolution terrain data retrieved from
Google Earth which have a low accuracy. Unfortunately, more accurate cross-
section information from in-situ surveys was only available at the Great East Road
Bridge gauging station, i.e. the basin outlet, where, in turn, no altimetry observa-
tions were available. That is why water level time series were used to illustrate the
influence of the cross-section accuracy.
As shown in Figure 3.5, the Google Earth based above-water cross-section at the
basin outlet corresponded in general well to the field survey considering that satel-
lite images have limited spatial resolution. However, the in-situ measurement also
illustrated the relevance of the submerged part of the channel cross-section at that
location on the day the image was taken (June 2nd 2008).

Water level trategy iver geometry information e tracted from
oogle arth First, cross-section information was extracted from global high-

resolution terrain data available on Google Earth (subscript GE) and used with the
Strickler-Manning equation (Eq.3.7) to convert the modelled discharge to water
levels. This was combined with GRACE observations to restrict the parameter
space in an equivalent way as in the previous section. The model performance
with respect to river water levels was calculated with the Nash-Sutcliffe efficiency
ENS,SM,GE (Eq.3.1).

Figure 3.5: River cross-section at Luangwa Bridge obtained from Google Earth and detailed field survey
including the river water level on June 2nd 2008. Field measurements were done with an Acoustic
Doppler Current Profiler (ADCP) on April 27th 2018 at the coordinates 30o 13’ E and 15o 00’ S; the
satellite image was taken on June 27th 2008. The reference level is equal to the lowest elevation level
measured with the ADCP.
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Table 3.6: Overview of flow signatures used in this study

lo
signature lanation unction odel erformance e uation

Daily flow
time series - NS,Q

∑ ( mod,t obs,t)
∑ ( obs,t obs)

log Logarithm of daily
flow time series - NS,logQ

∑ ( log,mod,t log,obs,t)
∑ ( log,obs,t log,obs)

Flow duration
curve - NS,FDC

∑ ( sort,mod,t sort,obs,t)
∑ ( sort,obs,t sort,obs)

log Logarithm of flow
duration curve - NS,logFDC

∑ ( log,sort,mod,t log,sort,obs,t)
∑ ( log,sort,obs,t log,sort,obs)

dry Runoff coefficient
during dry periods dry

dry

dry
R,RCdry

| dry,mod dry,obs |

dry,obs

et Runoff coefficient
during wet periods wet

wet
wet

R,RCwet
| wet,mod wet,obs |

wet,obs
Autocorrelation
function

∑ ( i )⋅( i t )
∑ ( i ) NS,AC

∑ ( mod,t obs,t)
∑ ( obs,t obs)

Rising limb
density

peak
r

R,RLD
| mod obs |

obs

Water level trategy iver geometry information obtained from a de-
tailed field survey Second, cross-section information obtained from a detailed
field survey with an ADCP (subscript ADCP) was used with the Strickler-Manning
equation (Eq.3.7) to convert the modelled discharge to water levels. This was com-
bined with GRACE observations to restrict the parameter space in an equivalent
way as in the previous section. The model performance with respect to river water
levels was calculated with the Nash-Sutcliffe efficiency ENS,SM,ADCP (Eq.3.1).

3.4.4. Model evaluation
For each calibration strategy, the performance of all model realizations was evalu-
ated post-calibration with respect to discharge using seven additional hydrological
signatures (e.g. Euser et al., 2013; Sawicz et al., 2011) to assess the skill of the
model to reproduce the overall response of the system and thus the robustness of
the selected parameters (Hrachowitz et al., 2014). The signatures included the log-
arithm of the daily flow time series (hereafter referred to with the subscript logQ),
the flow duration curve (FDC), its logarithm (logFDC), the mean seasonal runoff co-
efficient during dry periods (April – September; RCdry), the mean seasonal runoff
coefficient during the wet periods (October – March; RCwet), the autocorrelation
function of daily flow (AC) and the rising limb density of the hydrograph (RLD). An
overview of these signatures can be found in Table 3.6, and more detailed expla-
nations in Euser et al. (2013) and references therein. As performance measures
for the model to reproduce the individual observed signatures the Nash-Sutcliffe
efficiency (ENS,logQ, ENS,FDC, ENS,logFDC, ENS,AC; equivalent to Eq.3.1 in Table 3.5)
and a metric based on the relative error (ER,RCdry, ER,RCwet, ER,RLD; equivalent to
Eq.3.3) were used (Euser et al., 2013). The signatures where combined, with equal
weights, into one objective function, which was formulated based on the Euclidian
distance 𝐷E (Eq.3.5) so that a value of 1 indicates a “perfect” model (Schoups et al.,
2005).
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3.5. Results and discussion
3.5.1. Parameter selection and model performance
The complete set of all model realizations unsurprisingly results in a wide range of
model solutions (Figure 3.6A), with ENS,Q ranging from -6.4 to 0.78 and with the
combined performance metric of all signatures DE ranging from -334 to 0.79 (Figure
3.7). With respect to the individual flow signatures, the model performance varied
such that the largest range was found in ENS,Q and smallest in ENS,AC as visualised
in Figure 3.7 and tabulated in Table A.4 in Appendix A. Although containing relatively
good solutions, this full set of all realizations clearly also contained many parameter
sets that considerably over- and/or underestimate flows.

Benchmark: Parameter selection based on observed discharge data
For the benchmark case, applying the traditional model calibration approach using
discharge data, this parameter selection and calibration strategy results in a rea-
sonable model performance, in which the seasonal but also the daily flow dynamics
and magnitudes are in general well captured as shown in Figure 3.6B. For some
years, a number of solutions overestimate flows in the wet season and underes-
timate flows during the dry season, when the river becomes a small meandering
stream with almost annual morphological changes which is difficult to meaningfully
observe. The best performing solution has a calibration objective function ENS,Q,opt
= 0.78 (5/95th percentiles of all feasible solutions ENS,Q,5/95 = 0.61 – 0.75; Fig-
ure 3.7 and Table 3.7). For the post-calibration evaluation of all retained solutions,
it was observed that most signatures are well reproduced by the majority of so-
lutions, except for the dry season runoff coefficient (RCdry; Figure 3.7 and Table
A.4 in Appendix A). This resulted in aggregated model performances, combining
all signatures, of DE,5/95 = 0.55 – 0.76 with the above identified best performing
solution (i.e. ENS,Q,opt) reaching a value of DE,opt = 0.60.
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Figure 3.6: Range of model solutions. The left panel shows the hydrograph and the right panel the flow
duration curve in logarithmic scale of the recorded (black) and modelled discharge: the line indicates the
solution with the highest calibration objective function ( NS or E) and the shaded area the envelope of
the solutions retained as feasible. A) All model solutions included; solutions retained as feasible based
on B) discharge (i.e. “traditional calibration”; ENS,Q), C) GRACE (ENS,Stot), and D) Altimetry Strategy 1
only (DE,R,WL).The grey bars in the left subplot D indicate the number of altimetry observations available
for each day.
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Figure 3.8: Range of model solutions. The left panel shows the hydrograph and the right panel the flow
duration curve in logarithmic scale of the recorded (black) and modelled discharge: the line indicates the
solution with the highest calibration objective function ( NS or E) and the shaded area the envelope of
the solutions retained as feasible. Solutions retained as feasible based on E) Altimetry Strategy 2 using
rating curves for the discharge – water level conversion (DE,NS,RC), F) Altimetry Strategy 3 using the
Strickler-Manning equation for the discharge – water level conversion (DE,NS,SM), and G) Daily in-situ
water level using the Strickler Manning equation for the discharge – water level conversion with cross-
section information retrieved from Google Earth (Water level strategy 1; ENS,SM,GE) or H) obtained
from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP; Water level strategy 2;
ENS,SM,ADCP). The grey bars in the left subplots E and F indicate the number of altimetry observations
available for each day.
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Table 3.7: Summary of the model results: elimination of unfeasible parameter sets and detection of
optimal parameter set according to each parameter identification strategy including the corresponding
model performance range ( NS,Q, E) indicating the model’s skill to reproduce the discharge during
the benchmark time period. For each strategy, the model efficiency for the optimal parameter set is
summarised together with the corresponding performance metrics with respect to discharge ( NS,Q,opt,
E,opt). For all parameter sets retained as feasible, the maximum ( NS,Q,max, E,max) and 5/95 per-

centiles ( NS,Q,5/95, E,5/95) of all performance metrics with respect to discharge are summarised. Data
sources used for the parameter set selection: 1) All parameter sets (no data), 2) Discharge, 3) GRACE,
4) Altimetry combined with GRACE (Altimetry Strategy 1), 5) Altimetry data using rating curves combined
with GRACE (Altimetry Strategy 2), 6) Altimetry data using the Strickler – Manning equation combined
with GRACE (Altimetry Strategy 3), and 7) Daily river water level combined with GRACE using the Strick-
ler – Manning equation and cross-section information retrieved from Google Earth (Water level Strategy
1), or 8) obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP, Water
level Strategy 2).

timal arameter set easible arameter sets

odel efficiency 𝑬NS,Q,opt
(𝑫E,opt)

𝑬NS,Q,max
(𝑬NS,Q,5/95)

𝑫E,max
(𝑫E,5/95)

ll arameters
sets - - 0.78 (-3.8 – 0.68) 0.79 (-1.4 – 0.71)

ischarge NS,Q,opt = 0.78 0.78 (0.60) 0.78 (0.61 – 0.75) 0.79 (0.55 – 0.76)
easonal ater

storage NS,Stot,opt = 0.56 -1.4 (-0.18) 0.78 (-2.3 – 0.38) 0.77 (-0.58 – 0.62)

ltimetry trat-
egy om are al-
timetry to discharge

E,R,WL,opt = 0.76 0.65 (0.63) 0.65 (-2.9 – 0.10) 0.66 (-0.83 – 0.50)

ltimetry trat-
egy ating curves E,NS,RC,opt = -0.50 -0.31 (0.27) 0.51 (-2.6 – 0.25) 0.66 (-0.72 – 0.56)

ltimetry trat-
egy tric ler-
anning e uation

E,NS,SM,opt = -1.4 0.60 (0.71) 0.63 (-0.31 – 0.50) 0.75 (0.36 – 0.67)

Water level
trategy satellite

based cross-section
NS,SM,GE,opt = -1.8 0.65 (0.77) 0.77 (-0.48 – 0.60) 0.77 (0.28 – 0.70)

Water level trat-
egy in-situ cross-
section

NS,SM,ADCP,opt = 0.79 0.14 (0.55) 0.77 (-1.1 – 0.50) 0.77 (0.03 – 0.67)

Parameter selection based on the seasonal water storage (GRACE)
Starting from the set of all model realizations (Figures 3.6A and 3.7), and assuming
no discharge observations are available, we identified and discarded parameter sets
as unfeasible when they did not meet the previously defined criteria to reproduce
the seasonal water storage (ENS,Stot; see Section 3.4.3). The range of random
model realizations with respect to the total water storage is visualised in Figure 3.9.
The sub-set of solutions retained as feasible resulted in a significant reduction in
the uncertainty around the modelled variables, which is illustrated by the narrower
5/95th percentiles of the solutions compared to the set of all realizations, as shown
in Figure 3.6C. The feasible solutions with respect to the GRACE reached ENS,Stot,opt
= 0.56 (ENS,Stot,5/95 = 0.45 – 0.52) (Figure 3.7, Table 3.7). These parameter sets
were then used to evaluate the model for the years 2004, 2006, 2008 used in the
benchmark case. While the flow dynamics are captured relatively well, many of the
retained solutions considerably overestimated flows across all seasons (Figure 3.6C)
resulting in a decreased performance with respect to the individual flow signatures,
only the dry runoff coefficient (ER,RCdry) improved significantly compared to the
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benchmark as shown in Table A.4 in Appendix A and Figure 3.7. The parameter
set associated with the best performing model with respect to GRACE (ENS,Stot,opt)
resulted for the benchmark period in a ENS,Q = -1.4 (ENS,Q,5/95 = -2.3 – 0.38)
and the corresponding DE,opt = -0.18 (DE,5/95 = -0.58 – 0.62) with respect to
discharge (Figure 3.7, Table 3.7). As illustrated in Figure 3.7 and Figure 3.6C, many
parameter sets that resulted in implausible representations of the seasonal signals
were eliminated. However, as also indicated by the rather modest values of ENS,Q
and DE with respect to discharge, the data source used here obviously contained
only limited information to avoid the over predictions of flow during all wet seasons.
The sequence of applying first GRACE and then altimetry, or the reverse, did not
affect the identification of feasible parameter sets when using altimetry data as
shown in Figure A.8 in Appendix A. However, it did affect the selection of the “best”
parameter set.

Figure 3.9: Range of random model realizations with respect to the total water storage (grey) including
the observation according to GRACE (black)

Parameter selection based on satellite altimetry data
ltimetry trategy irectly com are altimetry data to modelled dis-

charge The first approach, Altimetry Strategy 1, resulted in an overestimation
of in particular intermediate and low flows as shown in Figure 3.6D. The feasible
solutions reached an optimum of DE,R,WL,opt = 0.76 (DE,R,WL,5/95 = 0.74 – 0.75)
with respect to altimetry observations. Focusing on the model’s skill to reproduce
the observed discharge using these feasible parameter sets for the benchmark pe-
riod, the parameter set associated with the best performing model with respect to
altimetry (DE,R,WL,opt) resulted in a ENS,Q = 0.65 (ENS,Q,5/95 = -2.9 – 0.10) and
DE = 0.63 (DE,5/95 = -0.83 – 0.50) with respect to discharge (Figure 3.7, Table
3.7). Hence, the parameter set with the highest model performance with respect
to altimetry, did not perform best with respect to discharge as shown in Table 3.7
and Figure A.7 in Appendix A. While the optimum model performance with respect
to discharge was similar to the benchmark, the very wide range in the 5/95th per-
centiles of the solutions indicated that this strategy has only limited potential to
identify implausible parameter sets. This was also the case with respect to the
individual flow signatures as shown in Figure 3.7 and Table A.4 in Appendix A.
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ltimetry trategy ating curves The second approach, Altimetry Strategy
2, also resulted in an overestimation of the flows (Figure 3.8E). The feasible solu-
tions reached an optimum of DE,NS,RC,opt = -0.50 (DE,NS,RC,5/95 = -1.0 – -0.77) with
respect to altimetry observations. As example, Figure A.6A in Appendix A visualises
the simulated and observed river water level at Virtual Station 4 (Figure 3.1) where
the model significantly underestimated the stream levels. Focusing on the model’s
skill to reproduce the discharge using these parameter sets for the benchmark pe-
riod, the parameter set associated with the best performing model with respect to
altimetry (DE,NS,RC,opt) resulted in ENS,Q = -0.31 (ENS,Q,5/95 = -2.6 – 0.25) and
DE = 0.27 (DE,5/95 = -0.72 – 0.56) with respect to discharge (Figure 3.7, Table
3.7). Hence similar to Altimetry Strategy 1, the best parameter set with respect to
altimetry, did not perform best with respect to discharge (Table 3.7 and Figure A.7
in Appendix A). The optimum model performance with respect to discharge was
worse compared to the benchmark, and the wide range in the 5/95th percentiles of
the solutions indicated this strategy poorly identified the feasible parameter sets.
This was also the case with respect to the individual flow signatures as shown in
Figure 3.7 and Table A.4 in Appendix A. Only the dry runoff coefficient (ER,RCdry)
improved significantly compared to the benchmark.

ltimetry trategy tric ler- anning e uation The third approach, Al-
timetry Strategy 3, resulted in improved flow predictions compared to the other
two strategies using altimetry data (Figure 3.8F). Even though the feasible solu-
tions exhibit a very poor ability to reproduce the altimetry data, with an optimum
of DE,NS,SM,opt = -1.4 (DE,NS,SM,5/95 = -3.8 – -1.8), the model’s skill to reproduce
the discharge for the benchmark period using these parameter sets, significantly
increased compared to the two alternative strategies. As example, Figure A.6B in
Appendix A visualises the simulated and observed river water level at Virtual Sta-
tion 4 (Figure 3.1) where the model simulated the stream levels relatively well. The
parameter set associated with the best performing model with respect to altimetry
(DE,NS,SM,opt) resulted in ENS,Q = 0.60 (ENS,Q,5/95= -0.31 – 0.50) and DE = 0.71
(DE,5/95 = 0.36 – 0.67) with respect to discharge (Figure 3.7, Table 3.7). While the
optimum model performance with respect to discharge was worse compared to the
benchmark, the 5/95th percentiles of the solutions were significantly constrained
by the removal of many implausible parameter sets. This was valid for the perfor-
mance with respect to the individual flow signatures (ENS, and ER, ) and overall
flow response (DE) as shown in Figure 3.7 and Table A.4 in Appendix A. This indi-
cated that, although the model performance with respect to altimetry observations
was low, this strategy contains valuable information to considerably constrain the
feasible solution space.

Parameter selection based on daily river water level at the basin outlet
Water level trategy iver geometry information e tracted from
oogle arth The parameter identification strategy “Water level Strategy 1”,

using cross-section information extracted from Google Earth, resulted in a poor
simulation of the river water level (Figure 3.10A) with an optimal objective function
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value with respect to river water levels of ENS,SM,GE,opt = -1.8 (ENS,SM,GE,5/95 =
-6.8 – -3.1). Focusing on the model’s skill to reproduce the discharge using these
feasible parameter sets for the benchmark period, the parameter set associated
with the best performing model with respect to river water levels (ENS,SM,GE,opt)
resulted in ENS,Q = 0.65 (ENS,Q,5/95 = -0.48 – 0.60) and DE = 0.77 (DE,5/95 = 0.28
– 0.70) with respect to discharge (Figure 3.7, Table 3.7). The model performance
with respect to the remaining signatures as visualised in Figure 3.7 are tabulated in
Table A.4 in Appendix A. As shown in Figure 3.8G, the discharge was overestimated
in particular during intermediate and low flows.

Water level trategy iver geometry information obtained from a de-
tailed field survey The parameter identification strategy “Water level Strategy
2”, using cross-section information obtained from a detailed field survey, resulted
in improved river water level simulations (compare Figure 3.10A and B) with an
optimal objective function value with respect to river water levels of ENS,SM,ADCP,opt
= 0.79 (ENS,SM,ADCP,5/95 = 0.60 – 0.74). The parameter set associated with the
best performing model with respect to river water levels (ENS,SM,ADCP,opt) resulted
in ENS,Q = 0.14 (ENS,Q,5/95 = -1.1 – 0.50) and in DE = 0.55 (DE,5/95 = 0.03 – 0.67)
with respect to discharge (Figure 3.7, Table 3.7); the model performance with re-
spect to the remaining signatures as visualised in Figure 3.7 are tabulated in Table
A.4 in Appendix A.
Compared to using river geometry information extracted from Google Earth (Water
level Strategy 1), the overall model performance with respect to discharge did not
increase since the parameter space was already restricted using GRACE data. How-
ever, the modelled flow duration curve during intermediate and low flows (compare
Figure 3.8G with H) and rating curve (Figure 3.11) improved significantly when using
more accurate geometry information obtained from a detailed field survey cover-
ing the cross-section that is submerged most of the year which is thus unlikely to
be captured by satellite based observations. Note, that the in-situ cross-section
information was limited to the submerged part during the time of measurement.
The remaining part (water levels > 5 m) was extrapolated which is likely to explain
the larger discrepancies during high flows visible in the flow duration curve (Figure
3.8H).

3.5.2. Number of virtual stations used for model calibration
and evaluation

In this study, altimetry data was available at 18 virtual stations. However, would the
model performance change if more or less virtual stations were used? To answer
this question, n random stations were selected for model calibration; the remain-
ing stations were used for cross-validation (Garavaglia et al., 2017; Gharari et al.,
2013; KlemeŠ, 1986). This was repeated to cover all combinations of n stations
and for n = 1, 2 … 17. When applying Strategy 3 using altimetry data with the
Strickler-Manning equation, this analysis revealed that when increasing the num-
ber of calibration stations, the model calibration performance DE,NS,SM gradually
decreased, but the ability to meaningfully reproduce the remaining observations
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Figure 3.10: Range of model solutions. The left panel shows the hydrograph and the right panel the flow
duration curve of the recorded (black) and modelled discharge: the line indicates the solution with the
highest calibration objective function (ENS) and the shaded area the envelope of the solutions retained
as feasible. Solutions were retained as feasible based on daily water level time series at the basin outlet
using the Strickler-Manning equation for the discharge – water level conversion; the cross-section was
A) extracted from Google Earth (Water level Strategy 1), or B) obtained from a detailed field survey with
an Acoustic Doppler Current Profiler (ADCP, Water level Strategy 2).

Figure 3.11: Discharge - water level graphs for the recorded (black) and modelled discharge and stream
levels with the optimal model performance (ENS) using the Strickler Manning equation for the discharge
– stream level conversion with cross-section information A) extracted from Google Earth (Water level
Strategy 1), or B) obtained from a detailed field survey with an Acoustic Doppler Current Profiler (ADCP,
Water level Strategy 2).

which were not used for calibration increased significantly (Figure 3.12). Similar
results were obtained for Strategies 1 and 2 (compare Figure 3.12 with Figures
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A.3 and A.4 in Appendix A). Also the model performance with respect to discharge
increased when using more virtual stations with an optimum at 7 – 15 stations
depending on the calibration strategy (Figure A.5 in Appendix A). This provides ev-
idence that in spite of reduced calibration performance, the simultaneous use of
multiple virtual stations can contribute towards more plausible selections of model
parameter sets and thus increase the model realism.

Figure 3.12: Influence of the number of virtual stations used for A) model calibration and B) evaluation
on the model performance DE,NS,SM applying Altimetry Strategy 3.

3.5.3. Uncertainties and limitations
In the absence of discharge data for hydrological model calibration as commonly the
case in poorly or ungauged regions, freely and globally available remotely sensed
stream water levels could provide the opportunity to fill this gap as illustrated in
this study, as well as in previous studies (e.g. Michailovsky and Bauer-Gottwein,
2014; Pereira-Cardenal et al., 2011; Sun et al., 2012). However, there are several
limitations to the approach proposed in this study using altimetry for model cali-
bration.
First, river altimetry data are prone to large uncertainties which increase for smaller
river widths as a result of back-scatter effects of the surrounding topography (Bian-
camaria et al., 2017; Domeneghetti et al., 2015; Sulistioadi et al., 2015). Too
small rivers could even be missed altogether. In this study, the Luangwa river
becomes a small meandering stream in the dry season resulting in larger altimetry
uncertainties. Unfortunately, this uncertainty could not be estimated for the virtual
stations used in this study due to data limitations. However, in previous studies
in the Zambezi Basin, the RMSE relative to in-situ stream levels ranged between
0.32 m and 0.72 m using Envisat (Michailovsky et al., 2012). Improving altimetry
observations such that the uncertainties decrease would improve the identification
of feasible parameter sets and simulation of stream levels and flow. However,
comparison results between the three altimetry based calibration strategies are
not expected to change since the same altimetry data were used. In other words,
Altimetry Strategy 3 is still expected to perform best when decreasing the uncer-
tainties in the altimetry observations. Second, large uncertainties in the forcing
data (precipitation and temperature) with respect to the spatial-temporal variations
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should not be ignored. This could compromise comparison results between mod-
elled river water levels and altimetry within the basin since it has a low temporal
resolution (10 or 35 days). Bias in the precipitation data affects storage calculations
and hence the identification of feasible parameter sets based on GRACE (Le Coz
and van de Giesen, 2020). This could explain why the flows were frequently
overestimated when using GRACE only. In addition, precipitation bias could be
compensated through calibration parameters introduced for the discharge – water
level conversion. Therefore, such parameters should be constrained as much as
possible. There are also data uncertainties in the cross-sections and river gradients
extracted from high-resolution terrain data available on Google Earth due to its
limited spatial resolution, but more importantly since no information is available
below the water surface.
Further, GRACE observations are prone to uncertainties as a result of data (post-)
processing including for example data smoothening (Blazquez et al., 2018b; Lan-
derer and Swenson, 2012; Riegger et al., 2012) causing leakage between neigh-
bouring cells of 1° (≈ 111 km) which are thus not completely independent from
each other. Additionally, GRACE observations are more accurate for large areas.
Depending on the applied processing scheme, the error is about 2 cm for basins
with an area of around 63 000 km2 (Landerer and Swenson, 2012; Vishwakarma
et al., 2018). Also note that due to the coarse temporal resolution, monthly av-
eraged GRACE observations are dominated by slow changing processes such as
the groundwater and soil moisture system and seasonal variations reflected in
all storage components. In addition, open water bodies or wetlands could affect
GRACE observations if they are located in or near the basin, for example within a
radius of about 300 km which is the distance often used for data smoothening. In
this study, several open water bodies or wetlands were located ≤300 km of the
Luangwa basin such as Lake Malawi, Kafue Flats, Cahora Bassa reservoir, Kariba
reservoir, Bangweulu and Tanganyika. These open water bodies and wetlands had
a limited impact on the GRACE observations due to limited fluctuations or different
temporal variation as illustrated in Figure 3.13 for the Cahora Bassa reservoir.
These uncertainties in the GRACE observations could influence the identification of
plausible parameter sets. For example feasible parameter sets could be discarded
incorrectly which could distort results obtained by calibrating with respect to al-
timetry and GRACE simultaneously. However, the comparison between the three
altimetry based calibration strategies is not expected to change since the same
GRACE data were used. In other words, Altimetry Strategy 3 is still expected to
perform best when considering these uncertainties.
Uncertainties were not only introduced by the data, but also as a result of as-
sumptions and simplifications. First, the reference level ℎ0 was assumed to be
equal to the lowest river water level observed to limit the number of calibration
parameters (Altimetry Strategy 2 and 3, Water level Strategy 1 and 2). However,
uncertainties in the altimetry observations as explained previously influence ℎ0 esti-
mates which results in a bias between the observed and simulated stream levels in
Altimetry Strategies 2 and 3. Second, the roughness was assumed to be constant
in time, over the entire cross-section and for all virtual stations throughout the
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basin (Altimetry Strategy 3). However, this roughness can vary between 15 – 50
m1/3 s 1 for natural rivers (Chow, 1959; Vatanchi and Maghrebi, 2019) changing
the simulated stream levels between 42% – 75% in the Luangwa Basin with the
low flows being the most sensitive. Third, all 18 virtual stations were grouped
based on their cross-section similarity to limit the number of calibration parameters
(Altimetry Strategy 2), but differences within each group remain such that the
calibration parameters related to the rating curve varies slightly for each virtual
station within a group. Fourth, the assumption of a constant flow velocity in space
and time affects the timing of the simulated flow and stream levels influencing the
comparison between model results and altimetry observations (all strategies).
Another limitation is the missing flow volume information when directly using
(satellite based) river water levels for model calibration, using the Spearman Rank
Correlations as model performance metric (Altimetry Strategy 1; Seibert and Vis,
2016a). This resulted here in an overestimation of intermediate and low flows due
to the non-linear relation between stream levels and flows. In contrast, when con-
verting the discharge to stream water levels, flow volume information was included
at the cost of introducing additional calibration parameters (Altimetry Strategy 2
and 3), thereby increasing the degrees-of-freedom and thus the potential for pa-
rameter equifinality in the model (Beven, 2006; Sikorska and Renard, 2017; Sun
et al., 2012).
Furthermore, it was assumed the Nash-Sutcliffe efficiency contained sufficient
valuable information to describe the model performance with respect to river wa-
ter level and total water storage when identifying feasible parameter sets. This
performance measure is sensitive to the sample size, outliers, bias and time-offset
(McCuen Richard et al., 2006). Unfortunately, simulated discharge and stream
levels are prone to bias uncertainties as a result of spatiotemporal bias in the
rainfall (Le Coz and van de Giesen, 2020). In addition, altimetry observations have
a limited sample size for several virtual stations (Table 3.2) and are prone to bias
due to uncertainties in the reference level ℎ0 as mentioned before. Moreover, a
time-offset in the simulated flow can occur as a result of rainfall uncertainties. As
comparison, the model performance with respect to altimetry only reached up to
DE,NS,SM = -1.3 for Altimetry Strategy 3, while it reached up to ENS,SM,GE = 0.61
with respect to daily in-situ stream levels for Water level Strategy 1. Therefore,
additional study is recommended to confirm this assumption and to assess which
performance metric(s) would be most suitable. The model performance with re-
spect to discharge was evaluated with respect to multiple hydrological signatures
simultaneously (Table 3.6) to assess the model’s skill to reproduce the internal
dynamics of the system. Even though a few of these signatures have some over-
lapping information content (McMillan et al., 2017), each signature also contains at
least some additional information not included in the other signatures. In general,
the ambition is to represent a hydrological system as good as possible in a model
which critically required that the model exhibits sufficient ability to simultaneously
reproduce multiple flow signatures (Euser et al., 2013; Gupta et al., 2008; Hra-
chowitz et al., 2014).
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Figure 3.13: Temporal correlation of the GRACE observations for the cell in which the virtual station
for Cahora Bassa is located (horizontal axis) and for A) all cells within an area surrounding the virtual
station with a radius of 3 degree (GRACE area of influence, vertical axis, black), and B) the altimetry
observation at Cahora Bassa (vertical axis, blue). The 1:1 line is visualised in red. The relatively strong
temporal correlation between the GRACE cells could be a result of the strong seasonality in this area.

3.5.4. Comparison with previous studies
Previous studies have successfully used river altimetry data to calibrate and eval-
uate rainfall-runoff models using a few virtual stations (Getirana, 2010; Getirana
et al., 2010; Liu et al., 2015; Sun et al., 2012). In these studies, the modelled dis-
charge was converted to stream levels by means of a hydraulic model or empirical
relations. Our results support several previous findings and added a number of
new ones.
Similar to previous studies, the rainfall-runoff model reproduced river flow relatively
well when calibrating on remotely sensed stream water levels preferably at several
virtual stations simultaneously, but discharge based calibration results performed
significantly better (Getirana, 2010). Thus, while river altimetry data cannot fully
substitute discharge observations, they at least provide an alternative data source
that holds information value where no reliable discharge data are available. In
addition, our results suggest that in spite of the typically limited temporal reso-
lution of altimetry observations, these data, when using multiple virtual stations
simultaneously, provide enough information to select meaningful model parameter
sets (Getirana, 2010; Seibert and Beven, 2009).
Strikingly, only limited studies combined altimetry with GRACE observations in the
calibration procedure (Kittel et al., 2018). As altimetry observations only describe
water level variations with no information on the flow amounts, GRACE provides
additional valuable information to constrain the river discharge by improving the
rainfall runoff partitioning as demonstrated in previous studies (Bai et al., 2018;
Dembélé et al., 2020; Rakovec et al., 2016). Combining both data sources in the
calibration procedure allowed for a more accurate identification of feasible param-
eter sets. The model performance range with respect to discharge improved from
DE,5/95 = -8.4 – 0.77 when using only altimetry to DE,5/95 = 0.19 – 0.75 when
combining GRACE and altimetry for Altimetry Strategy 3 (Figure A.8 in Appendix
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A).
In contrast to previous studies, altimetry data originated from five different satel-
lite missions rather than a single one. As a result, altimetry data was available
at 18 locations for the time period 2002 to 2016. This gave the opportunity to
analyse the effect of combining different numbers of stations for calibration and
evaluation. This study illustrated that better predictions can be achieved when
using more virtual stations for calibration. Furthermore, this study demonstrated
that in particular the combination of altimetry with information on river geometry
(cross section, gradient) proved beneficial for the selection of feasible parameter
sets within relatively narrow bounds comparable to the benchmark using discharge.
Using more accurate cross-section information obtained from a detailed field survey
rather than Google Earth based estimates, improved the water level simulations,
modelled rating curve and discharge simulations during intermediate and low flows
significantly for which on-site cross-section data was available. That is why it is
recommended to acquire accurate cross-section information on locations concur-
ring with altimetry overpasses (not done is this study).

3.5.5. Opportunities for future studies
For future studies, it will be interesting to improve Altimetry Strategy 3 using ad-
ditional data sources. For instance, the combination of altimetry observations with
river width estimates derived from Landsat or Sentinel-1/2 (Hou et al., 2018; Pekel
et al., 2016) may bear some potential as the combination of the two different
hydraulic variables complements each other and increases the temporal sampling
(Huang et al., 2018; Sichangi et al., 2016; Tarpanelli et al., 2017). For instance,
during high flows river width estimates can be more accurate than altimetry ob-
servations especially when floodplains are inundated and small water level changes
cause large river width changes. Alternatively, the altimetry observations used here
could be combined with river surface water level slope estimates based on CryoSat
observations which provide water level information at lower temporal resolution
(every 369 days), but higher spatial resolution (equatorial inter-track distance of
7.5 km) (Jiang et al., 2017; Schneider et al., 2017). This allows for the estimation
of the energy gradient based on stream levels as required in the Strickler-Manning
equation, instead of the bed slope based on topography, which proved to be a good
first estimate in absence of more reliable data. In addition, CryoSat observations
are available annually such that there can be more overlap with altimetry observa-
tions in contrast to topography data. In addition, with the upcoming SWOT (Surface
Water Ocean Topography) mission, more accurate altimetry observations should be
available as well as river slope observations and width. The repeat cycle will be
21 days and across-track resolution between 10 m and 60 m increasing the num-
ber of observation points available within a specific area (Biancamaria et al., 2016;
Langhorst et al., 2019; Oubanas et al., 2018). As a result, hydrological models can
be calibrated with respect to river altimetry and width simultaneously at multiple
locations even for small river basin improving the identification of plausible param-
eters sets and hence the model realism as illustrated in Section 3.5.2. It will also
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be very valuable to improve cross-section estimates with respect to the submerged
part of the cross-section as already explored in previous studies (Domeneghetti,
2016) or to use drone observations to obtain more accurate cross-section informa-
tion and estimates of the river slope and roughness (Entwistle and Heritage, 2019).
By improving the river profile description, the simulated stream levels become more
accurate which is crucial when using this time series for model calibration. As il-
lustrated with Water level Strategies 1 and 2, improving the cross-section resulted
in a more accurate rating curve (Figure 3.11), stream level simulation (see Figure
3.10), and discharge simulation (Figure 3.8). Clearly, it will be interesting to analyze
and disentangle different individual sources of uncertainty related to the discharge
– water level conversion from the hydrological model in a more data rich region
(Renard et al., 2010). Unfortunately, this was not possible in this study due to
the scarcely available in-situ observations in the Luangwa. As concluded by Renard
et al. (2010), reliable estimates of the data uncertainty are required to disaggregate
multiple sources on uncertainty in rainfall-runoff modelling successfully.

3.6. Evaluation
This study investigated the potential value of river altimetry observations from mul-
tiple satellite missions to identify feasible parameters for a hydrological model of
the semi-arid and poorly gauged Luangwa River Basin. A distributed process-based
rainfall-runoff model with sub-grid process heterogeneity was developed on a daily
timescale for the time period 2002 to 2016. Various parameter identification strate-
gies were implemented step-wise to assess the potential of satellite altimetry data
for model calibration. As a benchmark, when identifying parameter sets with the
traditional model calibration strategy using discharge data, the model was able to
simulate the flows relatively well (ENS,Q = 0.78, ENS,Q,5/95 = 0.61 – 0.75). When
assuming no discharge observations are available, the feasible parameter sets were
restricted with GRACE data only resulting in an optimum of ENS,Q = -1.4 (ENS,Q,5/95
= -2.3 – 0.38) with respect to discharge. Combining GRACE with altimetry data only
from 18 virtual stations focusing on the water level dynamics resulted in frequently
overestimated flows and poorly identified feasible parameter sets (Altimetry Strat-
egy 1, ENS,Q,5/95 = -2.9 – 0.10). This was also the case when converting mod-
elled discharge to water levels using rating curves (Altimetry Strategy 2, ENS,Q,5/95
= -2.6 – 0.25). The identification of the feasible parameter sets improved when
including river geometry information, more specifically cross-section and river gra-
dient extracted from Google Earth, in the discharge-water level conversion using
the Strickler-Manning equation (Altimetry Strategy 3, ENS,Q = 0.60, ENS,Q,5/95 =
-0.31 – 0.50). Moreover, it was shown that more accurate cross-section data im-
proved the water level simulations, modelled rating curve and discharge simulations
during intermediate and low flows for which on-site cross-section information was
available; the Nash-Sutcliffe efficiency with respect to river water levels increased
from ENS,SM,GE = -1.8 (ENS,SM,GE,5/95 = -6.8 – -3.1) using river geometry informa-
tion extracted from Google Earth (Water level Strategy 1) to ENS,SM,ADCP = 0.79
(ENS,SM,ADCP,5/95 = 0.60 – 0.74) using river geometry information obtained from
a detailed field survey (Water level Strategy 2). The model performance also im-
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proved when increasing the number of virtual stations used for parameter selec-
tion. Therefore, in the absence of reliable discharge data as commonly the case in
poorly or ungauged basins, altimetry data from multiple virtual stations combined
with GRACE observations have the potential to fill this gap if combined with river
geometry estimates.





4
Model structure development
using satellite observations

A bridge is repaired only
when someone falls into the water.

African Proverb

Satellite observations can provide valuable information for a better under-
standing of hydrological processes and thus serve as valuable tools for model
structure development and improvement. While model calibration and eval-
uation has in recent years started to make increasing use of spatial, mostly
remotely-sensed information, model structural development largely remains
to rely on discharge observations at basin outlets only. Due to the ill-posed
inverse nature and the related equifinality issues in the modelling process,
this frequently results in poor representations of the spatiotemporal hetero-
geneity of system-internal processes, in particular for large river basins. In
this chapter, it was shown that satellite-based evaporation and total water
storage anomaly data are not only valuable for multi-criteria calibration, but
can play an important role in improving our understanding of hydrological
processes through diagnosing model deficiencies and step-wise model struc-
tural improvement.

This chapter is based on: Hulsman, P., Savenije, H. H. G., and Hrachowitz, M.: Learning from satellite
observations: increased understanding of catchment processes through stepwise model improvement,
Hydrol. Earth Syst. Sci. Discuss., 2020, 1–26, doi: 10.5194/hess-2020-191, 2020b.
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4.1. Introduction

T raditionally, discharge observations at basin outlets are used for hydrological
model development and calibration, which can be a robust strategy in small wa-

tersheds with relatively uniform characteristics such as topography and land cover,
but not for larger, heterogeneous basins (Blöschl and Sivapalan, 1995; Daggupati
et al., 2015). As a result, temporal dynamics of discharge may be well reproduced.
This however, does not ensure that the spatial pattern and temporal dynamics of
model internal storage and flux variables provide a meaningful representation of
their real pattern and dynamics (Beven, 2006; Clark et al., 2008; Garavaglia et al.,
2017; Gupta et al., 2008; Hrachowitz et al., 2014; Kirchner, 2006). Especially in
large, poorly gauged basins this traditional model calibration and testing method is
likely to result in a poor representation of spatial variability (Daggupati et al., 2015)
due to equifinality and the related the boundary flux problem (Beven, 2006).
An increasing number of satellite-based observations have become available over
the last decade, giving us insight into a wide range of hydrology-relevant vari-
ables, including precipitation, total water storage anomalies, evaporation, surface
soil moisture or river width (Jiang and Wang, 2019; Xu et al., 2014). These data are
increasingly used as model forcing or for parameter selection and model calibration
(e.g. Li et al., 2015; Mazzoleni et al., 2019; Tang et al., 2019).
Many studies used a single satellite product in the calibration procedure, some
of them additionally using discharge data, others not. For instance, hydrologi-
cal models have been calibrated with respect to evaporation (e.g. Bouaziz et al.,
2018; Immerzeel and Droogers, 2008; Odusanya et al., 2019; Vervoort et al., 2014;
Winsemius et al., 2008), water storage anomalies from GRACE (Gravity Recovery
and Climate Experiment; Werth et al., 2009), river width (Revilla-Romero et al.,
2015; Sun et al., 2018a) or river altimetry (Getirana, 2010; Hulsman et al., 2020a;
Michailovsky et al., 2013; Sun et al., 2015b).
Other studies simultaneously calibrated hydrological models with respect to multiple
remotely-sensed variables, but only exploiting basin-average time series, without
consideration for spatial pattern (e.g. Kittel et al., 2018; López López et al., 2017;
Milzow et al., 2011; Nijzink et al., 2018). On the other hand, some studies exclu-
sively calibrated models to spatial pattern of the observed variables (Demirel et al.,
2018; Koch et al., 2016; Mendiguren et al., 2017; Stisen et al., 2011; Zink et al.,
2018). As most satellite-based observations such as evaporation are not measured
directly but are themselves a result of underlying models using satellite data as
input (Xu et al., 2014), more focus has been recently placed on calibration to the
relative spatial variability instead of using absolute magnitudes (Dembélé et al.,
2020; Stisen et al., 2011; van Dijk and Renzullo, 2011).
To fully exploit the information content of satellite-based observations, simultane-
ous model calibration on both, temporal dynamics and spatial pattern of multiple
variables has the potential to improve the representation of spatiotemporal variabil-
ity and, linked to that, their underlying model internal processes and therefore the
model realism (Herman et al., 2018; Rakovec et al., 2016; Rientjes et al., 2013).
Strikingly, only a few studies so far used satellite-based observations to calibrate
with respect to the temporal and spatial variation simultaneously (Dembélé et al.,
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2020; Rajib et al., 2018).
In general, most studies that made use of remotely-sensed data for model appli-
cations have exclusively addressed the problem of parameter selection and thus
model calibration. However, as models are always abstract and simplified repre-
sentations of reality, every model structure needs to be understood as a hypothesis
to be tested (Clark et al., 2011; Fenicia et al., 2011; Hrachowitz and Clark, 2017).
Yet, most studies on model structural improvement have so far only relied on spa-
tially aggregated variables (Fenicia et al., 2008; Hrachowitz et al., 2014; Kavetski
and Fenicia, 2011; Nijzink et al., 2016b), while spatial data remain rarely used for
that purpose (e.g. Fenicia et al., 2016; Roy et al., 2017).
The overall objective of this study is therefore to explore the simultaneous use of
spatial pattern and temporal dynamics of satellite-based evaporation and total wa-
ter storage observations for a step-wise structural improvement and calibration of
hydrological models for a large river systems in a semi-arid, data scarce region.
More specifically, we tested the research hypotheses that (1) spatial pattern and
temporal dynamics in satellite-based evaporation and water storage anomaly data
contain relevant information to diagnose and to iteratively improve on model struc-
tural deficiencies and that (2) these data, when simultaneously used with discharge
data for calibration, do contain sufficient information for a more robust parameter
selection.

4.2. Site description
The Luangwa River in Zambia is a large, mostly unregulated tributary of the Zam-
bezi with a length of about 770 km (Figure 4.1). This poorly gauged river basin has
an area of 159,000 km2 which is mostly covered with deciduous forest, shrubs and
savanna and where an elevation difference up to 1850 m can be found between
the highlands and low lands along the river (Hulsman et al., 2020a; The World
Bank, 2010). In this semi-arid basin, the mean annual evaporation (1555 mm
yr 1) exceeds the mean annual precipitation (970 mm yr 1). See Chapter 2 for
more detailed information on the Luangwa basin.

4.3. Data availability
In-situ discharge observations
Historical daily in-situ discharge data was available from the Zambian Water Re-
sources Management Authority at the Great East Road Bridge gauging station, lo-
cated at 30o 13’ E and 14o 58’ S (Figure 4.1), for the time period 2002 to 2016 yet
containing considerable gaps resulting in a temporal coverage of 53%.
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Spatially gridded observation
Spatially gridded data were used for a topography-based landscape classification
into hydrological response units (HRU; Savenije, 2010), as model forcing (precipi-
tation and temperature) and for parameter selection (evaporation and total water
storage, see Table 4.1).
More specifically, topography was extracted from GMTED with a spatial resolution
of 0.002o (Danielson and Gesch, 2011). Daily precipitation data was extracted
from CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) with a
spatial resolution of 0.05o. Monthly temperature data extracted from CRU at a spa-
tial resolution of 1o was used to estimate the potential evaporation applying the
Hargreaves method (Hargreaves and Allen, 2003; Hargreaves and Samani, 1985).
These monthly observations were interpolated to daily timescale using daily aver-
aged in-situ temperature measured at two locations with the coordinates 28o 30’
E, 14o 24’ S and 32o 35’ E, 13o 33’ S. The satellite-based total evaporation data
was extracted from WaPOR (Water Productivity Open-access portal; FAO, 2018)
version 1.1 as it proved to perform well in African river basins (Weerasinghe et al.,
2020). This product was available on 10-day temporal and 250 m spatial resolution.
Satellite-based observations on the total water storage anomalies were extracted
from the Gravity Recovery and Climate Experiment (GRACE). With two identical
GRACE satellites, the variations in the Earth’s gravity field were measured to detect
regional mass changes which are dominated by variations in the terrestrial water
storage after having accounted for atmospheric and oceanic effects (Landerer and
Swenson, 2012; Swenson, 2012). In this study, the long term bias between the
discharge, evaporation (WaPOR) and total water storage anomalies (GRACE) was
corrected by multiplying the evaporation with a correction factor of 1.08 to close
the long term water balance.
The gridded information provided for the precipitation, temperature and evapora-
tion were rescaled to the model resolution of 0.1o. If the resolution of the satellite
product was higher than 0.1o, then the mean of all cells located within each model
cell was used. Otherwise, each cell of the satellite product was divided into multi-
ple cells such that the model resolution is obtained, retaining the original value. In
contrast, the modelled total water storage was rescaled to 1o, the resolution of the
GRACE data set, by taking the mean.

4.4. Modelling approach
A previously developed and tested (Hulsman et al., 2020a) distributed, process-
based hydrological model was implemented for the Luangwa Basin, see Section
4.4.1 for more information. This benchmark model (Model A) was calibrated with
respect to discharge for the time period 2002 – 2012 and validated for the time
period 2012 – 2016 with respect to discharge, evaporation and total water stor-
age anomalies. Then, the model was calibrated with respect to all above variables,
hence discharge, evaporation and total water storage anomalies simultaneously,
for the time period 2002 – 2012 and validated with respect to the same variables
for the time period 2012 – 2016. Model deficiencies were then diagnosed for this
benchmark model (Model A) based on the results of both calibration strategies.
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Table 4.1: Data used in this study

ime
eriod

ime
resolution

atial
resolution

roduct
name ource

igital
elevation ma n/a n/a 0.02o GMTED (Danielson and Gesch,

2011)
reci itation 2002 – 2016 Daily 0.05o CHIRPS (Funk et al., 2014)

em erature 2002 – 2016 Monthly 0.5o CRU
(University of East Anglia
Climatic Research Unit
et al., 2017)

va oration 2009 – 2016 10-day 0.00223o WaPOR (FAO, 2018; FAO and IHE
Delft, 2019)

otal ater
storage 2002 – 2016 Monthly 1o GRACE

(Landerer and Swenson,
2012; Swenson, 2012;
Swenson and Wahr, 2006)

ischarge
uang a ridge

gauging station
2002 – 2016 Daily n/a n/a WARMA

Next, model structure changes were applied creating Models B – D to improve the
deficiencies found in Model A. These changes concerned the groundwater upwelling
into the unsaturated zone as explained in Section 4.5.2. The same calibration and
validation strategies as applied to Model A were applied to Models B – D. Model
improvements were evaluated and further deficiencies were diagnosed for these
models based on the calibration and validation results.
To improve the deficiencies diagnosed in Models B – D, further model structural
changes, i.e. increased levels of spatial discretisation of the saturated zone as ex-
plained in Section 4.5.3, resulted in Models E and F. Similar to the previous models,
the same calibration and validation strategies were applied to Models E and F, and
model improvements and deficiencies were diagnosed based on the calibration and
validation model performances.
The calculation of the model performance with respect to discharge, evaporation
and total water storage are explained in Section 4.4.2. The calibration and valida-
tion procedures are described in Sections 4.4.3 and 4.4.4.

4.4.1. Hydrological models
Benchmark model (Model A)
This model is a process-based hydrological model developed in a previous study
by Hulsman et al. (2020a) for the Luangwa basin. In this model, the water ac-
counting was distributed by discretizing the basin and using spatially distributed
forcing data while the same model structure and parameter set were used for the
entire basin. Each 0.1o x 0.1o model cell was then further discretized into func-
tionally distinct landscape classes, i.e. hydrological response units (HRU), inferred
from topography (Figure 4.1B), but connected by a common groundwater compo-
nent (Euser et al., 2015) following the FLEX-Topo modelling concept (Savenije,
2010) which was previously successfully applied in many different and climati-
cally contrasting regions (Gao et al., 2014a, 2016; Gharari et al., 2014; Nijzink
et al., 2016b). Here, the landscape was classified based on the local slope and
“Height-above-the-nearest-drainage” (HAND; Rennó et al., 2008) into sloped ar-
eas (slope ≥ 4%), flat areas (slope < 4%, HAND ≥ 11 m) and wetlands (slope
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Figure 4.2: Schematisation of the model structure applied to each grid cell. Symbol explanation: precip-
itation (P), effective precipitation (Pe), interception evaporation (Ei), plant transpiration (Et), infiltration
into the unsaturated root zone (Ru), drainage to fast runoff component (Rf), delayed fast runoff (Rfl),
lag time (Tlag), groundwater recharge (Rr), upwelling groundwater flux (RGW), fast runoff (Qf), ground-
water/slow runoff (Qs).

< 4%, HAND < 11 m). For this purpose, the drainage network was derived from
a digital elevation map extracted from GMTED (Section 4.3) using a flow accu-
mulation map after having burned-in a river network map extracted from Open-
StreetMap (https://wiki.openstreetmap.org/wiki/Shapefiles) to ob-
tain an as accurate as possible drainage network as done successfully in previous
studies (Seyler et al., 2009). According to this classification, the wetland areas cov-
ered 8% of the basin, flat areas 64% and sloped areas 28% (Figure 4.1).
The model consisted of different storage components schematised as reservoirs
representing interception and unsaturated storage, as well as a slow responding
reservoir, representing the groundwater and a fast responding reservoir (Figure
4.2). The water balance for each reservoir and the associated constitutive equa-
tions are summarised in Table 4.2. The individual model structures of each parallel
HRU were very similar. Functional differences between HRUs were thus mostly
accounted for by different parameter sets. To allow the use of partly overlapping
prior parameter distributions while maintaining relationships between parameters
of individual HRUs that are consistent with our physical understanding of the system
and to limit equifinality, model process constraints (Gharari et al., 2014; Hrachowitz
et al., 2014) were applied for several parameters (Table 4.3). For instance, in the
Luangwa Basin, the sloped areas are dominated by dense vegetation, suggesting
higher interception capacities and larger storage capacities in the unsaturated zone
compared to the remaining part of the basin. In addition, for each HRU the model
structure was adjusted where necessary to include processes unique to that area.
For instance, water percolates and recharges the groundwater system in sloped and
flat areas whereas in wetlands this was assumed to be negligible due to groundwa-
ter tables that are very shallow and thus close to the surface.
The runoff was first calculated for each individual grid cell. A simple routing scheme
based on the flow direction and constant flow velocity as calibration parameter was
applied to estimate the flow at the outlet. In total, this model consisted of 16 cali-
bration parameters with uniform prior distributions and constraints as summarized
in Table 4.3.

https://wiki.openstreetmap.org/wiki/Shapefiles
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Table 4.2: Equations applied in the hydrological model. Fluxes [mm d ]: precipitation (P), effective
precipitation (Pe), potential evaporation ( p), interception evaporation ( i), plant transpiration ( t),
infiltration into the unsaturated zone ( u), drainage to fast runoff component ( f), delayed fast runoff
( fl), groundwater recharge ( r for each relevant HRU and r,tot combining all relevant HRUs), upwelling
groundwater ( GW for each relevant HRU and GW,tot combining all relevant HRUs), fast runoff ( f for
each relevant HRU and f,tot combining all relevant HRUs), groundwater/slow runoff ( s), total runoff
( m). Storages [mm]: storage in interception reservoir ( i), storage in unsaturated root zone ( u),
storage in groundwater/slow reservoir ( s), storage in fast reservoir ( f). Parameters: interception
capacity ( max) [mm], maximum upwelling groundwater ( max) [mm d 1], maximum root zone storage
capacity ( u,max) [mm], reference storage in the saturated zone ( s,ref) [mm], splitter ( ) [-], shape
parameter ( ) [-], transpiration coefficient ( e) [-], time lag ( lag) [d], exponent ( ) [-], reservoir time
scales [d] of fast ( f) and slow ( s) reservoirs, areal weights ( HRU) [-],time step ( ) [d]. Calibration
parameters are shown in bold letters in the table below. The equations were applied to each hydrological
response unit (HRU) unless indicated differently.

eservoir
system

Water balance
e uation

rocess functions

nterce tion i
e i (4.1) i min( p ,min( , 𝑰max )) (4.2)

e i (4.3)

nsaturated
one

Flat:
u

e t f

(4.4)
Sloped:

u
u t (4.5)

Wetland:
u

e t f GW

(4.6)

t min(( p i),min( u , ( p i) ⋅ u

𝑺u,max
⋅ 𝑪e

))
(4.7)

Model A:
GW (4.8)

Model B:

GW min(( u

𝑺u,max
) ⋅ 𝑪max ,

s

𝒑HRU
) (4.9)

Model C,E,F:

GW min((min( s , 𝑺s,ref)
𝑺s,ref

) ⋅ 𝑪max ,
s

𝒑HRU
) (4.10)

Model D:

GW min((min( s , 𝑺s,ref)
𝑺s,ref

) ⋅ 𝑪max ,
s

𝒑HRU
) (4.11)

if u GW ⋅ 𝑺u,max∶

GW
𝑺u,max u (4.12)

Sloped:
u ( ) ⋅ e (4.13)

( u

𝑺u,max
) (4.14)

ast runoff f
fl f (4.15) f

f

𝑲f
(4.16)

Flat/Wetland:

f
max( , u 𝑺u,max) (4.17)

fl f (4.18)

Sloped:
f ( 𝑾) ⋅ ⋅ e (4.19)
fl f ∗ (𝑻lag) (4.20)

round ater s
r,tot GW,tot s

(4.21)

r 𝑾 ⋅ ⋅ e (4.22)

r,tot ∑(𝒑HRU ⋅ r) (4.23)

GW,tot ∑(𝒑HRU ⋅ GW) (4.24)

s
s

𝑲s
(4.25)

otal runoff m s f,tot (4.26) f,tot ∑(𝒑HRU ⋅ f) (4.27)

u orting
literature

(Euser et al., 2015; Gao et al., 2014a; Gharari et al., 2014)
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Table 4.3: Model parameter and ranges

andsca e
class arameter min ma nit onstraint omment

ntire
basin s 50 200 d

e 0 1 -

s,ref 100 500 -
Only for Models
C to F

lat max 0 5 mm d max,sloped> max,flat
u,max 300 1000 mm
f 10 12 d

0.5 0.95 -
lo ed max 0 5 mm d

u,max 300 1000 mm u,max,sloped> u,max,flat
0 2 -

lag 1 5 d
f 10 12 d

0.5 0.95 - sloped> flat
Wetland max 0 5 mm d max,wetland< max,sloped

u,max 10 500 mm u,max,wetland< u,max,sloped
f 10 12 d

max 0.1 5 mm d
Only for Models
B to F

0.01 0.5 -
Only for Model
D

iver rofile 0.01 5.0 m s

First model adaptation (Models B – D)
As first model adaption, groundwater upwelling (RGW) was added in wetland areas
(see Figure 4.2). This upwelling groundwater was made (1) a linear function of the
water content in the unsaturated reservoir (Model B, Eq.4.9 in Table 4.2), (2) a linear
function of the water content in the slow responding reservoir (Model C, Eq.4.10)
and (3) a non-linear function of the water content in the slow responding reservoir
(Model D, Eq.4.11). As a result, upwelling water from the saturated zone feeds the
unsaturated zone, controlled by the water content in the unsaturated (Model B) or
in the saturated zone (Models C and D), and thus increasing the water availability
for transpiration from the unsaturated zone in wetland areas. Compared to the
benchmark Model A, Model B introduces one additional calibration parameter, Model
C two and Model D three (Tables 4.2 and 4.3). See Section 4.5.2 for more detailed
information on the reasons for and processes behind these model adjustments.

Second model adaptation (Models E – F)
As second model adaptation, the spatial resolution of the slow responding reservoir
was gradually increased from lumped (Models A – D) to semi-distributed (Model
E) and fully distributed (Model F). In Model E, the slow responding reservoir was
divided into four units as visualised in Figure 4.1A, whereas in Model F it was further
discretized into a grid of 10 x 10 km2, equivalent to the remaining parts of the
model. For both alternative formulations, Models E and F respectively, the slow
reservoir timescales Ks remained constant throughout the basin to limit the number
of calibration parameters. For both Models E and F, groundwater upwelling was
included according to Eq.4.10 (Table 4.2), hence using Model C as basis, introducing
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two additional calibration parameters compared to the benchmark Model A (Tables
4.2 and 4.3). See Section 4.5.3 for more detailed information on the reasons for
and processes behind these model adjustments.

4.4.2. Model performance metrics
Discharge
The model performance with respect to discharge was evaluated using eight dis-
tinct signatures simultaneously characterizing the observed discharge data (Euser
et al., 2013; Hulsman et al., 2020a). The model performance measure was based
either on the Nash-Sutcliffe efficiency (ENS, , Eq.4.29 in Table 4.4) or the relative
error (ER, , Eq.4.30) depending on the individual signature. The resulting perfor-
mance metrics for the eight signatures then included the Nash-Sutcliffe efficiencies
of the daily discharge time series (ENS,Q), its logarithm (ENS,logQ), the flow duration
curve (ENS,FDC), its logarithm (ENS,logFDC) and of the autocorrelation function of
daily flows (ENS,AC) and the relative errors of the mean seasonal runoff coefficient
during dry and wet periods (ER,RCdry, ER,RCwet) and of the rising limb density of
the hydrograph (ER,RLD). All these signatures were combined into an overall per-
formance metric based on the Euclidian distance to the “perfect” model (DE,Qcal,
Eq.4.32). In absence of more information and to obtain balanced solutions, all in-
dividual performance metrics were equally weighted in Eq.4.32. Here, a DE,Qcal =
1 indicates a perfect fit.
The discharge data availability was very limited during the validation time period
(2012 – 2016). As a result, hydrological years were not fully captured resulting in
incomplete information on the hydrologic signatures such as rising limb density or
auto correlation function. That is why the overall model performance (DE,Qval) was
calculated using the signatures ENS,Q, ENS,logQ, ENS,FDC and ENS,logFDC excluding
ER,RCdry, ER,RCwet, ER,RLD and ENS,AC. It is therefore important to note that DE,Qcal
cannot be meaningfully compared with DE,Qval. Instead, following the overall ob-
jective of the analysis, DE,Qval of the different alternative model hypothesis were
compared to evaluate the differences between the models.

Evaporation and total water storage
The model performance was also evaluated with respect to both the temporal dy-
namics and the spatial pattern of evaporation and total storage, respectively. For
this purpose, satellite-based evaporation data (WaPOR) was used on 10-day time
scale, and total water storage anomaly data (GRACE) on monthly time scale.

em oral variation To quantify the models’ skill to reproduce the temporal dy-
namics of evaporation and total water storage anomalies, the respective Nash-
Sutcliffe efficiencies (Eq.4.29) were used as performance metrics. This perfor-
mance metric was applied to assess the models’ skill to reproduce the basin-average
time series of evaporation and total water storage anomalies, i.e. ENS,Basin,E and
ENS,Basin,S, respectively. Similarly, the models’ performance to mimic the dynamics
of evaporation in all grid cells dominated by the wetland HRU was calculated with
the Nash-Sutcliffe efficiency (ENS,Wetland,E). Grid cells were considered as wetland
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dominated if they were completely covered by wetlands, hence if pHRU = 1 with
pHRU the areal weight of wetland areas within that cell. With respect to evaporation,
the flux was normalised first with Eq.4.28 to emphasize temporal variations rather
than absolute values in an attempt to reduce bias related errors in the observation:

𝐸normalised =
𝐸 − 𝐸min

𝐸max − 𝐸min
(4.28)

Table 4.4: Equations used to calculate the model performance

ame b ective function ymbol e lanation

ash-
utcliffe

efficiency
NS,

∑ ( mod( ) obs( ))
∑ ( obs( ) obs)

(4.29) : variable

elative
error R,

| mod obs|
obs

(4.30) : variable

atial
efficiency
metric

SP
max

∑( √( ) ( ) ( ) )

(4.31)

With:
( obs , mod)

obs/ obs

mod/ mod

∑ min( i , i)
∑ i

: Pearson corre-
lation coefficient
obs, mod: ob-

served/modelled
map

: coefficient of
variation

: standard devi-
ation

: mean
: fraction of

histogram inter-
section between

and
: observed his-

togram
: modelled his-

togram
= 100 bins
time step within

the dry season
with maximum
max

uclidian
distance
over
multi le
signatures

E √ (∑( NS, ) ∑( R, ) ) (4.32)

: signature
: signatures

evaluated with
Eq.4.29 with
maximum

: signatures
evaluated with
Eq.4.30 with
maximum

uclidian
distance
over
multi le
variables

E, √ ∑( n) (4.33) n model perfor-
mance metric of
variable
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atial variation The model performance with respect to the spatial pattern
of evaporation and total water storage anomalies was calculated with the spatial
efficiency metrics ESP,E and ESP,S (Eq.4.31), respectively, which was successfully
used in previous studies (Demirel et al., 2018; Koch et al., 2018). The spatial model
performance was first calculated for each time step within the dry period which was
in September/October and then averaged to obtain the overall model performance
(ESP, Eq.4.31). The spatial pattern was averaged over the dry season to minimize
the effect of precipitation errors.

Multi-variable
The overall potential of the models to simultaneously reproduce the temporal dy-
namics as well as the spatial pattern of all observed variables, i.e. discharge, evap-
oration and total water storage anomalies, was tested with the overall model per-
formance metric DE,ESQ. This metric was the Euclidian distance (Eq.4.33) of the
following individual metrics: the temporal variation of the basin-average evapora-
tion (ENS,Basin,E) and total water storage anomalies (ENS,Basin,S), spatial pattern of
the evaporation (ESP,E) and total water storage anomalies (ESP,S) as well as dis-
charge (DE,Q). See Table 4.5 for an overview of all model performance metrics used
in this study.

Table 4.5: Overview of the applied model performance metrics

ata em oral dynamics
atial attern

erformance metric ymbol
e uation nr

alibration
validation

ischarge Temporal dynamics Euclidian distance over mul-
tiple signatures (combin-
ing NS,Q, NS,logQ, NS,FDC,
NS,logFDC, NS,AC, R,RCdry,
R,RCwet and R,RLD)

E,Qcal
(Eq.4.32)

Calibration
(2002 – 2012)

Temporal dynamics Euclidian distance over mul-
tiple signatures (combining
NS,Q, NS,logQ, NS,FDC and
NS,logFDC

E,Qval
(Eq.4.32)

Validation
(2012 – 2016)

va oration Temporal dynamics
(basin-average)

Nash-Sutcliffe efficiency NS,Basin,E
(Eq.4.29)

Validation
(2012 – 2016)

Temporal dynamics
(wetland areas)

Nash-Sutcliffe efficiency NS,Wetland,E
(Eq.4.29)

Validation
(2012 – 2016)

Spatial pattern Spatial efficiency metric SP,E
(Eq.4.31)

Validation
(2012 – 2016)

otal ater
storage
anomalies

Temporal dynamics
(basin-average)

Nash-Sutcliffe efficiency NS,Basin,S
(Eq.4.29)

Validation
(2012 – 2016)

Spatial pattern Spatial efficiency metric SP,S
(Eq.4.31)

Validation
(2012 – 2016)

ulti-
variable

Combination Euclidian distance over mul-
tiple variables (combining
E,Qcal, NS,Basin,E, SP,E,
NS,Basin,S and SP,S)

E,ESQcal
(Eq.4.33)

Calibration
(2002 – 2012)

Combination Euclidian distance over mul-
tiple variables (combining
E,Qval, NS,Basin,E, SP,E,
NS,Basin,S and SP,S)

E,ESQval
(Eq.4.33)

Validation
(2012 – 2016)
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4.4.3. Model calibration
In general, the model was calibrated by first running the model with 5⋅104 random
parameter sets generated with a Monte-Carlo sampling strategy from uniform prior
parameter distributions (Table 4.3). Then, the optimal and 5% best-performing
parameter sets were selected according to the model performance metric as de-
scribed in the previous section. The model was calibrated within the time period
2002 – 2012 with respect to 1) discharge (DE,Qcal) and 2) all variables simultane-
ously (DE,ESQcal).

4.4.4. Model validation
The model was validated with respect to discharge, evaporation and total water
storage anomalies for the time period 2012 – 2016. During validation each variable
was evaluated separately both temporally and spatially. This included the temporal
variation of the basin-average evaporation (ENS,Basin,E) and total water storage
anomalies (ENS,Basin,S), evaporation in wetland areas (ENS,Wetland,E), spatial pattern
of the evaporation (ESP,E) and total water storage anomalies (ESP,S) as well as
discharge (DE,Qval). In addition, the model was evaluated with respect to the overall
performance (DE,ESQval). This was done for the solutions from both calibration
strategies.

4.5. Model results
4.5.1. Benchmark model (Model A)
Discharge based calibration
For the benchmark model (Model A), the model performance of all model realiza-
tions following the first calibration strategy, i.e. calibrating to discharge, resulted
in an optimum DE,Qcal,opt = 0.76 and DE,Qval = 0.37 during validation (Table 4.6,
Figure 4.3). As shown in Figure 4.4, the main features of the hydrological response
were captured reasonably well. However, particularly in the validation period, low
flows were somewhat underestimated. Note that in 2013, the observed high flows
were probably underestimated due to failures in the recording which resulted in
a truncated top in the hydrograph and flat top in the flow duration curve during
the validation time period (Figure 4.4) and which affect the validated model per-
formance values (DE,Qval). The range in the calibrated model performance with
respect to each discharge signature separately is visualised in Figure B.1 in Ap-
pendix B.
The basin-average evaporation (ENS,Basin,E = 0.54) and total water storage anoma-
lies (ENS,Basin,S = 0.74) were in general also reproduced rather well (Figures B.3
and B.5 in Appendix B). In contrast, the model failed to mimic the evaporation dy-
namics in wetland dominated areas as it decreased rapidly to zero in the dry season
in contrast to the observations (ENS,Wetland,E = 0.25, Figure 4.5). Similarly, the spa-
tial variability in evaporation (ESP,E = 0.17) and water storage anomalies (ESP,S =
-0.02) were poorly captured as several areas were over- or underestimated (Figures
4.6 and 4.7). Note that in both figures the normalised evaporation and total wa-
ter storage anomalies were plotted applying Eq.4.28 to emphasize relative spatial
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differences rather than absolute values.

Figure 4.3: Model performance with respect to discharge, evaporation and storage for all models. The
model is calibrated to discharge (darker boxplots in the first column) and validated to the discharge, evap-
oration and storage (lighter boxplots). The dots represent the model performance using the “optimal”
parameter set and the boxplot the range of the best 5% solutions both according to discharge (DE,Qcal).
The following performance metrics were used: 1) discharge using the overall model performance metric
(DE,Qcal for calibration and DE,Qval for validation), 2) evaporation temporally basin-average (ENS,Basin,E),
3) evaporation temporally wetland areas only (ENS,Wetland,E), 4) evaporation spatially (ESP,E), 5) storage
temporally basin-average (ENS,Basin,S), 6) storage spatially (ESP,S), and 7) the combination of evapora-
tion, storage and discharge (combined metric DE,ESQval).

Figure 4.4: Range of model solutions for Model A. The left panel shows the hydrograph and the right
panel the flow duration curve in logarithmic scale of the recorded (black) and modelled discharge:
the line indicates the solution with the highest calibration objective function with respect to discharge
(DE,Qcal) and the shaded area the envelope of the solutions retained as feasible. The data in the white
area were used for calibration and the grey shaded area for validation.
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Figure 4.5: Range of model solutions for Models A to F. The left panel shows the time series and the
right panel the duration curve in logarithmic scale of the recorded (black) and modelled normalised
evaporation for wetland dominated areas: the line indicates the solution with the highest calibration
objective function with respect to discharge (DE,Qcal) and the shaded area the envelope of the solutions
retained as feasible. The data in the grey shaded area were used for validation.

Figure 4.6: Spatial variability of the normalised total evaporation for Model A averaged over all days
within the dry season. The left panel shows the observation according to WaPOR data, the middle panel
the model result using the “optimal” parameter set with respect to discharge (DE,Qcal), and the right
panel the difference between the observation and model.

Figure 4.7: Spatial variability of the normalised total water storage anomalies for Model A averaged over
all days within the dry season. The left panel shows the observation according to GRACE data, the
middle panel the model result using the “optimal” parameter set with respect to discharge (DE,Qcal),
and the right panel the difference between the observation and model.

Multi-variable calibration
Calibrating with respect to multiple variables simultaneously in the second calibra-
tion strategy, resulted in a reduced model skill to simultaneously reproduce all flow
signatures in the validation period with DE,Qval = 0.07 (Table 4.7, Figures 4.8 and
4.9). Compared to the first calibration strategy, the simulated evaporation did not
change significantly with respect to the temporal dynamics (ENS,Wetland,E = 0.27,
ENS,Basin,E = 0.57) and spatial pattern (ESP,E = -0.18). Evaporation from wetland
dominated areas remained underestimated in the dry season (Figure 4.10) and large
areas in the basin were still under- or overestimated (Figure 4.11). The reproduc-
tion of the total water storage anomalies decreased though, mostly with respect to
the spatial pattern (ESP,S = -0.14, Figure 4.12). On the other hand, when looking
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at the 5/95th percentile range instead of the “optimal” parameter set, then an im-
provement was observed in the spatial pattern in evaporation (ESP,E,5/95 =-0.10 –
0.22) and in total water storage (ESP,S,5/95 = -0.17 – 0.08, compare Tables 4.6 and
4.7).

Figure 4.8: Model performance with respect to discharge, evaporation and storage for all models. The
model is calibrated to all fluxes simultaneously (DE,ESQcal, darker boxplots in the first column) and evalu-
ated with respect to each flux individually (lighter boxplots). The dots represent the model performance
using the “optimal” parameter set and the boxplot the range of the best 5% solutions both accord-
ing to DE,ESQcal. The following performance metrics were used: 1) discharge using the overall model
performance metric (DE,Qval), 2) evaporation temporally basin-average (ENS,Basin,E), 3) evaporation
temporally wetland areas only (ENS,Wetland,E), 4) evaporation spatially (ESP,E), 5) storage temporally
basin-average (ENS,Basin,S), 6) storage spatially (ESP,S), and 7) the combination of evaporation, storage
and discharge (combined metric DE,ESQval).
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Figure 4.9: Range of model solutions for Models A to F. The left panel shows the hydrograph and the
right panel the flow duration curve in logarithmic scale of the recorded (black) and modelled discharge:
the line indicates the solution with the highest calibration objective function with respect to multiple
variables (DE,ESQcal) and the shaded area the envelope of the solutions retained as feasible. The data
in the grey shaded area were used for validation.
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Figure 4.10: Range of model solutions for Models A to F. The left panel shows the time series and the
right panel the duration curve in logarithmic scale of the recorded (black) and modelled normalised
evaporation for wetland dominated areas: the line indicates the solution with the highest calibration
objective function with respect to multiple variables (DE,ESQcal) and the shaded area the envelope of
the solutions retained as feasible. The data in the grey shaded area were used for validation.
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Figure 4.11: Spatial variability of the normalised total evaporation for Models A, C and F averaged over all
days within the dry season. The left panel shows the observation according to WaPOR data, the middle
panel the model result using the “optimal” parameter set with respect to multiple variables (DE,ESQcal),
and the right panel the difference between the observation and model.

Model deficiencies
Regardless of the calibration strategy, the benchmark model failed in particular to
adequately reproduce evaporation dynamics in wetland dominated areas. During
the dry seasons, the modelled evaporation decreased rapidly to zero in contrast
to the observations (Figures 4.5 and 4.10). Partly as a consequence of that, the
spatial pattern of evaporation was captured poorly as illustrated in Figures 4.6 and
4.11. Apart from the wetlands, the modelled average dry season evaporation was
also extremely low in the centre of the basin which did not correspond with the
satellite observations. At the same time, the evaporation was significantly overes-
timated in the southern part of the basin. Also the spatial pattern in total water
storage anomalies were poorly represented since the model significantly overesti-
mated storage anomalies in large parts of the basin (Figures 4.7 and 4.12).

4.5.2. Adding groundwater upwelling (Models B, C and D)
In the benchmark model (Model A), there was no groundwater upwelling into the
wetlands and floodplains around the river channels, similar to many distributed con-
ceptual hydrological models (Bieger et al., 2017; Samaniego et al., 2010). However,
according to field and satellite-based observations, wetland areas remain moist at
the end of the dry season while the remaining areas of the basin become very dry.
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Figure 4.12: Spatial variability of the normalised total water storage anomalies for Models A, C and F
averaged over all days within the dry season. The left panel shows the observation according to GRACE
data, the middle panel the model result using the “optimal” parameter set with respect to multiple
variables (DE,ESQcal), and the right panel the difference between the observation and model.

Given the low elevation of these wetlands above rivers, it is plausible to assume that
groundwater from higher parts of the catchment is pushed up into the unsaturated
root zone of these wetlands. As a result, water deficits in the unsaturated zone are
partly replenished by upwelling groundwater. It thereby can sustain relatively ele-
vated levels of moisture, available for plant transpiration long into the dry season.
To improve the representation of evaporation in the model, the process of upwelling
groundwater (RGW) was added to the model. In principle, it was assumed that the
upwelling groundwater is regulated by the head difference between upland ground-
water and the groundwater in the wetland. As this information was not available,
due to the lack of continuous gradients in the type of model used (Hrachowitz and
Clark, 2017), this was done in a simplified way. In three alternative formulations of
this hypothesis, the upwelling groundwater was made (1) a linear function of the
water content in the unsaturated reservoir (Model B, Eq.4.9), (2) a linear function
of the water content in the slow responding reservoir (Model C, Eq.4.10) and (3)
a non-linear function of the water content in the slow responding reservoir (Model
D, Eq.4.11). In other words, in Model B the groundwater upwelling was driven by
the water deficit in the unsaturated zone, hence the lower the water content in
the unsaturated zone, the higher the groundwater upwelling. In Models C and D,
the groundwater upwelling was driven by the water content in the slow responding
reservoir, the groundwater system, such that the higher the water content in the
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slow responding reservoir, the higher the groundwater upwelling. As a result of
the non-linear relation between the groundwater upwelling and the water content
in the slow responding reservoir in Model D, the groundwater upwelling increased
the most under dry conditions and less under wet conditions. In Models B – D,
the groundwater upwelling flowed into the unsaturated zone until it was saturated,
hence until its maximum Su,max was reached (Eq.4.12). Model B required one ad-
ditional calibration parameter, Model C two and Model D three (Tables 4.2 and 4.3).

Discharge based calibration
Following the first calibration strategy, the performances of Models B – D with re-
spect to discharge did not improve significantly for the calibration period (DE,Qcal =
0.75 – 0.79) compared to Model A, regardless of the model (Table 4.6, Figures 4.3
and B.2 in Appendix B). For the validation period, Models B and D experienced a pro-
nounced reduction of their ability to adequately reproduce the discharge signatures
with DE,Qval = 0.08 and -1.7, respectively, since the flows were mostly underesti-
mated (Figure B.2 in Appendix B). On the other hand, Model C showed significant
improvements with DE,Qval = 0.81. With respect to the evaporation from wetland
dominated areas, the largest improvements were found for Model D (ENS,Wetland,E
= 0.41) where the evaporation did not drop rapidly to zero anymore even though it
was still significantly underestimated in the dry season (Figure B.4 in Appendix B).
But this came at the cost of decreased simulations of all remaining variables (Table
4.6, Figure 4.3), hence the discharge, basin-average evaporation and total water
storage and their spatial pattern (Figures B.2 – B.7 in Appendix B). For example
Figure B.6 in Appendix B illustrates the poorly simulated temporally-averaged dry
season evaporation for Model D which was higher in wetland areas (centre of the
basin) compared to the surrounding areas which was not observed in the satellite
based observations. For Models B and C, the model performances with respect to
the remaining variables remained comparable to Model A or even decreased as can
be seen in Table 4.6 and Figure 4.3. As a result, when considering all variables
simultaneously, Model C performed the best with DE,ESQval = 0.32.

Multi-variable calibration
Following the second calibration strategy, Model C experienced the largest increases
compared to Model A in its ability to describe features of discharge with DE,Qval =
0.61, while Model D decreased the most to DE,Qval = -0.08 with the high flows being
overestimated and low flows underestimated (Table 4.7, Figures 4.8 and 4.9). With
this calibration strategy, large improvements were observed in the reproduction of
the evaporation from wetland dominated areas for all three Models B – D, especially
for Model D with ENS,Wetland,E = 0.59 where the evaporation was simulated well
even during the dry season as it did not decrease rapidly to zero in the dry season
compared to Model A (Figure 4.10). For Models C and D, the spatial pattern in
evaporation and total water storage anomalies improved, albeit moderately (Table
4.7) as large areas were still under- or overestimated (Figures B.10 and B.11 in
Appendix B), whereas it decreased slightly for Model B. For all Models B – D, the
basin-average temporal dynamics in evaporation and total water storage anomalies
remained similar or decreased slightly (Table 4.7, Figures B.8 and B.9 in Appendix
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B). Overall, when considering the model performance with respect to all variables
simultaneously, Model C showed the highest performances with DE,ESQval = 0.33.

Model deficiencies
According to the results, the representation of evaporation strongly benefitted from
including upwelling groundwater as function of the water content in the slow re-
sponding reservoir (Eq.4.10, Model C) especially for the second calibration strategy.
The incorporation of this flux resulted in increased levels of water supply to the un-
saturated zone of wetlands to sustain higher levels of transpiration throughout the
dry periods (Figure 4.10). But even though the evaporation increased during dry
periods, it was still underestimated especially towards the end of the dry season
due to too large groundwater upwelling depleting the slow responding reservoir.
The major weakness of the model remained its very limited ability to represent
the spatial pattern in evaporation as there were several local clusters of consid-
erable mismatches, both over- and underestimating observed evaporation. This
was clearly visible for example in the centre and southern part of the basin (Figure
4.11). Also the spatial pattern in the total water storage anomalies remained poorly
represented, in spite of some improvements compared to Model A, as they were
considerably overestimated in the northern parts of the basin (Figure 4.12). This
could be a result of deficiencies in the hydrological models or in the satellite-based
observations.

4.5.3. Discretizing the groundwater system (Models E and F)
In all above models, the groundwater layer was simulated as a single lumped
reservoir assuming equal groundwater availability throughout the entire basin. As
groundwater processes can occur on relatively large spatial scales, this assump-
tion may be valid for small- or mesoscale catchments, but not necessarily for larger
basins such as the Luangwa basin. This may partly be responsible for the deficiency
of all above models to meaningfully reproduce the spatial pattern of the total water
storage. Taking Model C as a basis for further model adaptations, two more al-
ternative model hypothesis were formulated. In both models the slow responding
reservoir, representing the groundwater, was spatially discretized. For Model E,
the reservoir was split into four units with an area of 15,396 – 47,239 km each
containing four to six different GRACE cells (see Figure 4.1A). In contrast, Model
F was formulated with a completely distributed slow reservoir at the resolution of
the remaining parts of the model, i.e. 10 x 10 km . In Models E and F, the slow
reservoir timescales 𝐾s remained constant throughout the basin to limit the num-
ber of calibration parameters. Models E and F did not require additional calibration
parameters. See Tables 4.2 and 4.3 for the corresponding model equations and
calibration parameter ranges.

Discharge based calibration
Following the first calibration strategy, the calibrated and validated model perfor-
mance with respect to discharge did not change significantly for Model E compared
to Model C. For Model F on the other hand, the calibrated model performance in-
creased to DE,Qcal = 0.91 (Table 4.6, Figures 4.3 and B.2 in Appendix B), but during
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validation it decreased to DE,Qval = 0.52 compared to Model C as a result of overes-
timated high flows (Figure B.2 in Appendix B). In other words, the discharge simula-
tion was only affected when applying a fully distributed groundwater system (Model
F). Also the simulated dynamics of the evaporation improved for Model F, especially
for wetland dominated areas (ENS,Wetland,E = 0.56, Table 4.6) even though it re-
mained significantly underestimated during the dry season (Figure B.4 in Appendix
B). But for both models, no improvements in the spatial pattern of evaporation can
be observed with ESP,E = 0.05 and -0.03 for Models E and F, respectively. As shown
in Figure B.6 in Appendix B, for Model E and F the temporally-averaged dry season
evaporation was very low in the centre of the basin compared to the remaining part
of the basin in contrast to the satellite-based observations. The spatial pattern of
total water storage anomalies were at least slightly better mimicked by Model F
with ESP,S = 0.08 (Figure B.7 in Appendix B), which, in turn, came at the price of
a poorer reproduction of the temporal dynamics of the basin-averaged total water
storage anomalies (ENS,Basin,S = 0.66, Figure B.5 in Appendix B).

Multi-variable calibration
Including multiple variables in the calibration process did not improve the repre-
sentation of the hydrological response with respect to discharge for Models E and F
compared to Model C with DE,Qval = 0.30 and 0.51, respectively (Table 4.7, Figures
4.8 and 4.9). For both models, the flows were underestimated during low flows and
overestimated during high flows (Figure 4.9). Also the evaporation from wetland
dominated areas did not improve for both models as it decreased rapidly in the
dry season (Figure 4.10). On the other hand, the spatial pattern in the evaporation
was slightly better mimicked for Model F (ESP,E = 0.23), but still at low performance
levels similar to Models A – D with large areas still being under- or overestimated
(Figure B.10 in Appendix B). Slight improvements could be observed though for
the representation of spatial pattern in total water storage in Models F (ESP,S =
0.09, Figure B.11 in Appendix B), albeit modestly. Overall, when considering the
model performance with respect to all variables simultaneously, Model F showed
the highest performances with DE,ESQval = 0.37.

Model deficiencies
Applying the second calibration strategy, Model F poorly reproduced the evapora-
tion from wetlands (Figure 4.10) since the water availability for evaporation de-
creased rapidly in the dry season due to the limited water availability in the slow
responding reservoir. This was a direct result of the limited connectivity in the dis-
tributed groundwater system within the basin and very likely points to the presence
of contiguous groundwater systems extending beyond the modelling resolution that
sustain dry season evaporation in wetlands. Strikingly, discretizing the groundwater
basin only had limited effects on the spatial pattern in evaporation and total wa-
ter storage anomalies. Despite their limited improvements, they remained poorly
captured as several local clusters were over- and underestimated (Figures 4.11 and
4.12).
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4.6. Discussion
As illustrated in the previous sections, satellite-based evaporation and storage
anomaly data were used in an attempt to (1) iteratively improve a benchmark
model structure and (2) identify parameter sets with which the model can simulta-
neously reproduce the temporal dynamics as well as the spatial pattern of multiple
flux and storage variables.
The results suggested that among the tested models, Models C and F provided
the overall best representation of the hydrological processes in the Luangwa basin,
following the first and second calibration strategy respectively. The addition of
upwelling groundwater alone (Model C) significantly improved the discharge simu-
lations during validation regardless of the calibration strategy and the simulation of
evaporation from wetland areas following the second calibration strategy. Discretiz-
ing the slow responding reservoir (Model F) reached reasonable overall performance
levels, i.e. DE,ESQval, when calibrating on discharge and its signatures only (Figure
4.3), with improved simulations of evaporation from wetland areas. But calibrating
on multiple variables proved instrumental as it allowed to significantly improve the
spatial pattern of the evaporation, while maintaining high levels for the other per-
formance criteria (Figure 4.8). In general it could also be observed that a further
discretization of the model lead to a better representation of the system especially
with respect to the spatial pattern. Nevertheless, none of the tested models could
adequately reproduce the observed spatial pattern in evaporation and total water
storage anomalies which could be a result of model deficiencies or uncertainties in
the satellite-based observations of the spatial pattern.
A potential reason for the models’ problems to meaningfully describe the spatial
pattern of the evaporation was in this study the use of the same parameters within
a specific HRU in different model grid cells as also observed in previous studies
(Stisen et al., 2018). As a result, the simulated spatial pattern was strongly in-
fluenced by the catchment classification method into distinct HRUs. In this study,
the catchment was classified merely on the basis of topography into flat, sloped
and wetland areas, whereas ecosystem diversity could also be considered as an
additional layer in the classification. The poor representation of the spatial pattern
in total water storage was also partly linked to that. Another likely reason is the
absence of lateral exchange of sub-surface water between model grid cells in the
tested models, as contiguous groundwater bodies of varying but unknown spatial
scale will shape water transfer through the landscape in the real world which remain
unaccounted for in the model.
In addition, each of the applied data sources have their own uncertainties and
bias. These include uncertainties in observed discharge due to rating curve uncer-
tainties (Domeneghetti et al., 2012; Tomkins, 2014; Westerberg et al., 2011) and
limited data availability, in precipitation data, often as a result of poorly capturing
mountainous regions or extreme events on small scales (Dinku et al., 2018; Hra-
chowitz and Weiler, 2011; Kimani et al., 2017; Le Coz and van de Giesen, 2020),
in estimates of total water storage anomalies as a result of data (post-) processing
including data smoothing using a radius of for example 300 km affecting the spatial
variability on basin scale (Blazquez et al., 2018b; Landerer and Swenson, 2012) and
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in evaporation data due to model, input data and parameter estimation uncertain-
ties (Zhang et al., 2016). In general satellite products are a result of models that
are prone to uncertainties related to the input data or model conceptualisation. In
the ideal situation, the data would be validated with field measurements to assess
the error magnitude. However, this was not possible due to data limitations.
The results in this study were sensitive to the choice of performance metrics with
respect to the individual variables (discharge, evaporation and total water storage)
and all variables combined. For instance the overall model performance measure
DE,ESQval (Eq.4.33) was strongly influenced by the validated discharge model per-
formance DE,Qval due to its large range and variation between models compared
to the remaining variables where the range was smaller and similar for all models
(Figure 4.8). As a result, the overall model performance measure might not reflect
each variable equally well which affected the choice of best performing model.
Reflecting the results of previous studies, this study found that calibrating to multiple
variables including the spatial pattern improved the simulation of the evaporation
and storage with some trade-off in the discharge simulation depending on the
model structure (Dembélé et al., 2020; Demirel et al., 2018; Herman et al., 2018;
Rientjes et al., 2013; Stisen et al., 2011, 2018). But in contrast and additional
to previous studies, this study also provided an example, illustrating that spatial
data, here evaporation and total water storage, can contain relevant information
to diagnose model deficiencies and to therefore enable step-wise model structural
improvement. Previous studies have largely relied on discharge observations to
improve model structures (Fenicia et al., 2016; Hrachowitz et al., 2014) and only
few studies used satellite data (Roy et al., 2017) even though it provides valuable
information on the internal processes temporally and spatially which is not avail-
able with discharge data alone (Daggupati et al., 2015; Rakovec et al., 2016). Roy
et al. (2017) observed that the simulated evaporation according to the spatially
lumped model HYMOD (HYdrological MODel) rapidly dropped to zero in contrast
to the satellite product GLEAM (Global Land Evaporation Amsterdam Model) in the
Nyangores river basin in Kenya. They improved this simulated evaporation while
maintaining good discharge performances by modifying the corresponding equation
in HYMOD such that it was a function of the soil moisture. While here we focussed
on upwelling groundwater and spatial discretization, a promising avenue for future
studies may be to evaluate the incorporation of simple formulations of subsurface
exchange fluxes between model grid cells. Similarly, a further discretization of
HRUs into different land cover and ecosystem types may be worthwhile.

4.7. Evaluation
The objective of this study was to explore the added value of satellite-based evap-
oration and total water storage anomaly data to increase the understanding of
hydrological processes through step-wise model structure improvement and model
calibration for large river systems in a semi-arid, data scarce region. For this pur-
pose, a distributed process-based hydrological model with sub-grid process hetero-
geneity for the Luangwa River basin was developed and iteratively adjusted. The
results suggested that (1) the benchmark model (Model A) calibrated with respect
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to discharge simulated the discharge well, and also the basin-average evapora-
tion and total water storage anomalies, but poorly captured the evaporation for
wetland dominated areas and the spatial pattern of evaporation and total water
storage anomalies. (2) Testing five further alternative model structures (Models B
– F), it was found that among the tested model hypotheses Model F, allowing for up-
welling groundwater from a distributed representation of the groundwater reservoir
and (3) simultaneously calibrating the model with respect to multiple variables, i.e.
discharge, evaporation and total water storage anomalies, provided the best repre-
sentation of all these variables with respect to their temporal dynamics and spatial
pattern, except for the basin-average temporal dynamics in the total water storage
anomalies. It was shown that satellite-based evaporation and total water storage
anomaly data are not only valuable for multi-criteria calibration, but can play an
important role in improving our understanding of hydrological processes through
diagnosing model deficiencies and step-wise model structural improvement.



5
Long-term total water storage

variations in the Luangwa
basin

A little rain each day
will fill the rivers to overflowing.

African Proverb

In the Luangwa basin, long-term total water storage variations were ob-
served with GRACE, but not reproduced by a standard conceptual hydro-
logical model that encapsulates our current understanding of the dominant
regional hydrological processes. The objective of this study was to identify
potential processes underlying these low-frequency variations through com-
bined data analysis and model hypothesis testing. First, we analysed the
effect of data uncertainty to explain observed storage variations. Second,
we evaluated the model’s skill to reproduce the observed long-term storage
variations using four different combinations of model forcing. Third, we for-
mulated alternative model hypotheses to account for groundwater export as
data analysis indicated this could potentially explain low-frequency storage
variations.

This chapter is based on: Hulsman, P., Savenije, H. H. G., and Hrachowitz, M.: Why are long-term storage
variations observed but not modelled in the Luangwa basin?, Water Resources Research, in review.
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5.1. Introduction

L ong-term and thus low-frequency total water storage variations have been ob-
served in many regions world-wide (Long et al., 2017; Scanlon et al., 2018). This

includes long-term storage variations in Australia during the Millennium Drought in
1997 – 2010 (e.g. Chen et al., 2016; Leblanc et al., 2009; Zhao et al., 2017b), in
the United States (Boutt, 2017; Long et al., 2013), in the La Plata basin in South
America (Chen et al., 2010), in China (Sun et al., 2018b; Zhang et al., 2015b) and
in different African river basins (Awange et al., 2016; Bonsor et al., 2018; Werth
et al., 2017).
However, many hydrological models cannot reproduce these observed long-term
storage variations (Fowler et al., 2020; Scanlon et al., 2018; Winsemius et al.,
2006b). As highlighted by previous studies, these observed long-term storage
variations can be a result of climate variability, land-cover change, other human
interventions or any combination thereof, while the inability of models to reproduce
these variations can be a result of model structural deficiencies, poor parameteriza-
tion, data errors, poor parameter values or any combination thereof (Fowler et al.,
2018; Grigg and Hughes, 2018; Jing et al., 2019; Saft et al., 2016). For example,
Bouaziz et al. (2020) showed that although a suite of different conceptual models
could similarly well reproduce stream flow over almost two decades, they consid-
erably varied in their skill to reproduce observed storage variations, which was
attributed to deficiencies of different model architectures. With some exceptions
(e.g. Bouaziz et al., 2018; Goswami et al., 2007; Hrachowitz et al., 2014; Le Moine
et al., 2007; Perrin et al., 2003; Samaniego et al., 2011), processes that could
potentially allow long-term memory effects, such as groundwater export, remain
mostly unaccounted for in standard conceptual rainfall-runoff models (Bergström,
1992; Burnash et al., 1973; Euser et al., 2015; Fenicia et al., 2014; Liang et al.,
1994; Willems, 2014). This leads to the situation that these models cannot capture
long and slow processes dominating long-term storage variations, as convincingly
demonstrated by Fowler et al. (2020). Their study, which focused on the Millennium
Drought in Australia, illustrated that modelled annual minimum storage remained
rather constant instead of showing a decreasing trend. The reason for this was
that the modelled storage converged to or even reached zero towards the end of
each dry season and hence could not decrease any further. Such an omission of
processes that allow to account for long-term memory processes in rainfall-runoff
models results in biased modelled discharge and impedes accurate estimations of
water availability which is particularly crucial during extreme dry conditions (Saft
et al., 2016).
In many river basins, detecting long-term storage variations and identifying their
drivers is challenged by limited high-quality ground observations. That is why
in this context satellite observations may play an important role. For example,
satellite-based Gravity Recovery and Climate Experiment (GRACE) observations
describe variations in the Earths’ gravity field which can be used to detect regional
mass changes that are dominated by variations in the terrestrial water storage
after removing atmospheric effects. In other words, GRACE observations, which
are available on monthly timescale, provide valuable information on total water
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storage changes (Landerer and Swenson, 2012; Swenson, 2012). For example,
GRACE observations have been used in the context of groundwater monitoring
(Tangdamrongsub et al., 2018; Zhang et al., 2020), or drought analysis (Chao
et al., 2016; Leblanc et al., 2009; van Dijk et al., 2013; Zhang et al., 2015a; Zhao
et al., 2017a).
While several previous studies focused on identifying long-term storage variations
in (satellite-based) observations, possible drivers for these variations, and differ-
ences between observations and model results (e.g. Fowler et al., 2020; Jing et al.,
2019; Joodaki et al., 2014; Leblanc et al., 2009; Meng et al., 2019; Scanlon et al.,
2018), only limited studies attempted to modify a hydrological model to allow for
long-term storage variations. In one exception, Grigg and Hughes (2018) modified
the GR4J rainfall-runoff model (Perrin et al., 2003) successfully to mimic long-term
catchment memory effects. This was done by introducing a threshold in the stor-
age reservoir such that percolation from this reservoir stopped when the storage
was lower than the threshold while evaporation losses continued. Other studies
improved the modelled long-term storage trends by assimilated total water storage
observations according to GRACE into hydrological models (Khaki et al., 2018;
Schumacher et al., 2018).
In this study, long-term storage variations were observed in the Luangwa river
basin, but not reproduced by a standard implementation of a conceptual model.
The objective of this study was to identify potential and so far overlooked processes
underlying these low-frequency variations in a combined data analysis and model
hypothesis testing approach. More specifically, we here tested the hypotheses
that the degree to which a conceptual hydrological model can reproduce observed
long-term, low-frequency water storage variations depends (1) on the choice of
the forcing data source used as input to the model and (2) on the incorporation of
processes allowing long-term memory effects in the model.

5.2. Site description
The Luangwa River is a 770 km long tributary of the Zambezi in Zambia which is
mostly unregulated (see Figure 5.1). Its 159,000 km2 large basin area is poorly
gauged and mostly covered with deciduous forests, shrubs and savanna. The el-
evation varies up to 1850 m between the low lying areas around the river and
the highlands. In this semi-arid area, there is a distinct wet season from October
to April with heavy rains up to 100 mm month 1. Nevertheless, the mean annual
evaporation (1555 mm yr 1) exceeds the mean annual precipitation (970 mm yr 1)
(Hulsman et al., 2020a; The World Bank, 2010). See Chapter 2 for more detailed
information on the Luangwa basin.
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5.3. Data availability
In this study, hydro-meteorological data as shown in Table 5.1 were used. This
included two satellite-based precipitation products (CHIRPS and TRMM) and five
actual evaporation products (WaPOR, SEBS, SSEBop, GLEAM and MOD16). Land-
cover changes were assessed using the NDVI (Normalized Difference Vegetation
Index) and LAI (Leaf Area Index). Temperature data according to CRU (Climatic
Research Unit) was used to estimate the potential evaporation with the Hargreaves
(Hargreaves and Allen, 2003; Hargreaves and Samani, 1985) and Thornthwaite
(Maes et al., 2019) method.
Processed GRACE (Gravity Recovery and Climate Experiment) observations gener-
ated by CSR (Centre for Space Research), GFZ (GeoForschungsZentrum Potsdam)
and JPL (Jet Propulsion Laboratory) were obtained from the GRACE Tellus website
(https://grace.jpl.nasa.gov/). This study used the average of these three
sources which previously processed the raw data to remove atmospheric mass
changes, systematic errors and noise, and to subtract the 2004 – 2009 time-mean
baseline (Landerer and Swenson, 2012; Swenson and Wahr, 2006; Wahr et al.,
1998). As a result, total water storage anomalies were available in equivalent water
thickness. Total water storage anomaly observations include all terrestrial water
storage components, hence water stored in the surface water, soil moisture and
groundwater.
Altimetry data was extracted from the DAHITI website (https://dahiti.dgfi.tum.de/
en/) for the Cahora Bassa reservoir, Kariba reservoir and Lake Malawi (Schwatke
et al., 2015). In-situ discharge data was used for the Great East Road Bridge
gauging station at the basin outlet (30o 13’ E and 14o 58’ S) and was obtained
from the Zambian Water Resources Management Authority (WARMA) for the time
period 2002 to 2016 with a temporal coverage of 35%.
For the following data analysis, gridded observations were averaged for the entire
basin, whereas for use in the distributed hydrological model, gridded observations
were rescaled to the model resolution of 0.25o by (a) taking the mean of all cells
located within a model cell if the resolution was smaller, or (b) dividing each cell
into multiple cells if the resolution was larger. For the hydrological model, gridded
observations were used for the topography to classify the landscape into hydrolog-
ical response units (see Section 5.4.2), climate (precipitation and temperature) to
force the model, and total water storage anomalies to calibrate/evaluate the model.

5.4. Approach
This study consisted of three steps. In the first step we analysed the effect of the
choice of the data source used to explain observed total water storage variations
to understand whether any of the data contain, in principle, sufficient information
to at least broadly reflect the dynamics of storage variations. This was necessary
to rule out that the model’s inability to reproduce long-term storage variations is
merely an artefact of unsuitable data. Thus, we investigated whether periods of
high water storage anomalies roughly coincide with periods of high precipitation
anomalies and/or low evaporation anomalies and vice versa. To do so, we con-

https://grace.jpl.nasa.gov/
https://dahiti.dgfi.tum.de/en/
https://dahiti.dgfi.tum.de/en/
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Table 5.1: Data used in this study

ime
eriod

ime
resolution

atial
resolution

roduct
n ame

ong-term
annual
mean

ource

igital
elevation ma

n/a n/a 0.02o GMTED n/a (Danielson and Gesch, 2011)

reci itation 1998 – 2016 Daily 0.05o CHIRPS 1127 mm yr 1 Version 2
(Funk et al., 2014)

1998 – 2016 Daily 0.25o TRMM 1029 mm yr 1 Version 3B42
(Huffman et al., 2014, 1995,
2007)

va oration 2009 – 2016 10-day 0.00223o WaPOR 882 mm yr 1 Version 1.1
(FAO, 2018; FAO and IHE Delft,
2019)

2002 – 2013 Monthly 0.05o SEBS 657 mm yr 1 (Su, 2002)
2003 – 2016 Monthly 0.01o SSEBop 837 mm yr 1 Version 4

(Allen et al., 2007; Bastiaanssen
et al., 1998; Senay et al., 2007)

2003 – 2016 Monthly 0.25o GLEAM 751 mm yr 1 Version 3.3b
(Martens et al., 2017; Miralles
et al., 2011)

2002 – 2016 Monthly 500 m MOD16 793 mm yr 1 MOD16A2 Version 6
(Running et al., 2017)

em erature 2002 – 2016 Monthly 0.5o CRU 22o Time-series (TS) data version
4.01
(University of East Anglia Cli-
matic Research Unit et al., 2017)

2002 – 2016 8 days 30 m n/a 0.12 Derived from Landsat 7
2002 – 2016 Monthly 0.05o n/a 1.48 Version 5

(Claverie et al., 2014)
otal ater
storage

2002 – 2016 Monthly 1o GRACE 8.8 mm Pre-processed by CSR
and GFZ (Version
RL05.DSTvSCS1409), and JPL
(Version RL05_1.DSTvSCS1411)
https://grace.jpl.n/
asa.gov/
(Landerer and Swenson, 2012;
Swenson, 2012; Swenson and
Wahr, 2006)

ltimetry 2002 – 2016 10 or 35
days

n/a DAHITI n/a https://
dahiti.dgfi.tum.de/en/
(Schwatke et al., 2015)

ischarge
uang a
ridge gaug-

ing station

2002 – 2016 Daily n/a n/a 138 mm yr 1 WARMA

trasted long-term estimates of variables such as precipitation, potential and actual
evaporation from multiple data sources with the observed water storage variations.
This allowed a preliminary assessment of which data sources are more consistent
with the observed low-frequency storage variations than others. Based on that, we
then analysed, in a second step, four different combinations of data sources, i.e.
precipitation and potential evaporation, as input for a hydrological model and evalu-
ated their respective effects to reproduce the observed long-term storage variations
with the model. In a third step, we then iteratively formulated and tested several
alternative model hypotheses, incorporating a model component, such as regional
groundwater export, to account for long-memory effects.
In general, long-term total water storage variations are a result of changes in precip-
itation, evaporation, discharge or any combination thereof (Eq.5.1). While climate
variability can cause long-term variations in precipitation and atmospheric water
demand (i.e. potential evaporation), land-cover changes can affect the partitioning
between evaporative fluxes and streamflow (Gallart and Llorens, 2003; Hrachowitz
et al., 2020; Li et al., 2017; Nijzink et al., 2016b; Oguntunde et al., 2006; Saft et al.,

https://grace.jpl.n/asa.gov/
https://grace.jpl.n/asa.gov/
https://dahiti.dgfi.tum.de/en/
https://dahiti.dgfi.tum.de/en/
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2016; Warburton et al., 2012). In addition, long-term storage variations can be a
result of slow inter-basin groundwater exchange (Bouaziz et al., 2018; Nelson and
Mayo, 2014; Pellicer-Martínez and Martínez-Paz, 2014).

𝑑𝑆
𝑑𝑡 = 𝑃 − 𝐸 − 𝑄 (5.1)

Where 𝑆 is total water storage, 𝑃 precipitation, 𝐸 evaporation and 𝑄 discharge.

5.4.1. Data analysis
Long-term, basin-averaged satellite observations of the precipitation according to
CHIRPS and TRMM, actual evaporation according to WaPOR, SEBS, SSEBop, GLEAM
and MOD16, potential evaporation according to the Hargreaves (Hargreaves and
Allen, 2003; Hargreaves and Samani, 1985) and Thornthwaite (Maes et al., 2019)
methods, respectively, and land-cover based on the NDVI and LAI (Table 5.1) were
contrasted with and compared to the water storage variations estimated by GRACE.
For each of these data sources, the temporal variability was visualised on monthly
and/or annual timescale.
To assess the potential role of regional groundwater import to or export from the
basin, the long-term water balance was estimated using the average annual precip-
itation, evaporation and discharge from the different satellite products. Assuming
negligible long-term storage changes and data uncertainties, surpluses or deficits
in the long-term water balance, hence if 𝑃 − 𝐸 − 𝑄 ≠ 0, are then the result of
groundwater import/export. In case of groundwater export, the average annual
leaking flow can then be estimated according to (e.g. Bouaziz et al., 2018):

𝑄 = 𝑃 − 𝐸 − 𝑄 (5.2)

Where 𝑄L is annual mean groundwater export [mm yr 1], 𝑃 annual mean pre-
cipitation [mm yr 1], 𝐸 annual mean evaporation [mm yr 1] and 𝑄 annual mean
discharge [mm yr 1].

5.4.2. Hydrological modelling
Benchmark model (Model A0)
The process-based distributed hydrological model used in this study for the Lu-
angwa basin was step-wise developed and refined in previous studies (Hulsman
et al., 2020a, b) following the FLEX-Topo modelling concept (Savenije, 2010). The
benchmark model used in this study was similar to Model C in Chapter 4. Each
0.25o x 0.25o model cell had the same model structure and parameter set, but was
forced differently using spatially distributed forcing data with respect to the pre-
cipitation and potential evaporation (e.g Euser et al., 2015). In addition, each cell
was further discretized into functionally distinct landscape classes, i.e. hydrological
response units (HRUs) based on the topography (Nijzink et al., 2016b). All HRUs
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within a cell were connected through a common groundwater component (Figure
5.2A). This groundwater reservoir was also lumped over the entire basin assum-
ing a homogeneous groundwater system (Hulsman et al., 2020b). The landscape
was classified based on the local slope and “Height-above-the-nearest-drainage”
(HAND; Rennó et al., 2008) into sloped areas (slope ≥ 4%), flat areas (slope <
4%, HAND ≥ 11 m) and wetland areas (slope < 4%, HAND < 11 m). As a result,
68% of the basin was classified as flat areas, 28% as sloped areas and 8% as wet-
lands (Figure 5.1B). This FLEX-Topo modelling concept was applied successfully in
previous studies (Gao et al., 2014a; Gharari et al., 2014; Hulsman et al., 2020a).
As illustrated in Figure 5.2A, the hydrological model consisted of multiple storage
components representing the interception storage, unsaturated root-zone storage,
as well as fast and slow responding storages. Each storage component was schema-
tized as reservoir with corresponding water balance and constitutive equations as
shown in Table 5.2. As the dominant processes and thus the associated model
structures of the three individual HRUs were very similar to each other, the major
differences between the HRUs were accounted for by different parameter values.
Model process constraints were applied as shown in Table 5.3 to allow partly over-
lapping prior parameter distributions with relationships consistent with our physical
understanding of the system (Gharari et al., 2014; Hrachowitz et al., 2014), and
to limit equifinality (Beven, 2006). For example in the Luangwa basin, higher in-
terception evaporation and larger root-zone storage capacities were expected in
the densely vegetated, forest dominated sloped areas compared to the flat, grass-
and shrub-land dominated areas and wetlands. Processes unique to a HRU were
incorporated by adjusting the model structure where necessary. In sloped and flat
areas for example, the groundwater system was recharged by downward infiltra-
tion whereas in wetlands this flow was assumed to be negligible due to shallow
groundwater tables. Rather, water was assumed to be pushed upwards from the
groundwater system into the unsaturated root-zone due to the groundwater head
difference between the upland and wetland (Hulsman et al., 2020b).
After having calculated the runoff for each grid cell, the total flow at the outlet was
estimated by applying a simple routing scheme based on the flow distance to the
outlet and a constant, calibrated flow velocity. This model consisted of 17 calibra-
tion parameters with uniform prior distributions and constraints as summarized in
Table 5.3. In this benchmark model, the precipitation product CHIRPS was used
and potential evaporation was calculated with the Hargreaves method (Table 5.4).

First model adaptation: Alternative forcing data (Models B0 – D0)
As first model adaptation, the forcing data was changed to assess the role of data
uncertainty for the model’s ability to reproduce the observed long-term storage vari-
ations and to test whether some combinations of data sources allow model results
to be more consistent with the observed storage variations than others. Starting
with Model A0 as benchmark, different combinations of precipitation products, i.e.
CHIRPS and TRMM, on the one hand and methods to estimate potential evapora-
tion, i.e. Hargreaves and Thornthwaite, on the other hand were tested in Models
B0 – D0 (Table 5.4).
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Table 5.2: Equations applied in the hydrological model. Fluxes [mm d ]: precipitation (P), effective
precipitation (Pe), potential evaporation ( p), interception evaporation ( i), plant transpiration ( t), in-
filtration into the unsaturated zone ( u), drainage to fast runoff component ( f), delayed fast runoff
( fl), groundwater recharge ( r for each relevant HRU and r,tot combining all relevant HRUs), up-
welling groundwater ( GW for each relevant HRU and GW,tot combining all relevant HRUs), fast runoff
( f for each relevant HRU and f,tot combining all relevant HRUs), groundwater recharge into Deeper
Groundwater reservoir ( s), shallow groundwater flow ( ss), deep groundwater flow ( sd), ground-
water loss ( L), total runoff ( m). Storages [mm]: storage in interception reservoir ( i), storage in
unsaturated root zone ( u), storage in upper/deeper groundwater reservoir ( su, sd), storage in fast
reservoir ( f). Calibration parameters (shown in bold): interception capacity ( max) [mm], maximum
upwelling groundwater ( max) [mm d 1], maximum root zone storage capacity ( u,max) [mm], splitter
( ) [-], shape parameter ( ) [-], transpiration coefficient ( e) [-], time lag ( lag) [d], reservoir time
scales [d] of fast ( f) and slow ( s, sd) reservoirs, reference groundwater level ( s,ref1, s,ref2) [mm],
groundwater splitter ( s) [-]. Remaining parameters: areal weights for each grid cell ( HRU) [-],time
step ( ) [d]. The equations were applied to each hydrological response unit (HRU) unless indicated
differently.
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Table 5.3: Model parameters and prior distributions

andsca e
class arameter min ma nit onstraint omment

ntire
basin e 0 1 - All models

s 90 110 d All models
s,ref1 1 50 mm All models
L 0 0.5 mm d 1 Models A1, A2, A3
sd 100 2500 d Models A4, A5
s,ref2 1 50 mm Models A3, A4, A5
s 0 1 - Model A2

lat max 0 5 mm d max,sloped> max,flat All models
u,max 10 800 mm All models
f 10 12 d All models

0.01 1 - All models
lo ed max 0 5 mm d All models

u,max 10 800 mm u,max,sloped> u,max,flat All models
0 2 - All models

lag 1 5 d All models
f 10 12 d All models

0 1 - sloped> flat All models
Wetland max 0 5 mm d max,wetland< max,sloped All models

u,max 10 400 mm u,max,wetland< u,max,sloped All models
f 10 12 d All models
max 0.01 5 mm d All models

iver rofile 0.01 5 m s All models

Table 5.4: Overview of model combinations

reci itation
roduct

otential eva oration
method

odel CHIRPS Hargreaves
odel CHIRPS Thornthwaite
odel TRMM Hargreaves
odel TRMM Thornthwaite

Second model adaptation: Alternative model structure (Model A1 – A5)
As second model adaptation, the model structure was changed to test whether
deep groundwater flow or inter-basin groundwater export/import was a relevant
driver for the observed long-term storage variations. In this study, a distinction
was made between shallow groundwater flow (𝑄ss), deep groundwater flow (𝑄sd)
and groundwater loss (𝑄L). While the shallow and deep groundwater flow reached
the river, the groundwater loss (𝑄L) leaked out of the Luangwa basin and poten-
tially reached the Zambezi river further downstream. Based on benchmark Model
A0, hence using CHIRPS for precipitation and the Hargreaves method to estimate
potential evaporation, the model structure was modified to introduce long-term
storage memory.
With Model A1, it was tested whether only groundwater export, hence ground-
water leaking out of the Luangwa basin, was a dominant driver for the long-term
storage variations. In this model, groundwater loss (𝑄L) was introduced (Figures
5.2B and 5.3) which did not reach the river (Eq.5.36) and, in the spirit of model
parsimony, was assumed to be constant, regardless of the water content in the
Upper Groundwater reservoir to limit the number of calibration parameters as no
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additional information was available. Thus, the Upper Groundwater reservoir (𝑆su)
was formulated as a deficit store that can become negative. However, the shallow
groundwater flow 𝑄ss only occurred when this storage was positive (if 𝑆su > 0,
Eq.5.27). Such a formulation allowed groundwater to keep on draining, and thus
groundwater levels falling, even if discharge in the river ceased during dry periods
(e.g. Bouaziz et al., 2018; Hrachowitz et al., 2014).
With Model A2, it was tested whether constant groundwater export from a second,
Deeper Groundwater reservoir can explain the observed long-term storage varia-
tions. In this model, groundwater seeped from the Upper Groundwater reservoir
into a Deeper Groundwater reservoir as fraction of the water content in the Up-
per Groundwater reservoir (𝑅s, Eq.5.29, Figures 5.2C and 5.3). From this Deeper
Groundwater reservoir, constant groundwater loss (𝑄L) leaked out of the basin sim-
ilar to Model A1.
With Model A3, it was tested whether constant groundwater export from the Deeper
Groundwater reservoir recharged only during wet seasons, was the main driver for
long-term storage variations. In this model, groundwater only seeped into the
Deeper Groundwater reservoir when the groundwater level in the Upper Ground-
water reservoir exceeded a reference level (𝑆s,ref2, Eq.5.30, Figures 5.2D and 5.3).
From there constant groundwater loss (𝑄L) leaked out of the basin similar to Models
A1 and A2.
With Model A4, it was tested whether variable groundwater export from the Deeper
Groundwater reservoir recharged only during wet seasons, was the main driver for
long-term storage variations. In this model, the groundwater loss (𝑄L, Figures 5.2E
and 5.3) was a function of the water content in the Deeper Groundwater reservoir
(Eq.5.34). This groundwater loss (𝑄L) did not reach the river similar to Models A1
– A3.
With Model A5, it was tested whether variable groundwater flow from the Deeper
Groundwater reservoir recharged only during wet seasons, was the main driver
for long-term storage variations. In this model, the groundwater drained from the
Deeper reservoir into the river as 𝑄sd contributing to the total river flow (Eq.5.37,
Figures 5.2F and 5.3). Hence, only in Model A5 deep groundwater reached the
gauged river system whereas in Models A1 – A4 groundwater leaked out of the
basin.
Figure 5.3 gives an overview of all alternative model hypotheses tested in this study.
The relevant model equations are given in Table 5.2 and the corresponding prior
parameter distributions in Table 5.3.

Third model adaptation: Alternative forcing data and model structure
As third model adaptation, the forcing and the model structure were changed si-
multaneously. For this purpose, the best performing model based on the results
of the first model adaptation, i.e. changing the forcing data (Models A0 – D0) and
the second model adaptation, i.e. changing the model structure (Models A0 – A5)
were combined. For example, if Models D0 and A4 performed best, respectively,
then the combined Model D4 using the forcing data applied in Model D0 and the
model structure of Model A4 was tested. To ensure a robust representation of both,
discharge and total water storage, the above model selection was based on the
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Figure 5.2: Schematisation of the model structure applied to each grid cell for Models A0 – A5. For
Models A1 – A5 (B – F), only the groundwater module is shown for brevity and clarity of the presenta-
tion, as the rest of the model structure remained the same. Abbreviations: precipitation ( ), effective
precipitation ( e), potential evaporation ( p), interception evaporation ( i), plant transpiration ( t), in-
filtration into the unsaturated zone ( u), drainage to fast runoff component ( f), delayed fast runoff
( fl), groundwater recharge ( r), groundwater upwelling ( GW), fast runoff ( f), groundwater recharge
into Deeper Groundwater reservoir ( s), shallow groundwater flow ( ss), groundwater loss ( L) and
deep groundwater flow ( sd).

combined performance metrics for both variables. We explicitly acknowledge the
possibility of this not being the combination that most reliably reflects real world
processes. However, exhaustively testing all possible combinations goes beyond
our computational capacity.

5.4.3. Model performance measures
The model performance was evaluated with respect to discharge and basin-average
total water storage anomalies. With respect to discharge, eight hydrological sig-
natures were evaluated simultaneously using the Nash-Sutcliffe efficiency (ENS, ,
Eq.5.39) or relative error (ER, , Eq.5.40), depending on the signature. The in-
dividual performance metrics included the Nash-Sutcliffe efficiency of the daily
flow time-series (ENS,Q) and its logarithm (ENS,logQ), of the flow duration curve
(ENS,FDC) and its logarithm (ENS,logFDC), and of the autocorrelation function of the
daily flows (ENS,AC). In addition the relative error of the mean seasonal runoff
during dry and wet periods (ER,RCdry, ER,RCwet), and the rising limb density of
the hydrograph (ER,RLD) (Euser et al., 2013) were used. These signatures were
combined, assuming equals weights, using the Euclidian distance (DE,Q, Eq.5.41)



5.4. Approach

5

89

Pr
ec

ip
ita

tio
n

pr
od

uc
t

Po
te

nt
ia

l
ev

ap
or

at
io

n
m

et
ho

d

M
od

el
st

ru
ct

ur
e

Ad
di

tio
na

l
pa

ra
m

et
er

s

H
yd

ro
lo

gi
ca

lm
od

el

CH
IR

PS
TR

M
M

H
ar

gr
ea

ve
s

od
el

Th
or

nt
hw

ai
te

od
el

H
ar

gr
ea

ve
s

od
el

Th
or

nt
hw

ai
te

od
el

od
el

s
=

0,
L

=
0

(E
q.

5.
3-

5.
21

,5
.2

4-
5.

28
,

5.
36

,5
.3

8)

od
el

s
=

0,
L

=
0

(E
q.

5.
3-

5.
21

,5
.2

4-
5.

28
,

5.
36

,5
.3

8)

od
el

s
=

0,
L

=
0

(E
q.

5.
3-

5.
21

,5
.2

4-
5.

28
,

5.
36

,5
.3

8)

s
=

0
s

m
in
(
su
,𝑾
s⋅

su
)

s
m
in
(
su
,m
ax
(
,
su

𝑺 s
,re
f2
))

od
el

m
ss

f t
ot

L
=

0

(E
q.

5.
3-

5.
21

,5
.2

4-
5.

28
,

5.
36

,5
.3

8)

od
el

m
ss

f t
ot

𝑸 L
le

ak
s

ou
t

of
th

e
ba

si
n

(E
q.

5.
3-

5.
20

,5
.2

2,
5.

24
-5

.2
8,

5.
33

,5
.3

6,
5.

38
)

od
el

m
ss

f t
ot

𝑸 L
le

ak
s

ou
t

of
th

e
ba

si
n

(E
q.

5.
3-

5.
20

,5
.2

3-
5.

27
,

5.
29

,5
.3

1,
5.

33
,5

.3
6,

5.
38

)

od
el

m
ss

f t
ot

𝑸 L
le

ak
s

ou
t

of
th

e
ba

si
n

(E
q.

5.
3-

5.
20

,5
.2

3-
5.

27
,

5.
30

,5
.3

1,
5.

33
,5

.3
6,

5.
38

)

od
el

L
sd 𝑲 s
d

m
ss

f t
ot

𝑸 L
le

ak
s

ou
t

of
th

e
ba

si
n

(E
q.

5.
3-

5.
20

,5
.2

3-
5.

27
,

5.
30

,5
.3

1,
5.

34
,5

.3
6,

5.
38

)

od
el

sd
sd 𝑲 s
d

m
ss

sd
f t
ot

sd
flo

w
s

in
to

riv
er

(E
q.

5.
3-

5.
20

,5
.2

3-
5.

27
,

5.
30

,5
.3

2,
5.

35
,5

.3
7,

5.
38

)

-
L

L
,

s
L
,
s,r
ef
2

sd
,
s,r
ef
2

sd
,
s,r
ef
2

Figure 5.3: Overview hydrological models



5

90 5. Long-term total water storage variations in the Luangwa basin

with DE,Q = 1 corresponding to the “perfect” model.
The model performance with respect to the basin-average total water storage
anomalies was evaluated with the Euclidian distance (DE,S, Eq.5.41) of the Nash-
Sutcliffe efficiencies on monthly (ENS,S,monthly) and annual (ENS,S,annual) timescale.
On annual timescale, the Nash-Sutcliffe efficiency was calculated for the annual
minima and maxima separately which were then averaged to obtain ENS,S,annual.
The annual time-series were normalised by dividing it with the maximum range in
the observed annual minima or maxima total water storage respectively. With this
performance measure for the total water storage, more emphasis could be given
to annual variations rather than to seasonal variations only.
The combined model performance with respect to discharge and total water storage
anomalies (DE,QS) was calculated with the Euclidian distance (Eq.5.41) using DE,Q
for the discharge and DE,S for the total water storage. This performance measure
was used to select the best performing models representing both the discharge
and the total storage as good as possible.

Table 5.5: Overview of equations used to calculated the model performance

ame b ective function ymbol e lanation

ash-
utcliffe

efficiency
NS,

∑ ( mod( ) obs( ))
∑ ( obs( ) obs)

(5.39) : variable

elative
error R,

| mod obs|
obs

(5.40) : variable

uclidian
distance
over
multi le
variables

E √ (∑( n) (5.41)
n: model perfor-

mance metric of
variable

5.4.4. Parameter selection procedure
The hydrological model was calibrated by running the model with 10 random pa-
rameter sets generated with a Monte-Carlo sampling strategy with uniform prior
parameter distributions. Then, following two different strategies, the optimal pa-
rameter set was selected according to the model performance metrics as previously
described with respect to 1) discharge (DE,Q) and 2) discharge combined with total
water storage (DE,QS). The 5% best-performing parameter sets with respect to
DE,Q or DE,QS were considered as feasible. The feasible parameter sets were used
to evaluate the model performance with respect to discharge and total water stor-
age anomalies individually and combined. The model was run for the time period
1995 – 2016 and calibrated/evaluated for the time period 2002 – 2016 using the
first seven years as warm-up period. The entire time period (2002 – 2016) was
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used to estimate the model performance with respect to discharge and total water
storage to capture the long-term variability as good as possible.
In addition, the predictive strength of the benchmark Model A0 and the best per-
forming model hypothesis (i.e. third model adaptation; Section 5.4.2) were com-
pared by calibrating both models with respect to discharge and total water storage
simultaneously (DE,QS) for the time period 2002 – 2012, and post-calibration eval-
uating the models with respect to total water storage for the time period 2012 –
2016. Due to the limited data availability in 2012 – 2016, the model could not be
evaluated with respect to discharge.

5.5. Results
5.5.1. Data analysis
Total water storage anomalies
In the Luangwa basin, the total water storage anomalies varied both seasonally
and in the long-term (for example Figure 5.4A). The seasonal variation, hence the
difference between the annual maximum and minimum, remained rather similar
throughout the years (on average 225 mm). However, the annual minima, mean
and maxima changed over the years indicating relatively dry conditions in the Lu-
angwa basin for example during the 2005 – 2007 period and wetter conditions in
the 2009 – 2011 period. The annual minima varied between -164 mm in 2016 and
-67 mm in 2009, while the annual maxima varied between 75 mm in 2016 and 183
mm in 2010. Also the annual mean varied over the years between -46 mm in 2006
and 48 mm in 2010. This study focused on annual minima/maxima separately
instead of the annual mean to distinguish processes dominant in wet seasons in-
fluencing the annual maxima and dry seasons affecting the annual minima.
One possibility is that these variations were a result of uncertainties in GRACE
observations as the Luangwa basin is relatively small (150,000 km2) relative to the
resolution of GRACE. Previous studies estimated errors in GRACE observations to
be about 20 mm for areas of around 63,000 km2 (Landerer and Swenson, 2012;
Vishwakarma et al., 2018). But similar long-term variations were also observed
for the entire Zambezi basin (Figure 5.4B), which is considerably larger (1,390,000
km2) and where the maximum variation (194 mm) was an order of magnitude
larger than the average uncertainty error of 20 mm.
In addition, long-term variations in large open water bodies could influence the
GRACE signal. In this study, multiple open water bodies were within a radius of 300
km of the Luangwa Basin (Figure 5.1B) which typically is the distance used for data
smoothing when processing GRACE data (Blazquez et al., 2018a; Landerer and
Swenson, 2012). The area of these open water bodies were 2% of the Luangwa
basin for the Cahora Bassa reservoir, 4% for the Kariba reservoir and 20% for Lake
Malawi. As no long-term variations were observed in the altimetry observations
for the Cahora Bassa reservoir (Figure C.1 in Appendix C) and since this reservoir
had a small area compared to the Luangwa basin, the effect of this reservoir was
assumed to be negligible. For the Kariba reservoir (Figure 5.4C) and Lake Malawi
(Figure 5.4F), long-term variations were observed in the altimetry data, but with
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Figure 5.4: Basin-average total water storage (black) and annual rainfall (dark blue) according to CHIRPS
(A and B) and TRMM (D and E) for the Luangwa (A and D) and Zambezi (B and E) river basin, or altimetry
observations (light blue) at C) Kariba reservoir and F) Lake Malawi.

a low temporal correlation with the total water storage as shown in Figure C.2 in
Appendix C. For the Zambezi basin where similar long-term storage variations were
observed (Figure 5.4B), these three open water bodies covered together 2.7% of
the basin. This was considered to be too small to have a significant effect. That
is why it is plausible to assume that these long-term storage variations were not
dominated by uncertainties in the GRACE observations.

Precipitation
Alternatively, long-term variations in the total water storage can be caused by
changes in the precipitation. In the Luangwa basin, the annual observed precip-
itation volumes varied over the years, depending on the data source, from 920
mm to 1337 mm (CHIRPS) and from 858 mm to 1213 mm (TRMM), as shown in
Figures 5.4A and D. In general, precipitation anomalies preceded storage variations
by roughly 1 – 3 years. According to CHIRPS (Figure 5.4A), the rainfall volumes
peaked in 2006 and 2009 with a significant decrease in 2008 – 2009 and 2014.
While the increased rainfall volumes in 2006 and 2009 could explain the increased
total water storage anomalies between 2008 and 2010, the significantly decreased
rainfall volumes in 2008 – 2009 did not correspond to the long-term total water
storage pattern. The correlation between the annual rainfall volumes according to
CHIRPS and the annual maximum total water storage showed a 𝑅2 = 0.10 without
taking any time shift into account and reached up to 𝑅2 = 0.29 with a two year
time shift.
According to TRMM, the annual rainfall volumes decreased in 2004 – 2005 which
could explain the decreased lower total water storage in 2006. This was followed
by several wet years with a maximum rainfall volume of 1213 mm in 2006 which
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could explain the increased total water storage starting in 2007. The annual rainfall
volumes decreased significantly in 2014 – 2015 as low as 858 mm which corre-
sponded to the decreased total water storage in 2016. The correlation between the
annual rainfall volumes according to TRMM and the annual maximum total water
storage reached 𝑅2 = 0.28 without taking any time shift into account and reached
up to 𝑅2 = 0.34 with a two year time shift.
This difference between CHIRPS and TRMM illustrated the high sensitivity of the
annual rainfall volumes to the underlying processing techniques (Cohen Liechti
et al., 2012; Le Coz and van de Giesen, 2020; Mazzoleni et al., 2019; Thiemig
et al., 2012). Strikingly, for the entire Zambezi river basin the annual variability
in the precipitation according to both CHIRPS and TRMM show a similar pattern
compared to each other and to the storage variations. The annual rainfall volumes
decreased in 2004 followed by low total water storages in 2006, after which both
the rainfall and total water storage increased with a maximum in 2009 (CHIRPS),
2007 (TRMM) and 2010 (GRACE). These observations suggest that long-term vari-
ations in precipitation alone already contain considerable information to potentially
explain much of the observed long-term storage variations.

Evaporation
The two different methods to estimate potential evaporation and its variations over
the study time period, gave dramatically different results. While the Hargreaves
method suggested a long-term mean annual 𝐸P = 1565 mm yr 1 (Figure 5.5A),
Thornthwaite estimated long-term mean 𝐸P = 1904 mm yr 1 (Figure 5.5B). Major
long-term variations in 𝐸P were only observed for estimates based on the Thornth-
waite method (Figure 5.5B), but with a different pattern compared to the total water
storage resulting in low correlation coefficients when focusing on the annual mean
variations (𝑅2). In contrast, no discernible long-term fluctuations were observed
when applying the Hargreaves method (𝑅2 = 0.03). As the potential evaporation
did change over the years according to the Thornthwaite method, it is possible this
was one of the reasons why the modelled total water storage did not capture any
long-term variations when using the Hargreaves method for the potential evapora-
tion.
Analysis of the actual evaporation did not reveal any systematic long-term patterns
that could clearly explain observed variations in the total water storage for most of
the satellite products used in this study (Figure C.3 in Appendix C). In general, the
magnitudes and long-term fluctuations varied for each satellite product as a result
of different underlying assumptions and input data which could influence whether
or not long-term fluctuations are visible. This resulted in a range of 𝑅2 = 0.02 –
0.17 with respect to the annual minima for all satellite products used in this study
except for SSEBop which showed the highest 𝑅2 = 0.37 and where the evaporation
increased between 2006 and 2010 similar to the storage (Figures 5.5C and C.3 in
Appendix C). Note, that the observed annual minimum storage increase of 67 mm
over three years (2006 – 2009), which in fact is an accumulated difference aris-
ing from the combined history of inputs and outputs over that period, can result
among others from a mean deviation of only 0.06 mm d 1 in the evaporation, which
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is by far within the uncertainty range of many satellite-based evaporation products
(Long et al., 2014; Westerhoff, 2015). Hence, evaporation can potentially be one of
the drivers for the observed long-term storage fluctuations, but additional in depth
analyses is necessary to substantiate this hypothesis which was outside the scope
of this study due to the limited ground observations available.
Overall, long-term variations in potential and actual evaporation, according to most
satellite products used here, exhibited less direct correspondence with water stor-
age variations, which was likely a consequence of the subtle spatially varying inter-
actions between water supply and atmospheric water demand in this largely water
limited environment. Thus, while actual evaporation is largely controlled by wa-
ter supply in hillslope regions, it is to a higher degree dominated by variations in
atmospheric water demand in wetland areas, where sufficient water supply is sus-
tained by shallow groundwater throughout most of the year. On the basin average,
these processes can, to some degree, cancel each other out and thus prevent the
development of a clear long-term signal. Based on the above analysis it therefore
remains difficult to meaningfully assess the uncertainty of the different analysed
evaporation products.

Figure 5.5: Basin-average total water storage (black) with respect to the annual minima/maxima com-
bined with basin-average A) monthly potential evaporation according to Hargreaves (light green) and B)
Thornthwaite (light green), C) monthly actual evaporation according to SSEBop (dark green), D) NDVI
(brown), and E) LAI (brown) including the annual minima/maxima of the respective variables.

Land-cover
Affecting the magnitudes of transpiration, land-cover changes could also be one
of the drivers for the observed annual storage variations. In the Luangwa basin,
deforestation, forest recovery and agricultural expansion have occurred in the past
(Handavu et al., 2019; Phiri et al., 2019a, b). However, inspections of time-series
of LAI and NDVI (Figure 5.5) did not reveal any significant long-term variations
directly corresponding with water storage variations over the 2002 – 2016 period.
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While LAI did not exhibit any significant long-term variation, NDVI showed some
fluctuations, including a considerable decrease after 2010, which, however, did
not directly correspond with the observed water storage variations. This resulted
in low correlations between the annual mean total water storage and LAI (𝑅2 =
0.003) and NDVI (𝑅2 = 0.04). It was therefore assumed that land use change did
not play a major role for the observed long-term storage variations.

Water balance
Another potential reason for the observed long-term storage variations can be re-
gional, inter-basin groundwater exchange. For example, groundwater may leak out
of the Luangwa basin below the river, thus never contributing to the (river) flow at
the basin outlet, and into the Zambezi river basin further downstream eventually
draining into that river or potentially even directly into the sea. Given the available
observations, this would result in a water balance surplus for the Luangwa basin.
Depending on the rainfall and evaporation products used, the water balance sur-
plus in the Luangwa basin for the study period ranged between 9 and 332 mm
yr 1 (Table 5.1). This suggested that even in the likely presence of data uncer-
tainty, groundwater export may occur at least to some degree in the study region.
Assuming an inter-basin export of 𝑄L = 332 mm yr 1, discharge would be consid-
erably overestimated as compared to actual discharge observations (Figure 5.6).
To remain within the ranges spanned by multiple analytical solutions for water par-
titioning in the Budyko space (dark grey area in Figure 5.6; Gerrits et al., 2009),
groundwater export should not exceed 𝑄L = 143 mm yr 1, which corresponds to
a mean daily flow of 𝑄L = 0.39 mm d 1 or 13% of the annual rainfall. Therefore,
based on the water balance, a plausible estimate for groundwater export of 𝑄L =
0 – 0.39 mm d 1 is in the following assumed for the study basin.

5.5.2. Hydrological modelling
Benchmark model (Model A0)
Following the first strategy, i.e. calibrating with respect to discharge, the bench-
mark Model A0 captured the discharge well (Figures 5.7A and B) with an optimum
model performance of DE,Q,opt = 0.85 (Table 5.6, Figure 5.8A). The modelled flow
dynamics such as the timings of the wet and dry season were broadly consistent
with the observations (Figure 5.7A), but the high flows were slightly underestimated
and low flows somewhat overestimated (Figure 5.7B). In contrast, and in spite of its
general ability to reproduce discharge, the model could only poorly reproduce the
time-series of monthly and annual total water storage anomalies with DE,S = -14
(Table 5.6, Figure 5.8A). On monthly timescale, the general seasonal fluctuations
were modelled well with respect to the timings of the wet and dry season (Figure
C.6A in Appendix C). However, the annual maxima were significantly overestimated
and the annual minima underestimated (Figure 5.7C). In addition, the modelled
total water storage did not reflect any fluctuations in the annual minima in con-
trast to the observations (Figure 5.7E, 𝑅2 = 0.07), whereas the modelled annual
maxima varied throughout the years, but with a different pattern compared to the
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Figure 5.6: Runoff coefficient ( / ) as a function of the dryness index ( p/ ) where is discharge,
precipitation, and p potential evaporation. The blue dashed line indicates the energy limit and

the blue horizontal dash-dotted line the water limit. The grey area indicates envelope of analytical
solutions according to Schreiber (1904), Ol’dekop (1911), Turc (1953), Pike (1964) and Budyko (1974).
The dryness index was estimated using CHIRPS or TRMM for the precipitation and the Hargreaves
method ( P = 1565 mm yr 1) or Thornthwaite ( P = 1904 mm yr 1) for the potential evaporation.
The runoff coefficient was estimated with the same precipitation products and 1) recorded discharge
without groundwater exchange (red stars), 2) estimated discharge including groundwater exchange (
+ L = - , Eq.5.2) using the same precipitation products and SEBS (red dots), GLEAM (blue dots),
MOD16 (brown dots), SSEBop (green dots) and WaPOR (orange dots) for the evaporation resulting in
L = 9 – 332 mm yr 1 depending on the chosen satellite products, and 3) sum of recorded discharge

and maximum groundwater export ( L = 332 mm yr 1, blue stars). To remain within the Budyko space
(dark grey area), the groundwater exchange should range between L = -51 – 143 mm yr 1 depending
on the satellite products used. See Table 5.1 for the corresponding long-term values of the individual
fluxes.

observations (Figure 5.7D, 𝑅2 = 0.20). As a result, the overall model performance
with respect to discharge and total water storage DE,QS = -9.6 remained poor.
Following the second strategy, i.e. calibration with respect to discharge and total
water storage simultaneously, the ability of the model to reproduce flow decreased
significantly to DE,Q = -0.23 (Table 5.6, Figure 5.8B). While the general flow dynam-
ics were modelled well (Figure 5.9A), the flows were continuously overestimated
(Figure 5.10A). In contrast, the modelled monthly and annual total water storage
time-series improved (DE,S = -0.11). The modelled total water storage mimicked
the seasonal variations in the observation better (Figure C.7A in Appendix C), but
with slight differences in the storage decrease during the dry seasons. The magni-
tudes of the annual maxima and minima corresponded better with the observations
(Figure 5.10B) and the fluctuations in the annual maxima improved slightly (Figure



5.5. Results

5

97

5.10C, 𝑅2 = 0.31). However, the modelled storage did not reflect any fluctua-
tions in the annual minima (Figure 5.10D, 𝑅2 = 0.06). Hence, the overall model
performance DE,QS = -0.17 improved, but remained poor. Even when calibrating
with respect to total water storage only, the annual minima did not reflect any
fluctuations (Figure C.8 in Appendix C, 𝑅2 = 0.08).
As a result, with this benchmark Model A0 the flows were modelled well as also the
seasonal fluctuations in the total water storage. However, the long-term variations
in the total water storage with respect to the annual maxima were poorly modelled
and with respect to the annual minima completely missed.

Figure 5.7: Range of model solutions for Model A0 for calibration strategy 1 with respect to A) hy-
drograph, B) flow duration curve in logarithmic scale, C) total water storage time-series, D) annual
maximum total water storage, and E) annual minimum total water storage. In A) to C), the black line
indicates the recorded data, the coloured line the solution with the highest calibration objective function
with respect to discharge (DE,Q) and the shaded area the envelope of the solutions retained as feasible.
In D) and E), the recorded data are plotted on the horizontal axis and on the vertical axis the model
solution with the highest calibration objective function with respect to discharge (DE,Q). The red line
indicates the 1:1 line.

First model adaptation: Alternative forcing data (Models B0 – D0)
Following the first calibration strategy, Models B0 – D0, using different combinations
of input data sources, represented the discharge in general well with DE,Q = 0.85
– 0.92 (Table 5.6, Figure 5.8A). All models reproduced the overall flow dynamics
and magnitudes well (Figures C.4 and C.5A in Appendix C), especially Models C0
(DE,Q = 0.91) and D0 (DE,Q = 0.92). The monthly and annual total water storage
remained poorly modelled for all models with DE,S = -3.4 – -0.48 (Table 5.6, Figure
5.8A). On monthly timescale, the general seasonal fluctuations were modelled well
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Table 5.6: Model performance with respect to discharge ( E,Q), total water storage ( E,S) and both
combined ( E,QS) including their 5/95% percentile ranges of the feasible parameter sets for Models A0
– D4.

trategy ischarge calibration 𝑫E,Q trategy ulti-variable calibration 𝑫E,QS
𝑫E,Q

(𝑫E,Q,5/95%)
𝑫E,S

(𝑫E,S,5/95%)
𝑫E,QS

(𝑫E,QS,5/95%)
𝑫E,Q

(𝑫E,Q,5/95%)
𝑫E,S

(𝑫E,S,5/95%)
𝑫E,QS

(𝑫E,QS,5/95%)
odel 0.85

(0.70 – 0.81)
-14

(-18 – -5.5)
-9.6

(-12 – -3.6)
-0.23

(-0.71 – -0.06)
-0.11

(-0.80 – -0.10)
-0.17

(-0.52 – -0.31)

odel 0.85
(0.72 – 0.81)

-3.4
(-9.2 – -1.7)

-2.1
(-6.2 – -0.94)

0.32
(-0.14 – 0.49)

0.00
(-0.65 – -0.09)

0.14
(-0.25 – 0.01)

odel 0.91
(0.80 – 0.88)

-0.85
(-4.5 – -0.34)

-0.31
(-2.9 – 0.05)

0.64
(0.26 – 0.72)

0.22
(-0.13 – 0.19)

0.39
(0.16 – 0.31)

odel 0.92
(0.84 – 0.90)

-0.48
(-2.2 – 0.21)

-0.05
(-1.3 – 0.43)

0.83
(0.56 – 0.88)

0.34
(0.09 – 0.28)

0.52
(0.34 – 0.46)

odel 0.84
(-0.13 – 0.71)

-15
(-15 – -0.87)

-11
(-10 – -0.51)

-0.20
(-1.1 – 0.07)

0.05
(-1.4 – -0.15)

-0.08
(-0.90 – -0.35)

odel 0.82
(-5.1 – 0.51)

-1066
(-813 – -3.4)

-753
(-575 – -3.3)

-0.24
(-11 – -1.0)

-0.47
(-7.5 – -0.68)

-0.36
(-7.6 – -3.3)

odel 0.87
(0.73 – 0.83)

-425
(-1133 – -11)

-300
(-801 – -7.2)

0.28
(-1.2 – 0.49)

-0.45
(-3.9 – -0.66)

-0.14
(-2.6 – -0.53)

odel 0.87
(0.73 – 0.83)

-9.8
(-27 – -3.6)

-6.7
(-19 – -2.3)

0.54
(-0.42 – 0.50)

0.16
(-0.64 – 0.11)

0.32
(-0.31 – 0.12)

odel 0.84
(0.68 – 0.79)

-13
(-18 – -5.3)

-9.0
(-12 – -3.5)

-0.31
(-0.72 – 0.03)

0.23
(-0.73 – 0.08)

-0.07
(-0.46 – -0.20)

odel 0.93
(0.85 – 0.91)

0.31
(-6.9 – 0.29)

0.51
(-4.6 – 0.49)

0.85
(0.61 – 0.89)

0.50
(0.11 – 0.37)

0.63
(0.35 – 0.53)

with slight differences mostly in the storage decrease during dry seasons (Figure
C.6 in Appendix C). The magnitudes of the modelled annual minima corresponded
well with the observation for all models, but the annual maxima were overestimated
for Models B0 and C0, whereas this improved the most for Model D0 (Figure C.5B
in Appendix C). In addition, the annual minimum storage did not exhibit any of the
observed long-term variations in any of the models (𝑅2 = 0.02 – 0.10, Figure C.5C
– D in Appendix C), whereas the fluctuations in the annual maxima improved the
most for Model D0 (𝑅2 = 0.35). As a result, the overall model performance with
respect to discharge and total water storage improved the most for Model D0 with
DE,QS = -0.05 (Table 5.6, Figure 5.8A) which remained poor.
Following the second calibration strategy, the modelled flow improved for all Mod-
els B0 – D0 to DE,Q = 0.32 – 0.83 compared to the benchmark Model A0 (Table
5.6, Figure 5.8B). The general flow dynamics were represented well for all models
(Figure 5.9), but the flow magnitudes were only captured well for Models C0 and
D0 (Figure 5.10A). While Models A0 and B0 significantly overestimated the flows
continuously, Model C0 only slightly overestimated the flows continuously and
Model D0 only slightly underestimated the medium to low flows (Figure 5.10A). As
a result, Model D0 had the highest model performance with respect to discharge
with DE,Q = 0.83 (Table 5.6, Figure 5.8B). Also the modelled monthly and annual
total water storage improved for Models B0 – D0 with DE,S = 0.00 – 0.34 com-
pared to the benchmark Model A0 (Table 5.6, Figure 5.8B). On monthly timescale,
the general seasonal variations were captured well for all models, but with slight
differences in the storage decrease during dry seasons (Figure C.7 in Appendix
C). The magnitudes of the annual minima and maxima corresponded well with the
observations for all models (Figure 5.10B), whereas the fluctuations in the annual
maxima only improved for Model D0 with 𝑅2 = 0.39 (Figure 5.10C). On the other
hand, the annual minima remained close to constant for all models (𝑅2 = 0.00 –
0.03; Figure 5.10D). The overall model performance with respect to discharge and
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total water storage improved the most for Model D0 with DE,QS = 0.52 (Table 5.6,
Figure 5.8B).
As a result, the ability of the model to reproduce long-term variations of the total
water storage during the wet seasons, i.e. the annual maxima, was considerably
influenced by the choice of precipitation data source and the method to estimate
potential evaporation. In contrast, the modelled dry season storage, i.e. annual
minima, did not reflect the observed pattern for any combination of data sources
but remained rather stable. Overall, the combination of TRMM with the Thornth-
waite method (Model D0) here produced model results that were most consistent
simultaneously with observed discharge and the observed total water storage varia-
tions. This suggests that the choice of data source can explain some of the inability
of the model to reproduce long-term water storage variations.

Figure 5.8: Model performance for Models A0 – D4 with respect to discharge (DE,Q), total water storage
anomalies (DE,S) and both combined (DE,QS). The model is calibrated with respect to A) discharge or B)
both variables simultaneously. The dots represent the model performance using the “optimal” parameter
set and the boxplot the range of the best 5% solutions according to DE,Q or DE,QS. A red arrow was
added if all solutions are below zero.
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Figure 5.9: Range of model solutions for Models A0 – D0 for calibration strategy 2 with respect to
discharge (hydrograph). The black line indicates the recorded data, the coloured line the solution with
the highest calibration objective function with respect to discharge and total water storage (DE,QS) and
the shaded area the envelope of the solutions retained as feasible.

Second model adaptation: Alternative model structure (Model A1 – A5)
Following the first calibration strategy, all Models A1 – A5 reproduced the discharge
well with DE,Q = 0.82 – 0.87 (Table 5.6, Figure 5.8A). All models captured the
general flow dynamics and magnitudes (Figures C.9 and C.10A in Appendix C).
The monthly and annual total water storage time-series was modelled very poorly
for all models (DE,S = -1066 – -9.8, Table 5.6, Figure 5.8A). While Models A1 and
A5 consistently over- or underestimated the storage with little resemblance in the
fluctuations of the annual maxima (𝑅2 = 0.19 – 0.22) and minima (𝑅2 = 0.08 –
0.16), Models A2 and A3 substantially overestimated the long-term variations (𝑅2
= 0.00 – 0.11, Figures C.10 and C.11 in Appendix C). Also in Model A4, the storage
was over- or underestimated, but the long-term variations improved with respect
to the annual maxima (𝑅2 = 0.56) and minima (𝑅2 = 0.27). As a result, the overall
model performance with respect to discharge and total water storage simultane-
ously improved the most for Model A4 with DE,QS = 0.32 (Table 5.6, Figure 5.8A).
Following the second calibration strategy, the modelled discharge improved con-
siderably for Models A3 (DE,Q = 0.28) and A4 (DE,Q = 0.54) compared to the
benchmark Model A0, but was poorly represented for the remaining models with
DE,Q = -0.31 – -0.20 (Table 5.6, Figure 5.8B). The general flow dynamics were
reproduced well for Models A1 – A4 (Figure 5.11), albeit with slight differences
in the timing of the wet season and dry season recession, whereas Model A5
poorly represented the recession during dry seasons. In addition, the flows were
significantly over- or underestimated with Models A1 – A3 and A5 (Figure 5.12A),
whereas Model A4 only slightly overestimated the high flows and underestimated
the low flows. The monthly variations in the total water storage were captured well
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Figure 5.10: Range of model solutions for Models A0 – D0 for calibration strategy 2 with respect to
A) flow duration curve in logarithmic scale, B) total water storage time-series, C) annual maximum
total water storage, D) annual minimum total water storage. In A) – B), the black line indicates the
recorded data, the coloured line the solution with the highest calibration objective function with respect
to discharge and total water storage (DE,QS) and the shaded area the envelope of the solutions retained
as feasible. In C) – D), the recorded data are plotted on the horizontal axis and on the vertical axis the
model solution with the highest calibration objective function with respect to discharge and total water
storage (DE,QS). The red line indicates the 1:1 line..

for all models with some differences in the storage decrease during dry seasons
especially for Model A2 (Figure C.12 in Appendix C). While the magnitudes of the
annual maxima and minima were captured well for all models (Figure 5.12B), the
annual fluctuations improved the most for Model A5 with respect to the annual
maxima (𝑅2 = 0.51, Figure 5.12C) and for Models A2 and A5 with respect to the
annual minima (𝑅2 = 0.23, Figure 5.12D). When considering both the monthly and
annual fluctuations and magnitudes, Models A4 (DE,S = 0.16) and A5 (DE,S = 0.23)
improved the most (Table 5.6, Figure 5.8B).
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As a result, the model’s ability to reproduce the long-term total water storage varia-
tions during dry and wet seasons, i.e. annual minima and maxima, was significantly
influenced by the model structure. The modelled annual and monthly total water
storage improved the most for Models A4 and A5 (Table 5.6, Figure 5.8B) where
a Deeper Groundwater reservoir was incorporated with groundwater loss/flow as
function of the water content in the Deeper Groundwater reservoir. However,
Model A5 only poorly captured the discharge (DE,Q = -0.31, Figure 5.12A). There-
fore, when considering the overall model performance with respect to discharge
and total water storage simultaneously (DE,QS), Model A4 performed the best with
DE,QS = 0.32 (Table 5.6, Figure 5.8B). This model captured the flows well as also
the monthly and annual total water storage magnitudes and fluctuations, albeit
with a slight overestimation of the annual minima and maxima in 2004 – 2006
(Figure 5.12B). These results indicated long-term storage fluctuations were most
likely a result of groundwater loss from the Deeper Groundwater reservoir (Model
A4).

Third model adaptation: Alternative forcing data and model structure
According to the first model adaptation (comparing Models A0 – D0), Model D0
performed the best using precipitation data according to TRMM and estimating
the potential evaporation with the Thornthwaite method. According to the second
model adaptation (comparing Models A0 – A5), Model A4 performed the best fea-
turing a Deeper Groundwater reservoir which was only recharged during the wet
season and from where groundwater leaked out of the basin (Figures 5.2 and 5.3).
In this section, both models D0 and A4 were combined into Model D4 where we
used TRMM as data source for precipitation, the Thornthwaite method to estimate
potential evaporation and the model structure associated with Model A4.
Following the first calibration strategy, this model reproduced the discharge well
(Figure C.13A in Appendix C) with DE,Q = 0.93 which was better than all other
alternative model hypotheses (Table 5.6, Figure 5.8A). Both, the general flow dy-
namics and magnitudes were captured well with this model (Figure C.13A, B in
Appendix C). The monthly and annual total water storage improved significantly
to DE,S = 0.31 (Table 5.6, Figure 5.8A). The modelled monthly storage variations
were broadly consistent with the observation (Figure C.14 in Appendix C), albeit
with differences in the decrease during dry seasons and with high parameter un-
certainty. The magnitudes of the annual minimum and maximum storage were
modelled well for the time period 2010 – 2016, whereas before 2010 the storage
was overestimated (Figure C.13C in Appendix C). Also the fluctuations in the annual
maximum storage were modelled well with 𝑅2 = 0.48 (Figure C.13D in Appendix C),
but the annual minima were captured poorly (𝑅2 = 0.19, Figure C.13E in Appendix
C). The overall model performance increased to DE,QS = 0.51 which was better
than all other alternative model hypotheses (Table 5.6, Figure 5.8A).
Following the second calibration strategy, the discharge was modelled well (Fig-
ure 5.13A), albeit with a slight decrease in the model performance (DE,Q = 0.85)
compared to the first calibration strategy (Table 5.6, Figure 5.8B). While the flow
dynamics were captured well (Figure 5.13A), low flows were slightly underesti-
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Figure 5.11: Range of model solutions for Models A1 – A5 for calibration strategy 2 with respect to
discharge (hydrograph). The black line indicates the recorded data, the coloured line the solution with
the highest calibration objective function with respect to discharge and total water storage (DE,QS) and
the shaded area the envelope of the solutions retained as feasible.
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Figure 5.12: Range of model solutions for Models A1 – A5 for calibration strategy 2 with respect to A)
flow duration curve in logarithmic scale, B) total water storage time-series, C) annual maximum total
water storage, and D) annual minimum total water storage. In A) – B), the black line indicates the
recorded data, the coloured line the solution with the highest calibration objective function with respect
to discharge and total water storage (DE,QS) and the shaded area the envelope of the solutions retained
as feasible. In C) – D), the recorded data are plotted on the horizontal axis and on the vertical axis the
model solution with the highest calibration objective function with respect to discharge and total water
storage (DE,QS). The red line indicates the 1:1 line.

mated (Figure 5.13B). The monthly and annual total water storage time-series
improved considerably to DE,S = 0.50 (Table 5.6, Figure 5.8B). With this model and
this calibration strategy, the monthly variations were captured well (Figure C.15
in Appendix C), as also magnitudes and fluctuations in the annual maxima (𝑅2 =
0.57, Figure 5.13C,D) and minima (𝑅2 = 0.41, Figure 5.13C,E). The overall model
performance increased to DE,QS = 0.63 which was better than all other alternative
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model hypotheses (Table 5.6, Figure 5.8B).
In a last step, the predictive strength of Model D4 was compared to that of the
benchmark Model A0. For this purpose, both models were calibrated with respect
to discharge and total water storage simultaneously (calibration strategy 2) for the
time period 2002 – 2012, and post-calibration evaluated due to the lack of flow
data only with respect to total water storage for the time period 2012 – 2016 (see
Section 5.4.4). While the general flow dynamics were modelled well for both mod-
els (Figure C.16 in Appendix C), the magnitudes improved significantly for Model
D4 as the flows were only slightly underestimated during medium flows (Figure
5.14A). Hence, the modelled flow improved from DE,Q = -0.13 for Model A0 to
DE,Q = 0.51 for Model D4 (Table 5.7). Also the monthly and annual total water
storage time-series improved for Model D4 to DE,S = 0.63. On monthly timescale,
Model D4 captured the seasonal variations better with considerable improvements
in the storage decrease during dry seasons (Figure C.17 in Appendix C). While
the magnitudes of the annual minima/maxima were captured well for both models
(Figure 5.14B), long-term fluctuations improved for Model D4 with respect to the
annual maxima (𝑅2 = 0.57, Figure 5.14C) and minima (𝑅2 = 0.44, Figure 5.14D)
where 𝑅2 corresponded to the calibration time-period 2002 – 2012 as merely four to
five points were available for the evaluation time-period 2012 – 2016. With Model
D4, the annual minimum and maximum storage increased before 2010 after which
it decreased similar to the observations and in contrast to the benchmark Model
A0. However, the annual minimum/maximum storage were frequently overesti-
mated except in 2002 – 2004 when it was underestimated. During the evaluation
time-period 2012 – 2016, the model performance with respect to the monthly and
annual total water storage improved to DE,S = -1.0 (Table 5.7) which remained
negative due to the low model performance metrics with respect to the annual min-
ima/maxima (ENS,S,annual, Section 5.4.3). In this short time-period, the difference
between the observed time-series and its mean was significantly lower compared
to a longer time-period such as 2002 – 2012 resulting in a low denominator and
hence a low Nash-Sutcliffe efficiency (Eq.5.39).

Table 5.7: Model performance with respect to total water storage and discharge ( E,QS), and total water
storage ( E,S) including their 5/95% percentile ranges of the feasible parameter sets for Models A0 and
D4 calibrated with respect to E,QS for the time period 2002 – 2012.

𝑫E,Q
(𝑫E,Q,5/95%)

𝑫E,S
(𝑫E,S,5/95%)

𝑫E,QS
(𝑫E,QS,5/95%)

𝑫E,S
(𝑫E,S,5/95%)

odel -0.29
(-0.71 – -0.10)

-0.13
(-0.76 – -0.11)

-0.21
(-0.51 – -0.33)

-2.7
(-6.2 – -0.70)

odel 0.83
(0.62 – 0.89)

0.51
(0.08 – 0.37)

0.63
(0.33 – 0.53)

-1.0
(-3.3 – 0.43)

Overall the results suggest that the model’s ability to simultaneously reproduce both
the observed discharge and long-term and seasonal total water storage variations
was considerably influenced by both, the choice of forcing data and model struc-
ture, respectively. Overall, the combination of TRMM data for precipitation, the
Thornthwaite method for potential evaporation and the model structure associated
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Figure 5.13: Range of model solutions for Model D4 for calibration strategy 2 with respect to A) hy-
drograph, B) flow duration curve in logarithmic scale, C) total water storage time-series, D) annual
maximum total water storage, and E) annual minimum total water storage. In A) to C), the black line
indicates the recorded data, the coloured line the solution with the highest calibration objective function
with respect to discharge and total water storage (DE,QS) and the shaded area the envelope of the
solutions retained as feasible. In D) and E), the recorded data are plotted on the horizontal axis and
on the vertical axis the model solution with the highest calibration objective function with respect to
discharge and total water storage (DE,QS). The red line indicates the 1:1 line.

with Model A4 here produced model results most consistent with the observed
total water storage and discharge time-series. This Model D4 allowed for a better
representation of the discharge and better prediction of the total water storage
with respect to the seasonal and long-term fluctuations. The forcing data mostly
controlled the model’s ability to mimic annual storage maxima, whereas the annual
storage minima improved the most when incorporating groundwater loss from the
Deeper Groundwater reservoir (Model A4 and D4).

5.6. Discussion
In this study, we identified plausible drivers for the observed long-term total water
storage variations in the Luangwa Basin. The results indicated modelled annual
maximum storage fluctuations were to a large extent controlled by the choice of
forcing data, whereas modelled annual minima were influenced by processes allow-
ing long-term memory effects which were missing in the original benchmark Model
A0. More specifically, the representation of monthly and annual total water storage
fluctuations improved when using TRMM for the precipitation, the Thornthwaite
method to estimate potential evaporation and incorporating groundwater loss from



5.6. Discussion

5

107

Figure 5.14: Range of model solutions for Models A0 and D4 for calibration strategy 2 with respect to
A) flow duration curve in logarithmic scale, B) total water storage time-series, C) annual maximum total
water storage, and D) annual minimum total water storage. In A) – B), the black line indicates the
recorded data, the coloured line the solution with the highest calibration objective function with respect
to discharge and total water storage (DE,QS) and the shaded area the envelope of the solutions retained
as feasible. The white area was used for calibration (2002 – 2012) and the grey area for evaluation
(2012 – 2016). In C) – D), the recorded data are plotted on the horizontal axis and on the vertical axis
the model solution with the highest calibration objective function with respect to discharge and total
water storage (DE,QS). The darker dots correspond to the 2002 – 2012 time-period and was used to
calculate 2, whereas the lighter stars correspond to the 2012 – 2016 time-period. The red line indicates
the 1:1 line.

a deeper groundwater layer (Model D4).
The results demonstrated that models that can adequately reproduce discharge do
not necessarily reproduce storage well which was also observed by Bouaziz et al.
(2020). In this study, the benchmark Model A0 reproduced the general dynamics
and magnitudes of the discharge well but did not reproduce the observed stor-
age magnitudes nor the long-term storage fluctuations. Incorporating the total
water storage in the calibration procedure only improved the modelled storage
magnitudes, but not the long-term fluctuations. While alternative forcing data
sources improved the representation of the annual maximum storage fluctuations,
the storage conditions during dry seasons, i.e. annual minima, remained poorly
represented (Models A0 – D0) and only improved after modifying the model struc-
ture (Model D4). These results suggested that groundwater loss from the Luangwa
basin played an important role to explain long-term annual storage variations.
However, in many commonly used hydrological models such processes allowing
long-term memory effects are missing (e.g. Bergström, 1992; Fenicia et al., 2014;
Liang et al., 1994) resulting in biased predictions of discharge and storage which
is especially crucial during extreme dry conditions (Fowler et al., 2020; Saft et al.,
2016).
Furthermore, this study showed that processes allowing for long-term memory ef-
fects can be incorporated in conceptual hydrological models. In this study, several
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model hypotheses were tested to asses which processes most likely dominated
long-term memory effects in the Luangwa basin (Models A1 – A5). The results
suggested long-term storage variations were a result of groundwater loss from a
deeper groundwater layer which was only recharged during wet seasons (Model
D4). With this model, the storage prediction substantially improved compared to
the benchmark Model A0, yet remained at a modest level (DE,S < 0, Table 5.7)
most likely due to the chosen model performance metric and the limited number
of data points for the evaluation when considering annual minima/maxima for the
time-period 2012 – 2016 as explained in the previous section. In addition, these
modifications also improved the modelled discharge time-series such that the gen-
eral dynamics and magnitudes were represented better with Model D4 (Figure 5.13)
compared to the benchmark Model A0 (Figure 5.7). Therefore, model hypothesis
testing played a crucial role in improving the representation of real world processes
to reproduce multiple variables simultaneously (Beven, 2018; Clark et al., 2011).
Previous studies highlighted the inability of many conceptual models to reproduce
long-term storage variations and attributed this to data errors, poor parameteriza-
tion, model structural deficiencies or a combination thereof (Fowler et al., 2018;
Jing et al., 2019; Saft et al., 2016; Scanlon et al., 2018; Winsemius et al., 2006b).
Fowler et al. (2020) recently demonstrated that commonly used conceptual hydro-
logical models cannot reproduce long-term storage variations as they lack long-term
memory processes and hence should not be used for discharge predictions in for
example drying climates. However, here we could show that following a care-
ful data and model selection procedure, the representation of long-term storage
variations in a conceptual model could be considerably improved. This further
implies that although many typical implementations of hydrological models indeed
cannot reproduce long-term storage changes, in particular with respect to annual
fluctuations in dry season conditions, i.e. annual minima, as shown by Fowler et al.
(2020) and here with Models A0 – D0, this inability is not an inherent property of
conceptual models. Instead, our results provide some evidence that this inability
can, at least to some degree, be overcome when adopting a systematic procedure
to test alternative model hypotheses and thus to improve the representation of real
world processes (here: Models A1 – A5).
For future studies, it will be interesting to explore the effects of evaporation on
long-term storage fluctuations in a more detailed analysis. Our results suggest
that long-term fluctuations in the potential evaporation can occur depending on
the chosen estimation method (Hobbins et al., 2008; Huang et al., 2015; Roderick
and Farquhar, 2005; Xu et al., 2018). It would therefore be interesting to look into
alternative, potentially more accurate estimation methods. In addition, long-term
fluctuations in the actual evaporation were observed depending on the satellite
product due to the different underlying assumptions and input data (Bai et al.,
2019; Feng et al., 2019; Goroshi et al., 2017; Wang et al., 2018). That is why,
more in depth analyses on the effect of evaporation on long-term storage fluctua-
tions is recommended which was outside the scope of this study due to the limited
data availability.
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5.7. Evaluation
In the Luangwa basin, long-term total water storage variations were observed with
GRACE, but not reproduced by a previously developed process-based hydrological
model that encapsulates our current understanding of the dominant regional hy-
drological processes. The objective of this study was to identify potential and so
far overlooked processes underlying these low-frequency variations in a combined
data analysis and model hypothesis testing approach. Overall, the results suggest
that the initial model’s inability to reproduce the observed low-frequency storage
variations was a combined effect of the data source chosen to run the model and
the missing representation of regional groundwater export. More specifically, it was
shown that a different choice of the model input data source produced model re-
sults that are more consistent with observed fluctuations in long-term annual total
water storage maxima. In contrast, the incorporation of a process representing
regional groundwater export from a deep groundwater layer improved the model’s
ability to reproduce the observed variations in the annual minimum storage. The
results highlighted the combined value of alternative data sources of multiple vari-
ables and iterative hypotheses testing to improve our understanding of hydrological
processes, their quantitative description in models and eventually towards more re-
liable predictions of hydrological models.





6
Sub-Saharan drought of

2019 observed from space

Water doesn’t stay in the sky forever.

African proverb

In the previous chapters, satellite observations were used to improve our cur-
rent understanding of local dominant hydrological processes, improve hydro-
logical model structures, and improve the identification of feasible parameter
sets in a data-scarce region. In addition, satellite-based data analysis re-
sults provide valuable new information to improve our understanding of the
hydrological system which can then be implemented in hydrological models.
For example, satellite observations can be used to analyse drought events in
large regions with respect to the temporal and spatial variability. In general,
drought events can influence human activities with respect to drought cop-
ing mechanisms, depending on how they perceived specific drought events,
which can affect the hydrological system. That is why it would be interesting
to compare local perceptions with multiple satellite observations to increase
our understanding of factors influencing local perceptions. As small illustra-
tion, the drought of 2019 in the Zambezi River Basin was analysed using
multiple satellite observations to determine whether it was, as locally per-
ceived, indeed the most extreme drought over at least 20 years. Data analy-
sis indicates that it depended on the drought characteristic, the hydrological
variable considered, and on the location within the basin.

This chapter is based on: Hulsman, P., Savenije, H. H. G., and Hrachowitz, M.: Zambezi River Basin:
Drought of 2019, Journal of Hydrology: Regional Studies, submitted.
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6.1. Introduction

D uring the dry season of 2019 in Sub-Saharan Africa, extreme low river water
levels were observed which was especially visible in the Zambezi River at Vic-

toria Falls and the reservoir upstream of the Kariba hydropower dam. Extreme low
water levels were observed at the Kariba reservoir, down to 10% of usable water
for hydro-power generation, which resulted in frequent power cuts of up to 18
hours per day for at least 3 months starting in November 2020 according to locals
and news media (Carlowicz, 2019; Matiashe, 2019; Tshili, 2019). 250 km further
upstream of the Kariba reservoir, the Victoria Falls which is known as one of the
biggest waterfalls in the world, dried significantly reducing the 1.7 km wide falls to
multiple small waterfalls (Childs, 2019; Henson, 2019).
As the Zambezi river basin is characterized by one distinct wet season, it exhibits
high temporal but also spatial variability in water availability and demand such
that the dry season demand frequently exceeds water availability, resulting in
water stressed areas. In the past, severe droughts have occurred for example in
1995 and 2015 in multiple Sub-Saharan countries causing reduced crop production
(Libanda et al., 2019; The World Bank, 2010). Between 2000 and 2009, about
12.5 million people were affected by droughts in Mozambique, Zambia and Zim-
babwe (ZAMCOM et al., 2015). However, according to popular news media, locals
perceived the drought in 2019 as the worst in several decades (Brown, 2019; Edel,
2019) or even a century (Carlowicz, 2019; Henson, 2019).
Drought is one of the most damaging natural disasters throughout the globe with
widespread impacts on the society, economy, and ecology (Mishra and Singh, 2010;
Van Loon, 2015). In general, droughts are classified among others into meteoro-
logical droughts related to precipitation deficits, hydrological droughts related to
water deficits on the (sub-) surface and groundwater droughts related to decreased
groundwater levels (Mishra and Singh, 2010; Van Loon et al., 2014; Wilhite and
Glantz, 1985). Many previous studies have focused for example on 1) quantifying
and predicting droughts in terms of for example intensity, duration, severity or
spatial extent using drought indices (Bayissa et al., 2018; Hao and Singh, 2015;
Hellwig and Stahl, 2018; Kumar et al., 2016; Naresh Kumar et al., 2009; Van Loon
et al., 2017), 2) analysing the impact of drought on different sectors such as so-
ciety, economy or ecology (Haile et al., 2019; He et al., 2019; Mishra and Singh,
2010; Stahl et al., 2016), and 3) analysing factors influencing droughts such as
climate-change, human modifications or catchment characteristics (Firoz et al.,
2017; Haile et al., 2019; Roodari et al., 2020; Van Loon and Laaha, 2015; Van Loon
et al., 2016). Some of these studies focused on analysing droughts in Sub-Saharan
regions such as the Zambezi river basin (e.g. Dutra et al., 2013; Thomas et al.,
2014; Tirivarombo and Hughes, 2011).
In addition, previous studies illustrated discrepancies between people’s perception
of dry conditions and data analyses results (e.g. Foguesatto et al., 2020; Simelton
et al., 2013; Solano-Hernandez et al., 2020). For instance, Foguesatto et al. (2020)
showed multiple farmers in Africa and Asia perceived decreased rainfall amounts
which was not reflected in meteorological records. They argued these discrepan-
cies can often be a result of economic and psychological stress factors. In another
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study, Taylor et al. (1988) showed farmers in the United States remembered the
most recent drought and individual extreme drought events, but largely forget
intermediate droughts. Similarly, Di Baldassarre et al. (2017) and Albertini et al.
(2020) provided evidence that the impacts of droughts occurring after extreme
flood events can be intensified as it is often not expected nor prepared for. In sev-
eral Sub-Saharan countries, there was an extreme flood event due to the tropical
cyclones Idai and Kenneth in March and April 2019 (United Nations Office for the
Coordination of Humanitarian Affairs (OCHA), 2019) which thus may have impacted
the local perception of the 2019 drought in the Zambezi River Basin.
While many previous studies compared local perceptions of drought events to
rainfall observations (e.g. Giordano et al., 2013; Iqbal et al., 2018; Osgood et al.,
2018; Ovuka and Lindqvist, 2000; Solano-Hernandez et al., 2020), these studies
did not incorporate satellite-based total water storage and reservoir water level
observations which provide additional information on drought events. In addition,
the drought of 2019 in the Zambezi River Basin has not yet been fully analysed
as it occurred recently. Therefore, the objective of this study was to analyse the
drought of 2019 in the Zambezi River Basin upstream of the Kariba reservoir using
multiple satellite observations to determine whether it was indeed the most extreme
drought in at least 20 years as perceived by locals. More specifically, we tested the
research hypothesis that the drought of 2019 was the longest, most intense and
severe drought, basin-wide and locally, according to satellite-based precipitation,
total water storage and reservoir water level observations since at least 20 years
similar to the local perception.

6.2. Site description
The Zambezi river, the fourth longest river in Africa, is shared by the countries
Zambia (42%), Angola (18%), Zimbabwe (16%), Mozambique (12%), Malawi
(7.5%), Tanzania (2%), Botswana (1.5%) and Namibia (1%) (Figure 6.1; Kling
et al., 2014). The river has a basin area of 1.37 million km2, is about 2,660 km
long and has an average discharge of 4,134 m3 s 1 at the outlet in Mozambique
(The World Bank, 2010). There is a distinct wet season from September – April and
dry season from May – August. In this semi-arid basin, the potential evaporation
(2000 mm yr 1) exceeds the precipitation (1000 mm yr 1) especially during dry
seasons (Schleiss and Matos, 2016). Two large hydropower dams are located in the
main Zambezi river which are the Cahora Bassa Dam (2075 MW) in Mozambique
and further upstream the Kariba Dam (2130 MW) at the border of Zambia and
Zimbabwe which is one of the main power sources for both countries according to
the local power supply companies (Kesselring, 2017). The maximum water depth
above the minimum operating level in the Kariba reservoir is 13 m according to the
Zambezi River Authority (http://www.zambezira.org/).

http://www.zambezira.org/


6

114 6. Sub-Saharan drought of 2019 observed from space

Figure 6.1: Map of the Zambezi river basin and the basin area upstream of the Kariba reservoir now
called “Kariba basin”.

6.3. Data availability
In this study, satellite observations were used to estimate precipitation, total water
storage anomalies, actual and potential evaporation, and reservoir water levels (Ta-
ble 6.1) as the available ground observations were very limited within the Zambezi
river basin (e.g. Hulsman et al., 2020a). Briefly, monthly precipitation data was
obtained from CHIRPS (Climate Hazards Group InfraRed Precipitation with Station
data) and basin-averaged monthly actual evaporation from WaPOR (Water Pro-
ductivity Open-access portal). Monthly satellite-based temperature data obtained
from ERA5 (5th generation ECMWF atmospheric reanalysis dataset) and averaged
over the Kariba reservoir were used to estimate the potential evaporation with the
Hargreaves method (Hargreaves and Allen, 2003; Hargreaves and Samani, 1985)
which was assumed to be equal to the total actual evaporation from this open
water body.
Total water storage anomaly observations were obtained from the Gravity Recovery
and Climate Experiment (GRACE). GRACE observations describe variations in the
Earths’ gravity field which are related to regional mass changes that are dominated
by terrestrial water storage variations (Landerer and Swenson, 2012; Swenson,
2012). Readily available and pre-processed GRACE observations were generated
by JPL (Jet Propulsion Laboratory) and downloaded from the GRACE Tellus website
(https://grace.jpl.nasa.gov/). The JPL pre-processed the data to remove
atmospheric mass changes, systematic errors and noise, and subtract the 2004 –

https://grace.jpl.nasa.gov/
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2009 time-mean baseline to obtain total water storage anomalies (Landerer and
Swenson, 2012; Swenson and Wahr, 2006; Wahr et al., 1998).
Satellite-based lake water levels, i.e. altimetry observations, were extracted from
the platform DAHITI (Database for Hydrological Time Series of Inland Waters)
for the Kariba reservoir. Altimetry observations estimate the water level relative
to a reference ellipsoid. The distance between the satellite and earth surface
is estimated by sending a radar signal in nadir direction towards the earth and
measuring the time difference between sending and receiving the reflected signal.
With this distance and the known satellite position, the surface level relative to a
reference ellipsoid is estimated (Calmant et al., 2009; Łyszkowicz and Bernatowicz,
2017). At the Kariba reservoir, the following satellite missions were used to create
a time-series: Envisat, Jason 1 – 3, and Topex/Poseidon (Schwatke et al., 2015).
Depending on the satellite mission, the temporal resolution is 10 and 35 days
(CNES, Accessed 2018; ESA, Accessed 2018; Schwatke et al., 2015).

Table 6.1: Data used in this study

ime
eriod

ime
resolution

atial
resolution

roduct
name ource eference

reci itation 1992 – 2020 Daily 0.05o CHIRPS Version 2
(Funk et al., 2014)

otal ater
storage 2002 – 2020 Monthly 1o GRACE Pre-processed by JPL (Ver-

sion RL05_1.DSTvSCS1411)
https://
grace.jpl.nasa.gov/
(Landerer and Swenson,
2012; Swenson, 2012;
Swenson and Wahr, 2006)

em erature 1992 – 2020 Monthly 0.25o ERA5 5th generation ECMWF
atmospheric reanalysis
dataset
(Copernicus Climate
Change Service (C3S),
2017)

va oration 2009 – 2020 Monthly 250 m WaPOR WaPOR V2 Level 1
(FAO, 2018; FAO and IHE
Delft, 2019)

ltimetry 1992 – 2020 10 – 35 days n/a DAHITI https://
dahiti.dgfi.tum.de/
en/
(Schwatke et al., 2015)

6.4. Approach
In this study, the temporal variability of remotely-sensed precipitation, total water
storage, actual and potential evaporation as well as reservoir water levels at Kariba
were compared with each other for the time period 1992 – 2020. As GRACE and
WaPOR data were only available since 2002 and 2009 respectively, any comparison
with these variables comprised the time-period 2002 – 2020 and 2009 – 2020,
respectively. Annual values for the precipitation and evaporation were calculated
from monthly observations considering hydrological years starting in August, rather
than calendar years. As there were no discharge data available in the vicinity of the

https://grace.jpl.nasa.gov/
https://grace.jpl.nasa.gov/
https://dahiti.dgfi.tum.de/en/
https://dahiti.dgfi.tum.de/en/
https://dahiti.dgfi.tum.de/en/
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Kariba reservoir after 2018 in the global discharge database GRDC (Global Runoff
Data Centre), this variable was not included in this study.
The temporal variability of all individual variables were analysed and compared us-
ing basin-averaged time-series for the gridded observations considering the basin
upstream of the Kariba hydropower dam (dark grey area in Figure 6.1). In addition,
multiple drought indices were calculated using precipitation, GRACE and altimetry
data as explained in Section 6.4.1. With these indices, the associated drought
severities, durations and intensities were estimated and analysed as explained in
Section 6.4.2. Then, the spatial variability of the drought severity and intensity was
compared for the average, most severe and the drought of 2019 with respect to
precipitation and GRACE for which gridded data was available.

6.4.1. Drought indices
Remotely-sensed precipitation data was used to estimate the Standardized Precip-
itation Index (SPI; McKee et al., 1993) which is typically used to quantify meteoro-
logical droughts. The SPI was calculated for each month using monthly precipitation
time-series accumulated over the 12 preceding months to reflect short- and long-
term effects. This time-series was fitted to the Gamma probability density function
to compute the corresponding cumulative distribution function which was then
transformed to a normal distribution function to estimate SPI values.
Total water storage observations according to GRACE were used to estimate the
GRACE-based Total Storage Deficit Index (TSDI; Nie et al., 2018). This was cal-
culated by first estimating the Total Storage Deficit (TSD) using Eq.6.1 to remove
seasonal variations to allow comparisons of TSD between different seasons, and
then standardizing TSD using Eq.6.2 to obtain TSDI (Nie et al., 2018):

𝑇𝑆𝐷ij =
𝑆ij − 𝑆avg,j

𝑆max,j − 𝑆min,j
(6.1)

𝑇𝑆𝐷𝐼 =
𝑇𝑆𝐷ij − 𝜇

𝜎 (6.2)

With 𝑆ij [mm] total water storage in month 𝑗 and year 𝑖, 𝑆avg,j [mm] long-term
mean total water storage for month 𝑗, 𝑆max,j [mm] long-term maximum total water
storage for month 𝑗, 𝑆min,j [mm] long-term minimum total water storage for month
𝑗, 𝜇 [-] mean of TSD [-] and 𝜎 [-] standard deviation of TSD.
Reservoir altimetry observations were used to estimate the corresponding drought
index which was called Water-Level Deficit Index (WLDI) in this study. For this
purpose, Eq.6.1 and 6.2 were used similar to the calculation of GRACE-based TSDI
as reservoir water level and total water storage observations both already account
for effects of preceding months. That is why the altimetry and GRACE time-series
were not accumulated when calculating the corresponding drought indices as done
when estimating SPI (Bloomfield and Marchant, 2013; Van Loon et al., 2017).
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6.4.2. Drought characteristics
The three individual drought indices were used to characterise droughts in terms
of drought severity, duration and intensity. The drought duration 𝐷D,θ [months] for
drought index 𝜃 was defined as the number of consecutive months with 𝜃 below
zero, drought intensity 𝐷I,θ [month 1] as average 𝜃 over consecutive months with
𝜃 below zero, and drought severity 𝐷S,θ [-] as the accumulated 𝜃 over consecutive
months with 𝜃 below zero (Huang et al., 2016). This was applied for all drought
indices used in this study such that 𝜃 = SPI, TSDI or WLDI.

6.5. Results
6.5.1. Precipitation
The annual precipitation varied between 642 mm yr 1 in 2019, and 1024 mm yr 1

in 2008 (Figure 6.2A). In other words, in 2019 the annual rainfall was lowest since
at least 27 years which was the duration of the available rainfall data. Considerably
low rainfall amounts were also observed in 1995 (670 mm yr 1), 2002 (728 mm
yr 1), 2005 (710 mm yr 1) and 2015 (733 mm yr 1). Consecutive wet years with
above average rainfall amounts (871 mm yr 1) were observed in 2006 – 2011 and
2017 – 2018, whereas in 1997 – 2001 the annual rainfall amounts were more than
800 mm yr 1 (Figure 6.2A).
According to the precipitation-based drought index SPI, there have been multiple
droughts in the Kariba basin (coloured areas in Figure 6.2B) of which five droughts
are characterized by SPImin < -1.5 (Table 6.2) and can hence be classified as “severe
meteorological drought” according to the drought categories as defined by McKee
et al. (1993). These droughts started in 1994, 2002, 2005, 2015 and 2019. Their
drought severities varied between 𝐷S,SPI = -11.6 – -29.5, their durations between
𝐷D,SPI = 8 – 22 months, and their intensities between 𝐷I,SPI = -1.0 – -1.5 month 1

(Table 6.2). Based on these results, the longest and most severe meteorological
drought occurred in 1994 (𝐷D,SPI = 22 months, 𝐷S,SPI = -29.5), whereas the most
intense drought was in 2005 (𝐷I,SPI = -1.5 month 1, Table 6.2). In contrast to the
local perception, the meteorological drought of 2019 was “only” the most severe
in 17 years since the drought of 2002 was more severe and longer (Table 6.2).
Similarly, the 2005 drought was more intense than the 2019 drought. This largely
contradicts the local perception that the drought of 2019 was the most extreme in
more than 20 years.

6.5.2. Total water storage
The total water storage varied seasonally on average 271 mm, whereas in the long-
term the annual mean storage varied between -115 mm and 143 mm (Figure 6.2C).
In 2005 and 2019, the total water storage decreased to -217 mm and -215 mm,
respectively, which were both dry years when considering the annual rainfall (710
mm yr 1 and 642 mm yr 1, respectively). Besides the low rainfall amounts, the
decreased storage in 2019 is likely also a result of the above average evaporation
in the basin (1030 mm yr 1, Figure 6.3A). In contrast, the total water storage
remained relatively high in 2015 despite the low rainfall (733 mm yr 1) with an
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Table 6.2: Overview of drought characteristics according to precipitation, GRACE and altimetry data
including minimum Deficit Index (DImin), duration ( D), intensity ( I) and severity ( S) for all droughts
with D > 6 months. Bold numbers indicate droughts with DImin ≤ -1.5. The data for the GRACE
and water level based deficit in 2019 was incomplete as it continued after June 2020, the end of the
time-series, since the corresponding deficit index remained below zero until the end of the time-series.

tart of
drought

nd of
drought

DImin
-

𝑫D
months

𝑫I
month 1

𝑫S
-

reci itation Feb 1992 Dec 1992 -1.4 11 -0.97 -10.6
r an - - -

Mar 1996 Nov 1996 -1.3 9 -1.1 -9.8
Apr 1997 Sep 1997 -0.3 6 -0.3 -1.6
Apr 1998 Nov 1998 -1.1 8 -0.9 -7.2
Apr 2000 Oct 2000 -0.7 7 -0.6 -4.4
ar ov - - -
r ov - - -

Apr 2007 Sep 2007 -0.4 6 -0.4 -2.1
Apr 2012 Oct 2012 -0.9 7 -0.7 -5.1
Apr 2013 Oct 2013 -0.6 7 -0.5 -3.5
ar eb - - -

Apr 2016 Nov 2016 -1.0 8 -0.7 -5.8
ar eb - - -

Apr 2002 Mar 2004 -1.4 24 -0.8 -16.8
ug ec - - -

Sep 2015 Dec 2016 -1.2 16 -0.6 -6.4
ec un - - -

ltimetry e ay - - -
May 2005 Jan 2008 -1.2 33 -0.7 -22.4
r eb - - -

eb un - - -

annual minimum storage of -80 mm (Figure 6.2A and C). This can plausibly be
linked to the below average actual evaporation in the basin (902 mm yr 1, Figure
6.3A) in that year, resulting in less water being released from the (sub-) surface
and hence higher total water storage values.
According to the GRACE-based TSDI, water storage deficits occurred multiple times
of which two exhibit TSDImin < -1.5 which started in 2004 and 2018 (Table 6.2
and Figure 6.2D), respectively. Their drought severities varied between 𝐷S,TSDI
= -23.7 – -32.9, their durations between 𝐷D,TSDI = 19 – 41 months, and their
intensities between 𝐷I,TSDI = -0.8 – -1.3 month 1. In contrast to these droughts,
the low rainfall in 2015 did not result in TSDI < -1.5 which corresponded to the
observations in the total water storage (Figure 6.2D) as described above. Based on
these results, the longest and most severe groundwater drought occurred in 2004
(𝐷D,TSDI = 41 months, 𝐷S,TSDI = -32.9), whereas the most intense total storage
related drought occurred indeed in 2019 (𝐷I,TSDI = -1.3 month 1, Table 6.2) which
so far lasted for 19 months. Note, the TSDI remained below zero towards the end
of the available time-series in June 2020 (Figure 6.2D) meaning the total storage
deficit was still ongoing, thereby affecting the final duration, severity and intensity
for this specific drought.
In contrast to the local perception, the GRACE-based drought of 2019 was not the
most severe in several decades, since the drought of 2004 was more severe and
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Figure 6.2: A) Basin-averaged annual precipitation, B) monthly SPI (Standardized Precipitation Index),
C) basin-averaged monthly total water storage anomalies, D) monthly TSDI (Total Storage Deficit Index),
E) altimetry observations at Kariba reservoir, and F) monthly WLDI (Water-Level Deficit Index). The red
dashed lines mark the dates 15 March 1995, 2002, 2005, 2015 and 2019.

longer (Table 6.2). On the other hand, the drought of 2019 was the most intense
according to GRACE data. However, as the available data did not cover the entire
drought of 2019, its final duration and severity remain unknown. Thus, as of now
there is insufficient data for a conclusive assessment of the local perception that
the storage-related drought of 2019 was the most severe in more than 20 years as
this depends on how this drought evolved after June 2020.

6.5.3. Reservoir water level
As illustrated in Figure 6.2E, the water level in Kariba reservoir changed both sea-
sonally and inter-annually. While the seasonal variability was on average 2.8 m, the
inter-annual variability ranged up to 10.2 m as the annual minima ranged between
475.1 m (1996) and 485.3 m (1999). The highest level was observed in 2000 (487.2
m) and the lowest in 1996 (475.1 m), whereas during the dry season of 2019, the
reservoir level decreased to 476.2 m before increasing again with the new rains.
In other words, the lowest reservoir level was observed in 1996 instead of 2019
also when considering uncertainties in altimetry observations which typically range
between 4 – 36 cm for open water bodies according to previous studies (Crétaux
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Figure 6.3: Annual total evaporation from A) Kariba basin and B) Kariba reservoir. The red dashed lines
mark the dates 15 March 1995, 2002, 2005, 2015 and 2019.

and Birkett, 2006; Schwatke et al., 2015). The long-term variations in the altimetry
often coincided with the annual precipitation amounts according to CHIRPS (Figure
6.2A). For example, the water levels decreased significantly in 1995, 2005, 2015
and 2019 when the annual rainfall was significantly low. Similarly, the water lev-
els increased in 1997 – 1999, 2007 – 2011 and 2016 – 2018 during consecutively
wet years (Figure 6.2A and E). In contrast, the annual rainfall was significantly
lower in 2002 (728 mm yr 1) which was not reflected as strong in the altimetry
observations compared to the other dry years (Figure 6.2A and E). In general, high
reservoir water levels despite low rainfall amounts can be due to decreased outflow
as a consequence of reservoir operation considerations or decreased evaporation
from the open water body. However, in 2002, the evaporation was considerably
high (1320 mm yr 1) compared to preceding and following years (Figure 6.3B).
Therefore, the high altimetry observations in 2002, despite the low rainfall amount,
were more likely a result of reservoir operation decisions.
According to the reservoir altimetry-based WLDI, significant water deficits continu-
ing for more than a year started in 1992, 2005, 2015 and 2019 (coloured areas in
Figure 6.2F). Their severities varied between 𝐷S,WLDI = -20.1 – -79.6, their dura-
tions between 𝐷D,WLDI = 17 – 69 months, and their intensities between 𝐷I,WLDI =
-0.7 – -1.2 month 1 (Table 6.2). Based on these results, the longest, most severe
and most intense deficit occurred between 1992 and 1998 (𝐷D,WLDI = 69 months,
𝐷S,WLDI = -79.6, 𝐷I,WLDI = -1.2 month 1, Table 6.2). Note, the WLDI remained
below zero towards the end of the time-series in June 2020 (Figure 6.2F) meaning
the reservoir water deficit was still ongoing. Duration and severity of this specific
drought as reported here are thus to be interpreted as lower bounds.
In contrast to the local perception, the altimetry-based drought of 2019 was not the
most severe in the last decades, but only the most severe in four years since the
drought of 2015 was more severe and longer (Table 6.2). However, as the available
data did not cover the entire drought of 2019, its final duration and severity remain
unknown. On the other hand, the drought of 2019 was the most intense since
1992 and resulted in the lowest reservoir water level since 1995 (475.8 m) which
supports the local perception that the drought of 2019 was the most extreme in
more than 20 years.
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6.5.4. Spatial variability
In the previous sections, the basin-averaged drought characteristics were analysed
using precipitation, GRACE and altimetry data. In this section, the spatial variability
of the drought severity and intensity was compared for all droughts on average, the
most severe drought and the 2019 drought with respect to precipitation and GRACE
for which gridded data was available. The most severe basin-average precipitation
deficit occurred in 1994 while the most severe total water storage deficit occurred
in 2004 (Table 6.2).

Precipitation
The precipitation-based drought intensity averaged for all droughts in 2002 – 2020
did not change significantly in space with 𝐷I,SPI, = -0.6 – -1.3 month 1 (Figure
6.4A). In 1994, the drought intensity varied between 𝐷I,SPI = -0.5 – -1.6 month 1

and also exhibited pronounced spatial contrasts with the lowest values in the cen-
tral parts of the basin (Figure 6.4B), whereas in 2019, the intensity varied between
𝐷I,SPI = -0.1 – -1.7 month 1 with the lowest values in the north-west (Figure 6.4C).
Comparison between 1994 and 2019 further suggests that, in spite of comparable
basin-average intensity, the 2019 drought was locally considerably more intense.
The drought severity averaged for all droughts in 2002 – 2020 varied between
𝐷S,SPI = -20.5 – -4.4 in space with the lowest values in the northern part of the
basin (Figure 6.5A). The most severe drought in 1994 showed more extreme spatial
differences with 𝐷S,SPI = -3.6 – -63.3 and with the lowest values in the central part
of the basin (Figure 6.5B). In 2019, the drought severity ranged between 𝐷S,SPI =
-0.3 – -27.2 with the lowest values in the north-west of the basin (Figure 6.5C).
Therefore, the drought was significantly more severe in 1994 compared to 2019
throughout large parts of the basin, whereas in other regions such as the north-
western part of the basin the drought was more severe in 2019.
Overall, it depended on the location within the basin whether or not the drought
of 2019 was the most severe or intense in at least 20 years as perceived by locals.
On the one hand, the drought of 2019 was the most intense (Figure 6.6A) and
severe (Figure 6.7A) for at least 20 years in the northern part of the basin which
supports the local perception. On the other hand, in the southern parts of the basin
the drought of 2019 was the most severe and intense in less than 10 years which
contradicts the local perception.

Total water storage
The GRACE-based drought intensity averaged over all droughts in 2002 – 2002
ranged between 𝐷I,TSDI = -0.8 – -1.1 month 1 with minor spatial differences (Fig-
ure 6.4D). In 2004, the intensity ranged between 𝐷I,TSDI = -0.7 – -1.3 month 1

with the lowest values in the south-east (Figure 6.4E), whereas in 2019, it varied
between 𝐷I,TSDI = -0.5 – -1.4 month 1 with the lowest values in the north-west
(Figure 6.4F). Therefore, the drought was more intense in 2004 (for example
south-east of the basin) or 2019 (for example north-west of the basin) depending
on the location within the basin.
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Figure 6.4: Spatial variability of the drought intensity according to the precipitation (A – C) and according
to the total water storage (D – F). The maps were temporally averaged considering all droughts (A and
D), the most severe drought according to precipitation (B) and GRACE (E), and drought of 2019 (C and
F).

Figure 6.5: Spatial variability of the drought severity according to the precipitation (A – C) and according
to the total water storage (D – F). The maps were temporally averaged considering all droughts (A and
D), the most severe drought according to precipitation (B) and GRACE (E), and drought of 2019 (C and
F).

The drought severity averaged over all droughts in 2002 – 2020 varied between
𝐷S,TSDI = -7.3 – -13.1 in space with the lowest values in the central part of the basin
(Figure 6.5D). In 2004, the severity ranged between 𝐷S,TSDI = -4.6 – -23.8 with the
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Figure 6.6: Spatial variability of the number of years between the drought of 2019 and the most recent
drought before 2019 with more intense deficit according to A) precipitation or B) GRACE data. Grid cells
where the drought of 2019 was the most intense observed with satellite data are coloured dark red.

Figure 6.7: Spatial variability of the number of years between the drought of 2019 and the most recent
drought before 2019 with more severe deficit according to A) precipitation or B) GRACE data. Grid cells
where the drought of 2019 was the most severe observed with satellite data are coloured dark red.

lowest values in the central part of the basin (Figure 6.5E). In 2019, the severity
ranged between 𝐷S,TSDI = -1.4 – -19.9 with the lowest values in the south-east
(Figure 6.5F). Therefore, depending on the location within the basin, as of June
2020, the drought was more severe in 2004 in the central parts of the basin and in
2019 in the south-east of the basin.
Overall, similar to precipitation-related drought, it here also depended on the lo-
cation within the basin whether or not the drought of 2019 was the most severe
and intense in at least 20 years as perceived by locals. On the one hand, in the
western parts of the basin the drought of 2019 was the most severe and intense in
less than 10 years (Figures 6.6B and 6.7B) which contradicts the local perception.
On the other hand, the drought of 2019 was the most severe and intense for at
least 17 years, the duration of the available GRACE data, in the south of the basin
which at least does not contradict the local perception, but also does not support it
with certainty. Insufficient data was available for this purpose as GRACE data was
only available since 2002.



6

124 6. Sub-Saharan drought of 2019 observed from space

6.6. Discussion
While locals perceived the drought of 2019 as the most severe in at least 20 years,
data indicated this differed depending on the drought characteristics, hydrological
variable, and the location within the basin. On the one hand, the drought of 2019
resulted in the lowest basin-averaged annual rainfall since at least 27 years, most
severe local rainfall deficit in the central and north-western part of the basin since
at least 20 years, and lowest reservoir water level since 1995 which support the
local perception that the drought of 2019 was the most extreme in more than 20
years. On the other hand, the rainfall deficit was more severe in 2002 with respect
to the basin-average and locally in the north of the basin, reservoir water level
deficit more severe in 2015, total storage deficit more severe in 2004 with respect
to the basin-average and locally in the central part of the basin which contradict
the local perception. However, the available data did not cover the entire water
level and total storage deficit for 2019 as the TSDI and WLDI remained below zero
towards the end of the available time-series in June 2020. Thus, the final duration
and severity of the drought of 2019 remains unknown.
The water levels at Kariba reservoir not only depended on precipitation which
largely dominates the inflow to the reservoir, but also on evaporation from the
open water body and reservoir operation determining the amount of water leaving
the reservoir. That is why low annual rainfall amounts do not necessarily result in
low reservoir water levels. For example, reservoir operation is likely to explain the
relatively high reservoir water levels in 2002 despite the very low rainfall and high
evaporation in that year (Figures 6.2A, 6.2E and 6.3B).
The results in this study are sensitive to uncertainties in the satellite observations.
Previous studies illustrated satellite-based precipitation observations were sensitive
to bias (Kimani et al., 2017; Le Coz and van de Giesen, 2020). Uncertainties in
total water storage anomalies are a result of data (post-) processing including data
smoothing using a radius of for example 300 km affecting the spatial variability
on basin scale (Blazquez et al., 2018b; Landerer and Swenson, 2012). Note, that
GRACE observations were missing for several months among which July 2017 –
May 2018 and August – September 2018 since the GRACE mission was ended in
October 2017 and the mission GRACE-Follow-on (GRACE-FO) was launched in May
2018 (Kornfeld et al., 2019). These missing data resulted in an irregular temporal
pattern in Figure 6.2C and D. Potential and actual evaporation data are prone to
uncertainties related to the underlying estimation method and input data (Feng
et al., 2019; Hobbins et al., 2008; Zhang et al., 2016). Altimetry uncertainties for
open water bodies range between 4 – 36 cm depending on the lake size and climate
conditions (Crétaux and Birkett, 2006; Schwatke et al., 2015). These uncertainties
can affect long-term fluctuations patterns of these variables. Therefore, it is rec-
ommended to test these satellite observations against ground observations which
was outside the scope of this study due to the limited in-situ data availability.
Previous studies have discussed various reasons for discrepancies between local
perception of droughts and (satellite-based) observations. First, locals often per-
ceive droughts through non-climatic factors such as reservoir water level or lack
of electricity which is more clearly visible compared to rainfall or total water stor-
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age amounts (Iqbal et al., 2018; Urquijo and De Stefano, 2016). Second, locals
often remember most recent and extreme drought events, but forget intermediate
droughts (Taylor et al., 1988). Third, local perceptions are often influenced by
economic losses such as significant reductions in the expected crop production
(Bola et al., 2014; Foguesatto et al., 2020; Meze-Hausken, 2004). Hence, farmers
who experienced large crop failures often relate this to droughts even though the
rainfall remained constant and also if they expanded their crop production in the
past such that the water demand increased.
In contrast to previous studies, this study illustrated the local perception was
partially supported and partially contradicted by satellite observations depending
on the drought characteristic, hydrological variable and location within the basin.
In other words, the simple statement “the drought of 2019 was worst in several
decades” mentioned in news media (Brown, 2019; Edel, 2019) cannot be gener-
alised. For example, locals in the west of the basin are more likely to consider the
drought of 2019 as the most severe in at least 20 years if they mainly rely on rain-
water (Figure 6.7A) instead of groundwater sources (Figure 6.7B). Note, monthly
GRACE observations are dominated by slow processes which include changes in
the groundwater system and seasonal variations in all storage components.

6.7. Evaluation
The objective of this study was to analyse the drought of 2019 in the Zambezi
River Basin upstream of the Kariba reservoir to determine whether it was, as locally
perceived, indeed the longest, most intense and severe drought, basin-wide and
locally, according to remotely-sensed precipitation, total water storage and reservoir
water level observations over at least 20 years. Data analysis indicates that it
depends on the drought characteristic, the hydrological variable considered, and on
the location within the basin. On the one hand, the drought of 2019 resulted in the
lowest basin-averaged annual rainfall for at least 27 years, most severe local rainfall
deficit in the central and north-western part of the basin for at least 25 years, and
lowest reservoir water level since 1995 which supports the local perception that the
drought of 2019 was indeed the most extreme over recent decades. However, on
the other hand, the spatially averaged rainfall deficit, as well as locally in the north
of the basin, was more severe in 2002. Also in 2004, the spatially averaged total
storage deficit, as well as locally in the central part of the basin, was more severe.
Similarly, the reservoir water level-based drought severity was more extreme in
2015. Therefore, it depends on the drought characteristic, the hydrological variable
considered, and the location within the basin, whether the drought of 2019 was
indeed the most extreme over at the last decades as perceived by local people.
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A genuine gift is like water from the tap;
when it flows out, it does not flow back

African Proverb
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T he goal of this research was to assess the added value of satellite-based ob-
servations for hydrological modelling in a semi-arid, data-scarce river basin.

This was done by focusing on a selection of satellite observations and hydrological
model applications. More specifically, this research focused on exploring the added
value of altimetry, evaporation and total water storage observations to improve our
current understanding of local dominant hydrological processes, improve hydrolog-
ical model structures, and improve the identification of feasible parameter sets in
data-scarce regions.
In addition, satellite-based data analysis results provide valuable new information
to improve our understanding of the hydrological system which can then be imple-
mented in hydrological models. This was illustrated by analysing the drought of
2019 in the Zambezi River Basin using multiple satellite observations to determine
whether it was the most extreme in at least 20 years as perceived by locals. As
droughts influence human activities, depending on how they perceived specific
drought events, and hence affect the hydrological system, satellite observations
provide interesting opportunities to increase our understanding of factors influenc-
ing local perceptions.

Altimetry-based parameter set identification
Altimetry observations contain valuable information for model calibration in the ab-
sence of reliable discharge observations as explored in Chapter 3. Altimetry ob-
servations from 18 virtual stations obtained from multiple satellite missions were
combined with GRACE data to identify feasible parameter sets comparing differ-
ent calibration strategies. This was applied to a distributed process-based rainfall-
runoff model with sub-grid process heterogeneity which was developed for the
Luangwa river basin. With the benchmark calibration strategy using discharge ob-
servations as traditionally done, the model captured the flows relatively well repro-
ducing the high flows, overestimating inter-mediate flows and underestimating low
flows. When assuming no discharge observations are available and using GRACE
data only to restrict the parameter space, the modelled discharge was continu-
ously significantly overestimated. When combining GRACE with altimetry data by
1) focusing only on the water level dynamics or 2) converting modelled discharge to
water levels using rating curves, the discharge was also continuously overestimated.
On the other hand, the discharge was reproduced well when using GRACE and al-
timetry data combined with river geometry information for the discharge-water level
conversion using the Strickler-Manning equation. With this parameter set identifi-
cation strategy, the feasible parameter sets reproduced the discharge well similar
to the benchmark. The identification of feasible parameter sets improved further
when using more accurate cross-section data and when increasing the number of
virtual stations used. Therefore, if there is no reliable discharge data available,
altimetry observations from multiple virtual stations together with GRACE data can
fill this gap when including river geometry information for the discharge-water level
conversion.
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Model structure development using satellite obser-
vations
Satellite-based evaporation and total water storage observations provide valuable
spatial and temporal information which can be used to improve our understanding
of hydrological processes through step-wise model development and to calibrate
hydrological models as explored in Chapter 4. For this purpose, the benchmark
distributed hydrological model for the Luangwa River basin was adjusted iteratively
and during each step calibrated with respect to discharge only and multiple variables
simultaneously. It was shown that the benchmark model calibrated with respect
to discharge, reproduced the discharge, basin-average evaporation and total water
storage well, but poorly modelled the evaporation in wetland dominated areas and
the spatial pattern of the evaporation and total water storage. By testing five alter-
native model structures, it was shown that all variables, hence discharge, evapora-
tion and total water storage, were represented better when including the process of
upwelling groundwater flow from a distributed groundwater reservoir and calibrat-
ing with respect to all three variables simultaneously. These changes improved the
spatial and temporal variability of the individual variables with the exception of the
temporal variation of the basin-average total water storage. Therefore, satellite-
based evaporation and total water storage observations have proven to be valuable
not only for multi-criteria calibration, but also to diagnose model deficiencies, im-
prove the model structure step-wise and hence improve our understanding of local
hydrological processes.

Long-term total water storage variations in the Lu-
angwa Basin
Long-term total water storage variations were observed with GRACE in the Luangwa
basin, but were not reproduced by the previously developed hydrological model.
Also in many other river basins, long-term storage variations were observed, but
not reproduced by standard hydrological models. Therefore, processes underlying
these variations were identified in Chapter 5 through a combined data analysis and
model hypothesis testing approach. The results indicated the model did not repro-
duce long-term storage variations as a result of the chosen forcing data and the
missing representation of regional groundwater export. The variation in the long-
term annual maximum total water storage improved by using different forcing data.
On the other hand, the fluctuations in the long-term annual minimum improved by
allowing groundwater to seep into a deep groundwater layer during wet conditions
from where it leaks out of the basin. Therefore, satellite observations were used
successfully to identify discrepancies in the total water storage, identify potential
drivers through satellite data analyses in a poorly gauged region, test the impact
of alternative forcing data sources, improve our understanding of hydrological pro-
cesses through iterative hypothesis testing and improve the quantitative description
in the model to incorporate new processes well.
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Sub-Saharan drought of 2019 from space
During the dry season in 2019, a drought that resulted in extremely low water levels
at Kariba hydro-power dam, was perceived by locals as the most severe in several
decades. To test the validity of this perception, Chapter 6 analysed the drought
of 2019 in the Zambezi River Basin upstream of the Kariba reservoir to determine
whether it was, as locally perceived, indeed the longest, most intense and severe
drought, basin-wide and locally, according to remotely-sensed precipitation, total
water storage and reservoir water level observations over at least 20 years. Data
analysis indicates that it depends on the drought characteristic, the hydrological
variable considered, and on the location within the basin. On the one hand, the
drought of 2019 resulted in the lowest basin-averaged annual rainfall over at least
27 years, most severe local rainfall deficit in the central and north-western part of
the basin for at least 25 years, and lowest reservoir level since 1995 which supports
the local perception that the drought of 2019 was indeed the most extreme over
recent decades. However, on the other hand, the spatially averaged rainfall deficit,
as well as locally in the north of the basin, was more severe in 2002. Also in 2004,
the spatially averaged total storage deficit, as well as locally in the central part of the
basin, was more severe. Similarly, the reservoir water level-based drought severity
was more extreme in 2015. Therefore, it depends on the drought characteristic,
the hydrological variable considered, and the location within the basin, whether the
drought of 2019 was indeed the most extreme over at the last decades as perceived
by local people.

Outlook
This research highlighted the added value of a selection of satellite-based obser-
vations for a selection of hydrological model applications. However, there remain
many opportunities yet to be explored as illustrated in the next sections.

Process understanding and model structure development
In this research, satellite observations were used to improve our understanding
of hydrological processes through step-wise model improvement. For this pur-
pose, first discrepancies between observations and model results were identified
for system-internal fluxes and stores with respect to their temporal and spatial vari-
ability. Then, the model structure was adapted step-wise in an attempt to resolve
the discrepancies under consideration. On the one hand, discrepancies can be a
result of uncertainties in the (satellite-based) observation data, but on the other
hand it can be due to uncertainties in the model input data, model structure, pa-
rameterization and/or parameter set (Fowler et al., 2018; Grigg and Hughes, 2018;
Jing et al., 2019; Saft et al., 2016). Discrepancies can occur throughout the entire
hydrological system including for example the discharge time-series at the basin
outlet, runoff within the basin, evaporation or storage.
For example in this research, the benchmark model in Chapter 4 modelled the dis-
charge well, but poorly captured the evaporation in wetland dominated areas as
it decreased to zero in contrast to the satellite observations. Through model hy-
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pothesis testing, it was illustrated this was a result of groundwater upwelling which
was originally missing in the model similar to many other distributed conceptual
hydrological models (Bieger et al., 2017; Samaniego et al., 2010). Another exam-
ple is the long-term storage variations observed with GRACE which was originally
not reproduced with the benchmark model in Chapter 5. Through data analysis
and model hypothesis testing, it was shown these fluctuations were a result of the
chosen forcing data source and the process of deep groundwater export which was
originally assumed to be negligible.
Similar to these two examples, satellite-based evaporation and total water storage
observations can be used to highlight other discrepancies in hydrological models to
improve our understanding of local hydrological processes through model hypoth-
esis testing. Some examples are: How does the evaporation in other hydrological
response units such as forested areas change in time in the model and the obser-
vation? In which regions besides wetlands are roots connected to the groundwater
system affecting the dry season evaporation (Fan et al., 2017)? Why are in the
woodlands in the Luangwa basin new leaves growing on trees at the end of the dry
season before the start of the wet season (Campbell, 1996; Zimba et al., 2020)? Is
this reflected in the observed and modelled evaporation?
Also alternative variables such as satellite-based surface soil moisture, land surface
or air temperature, snow cover (if there is snowfall), river width, land cover, NDVI
(normalized difference vegetation index), NDII (normalized difference infrared in-
dex) or LAI (leaf area index) can be used for this purpose (Jiang and Wang, 2019;
Lakshmi, 2004; Xu et al., 2014). Some examples are: When are floodplains or
other areas in the basin flooded in the model and observations? Do such areas
become flooded already with the first rains at the start of the wet season or after
some time when the soil is saturated? Does the observed water content in the
surface soil moisture correspond with the spatial and temporal rainfall pattern and
model results? For all of the above mentioned questions, what could explain any
anomalies?
Note, discrepancies can also be a result of uncertainties in the data used for model
evaluation such that the model representation is correct rather than the observa-
tion. Therefore, it is important to eliminate this possibility through data validation
if possible.

Catchment classification
Throughout this research, the Luangwa river basin was classified based on the
topography into the hydrological response units (HRUs) sloped, flat and wetland
dominated areas. The hydrological model structure and parameter sets then var-
ied for each HRU considering the expected dominating hydrological processes as
explained in Chapters 3, 4 and 5. However, additional or other properties be-
sides topography can be used when discretizing the river basin depending on what
controls the dominant hydrological processes. For example, the dominant runoff
processes can be controlled by the topography, geology, land cover, land man-
agement, climate or any combination thereof (e.g. Fenicia et al., 2016; Gao et al.,
2014a; Haghnegahdar et al., 2015; Knoben et al., 2018). It would be interesting



7

132 7. Conclusions and outlook

to explore the added value of additional (or other) variables for the discretization
of the Luangwa basin. Previous studies illustrated the added value of incorporat-
ing more data sources when classifying the river basin into HRUs (Haghnegahdar
et al., 2015; Haverkamp et al., 2002; Petrucci and Bonhomme, 2014). However,
the more information is used, the larger the number of HRUs, the more calibration
parameters. Therefore, it is important sufficient information is available to support
the higher number of parameters to avoid equifinality (Beven, 2006; Hrachowitz
and Clark, 2017).

Parameter set identification
Traditionally, hydrological models are calibrated with respect to discharge time-
series at the basin outlet. However, an increasing number of studies have illus-
trated the added value of satellite observations in the calibration procedure (e.g.
Michailovsky et al., 2013; Sun et al., 2018a; Werth et al., 2009; Winsemius et al.,
2008). In this research, feasible parameter sets were identified using altimetry
time-series at multiple virtual stations simultaneously, or using spatial-temporal
information available in total water storage and evaporation data.
Building on Chapter 3, it would be interesting to combine altimetry observations
with river width estimates derived from Landsat or Sentinel-1/2 (Hou et al., 2018;
Pekel et al., 2016) or energy gradient estimates derived from CryoSat-based river
water level observations (Jiang et al., 2017; Schneider et al., 2017) as discussed
in Chapter 3 (Section 3.5.5). With the upcoming SWOT (Surface Water Ocean
Topography) mission more accurate altimetry observations are expected at higher
spatial resolution which can be used to further improve the parameter set identifi-
cation also in small river basins (Biancamaria et al., 2016; Langhorst et al., 2019;
Oubanas et al., 2018).
Building on Chapter 4, it would be interesting to explore the added value of ad-
ditional/alternative satellite observations for spatial-temporal parameter set iden-
tification building on the findings of previous studies (e.g. Demirel et al., 2018;
Mendiguren et al., 2017; Milzow et al., 2011; Nijzink et al., 2018; Zink et al., 2018).
For example, satellite-based surface soil moisture, land surface or air temperature,
snow cover (if there is snowfall), river width, NDVI (normalized difference vege-
tation index), NDII (normalized difference infrared index) or LAI (leaf area index)
could provide valuable information (Jiang and Wang, 2019; Lakshmi, 2004; Xu
et al., 2014).
It would also be interesting to look into different model performance metrics to
exploit the available spatial and temporal information as much as possible. This
was not done in this research as the focus was on assessing the added value of
different variables for model calibration rather than comparing the impact of using
different model performance metrics.
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In conclusion, satellite observations have the potential to alleviate much of the data
scarcity in many regions worldwide. Incorporating these observations in particular
for step-wise hydrological model development enables more accurate representa-
tions of the hydrological system and hence more reliable model predictions in data
scarce regions. This research illustrated several new hydrological applications of
satellite observations and highlighted multiple additional opportunities in the pre-
vious sections. In the future, even more remotely-sensed hydrological information
are expected to become available with higher spatial-temporal resolution and data
quality such that the methods explored in this research can be further refined.
Therefore, satellite observations provide us with abundant information which help
us to overcome much of the limitations the hydrological community is currently
facing with respect to data scarce regions.
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Background on the altimetry data from LEGOS

T he altimetry data obtained from LEGOS come from the acquisitions of ENVISAT
and Jason-2 radar altimetry missions on their nominal orbit (03/2002–10/2010

and 06/2008-10/2016 respectively). All the parameters necessary to estimate water
levels (Crétaux et al., 2017) are contained in the Geophysical Data Records (GDR)
made available by the space agencies. These data were obtained from Centre de To-
pographie des Océans et de l’Hydrosphère (CTOH – http://ctoh.legos.obs-
mip.fr). Ranges used to derive altimeter heights are those processed using
OCOG/Ice retracking algorithm (Wingham et al., 1986). Previous studies showed
that altimeter heights derived using this retracking algorithm are more suitable for
hydrological studies in terms of accuracy of water levels and availability of the data
(Frappart et al., 2006; Santos da Silva et al., 2010; Sulistioadi et al., 2015) among
the commonly available retracked data present in the GDRs. The Multi-mission Al-
timetry Processing Software (MAPS) was used to visualize and process the altimetry
data in order to obtain the virtual stations (VS) at the cross-sections between the
altimeter ground tracks and the rivers (Frappart et al., 2015; Normandin et al.,
2018). Data processing is composed of three main steps: (i) a coarse delineation
of the VS using Google Earth; (ii) a refined selection of the valid altimetry data
based on visual inspection; and (iii) the computation of the time series of water
level. The altimetry-based water level is computed for each cycle using the median
of the selected altimetry heights, along with their respective deviation (i.e., mean
absolute deviation). This process is repeated each cycle to construct the water level
time series at the virtual stations; see Frappart et al. (2015) and Normandin et al.
(2018) for more details.

http://ctoh.legos.obs-mip.fr
http://ctoh.legos.obs-mip.fr
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Figure A.1: Model structure. Parameters are marked in red, storages and fluxed in black. Symbol expla-
nation: Fluxes [mm d-1]: precipitation (P), effective precipitation (Pe), potential evaporation ( p), inter-
ception evaporation ( i), plant transpiration ( t), infiltration into the unsaturated zone ( u), drainage to
fast runoff component ( f), delayed fast runoff ( fl), groundwater recharge ( r for each relevant HRU
and r,tot combining all relevant HRUs), upwelling groundwater ( GW for each relevant HRU and GW,tot
combining all relevant HRUs), fast runoff ( f for each relevant HRU and f,tot combining all relevant
HRUs), groundwater/slow runoff ( s), total runoff ( m). Storages [mm]: storage in interception reser-
voir ( i), storage in unsaturated root zone ( u), storage in groundwater/slow reservoir ( s), storage in
fast reservoir ( f). Parameters: interception capacity ( max) [mm], maximum upwelling groundwater
( max) [mm d-1], maximum root zone storage capacity ( u,max) [mm], splitter (W) [-], shape parameter
( ) [-], transpiration coefficient ( e) [-], time lag ( lag) [d], reservoir time scales [d] of fast ( f) and
slow ( s) reservoirs.
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Table A.1: Model parameter values and ranges. See Figure A.1 for the parameter explanation and Table
A.2 for the parameter constrains applied during the random parameter generation.

andsca e class arameter min ma nit
ntire catchment s 100 100 d

e 0.5 0.5 -
lateau errace max 0 2 mm d

u,max 200 2000 mm
f 10 12 d

0.1 0.5 -
illslo e max 0 2 mm d

u,max 200 2000 mm
0 2 -

lag 1 5 d
f 10 12 d

0.1 0.5 -
Wetland max 0 2 mm d

u,max 200 2000 mm
f 10 12 d

0.1 0.5 -
max 0.1 2 mm d

iver rofile 0.01 5.0 m s

5 45 m s
0.1 800 m s
1 3 -

Table A.2: Parameter constrains. See Figure A.1 for the parameter explanation.

arameter onstrain

a imum root one storage ca acity u,max,hillslope> u,max,plateau/terrace
u,max,hillslope> u,max,wetland

a imum interce tion max,hillslope> max,plateau/terrace
max,hillslope> max,wetland

litter for ground ater ercolation hillslope> plateau/terrace
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Table A.3: Characteristics of the virtual stations in the Luangwa River basin for which remotely sensed
river water levels are available: station number, coordinates ( , ), river slope ( ), river width ( ),
river bank slopes ( 1 and 2), upstream catchment area, acquisition date of the image in Google Earth
used to extract the river geometry information, and discharge at Luangwa Bridge gauge station (basin
outlet; absolute values and relative to the maximum discharge); in the absence of discharge data on
the acquisition dates, the long-term mean daily values for the entire time period available were used.

𝑿 𝒀 𝒊 - 𝑩 m 𝒊1 - 𝒊2 - 𝑨 m c uisition date 𝑸absolute m s
𝑸relative

30.2823° -14.8664° 0.00049 324 36 29 10211995771 13-9-2010 68 (1%)
30.0864° -14.366° 0.00062 7 17 83 14859805930 13-10-2013 65 (1%)
32.1715° -12.4123° 0.00019 3 19 42 44337218380 17-12-2013 211 (4%)
31.1868° -13.5927° 0.00020 129 42 8 87227195673 5-6-2013 160 (3%)
31.6984° -13.2039° 0.00020 185 31 20 78090945429 20-9-2013 60 (1%)
32.2998° -12.2007° 0.00039 170 30 17 40935244516 13-6-2013 146 (3%)
32.2805° -12.1157° 0.00030 78 38 77 40747298483 13-6-2013 146 (3%)
32.831° -11.3674° 0.00031 10 48 21 21066101487 26-9-2013 97 (2%)
30.2704° -14.8809° 0.00017 99 8 5 102140213550 14-11-2009 30 (1%)
31.78405° -13.0995° 0.00029 100 26 20 77559639645 26-7-2013 89 (2%)
31.71099° -13.1943° 0.00020 54 34 30 78051272962 20-9-2013 60 (1%)
30.2740° -14.8763° 0.00017 82 8 15 102135928406 14-11-2009 30 (1%)
32.15843° -12.412° 0.00019 87 43 30 44340963341 17-12-2013 211 (4%)
32.15989° -12.4127° 0.00019 128 83 19 44339840479 13-6-2013 146 (3%)
30.2740° -14.8763° 0.00017 82 8 15 102139379771 13-6-2013 146 (3%)
32.16056° -12.4125° 0.00019 128 83 19 44339840479 17-12-2013 211 (4%)
31.80001° -13.0909° 0.00029 86 21 83 77553414963 13-6-2013 146 (3%)
30.61577° -14.1852° 0.00051 227 24 20 96231647197 20-9-2014 60 (1%)

utlet 30.21491° -14.96678° 0.00037 149 8.62 10.10 154325857000 26-7-2016 89 (2%)

Figure A.2: Visualisation of the altimetry time series relative to a reference ellipsoid (left) and altimetry
data availability (right) for all virtual stations used in this study. The colours for the individual stations
correspond with those in Figure 3.1 and 3.3.
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Figure A.3: Influence of the number of virtual stations used for A) model calibration and B) evaluation
on the model performance E,R,WL applying Altimetry Strategy 1.

Figure A.4: Influence of the number of virtual stations used for A) model calibration and B) evaluation
on the model performance E,NS,RC applying Altimetry Strategy 2.

Figure A.5: Influence of the number of virtual stations used for model calibration on the model perfor-
mance E with respect to discharge
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Figure A.6: Range of model solutions for Virtual Station 4 (see Figure 3.1 for its location). The left panel
shows the time series and the right panel the exceedance probability graph of the recorded (black) and
modelled water level: the line indicates the solution with the highest calibration objective function and
the shaded area the envelope of the solutions retained as feasible. Solutions retained as feasible based
on altimetry observations using all virtual stations within the basin and A) calibrated rating curves for
the discharge – water level conversion (Altimetry Strategy 2) or B) the Strickler-Manning equation with
cross-section information retrieved from Google Earth (Altimetry Strategy 3).

Figure A.7: Model performance with respect to discharge (horizontal axes) vs. model performance with
respect to (satellite based) river water level (vertical axes) for each calibration strategy
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Figure A.8: Model performance with respect to discharge for each calibration strategy. Parameter sets
were selected based on A) (satellite based) river water level only, B) first GRACE, then (satellite based)
river water level, and C) first (satellite based) river water level, then GRACE
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Figure B.1: Calibrated model performance of all models with respect to discharge (2002 – 2012). The
boxplots visualise the spread of the best 5% solutions according to E,Qcal in the overall model per-
formance E,Qcal and the following individual signatures: 1) daily discharge ( NS,Q), 2) its logarithm
( NS,logQ), 3) flow duration curve ( NS,FDC), 4) its logarithm ( NS,logFDC), 5) average runoff coeffi-
cient during the dry season ( R,RCdry), 6) average seasonal runoff coefficient during the wet season
( R,RCwet), 7) autocorrelation function ( NS,AC), and 8) rising limb density ( R,RLD). The dots visualise
the model performance with the “optimal” parameter set using the overall model performance metric
( E,Qcalopt).
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Figure B.2: Range of model solutions for Models A to F. The left panel shows the hydrograph and the
right panel the flow duration curve in logarithmic scale of the recorded (black) and modelled discharge:
the line indicates the solution with the highest calibration objective function with respect to discharge
( E,Qcal) and the shaded area the envelope of the solutions retained as feasible. The data in the white
area were used for calibration and the grey shaded area for validation.
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Figure B.3: Range of model solutions for Models A to F. The left panel shows the time series and the
right panel the duration curve in logarithmic scale of the recorded (black) and modelled normalised basin
average evaporation: the line indicates the solution with the highest calibration objective function with
respect to discharge ( E,Qcal) and the shaded area the envelope of the solutions retained as feasible.
The data in the grey shaded area were used for validation.
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Figure B.4: Range of model solutions for Models A to F. The left panel shows the time series and the
right panel the duration curve in logarithmic scale of the recorded (black) and modelled normalised
evaporation for wetland dominated areas: the line indicates the solution with the highest calibration
objective function with respect to discharge ( E,Qcal) and the shaded area the envelope of the solutions
retained as feasible. The data in the grey shaded area were used for validation.
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Figure B.5: Range of model solutions for Models A to F. Each panel shows the time series of the recorded
(black) and modelled basin average total water storage: the line indicates the solution with the highest
calibration objective function with respect to discharge ( E,Qcal) and the shaded area the envelope of
the solutions retained as feasible. The data in the grey shaded area were used for validation.
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Figure B.6: Spatial variability of the normalised total evaporation for Models A to F averaged over all dry
seasons. The left panel shows the observation according to WaPOR data; the middle panel the model
result using the “optimal” parameter set with respect to discharge ( E,Qcal); and the right panel the
difference between the observation and model.
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Figure B.7: Spatial variability of the normalised total water storage for Models A to F averaged over
all dry seasons. The left panel shows the observation according to GRACE data; the middle panel the
model result using the “optimal” parameter set with respect to discharge ( E,Qcal); and the right panel
the difference between the observation and model.
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Figure B.8: Range of model solutions for Models A to F. The left panel shows the time series and the
right panel the duration curve in logarithmic scale of the recorded (black) and modelled normalised basin
average evaporation: the line indicates the solution with the highest calibration objective function with
respect to multiple variables ( E,ESQ) and the shaded area the envelope of the solutions retained as
feasible. The data in the grey shaded area were used for validation.
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Figure B.9: Range of model solutions for Models A to F. Each panel shows the time series of the recorded
(black) and modelled basin average total water storage: the line indicates the solution with the high-
est calibration objective function with respect to multiple variables ( E,ESQ) and the shaded area the
envelope of the solutions retained as feasible. The data in the grey shaded area were used for validation
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Figure B.10: Spatial variability of the normalised total evaporation for Models A to F averaged over all dry
seasons. The left panel shows the observation according to WaPOR data; the middle panel the model
result using the “optimal” parameter set with respect to multiple variables ( E,ESQ); and the right panel
the difference between the observation and model.
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Figure B.11: Spatial variability of the normalised total water storage for Models A to F averaged over
all dry seasons. The left panel shows the observation according to GRACE data; the middle panel the
model result using the “optimal” parameter set with respect to multiple variables ( E,ESQ); and the right
panel the difference between the observation and model.
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Figure C.1: Altimetry observations (blue) at Cahora Bassa reservoir and annual maximum/ minimum
basin-average total water storage for the Luangwa basin (black).

Figure C.2: Normalized annual maximum and minimum altimetry observations in large open water
bodies near the Luangwa river basin and basin-average total water storage for the Luangwa basin. For
the normalization, the following equation was applied: norm

min

max min
.
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Figure C.3: A) Basin average total water storage (black) and monthly actual evaporation (green) ac-
cording to WaPOR, SEBS, SSEBop, GLEAM and MOD16 for the Luangwa Basin. Annual maximum (B)
and minimum (C) normalised total water storage (horizontal axis) and evaporation (vertical axis). For
the normalization, the following equation was applied: norm

min

max min
.
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Figure C.4: Range of model solutions for Models A0 – D0 for calibration strategy 1 with respect to
discharge (hydrograph). The black line indicates the recorded data, the coloured line the solution with
the highest calibration objective function with respect to discharge ( E,Q) and the shaded area the
envelope of the solutions retained as feasible.



C

161

Figure C.5: Range of model solutions for Models A0 – D0 for calibration strategy 1 with respect to A)
flow duration curve in logarithmic scale, B) total water storage time series, C) annual maximum total
water storage, and D) annual minimum total water storage. In A) – B), the black line indicates the
recorded data, the coloured line the solution with the highest calibration objective function with respect
to discharge ( E,Q) and the shaded area the envelope of the solutions retained as feasible. In C) – D),
the recorded data are plotted on the horizontal axis and on the vertical axis the model solution with the
highest calibration objective function with respect to discharge ( E,Q). The red line indicates the 1:1
line.
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Figure C.6: Range of model solutions for Models A0 – D0 for calibration strategy 1 with respect to total
water storage anomalies. The black line indicates the recorded data, the coloured line the solution
with the highest calibration objective function with respect to discharge ( E,Q) and the shaded area the
envelope of the solutions retained as feasible.

Figure C.7: Range of model solutions for Models A0 – D0 for calibration strategy 2 with respect to total
water storage anomalies. The black line indicates the recorded data, the coloured line the solution with
the highest calibration objective function with respect to discharge and total water storage ( E,QS) and
the shaded area the envelope of the solutions retained as feasible.
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Figure C.8: Range of model solutions for Models A0 – D0 with respect to total water storage anomalies.
The black line indicates the recorded data, the coloured line the solution with the highest calibration
objective function with respect to discharge and total water storage ( E,S) and the shaded area the
envelope of the solutions retained as feasible.

Figure C.9: Range of model solutions for Models A1 – A5 for calibration strategy 1 with respect to
discharge (hydrograph). The black line indicates the recorded data, the coloured line the solution with
the highest calibration objective function with respect to discharge ( E,Q) and the shaded area the
envelope of the solutions retained as feasible.
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Figure C.10: Range of model solutions for Models A1 – A5 for calibration strategy 1 with respect to A)
flow duration curve in logarithmic scale, B) total water storage time series, C) annual maximum total
water storage, and D) annual minimum total water storage. In A) – B), the black line indicates the
recorded data, the coloured line the solution with the highest calibration objective function with respect
to discharge ( E,Q) and the shaded area the envelope of the solutions retained as feasible. In C) – D),
the recorded data are plotted on the horizontal axis and on the vertical axis the model solution with the
highest calibration objective function with respect to discharge ( E,Q). The red line indicates the 1:1
line.
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Figure C.11: Range of model solutions for Models A1 – A5 for calibration strategy 1 with respect to
total water storage anomalies. The black line indicates the recorded data, the coloured line the solution
with the highest calibration objective function with respect to discharge ( E,Q) and the shaded area the
envelope of the solutions retained as feasible.
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Figure C.12: Range of model solutions for Models A1 – A5 for calibration strategy 2 with respect to total
water storage anomalies. The black line indicates the recorded data, the coloured line the solution with
the highest calibration objective function with respect to discharge and total water storage ( E,QS) and
the shaded area the envelope of the solutions retained as feasible.
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Figure C.13: Range of model solutions for Model D4 for calibration strategy 1 with respect to A) hy-
drograph, B) flow duration curve in logarithmic scale, C) total water storage time series, D) annual
maximum total water storage, and E) annual minimum total water storage. In A) to C), the black line
indicates the recorded data, the coloured line the solution with the highest calibration objective function
with respect to discharge ( E,Q) and the shaded area the envelope of the solutions retained as feasible.
In D) and E), the recorded data are plotted on the horizontal axis and on the vertical axis the model
solution with the highest calibration objective function with respect to discharge ( E,Q). The red line
indicates the 1:1 line.

Figure C.14: Range of model solutions for Model D4 for calibration strategy 1 with respect to total water
storage anomalies. The black line indicates the recorded data, the coloured line the solution with the
highest calibration objective function with respect to discharge ( E,Q) and the shaded area the envelope
of the solutions retained as feasible.
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Figure C.15: Range of model solutions for Model D4 for calibration strategy 2 with respect to total water
storage anomalies. The black line indicates the recorded data, the coloured line the solution with the
highest calibration objective function with respect to discharge and total water storage ( E,QS) and the
shaded area the envelope of the solutions retained as feasible.

Figure C.16: Range of model solutions for Models A0 and D4 with respect to the hydrograph. The black
line indicates the recorded data, the coloured line the solution with the highest calibration objective
function with respect to discharge and total water storage ( E,QS) for the time-period 2002 – 2012
(white area) and the shaded area the envelope of the solutions retained as feasible.

Figure C.17: Range of model solutions for Models A0 and D4 with respect to total water storage anoma-
lies. The black line indicates the recorded data, the coloured line the solution with the highest calibration
objective function with respect to discharge and total water storage ( E,QS) for the time-period 2002 –
2012 (white area) and the shaded area the envelope of the solutions retained as feasible.
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