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Summary
This research addresses the negative consequences of increasing urban traffic in city centres by de-
veloping a decision model for integrated water and land-based transportation (IWLT) systems. The
motivation behind this study is to shift a portion of transport from roads to waterways to alleviate urban
traffic congestion. Implementing IWLT systems is challenging due to the numerous design decisions
required. A decision model has been developed to assist in the decision-making process. The model
is complex due to the required synchronisation of the transportation nodes. The problem is defined
as a two-echelon multi-trip location routing problem with satellite synchronisation (2E-MTLRP-SS), in-
corporating capacitated vehicles, multiple depots and a global time window. A decomposition-based
decision model is introduced, breaking down the problem into manageable sub-problems intercon-
nected through synchronisation in time, space, and load. The decision model uses metaheuristics to
be able to handle large-scale, realistic problems and provide feasible solutions for real-life applications.

The research is conducted in collaboration with the municipality of Amsterdam, and the model’s
effectiveness is demonstrated through a case study in Amsterdam, supplying the city’s Horeca (hotels,
restaurants, and cafes), showing the potential of IWLT systems to reduce urban traffic and its negative
aftereffects. Different scenarios for the IWLT system are investigated, to assist Amsterdam’s system
developers in making design choices for implementation. The proposed decision model is widely ap-
plicable to multi-modal transportation systems worldwide.

The total case for the entire city centre of Amsterdam contains 3 vessel depots, 5 road vehicle de-
pots, 56 potential satellite locations and 1635 Horeca locations, of which the number of locations with
demand varies per demand set. Since this is a large problem, a smaller test case is created to quickly
investigate some scenarios and analyse the model’s sensitivity. A busy neighbourhood, the Wallen,
containing 345 Horeca locations is chosen, which is approximately 21% of the total case.

In this case study, vessels transport the supply from depots outside of the city centre satellites,
which are transshipment locations in the city centre, where load is transferred between water and road
vehicles. Due to limited space in the city centre, satellites do not have storage facilities. The objective
is to minimise the distance travelled on roads while using as few vehicles as possible to ensure the
system’s feasibility for real-life applications.

The modelling strategy involves decomposing the problem into a facility location problem (FLP)
and two separate vehicle routing problems (VRPs) for water and road transport, incorporating integra-
tion and synchronisation. Finally, scheduling models are used to enable multiple trips and reduce the
number of vehicles required. A combination of heuristic and exact methods is employed to achieve
high-quality results in a reasonable time.

Various experiments are conducted to assess the performance of the IWLT system for different sys-
tem scenarios and the sensitivity of the model.

The first experiments focus on the computation time allowed for the model. These experiments
determine the required computation time for the remaining experiments, to strike a balance between
computation time and solution quality.

Next, two strategies to limit the number of customers assigned to a satellite are evaluated. The first
method is to set a maximum number of customers that can be assigned to a satellite straightforwardly.
The second method limits the throughput of a satellite. Experiments indicate that allowing more cus-
tomers to be assigned to satellites results in fewer kilometres travelled on the roads, and a factor of
𝑏 = 1.5 times the evenly divided number of customers per satellite provided a balance between optimal
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assignments and even distribution of satellite utilisation, minimising urban disruption.

Deciding on the number of satellites to effectively cover the demand is crucial in designing an IWLT
system. Fewer satellites mean satellites are used intensively and potentially create a nuisance for city
residents. Understanding how the number of satellites affects road and water kilometres provides valu-
able insights for informed decision-making in system design. The best performing number of satellites
was found to be between 9 and 13 for supplying the entire Horeca sector in Amsterdam. Beyond 13
satellites, the system performance declined due to sub-optimal customer assignments and increased
vehicle travel. Experiments with smaller customer sets indicated that the optimal number of satellites
decreased linearly with the total demand. For the Wallen neighbourhood, fewer satellites (2-4) per-
formed most efficient, considering different demand sets.

Furthermore, the impact of the available time period on the system requirements is investigated.
The time span in which the deliveries are performed is important for the IWLT system to be feasible
in real-life applications. Extending the maximum time span for transshipment operations yields a sig-
nificant reduction in required vehicles. Longer time spans enable vessels to perform multiple trips,
thereby alleviating peak loads on road vehicles and ultimately reducing the overall number of vehicles
needed. This decrease in road vehicles correlates with a reduction in total distance travelled on the
roads, since this includes the distance travelled from road vehicle depots. Fewer road vehicles means
fewer vehicles have to travel from depots to satellites. The distance travelled on the waterways remains
unchanged for longer time spans, as all vessel trips originate from the same depot.

The analysis of various storage scenarios at satellites for both the Wallen neighbourhood and the
entire city centre reveals several key insights. Introducing storage capacity at satellites significantly
reduces the required number of vessels, with a 25% reduction observed for 15m3 storage at selected
satellites for the entire city centre. These findings suggest that having some storage available provides
sufficient flexibility for the system to operate more efficiently. While increasing the storage capacity can
further improve performance, the marginal gains become less significant beyond a certain point.

In the IWLT system under consideration, the vessel depots are located quite far from the city centre,
leading to long travel distances to and from the depots, which in turn results in prolonged travel times
for the vessels. The effect of placing depots closer to the city centre was investigated, showing a 27%
reduction in waterway distance and a 33% reduction in the number of vessels required.

The performance of the IWLT system is also highly dependent on the capacity of the road vehicles.
Smaller capacities necessitate more trips, thereby increasing both the distance travelled on the roads
and the number of road vehicles needed. Experiments indicate a substantial reduction in road vehicles
when increasing capacity from 5m3 to 10m3, with further improvements observed up to 15m3. Addi-
tional increases in capacity continue to reduce the number of road vehicles but offer diminishing returns.

Sensitivity analyses are conducted to examine the system’s response to different parameters and
conditions. First, the behaviour under different demand sets is investigated. The experiments involved
creating extreme demand scenarios to test the system’s adaptability, alongside basic demand sets.
The results indicated a near-linear increase in the required number of vehicles with the demand set
size. Additional experiments were conducted to better understand the impact of demand character-
istics, focusing on the Wallen case. These experiments revealed that the relationship between total
demand and distances/number of vehicles is nearly linear, while the influence of the number of cus-
tomers on these metrics is less significant.

Given the potential for variability and uncertainty in the transshipment processes at customers, con-
ducting a sensitivity analysis of this parameter is important. The sensitivity analysis involves testing
the IWLT system requirements under different transshipment times at customers. The system shows
resilience up to a point, accommodating increased transshipment times without a proportional increase
in vehicle requirements. Increasing the transshipment time from that point, a linear relation with the
number of vehicles is indicated.
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Based on the experimental analysis, it is essential to evaluate how the IWLT system performs com-
pared to the current situation. Leveraging insights from the experiments, four system scenarios are
selected to assess performance, identify bottlenecks, and compare the results with the current state.
The scenarios for key design choices are combined to create four distinct scenarios: the expected
lowest-performing plausible scenario (A), a baseline realistic scenario (B), an enhanced realistic sce-
nario (C), and the expected best-performing scenario (D). The IWLT system scenarios result in vehicle
kilometres reductions of 22%, 24%, 27% and 28% compared to the current situation, for scenario A, B,
C and D, respectively. These reductions are a positive step, but the primary goal of the IWLT system is
to minimise distance on the roads. All three scenarios accomplish this goal with substantial reductions,
70% for scenario A, 71% for scenario B and 72% for scenario B and C, signifying major improvements
over the current situation.

The developed model demonstrates the capability to handle large-scale logistical challenges and
provide practical solutions. It offers valuable insights for logistics providers and system designers, sup-
porting the development of IWLT systems.

The results from the Amsterdam case offer realistic estimates for vehicle requirements, suggesting
the feasibility of implementing the IWLT system in the city. Additionally, they highlight the potential of
utilising waterways to alleviate urban traffic and its associated impacts.
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1
Introduction

1.1. Societal Relevance
More and more people are living in urban areas, and the percentage of the population living in cities
keeps growing (Ritchie, 2018). All these people need food and beverages, their waste must be col-
lected, and many must commute. While at the same time, e-commerce is rapidly expanding (Huang
et al., 2018). This together results in a growing number of vehicles in urban areas, which has, among
other things, a negative impact on the quality of life in cities (Daggers & Heidenreich, 2013). This in-
crease in urban traffic has many consequences for city residents and beyond.

Increased urban traffic results in more urban road congestion. Most cities were not designed with
this amount of traffic in mind, old city centres often have many one-way streets and few parking spaces.
This reduces the traffic flow and can result in traffic jams, for example, when a truck is unloading on
a one-way street without available parking spaces. Road congestion results in service delays, traffic
idling times, more pollution and stress for the city’s citizens (Bull et al., 2004). Not only private cars and
freight transport is delayed by congestion, but also public transport like busses and trams suffer from
it, which decreases passenger mobility (Bull et al., 2004).

Another important consequence of more urban traffic is the increase in air pollution and green-
house gas emissions. Air pollution is known to have negative effects on human health, such as res-
piratory problems and cardiovascular disease (Organization, 2022). Moreover, the emission of CO2
and NOx by urban road transportation contributes to climate change. While urban freight transport only
represents about 10-15% of the vehicles-km in urban areas, it is responsible for 19% of energy con-
sumption of road transportation, 25% of CO2 emissions, 30% of NOx emissions, and 50% of particles
(Janjevic & Ndiaye, 2014). Therefore, improving urban logistics could significantly reduce air pollution
and greenhouse gas emissions.

Next to these obvious consequences of increasing urban traffic, some other societal issues arise.
The constant busyness in the streets causes a nuisance to city residents. Many citizens are bothered
by the noise produced by the traffic, just like the visual intrusion and loss of city character (Demir et al.,
2015). Next to this, the growing number of vehicles in the streets leads to more accidents (Demir et al.,
2015) and therefore less safety. Road congestion exacerbates busyness in the streets and, therefore,
also the consequences of busyness.

Some cities suffer from extra consequences caused by urban traffic. For example, the city of Ams-
terdam is dealing with damage to its quay walls, connected to the repetitive load of heavy trucks and
other traffic (Cordaan et al., n.d.). The quay walls and bridges connect neighbourhoods, and the canals
give the city character. Hundreds of bridges and 200km of quay walls are in bad condition. Restoration
is costly and results in road blockages in the city centre (Gemeente Amsterdam, 2020). This further
increases congestion in the city centre.

Figure 1.1 gives an overview of the consequences of increased urban traffic introduced in this chap-
ter. On the left is the problem itself, and the middle column shows the consequences mentioned before.
The dashed lines connect these consequences with their aftereffects. The figure categorises the after-
effects as environmental, societal and economic. As mentioned before, many of the consequences and
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their aftereffects have a reinforcing effect on each other. For example, less safety leads to more acci-
dents, accidents cause road blockages and road blockages cause congestion. Congestion increases
busyness and, therefore, also increases noise and visual intrusion. This is just one example of the
reinforcing effect of the consequences on each other, but most consequences are interconnected in
ways like this.

Figure 1.1: Impact of urban traffic

This study is motivated by the various negative consequences of increased urban traffic on the
quality of life inside cities (Daggers & Heidenreich, 2013) (Benjelloun et al., 2010) (“Towards sustainable
urban distribution using city canals: the case of Amsterdam”, 2017) and investigates methods to reduce
the effect of urban freight logistics. Change is needed to reduce urban traffic since the quality of life
in cities keeps worsening. It is important to find solutions to the core of the problem, increased urban
traffic, instead of mitigating the consequences. Therefore, this paper identifies a possible innovative
solution for urban logistic systems and investigates its implementation.

1.2. Current Research Gaps
The consequences of increasing urban traffic outlined in the introduction create a need for improvement
and innovation in city logistics. To encourage development in city logistics projects, the European Union
initiated the mission to make 100 European cities climate-neutral and smart by 2030 (European Union,
2021). A smart city is a city that uses technology and policies to improve its community (Lehr, 2017).
Part of the smart city goal is implementing smart urban logistics to achieve more efficient urban logistic
systems by intelligent and optimised solutions (Büyüközkan & Ilıcak, 2022).
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The initiative of the European Union provides the 100 European cities with resources to reach their
goals. These resources include, among others, funding, research and exchange of experiences (Eu-
ropean Union, 2021). This initiative encourages cities to innovate and helps the cities reach the goal of
being climate-neutral by 2030. However, the initiative is only a way to push cities in the right direction,
it is still up to the cities to develop and implement city logistics projects.

Some current city logistics projects only mitigate the consequences of the increasing urban traffic.
These projects include the use of electric vehicles to reduce emissions, weight restrictions on vehicles
to reduce damage to the city, or time restrictions for supplying stores to reduce busyness and conges-
tion during the day. These projects can help improve the quality of life in cities but only solve part of
the problem since the same road transport activities are performed in other time-frames or by other
vehicles. These projects do not tackle the core of the problem, namely the burden on the existing road
infrastructure, leading to congestion and related issues.

The case of mitigating the consequences of increased urban traffic is also happening in Amsterdam.
Many new policies and regulations are being instated, like the maximum weight of heavy vehicles in
the city centre is set to 30 tonnes and the length has to be less than 10 meters (City of Amsterdam,
n.d.), which reduces the burden on the quay walls. Also, the city centre has been a low-emission zone
since 2020, and in 2028, it will even be a zero-emission zone for logistics, together with the city cen-
tres of 40 other Dutch cities. Starting in 2025, all new delivery vans and registered lorries need to be
zero-emission to be allowed to enter the zero-emission zone for city logistics (“Amsterdam Emission
Zones”, n.d.). These regulations help to reduce air pollution, emissions and damage to the quay walls.
However, they do not reduce the number of vehicles that travel the roads in the city centre. The regula-
tions should compel stakeholders to design more efficient systems and modernise their fleet (Dablanc
& Montenon, 2015). When designing logistic systems, the regulations in cities need to be considered
since they further limit the feasible choices, especially compared to traditional fossil-fueled vehicles.
From these policies that mitigate consequences, it can be seen that policymakers lack knowledge about
the alternatives.

One way to reduce the increase of urban traffic itself is to shift modality or integrate different modal-
ities. Alternative modalities for roads could be railways, waterways, underground or through the air.
However, some of these modalities need integration to reach all customers in cities.

Within city centres, railways can only reach a few predetermined stations and, because of this, can-
not solve the whole problem of urban traffic. Underground transportation could be an option since many
large cities have an extensive metro network with many stations. However, transferring freight to and
from the underground network would be a difficult and time-consuming activity (Daduna, 2019). Fur-
thermore, the underground network is often occupied by public transport (Daduna, 2019), so additional
platforms must be constructed to minimise the effect on public transportation.

Researchers pay significant attention to the use of uncrewed aerial vehicles like drones, which have
the potential to solve part of the problem. However, the reach and capacity are currently insufficient to
take the pressure off the roads (Moshref-Javadi et al., 2020).

Many cities with waterways running through them (which are a lot, since in earlier times, rivers
were an important factor in the location of settlements) could include waterways in the infrastructure
(Wojewódzka-Król & Rolbiecki, 2019). The capacity of inland waterways is currently underused, due
to the greater preference of the roads by the logistics service providers. Transport using inland water-
ways has the lowest external costs in terms of emissions, noise, accidents and bottlenecks (Economic
& Committee, 2014) compared to other modes of transport. Waterway transport is also economical
and has less social impact (Divieso et al., 2021). However, despite the advantages, waterways are not
often implemented in city logistics yet (Economic & Committee, 2014), due to limited knowledge on the
operations and expensive investment and transshipment costs to integrate waterways into city logistics.

One initiative that is looking into the use of waterways is the TRiLOGy project. It aims to ”unlock
the potential of transportation and logistics in urban waterways with electric and autonomous vessels
by enabling safer, more sustainable and efficient operations.” (TRiLOGy, n.d.). This project is a col-
laboration between companies, the municipality of Amsterdam, Delft University of Technology and the
Massachusetts Institute of Technology, which brings together interdisciplinary methodologies. Two
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case studies are considered: city logistics for transportation and mobility on demand.

Despite the growing interest on multi-modal or integrated solutions, most applications are on a
small scale (Wojewódzka-Król & Rolbiecki, 2019). This is mainly because large-scale implementations
would mean large investments and require significant research to model these networks. Fortunately,
interest in the use of waterways is growing. More research is conducted on implementation, and the
potential of currently underused waterways is visible (Janjevic & Ndiaye, 2014). Some challenges must
be overcome to realise more efficient use of inland waterway capacity.

Firstly, the alternatives to current transportation modes should be widely known, and methods for
implementation should be clear. Specific requirements for every case make it hard to find a suitable
solution, no one size fits all solution exists (Jandl, 2016). Many design decisions have to be made to
determine an efficient system. Easily accessible and structured information about the possible systems,
including waterways in city logistics, is needed.

Secondly, due to high investment costs and expensive transshipment operations, service providers
do not prefer transportation systems with multiple modalities. To make such a system profitable and
encourage service providers to make a shift in modalities, efficient use of resources and collaboration
between the modalities is necessary. It is therefore important to design methods to model the system
and evaluate its performance and logistics costs (Groothedde et al., 2005). Moreover, models covering
the entire system can assist service providers in assessing the effects of an integrated network (Caris
et al., 2014) and making design choices for implementation.

Lastly, the connection between research, policymakers and service providers is missing, a signifi-
cant gap exists between research and practice (Van Duin & Quak, 2007). To close this gap, possible
real-life systems including waterways in city logistics should be connected to available research on
models and solving methods.

To tackle these challenges, service providers, system designers, and policymakers need guidance
in developing IWLT systems for transition from current logistics systems. There is a need to bridge the
gap between the research and real-life applications, especially regarding the decision-making process
to design IWLT systems.

Policymakers from the municipality of Amsterdam have noticed the potential use of waterways for
city logistics to supply Horeca. However, more information is needed to prove the feasibility of such lo-
gistic systems. This research is conducted in collaboration with the municipality of Amsterdam. Before
waterways can be implemented in the city logistics, there is a need to investigate the trade-offs, system
requirements and design choices for a feasible system and guidance in the development process.

To provide these insights, the main research question of this thesis is:

What is the potential of integrated water- and land-based inland transportation systems to improve
city logistics towards liveable cities?

The answer guides the system designers in the developing and decision-making processes. This
will enable a more accessible and easier transition from current transportation systems to integrated
water- and land-based transportation systems.

One of the challenges to develop integrated water- and land-based inland transportation systems
for city logistics is the absence of know-how. Even if service providers or policymakers would like to
use waterways in city logistics, it is hard to know how to do so since the existing knowledge is mostly
about road transportation or simplified small-scale use cases for freight logistics over waterways in
cities. Current research does not often address the process of decision-making. Mostly, a system is
defined, and solution methods are developed without discussing other optional systems and the design
choices. It is therefore hard for a system designer to determine which system would be suitable for its
desired application.

Many design choices at the strategic and tactical levels need to be made to develop an integrated
water- and land-based inland transportation system. This makes it difficult to develop such transporta-
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tion systems since some of these choices are hard to make with limited prior knowledge and limited
known quantitative approaches. The municipality of Amsterdam currently encounters this challenge in
the development process for an integrated water- and land-based transportation system. It is useful
to simplify the decision-making process to assist the municipality of Amsterdam and encourage more
companies and municipalities to implement waterways in city logistics. It would be very beneficial to
have a decision support model that enables users to test different design choices for service network
design and determine the system requirements.

Unfortunately, currently, no known solution method is available that covers all/most of the system
possibilities, which means multiple solving methods should be tried out to compare the results of mak-
ing different decisions. This is not only a time-consuming activity but also requires expertise that might
not always be available within the team that wants to implement waterways in city logistics.

However, some challenges exist for a decision model that covers all system options. Such a model
will have a large computation time since the number of possible solutions grows exponentially with the
number of attributes and the size of the instances (Vidal et al., 2020). Therefore, the more realistic
system options are covered, the longer the computation time, and the smaller the problem instances
that are solved. There is a need to develop efficient solution methods to solve larger instances within
highly integrated systems.

Another method to simplify the decision-making process is to provide a model that can be modified
with respect to different options including their extra limitations or flexibilities. Then, the resulting sys-
tem alternatives can be evaluated based on the trade-offs if multiple goals exist. This tool would not
have to run one decision model to cover all system options but can evaluate the results of separate
decision models. This way, the computational burden is less, since the computation time of the individ-
ual decision models is added up, instead of the exponential growth that would come from adding more
decision variables to one decision model.

This tool needs to provide the possibility to enable/disable some system options, to adjust the model
to specific problems and allow for some design choices to be made a priori. A tool that evaluates all sys-
tem variations would eliminate a hard part of the process of developing IWLT systems and, therefore,
encourage more logistics service providers and municipalities to implement waterways in city logistics.

1.3. Research Approach
This research aims to investigate the potential of integrated water- and land-based transportation sys-
tems for city logistics, guided by the design of a decision-support model for these systems. This deci-
sion support model should specifically help the municipality of Amsterdam to confirm the feasibility of
an IWLT system for the city and give clear indications for the system requirements. To reach this goal,
a combination of research methods is necessary, including literature research, data analysis, model
development, simulation experiments, analysis of the results and evaluation.

The decision support model of this project is developed with the general problem definition of an
integrated water- and land-based transportation system in mind. The model is specifically designed for
the case of the city of Amsterdam, however, with some adjustments it is widely applicable for similar
problems.

Since the research question is complex, sub-questions are formulated to guide the search to answer
the main question. These sub-questions help identify specific aspects of developing IWLT systems that
must be addressed to answer the main questions. Each sub-question addresses a research phase to
develop a decision model for IWLT systems.

The first sub-question aims to determine significant system options for IWLT systems. Next, in-
formation is gathered about the possible system types, design choices, objectives and trade-offs for
these systems. Data collection and analysis are performed through literature review, desk research,
and expert interviews. The sub-question one is formulated as: What are the significant design choices
for developing integrated water- and land-based transportation systems?
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After the information about IWLT system options and design choices is collected, the focus shifts to
the model development, for which the sub-question two is formulated. What decision models for multi-
modal transportation systems exist? Knowledge about existing decision models will help in developing
a decision support model for the IWLT system of this research.

With the available solution methods for IWLT systems known, the approach for the specific system
in Amsterdam has to be determined. Sub-question three aims to identify the important aspects of this
approach. How to develop decision models for integrated water- and land-based transportation sys-
tems that allow to solve full-scale realistic problems? The answer to this question investigates suitable
options for the system and how the problem could be decomposed. This is done by combining the
literature research with data collection and model development. First, the scope and goals of the de-
cision model are determined, next, the specific problem definition is given, after which the modelling
approach is described.

After this, the model is developed and described in Chapter 4. This chapter gives the mathematical
formulation of the solution models for the sub-problems defined by the third sub-question.

With the developed model for different IWLT system options, it is important to validate the model ap-
proach used and thoroughly evaluate the results for different system scenarios. The last sub-question,
sub-question four directs to results analysis and evaluation assisted by the case study for Amsterdam.
What is the performance of the proposed integrated water- and land-based transportation system under
different scenarios of interest? Answering this question also provides the municipality of Amsterdam
with recommendations for implementing the IWLT system.

1.4. Research Contribution
This research focuses on bridging the gap between research and real-life applications by developing a
decision-support model for IWLT systems. This model helps to make design choices in developing real-
life applications of IWLT systems, making it more accessible to evaluate the effect of different scenarios
on the system requirements.

Many models for multi-modal transportation systems exist, but most focus on one specific case
where the design choices are already made, or consider only a few system options. This research
models the IWLT system in a manner that allows testing different scenarios for the design choices.

Furthermore, the existing models for multi-modal transportation systems that include a high level of
synchronisation do not apply to large-scale realistic problems. This research uses a decomposition-
based modelling approach to tackle large-scale IWLT problems for different system decisions under
synchronisation constraints. The specific decomposition used in this research is widely applicable to
multi-modal transportation problems. It provides insights into the performance of these multi-modal
transportation systems under different system designs.

The decision model is used for the case of Amsterdam, to provide insights and recommendations
for policymakers about the system decisions and requirements. At the same time, this case helps to
validate the decomposition approach used.

1.5. Thesis outline
The remainder of this thesis is structured as follows. In Chapter 2, literature is reviewed to answer
the first two sub-questions. First, design choices for the development of IWLT systems are investi-
gated, answering sub-question one. Second, current state-of-the-art decision models for multi-modal
transportation systems are discussed, focusing on sub-question two. Chapter 3 outlines the modelling
methodology employed in this thesis, including the problem definition and the approach taken, which
answers sub-question three. In Chapter 4, details the models for each of the sub-problems defined
in the modelling methodology. Chapter 5 first introduces the case study for the city of Amsterdam.
Next, experiments are conducted for different system scenarios and model settings. The results are
evaluated to answer sub-question four. Finally, Chapter 6 answers the main research question and
provides recommendations for practice and future research.



2
Literature study

As highlighted in the introduction, there is a growing interest in utilising waterways for city logistics due
to their potential benefits, such as reducing truck movements and emissions. However, implementing
large-scale city logistics on inland waterways requires significant time and effort. There is no stan-
dardized step-by-step plan, forcing each company or municipality to develop its own approach. Many
design choices must be made, and the system must be thoroughly modelled to ensure efficiency. Ad-
ditionally, the implementation costs can be high. Consequently, the current use of waterways in city
logistics falls short of its potential. Despite these challenges, the urgency for a modal shift in urban
transportation is increasing, driven by growing city populations, resulting in the need for alternatives to
road transportation. The alternatives for road transportation are investigated in this chapter.

Furthermore, this chapter answers two sub-questions. The first question answered is: What are the
significant design choices for developing integrated water- and land-based transportation systems?.
Answering this question helps to identify alternative logistics systems to traditional road transportation
systems. Operational challenges and benefits of waterways in city logistics are analysed, and this
chapter provides an overview of practices implemented or tested by different service providers. Dif-
ferent service design choices and their implications are discussed, such as modes of transportation,
service type, the storage capabilities at satellites and transfer methods.

Then, the second sub-question is answered: What decision models for multi-modal transportation
systems exist?. This answer provides information about current state-of-the-art decision models for
comparable multi-modal systems. Their significance and implementability for the specific IWLT system
of this paper are discussed in the next chapter.

2.1. Multi-Modal Transportation Systems
Before investigating the design choices for integrated water- and land-based transportation systems, it
is useful to clarify this definition and explore some of its applications.

A multi-modal transportation system coordinates the use of two or more modes of transport. This
can, for example, be trucks and cargo bikes, vans and drones or, as in this research, vessels and light
electric freight vehicles. A basic example of a multi-modal transportation system is shown in Figure 2.1.
First-mode vehicles are used for transport to satellites from depots. Satellites are transshipment loca-
tions where the cargo is transshipped between the transportation modes. From the satellites, second-
mode vehicles perform deliveries to customers.

7
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Figure 2.1: Illustrative example of a multi-modal transportation system

Multi-modal systems are already used for most forms of transportation. Usually, cargo is not directly
transported from its origin to its final destination by one vehicle. Instead, cargo is first transported from
large depots to smaller hubs by large vehicles, like aeroplanes, ships or trucks. Then, smaller vehicles
transport the cargo (closer) to their destination. The same is true for passenger transportation. Think
about people going on vacation. Often, they first go by aeroplane or train, followed by the use of buses,
trams, metros or cars.

The next section briefly highlights various multi-modal transportation systems that do not use water-
ways, offering an impression of the range of existing options. Following this overview, the discussion
shifts to current multi-modal transportation systems that utilise waterways. These systems are exam-
ined in more detail as they closely align with the focus of this research, providing relevant examples for
the integrated water- and land-based transportation system under investigation.

2.1.1. Multi-Modal Systems without Waterways
Since the problems arising with urban logistics are known, much research is (being) conducted to
change last-mile delivery systems. To avoid, for example, congestion in a busy street or to comply with
city regulations, many innovative ideas have arisen. This section highlights ideas for multi-modal trans-
portation systems that do not use waterways. Most multi-modal systems aim to reduce the number of
(large) trucks in city centres. This is often done by using larger vehicles to transport freight to points
within or close to city limits and then using smaller vehicles for last-mile deliveries. By applying this
method, the larger vehicles do not have to move as much through the city centres. There has been
growing interest in the literature as well as in applications on multi-modal systems using different types
of vehicles, summarised as follows:

• Trucks and drones

• Trucks and small vans

• Trucks and cargo bikes

• Busses and rolling containers

• Busses and cargo bikes

• Trains and electric bicycles

• Trams and electric vehicles
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2.1.2. Multi-Modal Systems Including Waterways
Next to the innovations in multi-modal systems described above, some companies and cities already
use waterways in their transportation systems, and many others are conducting pilots (Wojewódzka-
Król & Rolbiecki, 2019). In this section, the different modalities used are investigated.

In Amsterdam, DHL uses a floating distribution centre to deliver and pick up packages in some
areas of the city centre. Already, 60% of DHL business in the inner-city areas is delivered by cargo
bikes. For part of this business, it uses a vessel of seventeen meters, which replaces about five deliv-
ery trucks. Cargo bikes follow the boat’s progress to pick up or deliver packages and meet up with the
vessel along three regular docking points. The cargo bikes and vessels stay in contact using mobile
phones. Switching to the multi-modal system allowed DHL to reduce the number of vans they use in
the city centre from ten to two. This results in a reduction of 150.000km every year, saving 12.000
litres of fuel. The same system is used for collections, on the return journey, cargo bikes can collect
packages and bring them to the vessel. (Parr & Register of Initiatives in Pedal Powered Logistics, 2017)

Also, in Amsterdam, a pilot is being conducted, using small garbage trucks to pick up garbage in the
city centre and bring it to an electric vessel. New regulations in Amsterdam prohibit vehicles weighing
more than 7.5tons from entering the city centre (Gemeente Amsterdam, n.d.). If the use of heavier
vehicles cannot be avoided, a permit has to be requested. These small garbage trucks remain below
this limit, even when filled with waste. The CO2 emission is reduced by more than 90% by using this
multi-model system instead of the large garbage trucks that currently collect waste in the city centre
(Gemeente Amsterdam, 2021).

Other cities in the Netherlands are implementing waterways in city logistics as well. Utrecht is the
owner of the Beerboot. This barge supplies part of the hospitality industry in the inner city. Last-mile
deliveries are organised by the ’Cargohopper’, an electric vehicle that pulls multiple carts (Mommens
& Macharis, 2012). The Beerboot ensures a reduction of CO2 emissions of 94% compared to conven-
tional vans (Maes et al., 2012).

Not only in the Netherlands, waterways are also gaining interest for urban logistics in other places.
In Paris, France, multiple applications exist. One example is the company Franprix’s use of waterways
to supply groceries to stores close to the Eiffel Tower. A barge with 26 containers and 450 pallets sails
close to the Eiffel Tower and transfers the products to regular diesel trucks, which take care of the final
deliveries (CCNR, 2021) (HAROPA - Ports de Paris, 2012). Further, in Paris, Fludis, a company in the
urban logistics sector, provides a decarbonised solution that avoids costly stock-outs in warehouses.
On the outbound journey, a fully electric boat delivers office supplies for the company Lyreco, which are
transported by bike to their final destinations. On the return journey, the boat collects electronic waste
(CCNR, 2021). In another city in France, Strasbourg, Urban Logistics Solutions uses a rental vessel
to transport parcels to a platform in the city centre. From the platform, fifteen cargo bikes are used
for last-mile transportation. On the return journey, recyclable waste is collected. For now, the vessel
only makes one trip daily, but there are plans to increase the frequency. (CCNR, 2021) (Observatoire
Régional Transports & Logistique - Grand Est, 2020)

In Ghent, Belgium, an implemented project is the Bioboot. Crops are transported into the city by a
small solar-powered vessel directly from the production site. The crops can be picked up at the dock
or delivered by bicycle trailers. (CCNR, 2021) (Goededinge.be, 2020)

A project in Berlin, still in its pilot phase, uses small autonomous vessels for transportation between
docks out of the city and the inner-city area. From there, self-propelled land-based vans or cargo bikes
can be used for final deliveries. The autonomous vessels can sail individually or as a coupled convoy
(swarm). (CCNR, 2021) (Technische Universität Berlin, 2022)

While waterway transportation has many promising advantages, some challenges exist. Transship-
ment is needed between vehicles to implement waterways in city logistics, which can be expensive.
Next to this, finding transshipment locations can be difficult in densely populated areas. Dock dues can
be high, especially compared to trucks that do not need a transshipment location (CCNR, 2021). The
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speed of vessels is also lower compared to road vehicles. Another aspect that should be considered is
the technical capacity of vessels/barges because this relies on the depth of the water, which can vary
by seasonal conditions. Furthermore, clearance under bridges and the width of the waterways must
also be considered (Diziain et al., 2014).

These disadvantages have to be outweighed by the advantages of waterway transportation to have
a business case for such systems. Many kilometres on the road can be avoided, resulting in less use of
fuel and lower emissions. Another significant advantage is reducing the burden on the roads, and thus
a reduction of impact by urban traffic as shown in Figure 1.1. To make IWLT systems a viable business,
the system has to be designed efficiently. Furthermore, stricter city regulations on road vehicles can
encourage the shift of modalities.

2.2. Design Choices
Based upon the previously discussed applications of waterways in city logistics, it is clear that many
promising IWLT systems exist, but many design choices have to be made to provide the service ef-
ficiently. This section identifies aspects of the IWLT systems on which decisions must be made and
provides knowledge about the decision-making process. A lot of the choices depend on the regula-
tions and infrastructure of the city, as well as the goals of the stakeholders. Furthermore, this section
discusses design choices that influence system operations and the type of problem to solve at an op-
erational level. Some bounds are specified and distinguished by where they have to be made in the
process. The first section gives an overview of the decisions. The second part describes the choices
that are affected by city regulations, restrictions and other externalities.

2.2.1. Decisions for a Service Network Design
Some design choices are necessary to determine a suitable problem definition for the services provided.
The two most important choices to make are the determination of transfer locations and the transfers
method: direct, indirect or unloading of loaded vehicles. The way of executing the transfers immediately
narrows the selection of available models down. When there is no storage at the satellites, meaning
direct transfers are necessary, considerable synchronisation between the modalities is required. For
indirect transfers, storage space has to be available at the satellites, which makes synchronisation in
time less significant. The variant of unloading loaded vehicles requires less synchronisation, especially
if the unloaded vehicles return to the depot by themselves. The placement of the satellites also plays
a large role in selecting a decision model. Different model classes exist for the case of determining
the satellite locations and the case where the locations are predetermined. Chapter 4 explains the
connections between these design choices and the decision models further.

In some cases, the decision in method and locations of transfers is easily made by the system de-
signer. For example, if the system designer wants to use predetermined docking points with cranes
and storage on shore. However, if multiple options have to be investigated, a model that covers the
different options is required to find the most suitable system for the application.

Other design choices have less impact on the type of model, but information is still needed to select
a model variant. These choices include single— or multi-trip, single— or multi-depot, pick-up/delivery
or both, and homogeneous or heterogeneous fleet.

Whether single- or multi-trip options for the vehicles are desired largely depends on the type of
vehicles used. For smaller vehicles, like cargo bikes, routes include fewer stops because of the limited
capacity. If every cargo bike performs one short route and remains unused for the rest of the time
period, a larger number of cargo bikes is needed to perform all deliveries and/or pick-ups. Therefore,
it is feasible to include the multiple trips option. This option is less important for larger vehicles since
it takes longer to perform one trip, so less time remains unused. However, the multiple-trip option
gives the possibility of performing multiple trips, which will only be used if it has a positive effect on the
objective.

Some models work with one single depot from which the first-level vehicles depart. If the desired
system has multiple depots or it is desired to investigate the option of multiple depots, some models
cannot be used.
Pick-up systems can be seen as equal to delivery problems, but with reverse flows. The difference
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lies in the operations at the satellites (Karademir et al., 2022). However, if pick-ups and deliveries are
desired, the capacity of the vehicles is not just decreasing or increasing on a trip, which produces extra
algorithmic challenges (Sluijk et al., 2023). Not all models are designed for this problem, so only a
selection of models can be used.

The last of these choices is the fleet composition, which is heterogeneous or homogeneous. In-
formation about the vehicle fleet is needed for the models, the paragraph below elaborates on what
this information includes. Most models only allow for one type of vehicle per echelon, which is called a
homogeneous fleet. Some models have the feature of a heterogeneous fleet, which enables the use of
vehicles with different characteristics. This feature is useful when no decisions on the vehicle types are
made beforehand, and the options need to be investigated. In this category, it is also important to note
the implications of electric vehicles. These vehicles have range limitations, which must be incorporated
into the model. This range can be increased by adding battery swapping or recharging stations. (Sluijk
et al., 2023)

Besides the previously mentioned design choices that impact the type of model needed, some more
input is required to solve the problems on hand. Depending on the model type, this input can include
the capacity of the vehicles, cost per km of the vehicles, speed of the vehicles, the daily cost for op-
erating the vehicles, the maximum number of vehicles, maximum distance of vehicles to travel, cost
of opening a satellite, the capacity of the satellites, transshipment time, transshipment cost or other
specifics. Vehicles indicate both land and water-based vehicles. Depending on the design choices
made before and the type of model(s) selected, some of these inputs are not applicable.

The rest of this chapter investigates how the design choices can be made or what bounds can be
applied. With these outcomes, decisions about the model type and variants can be made, and inputs
are determined. After applying this information to define the system limits, the system can be optimised
for the fleet size, the number and locations of satellites and the routes of the vehicles with respect to
the objective.

2.2.2. Decisions by Regulations, Restrictions and External Factors
Part of the design choices can be made without the use of models, or at least be bounded. External
factors, like city regulations, available space and stakeholders, can place restrictions on the design
space. When these external factors only put bounds on the design choices, the design choices should
still be implemented in the decision-making process, which means these design choices are variables
to be optimised by modelling but have to abide by some bounds. It is helpful to identify bounds since it
narrows down the feasible decisions and reduces unexpected infeasibilities or costs. Below, some of
the possible bounds are discussed.

First, the most obvious bounds are given by restrictions and regulations. Many cities in Europe have
introduced low- or zero-emission zones. In Amsterdam, the city centre has been a low-emission zone
since 2020, and in 2028, it will even be a zero-emission zone for logistics, together with the city centres
of 40 other Dutch cities. Starting in 2025, all new delivery vans and registered lorries need to be zero-
emission to be allowed to enter the zero-emission zone for city logistics (“Amsterdam Emission Zones”,
n.d.). Also, the maximum weight of heavy vehicles in the city centre is 30 tonnes, and the length has to
be less than 10 meters (City of Amsterdam, n.d.), which reduces the burden on the quay walls. Similar
regulations are introduced in many cities to reduce pollution, emissions, noise, congestion and overall
improve the quality of life in cities. However, few cities investigated the impact of these restrictions
on urban freight transport. Noticeably, the regulations compel stakeholders to design more efficient
systems and modernise their fleet (Dablanc & Montenon, 2015). When designing a logistic system,
city regulations must be considered since they can put bounds on the design choices, especially with
regard to vehicle characteristics.

Furthermore, many municipalities have regulations for operating windows, due to the noise associ-
ated with it. These time restrictions influence the system, since smaller time windows to operate require
a larger number of vehicles or vehicles with a higher loading capacity. Some cities might also have
general noise restrictions in place. Usually, the noise cap will not be violated by transport systems, but
they should be considered when deciding on equipment.
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The noise associated with transshipment activities can also play a role in determining satellite lo-
cations. It might be reasonable to give preference to satellite locations where noise does not affect
residents, this can be applied, for example, by assigning costs to opening satellites based on the in-
convenience for city residents.

Other external factors, beyond regulations and restrictions, must also be considered. These factors
are often tied to a city’s existing infrastructure. To minimise costs, it is ideal to leverage as much of
the existing infrastructure as possible. However, this infrastructure may not be suitable for all types of
vehicles or transfers. Weather conditions are another important consideration. For example, seasonal
changes can alter water levels, resulting in varying passage height and width of waterways, imposing
constraints on vehicle specifications. Furthermore, extreme weather events such as droughts, floods,
or frozen waterways can also occur. While these factors do not impose strict design constraints, their
potential impacts should be taken into account.

Ignoring or underestimating these external factors can lead to infeasible or costly operations. Fac-
tors restricting maximum vehicle weights, fuel type, accessibility limitations, and labor regulations can
significantly affect system profitability. Considering these limitations during the service network design
phase can lead to better strategic and tactical decisions.

2.2.3. Decisions through Modelling
The sections above explain how the regulations and restrictions provide some handles to make the
design choices, like bounds for some design choices of the logistic system. These bounds can act as
constraints for the system, since for most decisions, they only narrow the range and are not enough to
make the decision. So, many design choices remain, for which decision models are needed to inves-
tigate the best choices. This section will look deeper into these design choices and explain how these
can be included in a decision model.

Below, design choices that can be made by modelling the IWLT system are listed. These choices
can either be implemented as decision variables in the model or evaluated through experiments with
different input scenarios.

• Number of vehicles

• Capacity of vehicles

• Number of satellites

• Locations of satellites

• Storage capacity at satellites

• Operational time span

• Depot locations

Whether the design choice is implemented as a decision variable or evaluated through the system’s
performance under different design choices depends on the selected model and preferences. For
instance, if the number of vehicles to perform deliveries is implemented as a decision variable, the
operational time span can be an input parameter, allowing evaluation of the system’s performance
under varying time spans. Conversely, if the operational time span is a decision variable, the number
of vehicles can be a varying input parameter, and the time span required to supply the customers for
different numbers of vehicles is evaluated.

It is also possible to implement both the number of vehicles and the operational time span as deci-
sion variables, with an objective to minimise both. In this case, importance values must be assigned
to each decision variable, determining a ratio between reducing vehicle numbers and operational time
span. Alternatively, both the operational time span and the number of vehicles could be input parame-
ters, of which the values are varied to evaluate the system’s performance. However, this could render
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the system infeasible, as too few vehicles might fail to supply all customers within the specified time
span.

This example illustrated how design choices interact and can be implemented in a decision model.
Some design choices are more complex to determine in advance, making them suitable as decision
variables. For instance, if a system designer has a specific fleet available, it might be more relevant to
determine the time span needed to supply customers utilising the available fleet. However, if the fleet
is not yet determined and there are regulations regarding the time window for transshipment activities,
it is useful to treat the number of vehicles as a decision variable while keeping the operational time
span as an input parameter.

Next to these design choices, some operational decisions exist, the most important being the routes
of the vehicles. These routes are determined using a decision model, commonly with the objective of
minimising the distances travelled. The routes do not impact the decision variables directly but con-
tribute to the objectives and affect the number of vehicles required.

The system’s objective is important in determining preferred values for these design choices. Dif-
ferent objectives can result in very diverse optimal systems. For example, minimising a system’s costs
will most likely not minimise its emissions. An example of this trade-off is given in the Waste-On-Water
project (Huijgen et al., 2022), where the impact of collecting industrial waste with EVs in combination
with vessels is compared with the regular collection by trucks. The impact is evaluated based on CO2,
NOx and PM10 emission, km/ton, costs, employment, safety and congestion. The costs are higher for
the proposed system, while the emissions and congestion are reduced.

2.2.4. Overview of System Decisions
This section answers the first research sub-question: What are the significant design choices for devel-
oping integrated water- and land-based transportation systems?. The design choices for IWLT systems
and their bounds are discussed. Table 2.1 gives an overview of the design choices and operational
decisions discussed in this chapter for an integrated water- and land-based transportation system. The
next chapter will dive deeper into how these choices and bounds are used as inputs for the model and
how they influence the type of model needed.

Table 2.1: Design choices integrated water- and land-based transportation system

General Transfers Water level Street level
Pick-up/Delivery Number of satellites Vehicle characteristics Vehicle characteristics
Time span Locations of satellites Number of vehicles Number of vehicles
Single-/Multi-Trip Storage capacity at satellites Routes Routes
Single-/Multi-Depot Transfer method

2.3. Available Decision Models
The focus of this research is on developing integrated water- and land-based inland transportation sys-
tems to improve the quality of life in cities. The previous sections explore the possible systems and the
design choices to make for these systems. So, now the possible transportation systems are known,
the following sub-question arises: What decision models for multi-modal transportation systems ex-
ist?. The answer to this question provides insights into current state-of-the-art solution methods for the
IWLT systems determined in the previous chapters. In this chapter literature is reviewed to find suitable
models for these logistic systems. First, the type of problems to be solved for the systems are defined.
Next, the difficulties with integration and synchronisation of the system are pointed out. After that, a
deeper search is conducted considering the specifics of each system and what models and algorithms
exist to solve them.
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2.3.1. Problem Classification
As mentioned, the interest lies in integrated water- and land-based transportation systems, which
means the system consists of two separate transportation networks, one over water and one over land.
These two networks are connected by intermediate facilities (satellites). So, freight moves through one
of the networks, then via an intermediate facility to the second network, to its destination. In literature,
such a system is referred to as a two-echelon system, where each echelon refers to one level of the
transportation network and these levels are connected by satellites (Cuda et al., 2015). When these
two levels use different modes of transport, the two-echelon system is also a multi-modal system. The
definition two-echelon is clarified in the problem variations below, but first the main problem classes
are explained below.

Routing, Facility and Location Problems

To model the systems, they are connected to common problem types, which are widely addressed
in the literature. The multi-modal system with intermediate facilities exists out of multiple parts; routing
of the first modality, locating the facilities and routing of the second modality. Below, the basic problems
are explained.

Vehicle routing problem | VRP
The vehicle routing problem (VRP) is used to determine the optimal set of routes to serve a given set
of customers (Toth, 2002). Thus, the VRP only covers the routing aspect of the system.

Facility location problem | FLP
Facility location problems (FLPs) are used for locating or positioning facilities in order to optimise (min-
imise or maximise) at least one objective function (like cost, profit, revenue, travel distance, service,
waiting time, coverage and market shares) (Farahani et al., 2010).

Location routing problem | LRP
Location routing problems (LRPs) are a combination of the VRP and the FLP (Prodhon & Prins, 2014),
that can be used to determine which facilities should be used and the routes of the echelons to these
facilities (Schneider & Drexl, 2017).

Piggyback Transportation Problem | PTP
Piggyback Transportation Problems (PTPs), in this context, refer to the problem in which a large vehicle
moves batches of small vehicles to a launching point, from where the small vehicles depart to perform
last mile deliveries (Wang et al., 2022). This process can be repeated until all shipments are performed.
The PTP can also be seen as a variant of the VRP or LRP and the problem can be approached using
algorithms for the VRP and LRP.

Modelling the systems could be separated into multiple problems, the routes of the modalities and
the locations of satellites. However, since these problems depend on each other, solving them inde-
pendently can result in sub-optimal planning results (Schneider & Drexl, 2017). This issue is addressed
more elaborately in the next sections.

All in all, to model an IWLT system, a few options exist. The satellite locations can be defined with
a FLP and the routes by two separate VRPs or they can be combined, which is discussed later. An-
other possibility is to define the satellite locations using other methods, for example with the use of
Geographic Information Systems. Further, LRPs can be used to determine both the satellite locations
and the routes of the echelons. In Subsection 2.3.2, the specifics of these problems are investigated
regarding different applications and a search is conducted for suitable solution methods.

Variations of the Problems

To handle more realistic applications, the systems can be solved as a variant of VRP, LRP or a mix
of them, including several attributes. Many attributes exist and the number of variations is growing
rapidly (Vidal et al., 2020). In this paper only the variants essential to the IWLT system are reviewed.
Besides the variants explained below, capacitated vehicles are assumed to be standard for the prob-
lems, meaning both modalities have vehicles with a maximum storage capacity. Since, if this capacity
is ignored in the model, it could lead to solutions that are not feasible in real life.
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Two-Echelon | 2E
A supply chain is composed of stages (also called layers or tiers). Transportation occurs between
each pair of stages. Each stage represents one level of the distribution network and is usually referred
to as an echelon. 2E-LRPs are problems where routes may be present at both echelons and location
decisions have to be taken for at least one echelon. 2E-VRPs are problems where no location decisions
have to be taken, only routes are determined for both echelons (Cuda et al., 2015). Two echelon
problems connect the two distribution networks.

Multi-Trip | MT
The added value of enabling multiple trips is mentioned in Subsection 2.2.1 for accessing the customers
in case of city regulations, and depends on the chosen type of vehicles for system. This attribute makes
it possible for one vehicle to make multiple trips, for example, a cargo bike can collect its load at a
satellite, deliver it all to customers, and then repeat this process.

Time Windows | TW
Time-windows are required by the last users for premium services or city regulations for logistics oper-
ations. They limit the systems and require more effort to achieve synchronisation and feasibility.

Satellite Capacity | SC
Real-life satellites have limited storage capacities, which can mean it is not possible to let a vessel
deliver everything at once to one satellite and let road vehicles pick it up whenever they arrive. There-
fore, the storage capacities of the satellites have to be taken into account in the model for scheduling
transfers at the satellites to ensure the capacity of any satellite is not exceeded.

Satellite Synchronisation | SS
It is also possible there is no storage capacity in the satellites at all, synchronisation between the two-
echelons is necessary to ensure direct transfers between vessels and street vehicles without leaving
cargo at the satellites. Synchronisation can be implemented in different degrees and manners, on
which the next section elaborates. Synchronisation is still required when storage is available at the
satellites, but it reduces the degree of synchronisation necessary and ultimately the cost of the syn-
chronisation.

Another attribute that is frequently mentioned in literature, is the option for direct services to the
customers using only one of the available networks, i.e. only roads or waterways. The benefits of such
flexibility depend on the proximity of the customers to the waterways or to the central warehouse.

Finally, split deliveries can be implemented, which means customers can be served from multiple
vehicles. This can be interesting for minimising the number of vehicles since each vehicle can be used
to its full capacity. However, visiting a customer multiple times can result in more kilometres.

Multiple attributes together can be added to the basic variants. Generally, the more attributes are
enabled, the more realistic the model, but also the more complicated the problem is. The number of
possible solutions grows exponentially with the number of attributes and exponentially with the size of
the instances (Vidal et al., 2020). Therefore, the more realistic the problem is modelled, the longer the
computation time to solve it. Because of this, more realistic models are able to solve smaller instances
than basic models. This effect becomes visible in the size of the problems solved by algorithms of
Subsection 2.3.2.

Integration and Synchronisation

The two-echelon problem can be solved separately in the two echelons, using a sequential approach.
The first echelon is solved, and the outputs are used as inputs for the second echelon. However, this
approach does not take into account the interdependence of the modalities. Optimising the route of the
echelons separately does not automatically result in an optimal solution together, since one or the other
ignores the cost of the integration. A two-echelon problem can also be solved as an integrated problem,
taking into account the interdependencies between the two-echelons. An integrated approach involves
solving both echelons simultaneously, considering the implications of a solution on global optimality.
Integrated problem-solving causes a significant increase in the computational burden required, but it
provides a better solution than solving each problem separately (Côté et al., 2017). Because of the
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computational burden, integrated solving of large-scale problems with multiple attributes is not always
achievable.

Whether the two-echelon problem is solved in an integrated or sequential way, synchronisation
between the two echelons is essential. Synchronisation refers to the coordination between the two
echelons. In a sequential approach, synchronisation is achieved by linking the outputs of one echelon to
the inputs of the other echelon. In an integrated approach, synchronisation is achieved by considering
both echelons simultaneously and optimising the transportation system as a whole. However, this
synchronisation needs to be modelled and does not happen spontaneously.

Different types of synchronisation exist, for instance, temporal synchronisation, refers to the co-
ordination of the delivery schedules between the two echelons in terms of time, by determining the
optimal delivery times for the first echelon, so the delivery is synchronised with the schedules of the
second echelon vehicles. This helps to minimise waiting times at the satellites. Spatial synchronisa-
tion refers to the coordination of the delivery schedules between the two echelons in terms of space.
This involves determining the optimal routes for the vehicles in the first echelon so that the deliveries
to the satellites are synchronised with the routes of the vehicles in the second echelon. This can help
to minimise the transportation costs. Another type of synchronisation is load (cargo flow) synchroni-
sation (Drexl, 2012). Load synchronisation is used to ensure sufficient capacity to handle the freight
in both echelons. Since it is generally assumed that second-echelon vehicles have a smaller capac-
ity than first-echelon vehicles, with load synchronisation it is guaranteed all freight can be transported
through both echelons.

The type of synchronisation needed for the system depends on whether or not there is some stor-
age capacity at the satellites. When no storage is available at the satellites, temporal, spatial and
load synchronisation are all essential. The required synchronisation synchronisation is less significant
when storage is available at the satellites, as there is a buffer that allows for more flexibility in tim-
ing and routing. However, synchronisation is still necessary to avoid overloading the limited storage
and to ensure that the flow of goods remains steady and efficient. If satellites had unlimited storage,
the need for temporal and spatial synchronisation would be significantly reduced, as goods could be
stored indefinitely, allowing more flexibility in scheduling and routing. However, in practical terms, even
if storage is substantial, it is rarely unlimited, especially within city limits. Therefore, some degree of
synchronisation is still critical to ensure smooth operations and to prevent inefficiencies.

In summary, the degree and type of synchronisation required depend on the storage capacity at the
satellites, but some level of synchronisation is always necessary to ensure the efficiency and feasibility
of the two-echelon transportation system.

2.3.2. Solution Methods
With the attributes described above, the problem definition for the IWLT system can be determined.
Several options must be considered regarding satellite allocations and vehicle types. If the locations
of the satellites are known prior to modelling, variations of the 2E-VRP are sufficient. If the satellite
locations are not known, variations of the 2E-LRP are more suitable.

However, a selection from a few optional satellite locations can be made using the 2E-VRP by
letting the model choose satellites for the transfers. This can be achieved by providing fixed costs for
using a satellite, reflecting the objectives of different stakeholders, such as prioritising satellites based
on proximity to public places like hospitals or schools or their importance for other activities on the
waterways. The fixed costs associated with the satellites ensure they are only used if the costs of
opening them are lower than the extra driving costs.

The 2E-LRP, by including satellite locations as decision variables, provides a more comprehensive
and accurate representation of the system. Both the 2E-LRP and the 2E-VRP, along with their varia-
tions, are studied in this chapter. The relevant variations include multi-trip capabilities, time windows,
capacitated vehicles, satellite capacity, and/or satellite synchronization. Existing solution methods for
these problems are listed in this chapter.

As mentioned earlier, the PTP can be approached as a variant of vehicle routing or location rout-
ing problems, depending on the need for determining the launch locations. To be more specific, the
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PTP can be seen as a two-echelon vehicle routing or location routing problem. An advantage of the
PTP is that no synchronisation is necessary, since the second echelon vehicles are transported by the
first echelon vehicles. However, if the process of launching second-echelon vehicles is repeated, so
multiple trips are allowed, synchronisation can reduce the number of vehicles needed on the second
echelon by merging trips for a single vehicle but ensuring the vehicle is synchronised with the first
echelon vehicles for cargo replenishment. Synchronising the movements of first- and second-echelon
vehicles can also reduce the waiting time at depots. Therefore, depending on the need for multiple
trips, synchronisation can be included. Furthermore, the transportation of second echelon vehicles
takes more capacity of the first echelon vehicles than only the freight, so adaptions in the maximum
capacities must be inserted. Since capacitated vehicles are assumed for the basic variants of the VRP
and the LRP, and synchronisation is investigated for both, the PTP will not be investigated separately.

Figure 2.2 shows the design choices that impact the type of model to use. These decisions add
attributes or specific needs to the basic VRP or LRP model. These attributes are optional but do make
the model more realistic. The decision for multiple trips largely depends on the capacity of the vehicles.
Most vehicles used in city centres do not have large loading capacity, requiring them to performmultiple
trips. Whether multiple depots are used is not given as a specific attribute in most literature, but since
it is an important factor for selecting a model, it is included in the figure.

Figure 2.2: Design choices with impact on the model type

To determine the type of model necessary, the problem definition is found by selecting the bold text
next to the chosen design and adding them together. These problem definitions can be connected to the
solution methods in the next section. For instance, if the satellite locations still have to be determined,
direct deliveries take placeand multiple trips are require, the problem is defined as a 2E-MTLRP-SS.

Both VRPs and FLPs are NP-hard. Since LRPs are a combination of these two, LRPs are also NP-
hard (Dalfard et al., 2012) (Nikbakhsh & Zegordi, 2010) (Mirhedayatian et al., 2019) and therefore only
small instances can be solved exact within a reasonable time. Most research to solving the problems
uses heuristic solution methods or a combination of heuristic and exact methods.

Two-Echelon Vehicle Routing Problem
In this section, 2E-VRPs are investigated. The 2E-VRP is suitable for systems where the satellite lo-
cations are known, but can also select which satellites to use from a smaller set of satellite locations
to enable changes in the set of the satellites used due to weekly or seasonal differences in demand
distribution or the network flow capacity for the vehicles.

Two-echelon vehicle routing problems are extensively researched, and over the years, many vari-
ants have been studied (Sluijk et al., 2023). A large body of work exists on many variants and therefore,
this paper will focus only on the two-echelon vehicle routing problems with satellite synchronisation
and/or satellite capacity (2E-VRP-SS or 2E-VRP-SC), possibly with different side constraints. Basic
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variants of the two-echelon vehicle routing problem will not be included, since they ignore temporal
synchronisation, which is essential to the systems provided in this study due to the lack of space in
cities. When no storage is available in the satellites and direct transfers are required, satellite syn-
chronisation is required. Not much research has been conducted on satellite synchronisation for direct
transfers between the two echelons. Most researchers leave room for the possibility that more than
one second-echelon vehicle is loaded simultaneously at one satellite, and/or all load of the first-echelon
vehicles can be stored at satellites with infinite storage capacities. This might not be feasible in real-life
situations, since equipment or space for simultaneous transfers is not always available.

First, exact solution algorithms for the 2E-VRP-SS are reviewed. Then, heuristic methods are in-
vestigated. For both solutionmethods, only problems that assume capacitated vehicles are considered.

Exact Solution Methods for the Two-Echelon Vehicle Routing Problem
Dellaert et al. (2019) study a two-echelon vehicle routing problem with time-windows (2E-VRPTW) and
propose two mathematical formulations with branch-and-price-based algorithms, the first formulation
defines the path over both first- and second-echelon tours, the second formulation decomposes the
first- and second-echelon paths. They can solve some of their test instances with up to 6 depots, 4
satellites and 100 customers, optimally. Dellaert et al. (2021) propose decomposing the 2E-VRPTW
into two VRPTWs and extending the problem to multiple commodities.

Marquès et al. (2020a) suggest a mixed integer programming formulation for the problem with a
branch-cut-and-price algorithm to solve it. They are the first to propose an exact algorithm for the
two-echelon vehicle routing problem with multi-trip, time-windows and satellite synchronisation (2E-
MTVRPTW-SS) and include the possibility of multiple depots. Mhamedi et al. (2022) also propose a
Branch-Price-and-Cut algorithm, for solving the 2E-VRPTW-SS including multiple depots, but no multi-
trips are allowed. They are able to solve some of the unsolved test instances by Dellaert et al. (2019).
Both Mhamedi et al. (2022) and Dellaert et al. (2019) assume a second-echelon vehicle can only re-
ceive load from a single first-echelon vehicle. This assumption simplifies the models and algorithm,
as well as the operations at the satellites (Sluijk et al., 2023). However, the model by Marquès et al.
(2020a) allows for storage and consolidation of freight at satellites, which makes it relevant for more
general problems.

According to Sluijk et al. (2023) the best performing exact algorithm for the multi-depot 2E-VRPTW
instances with a single commodity is Marquès et al. (2020a), which is able to solve most instances with
100 customers to optimality. Marquès et al. (2020a) also performs best for the 2E-VRPTW instances
with a single-depot. It solves more instances than Dellaert et al. (2019) and Mhamedi et al. (2022), and
needs shorter computation times to do so.

The algorithm proposed by Marques et al. (2020b) solves the 2E-VRP with satellite capacity but
without any other attributes. It is worth mentioning here since it is the best-performing exact algorithm
at this moment (Sluijk et al., 2023). The algorithm can solve instances previously available in the lit-
erature with up to 200 customers and 10 satellites from one depot. They introduce a new set of 51
instances with up to 300 customers and 15 satellites, and were able to solve 23 of the new instances
with up to 300 customers or 15 satellites.

Some relatively new research is being conducted by Karademir et al. (2022). The focus is on an
IWLT system in the city centre, this is why they consider an important constraint, namely that only one
transfer can take place at a time. Multiple transfer operations that happen simultaneously are not feasi-
ble in busy areas with limited space. They are the first to take this into account. The problem solved is a
two-echelon vehicle routing problem with time-windows, multiple trips and satellite synchronisation and
is formulated as a mixed-integer linear programming problem. They solve instances with one depot,
four satellites and 10 customers.

Heuristic Solution Methods for the Two-Echelon Vehicle Routing Problem
Besides the exact solution algorithms, many heuristic methods exist. Only the research regarding
interesting variations of the two-echelon vehicle routing problem for systems of this paper and the
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best-performing heuristics are reviewed here.

Grangier et al. (2016) are the first to tackle the two-echelon vehicle routing problem with multi-trip,
time-windows and satellite synchronisation (2E-MTVRPTW-SS) and propose an adaptive large neigh-
bourhood search. They designed custom destruction and repair heuristics together with an efficient
feasibility check and are able to solve instances with one depot, ten satellites and 200 customers.

Li et al. (2020) use a variable neighbourhood search heuristic to solve the two-echelon logistics
system with on-street satellites that uses time windows and satellite transshipment constraints, which
in the termination of this paper is equal to the 2E-MTVRPTW-SS. Their problem formulation is distin-
guished of Grangier et al. (2016) in their use of capacitated satellites. They can solve instances with
one depot, up to 30 satellites and 900 customers in under two hours. Next to this, they evaluate the
economic difference between the use of electric or diesel vehicles and different vehicle capacities.

Anderluh et al. (2021) use a large neighbourhood search embedded in a heuristic rectangle/cuboid
splitting to solve the two-echelon vehicle routing problem with multi-trip and satellite synchronisation
(2E-MTVRP-SS). They neglect time-windows and the instances they solve are smaller than those of Li
et al. (2020), but what makes their research interesting is its option to use multiple objectives, the stan-
dard economic objective, but also negative external effects, like emissions and disturbances, caused
by congestion and noise. This possibility makes their solution method especially interesting when de-
sign choices still have to be made.

Jia et al. (2022) provide both a heuristic and exact solution method for the two-echelon vehicle
routing problem with multiple depots, time-windows, satellite capacity and satellite synchronisation. A
mixed-integer programming model and an adaptive large neighbourhood search are developed. They
are able to solve problems with 2 depots, 10 satellites and 260 customers.

Relatively new research is conducted by Bijvoet (2023), who solve a two-echelon multi-trip vehicle
routing problem with synchronisation with decomposition-based heuristics. Special in the work is their
consideration of multiple trips for both echelons and usage of a heterogeneous fleet for the second
echelon. They solve large-scale instances with one depot, 45 satellites and 758 customers.

According to Sluijk et al. (2023) the neighbourhood search heuristics are best performing for two-
echelon vehicle routing problems with one depot. Yet, there is not one heuristic that is clearly the best
performing overall.

Table 2.2 presents the solution methods for two-echelon vehicle routing problems discussed in this
chapter. The table gives an overview of the attributes covered by the solution methods, whether sin-
gle or multiple depots are used, what problem size they can solve and whether exact and/or heuristic
methods are used. The problem sizes are indicated as d/s/c, meaning problems solved with d depots,
s satellites and c customers. Notable in the table is that only Li et al. (2020) cover all four attributes,
but only use a single depot. This indicates no solution method is available for multiple depots with
time-windows, multiple trips, satellite synchronisation and satellite capacity.

Two-Echelon Location Routing Problem
The available research on the two-echelon location routing problem is significantly less than that on the
two-echelon vehicle routing problem, however, interest has been increasing over the last few years.
Because the research on the 2E-LRP is limited, especially with regard to variations like satellite synchro-
nisation, also a few solutions to the basic problem are discussed. Due to the complexity of 2E-LRPs,
large-sized instances are mostly solved by metaheuristics, or exact methods combined with decom-
position strategies (Escobar-Vargas et al., 2021). 2E-LRPs are often decomposed in multiple stages,
decomposed in two LRPs, or a separate FLP and VRP for both echelons, resulting in as many as four
sub-problems (Contardo et al., 2012).

Most of the early papers on 2E-LRPs consider location decisions for only one of the echelons (Cuda
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Table 2.2: Overview solution methods two-echelon vehicle routing problem

Attributes Depot Problem sizePaper TW1 MT2 SS3 SC4 Single Multi d/s/c 5 Exact Heuristic
Grangier et al. (2016) 1/10/200
Dellaert et al. (2019) 6/4/100
Li et al. (2020) 1/30/900
Marquès et al. (2020a) 6/4/100
Marques et al. (2020b) 1/15/300
Anderluh et al. (2021) 1/18/100
Dellaert et al. (2021) 3/5/100
Jia et al. (2022) 2/20/260
Karademir et al. (2022) 1/4/10
Mhamedi et al. (2022) 6/4/100
Bijvoet (2023) 1/45/758

1 Time-Windows, 2 Multi-Trip, 3 Satellite Synchronisation, 4 Satellite Capacity, 5 Number of depots/satellites/customers

et al., 2015), however, it might be useful to find the best locations for both the depots and the satellites.
Depending on the needs of the designer, a suitable solution algorithm that considers location decisions
for either the first echelon, second echelon or both. Nearly all papers on 2E-LRPs ignore synchronisa-
tion (Drexl & Schneider, 2015).

Boccia et al. (2011) seem to be the first to tackle the 2E-LRP, however only for small instances.
They propose three mixed integer programming models. The models find locations and numbers of
the depots and the satellites and determine routes and the number of vehicles for both echelons. For
instances with 3 possible depot locations, 5 possible satellite locations and 10 customers it finds opti-
mal solutions within reasonable time (Prodhon & Prins, 2014). For larger instances, the computation
time and gap with the best-found solution grow quickly.

Hemmelmayr et al. (2012) present an ALNS metaheuristic for the 2E-VRP with one depot and the
authors show how a standard LRP can be modelled as a 2E-VRP. Even though they do not solve the
2E-LRP, their research is worth mentioning, since this decomposition simplifies the LRP. They connect
the depot en satellites by dummy vertexes with a fixed opening cost to determine which satellites should
be opened to minimise costs. Also, the satellite capacity is enforced by allowing only one dedicated ca-
pacitated vehicle to visit its assigned satellite, with a capacity equal to that of the corresponding satellite.

Contardo et al. (2012) observe the 2E-LRP can be decomposed in two LRPs, connected by capac-
itated satellites. They use a branch-and-cut algorithm to solve the problem with multiple depots. An
initial solution for the second echelon is constructed based on the manner used in Hemmelmayr et al.
(2012). After this, a solution for the first echelon is constructed by randomly selecting one depot and
serving all satellites from it. A destroy-repair iteration is performed on the second-echelon and then on
the first-echelon problem. Local Search is only performed on the second-echelon problem.

Winkenbach et al. (2016) present a mixed-integer linear programming (MILP) model to solve large-
scale static and deterministic two-echelon location routing problems, which can account for access
restrictions to certain city areas by assessing various vehicle types. They propose two models, one
single-stage numerical optimization and an optimization heuristic that reduces the computation time by
splitting the optimization problem into two interdependent sub-problems. They show numerically that
the loss in solution precision is negligible. The one-stage model can solve instances with 900 nodes
with 225 possible satellite locations in 3107𝑠. The two-stage model is iterative and is much faster
because the number of active satellites is not a decision variable anymore, the model is repeatedly
executed with an increasing number of active satellites for every iteration. The solution with the lowest
objective is then used as input for the second stage, in which the routing decisions are made. This two-
stage model is able to find solutions for instances of 1600 nodes and 400 possible satellite locations in
965𝑠. However, the two-stage approach ignores satellite capacities, considers only one depot and just
one vehicle type can be used.
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Nikbakhsh and Zegordi (2010) is able to solve two-echelon location routing problems with time win-
dows (2E-LRP-TW) for instances with 10 possible depot locations, 50 possible satellite locations and
100 customers in 271𝑠. They developed a two-phase heuristic, location-first, allocation-routing second
for initial solution construction and a neighbourhood search for an initial solution improvement.

Mirhedayatian et al. (2019) claim to be the first to study a two-echelon location routing problem with
time windows and synchronisation (2E-LRPTW-SS). They propose a decomposition-based heuristic
solution approach, which is done in three stages. First, a configuration of satellite locations is chosen,
then, customers are assigned for this configuration and lastly, the routes of the echelons are estab-
lished. Feedback loops between the stages ensure working towards the best solution. Different sets of
instances are tested and solved for at most 40 nodes. The average computation time for the instances
was 2993𝑠.

Escobar-Vargas et al. (2021) presents two mixed-integer programming formulations and an exact
solution framework by a dynamic time discretisation scheme for a two-echelon location routing problem
with time windows and satellite synchronisation. They formulate the problem as a Two-Echelon Multi-
Attribute Location-Routing Problem with fleet synchronisation at intermediate facilities (2E-MALRPS),
which results in a 2E-LRPTW-SS by the definitions used in this paper. The two mixed-integer pro-
gramming formulations used are a compact formulation and a time-space formulation. Because of the
temporal dimension of the time-space formulation, the model is more realistic but also less scalable.
They propose a dynamic discretisation discovery (DDD) framework to improve the scalability. The
DDD solution framework is able to solve instances of 6 depots, 4 satellites and 10 customers optimally
in 4936𝑠 and find feasible solutions for all instances up to 6 depots, 4 satellites and 30 customers in
36000𝑠.

Table 2.3: Overview solution methods two-echelon location routing problem

Attributes Depot Problem sizePaper TW1 MT2 SS3 SC4 Single Multi d/s/c 5 Exact Heuristic
Nikbakhsh and Zegordi (2010) 10/50/100
Boccia et al. (2011) 3/10/25
Contardo et al. (2012) 5/20/200
Hemmelmayr et al. (2012) 0/20/200
Winkenbach et al. (2016) 1/225/900
Mirhedayatian et al. (2019) 1/5/34
Escobar-Vargas et al. (2021) 6/4/30

1 Time-Windows, 2 Multi-Trip, 3 Satellite Synchronisation, 4 Satellite Capacity, 5 Number of depots/satellites/customers

Table 2.3 gives an overview of the most promising research on two-echelon location routing prob-
lems and some details about the solution approaches. It is clearly visible that introducing synchronisa-
tion reduces the size of the solvable problems. All considered problems include vehicle capacities and
a homogeneous fleet for both echelons, except for Winkenbach et al. (2016), where multiple second-
echelon vehicles can be assessed. All problems that include multiple depots also consider location
decisions for both echelons, so for the depots and the satellites.

As can be seen in Table 2.3, no research has been conducted on two-echelon vehicle routing prob-
lems that include time-windows, multi-trip and satellite synchronisation or satellite capacity. This is
presumably because of the large computation capacity it takes to tackle such a problem. However, it
is important to develop solution methods for problems that include all these attributes, since they make
the problem a better representation of the real world.
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2.3.3. Summary & Gaps
This chapter aims to answer the questionWhat decision models for multi-modal transportation systems
exist?. From the research evaluated in this chapter, it can be concluded that a lot of work is carried out
researching suitable solution algorithms for location and routing problems and much more research is
currently being conducted. However, at this moment, more realistic formulations are often not applica-
ble on the scale for real-life problems. Furthermore, not all attributes have been studied together. More
research has to be conducted on these variants and better solution methods should be developed to
tackle larger problem instances.

Suitable solution methods for the preferred IWLT system can be found by first connecting the system
through Figure 2.2 to the problem formulations. For most system options and their problem formula-
tions multiple solution methods exist, as can be seen in Table 2.2 and Table 2.3. Therefore, the most
promising methods are selected, which is based on the size of the problem they can solve within a
reasonable time and the additional options they provide. Figure 2.3 gives an overview of the selected
best methods for specific systems.

Second, Figure 2.3 can be used to connect the problem formulation to the available solution meth-
ods on the right in blue. By following the row of the problem that needs solving, it can be seen which
solution methods are available. To illustrate this, following the row for a system with predetermined
transfer locations, a single depot, direct transfers and not require multiple trips, this problem can be
solved using methods from Anderluh et al. (2021), Li et al. (2020) and Jia et al. (2022). Which of these
methods to use depends on additional factors, which will be explained below.

Figure 2.3 is useful to determine which solution methods can be used, but sometimes multiple meth-
ods exist. Which method to choose depends on several factors, whether multiple system options are
still considered, the size of the problem and the wish for additional attributes.

To show how this connects with which solution method to use, the following example is used. A
system is considered with predetermined transfer locations, a single depot and it is decided not to
unload loaded vehicles. The options of direct transfers, capacitated storage, or both, and multiple trips
are still open.

First, the factor of considering multiple system options is explored. As in this case, there are some
remaining design choices. Modelling the different systems and comparing the results helps the system
designers to make better decisions on service network design. To model these different systems,
multiple solution methods can be used. More specific, Anderluh et al. (2021) for direct transfers with
multiple trips, Li et al. (2020) for direct transfers, capacitated storage and multiple trips and lastly, Jia
et al. (2022) for direct transfers and capacitated storage. It is most efficient to use one solution method
that covers most system options, so only one is needed to test the options. In this case, it would be
most efficient to use the method suggested by Li et al. (2020), since it takes into account all of the
system options considered and will search for the best option within these system options.

The second factor in choosing a solution method is the size of the problem to be tackled. When the
system is already chosen, the choice in solution method can be made based on the problem size they
can tackle. In this case, Li et al. (2020) covers the largest problem instances.

Then, the last factor that helps in choosing a solution method, is the wish for additional attributes.
Multiple trips are not required, but it might be useful to include the option and improve the system, this
would push in the direction of using Li et al. (2020) or Anderluh et al. (2021). Moreover, the system
designer might be interested in emissions or other external effects. Anderluh et al. (2021) gives to
option to use these external effects as objectives. Furthermore, Li et al. (2020) enables assessing
different vehicle capacities, which might be interesting to the system designer.

To put it more generally, it might be interesting to use a solution method that covers multiple options.
A solution method that solves the system while taking into account more options will directly determine
the more efficient solutions and help to make the remaining design choices, without the need for mul-
tiple models. The downside of a solution method that covers this many aspects is that it will have a
longer computation time and the problems it can solve may be smaller.

As can be seen in Figure 2.3, not all problems do have a known solution method yet. Solution
methods are missing for the two-echelon vehicle routing problem with multiple depots that includes
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satellite capacity (2E-VRP-SC) and for the two-echelon location routing problem that includes satellite
synchronisation and multiple trips (2E-MTLRP-SS). For some of these problems, it is possible to ap-
proach them by using one of the other solution methods.

For the two-echelon location routing problemwith satellite synchronisation andmultiple trips, it might
be possible to tackle the problem by a two-echelon vehicle routing problem that includes satellite syn-
chronisation and multiple trips, with some more side constraints as mentioned in the introduction of
this section. However, this is an approximation and will most likely not result in the optimal solution.
The missing solution methods for problems involving multiple depots and satellite capacity could be re-
placed by using solution methods with satellite synchronisation, since this synchronisation adds more
constraints and will at least result in feasible solutions. However, these solutions do not use all avail-
able resources and will therefore not be optimal. A potential direction is to use the existing models by
integrating additional attributes within the solution framework for the feasibility as well as cost reduction.

Altogether, for many options of the integrated water- and land-based inland transportation systems
discussed in this paper, solution methods are available. However, the size of the problems that can
be solved differs a lot and is not always sufficient. Next to this, solution methods that cover a broader
range of system options still have to be developed, to help make design choices for IWLT systems.

1 Enables assessing different vehicle capacities, 2 Enables assessing multiple external objectives, 3 Enables assessing different vehicle capacities

Figure 2.3: Solution methods to use for specific problem type
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Modelling Methodology

The previous chapter describes the various design choices important for developing an IWLT system,
and how these connect to problem formulations and solving methods. This provides a start for mod-
elling the IWLT system, but many strategies exist. This chapter focuses on the third sub-question: How
to develop decision models for integrated water- and land-based transportation systems that allow to
solve full-scale realistic problems?. Multiple strategies found in the literature are investigated for their
suitability. The biggest challenge is to develop a model that is able to tackle large instances with many
attributes, which is needed to apply the model to the real-life problem in the city of Amsterdam.

In this chapter, first the scope and goals are highlighted. After that, the problem classification is
determined. With the problem classification in mind, the modelling approach is established.

3.1. Scope and Goals
This section outlines the scope and goals of the decision model for IWLT systems designed in this
research. The key design choices, objectives, and the intended outcomes of the decision model are
detailed.

The IWLT system investigated in this research is established in collaboration with the municipality of
Amsterdam. The goal is to investigate the feasibility of supplying Horeca in the busy city centre through
an IWLT system. The municipality aims to reduce road congestion by shifting part of the transportation
to waterways, which is expected to alleviate the pressure on the crowded urban streets.

The broader goal of this research is to develop a decision model that aids system designers or pol-
icymakers, in implementing IWLT systems. This model must encompass various system options and
scenarios, bridging the decision-making process with real-life applications. It is designed to explore
trade-offs, system requirements, and critical design choices, thereby guiding the development and op-
timisation of IWLT systems.

The key design choices to be explored in this research include the number and locations of satellites,
the number and type of vehicles for both water and road modalities, the time span for deliveries, and
the storage capacities at satellites. Determining satellite placements is crucial for effective distribution.
Determining the size of the fleet equipped for the tasks is important for evaluating the feasibility of the
system in terms of implementation costs. Establishing a feasible and efficient time window for delivery
operations is essential since regulations on operating times can be installed. Additionally, assessing
the need and extent of storage capacity at satellites can significantly impact operational efficiency.

The decision model aims to provide insights into realistic bounds of these design choices and their
impact on the overall system objectives. The primary objective for the municipality is to reduce road
kilometres in the city centre. However, achieving this goal inevitably affects other city components,
since part of the transportation burden is shifted to the waterways. Therefore, a sub-objective is reduc-
ing kilometres travelled on waterways. Furthermore, to make sure the system is feasible for real-life
application, objectives regarding the number of vehicles for both vessels and road vehicles are included.
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Given these interconnected variables and objectives, the model must facilitate experiments to iden-
tify feasible bounds and trade-offs among different design choices. Rather than seeking the ”best”
system, the research focuses on confirming the feasibility of the IWLT system and providing insights
into system requirements under various scenarios. By evaluating and analysing different configura-
tions and bounds, the model will help identify effective strategies for implementing the IWLT system in
Amsterdam.

3.2. Problem Definition
Before defining the modeling approach, it is essential to establish a formal problem definition. This
allows for a precise classification of the problem and helps in assessing the applicability of current
state-of-the-art research.

The problem is to supply customers using multi-modal transportation. Cargo originates from a
depot of set 𝐷𝐶𝑤, with unlimited storage and loading capacity, allowing simultaneous loading of multiple
vehicles. Transshipment at the depot takes 𝑡DC minutes per vessel.

The cargo is then transported by vessels of set 𝐹 from a depot to satellites. Vessels have a capacity
of 𝑞W[𝑚3] and a speed 𝑣W[𝑚/𝑠]. They can perform multiple trips of set 𝑊 and visit multiple satellites
in one trip, if those trips and satellites are assigned to the same depot.

The satellite locations have to be selected from a set 𝑆 of potential location, of which 𝑁S can be
opened. Satellites in the standard configuration have no storage capacity, 𝑞S = 0, necessitating direct
transshipment from vessels to road vehicles, a process taking 𝑡S minutes. Vessels might have to wait at
a satellite until the cargo is picked up and transshipment activities can only be performed on one vessel
and one road vehicle at a satellite simultaneously. However, the satellite capacity can be adjusted for
specific cases by changing parameter 𝑞S.

Road vehicles of set 𝑅 transport the cargo from satellites to customers in set 𝐶, with a demand
of 𝑞𝑐[𝑚3] per customer and the demand of all customers has to be satisfied. Each road vehicle can
perform multiple trips of set 𝑉 and can visit multiple customers in a trip, as long as their load does
not exceed their capacity of 𝑞V[𝑚3]. Road vehicles have a speed of 𝑣V[𝑚/𝑠], and transshipment at a
customer takes a fixed 𝑡C minutes. Road vehicles start their first trip and end their last trip at a road
vehicle depot, 𝐷𝐶𝑣.

Routes are established for both modalities: waterways for first echelon vehicles and roads for sec-
ond echelon vehicles. Distances between depot, satellites, and customers are given by Δ𝑖𝑗.

All transshipment activities must occur within a maximum time span, 𝑡max minutes. Vessels can
start their trip before the beginning of the time span and exceed this time window when travelling back
to the depot. Road vehicles can still perform deliveries of the last trip.

This problem is defined as a two-echelon multi-trip location routing problem with satellite synchroni-
sation (2E-MTLRP-SS), incorporating capacitated vehicles, multiple depots and a global time window,
with a possibility of satellite storage. Both echelons have a homogeneous fleet. The primary objective
is to minimise road burden while ensuring real-life feasibility in terms of costs and time. This involves
minimising the number of vehicles required and the distance travelled on the roads while adhering to
all time constraints. Additionally, minimising the distance travelled on the waterways is a sub-objective
to ensure that reducing road traffic does not result in excessive congestion on the waterways.

Key decision variables include satellite locations, the number of satellites to open, and vehicle num-
bers for both modalities. Vehicle characteristics are governed by regulations and system requirements
and are represented as parameters. The routes of the vehicles are an important factor for the objec-
tives, which are evaluated by kilometres on the roads and waterways.

For this problem classification, it is crucial to assess the size of the problem that the model aims to
address. The decision model is designed to explore IWLT system scenarios for real-life applications,
so it must be capable of solving problems of considerable size. The case study for the municipality of
Amsterdam serves as an excellent representation of a real-world scenario. This case involves 1635
Horeca locations, 56 potential satellite locations and 3 depots. Further details about this case will be
introduced in Section 5.1.
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3.3. Modelling Approach
Given the previously determined problem classification, it becomes evident that none of the current
state-of-the-art solution methods are suitable for this specific type of problem. As illustrated in Fig-
ure 2.3, the combination of requirements for the two-echelon location routing problem with multiple
depots, satellite synchronisation and multiple trips necessitates a tailored approach.

Since none of the current state-of-the-art solution methods is suitable for the large-scale IWLT sys-
tem with all its attributes for the city of Amsterdam, a new strategy is developed in this research. The
new strategy is developed with inspiration from the decomposition approaches used in literature, adding
extra decomposition steps to tackle the large-scale problem. The decomposition approach is used to
model different optimisation problems linked via synchronisation in time, space and load, therefore en-
abling tractable models for realistic-sized problems.

To address the complexity of the two-echelon multi-trip location routing problem with satellite syn-
chronisation for large problem instances, it is essential to decompose the problem effectively while
ensuring integration and synchronisation between different stages. First, a review of some of the de-
composition approaches from existing literature will be conducted to evaluate their relevance to this
research problem. Following this, the integration of these decomposition approaches into the chosen
strategy for this study is explained. Finally, the specific decomposition approach adopted in this re-
search will be detailed.

As discussed in Section 2.3, many models exist for 2E-VRPs and 2E-LRPs. However, most only
tackle small instances, or only address part of the attributes. Especially for 2E-LRPs, the problem in-
stances that can be solved are small and not applicable to most real-life problems. Only Winkenbach
et al. (2016) tackle large instances, but only address satellite capacity and load synchronisation, but
no spatial and temporal synchronisation is included.
Li et al. (2020) solve large 2E-VRP problems including synchronisation. Their approach involves cre-
ating an initial solution by first constructing second-echelon routes and then constructing routes for the
first-echelon that respect the synchronisation constraints. The approach has promising results, but the
facility location problem is not included. However, their method of splitting the routing problem of the
two echelons is relevant for the system considered in this research.
Contardo et al. (2012) implement a similar decomposition for the 2E-LRP. The problem is split into two
LRPs. Decomposing the problem in sub-problems for the two echelons is a commonly used method
in literature. Mirhedayatian et al. (2019) approaches the 2E-LRP with a different decomposition. The
problem is solved in three stages, first, an FLP for the satellite locations, next, the customers are as-
signed to the satellites and lastly, the routes of the echelons are established. No decomposition is
applied to the routing of the echelons, which is viable for the small problem instances they tackle. How-
ever, their decomposition of the FLP and routing is relevant for this research.

With these decomposition approaches considered, the following strategy is formulated for the pre-
viously defined problem.
The facility location problem for satellites is treated separately from the routing decisions, as done by
Mirhedayatian et al. (2019), to reduce the computational complexity involved in simultaneously de-
termining both location and routing. This approach streamlines the problem into more manageable
sub-problems. When tackling the facility location problem, decisions are based on the distances over
existing road networks between customers and potential satellite sites. This ensures that the locations
selected are strategically viable in terms of proximity to customer locations.

The routing tasks of first- and second-echelon vehicles are also addressed separately, as seen in
Contardo et al. (2012) and Li et al. (2020). Initially, by determining the routes for second-echelon ve-
hicles, the trip demand and duration of each trip are established, providing input for the first-echelon
routing. The first-echelon vehicles must meet the demands set by the second-echelon routes, but the
specific paths of the second-echelon vehicles do not affect the routing decisions of the first-echelon.
Time and synchronisation constraints are included in the first-echelon routing problem to ensure inte-
gration between the two echelons. This approach ensures that the first-echelon vehicles are effectively
coordinated with the second-echelon operations while reducing the model complexity.
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For real-life applications, it is essential that vehicles from both echelons perform multiple trips. It is
impractical to have a dedicated vehicle for each trip. It is important to note that most literature does
not cover multiple trips for both echelons. Incorporating multiple trips for both echelons into the routing
problems can make the problem excessively large and complex. Therefore, the problem is further
decomposed by treating the multiple trips in a separate scheduling problem.

Given the high number of trips required to meet customer demands, large vehicle sets are nec-
essary for effective scheduling. By splitting the scheduling problem into separate sub-problems for
each echelon, the decision variables per problem and the size of the vehicle sets are significantly re-
duced. This reduction in complexity allows for more efficient scheduling and better resource allocation.
Furthermore, with the reduced vehicle sets, it becomes feasible to enhance the schedule by solving
decision variables for both echelons within an integrated problem.

All in all, the strategy used in this research is to decompose the problem in an FLP, two separate
VRPs for water and street level while incorporating integration and synchronisation, and a scheduling
problem. For the two VRPs, using only exact methods reduces the problem variations and instances
that can be tackled. Using only heuristic methods can result in sub-optimal results. Therefore, to
achieve high-quality results, both heuristic and exact methods are developed and combined. The
scheduling problem is added to enable multiple trips and reduce the required number of vehicles.

Figure 3.1 shows the problem decomposition. The problem is decomposed into four problems,
indicated in the figure by yellow boxes: the facility location problem, the second-echelon trip genera-
tion, the first-echelon trip generation and the scheduling problem. The trip generations and scheduling
problem each consist of multiple sub-problems. Below, an overview of the (sub-)problems is given and
each of the problems is further explained in the indicated section in Chapter 4:

• Facility location problem (Section 4.1):
MILP model to determine the satellite locations to open and assign customers to those satellites

• Second-echelon trip generation (Section 4.2):

– VRP road initial:
Heuristic method to establish initial routes for the road vehicles

– VRP road improvement:
MILP model to improve the initial road vehicle routes

• First-echelon trip generation (Section 4.3):

– VRP water initial:
Heuristic method to establish initial routes for the vessels

– VRP water improvement + synchronisation:
MILP model to improve the initial vessel routes and implement synchronisation between the
two echelons

• Scheduling problem (Section 4.4):

– Scheduling road vehicles initial:
Heuristic method to create an initial schedule for the road vehicle trips

– Scheduling road vehicles:
MILP model to schedule the road vehicle trips and determine the required number of road
vehicles while respecting synchronisation constraints to vessels

– Scheduling vessels:
MILP model to schedule the vessel trips and determine the required number of vessels while
respecting synchronisation constraints to road vehicles

– Scheduling integrated system:
MILP model to improve the schedules for both echelons while respecting synchronisation
constraints
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Concluding, a decomposition approach for the two-echelon multi-trip location routing problem with
synchronisation is developed. The decomposition exists out of four main problems with additional sub-
problems. This decomposition enables evaluating large-scale problem instances for different system
scenarios while incorporating synchronisation.
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Figure 3.1: Decomposed model approach



4
Mathematical Models

This chapter provides a more elaborate explanation of the sub-problems, including the mathematical
formulations. The outputs of each sub-problem are used as inputs for the following sub-problems,
as shown previously in Figure 3.1. First, the facility location problem and its variants are described,
followed by the second-echelon vehicle routing problem, with its sub-problems. Next, the first-echelon
vehicle routing problem and its initial solution are given. Lastly, the separate sub-problems of the
scheduling problem are explained.

Section 3.2 introduces parameters and some of the sets used for themodels. For clarity, an overview
of these parameters and sets is provided below.

Sets
𝐹 set of vessels

𝑊 set of vessel trips

𝑅 set of road vehicles

𝑉 set of road vehicle trips

𝐷𝐶𝑤 set of vessel depots assigned to vessel trip 𝑤 in set𝑊
𝐷𝐶𝑣 set of road vehicle depots assigned to road vehicle trip 𝑣 in set 𝑉
𝑆 set of potential satellite locations

𝐶 set of customers
Parameters
𝑡DC transshipment time at vessel depot [min]

𝑞W capacity of vessels [m3]

𝑣W speed of vessels [m/s]
𝑁S number of satellites to open [−]
𝑞S storage capacity of satellites [m3]

𝑡S transshipment time at satellites [min]

𝑞𝑐 demand of customer 𝑐 in set 𝐶 [m3]

𝑞V capacity of road vehicles [m3]

𝑣V speed of road vehicles [m/s]
𝑡C transshipment time at customers [min]

𝑡max maximum time span [min]

Δ𝑖𝑗 distance between node 𝑖 and 𝑗 in sets 𝐷𝐶𝑤 , 𝐷𝐶𝑣 , 𝑆 and 𝐶 [m]
For modelling purposes, additional sets and parameters are introduced for some of the models.

While these sets and parameters can be used in subsequent models, they are not reintroduced to
avoid redundancy and keep the text concise.
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4.1. Facility Location Problem
The first sub-problem determines the satellite locations. The basic version determines themost suitable
satellite locations based on the objective of minimising the total distance on the roads from satellites
to customers. Other variants of the FLP are investigated, adding constraints to limit the number of
customers assigned to a satellite, since assigning too many customers to one satellite is not desirable.
Because of the transshipment time at satellites, it might not be possible to serve all these locations
within a reasonable time.

Two options are considered to limit the number of customers assigned to a satellite. The obvious
method is to allow a maximum number of customers to be assigned to a satellite. The second option
is to limit the throughput allowed at a satellite. The throughput is the units of load transferred through
one satellite. Below, the mathematical model of the basic FLP is given first, and then the additions to
the mathematical model for the variants are described.

4.1.1. Basic FLP
Variables

𝑈𝑖𝑗 if customer 𝑗 ∈ 𝐶 is assigned to satellite 𝑖 ∈ 𝑆: 𝑈𝑖𝑗 = 1, else: 𝑈𝑖𝑗 = 0

𝑂𝑖 if satellite 𝑖 ∈ 𝑆 is open 𝑂𝑖 = 1, else 𝑂𝑖 = 0

Objective Function
The objective is to minimise the sum of the distances between customers and satellites:

min∑
𝑖∈𝑆
∑
𝑗∈𝐶
𝑈𝑖𝑗Δ𝑖𝑗

Functional constraints

1. Each customer must be assigned to one satellite:

∑
𝑖∈𝑆
𝑈𝑖𝑗 = 1 ∀𝑗 ∈ 𝐶 (4.1.1)

2. Facility opening constraint, a satellite can only be used if it is open:

𝑈𝑖𝑗 ≤ 𝑂𝑖 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐶 (4.1.2)

3. The number of satellites that are opened is less than or equal to themaximum number of satellites:

∑
𝑖∈𝑆
𝑂𝑖 ≤ 𝑁S (4.1.3)

Additional constraints The binary variables can have either a value of 0 or of 1:

𝑌𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐶

𝑂𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑆



4.2. Second-echelon trip generation 32

4.1.2. Variants of the FLP
The first method is to set a maximum number of customers that can be assigned to a satellite, a
constraint is added to the model, the number of the customers assigned to the satellite is maximum B:

∑
𝑗∈𝐶
𝑈𝑖𝑗 ≤ 𝐵 ∀𝑖 ∈ 𝑆 (4.1.4)

The second method to limit the number of customers to be assigned to a satellite is to implement a
maximum satellite throughput. The following constraint is added to the model. The maximum through-
put constraint for satellites, the demand of the customers assigned to the satellite is maximum the
throughput capacity A:

∑
𝑗∈𝐶
𝑞𝑗𝑈𝑖𝑗 ≤ 𝐴 ∀𝑖 ∈ 𝑆 (4.1.5)

The values of A and B can be constants, or dependent on the number of open satellites. These val-
ues determine the tightness of the constraints. When set to zero, the customers are evenly distributed
over the satellites, when set to a high value, some satellites might be unused. For these constraints to
have a positive impact on the system, tests have to be conducted to determine the right value.

4.2. Second-echelon trip generation
The second problem is the second-echelon trip generation. This problem is split up into two sub-
problems, first, an initial solution for the routes is created, second, a MIP model is used to improve the
vehicle routes. By post-processing, the vehicle routes are split into separate trips and the duration of
the trips is calculated.

4.2.1. VRP road initial
The first sub-problem is creating an initial solution for the road vehicle routing problem, which are the
vehicles of the second echelon (VRP-E2). The initial solution is created as an input for the second
sub-problem, which uses an MIP solver as an exact method for the VRP road. An initial solution is
provided to help the solver improve the solutions faster.

The initial routes of the road vehicles are created using simple heuristics, inspired by Greedy and
Nearest Neighbour heuristics. For each satellite one vehicle is created that has to supply all customers
assigned to that satellite. Customers are greedily added to a vehicle trip until the vehicle capacity is
reached, upon which the vehicle returns to the satellite and starts a new trip. This process is repeated
for each satellite with its assigned customers. The heuristics create an initial route from each satellite
as one long trip. Of course, this is not feasible in real life, since it would take a long time to perform this
trip. The long trip is split up in the third sub-problem. The output of the first sub-problem is an initial
route per vehicle, as well as the quantity delivered to each customer in this route.

4.2.2. VRP road improvement
The second sub-problem is the road vehicle routing problem improvement. The VRP is modelled using
Gurobi, an exact solver. The output of the first sub-problem is used as an initial solution for this model,
to reduce the computation time. The VRP improves the routes of the vehicles and has as output the
improved routes, still as one long trip per satellite. The output includes the total kilometres on the road,
as well as the quantity delivered to each customer, which is important for the routing of the first-echelon
vehicles.

From the FLP, sets are created with the customers per satellite, 𝐶𝑠. Each satellite has one road
vehicle r assigned to it which serves the customers assigned to the satellite. For modelling purposes,
sets are created per road vehicle with its assigned customers and/or satellite, and per satellite with its
assigned vehicle or customers.
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Algorithm 1 Initial VRP road heuristics
1: for 𝑟 in road vehicles do
2: while customers left to visit by vehicle 𝑟 do
3: for 𝑐 in customers to visit do
4: determine closest customer 𝑐
5: load of 𝑟 += demand[𝑐]
6: if capacity of 𝑟 ≥ load of 𝑟 then
7: visit customer 𝑐
8: remove customer 𝑐 from customers to visit
9: else if capacity of 𝑟 < load of 𝑟 then
10: return to satellite from previous customer
11: set load of 𝑟 = 0

return routes of road vehicle per satellite

Some variables and parameters have a superscript, the superscript indicates which set it applies
to, since some notations are re-used in separate sub-problems.

The initial solution does not contain split deliveries, in this sub-problem split deliveries are allowed,
which can improve the solutions further.

Sets

�̄� set of opened satellites obtained from the FLP

𝑆𝑟 satellite to which road vehicle 𝑟 is assigned

𝐶𝑟 set of customers assigned to road vehicle 𝑟 ∈ 𝑅

𝑆𝐶𝑟 combination of customers and satellites for vehicle 𝑟 ∈ 𝑅, 𝑆𝐶𝑟 = 𝑆𝑟 ∪ 𝐶𝑟
𝑅𝑠 road vehicle assigned to satellite 𝑠 ∈ �̄�

𝐶𝑠 set of customers assigned to satellite 𝑠 ∈ �̄�

𝑆𝐶𝑠 set of customers assigned to satellite 𝑠 ∈ �̄� including the satellite itself

Variables

𝑋R𝑖𝑗𝑟 if road vehicle 𝑟 ∈ 𝑅 travels from node 𝑖 ∈ 𝑆𝐶𝑟 to 𝑗 ∈ 𝑆𝐶𝑟: 𝑋R𝑖𝑗𝑟 = 1, else: 𝑋R𝑖𝑗𝑟 = 0

𝑄R𝑖𝑟 quantity delivered to customer 𝑖 ∈ 𝐶𝑟 by road vehicle 𝑟 ∈ 𝑅

𝑍R𝑖𝑟 if node 𝑖 ∈ 𝑆𝐶𝑟 is visited by road vehicle 𝑟 ∈ 𝑅: 𝑍R𝑖𝑟 = 1, else: 𝑍R𝑖𝑟 = 0

𝐿R𝑖𝑟 accumulated load of vehicle 𝑟 ∈ 𝑅 at node 𝑖 ∈ 𝐶𝑟

Objective Function
The objective is to minimise the sum of the distances travelled by vehicles 𝑟:

min∑
𝑟∈𝑅

∑
𝑖∈𝑆𝐶𝑟

∑
𝑗∈𝑆𝐶𝑟

Δ𝑖𝑗𝑋R𝑖𝑗𝑟

Functional constraints

1. Vehicles never travel from node 𝑖 to node 𝑖:

𝑋R𝑖𝑖𝑟 = 0 ∀𝑟 ∈ 𝑅, 𝑖 ∈ 𝑆𝐶𝑟 (4.2.1)
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2. Each customer must be visited by at least one road vehicle:

∑
𝑗∈𝑆𝐶𝑠

∑
𝑟∈𝑅𝑠

𝑋R𝑖𝑗𝑟 ≥ 1 ∀𝑖 ∈ 𝐶𝑠 (4.2.2)

3. Each satellite must be visited at least the number of times needed for the demand of the assigned
customers based on vehicle capacity:

∑
𝑗∈𝑆𝐶𝑠

∑
𝑟∈𝑅𝑠

𝑋R𝑖𝑗𝑟 ≥
∑𝑖∈𝐶𝑠 𝑞𝑖
𝑞R ∀𝑖 ∈ �̄� (4.2.3)

4. Arriving and departing road vehicles for a satellite or customer must be the same:

∑
𝑗∈𝑆𝐶𝑟

𝑋R𝑖𝑗𝑟 = ∑
𝑗∈𝑆𝐶𝑟

𝑋R𝑗𝑖𝑟 ∀𝑖 ∈ 𝑆𝐶𝑟 , 𝑟 ∈ 𝑅 (4.2.4)

5. 𝑍R𝑖𝑟 = 1 if node 𝑖 is visited by road vehicle 𝑟:

𝑋R𝑖𝑗𝑟 = 1 ⇒ 𝑍R𝑖𝑟 = 1 ∀𝑖, 𝑗 ∈ 𝑆𝐶𝑟 , 𝑟 ∈ 𝑅 (4.2.5)

Capacity and demand road vehicles

6. The demand delivered to 𝑖 by vehicle 𝑟 is zero if vehicle 𝑟 does not visit 𝑖:

𝑍R𝑖𝑟 = 0 ⇒ 𝑄R𝑖𝑟 = 0 ∀𝑖 ∈ 𝑆𝐶𝑟 , 𝑟 ∈ 𝑅 (4.2.6)

7. Demand satisfaction constraint, the sum of the load delivered by all road vehicles to a customer
equals the demand of that customer:

∑
𝑟∈𝑅𝑠

𝑄R𝑖𝑟 = 𝑞𝑖 ∀𝑖 ∈ 𝐶𝑠 (4.2.7)

8. No load is delivered to satellites:

𝑄R𝑖𝑟 = 0 ∀𝑖 ∈ 𝑆𝑟 , 𝑟 ∈ 𝑅 (4.2.8)

9. The accumulated load is zero at satellites:

𝐿R𝑖𝑟 = 0 ∀𝑖 ∈ 𝑆𝑟 , 𝑟 ∈ 𝑅 (4.2.9)

Maximum capacity constraints for road vehicles:

10. The accumulated load delivered by vehicle 𝑟 for visits from customer 𝑖 to 𝑗:

𝑋R𝑖𝑗𝑟 = 1 ⇒ 𝐿R𝑗𝑟 − 𝐿R𝑖𝑟 − 𝑄R𝑗𝑟 = 0 ∀𝑖 ∈ 𝑆𝐶𝑟 , 𝑗 ∈ 𝐶𝑟 , 𝑟 ∈ 𝑅 (4.2.10a)

The accumulated load of vehicle 𝑟 is zero at node 𝑖 if that node is not visited by 𝑟:

𝑍R𝑖𝑟 = 0 ⇒ 𝐿R𝑖𝑟 = 0 ∀𝑖 ∈ 𝑆𝐶𝑟 , 𝑟 ∈ 𝑅 (4.2.10b)

The load delivered to customer 𝑖 by vehicle 𝑟 is always less than or equal to the accumulated
load of 𝑟 at customer 𝑖:

𝑄R𝑖𝑟 ≤ 𝐿R𝑖𝑟 ∀𝑖 ∈ 𝐶𝑟 , 𝑟 ∈ 𝑅 (4.2.10c)

The accumulated load of vehicle 𝑟 at customer 𝑖 is always less than or equal to the maximum
capacity of vehicle 𝑟:

𝐿R𝑖𝑟 ≤ 𝑞V ∀𝑖 ∈ 𝐶𝑟 , 𝑟 ∈ 𝑅 (4.2.10d)
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Additional constraints

11. Binary variables can have either a value of 0 or 1:

𝑋R𝑖𝑗𝑟 ∈ {0, 1} ∀𝑖 ∈ 𝑆𝐶𝑟 , 𝑗 ∈ 𝑆𝐶𝑟 , 𝑟 ∈ 𝑅 (4.2.11a)

𝑍R𝑖𝑟 ∈ {0, 1} ∀𝑖 ∈ 𝑆𝐶, 𝑟 ∈ 𝑅𝑠 (4.2.11b)

Post-processing
The routes of the road vehicles are previously determined as one long trip per satellite. The road vehicle
returns to the satellite when its capacity is reached and repeats this until all customers assigned to the
satellite are served. By post-processing the results, the route of a road vehicle is split into a separate
trip each time the road vehicle visits the satellite. The split trips are further used for synchronisation
with the water vehicles and later scheduled to road vehicles based on the number of road vehicles or
time period available. The outputs of this sub-problem are road vehicle trips, with their duration and
demand at a satellite.

To be able to schedule the trips to road vehicles in a later step, the duration of each trip including the
time it would take to arrive at the start of the next trip is calculated. If a road vehicle performs multiple
trips from different satellites, it has to travel from the last customer of one trip to the satellite for the
next trip. The duration of each trip is the total distance of the trip divided by the vehicle speed plus the
number of customers visited in the trip times the transshipment time at a customer. The total distance
of a trip is the distance travelled on the road to visit the customers in the trip, until the last customer,
plus the distance to the satellite of the next potential trip. This gives 𝑝𝑘𝑙, which is the time it takes to
perform trip 𝑘 and get to the start of trip 𝑙.

4.3. First-echelon trip generation
The next problem is the trip generation for the vessels. The trips of the road vehicles are used as input
by assigning the demand of road vehicles to satellites, which the vessel trips have to satisfy. The vehi-
cle routing problem for vessels is split into two sub-problems. First, a heuristic solution is determined,
which is used as an initial solution for the VRP in Gurobi.

4.3.1. VRP water initial
The first sub-problem is the initial solution for the water vehicle routing problem. With a heuristic algo-
rithm based on Greedy and Nearest Neighbour heuristics with capacity constraints, an initial solution
for the routes of the vessels is found based on the demand at satellites per road vehicle trip. The output
of this sub-problem gives routes for the vessel trips and their load.

Algorithm 2 Initial VRP water heuristics
1: for 𝑤 in vessels do
2: while satellites left to visit do
3: for 𝑠 in satellites to visit in neighourhood do
4: determine closest satellite 𝑠
5: for 𝑣 in vehicle trips left to supply from satellite 𝑠 do
6: load of 𝑤 += demand[𝑣, 𝑠]
7: if capacity of 𝑤 ≥ load of 𝑤 then
8: 𝑤 visits satellite 𝑐
9: 𝑤 delivers demand[𝑣, 𝑠]
10: remove vehicle 𝑣 from vehicle trips left to supply
11: set arrival of 𝑤 before vehicle trip 𝑣
12: else if capacity of 𝑤 < load of 𝑤 then
13: return to depot from last visited satellite
14: if no demand left at satellite 𝑠 then
15: remove 𝑠 from satellites to visit

return Initial routes of vessels, quantity delivered by vessels
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4.3.2. VRP water improvement + synchronisation
The second sub-problem is the water vehicle routing problem improvement plus synchronisation of the
two echelons, solved with Gurobi. In this problem, the outputs of the previous sub-problems are inte-
grated to find an improved solution with synchronisation at the satellites by introducing time constraints.
Furthermore, it is implemented that only one street-level vehicle can be loaded at a satellite at the same
time.

The outputs of the heuristics in the first sub-problem of the water VRP are used as an initial solution
for the MIP solver for the water VRP improvement. The road vehicle trips and their demands deter-
mined by Section 4.2 are used as input parameters for the model.

The outputs are the final routes of the water level trips, the kilometres on the water, and the required
number of vessel trips. Next, the synchronised arrivals and departures of the water and road vehicle
trips are determined. At this moment, the trips still resemble individual vehicles. In the next problem,
the trips will be scheduled to vehicles.

The superscript W indicates the parameter or variable is for vessel trips, V for road vehicle trips and
WV for both water and road vehicle trips.
Added sets

𝑊𝑉 set of water and road vehicle trips

𝑊𝑉0 set of water and road vehicle trips, plus trip ’zero’

𝐷𝑆 combined set of vessel depots and satellites

𝑆𝑑 set of satellites assigned to vessel depot 𝑑 ∈ 𝐷𝐶

𝑉𝑠 set of road vehicle trips for satellite 𝑠 ∈ �̄�

Added parameters

𝐿𝑠𝑣 demand at satellite 𝑠 ∈ �̄� by vehicle trip 𝑣 ∈ 𝑉

𝑍V𝑖𝑣 nodes visited by vehicle 𝑣

𝑡max𝐷 maximum departure time

𝜁 importance value for distance in objective

𝛾 importance value for number of vessel (trips) in objective

Variables

𝑋W𝑖𝑗𝑤 if vessel trip 𝑤 travels from node 𝑖 to node 𝑗: 𝑋W𝑖𝑗𝑤 = 1, else: 𝑋W𝑖𝑗𝑤 = 0

𝑍WV𝑖𝑘 if node 𝑖 is visited by vehicle k: 𝑍WV𝑖𝑘 = 1, else: 𝑍WV𝑖𝑘 = 0

𝑌𝑖𝑘𝑙 binary variable, 𝑌𝑖𝑘𝑙 = 1 if both vehicle 𝑘 and vehicle 𝑙 visit node 𝑖, else: 𝑌𝑖𝑘𝑙 = 0

𝐴𝑖𝑘 arrival time of vehicle k at node 𝑖

𝑑𝐴𝑖𝑘𝑙 absolute difference between arrival times of vehicle 𝑘 and 𝑙 at node 𝑖

𝑄W𝑖𝑤 quantity delivered to satellite 𝑖 by vessel 𝑤

𝐿W𝑖𝑤 accumulated load of vessel 𝑤 at node 𝑖

𝐿𝑆𝑖𝑘 accumulated load delivered to satellite 𝑖 by vessels after arrival of vehicle 𝑘

𝐵𝑖𝑘𝑙 binary variable, 𝐵𝑖𝑘𝑙 = 1 if trip 𝑘 arrives at satellite 𝑖 after trip 𝑙

𝑆𝑖𝑘 stock at satellite 𝑖 after arrival of vehicle 𝑘
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𝑁W𝑤 binary variable, 𝑁W𝑤 = 1 if trip 𝑤 is required

𝐺𝑖𝑘𝑙 binary variable, 𝐺𝑖𝑘𝑙 = 1 if trip 𝑘 leaves satellite 𝑖 after trip 𝑙

𝐷𝑖𝑘 departure time of trip 𝑘 from satellite 𝑖

𝐼𝑖𝑤 idle/waiting time for trip 𝑤 at satellite 𝑖

Objective Function
The objective is to minimise the sum of the distances travelled in trips W times factor 𝜁 plus the number
of trips that are performed:

min 𝜁 ∑
𝑤∈𝑊

∑
𝑖∈𝐷𝑆

∑
𝑗∈𝐷𝑆

Δ𝑖𝑗𝑋W𝑖𝑗𝑤 + 𝛾 ∑
𝑤∈𝑊

𝑁W𝑤

Functional constraints

1. Vessel trips never travel from node 𝑖 to node 𝑖:

𝑋W𝑖𝑖𝑤 = 0 ∀𝑤 ∈ 𝑊, 𝑖 ∈ 𝐷𝑆 (4.3.1)

2. Arriving and departing vessel trips for a satellite or depot must be the same:

∑
𝑗∈𝐷𝑆

𝑋W𝑖𝑗𝑤 = ∑
𝑗∈𝐷𝑆

𝑋W𝑗𝑖𝑤 ∀𝑖 ∈ 𝐷𝑆,𝑤 ∈ 𝑊 (4.3.2)

3. Vessel trips can only visit satellites that are assigned to the same depot:

∑
𝑖∈𝑆

∑
𝑗∉𝑆𝑑

𝑋W𝑖𝑗𝑤 = 0 ∀𝑤 ∈ 𝑊, 𝑑 = 𝐷𝐶𝑤 (4.3.3)

4. Nodes that are visited in vessel trip w:

𝑍WV𝑖𝑤 = ∑
𝑗∈𝐷𝑆

𝑋W𝑖𝑗𝑤 ∀𝑖 ∈ 𝐷𝑆,𝑤 ∈ 𝑊 (4.3.4)

5. Nodes that are visited by road vehicle v:

𝑍WV𝑖𝑣 = 𝑍𝑉𝑖𝑣 ∀𝑖 ∈ 𝐷𝑆, 𝑣 ∈ 𝑉 (4.3.5)

Capacity and demand vessels

6. The demand delivered to 𝑖 by vehicle 𝑤 is zero if vehicle 𝑤 does not visit 𝑖:

𝑍WV𝑖𝑤 = 0 ⇒ 𝑄W𝑖𝑤 = 0 ∀𝑖 ∈ 𝐷𝑆,𝑤 ∈ 𝑊 (4.3.6)

7. Demand satisfaction constraint, the sum of the load delivered by all vessels to a satellite equals
the demand of at that satellite by road vehicles:

∑
𝑤∈𝑊

𝑄W𝑖𝑤 = ∑
𝑣∈𝑉𝑠

𝐿𝑖𝑣 ∀𝑖 ∈ �̄� (4.3.7)

8. No load is delivered to the depot:

𝑄W𝑖𝑤 = 0 ∀𝑖 ∈ 𝐷,𝑤 ∈ 𝑊 (4.3.8)

9. The accumulated load is zero at the depot:

𝐿W𝑖𝑤 = 0 ∀𝑖 ∈ 𝐷,𝑤 ∈ 𝑊 (4.3.9)
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Maximum capacity constraints for vessels:

10. The accumulated load delivered by vehicle 𝑤 for visits from satellite 𝑖 to 𝑗:

𝑋W𝑖𝑗𝑤 = 1 ⇒ 𝐿W𝑗𝑤 − 𝐿W𝑖𝑤 − 𝑄W𝑗𝑤 = 0 ∀𝑖 ∈ 𝐷𝑆, 𝑗 ∈ �̄�, 𝑤 ∈ 𝑊 (4.3.10a)

The accumulated load of vehicle 𝑤 is zero at node 𝑖 if that node is not visited by 𝑤:

𝑍WV𝑖𝑤 = 0 ⇒ 𝐿W𝑖𝑤 = 0 ∀𝑖 ∈ 𝐷𝑆,𝑤 ∈ 𝑊 (4.3.10b)

The load delivered to satellite 𝑖 by vehicle 𝑤 is always less than or equal to the accumulated load
of 𝑤 at satellite 𝑖:

𝑄W𝑖𝑤 ≤ 𝐿W𝑖𝑤 ∀𝑖 ∈ �̄�, 𝑤 ∈ 𝑊 (4.3.10c)

The accumulated load of vehicle 𝑤 at satellite 𝑖 is always less than or equal to the maximum
capacity of vehicle 𝑤:

𝐿W𝑖𝑤 ≤ 𝑞W ∀𝑖 ∈ �̄�, 𝑤 ∈ 𝑊 (4.3.10d)

Time constraints

11. Sequential visits of vessels to satellites:

𝑋W𝑖𝑗𝑤 = 1 ⇒ 𝐴𝑗𝑤 ≥ 𝐴𝑖𝑤 +
Δ𝑖𝑗
𝑣W + 𝐼𝑖𝑤 ∀𝑖 ∈ 𝐷𝑆, 𝑗 ∈ �̄�, 𝑤 ∈ 𝑊 (4.3.11)

12. The arrival time at the first satellite in trip 𝑤 is the start time of trip 𝑤 plus the travel time plus the
loading time at the depot of that trip 𝑑:

𝑋W𝑑𝑗𝑤 = 1 ⇒ 𝐴𝑗𝑤 ≥ 𝐴𝑑𝑤 +
Δ𝑑𝑗
𝑣W + 𝑡𝐷𝐶 ∀𝑗 ∈ �̄�, 𝑤 ∈ 𝑊, 𝑑 = 𝐷𝐶𝑤 (4.3.12)

13. Binary variable 𝑌𝑖𝑘𝑙 = 1 if both vehicle 𝑘 and 𝑙 visit node 𝑖:

𝑌𝑖𝑘𝑙 = 𝑍WV𝑖𝑘 ⋅ 𝑍WV𝑖𝑙 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ �̄�, 𝑘 ≠ 𝑙 (4.3.13)

14. Absolute difference between arrival times of vehicle 𝑘 and 𝑙 at node 𝑖:

𝑑𝐴𝑖𝑘𝑙 = |𝐴𝑖𝑘 − 𝐴𝑖𝑙| ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.14)

15. Road vehicles cannot be loaded at one satellite at the same time. The arrival time of road vehi-
cles have to be at least the transshipment time apart:

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝑑𝐴𝑖𝑘𝑙 ≥ 𝑡S ∀𝑘, 𝑙 ∈ 𝑉, 𝑖 ∈ �̄� (4.3.15a)

Vessels cannot be unloaded at one satellite at the same time. The arrival time of vessels have to
be at least the waiting time apart:

𝐵𝑖𝑘𝑙 = 1 ⇒ 𝑑𝐴𝑖𝑘𝑙 ≥ 𝐼𝑖𝑙 ∀𝑘, 𝑙 ∈ 𝑊, 𝑖 ∈ �̄� (4.3.15b)

16. The departure time of a road vehicle trip at a satellite is the arrival time of that trip plus the
transshipment time:

𝑍WV𝑖𝑣 = 1 ⇒ 𝐷𝑖𝑣 = 𝐴𝑖𝑣 + 𝑡S ∀𝑣 ∈ 𝑉, 𝑖 ∈ �̄� (4.3.16)

17. The departure time of a vessel trip at a satellite is the arrival time of that trip plus the waiting time:

𝑍WV𝑖𝑤 = 1 ⇒ 𝐷𝑖𝑤 = 𝐴𝑖𝑤 + 𝐼𝑖𝑤 ∀𝑤 ∈ 𝑊, 𝑖 ∈ �̄� (4.3.17)
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18. The arrival time of vehicles at satellites is equal to or larger than zero:

𝐴𝑖𝑘 ≥ 0 ∀𝑖 ∈ 𝑆, 𝑘 ∈ 𝑊𝑉 (4.3.18)

19. The departure time of vehicles from satellites cannot be later than the maximum time span:

𝐷𝑖𝑘 ≤ 𝑡max ∀𝑖 ∈ 𝑆, 𝑘 ∈ 𝑊𝑉 (4.3.19)

Satellite synchronisation

20. Binary variable, 𝐵𝑖𝑘𝑙 = 1 if vehicle 𝑘 arrives at satellite 𝑖 after vehicle 𝑙:

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝐴𝑖𝑘 − 𝐾 ∗ 𝐵𝑖𝑘𝑙 − 𝐴𝑖𝑙 ≤ 0 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.20a)

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝐵𝑖𝑘𝑙 + 𝐵𝑖𝑙𝑘 = 1 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.20b)

𝐵𝑖𝑘𝑙 + 𝐵𝑖𝑙𝑘 ≤ 1 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.20c)

𝑍WV𝑖𝑘 = 0 ⇒ 𝐵𝑖𝑘𝑙 = 𝐵𝑖𝑙𝑘 = 0 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.20d)

21. Accumulated load delivered to satellite 𝑖 by vessels after arrival of vehicle 𝑘:

𝐵𝑖𝑘𝑙 = 1 ⇒ 𝐿𝑆𝑖𝑘 − 𝐿𝑆𝑖𝑙 − 𝑄W𝑖𝑘 ≥ 0 ∀𝑘, 𝑙 ∈ 𝑊𝑉0, 𝑖 ∈ �̄� (4.3.21a)

𝐿𝑆𝑖𝑘 ≤ ∑
𝑤∈𝑊

𝑄W𝑖𝑤 ∀𝑘 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.21b)

𝑍WV𝑖𝑘 = 0 ⇒ 𝐿𝑆𝑖𝑘 = 0 ∀𝑘 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.21c)

22. Stock at satellite 𝑖 after arrival of vehicle 𝑘, the stock is always equal to or greater than zero and
always equal to or less than the capacity of vehicle 𝑘 plus the storage capacity at satellite 𝑖:

𝑍WV𝑖𝑘 = 1 ⇒ 𝑆𝑖𝑘 = −∑
𝑙∈𝑉
(𝐿𝑉𝑖𝑙 ∗ 𝐵𝑖𝑘𝑙) − 𝐿𝑉𝑖𝑘 + 𝐿𝑆𝑖𝑘 ∀𝑘 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.22a)

𝑆𝑖𝑘 ≥ 0 ∀𝑘 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.22b)

𝑆𝑖𝑘 ≤ 𝑞W + 𝑞S𝑖 ∀𝑘 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.22c)

23. Binary variable, 𝐺𝑖𝑘𝑙 = 1 if vehicle trip 𝑘 leaves satellite 𝑖 after vehicle trip 𝑙:

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝐷𝑖𝑘 − 𝐾 ∗ 𝐺𝑖𝑘𝑙 − 𝐷𝑖𝑙 ≤ 0 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.23a)

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝐺𝑖𝑘𝑙 + 𝐺𝑖𝑙𝑘 = 1 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.23b)

𝐵𝑖𝑘𝑙 = 1 ⇒ 𝐺𝑖𝑘𝑙 = 1 ∀𝑘, 𝑙 ∈ 𝑉0, 𝑖 ∈ �̄� (4.3.23c)

𝐵𝑖𝑘𝑙 = 1 ⇒ 𝐺𝑖𝑘𝑙 = 1 ∀𝑘, 𝑙 ∈ 𝑊0, 𝑖 ∈ �̄� (4.3.23d)

𝑍WV𝑖𝑘 = 0 ⇒ ∑
𝑙∈𝑊𝑉

𝐺𝑖𝑘𝑙 + ∑
𝑙∈𝑊𝑉

𝐺𝑖𝑙𝑘 = 0 ∀𝑖 ∈ �̄�, 𝑘 ∈ 𝑊𝑉 (4.3.23e)
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24. When a vessel departs from a satellite, the load at the satellite is greater than or equal to zero
and less than or equal to the storage capacity at satellite 𝑖:

𝑍WV𝑖𝑘 = 1 ⇒ 0 ≤∑
𝑙∈𝑉
𝐿𝑉𝑖𝑙 ∗ 𝐺𝑖𝑘𝑙 + 𝐿𝑉𝑖𝑘 − 𝐿𝑆𝑖𝑘 ≤ 𝑞S𝑖 ∀𝑖 ∈ �̄�, 𝑘 ∈ 𝑊 (4.3.24)

Vehicle zero constraints

25. No demand is delivered by vehicle zero:

𝑄W𝑖0 = 0 ∀𝑖 ∈ �̄� (4.3.25)

26. All vehicles that visit a satellite 𝑖 arrive after vehicle zero:

𝑍WV𝑖𝑘 = 1 ⇒ 𝐵𝑖𝑘0 = 1 ∀𝑘 ∈ 𝑊𝑉, 𝑖 ∈ �̄� (4.3.26)

Constraints for objective

27. Binary constraint 𝑁W𝑤 = 1 if vessel trip 𝑤 visits at least one satellite:

𝑍WV𝑖𝑘 = 1 ⇒ 𝑁W𝑤 = 1 ∀𝑖 ∈ �̄�, 𝑤 ∈ 𝑊 (4.3.27)

Additional constraints

28. Binary variables can have either a value of 0 or 1:

𝑋W𝑖𝑗𝑤 ∈ {0, 1} ∀𝑖 ∈ 𝐷𝑆, 𝑗 ∈ 𝐷𝑆,𝑤 ∈ 𝑊 (4.3.28a)

𝑍WV𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐷𝑆, 𝑘 ∈ 𝑊𝑉0 (4.3.28b)

𝑌𝑖𝑘𝑙 ∈ {0, 1} ∀𝑖 ∈ 𝑆, 𝑘 ∈ 𝑊𝑉, 𝑙 ∈ 𝑊𝑉 (4.3.28c)

𝐵𝑖𝑘𝑙 ∈ {0, 1} ∀𝑖 ∈ 𝑆, 𝑘 ∈ 𝑊𝑉, 𝑙 ∈ 𝑊𝑉 (4.3.28d)

𝑁W𝑤 ∈ {0, 1} ∀𝑤 ∈ 𝑊 (4.3.28e)

𝐺𝑖𝑘𝑙 ∈ {0, 1} ∀𝑖 ∈ 𝑆, 𝑘 ∈ 𝑊𝑉, 𝑙 ∈ 𝑊𝑉 (4.3.28f)

4.4. Scheduling problem
The last problem is the scheduling problem of vehicle trips, which schedules the found trips for the
road vehicles and vessels. This problem is split into three sub-problems: MIP optimisations for first
the road vehicle schedule; second, the vessel schedule; and lastly, the total schedule for all vehicles.
The scheduling problem is split up to reduce the problem instance for MIP optimisation. The outputs
of the separate scheduling problems are used as initial solutions for the next scheduling problem, with
smaller vehicle sets, adjusted to the found solutions.

Scheduling the trips is necessary to determine the number of vehicles required for performing all
deliveries within a specified time span. With unlimited vehicles, each vehicle could perform one trip
and the time span would be minimal. However, vehicles are expensive, so this is not desirable. Also,
if unlimited time is available, all deliveries could be made by just one vehicle per echelon. Again, this
is not desirable. Each day, new orders are made, and with such a system, the orders will pile up.
Therefore, a balance has to be found between the time span and the number of vehicles.

Each scheduling model is an addition to the water vehicle routing problem, the constraints given in
Subsection 4.3.2 are still valid, with extra constraints added for each scheduling problem. To reduce
the solution space, the decision variables for the vessel trip routes and their loads are now fixed to the
solutions found in the water vehicle routing problem, �̄�W𝑖𝑗𝑤 and �̄�W𝑖𝑤.
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4.4.1. Scheduling road vehicles initial
The first sub-problem for scheduling is the initial road vehicle scheduling. A basic initial schedule for
the road vehicle trips is determined, by greedily adding a trip to a road vehicle if the start time of that
trip is later than the completion time of the previous trip. This initial schedule is created to reduce the
size of the problem for the MIP solver, the schedule reduces the required number of road vehicles by
approximately 25%.

Algorithm 3 Initial road vehicle schedule heuristics
1: for 𝑟 in road vehicles do
2: while road vehicle trips left to perform do
3: for 𝑘 in trips left do
4: add trip 𝑘 to vehicle 𝑟
5: for 𝑙 in trips left do
6: if trip 𝑙 starts from the same satellite as trip 𝑘 then
7: if start time of trip 𝑙 is later than the completion time of trip 𝑘 then
8: add trip 𝑙 to vehicle 𝑟
9: break

return Initial schedule of road vehicle trips

4.4.2. Scheduling road vehicles
Next, road vehicle trips are further scheduled to road vehicles using an MIP solver. Below, the math-
ematical formulation of the model for road vehicle scheduling is given. The objective is to minimise
the number of road vehicles and the total distance travelled on the roads. A constraint to ensure a
minimum number of road vehicles is implemented, so the schedule is not too tight and leaves room
for improvement in the vessel scheduling. The last sub-problem improves the total system schedule
without a lower limit on vehicles.

Added parameters

𝑝𝑘𝑙 time it takes to perform trip 𝑘 and get to the start of trip 𝑙

𝑑R𝑘𝑙 total distance travelled in trip 𝑘 plus the distance to the start of trip 𝑙

𝑛min𝑅 minimum number of road vehicles to use

𝜆 importance value for number of road vehicles in objective

Added variables

𝑇V𝑘𝑙𝑟 binary variable, 𝑇V𝑘𝑙𝑟 = 1 if vehicle 𝑟 first performs trip 𝑘 and then trip l

𝐴R𝑣𝑟 start time of trip 𝑣 by vehicle 𝑟

𝑁R𝑟 binary variable, 𝑁R𝑟 = 1 if vehicle 𝑟 is used

𝑍R𝑣𝑟 binary variable, 𝑍R𝑣𝑟 = 1 if vehicle 𝑟 performs trip 𝑣

New objective function

The objective is to minimise the sum of the distances travelled by vehicles 𝑟 times factor 𝜁 plus
the number of road vehicles used times factor 𝜆:

min 𝜁∑
𝑟∈𝑅

∑
𝑘∈𝑉0

∑
𝑙∈𝑉0

𝑇V𝑘𝑙𝑟𝑑R𝑘𝑙 + 𝜆∑
𝑟∈𝑅

𝑁R𝑟
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Added functional constraints

1. Each vehicle can only leave the vehicle depot once:

∑
𝑙∈𝑉0

𝑇V0𝑙𝑟 ≤ 0 ∀𝑟 ∈ 𝑅 (4.4.1)

2. Each trip is performed once:
∑
𝑟∈𝑅

∑
𝑘∈𝑉0

𝑇V𝑘𝑙𝑟 = 1 ∀𝑙 ∈ 𝑉 (4.4.2)

3. Trip 𝑙 can only be performed by vehicle 𝑟 if the start time of trip 𝑙 is later than the end of trip 𝑘:

𝑇V𝑘𝑙𝑟 = 1 ⇒ 𝐴R𝑙𝑟 ≥ 𝐴R𝑘𝑟 + 𝑝𝑘𝑙 ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝑉0, 𝑙 ∈ 𝑉 (4.4.3)

4. A trip can never be performed after itself:

𝑇V𝑙𝑙𝑟 = 0 ∀𝑟 ∈ 𝑅, 𝑙 ∈ 𝑉0 (4.4.4)

5. Vehicle 𝑟 can only end trip 𝑙 if it also started it:

∑
𝑘∈𝑉0

𝑇V𝑘𝑙𝑟 = ∑
𝑘∈𝑉0

𝑇V𝑙𝑘𝑟 ∀𝑟 ∈ 𝑅, 𝑙 ∈ 𝑉0 (4.4.5)

6. Binary variable 𝑁R𝑟 = 1 if road vehicle 𝑟 performs at least one trip:

𝑇𝑉0𝑙𝑟 = 1 ⇒ 𝑁R𝑟 = 1 ∀𝑟 ∈ 𝑅, 𝑙 ∈ 𝑉 (4.4.6)

7. The number of road vehicles used is greater than or equal to the minimum number of road vehi-
cles:

∑
𝑟∈𝑅

𝑁R𝑟 ≥ 𝑛min𝑅 (4.4.7)

8. Binary variable 𝑍R𝑙𝑟 = 1 if vehicle 𝑟 performs trip l:

𝑍R𝑙𝑟 = ∑
𝑘∈𝑉0

𝑇V𝑘𝑙𝑟 ∀𝑟 ∈ 𝑅, 𝑙 ∈ 𝑉 (4.4.8)

9. The start time of trip 𝑣 by vehicle 𝑟 is the start time of trip 𝑣 at its satellite:

𝐴𝑉𝑠[𝑣]𝑣 =∑
𝑟∈𝑅

𝐴R𝑣𝑟 ∀𝑣 ∈ 𝑉 (4.4.9)

Additional constraints

10. Binary variables can have either a value of 0 or 1:

𝑇V𝑘𝑙𝑟 ∈ {0, 1} ∀𝑘 ∈ 𝑉0, 𝑙 ∈ 𝑉, 𝑟 ∈ 𝑅 (4.4.10a)

𝑍R𝑣𝑟 ∈ {0, 1} ∀𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 (4.4.10b)

𝑁R𝑟 ∈ {0, 1} ∀𝑟 ∈ 𝑅 (4.4.10c)
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4.4.3. Scheduling vessels
The third sub-problem schedules the vessel trips with Gurobi. The road vehicle schedule is used as
an input, given as �̄�R𝑖𝑣, but the arrival times can be adjusted. The objective is to minimise the number
of vessels required to perform the trips determined by the VRP for vessels in Section 4.3.

The model is again an extension of the water vehicle routing improvement, with extra variables and
constraints to schedule the vessel trips. Below, the new variables and constraints are given.

First, the inputs determined by previous models and the constraints that integrate the solutions of
the road vehicle schedule into this model are given. The arrival times of road vehicles at satellites are
given as input, but the constraints allow some adjustments to schedule the vessels.
Added parameter

𝑛min𝐹 minimum number of vessels to use

Added variables

𝑇W𝑘𝑙𝑓 binary variable, 𝑇W𝑘𝑙𝑓 = 1 if vessel 𝑓 first performs trip 𝑘 and then trip 𝑙

𝑁F𝑓 binary variable, 𝑁F𝑓 = 1 if vessel 𝑓 is used

𝑍F𝑤𝑓 binary variable, 𝑍F𝑤𝑓 = 1 if vessel 𝑓 performs trip 𝑤

𝐴F𝑤𝑓 start time of trip 𝑤 by vehicle 𝑓
New objective function

The objective is to minimise the number of vessels used:

min∑
𝑓∈𝐹

𝑁F𝑓

Added functional constraint to implement the road vehicle schedule

1. Trip 𝑙 can only be performed by vehicle 𝑟 if the start time of trip 𝑙 is later than the end of trip 𝑘:

𝑇V𝑘𝑙𝑟 = 1 ⇒ 𝐴R𝑙𝑟 ≥ 𝐴R𝑘𝑟 + 𝑝𝑘𝑙 ∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝑉0, 𝑙 ∈ 𝑉 (4.4.11)

Added functional constraints to schedule vessels

1. Each vessel trip is performed once:

∑
𝑓∈𝐹

∑
𝑘∈𝑊0

𝑇W𝑘𝑙𝑓 = 1 ∀𝑙 ∈ 𝑊 (4.4.12)

2. Trip 𝑙 can only be performed by vessel 𝑓 if the start time of trip 𝑙 is later than the end of trip 𝑘,
the end of trip 𝑘 is the latest departure time from a satellite in trip 𝑘 plus the time it takes to travel
back to the depot:

𝑇W𝑘𝑙𝑓 = 1 ⇒ 𝐴F𝑙𝑓 ≥max𝑖∈𝑆
(𝐷𝑖𝑘) +

∑𝑖∈𝑆(Δ𝑖𝑑 ∗ �̄�W𝑖𝑑𝑘)
𝑣W ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝑊, 𝑙 ∈ 𝑊, 𝑑 = 𝐷𝑘 (4.4.13)

3. A trip can never be performed after itself:

𝑇W𝑙𝑙𝑓 = 0 ∀𝑓 ∈ 𝐹, 𝑙 ∈ 𝑊0 (4.4.14)

4. Vehicle 𝑓 can only end trip 𝑙 if it also started it:

∑
𝑘∈𝑊0

𝑇W𝑘𝑙𝑓 = ∑
𝑘∈𝑊0

𝑇W𝑙𝑘𝑓 ∀𝑓 ∈ 𝐹, 𝑙 ∈ 𝑊0 (4.4.15)
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5. Vehicle 𝑓 can only perform trips that start from the same depot:

𝑇W𝑘𝑙𝑓 = 0 ∀𝑘, 𝑙 ∈ 𝑊, 𝑓 ∈ 𝐹, 𝐷𝑙 ≠ 𝐷𝑘 (4.4.16)

6. Binary variable 𝑁F𝑓 = 1 if road vehicle 𝑟 performs at least one trip:

𝑇𝑊0𝑙𝑓 = 1 ⇒ 𝑁F𝑓 = 1 ∀𝑓 ∈ 𝐹, 𝑙 ∈ 𝑊 (4.4.17)

7. The number of vessels used is greater than or equal to the minimum number of vessels:

∑
𝑓∈𝐹

𝑁F𝑓 ≥ 𝑛min𝐹 (4.4.18)

8. Binary variable 𝑍F𝑙𝑓 = 1 if vehicle 𝑓 performs trip 𝑙:

𝑍F𝑙𝑓 = ∑
𝑘∈𝑊0

𝑇W𝑘𝑙𝑓 ∀𝑓 ∈ 𝐹, 𝑙 ∈ 𝑊 (4.4.19)

9. Vehicle 𝑓 can only perform trips if it has started from trip 0:

𝑍F𝑘𝑓 = 1 ⇒ ∑
𝑙∈𝑊

𝑇W0𝑙𝑓 = 1 ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝑊 (4.4.20)

10. The start time of trip 𝑤 by vehicle 𝑓 is the start time of trip 𝑤 at the depot:

𝐴𝑑𝑤 = ∑
𝑓∈𝐹

∑
𝑘∈𝑊0

𝑇W𝑘𝑤𝑓𝐴F𝑤𝑓 ∀𝑤 ∈ 𝑊, 𝑑 = 𝐷𝐶𝑤 (4.4.21)

Additional constraints

11. Binary variables can have either a value of 0 or 1:

𝑇W𝑘𝑙𝑓 ∈ {0, 1} ∀𝑘 ∈ 𝑊0, 𝑙 ∈ 𝑊, 𝑓 ∈ 𝐹 (4.4.22a)

𝑍F𝑤𝑓 ∈ {0, 1} ∀𝑤 ∈ 𝑊, 𝑓 ∈ 𝐹 (4.4.22b)

𝑁F𝑓 ∈ {0, 1} ∀𝑓 ∈ 𝐹 (4.4.22c)

4.4.4. Scheduling integrated system
The last sub-problem combines the decisions for road and vessel scheduling to improve the integrated
schedule. Themodels of the water vehicle routing problem, the road scheduling problem and the vessel
scheduling problem are integrated, except for the added constraints for implementing the road vehicle
schedule in the water scheduling problem. No minimum is set to the required number of vehicles,
𝑛min𝑅 = 𝑛min𝐹 = 0 and the constraints to implement the road vehicle schedule. The solution found in
the previous sub-problem is used as an initial solution for the Gurobi model. By integrating the road and
vessel scheduling decisions, improvements can be made while considering the synchronisation. The
objectives are to minimise the distance travelled on the roads and the required number of vehicles for
both the road and water levels, with importance values 𝜁, 𝜆 and 𝛾, respectively. The objective function
is:

min 𝜁∑
𝑟∈𝑅

∑
𝑘∈𝑉0

∑
𝑙∈𝑉0

𝑇V𝑘𝑙𝑟𝑑R𝑘𝑙 + 𝜆∑
𝑟∈𝑅

𝑁R𝑟 + 𝛾∑
𝑓∈𝐹

𝑁F𝑓 (4.4.23)

The outputs of this model are the final solutions for the total problem, these solutions allow for eval-
uating the decision variables and inspecting trade-offs. The most important outputs are the numbers
of vehicles used (𝑁R𝑟 , 𝑁F𝑓 ) and the total distances travelled on the waterways and roads.



5
Experiments

This chapter provides experimental results based on the developed decision models. Experiments are
performed to investigate the system requirements under different scenarios. The results help answer
the questionWhat is the performance of the proposed IWLT system under different scenarios of inter-
est?. Next to this, sensitivity analyses are concluded for some of the input parameters and the demand
sets. Furthermore, parameter settings for the Gurobi models are investigated.

The experiments are performed on the Delft High Performance Computing Centre (DHPC), 2024,
with 2x Intel Xeon E5-6248R 24C 3.0GHz and 192 GB memory. The models are solved using Gurobi
Optimizer, version 11.0.1, implemented in Python 3.12.2.

Before the experiments are discussed, the problem instance for the city of Amsterdam, with its net-
work, data, and parameters, is introduced in Section 5.1. Starting from Section 5.2, experiments are
conducted on this problem instance, which allows for the investigation of decision variables and vali-
dating the modelling approach used. Experiments and tests are performed for model settings, system
scenarios and sensitivity analyses.

5.1. Case Study
This research is conducted in collaboration with the municipality of Amsterdam. The specific IWLT sys-
tem for the city centre of Amsterdam is solved with the model to provide the municipality with insights
for implementation, while simultaneously verifying the modelling approach developed in this research.
Data about the demand is collected, parameter values determined and possible satellite locations, cus-
tomer (Horeca) locations and the network are specified. This section elaborates on those specifications
for the case study.

5.1.1. Network and Locations
The model requires an infrastructure network to perform calculations and determine the routes. This
infrastructure network can be altered to apply the model to different cities. The focus of the case is the
city centre of Amsterdam, for which the canal and road network need to be specified. Some canals
restrict vessel sizes, and the road network contains one-way streets.

The canal and road network are obtained from previous research on IWLT systems done between
Delft University of Technology and the municipality of Amsterdam. These networks are connected by
satellites, of which the nodes are included in both networks. For each of the networks, a distance matrix
between each pair of nodes is determined. More information about the constructions of the networks
can be found in the research by Bijvoet (2023).

Next to the network, the locations of potential satellites and customers have to be determined. The
customer (Horeca) locations can be obtained through public data from the municipality of Amsterdam.
The city centre counts 1635 Horeca locations. Furthermore, the potential satellite locations are de-
termined by selecting existing transfer sites in the city centre, 56 in total. The locations used in this
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research are equal to those in Bijvoet (2023).

Figure 5.1 shows the infrastructure network, the potential satellites, and customer locations. Fig-
ure 5.2 gives the depot locations, for both water and road vehicles.

Figure 5.1: Network, satellites and customers, Amsterdam case
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Figure 5.2: Water and road vehicle depots, Amsterdam case

5.1.2. Demand data
The research of Bijvoet (2023) provides 10 demand sets for the Horeca locations. These demand sets
are created in consultation with the municipality of Amsterdam. Each set represents one simulated day.
The demand is based on the probability of 45% that a location has a demand per day. The demand
can be one, two or three units. In the work of Bijvoet (2023), a unit is specified as one rolling container,
which is 0.8m in length, 0.64m in width and 1.6m in height, resulting in 0.8192m3. Table 5.1 shows the
demand probability distribution.

Table 5.1: Demand probability distribution Horeca locations (Bijvoet, 2023)

Demand 0 1 2 3
Probability 55% 15% 15% 15%

The Horeca locations with demand can differ each day, however, the sets are all quite similar,
with the number of locations with demand between 696 and 758 per day, and the total demand be-
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tween 1416 and 1520 units. Some basic tests are computed with the demand sets to determine if the
difference is significant, and from these, it is concluded that the impact is negligible. Therefore, the
experiments in the next chapter are performed for only one of these demand sets.

It is, however, important to investigate the effect on the system requirements when demand changes
significantly. Extra demand sets with more extreme values are created to test the adaptability of the
system. These sets are shown in Table 5.2. Demand set 2 is the first day of the sets provided by Bijvoet
(2023), demand set 1 has lower demand, while the demand increases for set 3 and 4.

The demand units were determined as 0.8192m3, but in the rest of this research one demand unit
is equal to one cubic meter. This makes calculations more clear and accounts for sub-optimal use of
vehicle capacity.

Table 5.2: Demand probability distribution per demand set

Demand set Total demand
[𝑚3] Customers with demand

1 Demand [𝑚3] 0 1 2 3 988 506Probability 70% 10% 10% 10%

2 Demand [𝑚3] 0 1 2 3 1498 750Probability 55% 15% 15% 15%

3 Demand [𝑚3] 0 1 2 3 1952 971Probability 40% 20% 20% 20%

4 Demand [𝑚3] 0 1 2 3 2502 1240Probability 25% 25% 25% 25%

5.1.3. Parameter values
Some input parameter values have to be determined, namely, the vehicle capacities and speeds. Be-
cause of city regulations, some bounds are placed on the vehicle characteristics. This section investi-
gates the possible parameter values.

In the city of Amsterdam, tight restrictions for vehicle weight are in place because of the damage to
the quay walls. A road vehicle can have a maximum weight of 7500 kilograms, which limits the capacity
of the vehicle. Through internet research, it is found that vehicles below 7500 kilograms can transport
between 15 and 30 cubic meters. The maximum speed in the city centre is 30 kilometers per hour,
however, on average this speed will not be achieved, because of other traffic, turns and traffic lights.
The average speed is set to 18 kilometres per hour (5 meters per second).

Because of limited space in the city centre, no storage capacity is enabled for the satellites. By
deeper investigation of the satellite locations, it might be possible to assign certain locations with lim-
ited storage.

The canals do not have one clear maximum for the vessel size, each canal is characterised by a
passage profile, which indicates the maximum size for that canal. To make sure each satellite can be
reached, a smaller vessel size is chosen that can access all canals to which satellites are connected.
Such a vessel has a maximum width of 4.5 meters and a maximum length of 20 meters. A vessel of
this size should be able to transport a maximum of 100 cubic meters of load. The speed of a vessel in
the canals is approximately 1.6 meters per second.

Parameter values for the transshipment times are obtained from Bijvoet (2023). Below, an overview
of the parameter values used for the experiments is given. These values are the baseline for all exper-
iments unless otherwise stated in the experiment description.
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𝑞V = 15𝑚3 capacity of road vehicles

𝑣V = 5𝑚/𝑠 speed of road vehicles

𝑞W = 50𝑚3 capacity of vessels

𝑣W = 1.6𝑚/𝑠 speed of vessels

𝑡DC = 25𝑚𝑖𝑛 transshipment time at the depot

𝑡S = 3𝑚𝑖𝑛 transshipment time at satellites

𝑡C = 1.5𝑚𝑖𝑛 transshipment time at customers

𝑡max = 480𝑚𝑖𝑛 maximum time span

𝑞S = 0 storage capacity of satellites

5.1.4. Problem Instances
The entire case study contains 3 vessel depots, 5 road vehicle depots, 56 potential satellite locations
and 1635 Horeca locations, of which the number of locations with demand varies per demand set.

Since this is a large problem, it is useful to create a smaller test case to quickly investigate some
scenarios and analyse the model’s sensitivity. This set consists of the Horeca locations in a busy city
area, the Wallen. This area contains 345 Horeca locations, which is approximately 21% of the Horeca
locations in the entire city centre. Figure 5.3 shows the selected Horeca locations.

Figure 5.3: Network and customers for the Wallen neighbourhood
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5.2. Model settings
Before conducting experiments with different system scenarios, different model settings are evaluated.
First, time limits for solving the sub-problems are investigated. Then, the strategies for limiting the
number of customers assigned to satellites are tested.

5.2.1. Time limits
The time limit parameter specifies the maximum computation time allowed for the solver to find a so-
lution. It is essential to strike a balance between computation time and solution quality, particularly
in the context of large IWLT systems. While the optimisation model should produce results within a
reasonable time frame, the definition of ”reasonable time” in this application is nuanced.

Unlike operational decision-making processes that require real-time or near-real-time solutions, the
optimisation models developed for the IWLT system are used in the development and design phases.
These models assist in determining system requirements and making design choices rather than solv-
ing ad hoc operational problems daily. Therefore, the concept of reasonable time can be stretched.

However, after a certain time period, the results of the Gurobi models often do not improve much
further. Therefore, tests are conducted for each of the MILP sub-problems, the road vehicle routing
problem, the vessel routing problem and all three scheduling problems, to find a balance between the
computation time and solution quality. Since the models in this research are all connected through ini-
tial solutions, the computation time and solution quality of one model influence the solution quality of all
subsequent models. To investigate the impact of changing the time limit of one model, the computation
time of that model is varied, while the time limits of the other problems remain at 7200s. Computation
times up to 10800s are tested. The FLP finds optimal solutions within 200s, so no additional tests are
performed for this model.

For these tests, the number of opened satellites is set to 𝑁S = 15. The rest of the parameters are
specified in Subsection 5.1.3.

Second-Echelon Vehicle Routing Problem
The first model investigated is the second-echelon vehicle routing problem. To evaluate the perfor-
mance, the distance on the roads determined by this VRP is investigated, shown in Figure 5.4. The left
axis shows the distance on the roads, the right axis its corresponding optimality gap. Increasing the
time limit from 100s to 1000s reduces the distance on the roads substantially and up to 3600s there is
still some reduction visible. Increasing the time limit further results in small decreases of the optimality
gap, but does not improve the solution significantly.
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Figure 5.4: Distance travelled on the roads after the second-echelon vehicle routing problem for different time limits of this
problem with corresponding optimality gaps

First-Echelon Vehicle Routing Problem and Synchronisation
The water vehicle routing problem combined with the synchronisation is a complex model. Increasing
the computation time does not have any visible effect up to 7200s. At 7200s, the distances on the roads
and waterways decrease. The results do not change when increasing the computation time further up
to 10800s.

Road Vehicle Scheduling
Increasing the time limit for the road scheduling problem has a large impact on both the number of road
vehicles required and the distance travelled on the roads. This is to be expected, since the number of
road vehicles required directly impacts the distance travelled on the roads, through the added distance
from a road vehicle depot for each used vehicle. Figure 5.5 shows the distance on the roads on the left
axis and the required number of road vehicles on the right axis. As can be seen they follow the same
trend, but are not exactly related. This is due to the trip assignment to road vehicles, which also influ-
ences the distance travelled. The results keep improving for increased computation times, but the effect
is less significant for higher time limits. This convergence is best visible in Figure 5.6, which shows the
optimality gaps for the different computation times. The optimality gap converges to approximately 6%.
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Figure 5.5: Distance travelled on the roads and required number of road vehicles for different time limits of the road vehicle
scheduling problem

Figure 5.6: Optimality gaps for different computation times of the road vehicle scheduling problem

Vessel Scheduling
The vessel scheduling model only affects the number of vessels required to perform the trips found by
the water vehicle routing model. No extra distance is added, since the vessels depart from the depot
where the load is stored and they can only perform trips that depart from the same depot. Figure 5.7
shows the number of required vessels, which decreases significantly for increased computation times.
For a computation time of 3600s, the number of required vehicles decreases more than 50%, and a
reduction of 62% is found after 10800s. The optimality gap converges to approximately 40%, which is
quite high, but this gap is highly dependent on the lower bound implemented on the number of vessels.
Setting a higher lower bound results in better optimality gaps and even ”optimal” solutions, but the ob-
jective is to determine the lowest number of vehicles possible, so the lower bound is set to a value that
might not be feasible but forces the model to search for better solutions. Therefore, the large optimality
gaps are acceptable.
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Figure 5.7: Number of required vessels for different time limits of the vessel scheduling problem

Integrated Scheduling
Increasing the computation time for the integrated scheduling problem influences the distance travelled
on the roads, the number of road vehicles and the number of vessels required. Since all three objec-
tives are improved by this model, tests are extended to 14400s for this model. However, a computation
time of 14400s does not result in better solutions compared with a computation time of 10800s. All
three objectives follow the same trend for different computation times, as can be seen in Figure 5.8.
Improvements start at 1000s and continue up to 10800s.

Figure 5.8: Number of required vehicles and distance travelled on the roads for different time limits of the integrated scheduling
problem
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With the results evaluated in this section, it can be concluded that higher computation times sig-
nificantly improve the results for the scheduling problems. For the road vehicle problem, a time limit
of 1000s already provides good quality solutions, but 3600s ensures most improvements are found.
The vessel scheduling problem only improves the solutions at a computation time of 7200s. All three
scheduling problems seem to converge at 10800s. Therefore, for the next experiments on the full case
study, the time limits are set to:

Second-echelon vehicle routing problem: 3600s

First-echelon vehicle routing problem: 7200s

Road vehicle scheduling problem: 10800s

Vessel scheduling problem: 10800s

Integrated scheduling problem: 10800s

Some tests were performed for different computation times on the smaller instance for the Wallen
neighbourhood. All models converged or found solutions with a 0% optimality gap within 3600s. There-
fore, the time limits are all set to 3600s for the case test instance.

5.2.2. FLP strategies
Two variants to limit the customers assigned to satellites in the FLP are given in Subsection 4.1.1.
For both of these constraints, many possible equations can be used that change the tightness of the
constraint. It is possible to precisely even out the number of customers so each satellite has the same
number of customers assigned, but this might not have the best results since some customers will be
assigned to satellites further away. Some freedom can be implemented, allowing the assignment of
more customers to satellites when that is more favourable for the distance travelled on the roads. How
much freedom is necessary for the best results is investigated.

Tests are conducted to investigate the constraints’ impact on the most important decision variables
and to observe the system’s behaviour regarding satellite utilisation.

The first method is to assign a maximum of B customers to a satellite, implemented by Equa-
tion 4.1.4. The value of B is further defined as:

𝐵 = |𝐶|
𝑁𝑆 ⋅ 𝑏 (5.2.1)

Using this equation, the maximum number of customers per satellite depends on the total number of
customers, |𝐶|, the number of opened satellites, 𝑁𝑆 and the factor 𝑏. By including the number of cus-
tomers and opened satellites in the equation, the constraint is applicable to different system scenarios.
The factor 𝑏 has to be larger than 1, to ensure all customers can be assigned to a satellite.

The second method to limit the number of customers assigned to a satellite is to implement a max-
imum satellite throughput as shown in Equation 4.1.5. 𝐴 is defined as:

𝐴 =
∑𝑖∈𝐶 𝑞𝑖
𝑁𝑆 ⋅ 𝑎 (5.2.2)

The maximum throughput of satellites depends on the total customer demand, ∑𝑖∈𝐶 𝑞𝑖, the number of
opened satellites, 𝑁𝑆 and 𝑎. Again, 𝑎 has to be larger than 1, to ensure all customers can be assigned
to a satellite.

Experiments with the constraints are performed on the Wallen neighbourhood defined in Subsec-
tion 5.1.4 for the demand distribution provided by Bijvoet (2023), resulting in 151 Horeca locations with
a total demand of 290𝑚3 in the Wallen neighbourhood. The factors 𝑎 and 𝑏 are varied from 1 to 2.5
and the number of opened satellites 𝑁𝑆 is set to 2 or 3.
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Figure 5.9: Total distance travelled on the roads under different FLP constraints for 2 and 3 opened satellites (Ns=2,3), factor 𝑎
limits the throughput, factor 𝑏 limits the number of customers

In Figure 5.9 the distances travelled on the roads under different FLP constraints are shown. It is
interesting to see the difference in the effect of changing the tightness of the FLP constraints between 2
and 3 opened satellites. With 3 opened satellites, loosening the constraint reduces the distance on the
roads, while for 2 opened satellites the distance is fairly stable. Customers are assigned to minimise
the sum of the distances to the satellites, while respecting the limit on the customer assignment per
satellite. With a tight constraint for 3 satellites, customers have to be distributed over those 3 satellites,
which can result in sub-optimal customer assignment. When the constraint is loosened, customers can
be assigned to their closest satellite, resulting in less distance on the roads. When the constraint on the
number of customers is implemented, 3 opened satellites perform better than 2 satellites for a factor
of 𝑏 ≥ 1.5, while constraining the throughput of a satellite performs better for 3 satellites starting at a
factor of 𝑎 = 1.8. The small dip at 𝑏 = 1.06 for 2 opened satellites can be ascribed to small differences
in the customer assignment. The locations of the road vehicle depots, which might be closer to one of
the opened satellites. A tighter constraint forces customers to be assigned to that satellite, reducing
the distance travelled from the depot to the satellite.

In such systems where vehicles are utilising shared resources at the satellites, the transshipment
processing capacity becomes significant. The impact of adjusting the maximum throughput constraint
appears to have a larger negative impact on the road distance, compared to tightening the maximum
customer constraint. This can be attributed to the need to assign customers with higher demand to
more distant satellites under throughput constraints. While the constraint on the maximum number of
customers allows for more favourable assignments by selecting the customer with the least additional
distance, the throughput constraint might necessitate less optimal assignments.

The distribution of the satellite utilisation for three satellites under different constraint factors to limit
the number of customers is visualised in Figure 5.10. When the constraint is loosened, a large differ-
ence in utilisation between satellites is visible. It is important to note that it is expected the distance on
the roads increases when the FLP constraint is tightened. However, for practical applications it is still
relevant to limit the number of customers supplied from one satellite. For the scenarios investigated
here, the uneven satellite utilisation is not necessarily a problem, however, for a shorter maximum time
span and a larger number of customers, the system can become infeasible. Furthermore, evenly dis-
tributing the satellite utilisation will minimise inconveniences for city residents.
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Figure 5.10: Number of customers assigned to satellites under different FLP constraints on the number of customers (factor b)
for 3 opened satellites

Allowing 1.5 times the evenly divided number of customers to be assigned to a satellite provides
enough flexibility for near-optimal customer assignment to satellites while distributing the utilisation
more evenly.

5.2.3. Objectives Ratios
Each of the MIP models aims to minimise its respective objective. The facility location problem, road
vehicle routing problem, and vessel scheduling problem each have a single objective. However, the
water vehicle routing problem, road vehicle scheduling problem, and integrated scheduling problem
involve multiple objectives.

For the water vehicle routing problem and the road vehicle scheduling problem, these objectives
complement each other. The water vehicle routing problem aims to minimise both the distance trav-
elled on waterways and the number of trips. These goals are aligned, as fewer trips generally result
in less distance travelled to and from depots. Similarly, the road vehicle scheduling problem seeks to
minimise the number of road vehicles and the distance travelled on roads. Although these objectives
are complementary, a balance must be established. For instance, it would be undesirable to add an
extra road vehicle merely to reduce the distance by a few kilometres.

The integrated scheduling problem is more complex, as it combines multiple objectives: minimising
the number of vessels, the number of road vehicles, and the distance travelled on roads. These ob-
jectives can be conflicting. Reducing the number of vessels might limit the flexibility in arrival times for
road vehicles, potentially increasing the number of road vehicles required and the distance travelled
on roads. The objective function is specified as:

min 𝜁∑
𝑟∈𝑅

∑
𝑘∈𝑉0

∑
𝑙∈𝑉0

𝑇V𝑘𝑙𝑟𝑑R𝑘𝑙 + 𝜆∑
𝑟∈𝑅

𝑁R𝑟 + 𝛾∑
𝑓∈𝐹

𝑁F𝑓 (5.2.3)

With the importance values; 𝜁 for the distances on the roads, 𝜆 for the number of road vehicles and
𝛾 for the number of vessels. To investigate the balance between these objectives, experiments are
conducted with varying importance ratios between the number of road vehicles (𝜆) and vessels (𝛾).
These experiments explore a range of ratios from an extreme case where the importance of reducing
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road vehicles is 1/500 the importance of reducing vessels, to more balanced ratios of 𝜆/𝛾 =1/5, up to
𝜆/𝛾 =2/1. This helps to understand the sensitivity and trade-offs between the different objectives within
the integrated scheduling problem. The importance of the distance on the roads is set to a constant
low value of 𝜁 = 0.0001, which does not affect the objective so much but prevents road vehicles from
travelling to satellites at the other side of the city centre.

The experiments are performed on demand set 1, as specified in Table 5.1. Some additional ex-
periments were conducted on demand set 2 provided by Bijvoet (2023), to validate the results. For
both demand sets, 12 satellites are used and the parameters are equal to those specified in Subsec-
tion 5.1.3.

Figure 5.11: Number of customers vehicles for demand set 1 and 2 in the entire city centre, with varying importance ratios in the
objective

The results from varying the importance ratio between the number of road vehicles and vessels in
the objective function do not show a clear trend in the number of vehicles used. As depicted in the
Figure 5.11, different ratios result in varied numbers of road vehicles and vessels without a consistent
pattern. This lack of trend can be attributed to the complex interdependencies within the system. The
number of road vehicles and vessels required are interdependent and influenced by numerous factors,
such as delivery routes and synchronisation requirements. Simply adjusting the importance ratio might
not capture these complex interactions. Other factors influencing the lack of trend are the discrete
nature of vehicle counts and local optima in the optimisation process. These factors collectively con-
tribute to the absence of a straightforward relationship between the importance ratio and the number
of vehicles used.

Still, a decision on the importance ratio must be made, and this can be done by evaluating the prac-
tical significance of minimising the number of vehicles. While vessels are more expensive to purchase,
the primary objective is to reduce busyness on the roads. This consideration leads to the selection of
a ratio that balances these factors. The chosen ratio of 4 road vehicles to 5 vessels aims to achieve
a balance between cost and road usage. This ratio acknowledges the higher financial cost of vessels,
but it also emphasises the importance of minimising road vehicles to alleviate congestion and reduce
the distance travelled on the roads.

5.3. Scenarios
It is important to evaluate the results of different system scenarios for practical application. In this sec-
tion, the effect of changing the number of opened satellites on the system performance is investigated,
which is valuable knowledge for developing the IWLT system. The system is also evaluated for different
maximum time spans to provide insights into the system requirements when limited time is available.
Additionally, experiments with varying storage capacities at satellites are conducted.
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5.3.1. Number of Satellites
One of the most important design choices for developing an IWLT system is the number of satellites to
open. Having a small number of satellites in the city centre means these satellites are used intensively,
which can create nuisance under city residents. However, a large number of satellites might also not
be desirable since satellites require blockage of parking spaces and can congest the waterways when
transshipment is taking place. Therefore, it is important to have insights into the effect of the number
of satellites on the road and water kilometres, so these factors can be weighted and decisions can be
made.

First, experiments are performed for the Wallen neighbourhood, since it is valuable to examine the
behaviour of the system with smaller customer sets to explore the possibility of initiating a smaller-scale
pilot program. To do so, experiments with 1 to 10 satellites are performed on the Wallen case. First, the
same demand distribution of set 2 is used for the 345 Horeca locations in the Wallen neighbourhood.
Second, demand set 3, as specified in Table 5.2 is implemented on these locations in the Wallen
neighbourhood. Figure 5.12 shows the distances travelled on the roads for these experiments.

Figure 5.12: Distances travelled on the roads after integrated scheduling in the Wallen neighbourhood, for demand set 2 and 3
with 1 to 10 satellites

Demand set 2 in Figure 5.12 supplies 151 Horeca locations and provides a total demand of 290𝑚3,
while demand set 3 serves 263 customers and delivers a total demand of 541𝑚3. Demand set 2 per-
forms best for 2 satellites, while demand set 3 has better results for 4 satellites. These results indicate
a relation between the demand set and the system’s performance for different numbers of satellites.
This relation is investigated further after results for the entire city centre are analysed.

The same experiment is conducted for supplying the entire city centre. The model is run for 3 to
25 opened satellites to investigate the effect of the number of satellites, with the timelimits specified in
Subsection 5.2.1 per sub-problem and the FLP constraint on the number of customers with 𝑏 = 1.5.
The customer demand is specified in demand set 2 of Table 5.2 provided by Bijvoet (2023).

It is interesting to analyse the systems performance for the results of the road scheduling prob-
lem first, since all scenarios use the same number of road vehicles after this scheduling problem be-
cause of the lower bound on this. Therefore, the results are not yet dependent on the extra distance
travelled from and to the road vehicle depots by added vehicles and can be easily compared. The
optimality gaps determined by Gurobi for these scenarios are approximately equal to the Optimality
gaps for fewer opened satellites and the same number of road vehicles is used. Figure 5.13 shows
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the distances travelled on the roads found by the road vehicle scheduling problem and found after the
integrated scheduling problem. Looking at the distances after the road scheduling problem, it can be
seen that the distance reduces substantially for each extra opened satellite for up to 9 satellites, is at
a minimum for 12 opened satellites and starts to increase for extra opened satellites. This indicates
the systems performance is better for 9 to 13 opened satellites, which can have three causes, first:
the FLP constraint forces customers to be assigned to the extra opened satellites, even if these lo-
cations are less favourable, second: vehicles might have to travel more between satellites, third: the
road vehicle depots might be located further away from some satellites. Investigating the results of
the distance travelled after the integrated scheduling model, the same trend is visible. Noteworthy is
that no improvements on the distance is found in the integrated scheduling problem for 16 or more
opened satellites. The optimality gaps of the integrated scheduling model determined by Gurobi for
these scenarios are approximately equal to the optimality gaps for fewer opened satellites.

Figure 5.13: Distances travelled on the roads after road vehicle scheduling and integrated scheduling, for 3 to 25 satellites

The results shown in Figure 5.13 are based on the system that serves 750 Horeca locations with a
total demand of 1498𝑚3, which gives 12 satellites for the best performing system scenario. Figure 5.14
shows the trend between the best performing number of satellites and the specifics of the case studied,
with in Figure 5.14a the number of customers on the x-axis and Figure 5.14b the total demand on the
x-axis. These results indicate a linear relation between the demand sets and the number of satellites
to open. It is important to note these demand sets all assume an evenly distributed demand of 1 to
3𝑚3 per Horeca location, the difference is in the number of locations with demand. In Subsection 5.4.1
variations to these sets are further explored.
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(a) (b)

Figure 5.14: Best performing number of satellites plotted against the demand characteristics

Concluding, opening between 9 and 13 satellites is recommended to effectively supply the entire
Horeca sector in Amsterdam. If a smaller city area is supplied, the number of satellites seems to de-
crease linearly with the total demand of that area. For the remaining full case experiments, 12 satellites
are opened. For the experiments on the Wallen neighbourhood, 2 satellites are used.

5.3.2. Maximum time span
The time span in which the deliveries are performed is crucial for the IWLT system to be feasible in
real-life applications. For example, the time span can be restricted due to city regulations against noise
pollution. Next to this, busyness in the city centre during peak hours is best avoided, which also lim-
its the time span. The available time impacts the system requirements to serve all customers. To see
the effect on these requirements, different maximum time spans are tested and the results investigated.

The maximum time spans (𝑡max) evaluated are 4, 6, 8, 10, and 12 hours, with 12 satellites opened
for the entire city center of Amsterdam, using the demand data provided by Bijvoet (2023), specified
in Table 5.2 set 2. Additional experiments are conducted for the Wallen neighborhood with time spans
ranging from 2 to 12 hours, in increments of 1 hour, utilising two satellites. The demand distribution
for these experiments is also based on set 2 but is limited to the Horeca locations in the Wallen neigh-
bourhood.

(a) Wallen neighbourhood (b) Entire city centre

Figure 5.15: Required number of vehicles for varying time spans 𝑡max

The impact of increasing the time span can best be shown through the number of vehicles required,
as shown in Figure 5.15, especially for vessels. Half of the vessels are required when extending the
time span from 4 to 12 hours, which is expected since vessel trips have long completion times, so with a
shorter time span, vehicles are not always able to perform multiple trips. Figure 5.16 shows the vessel
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schedules in the Wallen neighbourhood for the time spans where the number of vessels decreases, so
for 2,3,5 and 7 hours. These figures provide a clear image of the number of trips a vessel can make
within the time span. In a time span of 2 hours, the vehicles can only perform one trip, while at 3 hours
it is possible to perform two trips. At 5 hours, this increases to three trips, and at a time span of 7 hours,
a vessel can perform four trips.

(a) 𝑡max =2 hours (b) 𝑡max =3 hours

(c) 𝑡max =5 hours (d) 𝑡max =7 hours

Figure 5.16: Vessel schedules Wallen case for different time spans

The decrease is also visible for road vehicles. However, the decrease is less significant. Increasing
the time span from 4 to 12 hours for the full case results in 33% fewer required road vehicles. This
phenomenon can be linked to the vessel schedule. Most of the vessels arrive at approximately the
same time at satellites, so at that moment, many road vehicles are required as well. Figure 5.17 shows
the vehicle schedules for the Wallen neighbourhood and the entire city centre with a time span of 3
hours. In this time span, vessels are able to perform two trips. The road vehicle schedules are clearly
dependent on the approximately simultaneous arrival times of the vessels. All road vehicles are re-
quired at the same moments, at the start of the time period and at the arrival time of the second vessel
trip. Still, when the time span increases and the vessels perform multiple trips, fewer road vehicles are
required at the same moment.
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(a) Wallen neighbourhood, road vehicle schedule (b) Wallen neighbourhood, vessel schedule

(c) Entire city centre, road vehicle schedule (d) Entire city centre, vessel schedule

Figure 5.17: Vehicle schedules for a time span of 𝑡max =3 hours

As fewer road vehicles are required to serve the customer demand, the overall distance travelled
on roads decreases. This reduction is due to the inclusion of the distance from the vehicle depot to the
satellites in the total distance calculation. The distance on the water does not change, since all vessel
trips depart from the same depot.

5.3.3. Storage Capacity Satellites
Since space is scarce in most city centres, the basic scenario investigated assumes no storage capac-
ity at satellites. However, at certain locations, some storage might be feasible, potentially enhancing
system performance, which would make it worthwhile to consider allocating storage space in city cen-
tres. To understand the impact of satellite storage on the system behaviour, various storage scenarios
are evaluated.

Through field research, satellite locations with potential for storage are identified. These satellites
are strategically positioned at larger waterways or docks equipped with jetties. To supply the entire city
centre with 12 satellites, four of the locations show significant potential to incorporate storage facilities.
In the Wallen neighbourhoods with four satellites, two of the satellites are feasible for storage.

Experiments are conducted to assess various storage capacities at these satellites: 15m3 and
67m3, which correspond with containers of 10ft and 40ft (2.8m and 12m). Additionally, it is interesting
to see the effect on the system’s performance if all satellites have storage available. For this scenario,
a capacity of 15m3 is considered since this is most viable for real-life applications. Finally, an analysis
is performed under the hypothetical scenario of unlimited storage capacity at all satellites, offering in-
sights into potential operational bottlenecks despite its infeasibility in practical implementation.
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(a) Wallen neighbourhood (b) Entire city centre

Figure 5.18: Required number of vehicles for different storage scenarios at satellites

Figure 5.18 shows the required vehicles for different storage scenarios at satellites for the Wallen
neighbourhood and the entire city centre. As can be seen, having 15m3 storage capacity at the selected
satellites lowers the number of vessels, from 5 to 4 for the Wallen neighbourhood and from 12 to 9 for
the entire city centre, which are significant improvements. However, for the entire city centre, it only
slightly decreases the number of road vehicles from 28 to 27.

Increasing the storage capacity at selected satellites to 67m3 results in a more efficient road ve-
hicle schedule, but this improvement comes with a trade-off. Specifically, it increases the number of
vessels required for both the Wallen neighbourhood and the entire city centre. This effect is likely due
to the storage capacity of 67m3 at the selected satellites exceeding the vessel capacity of 50m3. Con-
sequently, when the larger storage is utilised by the road vehicle schedule, it might necessitate more
complex movements of the vessels to accommodate this utilisation.

When all satellites are equipped with a storage capacity of 15m3, the results for the Wallen neigh-
bourhood are identical to the scenario of 15m3 storage at selected satellites. However, for the entire city
centre, this scenario shows an improvement by reducing the required road vehicles while maintaining
the same number of vessels, compared to the storage scenario of 15m3 at selected satellites.

A further improvement is observed under the hypothetical scenario of unlimited storage capacity at
all satellites, requiring only 23 road vehicles and 8 vessels. This scenario highlights the substantial im-
pact of satellite storage capacity on the logistics network, demonstrating significant performance gains
with storage. However, the most significant improvement in required vessels for the entire city centre is
made when increasing the storage at the selected satellites from zero to 15m3, indicating that having
some storage available provides enough flexibility for the system to operate more efficiently.

It is important to note the potential for further improving the road vehicle schedule when storage
is available at satellites. Enabling storage capacity while also allowing direct transfers significantly
increases the solution space of the model. This is particularly impactful for the road vehicle schedule,
given the greater number of road vehicles with smaller capacities performing numerous trips compared
to vessels. With storage available, vessels must still ensure the load arrives before road vehicles pick
it up. However, road vehicles can collect the load at any convenient time afterwards, greatly increasing
the flexibility in scheduling. This expanded scheduling flexibility can lead to more efficient logistics
operations, but also increases the solution space and, therefore, the computational complexity of the
model.

5.3.4. Depot locations
The vessel depot locations are selected based on their accessibility for road transportation, as cargo
is transported to the depots by trucks. These locations are informed by the work of Bijvoet (2023),
conversations with municipality workers and research from the municipality. However, these depots
are situated quite far from the city centre, resulting in significant travel distances on the waterways. In
the scenario where the entire city centre is supplied using 12 satellites, 97% of the waterway distance
is attributed to travel to and from the depots. This high percentage is due to many trips only visiting one
satellite, so all of the travel distance of that trip is the journey to and from the depot. It is worthwhile to
investigate the potential reduction in waterway travel distance if depots were positioned closer to the
city centre.
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To investigate the effect of depot placement, a scenario with depots closer to the city centre is cre-
ated. Figure 5.19 shows the depot locations for this experiment. The scenario investigated is to supply
the full city centre with the demand as provided by Bijvoet (2023), specified in Table 5.2 set 2.

Figure 5.19: Depot locations for scenario to investigate

Figure 5.20 shows the vessel schedules for the different depot locations. The grey travelling parts
directly after and before the black loading at DC parts, indicate travelling from and to the depots. As
expected, these travel times are significantly smaller for the new depot locations.
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(a) Original depot locations (b) New depot locations

Figure 5.20: Vessel schedules for the original depot locations and the new depot locations

The distance travelled on the waterways is reduced from 273km to 199km, which is a reduction of
27%. The contribution of the distance travelled from and to the new depot locations is 86% of the total
travel distance. On top of that, due to the reduced travel time, the number of vessels required reduces
from 12 to 8, resulting in a reduction of 33%. These are significant reductions, making it worthwhile to
investigate the possibility of placing depots closer to the city centre. However, the difficulties of sup-
plying depots closer to the city centre have to be investigated, in terms of added distances and travel
time for trucks.

For road vehicle depots, their location has a smaller impact on the total distance travelled. The
distance travelled from and to the depots contributes approximately 10% to the total distance on the
roads. This contribution is much smaller than that of the vessel depots because road vehicles do not
need to return to their depot between each trip. Nonetheless, if road vehicles could park on streets
adjacent to the satellites, a reduction of 10% in travel distance could be achieved.

5.3.5. Road Vehicle Characteristics
The capacities of the road vehicles are determined by internet research for vehicles that comply with the
regulations in the city centre of Amsterdam. It is interesting to see how the system behaves for different
vehicle capacities since it might be desired to have a different fleet composition and regulations can
change. The standard capacity used is 𝑞V = 15𝑚3. The experiments for the Wallen neighbourhood
examine road vehicle capacities of 4 to 15𝑚3. For the entire city centre, capacities of 5, 10, 15, 20 and
25𝑚3, are tested. For the Wallen neighbourhood, demand set 2 is used, while for the entire city centre,
demand set 1 is employed. This is due to the fact that smaller road vehicle capacities significantly
increase the vehicle set, which increases the computational complexity. Demand set 1 for the entire
city centre serves 506 Horeca locations with a demand of 988m3.

Figure 5.21a shows the required number of road vehicles for theWallen neighbourhoodwith different
vehicle capacities and Figure 5.21a gives these results for the full case.
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(a) Wallen neighbourhood, demand set 2 (b) Entire city centre, demand set 1

Figure 5.21: Required number of road vehicles for varying road vehicle capacities

From these bar charts, it can be seen that for both the Wallen neighbourhood and the entire city
centre, logically, a clear trend reveals; as the capacity of the road vehicles increases, the number of
required road vehicles decreases. For the Wallen neighbourhood, a capacity of 7m3 is enough to
achieve the minimum number of 2 road vehicles.

When considering the entire city centre, initially, with a capacity of 5m3, 53 vehicles are necessary.
Doubling the capacity to 10m3 results in a substantial reduction, with only 12 vehicles required. Fur-
ther increases to 15m3, 20m3, and 25m3 continue to decrease the vehicle count to seven, three, and
three, respectively. This diminishing return beyond 15m3 suggests that larger capacities significantly
alleviate the need for more vehicles, but additional capacity beyond this point offers less of a reduction.

From a strategic planning perspective, these insights are valuable. They suggest that investing in
vehicles with capacities around 10m3 to 15m3 may offer the best balance between reducing vehicle
numbers and maintaining operational efficiency. In densely packed areas like the Wallen neighbour-
hood, even modest increases in vehicle capacity can have a notable impact on the fleet size required,
reducing operational costs. For the Wallen neighbourhood, it would be advantageous to use the small-
est vehicles that achieve the minimum number of two required vehicles, specifically those with a capac-
ity of 7m3. Smaller vehicles are better suited for the city centre due to their improved maneuverability
and ease of navigating narrow streets and tight spaces, which are common in densely populated urban.
This approach balances efficiency with practicality, ensuring that deliveries are conducted smoothly
while minimising traffic congestion.

5.4. Sensitivity Analyses
Understanding how the system responds to different parameter values or demand sets is crucial. Sen-
sitivity analyses are performed to explore these variations. Examining how the system behaves under
different conditions provides insights into design choices for implementation, the system’s limitations
and can help identify areas for improvement.

5.4.1. Demand sets
As discussed in Subsection 5.1.2, the ten basic demand sets are fairly similar. Some runs are per-
formed for the ten basic demand sets, to determine if the results differ significantly. It is most important
to investigate the required number of vehicles and the time period to perform the deliveries. Next to
this, the kilometres on the road and canals are examined. The results of the ten demand sets are
evaluated for 5, 15 and 25 satellites.

The kilometres travelled on the road have on average a 1.5% deviation per demand set, for the
kilometres on the canals this is on average 2.6%. The number of trips performed by road vehicles have
an average deviation of 2.1 trips, which is a 1.9% deviation. For the number of trips performed by ves-
sels, an average deviation of 0.67 trips is found, which is a 2.0% deviation. The maximum difference
in road vehicle trips is 8 trips, which is 6.9% of the average number of road vehicle trips required with
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5 satellites.

Figure 5.22 shows the distributions of the results per number of satellites for the different demand
sets. These results do not show significant differences for the demand sets, since the added number
of trips are small and will not result in more required vehicles.

(a) Road vehicle trips (b) Vessel trips

(c) Distance on the roads (d) Distance on the waterways

Figure 5.22: Distributions of results for different demand sets

In addition to the basic demand sets, some more extreme demand sets are created and tested to
evaluate the system’s adaptability, as explained in Subsection 5.1.2, a quick overview of the sets is
given in Table 5.3.

Table 5.3: Overview of the demand sets

Demand set Total demand
[𝑚3]

Customers with
demand

1 988 506
2 1498 750
3 1952 971
4 2502 1240

The required number of vehicles for each demand set are shown in Figure 5.23. The number of
water and road vehicles increases approximately linearly with the size of the demand sets.
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Table 5.4: Demand probability distribution per demand set

Demand [𝑚3]
Demand set 0 1 2 3 4 5

5 33% 33% 33%
6 20% 20% 20% 20% 20%
7 100%
8 50% 50%

Figure 5.23: Number of required road and vessels for different demand sets

To get better insight in the influence of the demand and number of customers with demand, ad-
ditional experiments are performed on the Wallen case. The additional demand sets are defined in
Table 5.4.

The demand sets defined in Subsection 5.1.2 and in Table 5.4 result in the total demand and cus-
tomers with demand given in Table 5.5 for the Wallen case.

Table 5.5: Overview of the demand sets

Demand set Total demand
[𝑚3]

Customers with
demand

1 220 114
2 290 151
3 428 212
4 541 263
5 679 345
6 687 279
7 345 345
8 870 174

Figure 5.24a and Figure 5.24c show the results for the different demand sets with on the x-axis the
number of customers with demand. Figure 5.24b and Figure 5.24d show the same results, but with the
total demand on the x-axis. As can be seen, the relation between the total demand and the results for
the distances and number of vehicles is almost linear, while the number of customers has a less visible
relation with the results.
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(a) (b)

(c) (d)

Figure 5.24: Results for the demand sets in the Wallen neighbourhood

Demand sets 1 to 5 have a consistent distribution of demand, ranging from 1 to 3 𝑚3 per Horeca
location, with varying probabilities of zero demand. Exploring the relationship between the number of
customers and the outcomes for these sets yields valuable insights.Figure 5.25 mirrors the results of
Figure 5.24 plotting the results against the number of Horeca locations with demand and highlighting
the results for demand sets 1-5. These findings do suggest a linear relation between the number of
Horeca locations and the outcomes. However, it’s essential to note that this conclusion may not hold
true for demand sets with dissimilar distributions. In Subsection 5.3.1 a linear relation was found be-
tween both the number of customers and the total demand concerning the outcomes for the number of
satellites. The linear relation for the number of customers can now be attributed to the uniform distribu-
tion of demand across Horeca locations within the sets evaluated for the number of satellites. However,
the relation between the total demand and the results is further validated.
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(a) (b)

Figure 5.25: Results for the demand sets in the Wallen neighbourhood plotted against the number of customers, with demand
sets 1-5 highlighted

The linear relationship between the total demand and the distances travelled indicates a predictable
pattern in how demand affects distances. It suggests that the model is robust and reacts predictably to
changes in demand, which is a desirable property for any decision-making tool. This robustness builds
confidence in the model’s use for real-life applications.

5.4.2. Transshipment Times
The transshipment time at customers constitutes a significant portion of the road vehicle schedule and
often exceeds travel time in terms of duration. The transshipment times used in the other experiments
are based on the work of Bijvoet (2023). However, it is worth noting that these times seem to be opti-
mistic and may not accurately reflect real-world scenarios.

Given the potential for variability and uncertainty in transshipment processes, conducting sensitivity
analysis is important. This sensitivity analysis involves testing the IWLT system requirements under
different transshipment times at customers. The analysis evaluates the system’s sensitivity to changes
in transshipment times and helps identify thresholds where performance may be significantly impacted.

Figure 5.26 shows the required vehicles for supplying the Wallen neighbourhood and the entire
city centre for transshipment times at customers. The number of required road vehicles increases for
longer transshipment times, however, more than tripling the transshipment time of 𝑡C = 1.5𝑚𝑖𝑛 in the
entire city centre only requires 26% more road vehicles. Furthermore, doubling the transshipment time
of 𝑡C = 5𝑚𝑖𝑛 only increases the road vehicle requirement by 16%. For the Wallen case, no increase
in the number of vehicles is required for transshipment times up to 5 minutes.

This phenomenon can be explained by investigating Figure 5.27, which shows the road vehicle
schedules for the Wallen case with transshipment times 𝑡C = 1.5𝑚𝑖𝑛 and 𝑡C = 5𝑚𝑖𝑛. Road vehicles
have a lot of idle time when waiting for vessels to arrive. Therefore, the extra transshipment time can
be added to the road vehicle trips without requiring extra vehicles. However, for the customer trans-
shipment time of 5 minutes, the road vehicles are almost fully utilised. Therefore, a transshipment time
at the customers of 𝑡C = 6𝑚𝑖𝑛 does require an extra road vehicle.

Increasing the transshipment time at customers does also affect the number of vessels required,
however less significant. Since road vehicles have longer trip times, vessels might have to wait longer
at satellites, which can ultimately results in more required vessels.
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(a) Wallen neighbourhood (b) Entire city centre

Figure 5.26: Required vehicles for different transshipment times at customers

(a) Road vehicle schedule for 𝑡C = 1.5𝑚𝑖𝑛 (b) Road vehicle schedule for 𝑡C = 5𝑚𝑖𝑛

Figure 5.27: Road vehicle schedules for different transshipment times at customers

With these results, the system does not appear to be overly sensitive to variability in customer
transshipment times. When the road vehicles are not fully utilised, the increased transshipment times
can be accommodated. When the transshipment time is increased further, a linear relation between
the required number of road vehicles and increased time seems to exist.

5.5. Overall system performance
Based on the experimental analysis, it is essential to evaluate how the IWLT system performs com-
pared to the current situation. Leveraging insights from the experiments, four system scenarios are
selected to assess performance, identify bottlenecks, and compare the results with the current state.
The scenarios represent various combinations of the key design choices.

The scenarios for the number of satellites are selected based on bounds that show efficient cover-
age for the entire city centre. The system’s performance improves significantly with up to 9 satellites.
From 9 to 13 satellites, performance remains relatively stable, with peak efficiency at 12 satellites. The
selected scenarios include 9 and 12 satellites: 9 for being the minimum number with strong perfor-
mance and 12 for achieving the highest efficiency.

Regarding the time span, a clear decreasing trend is observed in the number of vehicles needed
as the time span increases. This indicates that a 12-hour time span scenario will perform better than a
4-hour one. However, since the trend is continuous, no specific range of time spans can be identified
as optimal. Therefore, scenarios with varying time spans are chosen: 4, 8, and 12 hours.

Having storage at the satellites enhances system performance. However, for practical applications,
it is valuable to compare realistic storage scenarios. The selected storage capacity scenarios are: no
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storage, 15m3 at selected satellites, and 15m3 at all satellites.

The scenarios for these design choices are combined to create four distinct scenarios: the expected
lowest-performing plausible scenario (A), a baseline realistic scenario (B), an enhanced realistic sce-
nario (C), and the expected best-performing scenario (D). These combinations are shown in Table 5.6.

Table 5.6: Selected scenarios for performance evaluation

Scenario Number of satellites Time span (hours) Satellite storage

A 9 4 None
B 12 8 None
C 12 8 15m3 selected four
D 12 12 15m3 all

For these scenarios, the model is solved with more allocated computational resources, specifically
by allocating more CPUs and tasks, to ensure a comprehensive and accurate comparison of the IWLT
system with the current situation. The FLP strategy used is to limit the number of customers with pa-
rameter 𝑏 = 1.5, and the demand follows the distribution of set 2 Table 5.2. The parameters defined in
Subsection 5.1.3 do not change unless specified in Table 5.6.

To obtain insights into the performance and bottlenecks for each scenario, it is useful to explore the
vehicle schedules. Figure 5.28 shows the schedules for the selected scenarios.
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(a) Scenario A: road vehicle schedule (b) Scenario A: vessel schedule

(c) Scenario B: road vehicle schedule (d) Scenario B: vessel schedule

(e) Scenario C: road vehicle schedule (f) Scenario C: vessel schedule

(g) Scenario D: road vehicle schedule (h) Scenario D: vessel schedule

Figure 5.28: Vehicles schedules for the selected system scenarios
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Table 5.7 shows the results for the selected scenarios. As expected, scenario C has the best per-
formance, with only 11 road vehicles and 7 vessels required to supply the Horeca in the entire city
centre. The distance travelled on the roads is equal for scenarios B and C, which can be attributed to
the equal number of satellites. The waterway distance reduces for scenarios with storage capacities,
as expected.

Table 5.7: Results for selected scenarios

Scenario Road kilometres Water kilometres Road vehicles Vessels

A 172 278 22 19
B 166 273 13 14
C 163 260 27 9
D 163 252 11 7

For scenario A, the simultaneous arrival of vessels at satellites creates a bottleneck, hindering the
reduction of road vehicles. Nearly all road vehicles are required at the beginning of the time span,
as displayed in Figure 5.28a. Introducing storage capacity at satellites could alleviate this bottleneck.
Another option is to impose constraints on the departure times of vessels, though this may negatively
impact the vessel schedule.

Scenario B performs significantly better than scenario A, decreasing the number of road vehicles
from 22 to 13 and the number of vessels from 19 to 14. The difference between scenario A and B is
the time span, which is increased from 4 to 8 hours. The experiments in Subsection 5.3.2 demonstrate
a 33% reduction in required vessels and a 30% reduction in road vehicles when the time span is in-
creased from 4 to 8 hours. For the investigated scenarios A and B, the increased time span results in
a 26% reduction of vessels and 41% of road vehicles.

Scenario C performs significantly better than scenario A and B in terms of the required number of
vessels. This improvement compared to scenario A is partly due to the increased time span. Addition-
ally, introducing storage capacity at satellites contributes to reducing the number of required vessels,
as detailed in Subsection 5.3.3. Implementing a storage capacity of 15m3 at 4 out of the 12 satellites
resulted in a 25% reduction in the required number of vessels. These factors combined lead to a sig-
nificant reduction in the number of required vessels in scenario B compared to scenario A, amounting
to an overall reduction of 53%.

On the contrary, the number of road vehicles increases for scenario C compared to both scenarios
A and B. As explained in Subsection 5.3.3, this can be attributed to the increased solution space when
storage is introduced at satellites and, therefore, the reported solutionmight not be an accurate solution.
However, it is expected that scenario C should be viable with the same number of road vehicles as
scenario B, since the road vehicle schedule is more flexible due to the available storage. Experiments
conducted for the Wallen neighbourhood even showed a reduction of 25% for the number of road
vehicles when introducing 15m3 storage at selected satellites, indicating scenario C could potentially
operate with fewer road vehicles than scenario B.

Despite the higher number of road vehicles, the total road distance travelled in scenario C is lower
than in scenario B. This improvement is due to the availability of storage at selected satellites, which
allows road vehicles to make shorter, more efficient trips by collecting loads from nearby satellites, even
when no vessel is currently docked at those satellites.

In scenario D, the vessel schedule is nearly fully utilised, as shown in Figure 5.28h. However, some
vessels experience long waiting times at satellites. This is undesirable for real-life applications as it
means a vessel occupies a dock for extended periods. To address this, reducing waiting times could
be included in the objective function, encouraging the model to optimise accordingly. The road vehi-
cles are less efficiently utilised, with significant idle time for each vehicle, as shown Figure 5.28g. The
schedule could be further improved; for instance, the trips of LEFV 8 and LEFV 9 could be merged
without issues. Again, this suboptimal utilisation of road vehicles can, to a certain extend, be attributed
to the model’s large solution space. Further iterations could enhance the schedule.
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The road distances are identical for scenarios C and D, and only differ from scenario B by three
kilometres. This is expected given that road distance is primarily influenced by the number of satellites.
However, the distances on water decrease more significantly for scenario C and D, attributed to more
efficient routing made possible by having storage capacity at all satellites.

In the current situation all deliveries are conducted via road transport. This situation represents
the existing scenario and is modelled as a straightforward vehicle routing problem with capacity con-
straints. A single depot is placed at the city’s border, ensuring that only the distances travelled within
the city centre are considered. The vehicle characteristics are consistent with those used in the IWLT
system, with a capacity 𝑞𝑉 = 15𝑚3 and speed 𝑣𝑉 = 5𝑚/𝑠.

Table 5.8 presents the distances travelled for both the current situation and the selected IWLT sys-
tem scenarios. The IWLT system scenarios result in vehicle kilometres reductions of 22%, 24%, 27%
and 28% compared to the current situation, for scenario A, B, C and D, respectively. These reductions
are a positive step, but the primary goal of the IWLT system is to minimise distance on the roads. All
three scenarios accomplish this goal with substantial reductions, 70% for scenario A, 71% for scenario
B and 72% for scenario B and C, signifying major improvements over the current situation.

Table 5.8: Distance travelled on the roads and canals for the current situation and the IWLT system scenarios

Scenario Road kilometres Water kilometres Vehicle kilometres

Current situation 579 X 579
A 172 278 450
B 166 273 439
C 163 260 423
D 163 252 415

5.6. Summary and Conclusions
This chapter aims to answer the question: What is the performance of the proposed IWLT system un-
der different scenarios of interest? The IWLT system demonstrates significant potential for enhancing
urban logistics, particularly in densely populated city centres like Amsterdam. Various experiments
were conducted to evaluate the performance of different IWLT system scenarios. The experiments
reveal several crucial insights into the system’s performance under these scenarios, which can assist
in implementation and further development.

In such IWLT systems, it is important to balance the workload at satellites. To do so, two methods
are evaluated to limit the number of customers assigned to satellites: one based on maximum cus-
tomers (factor 𝑏) and the other on maximum throughput (factor 𝑎). Experiments indicated that allowing
more customers to be assigned to satellites results in fewer kilometres travelled on the roads, and a
factor of 𝑏 = 1.5 times the evenly divided number of customers per satellite provided a balance between
optimal assignments and even distribution of satellite utilisation.

An important decision variable for implementing IWLT systems is the number of satellites. Experi-
ments investigating the system’s performance for varying numbers of satellites were conducted. The
best performing scenarios were found to have between 9 and 13 satellites for the entire Horeca sector
in Amsterdam. Beyond 13 satellites, the system performance declined due to sub-optimal customer
assignments and increased vehicle travel. Experiments with smaller customer sets indicated that the
best performing number of satellites decreased linearly with the total demand. For a smaller city area
like the Wallen neighbourhood, fewer satellites (2-4) performed most efficient, considering different de-
mand sets.

Another factor in the system’s performance is the time span allowed for transshipment operations.
Experiments show that extending the maximum time span significantly reduces the number of vehicles
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required. Longer time spans enable vessels to perform multiple trips, consequently lessening the peak
load on road vehicles. Yet, in practice, it might be difficult to have long time spans for such operations
within the urban areas.

The analysis of different storage scenarios at satellites for both the Wallen neighbourhood and the
entire city centre reveals several key insights. Introducing storage capacity at satellites significantly re-
duces the required number of vessels, with a reduction of 25% found for 15m3 storage at four selected
satellites for the entire city centre. The results indicate that having some storage available provides
enough flexibility for the system to operate more efficiently. Increasing the storage capacity can im-
prove the performance, but shows less significant improvements.

For the considered IWLT system, the vessel depots are located quite far from the city centre, en-
suing long distances to and from the depots, and thus long travel times for the vessels. The effect of
closer depot placement was inspected. Reductions of 27% in distance on the waterways and 33% in
required vessels were found.

The performance of the IWLT system largely depends on the capacity of the road vehicles, since
smaller capacities necessitate more trips, consequently increasing the distance travelled on the roads
and the number of road vehicles required. The experiments show a substantial reduction in road ve-
hicles increasing the capacity from 5m3 to 10m3 and further improvements for up to 15m3. Additional
capacities reduce the number of road vehicles but offer less significant reductions.

The system’s behaviour under varying demand distributions was investigated, to analyse the scal-
ability and sensitivity. The total demand has an approximately linear relation with the required number
of vehicles and the distances travelled. Higher demand naturally necessitates more resources but fol-
lows a predictable pattern. The number of customers with demand shows a less clear relationship with
system performance, highlighting that total demand volume is a more critical factor than the number of
customers.

Furthermore, the sensitivity to transshipment times was analysed. Increased transshipment times
at customer locations result in a higher number of required road vehicles. However, the system shows
resilience up to a point, accommodating increased transshipment times without a proportional increase
in vehicle requirements. There is a minor increase in the number of required vessels with higher trans-
shipment times, attributed to longer waiting times at satellites.

The insights obtained from the experiments were combined to create four distinct IWLT system
scenarios. The performance of the four scenarios was compared with the current situation, where all
deliveries are conducted via road transport. Substantial reductions in vehicle kilometres of 22% to 28%
were found, depending on the scenario. The road distance was reduced by 70% to 72% compared to
the current situation. To accomplish these reductions, the system requires 11 to 22 road vehicles and
7-9 vessels, depending on the time span and storage capacities of the scenario.

All in all, the IWLT system results significant reductions in total vehicle kilometres. While this re-
duction is a promising result, the shift of a significant portion of the transportation burden to waterways
is a strategic advantage, leveraging the underutilised canal network in Amsterdam. A 70% to 72%
reduction in road kilometres is found compared to the current situation, which aligns with the system’s
primary objective of reducing the burden on the roads.



6
Conclusions & Recommendations

The development of integrated water- and land-based transportation systems necessitates numerous
design decisions. However, existing decision models often lack consideration for practical applica-
tions and synchronisation, particularly when dealing with large-scale problem instances, as described
in Section 2.3. Therefore, this thesis aims to answer the research question: What is the potential of
integrated water- and land-based inland transportation systems to improve city logistics towards live-
able cities? This question is answered by first investigating relevant IWLT systems and the associated
design choices. Next, current state-of-the-art decision models are considered. With this knowledge,
the modelling approach for the decision model is developed. Lastly, the performance of different IWLT
system scenarios is investigated and the potential of the IWLT system is evaluated.

In Section 3.2 the problem is defined as a two-echelon multi-trip location routing problem with satel-
lite synchronisation (2E-MTLRP-SS), incorporating capacitated vehicles, multiple depots and a global
time window, with a possibility of satellite storage. The approach used to develop the decision model
for this problem is given in Section 3.3 and consists of decomposing the problem in a facility location
problem, second-echelon vehicle routing problem, first-echelon vehicle routing problem and scheduling
problem. The vehicle routing and scheduling problems are further divided into multiple sub-problems.
In Chapter 4, metaheuristic are developed for each problem, interconnected through synchronisation
in time, space, and load, which facilitates the resolution of large-scale problem instances.

The results obtained for the case of Amsterdam provide realistic estimates for the required number
of vehicles and demonstrate that the IWLT system is feasible for implementation in Amsterdam. Fur-
thermore, the results indicate that the proposed IWLT system could significantly reduce the burden on
the road by utilising waterways, thus decreasing urban traffic and associated environmental, societal,
and economic aftereffects. This thesis investigates several practical considerations for implementing
IWLT systems in urban logistics.

The experiments conducted on the Wallen neighbourhood offer valuable insights. Given the signifi-
cant investment required to implement an IWLT system, it may be prudent to start with a smaller, more
focused system targeting a critical area of the city centre. For instance, supplying the ”Wallen” area,
which includes 345 Horeca locations, demands substantially fewer resources than servicing the entire
city centre. A system with just two vessels, two road vehicles, and two satellites is sufficient to meet
the demands of this area.

Combining the results of the performed experiments, four distinct IWLT system scenarios to supply
Horeca in the entire city centre were created and evaluated. Comparing the performance of these sce-
narios with the current situation, where all deliveries are conducted via road transport, the IWLT system
scenarios achieve substantial reductions in distances on the roads. Specifically, vehicle kilometres are
reduced by 22% to 28%, depending on the scenario. The primary objective of minimising road distance
is successfully accomplished, with potential reductions of 70% to 72% compared to the current situation.

These findings suggest that the IWLT system shows great potential for a more efficient urban lo-
gistics operation, reducing traffic congestion and environmental impact. The system’s performance
improves with longer operational time spans and shows resilience to variations in demand and trans-
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shipment times. This makes it a viable option for cities looking to optimise their logistics networks.

In summary, the developed decomposition based decision model is capable of handling complex,
large-scale problem instances and provides feasible solutions for real-life applications. It offers valu-
able insights for logistics service providers and urban planners, facilitating the development of efficient,
sustainable transportation systems that contribute to the goal of making cities more livable. This re-
search demonstrates the potential of IWLT systems to significantly improve urban logistics, with specific
recommendations for implementation in Amsterdam.

The remainder of this chapter provides recommendations based on the results of this study. It aims
to bridge the gap between theoretical models and practical implementation by offering recommenda-
tions tailored to the unique logistical needs of Amsterdam. By addressing these aspects, the chapter
aims to inform and guide the municipality of Amsterdam in implementing the IWLT system for city logis-
tics, contributing to a more efficient and sustainable urban environment. Additionally, it outlines future
research directions to enhance the robustness and applicability of the decision model.

6.1. Recommendations for Practice
The design and implementation of an efficient IWLT system involve several critical considerations. This
discussion delves into the practical aspects and offers recommendations based on the results and in-
sights obtained from the experiments, in addition to the insights provided in Section 5.6.

One of the key design choices is determining the number of satellites to use. The findings suggest
that increasing the number of satellites up to a certain number generally enhances system performance
in terms of distances travelled on the roads. Increasing the number of satellites past this number re-
sults in less efficient customer assignment and, therefore, more distance on the roads. The number of
satellites for this turning point seems linearly related to the total demand of the customers. Utilising be-
tween 9 and 13 satellites is recommended to effectively supply the entire Horeca sector in Amsterdam.
Two to four satellites are sufficient to supply Horeca locations in the Wallen neighbourhood.

However, there are practical considerations for using the satellites for Horeca supply, such as avail-
able space and potential conflicts with tourism activities. It is recommended that themunicipality investi-
gates the feasibility of dedicated logistics satellites, separate from tourism activities, to avoid congestion
and ensure the uninterrupted flow of goods.

For areas on the outskirts of the city centre or specific neighbourhoods with low demand, imple-
menting direct deliveries might be a viable strategy. This approach eliminates the need to for satellites
in these areas, allowing satellites to be allocated closer to neighbourhoods with many Horeca. This
could streamline operations and concentrate logistical efforts where they are most needed.

Storage capacity at satellites significantly impacts the efficiency of the logistics network. The results
highlight that even modest storage capacities of 15m3 at a few selected satellite locations can lead to
substantial reductions in the number of required vessels and road vehicles. Although limited space and
the visual impact of storage facilities in the city centre might be a concern, it is recommended to inves-
tigate the implementation of storage at a few strategic locations. Careful planning and aesthetic design
can mitigate the visual impact while providing the logistical benefits of storage capacity at satellites.

The time span available for logistics operations plays a crucial role in system efficiency. Extended
time spans allow for more flexible scheduling and can lead to fewer required vehicles and vessels.
However, the practicalities of urban life must be considered, such as daytime tourism and nighttime
noise regulations. An alternative approach could involve splitting the time span into two windows: one
in the morning and another in the evening. This approach could accommodate logistical needs without
overwhelming the city during peak hours, though it may result in less conventional working hours for
employees.

Moreover, the simultaneous arrival of vessels, as highlighted in Subsection 5.3.2, presents a schedul-
ing challenge for road vehicles, and will further do so for a split time span. To enhance the utilisation of
road vehicles and overall system efficiency, it is suggested to stagger the loading times at the depot for
vessels. This would prevent concurrent arrivals and allow for better synchronised schedules. However,
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this could lead to an increased number of required vessels, for which additional experiments should be
conducted. With some adjustments, the developed decision model can investigate this scenario.

Another approach to provide a longer time span without causing nuisance in the city centre during
peak hours could be to assign varying time windows to neighbourhoods. For instance, the busy inner
city can be supplied in the morning from 6 A.M. to 10 A.M., after which the vehicles move to neighbour-
hoods with less busyness during daytime. The time windows should comply with the time it takes to
perform a vessel trip to efficiently utilise the vessels.

The placement of depots is another critical factor. The experiments indicate that the chosen depot
locations lead to long travel distances, thus increasing the number of required vessels. Relocating
depots closer to the city centre could improve efficiency, but this comes with trade-offs. Closer depots
might mean longer supply routes from the highway, which could offset some of the benefits. A thorough
investigation is recommended to find a balanced solution.

For real-life applications, constraints to limit the number of customers assigned to a satellite were
implemented, to evenly distribute the satellite utilisation and minimise inconveniences for city residents.
However, this constraint has a negative effect on the distances travelled on the roads. It is important to
investigate the nuisance transshipment activities cause for city residents, so the trade-off in distance
and nuisance can be made.

For the investigated IWLT system, it is assumed that vessels are equipped with onboard cranes,
which is practical given the limited space and potential visual impact of cranes in the city centre. How-
ever, if the number of satellites is less than the number of vessels, it may be more cost-effective to
install cranes at the satellites instead. This approach could reduce the overall cost of the system while
maintaining operational efficiency.

All the results discussed are based on simulated data. For a more accurate and reliable design,
it is essential to collect and analyse real-life data on demand patterns and transshipment times. Pilot
studies and real-world trials would provide valuable insights and help refine the model to better reflect
actual conditions.

6.2. Recommendations for Further Research
The decomposition approach used for the decision model for IWLT systems shows promising results.
However, there are certain limitations to the model, which are investigated in this section.

Due to the significant problem size for the city of Amsterdam, comparing outcomes across differ-
ent scenarios poses challenges due to the variability in solution quality. Especially since the problem
size changes for the scenarios. For instance, when investigating the number of satellites to utilise,
the problem size increases when more satellites are used. As noted, conducting comprehensive tests
becomes essential to accurately gauge the impact of the number of opened satellites on vehicle re-
quirements. This necessitates extensive computational experiments to ensure dependable data for
decision-making. The same effect is seen for the varying storage scenarios at satellites. Introducing
storage increases the solution space, negatively impacting the quality of the solutions.

Preliminary tests were conducted for dedicating road vehicles to neighbourhoods, but without stor-
age at the satellites this did not improve the results. For further research, dedicating road vehicles to
a set of satellites with storage capacity can be investigated, since the reduction of the solution space
might have positive effects for this scenario.

Another method to improve the solution quality is to iterate the scheduling process. By reducing the
problem set in each iteration, the solutions can be further improved. Some tests to implement iterations
were performed, but rounding errors of the solver resulted in infeasible initial solutions. This problem
can be solved by various post-processing methods. For future work, it is recommended to implement
feedback loops and iterations between the models to improve the solution quality.

Futhermore, given that the quality of results is influenced by the initial solution provided, improving
these heuristics could lead to more consistent outcomes. Enhancing the quality of initial solutions has
the potential to minimise variation in solution quality, thereby enhancing overall system performance.
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Despite its strengths, the developed methodology is not without limitations. One limitation is its
reliance on simplified assumptions and demand data, which may not fully capture the complexity of
real-world logistics operations. Several assumptions underlie the developed methodology, shaping its
scope and applicability. These include assumptions regarding demand patterns, vehicle capacities,
and operational constraints. While these assumptions enable the formulation of tractable optimisation
problems, they also introduce simplifications that may not hold in practice.

The developed decision model is specifically designed for the city of Amsterdam, but it can be
adapted for other cities by implementing alternative infrastructure networks. Additionally, modifying ve-
hicle characteristics is straightforward, allowing the model to be applied to various two-echelon location
routing problems.

Overall, the decision model facilitates the comparison of various IWLT system scenarios. However,
the complexity of large problem instances and the interdependencies between different models can
impact solution quality. To enhance the results, an iterative approach could be adopted. This method
would gradually reduce the problem size and minimise reliance on the solution quality of preceding
models.
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Multi-modal last-mile delivery: Designing integrated water- and
land-based transportation systems for Horeca supply in

Amsterdam

L.C. Brockhoff, C. Karademir, B. Atasoy and M.W. Ludema

This research presents a comprehensive study on the development of Integrated Water and Land-based
Transportation (IWLT) Systems for city logistics. The research addresses the growing challenges of
urban traffic by proposing a decision model for multi-modal transportation systems that leverages
waterways alongside traditional road networks. The problem is defined as a two-echelon multi-trip
location routing problem with satellite synchronisation (2E-MTLRP-SS), incorporating capacitated
vehicles, multiple depots and time constraints. A decomposition-based decision model is introduced,
breaking down the problem into manageable sub-problems interconnected through synchronisation
in time, space, and load. The decision model uses metaheuristics to be able to handle large-scale,
realistic problems and provide feasible solutions for real-life applications. The model’s effectiveness is
demonstrated through a case study in Amsterdam, showing the potential of IWLT systems to reduce
congestion-related issues and improve the livability of cities. Different scenarios for the IWLT system
are investigated, to assist Amsterdam’s system developers in making design choices for implementation.
The proposed decision model is widely applicable to multi-modal transportation systems all over the
world.

I. Introduction
More and more people are living in urban areas, the
percentage of the population living in cities keeps
growing (Ritchie, 2018). All these people need food
and beverages, their waste has to be collected, and
many have to commute. While at the same time,
e-commerce is rapidly expanding (Huang et al., 2018).
This together results in a growing number of vehicles
in urban areas, which has, among other things, a
negative impact on the quality of life in cities (Daggers
& Heidenreich, 2013).

This study is motivated by the various negative
consequences of increased urban traffic on the quality
of life inside cities [1] [2] [3] and investigates methods
to reduce the effect of urban freight logistics. Change
is needed to improve city logistics, since the quality
of life in cities keeps worsening.

One way to reduce the increase in urban traffic is
to shift modalities or integrate different modalities for
multi-modal transportation systems. A multi-modal
transportation system coordinates the use of two or
more modes of transport. From depots, first-mode
vehicles are used for transport to satellites. Satellites

are transshipment locations, where the cargo is trans-
shipped between the transportation modes. From the
satellites, second-mode vehicles perform deliveries to
customers.
Interest in the use of waterways in city logistics is
growing, since the capacity of inland waterways is
currently underused, and transport using inland wa-
terways has the lowest external costs in terms of emis-
sions, noise, accidents and bottlenecks [4] compared
to other modes of transport.

However, despite the advantages, waterways are
not often implemented in city logistics yet due to
limited research on this issue [4]. To implement an
IWLT system in city logistics, many design choices
at the strategic and tactical levels need to be made.
Therefore, the need for a decision model that cov-
ers large-scale real-life applications arises. Existing
decision models often do not account for practical ap-
plications, especially for large-scale instances, which
require high-level synchronisation.

An IWLT system consists of three main problems,
the routes of the first-mode vehicles, the locations
of the satellites and the routes of the second-mode
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vehicles. These can be modelled as a two-echelon
location routing problem (2E-LRP), or a combination
of a facility location problem (FLP) and a two-echelon
vehicle routing problem (2E-VRP). Many variants
exist for these problems, adding extra attributes
for a more realistic representation of real-life
applications considering practical limitations. The
variants important for the IWLT system are multiple
trips, time-windows, satellite capacity and satellite
synchronisation. However, the basic versions of these
problems do not include the required synchronisation
for real-life implementation. Variants including
multiple trips and time-windows are extensively
studied in literature. However, variants including
satellite synchronisation and limited storage capacities
are relatively new.

The problem is defined as a two-echelon multi-trip
location routing problem with satellite synchronisation
(2E-MTLRP-SS), incorporating capacitated vehicles,
multiple depots and a global time window, with a
possibility of satellite storage. Existing decision mod-
els often do not account for practical applications,
which require high-level synchronisation, especially
for large-scale instances. A decomposition-based
decision model is introduced, breaking down the prob-
lem into manageable sub-problems interconnected
through synchronisation in time, space, and load. The
decision model is capable of handling large-scale,
realistic problems and providing feasible solutions
for real-life applications. The model’s effectiveness
is demonstrated through a case study in Amsterdam,
showing the potential of IWLT systems to reduce
urban traffic and its negative aftereffects. Different
scenarios for the IWLT system are investigated, to as-
sist the municipality of Amsterdam in making design
choices for implementation and creating policies for
regulations. The proposed decision model is widely
applicable to multi-modal transportation systems all
over the world.

II. Literature
Two-echelon vehicle routing problems are extensively
researched and over the years many variants have
been studied [5]. A large body of work exists on
many variants and therefore, this paper will focus
only on the two-echelon vehicle routing problems

with satellite synchronisation and/or satellite capacity
(2E-VRP-SS or 2E-VRP-SC), possibly with different
side constraints.

Marquès et al. [6] suggest a mixed integer program-
ming formulation for the problem with a branch-cut-
and-price algorithm to solve it. They are the first to
propose an exact algorithm for the two-echelon vehicle
routing problem with multi-trip, time-windows and
satellite synchronisation (2E-MTVRPTW-SS) and
include the possibility of multiple depots.

Some relatively new research is being conducted
by Karademir et al. [7]. The focus is on an IWLT
system in the city centre, this is why they consider an
important constraint, namely that only one transfer
can take place at a time. Multiple transfer operations
that happen simultaneously are not feasible in busy
areas with limited space. They are the first to take this
into account. The problem solved is a two-echelon
vehicle routing problem with time-windows, multiple
trips and satellite synchronisation and is formulated as
a mixed-integer linear programming problem. They
solve instances with one depot, four satellites and 10
customers.

Li et al. [8] use a variable neighbourhood search
heuristic to solve the two-echelon logistics system with
on-street satellites that uses time windows and satellite
transshipment constraints, which in the termination
of this paper is equal to the 2E-MTVRPTW-SS. They
can solve instances with one depot, up to 30 satellites
and 900 customers in under two hours. Next to this,
they evaluate the economic difference between the
use of electric or diesel vehicles and different vehicle
capacities.

Jia et al. [9] provide both a heuristic and exact
solution method for the two-echelon vehicle routing
problem with multiple depots, time-windows, satel-
lite capacity and satellite synchronisation. A mixed-
integer programming model and an adaptive large
neighbourhood search are developed. They are able
to solve problems with 2 depots, 10 satellites and 260
customers.

Anderluh et al. [10] use a large neighbourhood
search embedded in a heuristic rectangle/cuboid split-
ting to solve the two-echelon vehicle routing prob-
lem with multi-trip and satellite synchronisation (2E-
MTVRP-SS). They neglect time-windows and the
instances they solve are smaller than those of Li et al.
[8], but what makes their research interesting is its
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option to use multiple objectives, the standard eco-
nomic objective, but also negative external effects, like
emissions and disturbances, caused by congestion and
noise. This possibility makes their solution method
especially interesting when design choices still have
to be made.

All research discussed above assumes known satel-
lite locations, however, when investigating the im-
plementation of an IWLT system, suitable satellite
locations are not always predetermined. Two-echelon
location routing problems do consider satellite se-
lection. The available research on the two-echelon
location routing problem is significantly less than that
on the two-echelon vehicle routing problem, especially
concerning variations including satellite synchronisa-
tion.

Relatively new research is conducted by Bĳvoet
[11], who solve a two-echelon multi-trip vehicle rout-
ing problem with synchronisation (2E-MTVRP-SS)
with decomposition-based heuristics. Special in the
work is their consideration of multiple trips for both
echelons and usage of a heterogeneous fleet for the
second echelon. They solve large-scale instances
with one depot, 45 satellites and 758 customers. Be-
fore solving the 2E-MTVRP-SS suitable satellites are
determined from a set of potential locations.

Contardo et al. [12] observe the 2E-LRP can be
decomposed in two LRPs, connected by capacitated
satellites. They use a branch-and-cut algorithm to
solve the problem with multiple depots. An initial
solution for the second echelon is constructed. After
this, a solution for the first echelon is constructed by
randomly selecting one depot and serving all satellites
from it. A destroy-repair iteration is performed on the
second-echelon and then on the first-echelon problem.
Local Search is only performed on the second-echelon
problem.

Mirhedayatian et al. [13] claim to be the first to
study a two-echelon location routing problem with
time windows and synchronisation (2E-LRPTW-SS).
They propose a decomposition-based heuristic
solution approach, which is done in three stages.
First, a configuration of satellite locations is chosen,
then, customers are assigned for this configuration
and lastly, the routes of the echelons are established.
Feedback loops between the stages ensure working
towards the best solution. Different sets of instances
are tested and solved for at most 40 nodes. The

average computation time for the instances was 2993𝑠.

Escobar-Vargas et al. [14] presents two mixed-
integer programming formulations and an exact
solution framework by a dynamic time discretisation
scheme for a two-echelon location routing problem
with time windows and satellite synchronisation.
They formulate the problem as a Two-Echelon
Multi-Attribute Location-Routing Problem with
fleet synchronisation at intermediate facilities (2E-
MALRPS), which results in a 2E-LRPTW-SS by the
definitions used in this paper. The two mixed-integer
programming formulations used are a compact
formulation and a time-space formulation. Because of
the temporal dimension of the time-space formulation,
the model is more realistic but also less scalable.
They propose a dynamic discretisation discovery
(DDD) framework to improve the scalability. The
DDD solution framework is able to solve instances
of 6 depots, 4 satellites and 10 customers optimally
in 4936𝑠 and find feasible solutions for all instances
up to 6 depots, 4 satellites and 30 customers in 36000𝑠.

III. Methodology

A. Problem definition
The problem is to supply customers using multi-modal
transportation. Cargo originates from a depot of set
𝐷𝐶𝑤 , with unlimited storage and loading capacity,
allowing simultaneous loading of multiple vehicles.
Transshipment at the depot takes 𝑡DC minutes per
vessel.

The cargo is then transported by vessels of set 𝐹
from a depot to satellites. Vessels have a capacity
of 𝑞W [𝑚3] and a speed 𝑣W [𝑚/𝑠]. They can perform
multiple trips of set𝑊 and visit multiple satellites in
one trip, if those trips and satellites are assigned to
the same depot.

The satellite locations have to be selected from a
set 𝑆 of potential location, of which 𝑁S can be opened.
Satellites in the standard configuration have no storage
capacity, 𝑞S = 0, necessitating direct transshipment
from vessels to road vehicles, a process taking 𝑡S
minutes. Vessels might have to wait at a satellite until
the cargo is picked up and transshipment activities
can only be performed on one vessel and one road
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vehicle at a satellite simultaneously. However, the
satellite capacity can be adjusted for specific cases by
changing parameter 𝑞S.

Road vehicles of set 𝑅 transport the cargo from
satellites to customers in set 𝐶, with a demand of
𝑞𝑐 [𝑚3] per customer and the demand of all customers
has to be satisfied. Each road vehicle can perform
multiple trips of set𝑉 and can visit multiple customers
in a trip, as long as their load does not exceed their
capacity of 𝑞V [𝑚3]. Road vehicles have a speed of
𝑣V [𝑚/𝑠], and transshipment at a customer takes a
fixed 𝑡C minutes. Road vehicles start their first trip
and end their last trip at a road vehicle depot, 𝐷𝐶𝑣 .

Routes are established for both modalities: water-
ways for first echelon vehicles and roads for second
echelon vehicles. Distances between depot, satellites,
and customers are given by Δ𝑖 𝑗 .

All transshipment activities must occur within a
maximum time span, 𝑡max minutes. Vessels can start
their trip before the beginning of the time span and
exceed this time window when travelling back to the
depot. Road vehicles can still perform deliveries of
the last trip.

This problem is defined as a two-echelon multi-trip
location routing problem with satellite synchronisation
(2E-MTLRP-SS), incorporating capacitated vehicles,
multiple depots and a global time window, with a
possibility of satellite storage. Both echelons have a
homogeneous fleet. The primary objective is to min-
imise road burden while ensuring real-life feasibility
in terms of costs and time. This involves minimising
the number of vehicles required and adhering to all
time constraints. Additionally, minimising the dis-
tance travelled on the waterways is a sub-objective
to ensure that reducing road traffic does not result in
excessive congestion on the waterways.

Key decision variables include satellite locations,
the number of satellites to open, and vehicle numbers
for both modalities. Vehicle characteristics are
governed by regulations and system requirements
and are represented as parameters. The routes of the
vehicles are an important factor for the objectives,
which are evaluated by kilometres on the roads and
waterways.

B. Modelling approach
The strategy used in this research, is to decompose
the problem in an FLP and two separate VRPs
for water and street level, while incorporating
integration and synchronisation, and a scheduling
problem. For the two VRPs, using only exact methods
reduces the problem variations and instances that
can be tackled. Using only heuristic methods can
result in sub-optimal results. Therefore, to achieve
high-quality results, both heuristic and exact methods
are developed and combined. The scheduling
problem is added to enable multiple trips and reduce
the required number of vehicles. Multiple trips could
also be implemented in the vehicle routing problems,
but this makes the problem size significantly larger.

The problem is decomposed into four problems:
the facility location problem, the second-echelon
vehicle routing problem, the first-echelon vehicle
routing problem and the scheduling problem. The
VRPs and scheduling problem each consist of
multiple sub-problems. Below, an overview of the
(sub-)problems is given:

• Facility location problem :
MILP model to determine the satellite locations
to open and assign customers to those satellites

• Second-echelon vehicle routing problem :
– VRP road initial:

Heuristic method to establish initial routes
for the road vehicles

– VRP road improvement:
MILP model to improve the initial road
vehicle routes

– Split trips road vehicles:
Simple heuristics to split the road vehicle
routes into separate trips

• First-echelon vehicle routing problem :
– VRP water initial:

Heuristic method to establish initial routes
for the water vehicles

– VRP water improvement + synchronisation:
MILP model to improve the initial water ve-
hicle routes and implement synchronisation
between the two echelons

• Scheduling problem :
– Scheduling road vehicles:

MILP model to schedule the road vehicle
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trips and determine the required number of
road vehicles while respecting synchronisa-
tion constraints to water vehicles

– Scheduling water vehicles:
MILP model to schedule the water vehicle
trips and determine the required number of
water vehicles while respecting synchroni-
sation constraints to road vehicles

– Scheduling total system:
MILP model to improve the schedules for
both echelons while respecting synchronisa-
tion constraints

1. Facility Location Problem
The basic version of the facility location problem is
given below. The customer assignment is decision
variable𝑈𝑖 𝑗 , which is𝑈𝑖 𝑗 = 1 if customer j is assigned
to satellite i. 𝑂𝑖 = 1 if satellite i is open. The
objective is to minimise the sum of the distances
between satellites and their assigned customers, as
shown in Equation 1.

min
∑︁
𝑖∈𝑆

∑︁
𝑗∈𝐶

𝑈𝑖 𝑗 ∗ Δ𝑖 𝑗 (1)

∑︁
𝑖∈𝑆

𝑈𝑖 𝑗 = 1 ∀ 𝑗 ∈ 𝐶 (2a)

𝑈𝑖 𝑗 ≤ 𝑂𝑖 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐶 (2b)∑︁
𝑖∈𝑆

𝑂𝑖 ≤ 𝑁S (2c)

Constraint Equation 2a ensures each customer is
assigned to one satellite, constraint Eq. (2b) makes
sure the satellite can only be used when it is opened.
While Eq. (2c) limits the number of opened satellites
to 𝑁𝑆 .

Other variants of the FLP are investigated,
adding constraints to limit the number of customers
assigned to a satellite, since assigning too many
customers to one satellite is not desirable. Because
of the transshipment time at satellites, it might not
be possible to serve all these locations within a
reasonable time.

Two options are considered to limit the number of
customers assigned to a satellite. The first method

is to allow a maximum number of customers to be
assigned to a satellite, implemented by Equation 3a.
The second option is to limit the throughput allowed
at a satellite, given by constraint Equation 3b. The
throughput is the units of load transferred through one
satellite. ∑︁

𝑗∈𝐶
𝑈𝑖 𝑗 ≤

|𝐶 |
𝑁𝑆

· 𝑏 ∀𝑖 ∈ 𝑆 (3a)

∑︁
𝑗∈𝐶

𝑞 𝑗𝑈𝑖 𝑗 ≤
∑

𝑗∈𝐶 𝑞 𝑗

𝑁𝑆
· 𝑎 ∀𝑖 ∈ 𝑆 (3b)

2. Second-Echelon VRP
First, an initial solution is created for the second-
echelon vehicle routing problem using heuristics in-
spired by Greedy and Nearest Neighbour heuristics.
For each satellite one vehicle supplies all customers
assigned to that satellite, customers are greedily added
to a vehicle trip, until the vehicle capacity is reached,
upon which the vehicle returns to the satellite and
starts a new trip.

Next, the solution found by the heuristics is used as
an initial solution for the MILP model for the second-
echelon vehicle routing problem. This model is a
basic version of the VRP with capacity constraints,
the specifics can be found in Brockhoff [15]. From
this model, the routes of the second-echelon vehicle
trips are obtained, with their duration and demand at
their satellite. Post-processing calculations provide
the time it takes to perform trip 𝑘 and start trip 𝑙: 𝑝𝑘𝑙 ,
which is important for the road vehicle scheduling
problem.

3. First-echelon VRP and Synchronisation
The previous models were straightforward, but in the
first-echelon vehicle routing problem, integration of
the two echelons is applied, leading to a more complex
model.

Again, first, an initial solution for the first-echelon
vehicle routes is created, using the same method as for
the second-echelon vehicle routing problem. Then,
a more elaborate MILP model is developed, with ca-
pacity, time and synchronisation constraints. Basic
constraints are implemented in the same manner as the
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second-echelon vehicle routing problems. More com-
plex constraints are added, relevant for synchronising
the two echelons involve obtaining the sequence in
which vehicles arrive (𝐵𝑖𝑘𝑙 , Eq. (4)) and depart (𝐺𝑖𝑘𝑙 ,
Eq. (5)) satellites. For vehicle trips 𝑘 and 𝑙 in the com-
bined set of trips for both echelons 𝑊𝑉 , 𝐵𝑖𝑘𝑙 = 1 if
vehicle k arrives at satellite 𝑖 after vehicle 𝑙,𝐺𝑖𝑘𝑙 = 1 if
vehicle trip 𝑘 leaves satellite 𝑖 after vehicle trip 𝑙. The
constraints for these sequences are only implemented
if both vehicle trips 𝑘 and 𝑙 visit satellite 𝑖, indicated
by 𝑌𝑖𝑘𝑙 = 1. Eq. (7) ensures the synchronisation in
terms of load at satellites. The entire mathematical
model is specified in Brockhoff [15], below, the most
important synchronisation constraints are given.

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝐴𝑖𝑘 − 𝐾 ∗ 𝐵𝑖𝑘𝑙 − 𝐴𝑖𝑙 ≤ 0

∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ 𝑆 (4a)

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝐵𝑖𝑘𝑙+𝐵𝑖𝑙𝑘 = 1

∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ 𝑆 (4b)

𝐵𝑖𝑘𝑙+𝐵𝑖𝑙𝑘 ≤ 1 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ 𝑆
(4c)

𝑍WV
𝑖𝑘 = 0 ⇒ 𝐵𝑖𝑘𝑙 = 𝐵𝑖𝑙𝑘 = 0

∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ 𝑆 (4d)

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝐷𝑖𝑘 − 𝐾 ∗ 𝐺𝑖𝑘𝑙 − 𝐷𝑖𝑙 ≤ 0

∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ 𝑆 (5a)

𝑌𝑖𝑘𝑙 = 1 ⇒ 𝐺𝑖𝑘𝑙 + 𝐺𝑖𝑙𝑘 = 1 ∀𝑘, 𝑙 ∈ 𝑊𝑉, 𝑖 ∈ 𝑆
(5b)

𝐵𝑖𝑘𝑙 = 1 ⇒ 𝐺𝑖𝑘𝑙 = 1 ∀𝑘, 𝑙 ∈ 𝑉0, 𝑖 ∈ 𝑆
(5c)

𝐵𝑖𝑘𝑙 = 1 ⇒ 𝐺𝑖𝑘𝑙 = 1 ∀𝑘, 𝑙 ∈ 𝑊0, 𝑖 ∈ 𝑆
(5d)

𝑍WV
𝑖𝑘 = 0 ⇒

∑︁
𝑙∈𝑊𝑉

𝐺𝑖𝑘𝑙 +
∑︁

𝑙∈𝑊𝑉

𝐺𝑖𝑙𝑘 = 0

∀𝑖 ∈ 𝑆, 𝑘 ∈ 𝑊𝑉 (5e)

𝐵𝑖𝑘𝑙 = 1 ⇒ 𝐿𝑆𝑖𝑘 − 𝐿𝑆𝑖𝑙 −𝑄W
𝑖𝑘 ≥ 0

∀𝑘, 𝑙 ∈ 𝑊𝑉0, 𝑖 ∈ 𝑆 (6a)

𝐿𝑆𝑖𝑘 ≤
∑︁
𝑤∈𝑊

𝑄W
𝑖𝑤 ∀𝑘 ∈ 𝑊𝑉, 𝑖 ∈ 𝑆

(6b)

𝑍WV
𝑖𝑘 = 0 ⇒ 𝐿𝑆𝑖𝑘 = 0 ∀𝑘 ∈ 𝑊𝑉, 𝑖 ∈ 𝑆

(6c)

𝑍WV
𝑖𝑘 = 1 ⇒ 0 ≤

∑︁
𝑙∈𝑉

𝐿𝑉𝑖𝑙 ∗𝐺𝑖𝑘𝑙 + 𝐿𝑉𝑖𝑘 − 𝐿𝑆𝑖𝑘 ≤ 𝑞S
𝑖

∀𝑖 ∈ 𝑆, 𝑘 ∈ 𝑊 (7a)

4. Scheduling Problem
The last problem is the scheduling problem of
vehicle trips, which schedules the found trips for
the road and water vehicles. This problem is split
into three sub-problems: MIP optimisations for first
the road vehicle schedule; second, the water vehicle
schedule; and lastly, the integrated schedule for all
vehicles. The scheduling problem is split up to reduce
the problem instances for MIP optimisation. The
outputs of the separate scheduling problems are used
as initial solutions for the next scheduling problem.
Throughout the sub-problems the complexity reduces
and the solution improves.

Each scheduling model is an addition to the water
vehicle routing problem, the constraints given for the
first-echelon vehicle routing problem are still valid,
with extra constraints added for each scheduling
problem.

Scheduling the trips is necessary to determine the
number of vehicles required for performing all deliv-
eries within a specified time span. With unlimited
vehicles, each vehicle could perform one trip and the
time span would be minimal. However, vehicles are
expensive, so this is not desirable. Also, if unlimited
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time is available, all deliveries could be made by just
one vehicle per echelon. Again, this is not desirable.
Each day, new orders are made, and with such a sys-
tem, the orders will pile up. Therefore, a balance has
to be found between the time span and the number of
vehicles.

Road Vehicle Scheduling
First, a basic initial schedule for the road vehicle trips
is determined, by adding trips to a road vehicle until
the time span is reached. This initial schedule is used
to reduce the size of the problem for the MIP solver.
The initial schedule reduces the number of road
vehicles for the MIP solver by approximately 25%.

The constraints added to the first-echelon vehicle
routing problem include basic vehicle trip routing
constraints for the road vehicles, such as round trips,
leaving the depot only once and performing each trip
once. An important new decision variable is 𝑇𝑉

𝑘𝑙𝑟
,

which indicates whether road vehicle 𝑟 performs trip
𝑘 and next performs trip 𝑙. Equation 8 ensures a road
vehicle can only perform the trips sequentially if the
start time of trip 𝑙 is later than or equal to the end
time of trip 𝑘 .

𝑇V
𝑘𝑙𝑟 = 1 ⇒ 𝐴R

𝑙𝑟 ≥ 𝐴R
𝑘𝑟 + 𝑝𝑘𝑙

∀𝑟 ∈ 𝑅, 𝑘 ∈ 𝑉0, 𝑙 ∈ 𝑉 (8)

Water Vehicle Scheduling
The water vehicle scheduling model exists of similar
constraints as the road vehicle scheduling model,
but with the decision variables only for the water
vehicles. The road vehicle schedule is integrated as a
fixed solution, only the arrival times can be adjusted,
if that improves the water vehicle schedule and the
schedule remains feasible for the road vehicle. The
water vehicle trips found in the first-echelon vehicle
routing problem are scheduled to water vehicles. The
goal is to minimise the number of water vehicles
required to perform all trips, while respecting the
synchronisation constraints. Water vehicles can only
perform trips that start from the same depot.

Integrated Scheduling
Now the road and water vehicle sets are reduced
by the previous scheduling models, the models are
integrated to improve the schedules for both echelons.
The results of the previous models are implemented
as an initial solution, to guide the model in the right
direction. The decision variables are active for both
echelons, meaning the model has the freedom to
adjust both schedules. The objective of this model is
to minimise the required number of vehicles for the
two echelons and to minimise the distance travelled
on the roads.

C. Case Amsterdam
This research is conducted in collaboration with the
municipality of Amsterdam. The specific IWLT sys-
tem for the city centre of Amsterdam is solved with
the model to provide the municipality with insights
for implementation, while simultaneously verifying
the modelling approach developed in this research.
Data about the demand is collected, parameter values
determined and possible satellite locations, customer
(Horeca) locations and the network are specified.

Experiments are performed on problem instances
for Horeca supply in the city of Amsterdam. The
canal and road network are obtained from previous
research on IWLT systems done between Delft
University of Technology and the municipality of
Amsterdam. These networks are connected by
satellites, of which the nodes are included in both
networks. More information about the constructions
of the networks can be found in the research by
Bĳvoet [11].

The customer (Horeca) locations can be obtained
through public data from the municipality of
Amsterdam. The city centre counts 1635 Horeca
locations. Furthermore, the potential satellite
locations are determined by selecting existing transfer
sites in the city centre, 56 in total. The locations used
in this research are equal to those in Bĳvoet [11].

The research of Bĳvoet [11] provides 10 demand
sets for the Horeca locations, each set representing one
simulated day. The demand is based on the probability
of 45% that a location has a demand per day. The
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demand can be one, two or three units. In the work of
Bĳvoet [11], a unit is specified as one rolling container,
which is 0.8m in length, 0.64m in width and 1.6m
in height, resulting in 0.8192m3. The 10 demand
sets are all quite similar, with the number of Horeca
locations with demand between 696 and 758 per day,
and the total demand between 1416 and 1520 units. It
is important to investigate the efficiency of the system
when demand changes and, with that, the scalability
of the system. Extra demand sets with more extreme
values are created to test the adaptability of the system.
Table 1 shows the demand probability distribution, the
total demand and number of customers with demand
for each set.

The demand units were determined as 0.8192m3,
but in the rest of this research one demand unit is
equal to one cubic meter. This makes calculations
more clear and accounts for sub-optimal use of
vehicle capacity.

Table 1. Demand probability distribution per demand
set with the total demand and number of customers with
demand for one day, demands in 𝑚3

Set Demand Customers

1
Demand 0 1 2 3

988 506
Probability 70% 10% 10% 10%

2
Demand 0 1 2 3

1498 750
Probability 55% 15% 15% 15%

3
Demand 0 1 2 3

1952 971
Probability 40% 20% 20% 20%

4
Demand 0 1 2 3

2502 1240
Probability 25% 25% 25% 25%

Some input parameters are determined for the case,
some of these parameters are bounded by city regu-
lations on vehicle characteristics. The transshipment
times are obtained from Bĳvoet [11].

Below, an overview of the parameter values used
for the experiments is given. These values are the
baseline for all experiments unless otherwise stated
in the experiment description.

𝑞R = 15𝑚3 capacity of road vehicles
𝑣V = 5𝑚/𝑠 speed of road vehicles
𝑞W = 50𝑚3 capacity of water vehicles
𝑣W = 1.6𝑚/𝑠 speed of water vehicles
𝑡DC = 25𝑚𝑖𝑛 transshipment time at the depot
𝑡S = 3𝑚𝑖𝑛 transshipment time at satellites
𝑡C = 1.5𝑚𝑖𝑛 transshipment time at customers

𝑡max = 480𝑚𝑖𝑛 maximum time span
𝑞S = 0 storage capacity of satellites

To quickly investigate some scenarios and the
model’s sensitivity, a smaller test set is created. This
set exists of the Horeca locations in a busy city area,
the "Wallen". This area contains 345 Horeca locations,
which is approximately 21% of the total case.

D. Experiments
Experiments are conducted on the total case and the
test set, which allow for the investigation of decision
variables under different scenarios of interest, as well
as validating the modelling approach used.

First, model settings are investigated, starting with
the computation time for the sub-problems. Also, the
different FLP strategies for limiting the number of
customers assigned to satellites are tested. Second,
system scenarios are explored, varying the number of
opened satellites and the maximum time span. Third,
sensitivity analyses are performed, to understand how
the system responds to different parameter values and
demand sets. Lastly, the overall system performance
is evaluated.

1. Model settings

Computation time
The time limit parameter specifies the maximum
amount of computation time allowed for the solver
to find a solution. It is essential to strike a balance
between computation time and solution quality,
particularly in the context of large IWLT systems.
While the optimisation model should produce results
within a reasonable time frame, the definition of
"reasonable time" in this application is nuanced. For
these tests, the number of opened satellites is set to
𝑁S = 15. The rest of the parameters are specified
in subsection III.C. To be able to investigate the
impact of changing the time limit of one model, the
computation time of that model is varied, while the
time limits of the other problems stay at 7200s.

The facility location problem finds optimal solu-
tions within 200s for the total case, so varying the
computation time for the FLP is unnecessary.

Increasing the time limit for the second-echelon
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vehicle routing problem from 100s to 1000s reduces
the distance on the roads significantly, and up to 3600s
there is still some reduction visible. Increasing the
time limit further does not improve the solution much
further. A computation time of 3600s results in an
optimality gap of 10%. The first-echelon vehicle
routing problem combined with the synchronisation
is a complex model.

Increasing the computation time does not have any
visible effect up to 7200s. At 7200s, the distances
on the roads and waterways decrease. The results
do not change when increasing the computation time
further up to 10800s. Varying the time limit for the
road scheduling problem has a large impact on both
the number of road vehicles required and the distance
travelled on the roads. The results keep improving
for increased computation times, but the effect is less
significant for higher time limits. The optimality gap
converges to approximately 6%.

The water vehicle scheduling model only affects
the number of water vehicles required to perform
the trips found by the first-echelon vehicle routing
model. For a computation time of 3600s, the number
of required vehicles decreases from 34 to 16, which
is a reduction of more than 50%. Increasing the
computation time to 10800s results in 13 required
water vehicles, representing a reduction of 62%.

FLP strategies
Two variants to limit the customers assigned to
satellites in the FLP are given before. For both of
these constraints, many possible equations can be
used that change the tightness of the constraint. It is
possible to precisely even out the number of customers
so each satellite has the same number of customers
assigned, but this might not have the best results since
some customers will be assigned to satellites further
away. Some freedom can be implemented, allowing
the assignment of more customers to satellites when
that is more favourable for the distance travelled
on the roads. It is investigated how much freedom
is necessary to get good quality solutions while
distributing the satellite utilisation.

Experiments with the constraints are performed on
the Wallen neighbourhood defined for the demand
distribution provided by Bĳvoet [11], resulting in 151

Horeca locations with a total demand of 290𝑚3 in the
Wallen neighbourhood. The factors 𝑎 and 𝑏 are varied
from 1 to 2.5 and the number of opened satellites 𝑁𝑆

is set to 2 or 3.

Figure 1. Total distance travelled on the roads under
different FLP constraints for 2 and 3 opened satellites
(Ns=2,3), factor 𝑎 limits the throughput, factor 𝑏 limits the
number of customers

In Figure 1 the distances travelled on the roads
under different FLP constraints are shown. As can
be expected, loosening the constraint results in
fewer kilometres travelled on the roads. However,
allowing 1.5 times the evenly divided number of
customers to be assigned to a satellite provides enough
flexibility for near-optimal customer assignment to
satellites while distributing the utilisation more evenly.

The impact of adjusting the maximum throughput
constraint appears to have a larger negative impact
on the road distance, compared to tightening the
maximum customer constraint. This can be attributed
to the need to assign customers with higher demand
to more distant satellites under throughput constraints.
While the constraint on the maximum number of
customers allows for more favourable assignments
by selecting the customer with the least additional
distance, the throughput constraint might necessitate
less optimal assignments.
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2. Scenarios

Number of Satellites
One of the most important design choices for
developing an IWLT system is the number of satellites
to open. Having a small number of satellites in the
city centre means these satellites are used intensively,
which can create nuisance under city residents.
However, a large number of satellites might also
not be desirable since satellites require blockage
of parking spaces and can congest the waterways
when transshipment is taking place. Therefore, it
is important to have insights into the effect of the
number of satellites on the road and water kilometres,
so these factors can be weighted and decisions can be
made.

The model is run for 3 to 25 opened satellites to
investigate the effect of the number of satellites, with
the FLP constraint on the number of customers with
𝑏 = 1.5.

It is interesting to analyse the systems performance
for the results of the road scheduling problem first,
since all scenarios use the same number of road
vehicles after this scheduling problem because of the
lower bound on this. Therefore, the results are not yet
dependent on the extra distance travelled from and to
the road vehicle depots by added vehicles and can be
easily compared. The optimality gaps determined by
Gurobi for these scenarios are approximately equal to
the Optimality gaps for fewer opened satellites and
the same number of road vehicles is used. Figure 2
shows the distances travelled on the roads found by
the road vehicle scheduling problem and found after
the combined scheduling problem. Looking at the
distances after the road scheduling problem, it can
be seen that the distance reduces substantially for
each extra opened satellite for up to 9 satellites, is
at a minimum for 12 opened satellites and starts to
increase for extra opened satellites. This indicates
the systems performance is better for 9 to 13 opened
satellites, which can have three causes, first: the FLP
constraint forces customers to be assigned to the
extra opened satellites, even if these locations are
less favourable, second: vehicles might have to travel
more between satellites, third: the road vehicle depots
might be located further away from some satellites.
Investigating the results of the distance travelled after

the combined scheduling model, the same trend is
visible. Noteworthy is that no improvements on the
distance is found in the combined scheduling problem
for 16 or more opened satellites. The optimality
gaps of the combined scheduling model determined
by Gurobi for these scenarios are approximately
equal to the optimality gaps for fewer opened satellites.

Concluding, opening 9 to 13 satellites seems to
be a reasonable choice. For the remaining experi-
ments, 12 satellites are opened, to ensure the system’s
adaptability to different scenarios.

Figure 2. Distances travelled on the roads after road
vehicle scheduling and combined scheduling, supplying
the entire city centre with demand set 2, for 3 to 25 opened
satellites

Time Span
The time span in which the deliveries are performed is
crucial for the IWLT system to be feasible in real-life
applications. The available time impacts the system
requirements to serve all customers. To see the effect
on these requirements, different maximum time spans
are tested and the results investigated.

The maximum time spans (𝑡max) evaluated are 4, 6,
8, 10, and 12 hours, with 12 satellites opened for the
entire city center of Amsterdam, using the demand
data provided by Bas-2023, specified in Table 1 set 2.
Additional experiments are conducted for the Wallen
neighborhood with time spans ranging from 2 to 12
hours, in increments of 1 hour, utilising two satellites.
The demand distribution for these experiments is also
based on set 2 but is limited to the Horeca locations
in the Wallen neighbourhood.
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The impact of increasing the time span can best
be shown through the number of vehicles required,
as shown in Figure 3, especially for vessels. Half of
the vessels are required when extending the time span
from 4 to 12 hours, which is expected since vessel
trips have long completion times, so with a shorter
time span, vehicles are not always able to perform
multiple trips.

The decrease is also visible for road vehicles. How-
ever, the decrease is less significant. This phenomenon
can be linked to the vessel schedule. Most of the ves-
sels arrive at approximately the same time at satellites,
so at that moment, many road vehicles are required as
well.

(a) Wallen neighbourhood

(b) Entire city centre

Figure 3. Required number of vehicles for varying time
spans 𝑡max

Storage Capacity Satellites
Since space is scarce in most city centres, the basic
scenario investigated assumes no storage capacity
at satellites. However, at certain locations, some

storage might be feasible, potentially enhancing
system performance. Through field research, satellite
locations with potential for storage are identified. To
supply the entire city centre with 12 satellites, four of
the locations show significant potential to incorporate
storage facilities. In the Wallen neighbourhoods with
four satellites, two of the satellites are feasible for
storage.

(a) Wallen neighbourhood

(b) Entire city centre

Figure 4. Required number of vehicles for different
storage scenarios at satellites

Figure 4 shows the required vehicles for different
storage scenarios at satellites for the Wallen neigh-
bourhood and the entire city centre. As can be seen,
having 15m3 storage capacity at the selected satellites
lowers the number of vessels, from 5 to 4 for the
Wallen neighbourhood and from 12 to 9 for the
entire city centre, which are significant improvements.
Further improvements are observed for the increased
storage scenarios, with a small discrepancy at a
storage capacity of 67m3 for the selected satellites,
where the number of vessels increase while the
number of road vehicles decrease. This effect is likely
due to the storage capacity of 67m3 at the selected
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satellites exceeding the vessel capacity of 50m3.
Consequently, when the larger storage is utilised by
the road vehicle schedule, it might necessitate more
complex movements of the vessels to accommodate
this utilisation.

The hypothetical scenario of unlimited storage
capacity at all satellites further reduces the number of
vessels, requiring only 23 road vehicles and 8 vessels.
This scenario highlights the substantial impact of
satellite storage capacity on the logistics network,
demonstrating significant performance gains with
storage. However, the most significant improvement
in required vessels for the entire city centre is made
when increasing the storage at the selected satellites
from zero to 15m3, indicating that having some
storage available provides enough flexibility for the
system to operate more efficiently.

3. Sensitivity Analyses

Demand Sets
Different demand sets are specified in subsection III.C.
These demand sets are implemented in the full case
scenario with 12 satellites and a time span of 8 hours.
The required number of vehicles for each demand set
are shown in Figure 5. The number of water and road
vehicles increases approximately linearly with the size
of the demand sets.

Figure 5. Number of required road and water vehicles for
different demand sets

To get better insight in the influence of the demand

and number of customers with demand, additional
experiments are performed on the Wallen case. An
overview of the demand sets is given in Table 2.

Table 2. Overview of the demand sets

Demand set
Total demand

[𝑚3]
Customers with

demand
1 220 114
2 290 151
3 428 212
4 541 263
5 679 345
6 687 279
7 345 345
8 870 174

Figure 6 shows the results for the demand sets
of Table 2 in the Wallen neighbourhood, with the
total demand on the x-axis. As can be seen, the
relation between the total demand and the results for
the distances and number of vehicles is linear. The
linear relationship between the total demand and the
distances travelled indicates a predictable pattern in
how demand affects distances. It suggests that the
model is robust and reacts predictably to changes in
demand, which is a desirable property for any decision-
making tool. This robustness builds confidence in the
model’s use for real-life applications.

Transshipment Times
The transshipment time, particularly at customers,
constitutes a significant portion of the total time span.
The transshipment time often exceeds travel time in
terms of duration, especially for road vehicles. The
transshipment times used in the other experiments
are based on the work of Bĳvoet [11]. However, it is
worth noting that these times seem to be optimistic
and may not accurately reflect real-world scenarios.

This sensitivity analysis involves testing the IWLT
system requirements under different transshipment
times at customers. The analysis evaluates the
system’s sensitivity to changes in transshipment times
and helps identify thresholds where performance may
be significantly impacted.

The number of required road vehicles increases
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(a) Distance travelled on the roads and waterways for
different total demand in the Wallen neighbourhood

(b) Required number of vehicles for different total demand
in the Wallen neighbourhood

Figure 6. Results for the demand sets in the Wallen
neighbourhood

for longer transshipment times, however, more than
tripling the transshipment time of 𝑡C = 1.5𝑚𝑖𝑛 in
the entire city centre only requires 26% more road
vehicles. Furthermore, doubling the transshipment
time of 𝑡C = 5𝑚𝑖𝑛 only increases the road vehicle
requirement by 16%. For the Wallen case, no
increase in the number of vehicles is required for
transshipment times up to 5 minutes.

Increasing the transshipment time at customers
does also affect the number of water vehicles required,
however less significant. Since road vehicles have
longer trip times, water vehicles might have to wait
longer at satellites, which can ultimately results in
more required water vehicles.

With these results, the system does not appear to

be overly sensitive to variability in customer trans-
shipment times. When the road vehicles are not fully
utilised, the increased transshipment times can be
accommodated. When the transshipment time is in-
creased further, a linear relation between the required
number of road vehicles and increased time seems to
exist.

4. Overall system performance
Based on the experimental analysis, it is essential to
evaluate how the IWLT system performs compared
to the current situation. Leveraging insights from
the experiments, four system scenarios are selected
to assess performance, identify bottlenecks, and
compare the results with the current state. The
scenarios represent various combinations of the key
design choices, specified in Table 3

Table 3. Selected scenarios for performance evaluation

Scenario
Number of
satellites

Time span
[hours]

Satellite storage

A 9 4 None

B 12 8 None

C 12 8 15m3 selected four

D 12 12 15m3 all

For these scenarios, the model is solved with more
allocated computational resources, specifically by
allocating more CPUs and tasks, to ensure a compre-
hensive and accurate comparison of the IWLT system
with the current situation. The FLP strategy used
is to limit the number of customers with parameter
𝑏 = 1.5, and the demand follows the distribution
of set 2 Table 1. The parameters defined in sub-
section III.C do not change unless specified in Table 3.

In the current situation all deliveries are conducted
via road transport. This situation represents the
existing scenario and is modelled as a straightforward
vehicle routing problem with capacity constraints. A
single depot is placed at the city’s border, ensuring
that only the distances travelled within the city centre
are considered. The vehicle characteristics are
consistent with those used in the IWLT system, with
a capacity 𝑞𝑉 = 15𝑚3 and speed 𝑣𝑉 = 5𝑚/𝑠.

13



Table 4 presents the distances travelled for both
the current situation and the selected IWLT system
scenarios. The IWLT system scenarios result in
vehicle kilometres reductions of 22%, 24%, 27% and
28% compared to the current situation, for scenario
A, B, C and D, respectively. These reductions are
a positive step, but the primary goal of the IWLT
system is to minimise distance on the roads. All
three scenarios accomplish this goal with substantial
reductions, 70% for scenario A, 71% for scenario
B and 72% for scenario B and C, signifying major
improvements over the current situation.

Table 4. Selected scenarios for performance evaluation

Scenario
Road

kilometres
Water

kilometres
Vehicle

kilometres

Current 579 X 579

A 172 278 450

B 166 273 439

C 163 260 423

D 163 252 415

IV. Results
The Integrated Water-Land Transport (IWLT) system
demonstrates significant potential for enhancing
urban logistics, particularly in densely populated city
centres like Amsterdam. The experiments reveal
several crucial insights into the system’s performance
under varying scenarios and parameters, which can
assist in implementation and further development.

Two methods were evaluated to limit the number
of customers assigned to satellites: one based on
maximum customers (factor 𝑏) and the other on
maximum throughput (factor 𝑎). Experiments
indicated that allowing more customers to be assigned
to satellites results in fewer kilometres travelled on
the roads, and a factor of 𝑏 = 1.5 times the evenly
divided number of customers per satellite provided
a balance between optimal assignments and even
distribution of satellite utilisation.

The optimal number of satellites was found
to be between 9 and 13 for the entire Horeca

sector in Amsterdam. Beyond 13 satellites, the
system performance declined due to sub-optimal
customer assignments and increased vehicle travel.
Experiments with smaller customer sets indicated that
the optimal number of satellites decreased linearly
with the total demand. For a smaller city area like
the Wallen neighbourhood, fewer satellites (2-4) were
optimal based on demand sets.

Extending the maximum time span for transship-
ment operations significantly reduces the number of
vehicles required. Longer time spans enable water
vehicles to perform multiple trips, lessening the peak
load on road vehicles.

The total demand has a linear relationship with
the required number of vehicles and the distances
travelled. Higher demand naturally necessitates more
resources but follows a predictable pattern. The
number of customers with demand shows a less clear
relationship with system performance, highlighting
that total demand volume is a more critical factor
than the number of customers.

Increased transshipment times at customer
locations result in a higher number of required road
vehicles. However, the system shows resilience up
to a point, accommodating increased transshipment
times without a proportional increase in vehicle
requirements. There is a minor increase in the number
of required water vehicles with longer transshipment
times, attributed to longer waiting times at satellites.

Implementing the IWLT system results in a
24% reduction in total vehicle kilometres. While
this reduction is a promising result, the shift of a
significant portion of the transportation burden to
waterways is a strategic advantage, leveraging the
underutilised canal network in Amsterdam. A 71%
reduction in road kilometres is found compared to
the current situation, which aligns with the system’s
primary objective of reducing the burden on the roads.

V. Conclusions
The results obtained for the case of Amsterdam
provide realistic estimates for the required number
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of vehicles and demonstrate that the IWLT system
is feasible for implementation in Amsterdam.
Furthermore, the results indicate that the proposed
IWLT system could significantly reduce the burden
on the road by utilising waterways, thus decreasing
urban traffic and associated environmental, societal,
and economic aftereffects.

This research highlights several practical consid-
erations for implementing Integrated Water- and
Land-Based Transportation (IWLT) systems in urban
logistics. One key finding is the significant impact
of the time span on the number of water vehicles
required. Since water vehicles are costly, minimising
their number is crucial to making the system attractive
for logistics service providers. The number of water
vehicles needed is directly related to the number
of trips they can complete within the given time
span. However, the simultaneous arrival of water
vehicles presents a scheduling challenge. To enhance
the utilisation of road vehicles and overall system
efficiency, it is suggested to stagger the loading
times at the depot for water vehicles. This would
prevent concurrent arrivals and allow for better
synchronised schedules. Furthermore, it can be
interesting to investigate making storage available at
some suitable satellite locations. This could improve
the scheduling, since water vehicles would have no
waiting time. Storage capacity can be implemented
in the model by adjusting the satellite stock constraints.

Another critical factor for practical applications is
the number of satellites opened. Opening between
9 and 13 satellites is recommended to effectively
supply the entire Horeca sector in Amsterdam. If the
municipality aims to further distribute the logistical
burden, opening up to 20 satellites can still yield
favourable results. At least 9 satellites should be
opened to achieve significant reductions in road
distance travelled and to ensure optimal system
performance.

The experiments conducted on the test case offer
valuable insights. Given the significant investment
required to implement an IWLT system, it may
be prudent to start with a smaller, more focused
system targeting a critical area of the city centre.
For instance, supplying the "Wallen" area, which

includes 345 Horeca locations, demands substantially
fewer resources than servicing the entire city centre.
A system with just two water vehicles, two road
vehicles, and two satellites is sufficient to meet the
demands of this area.

Combining the results of the performed exper-
iments, four distinct IWLT system scenarios to
supply Horeca in the entire city centre were created
and evaluated. Comparing the performance of
these scenarios with the current situation, where all
deliveries are conducted via road transport, the IWLT
system scenarios achieve substantial reductions in
distances on the roads. Specifically, vehicle kilome-
tres are reduced by 22% to 28%, depending on the
scenario. The primary objective of minimising road
distance is successfully accomplished, with reduc-
tions of 70% to 72% compared to the current situation.

These findings suggest that the IWLT system can
lead to a more efficient urban logistics operation,
reducing traffic congestion and environmental impact.
The system’s performance improves with longer
operational time spans and shows resilience to
variations in demand and transshipment times. This
makes it a viable option for cities looking to optimise
their logistics networks.

The developed model is capable of handling large
problem instances and provides feasible solutions
for real-life applications. The model offers valuable
insights for logistic service providers and system
designers, facilitating the development of efficient
transportation systems.
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B
Appendix: Python code

B.1. Facility Location Problem
1 impor t gurobipy as gb
2 from gurobipy impor t quicksum , GRB
3 impor t t ime
4 impor t os
5 impor t numpy as np
6 impor t pandas as pd
7 impor t math
8

9

10 #%% Import data
11 path = os . getcwd ( ) + ” / Inpu ts / ”
12 t_l im_FLP = i n t ( os . getenv ( ’ t_l im_FLP ’ ) )
13 mip_FLP_str = os . getenv ( ’mip_FLP ’ )
14 mip_FLP = f l o a t ( mip_FLP_str )
15

16 def FLP_num_cust (Ns ,
17 number ,
18 customers ,
19 df_horeca_data_info ,
20 s a t e l l i t e _ l o c a t i o n s ,
21 horeca_sets ,
22 d i rec ted ,
23 df_SE_shor tes t_d is t_d i rec ted_True ,
24 df_SE_shor tes t_d is t_d i rec ted_Fa lse ,
25 df_horeca_demand_scenarios ) :
26

27 path_out = os . getcwd ( ) + ” / Outputs / ”
28 model = gb . Model ( ’FLP ’ )
29 np . random . seed (123)
30

31 i f d i r ec ted == ’ t r ue ’ :
32 df_SE_shor tes t_d is t = d f_SE_shor tes t_d is t_d i rec ted_True . f i l l n a (10001)
33 e l i f d i r ec ted == ’ f a l s e ’ :
34 df_SE_shor tes t_d is t = d f_SE_shor tes t_d is t_d i rec ted_Fa lse
35

36

37 #%% Var iab les
38

39 # Opening s a t e l l i t e s
40 y = { }
41 f o r s a t e l l i t e _ i d i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
42 y [ s a t e l l i t e _ i d ] = model . addVar ( vtype = GRB.BINARY, name = f ’ y [ { s a t e l l i t e _ i d } ] ’ )
43

44 # Customer assignment
45 Y = { }
46 f o r s a t e l l i t e _ i d i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
47 f o r customer_id i n customers . index . t o l i s t ( ) : #df_horeca_data_ in fo . index . t o l i s t ( ) :
48 Y[ s a t e l l i t e _ i d , customer_id ] = model . addVar ( vtype = GRB.BINARY, name = f ’Y [ {

s a t e l l i t e _ i d } , { customer_id } ] ’ )
49

50

51 #%% Objec t i ve f unc t i on

102
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52 model . se tOb jec t i ve ( quicksum ( d f_SE_shor tes t_d is t . a t [ s a t e l l i t e _ l o c a t i o n s . a t [ f ’ { s a t e l l i t e _ i d
} ’ , ’ road_node ’ ] , d f_horeca_data_ in fo . a t [ f ’ { customer_id } ’ , ’ road_node ’ ] ] * Y[ s a t e l l i t e _ i d ,
customer_id ] f o r s a t e l l i t e _ i d i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) f o r customer_id i n
customers . index . t o l i s t ( ) ) )

53 model . modelSense = GRB.MINIMIZE
54 model . update ( )
55

56 #%% Cons t ra in ts
57 f o r s a t e l l i t e _ i d i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
58 max_customers = i n t ( len ( customers ) /Ns + number /Ns)
59 cons t r_capac i t y = model . addConstr ( quicksum (Y[ s a t e l l i t e _ i d , customer_id ] f o r

customer_id i n customers . index . t o l i s t ( ) ) <= max_customers )
60

61 # Customer assignment : each customer i s assigned to one s a t e l l i t e .
62 f o r customer_id i n customers . index . t o l i s t ( ) : #df_horeca_data_ in fo . index . t o l i s t ( ) :
63 constr_assignment = model . addConstr ( quicksum (Y[ s a t e l l i t e _ i d , customer_id ] f o r

s a t e l l i t e _ i d i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) ) == 1 )
64

65 # Opening cons t r a i n t : a s a t e l l i t e needs to be open to assign customers .
66 f o r s a t e l l i t e _ i d i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
67 f o r customer_id i n customers . index . t o l i s t ( ) : #df_horeca_data_ in fo . index . t o l i s t ( ) :
68 constr_opening = model . addConstr (Y [ s a t e l l i t e _ i d , customer_id ] <= y [ s a t e l l i t e _ i d ] )
69

70 # Number o f s a t e l l i t e s cons t r a i n t : the number o f s a t e l l i t e s opened i s equal to the set
number o f s a t e l l i t e s .

71 constr_Ns = model . addConstr ( quicksum ( y [ s a t e l l i t e _ i d ] f o r s a t e l l i t e _ i d i n
s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) ) <= Ns)

72

73 #%% Solve the MIP problem
74 p r i n t ( ” s t a r t op t im i z i ng ” )
75 model . setParam ( ’ OutputFlag ’ , True )
76 model . setParam ( ’MIPGap ’ , mip_FLP ) ;
77 model . setParam ( ’Seed ’ , 123)
78 model . setParam ( ’ T ime l im i t ’ , t_l im_FLP )
79 model . _obj = None
80 model . _bd = None
81 model . _obj_value = [ ]
82 model . _t ime = [ ]
83 model . _ s t a r t = t ime . t ime ( )
84 model . op t im ize ( )
85 mip_gap_FLP = model .MIPGap
86 obj_FLP = model . ge tOb jec t i ve ( ) . getValue ( )
87 sa te l l i t e s_chosen = pd . DataFrame ( { ’ index ’ : s a t e l l i t e _ i d , ’ i d ’ : s a t e l l i t e _ l o c a t i o n s . a t [

s a t e l l i t e _ i d , ’ i d ’ ] , ’ road_node ’ : s a t e l l i t e _ l o c a t i o n s . a t [ s a t e l l i t e _ i d , ’ road_node ’ ] , ’
canal_node ’ : s a t e l l i t e _ l o c a t i o n s . a t [ s a t e l l i t e _ i d , ’ canal_node ’ ] , ’ a va i l ab l e ’ : y [
s a t e l l i t e _ i d ] . X } f o r s a t e l l i t e _ i d i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) )

88 sa te l l i t e s_chosen = sa te l l i t e s_chosen . set_ index ( ’ index ’ )
89

90

91 #%%
92 customer_assignment_set_1 = customer_assignment_set_2 = customer_assignment_set_3 =

customer_assignment_set_4 = customer_assignment_set_5 = customer_assignment_set_6 =
customer_assignment_set_7 = customer_assignment_set_8 = customer_assignment_set_9 =
customer_assignment_set_10 = pd . DataFrame ( columns =[ ’SE_node ’ , ’demand ’ , ’ assigned ’ , ’
v i a _ s a t e l l i t e ’ , ’ by_sev ’ ] )

93

94 f o r horeca_set i n horeca_sets :
95 assigned = [ ]
96 s a t e l l i t e = [ ]
97 i nd i ces = [ ]
98 f o r customer_id i n customers . index . t o l i s t ( ) :
99 f o r s a t e l l i t e _ i d i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
100 i f Y [ s a t e l l i t e _ i d , customer_id ] . x == 1:
101 d is tance = df_SE_shor tes t_d is t . a t [ s a t e l l i t e _ l o c a t i o n s . a t [ f ’ { s a t e l l i t e _ i d }

’ , ’ road_node ’ ] , d f_horeca_data_ in fo . a t [ f ’ { customer_id } ’ , ’ road_node ’ ] ]
102 i f df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] >

0 :
103 assigne = True
104 d i s t_sa t_ho r = d f_SE_shor tes t_d is t . a t [ s a t e l l i t e _ l o c a t i o n s . a t [ f ’ {

s a t e l l i t e _ i d } ’ , ’ road_node ’ ] , d f_horeca_data_ in fo . a t [ f ’ { customer_id } ’ , ’ road_node ’ ] ]
105 d i s t_ho r_sa t = d f_SE_shor tes t_d is t . a t [ d f_horeca_data_ in fo . a t [ f ’ {
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customer_id } ’ , ’ road_node ’ ] , s a t e l l i t e _ l o c a t i o n s . a t [ f ’ { s a t e l l i t e _ i d } ’ , ’ road_node ’ ] ]
106 t o t _ d i s t = d i s t_ho r_sa t + d i s t_sa t_ho r
107 i f d i s t _ho r_sa t > 10000 or d i s t_sa t_ho r > 10000 or math . isnan (

d i s t_ho r_sa t ) or math . isnan ( d i s t_sa t_ho r ) :
108 assigne = False
109 i nd i ces . append ( customer_id )
110 assigned . append ( { ’SE_node ’ : i n t ( d f_horeca_data_ in fo . a t [ customer_id , ’

road_node ’ ] ) , ’ demand ’ : i n t ( df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ {
horeca_set } ’ ] ) , ’ assigned ’ : assigne , ’ v i a _ s a t e l l i t e ’ : s a t e l l i t e _ i d , ’ d i s t_sa t_ho r ’ : i n t (
d i s t_sa t_ho r ) , ’ d i s t _ho r_sa t ’ : i n t ( d i s t_ho r_sa t ) , ’ t o t _ d i s t ’ : i n t ( t o t _ d i s t ) } )

111 i f horeca_set == 1:
112 customer_assignment_set_1 = pd . DataFrame ( assigned , index= ind i ces )
113 i f horeca_set == 2:
114 customer_assignment_set_2 = pd . DataFrame ( assigned , index= ind i ces )
115 i f horeca_set == 3:
116 customer_assignment_set_3 = pd . DataFrame ( assigned , index= ind i ces )
117 i f horeca_set == 4:
118 customer_assignment_set_4 = pd . DataFrame ( assigned , index= ind i ces )
119 i f horeca_set == 5:
120 customer_assignment_set_5 = pd . DataFrame ( assigned , index= ind i ces )
121 i f horeca_set == 6:
122 customer_assignment_set_6 = pd . DataFrame ( assigned , index= ind i ces )
123 i f horeca_set == 7:
124 customer_assignment_set_7 = pd . DataFrame ( assigned , index= ind i ces )
125 i f horeca_set == 8:
126 customer_assignment_set_8 = pd . DataFrame ( assigned , index= ind i ces )
127 i f horeca_set == 9:
128 customer_assignment_set_9 = pd . DataFrame ( assigned , index= ind i ces )
129 i f horeca_set == 10:
130 customer_assignment_set_10 = pd . DataFrame ( assigned , index= ind i ces )
131

132 r e t u rn ( sa te l l i t es_chosen , customer_assignment_set_1 , customer_assignment_set_2 ,
customer_assignment_set_3 ,

133 customer_assignment_set_4 , customer_assignment_set_5 , customer_assignment_set_6 ,
134 customer_assignment_set_7 , customer_assignment_set_8 , customer_assignment_set_9 ,

customer_assignment_set_10 , mip_gap_FLP , obj_FLP )

B.2. Second-Echelon Trip Generation
1 # Old f i l e : Total_model_FLP_VRPs_MIP_times_parameters . py
2

3 #%% Import l i b r a r i e s
4 impor t gurobipy as gb
5 impor t t ime
6 impor t os
7 impor t numpy as np
8 impor t pandas as pd
9 impor t p i c k l e
10 impor t copy
11 from gurobipy impor t quicksum , GRB
12 impor t warnings
13 warnings . f i l t e r w a r n i n g s ( ” ignore ” , category=FutureWarning )
14

15 #%% Set path
16 server = ’ True ’
17 p r i n t ( ’ S p l i t models ’ )
18

19 i f server == ’ False ’ :
20 path = os . getcwd ( ) + ” \ Inpu ts \ \ ”
21 path_out = os . getcwd ( ) + ” \ Outputs \ \ ”
22 from FLP_solver_def ini t ion_number_customers_horeca_sets_Laudy impor t FLP_num_cust
23 from FLP_so lver_def in i t ion_horeca_sets_capac i ty_ass ignment impor t FLP_capacity
24

25 i f server == ’ True ’ :
26 path = os . getcwd ( ) + ” / Inpu ts / ”
27 path_out = os . getcwd ( ) + ” / Outputs / ”
28 from

FLP_solver_definit ion_number_customers_horeca_sets_Laudy_server_numcust_demand_storage
impor t FLP_num_cust

29 from FLP_so lver_def in i t ion_horeca_sets_capac i ty_ass ignment_server impor t FLP_capacity
30
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31

32 #%% Scenario inpu ts
33 d i r ec ted = ’ t r ue ’ # I nd i ca t e wether to use d i r ec ted or und i rec ted d is tance

mat r i x
34 FLP_const ra in t = ’ num_cust ’ # Which FLP cons t r a i n t to use , e i t h e r capac i t y or num_cust
35 Nc = 750 # I n se r t the number o f customers to cons ider
36 horeca_sets = np . arange (1 ,11) # Which horeca sets to eva luate
37 horeca_set = 1 # I f not t e s t i n g a l l horeca sets , i n s e r t one to evaluate
38

39

40 #%% Import network and scenar io data
41 df_horeca_demand_scenarios = pd . read_excel ( path + f ’ df_horeca_demand_scenarios . x l sx ’ ,

index_co l =0)
42 df_horeca_demand_scenarios . index = df_horeca_demand_scenarios . index . astype ( s t r )
43 df_horeca_data_ in fo = pd . read_excel ( path + f ’ d f_horeca_data_ in fo . x l sx ’ , index_co l =0)
44 df_horeca_data_ in fo . index = df_horeca_data_ in fo . index . astype ( s t r )
45 customer_ locat ions = df_horeca_data_ in fo . i l o c [ : , 0 ]
46

47 i f server == ’ False ’ :
48 df_SE_shor tes t_d is t_d i rec ted_Fa lse = p i c k l e . load ( open ( path + ’

d f_SE_shor tes t_d is t_d i rec ted −False_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
49 df_SE_shor tes t_d is t_d i rec ted_True_1 = p i c k l e . load ( open ( path + ’

d f_SE_shor tes t_d is t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
50 df_SE_shor tes t_d is t_d i rec ted_True = df_SE_shor tes t_d is t_d i rec ted_True_1 . f i l l n a (1001)
51 d ic t_FE_shor tes t_d is t_d i rec ted_True_1 = p i c k l e . load ( open ( path + ’

d i c t_FE_sho r tes t_d i s t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
52

53 i f server == ’ True ’ :
54 p i c k l e _ o f f = open ( path + ’ d f_SE_shor tes t_d is t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ )
55 df_SE_shor tes t_d is t_d i rec ted_True_1 = pd . read_p ick le ( p i c k l e _ o f f )
56 df_SE_shor tes t_d is t_d i rec ted_True = df_SE_shor tes t_d is t_d i rec ted_True_1 . f i l l n a (1001)
57

58 p i c k l e _ o f f = open ( path + ’ d i c t_FE_sho r tes t_d i s t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ )
59 d ic t_FE_shor tes t_d is t_d i rec ted_True_1 = pd . read_p ick le ( p i c k l e _ o f f )
60 df_SE_shor tes t_d is t_d i rec ted_Fa lse = d ic t_FE_shor tes t_d is t_d i rec ted_True_1
61 assigned = [ ]
62 i nd i ces = [ ]
63 customers = [ [ 0 ] * 3 ] * len ( customer_ locat ions )
64 f o r customer_id i n df_horeca_data_ in fo . index . t o l i s t ( ) :
65 i f df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] > 0 :
66 i nd i ces . append ( customer_id )
67 assigned . append ( { ’ road_node ’ : i n t ( d f_horeca_data_ in fo . a t [ customer_id , ’ road_node ’ ] ) , ’

demand ’ : i n t ( df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] ) } )
68 customers = pd . DataFrame ( assigned , index= ind i ces ) # df_horeca_data_ in fo . index . t o l i s t ( ) )
69

70

71 s a t e l l i t e _ l o c a t i o n s = pd . read_excel ( path + ” sa t e l l i t e _nodes_s t o r age_ f u l l . x l sx ” , index_co l =0)
72 veh ic les = pd . read_excel ( path + ” Road_vehicles . x l sx ” , index_co l =0)
73 road_nodes = pd . read_excel ( path + ” sate l l i tes_customers_road_nodes . x l sx ” , index_co l = 0)
74

75 i f d i r ec ted == ’ t r ue ’ :
76 d i s t = d f_SE_shor tes t_d is t_d i rec ted_True
77 e l i f d i r ec ted == ’ f a l s e ’ :
78 d i s t = d f_SE_shor tes t_d is t_d i rec ted_Fa lse
79

80 #%% Parameters
81 speed_v = i n t ( os . getenv ( ’ speed_v ’ ) )
82 t ranssh ip_s = i n t ( os . getenv ( ’ t ranssh ip_s ’ ) )
83 t ranssh ip_c = i n t ( os . getenv ( ’ t ranssh ip_c ’ ) )
84 f e v _ p r o f i l e = 5
85 capac i t y_ fe = i n t ( os . getenv ( ’ capac i t y_ fe ’ ) )
86 speed_fe_str = os . getenv ( ’ speed_fe ’ )
87 speed_fe = f l o a t ( speed_fe_str )
88 serv ice_ t ime_fe = i n t ( os . getenv ( ’ se rv ice_ t ime_fe ’ ) )
89 capac i ty_s = i n t ( os . getenv ( ’ capac i ty_s ’ ) )
90 capaci ty_se = i n t ( os . getenv ( ’ capaci ty_se ’ ) )
91 Ns = i n t ( os . getenv ( ’ N rSa t e l l i t e s ’ ) )
92 number = i n t ( os . getenv ( ’ number ’ ) )
93

94 t_ l imi ts_VRP_E2_st r = os . getenv ( ’ t_l imits_VRP_E2 ’ )
95 t_l imits_VRP_E2 = eval ( t_ l imi ts_VRP_E2_st r )
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96 t_lim_VRP_E1 = i n t ( os . getenv ( ’ t_lim_VRP_E1 ’ ) )
97 t_ l im_sched_road = i n t ( os . getenv ( ’ t_ l im_sched_road ’ ) )
98 t_ l im_sched_water = i n t ( os . getenv ( ’ t_ l im_sched_water ’ ) )
99 t _ l im_sched_ to ta l = i n t ( os . getenv ( ’ t _ l im_sched_ to ta l ’ ) )
100 t ime_span = i n t ( os . getenv ( ’ time_span ’ ) )
101 mip_VRP_E2_str = os . getenv ( ’mip_VRP_E2 ’ )
102 mip_VRP_E2 = f l o a t ( mip_VRP_E2_str )
103 mip_VRP_E1_str = os . getenv ( ’mip_VRP_E1 ’ )
104 mip_VRP_E1 = f l o a t ( mip_VRP_E1_str )
105 mip_sched_r_str = os . getenv ( ’ mip_sched_r ’ )
106 mip_sched_r = f l o a t ( mip_sched_r_str )
107 mip_sched_w_str = os . getenv ( ’mip_sched_w ’ )
108 mip_sched_w = f l o a t ( mip_sched_w_str )
109 mip_sched_t_str = os . getenv ( ’ mip_sched_t ’ )
110 mip_sched_t = f l o a t ( mip_sched_t_str )
111 storage_set = os . getenv ( ’ s torage_set ’ )
112 s a v e_ t i t l e = os . getenv ( ’ s a v e_ t i t l e ’ )
113

114 capac i ty_s = { }
115 f o r i i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
116 capac i ty_s [ i ] = s a t e l l i t e _ l o c a t i o n s . a t [ i , f ’ capac i ty_ { s torage_set } ’ ]
117 i f capac i ty_s [ i ] > 0 :
118 p r i n t ( i , capac i ty_s [ i ] )
119

120 #%%
121 S_DC = { }
122 d f_ fe_d is tance_mat r i x = d ic t_FE_shor tes t_d is t_d i rec ted_True_1 [ f ’ v esse l _p ro f i l e _ { f e v _ p r o f i l e } ’

] . copy ( )
123 dict_FE_new = pd . read_csv ( path + ’ distance_matr ix_DCs . csv ’ , sep= ’ ; ’ , header=None )
124 dist_fe_new = pd . DataFrame ( dict_FE_new )
125 dist_fe_new . index = dist_fe_new . index + 1
126 new_index = { o ld_ index : o ld_ index + 1 f o r o ld_ index i n dist_fe_new . columns }
127 dist_fe_new = dist_fe_new . rename ( columns=new_index )
128 d i s t _ f e = dist_fe_new . f i l l n a (99999)
129

130

131 #%% Sets
132 vesse l s_ t o t a l = pd . read_excel ( path + ” Water_vehic les . x l sx ” , index_co l =0)
133 vessels = vesse l s_ t o t a l
134 W_id = vessels . index . t o l i s t ( )
135 zero = [ ’ zero ’ ]
136 W0_id = zero + W_id
137

138 #%% Sta r t loop over number o f s a t e l l i t e s
139 N_s = [ ]
140 r e s u l t s = [ ]
141 f o r t_lim_VRP_E2 in t_l imits_VRP_E2 :
142 p r i n t ( ’Number o f customer value FLP : ’ , number )
143 p r i n t ( ’FLP f o r Ns : ’ , Ns)
144 star t_t ime_FLP = t ime . t ime ( )
145 i f FLP_const ra in t == ’ num_cust ’ :
146 i f server == ’ True ’ :
147 sa te l l i t es_new , customer_assignment_set_1 , customer_assignment_set_2 ,

customer_assignment_set_3 , customer_assignment_set_4 , customer_assignment_set_5 ,
customer_assignment_set_6 , customer_assignment_set_7 , customer_assignment_set_8 ,
customer_assignment_set_9 , customer_assignment_set_10 , mip_gap_FLP , obj_FLP =
FLP_num_cust (Ns ,

148 number ,
149 customers ,
150 df_horeca_data_info ,
151 s a t e l l i t e _ l o c a t i o n s ,
152 horeca_sets ,
153 d i rec ted ,
154 df_SE_shor tes t_d is t_d i rec ted_True ,
155 df_SE_shor tes t_d is t_d i rec ted_Fa lse ,
156 df_horeca_demand_scenarios )
157 e l i f server == ’ False ’ :
158 sa te l l i t es_new , customer_assignment_set_1 , customer_assignment_set_2 ,

customer_assignment_set_3 , customer_assignment_set_4 , customer_assignment_set_5 ,
customer_assignment_set_6 , customer_assignment_set_7 , customer_assignment_set_8 ,
customer_assignment_set_9 , customer_assignment_set_10 = FLP_num_cust (Ns ,
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159 df_horeca_data_info ,
160 s a t e l l i t e _ l o c a t i o n s ,
161 horeca_sets ,
162 d i rec ted ,
163 df_SE_shor tes t_d is t_d i rec ted_True ,
164 df_SE_shor tes t_d is t_d i rec ted_Fa lse )
165 e l i f FLP_const ra in t == ’ capac i t y ’ :
166 sa te l l i t es_new , customer_assignment_set_1 , customer_assignment_set_2 ,

customer_assignment_set_3 , customer_assignment_set_4 , customer_assignment_set_5 ,
customer_assignment_set_6 , customer_assignment_set_7 , customer_assignment_set_8 ,
customer_assignment_set_9 , customer_assignment_set_10 = FLP_capacity (Ns ,

167 df_horeca_data_info ,
168 s a t e l l i t e _ l o c a t i o n s ,
169 d i rec ted ,
170 df_SE_shor tes t_d is t_d i rec ted_True ,
171 df_SE_shor tes t_d is t_d i rec ted_Fa lse ,
172 horeca_sets )
173

174

175 i f horeca_set == 1:
176 customer_assignment_set_1 = customer_assignment_set_1# df_horeca_data_ in fo . index .

t o l i s t ( ) )
177 i f horeca_set == 2:
178 customer_assignment_set_1 = customer_assignment_set_2# df_horeca_data_ in fo . index .

t o l i s t ( ) )
179 i f horeca_set == 3:
180 customer_assignment_set_1 = customer_assignment_set_3# df_horeca_data_ in fo . index .

t o l i s t ( ) )
181 i f horeca_set == 4:
182 customer_assignment_set_1 = customer_assignment_set_4# df_horeca_data_ in fo . index .

t o l i s t ( ) )
183 i f horeca_set == 5:
184 customer_assignment_set_1 = customer_assignment_set_5# df_horeca_data_ in fo . index .

t o l i s t ( ) )
185 i f horeca_set == 6:
186 customer_assignment_set_1 = customer_assignment_set_6# df_horeca_data_ in fo . index .

t o l i s t ( ) )
187 i f horeca_set == 7:
188 customer_assignment_set_1 = customer_assignment_set_7# df_horeca_data_ in fo . index .

t o l i s t ( ) )
189 i f horeca_set == 8:
190 customer_assignment_set_1 = customer_assignment_set_8# df_horeca_data_ in fo . index .

t o l i s t ( ) )
191 i f horeca_set == 9:
192 customer_assignment_set_1 = customer_assignment_set_9# df_horeca_data_ in fo . index .

t o l i s t ( ) )
193 i f horeca_set == 10:
194 customer_assignment_set_1 = customer_assignment_set_10# df_horeca_data_ in fo . index .

t o l i s t ( ) )
195

196 a v a i l a b l e _ s a t e l l i t e s = sa te l l i t e s_new [ sa te l l i t e s_new [ ’ a va i l ab l e ’ ] == 1 ] . index . t o l i s t ( )
197 end_time_FLP = t ime . t ime ( )
198 solving_t ime_FLP = end_time_FLP − star t_t ime_FLP
199

200 # Create sets f o r VRP E2
201 i n d i = [ ]
202 assignment = [ ]
203 c_a = [ ]
204 c_aa = [ ]
205 sc_a = [ ]
206 sc_aa = [ ]
207 f o r s i n a v a i l a b l e _ s a t e l l i t e s :
208 i n d i . append ( s )
209 c_assignment = [ ]
210 sc_assignment = [ s ]
211 f o r customer_id i n customer_assignment_set_1 [ 0 : Nc ] . index . t o l i s t ( ) : # i nd i ces :
212 i f customer_assignment_set_1 . a t [ f ’ { customer_id } ’ , ’ v i a _ s a t e l l i t e ’ ] == s :
213 c_assignment . append ( customer_id )
214 sc_assignment . append ( customer_id )
215

216 c_a . append ( ( s , c_assignment ) )
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217 sc_a . append ( ( s , sc_assignment ) )
218 assignment . append ( ( s , c_assignment ) )
219 c_aa = pd . DataFrame ( c_a , index = i n d i )
220 sc_aa = pd . DataFrame ( sc_a , index = i n d i )
221

222 #%%
223 road_node = [ ]
224 canal_node = [ ]
225

226 DC = [ ’DC_1 ’ , ’DC_2 ’ , ’DC_3 ’ ]
227 DC_canal_nodes = [387 ,127 ,389]
228 canal_node_d = [ { ’ canal_node ’ : DC_canal_nodes } ]
229

230 canal_nodes_d = pd . DataFrame ( { ’ canal_node ’ : DC_canal_nodes } , index = DC)
231 zer = 0
232 road_nodes_s = [ [ 0 ] * 3 ] * len ( a v a i l a b l e _ s a t e l l i t e s )
233 canal_nodes_s = [ [ 0 ] * 3 ] * len ( a v a i l a b l e _ s a t e l l i t e s )
234 f o r s a t e l l i t e i n a v a i l a b l e _ s a t e l l i t e s :
235 road_node . append ( { ’ road_node ’ : sa t e l l i t e s_new . a t [ s a t e l l i t e , ’ road_node ’ ] , ’ demand ’ : zer

} )
236 canal_node . append ( { ’ canal_node ’ : sa t e l l i t e s_new . a t [ s a t e l l i t e , ’ canal_node ’ ] } )
237 road_nodes_s = pd . DataFrame ( road_node , index = a v a i l a b l e _ s a t e l l i t e s )
238 canal_nodes_s = pd . DataFrame ( canal_node , index = a v a i l a b l e _ s a t e l l i t e s )
239 road_nodes_s_c = pd . concat ( [ road_nodes_s , customers ] , ignore_ index=False )
240 canal_nodes_d_s = pd . concat ( [ canal_nodes_d , canal_nodes_s ] , ignore_ index=False )
241

242 #%%
243 R_ids = veh ic les . index . t o l i s t ( )
244 R_id = R_ids [ 0 :Ns ]
245 S_id = a v a i l a b l e _ s a t e l l i t e s
246 C_new = customers . index . t o l i s t ( )
247 C_id = C_new [ 0 :Nc ]
248 SC_id = S_id + C_id
249 DS_id = DC + S_id
250 p r i n t ( ’Number o f customers : ’ , len ( C_id ) )
251 r_s = { } # set o f s a t e l l i t e s assigned to veh i c l e r
252 r_c = { } # set o f customers assigned to veh i c l e r
253 r_sc = { } # set o f customers and s a t e l l i t e s assigned to veh i c l e r
254 s_c = { } # set o f customers assigned to s a t e l l i t e s
255 s_sc = { } # set o f s a t e l l i t e and customers o f s a t e l l i t e s
256 s_r = { } # set o f veh i c les assigned to s a t e l l i t e s
257 vehicle_numb = 0
258 i n d i _ r = [ ]
259 f o r r i n R_id :
260 i n d i _ r . append ( r )
261 r_s [ r ] = c_aa [ 0 ] [ vehicle_numb ]
262 r_c [ r ] = c_aa [ 1 ] . get ( [ r_s [ r ] ] ) [ 0 ]
263 r_sc [ r ] = sc_aa [ 1 ] . get ( [ r_s [ r ] ] ) [ 0 ]
264 i f vehicle_numb >= len ( c_aa [ 0 ] ) −1:
265 vehicle_numb = 0
266 e l i f vehicle_numb < len ( c_aa [ 0 ] ) −1:
267 vehicle_numb +=1
268

269 r_s_df = [ ]
270 r_s_df = pd . DataFrame ( r_s , index = [ 0 ] ) . t ranspose ( )
271

272 s_ r r = { }
273 f o r s i n S_id :
274 s_r [ s ] = r_s_df [ r_s_df [ 0 ] == s ] . index . t o l i s t ( )
275 s_c [ s ] = c_aa [ 1 ] . get ( [ s ] ) [ 0 ]
276 s_sc [ s ] = sc_aa [ 1 ] . get ( [ s ] ) [ 0 ]
277

278

279

280 #%%
281 # Pre fe tch data
282 canal_nodes_dict = canal_nodes_d_s . loc [ : , ’ canal_node ’ ]
283 road_nodes_dict = road_nodes_s_c . l oc [ : , ’ road_node ’ ]
284 r _ t r anssh i p_ t _c_d i c t = veh ic les . l oc [ : , ’ t r anssh ip_ t_c ’ ]
285 r_speed_dic t = veh ic les . l oc [ : , ’ speed ’ ]
286
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287 #%% Create i n i t i a l s o l u t i o n f o r VRP E2
288 p r i n t ( ’ Creat ing i n i t i a l s o l u t i o n VRP E2 f o r Ns : ’ , Ns)
289 X_R_in i t = { }
290 Q_R_ini t = { }
291 i t e r a t i o n s = np . arange (0 ,500)
292 f o r r i n R_id :
293 f o r i i n r_sc [ r ] :
294 Q_R_ini t [ i , r ] = 0
295 f o r j i n r_sc [ r ] :
296 X_R_in i t [ i , j , r ] = 0
297

298 r _ c _ l e f t = copy . deepcopy ( r_c )
299 f o r r i n R_id :
300

301 i = r_sc [ r ] [ 0 ]
302 l oad_r = 0
303 f o r n i n i t e r a t i o n s :
304 d is_o ld = 99999
305 i f len ( r _ c _ l e f t [ r ] ) == 0:
306 X_R_in i t [ i , r_sc [ r ] [ 0 ] , r ] = 1
307 break
308 f o r j i n r _ c _ l e f t [ r ] :
309 d is = d i s t . a t [ road_nodes_dict [ i ] , road_nodes_dict [ j ] ]
310 i f d i s < d is_o ld :
311 d is_o ld = d is
312 c = j
313 l oad_r += df_horeca_demand_scenarios . a t [ f ’ { c } ’ , f ’ set_ { horeca_set } ’ ]
314 i f capaci ty_se >= load_r :
315 Q_R_ini t [ c , r ] = df_horeca_demand_scenarios . a t [ f ’ { c } ’ , f ’ set_ { horeca_set } ’ ]
316 X_R_in i t [ i , c , r ] = 1
317 i = c
318 r _ c _ l e f t [ r ] . remove ( c )
319 i f capaci ty_se < load_r :
320 X_R_in i t [ i , r_sc [ r ] [ 0 ] , r ] = 1
321 l oad_r = 0
322 i = r_sc [ r ] [ 0 ]
323

324

325 #%% Get i n i t i a l road km
326 D_ r_ i n i t = 0
327

328 f o r r i n R_id :
329 f o r i i n r_sc [ r ] :
330 f o r j i n r_sc [ r ] :
331 i f X_R_in i t [ i , j , r ] == 1 :
332 D_ r_ i n i t += d i s t . a t [ road_nodes_dict [ i ] , road_nodes_dict [ j ] ]
333 p r i n t ( ’ Distance on the roads f o r i n i t i a l s o l u t i o n : ’ , D_ r _ i n i t )
334 #%% Get i n i t i a l road t r i p s
335 n r _ t r i p s = 0
336 f o r r i n R_id :
337 i = r_sc [ r ] [ 0 ]
338 f o r j i n r_sc [ r ] :
339 i f X_R_in i t [ i , j , r ] == 1 :
340 n r _ t r i p s += 1
341 Nr_v_ i n i t = n r _ t r i p s
342

343 #%% VRP E2
344 p r i n t ( ’ Working on VRP E2 f o r Ns : ’ , Ns)
345

346 start_t ime_VRP_road = t ime . t ime ( )
347 model = gb . Model ( ’VRP_E2 ’ )
348 np . random . seed (123)
349 t ime_ l im i t = t_lim_VRP_E2
350

351 # Path from i to j , i f used by veh i c l e r : = 1 , e lse : = 0
352 X_R = { }
353 f o r r i n R_id :
354 f o r i i n r_sc [ r ] :
355 f o r j i n r_sc [ r ] :
356 X_R[ i , j , r ] = model . addVar ( vtype = GRB.BINARY, name = ’X_Ra ’ )
357
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358 # A r r i v a l t ime of veh i c l e r a t i
359 A_R = { }
360 f o r r i n R_id :
361 f o r i i n r_sc [ r ] :
362 A_R[ i , r ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’A_R ’ )
363

364 # Quant i ty de l i ve red to customer i or picked up at s a t e l l i t e i by veh i c l e r
365 Q_R = { }
366 f o r r i n R_id :
367 f o r i i n r_sc [ r ] :
368 Q_R[ i , r ] = model . addVar ( vtype = GRB. INTEGER, name = ’Q_R ’ )
369

370 # Customer or s a t e l l i t e i s v i s i t e d by veh i c l e r : = 1 , i f not : = 0
371 Z_R = { }
372 f o r r i n R_id :
373 f o r i i n r_sc [ r ] :
374 Z_R[ i , r ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_R ’ )
375

376 # Accumulated load of road veh i c l e r a t customer i
377 L_R = { }
378 f o r r i n R_id :
379 f o r i i n r_sc [ r ] :
380 L_R [ i , r ] = model . addVar ( vtype = GRB. INTEGER, name = ’L_R ’ )
381

382 # Distance t r a v e l l e d per veh i c l e r
383 D_R = { }
384 f o r r i n R_id :
385 D_R[ r ] = model . addVar ( l b =0.0 , vtype = GRB. INTEGER, name = ’D_R ’ )
386

387 # Load picked up at s a t e l l i t e s by veh i c l e r
388 W_R = { }
389 f o r r i n R_id :
390 r_s [ r ] = r_s [ r ] i f i s i n s t ance ( r_s [ r ] , l i s t ) e lse [ r_s [ r ] ]
391 f o r i i n r_s [ r ] :
392 W_R[ i , r ] = model . addVar ( l b =0.0 , vtype = GRB. INTEGER, name = ’W_R ’ )
393

394

395 # Objec t i ve f unc t i on
396 model . se tOb jec t i ve ( quicksum (D_R[ r ] f o r r i n R_id ) )
397

398 model . modelSense = GRB.MINIMIZE
399 model . update ( )
400

401

402 # Cons t ra in ts
403 model . update ( )
404

405 # 1. A veh i c l e never goes from i to i
406 f o r r i n R_id :
407 f o r i i n r_sc [ r ] :
408 f o r j i n r_sc [ r ] :
409 i f i == j :
410 cons t r _ se l f = model . addConstr (X_R[ i , j , r ] == 0 , name = ’ Constr_1 ’ )
411

412 # 2b . Each s a t e l l i t e has to be v i s i t e d a t l eas t the number o f t imes needed f o r the demand
of the customers d iv ided by the veh i c l e capac i t y

413 f o r s i n S_id :
414 s_r [ s ] = s_r [ s ] i f i s i n s t ance ( s_r [ s ] , l i s t ) e lse [ s_r [ s ] ]
415 cons t r _ v i s i t _2b = model . addConstr ( quicksum (X_R[ s , j , r ] f o r j i n s_sc [ s ] f o r r i n s_r [

s ] ) >= quicksum ( df_horeca_demand_scenarios . a t [ f ’ { i } ’ , f ’ set_ { horeca_set } ’ ] f o r i i n s_c [ s
] ) / capaci ty_se , name = ’ Constr_2b ’ )

416

417 # 3. Vehic le r can only leave node i f i t a lso a r r i ved there
418 f o r r i n R_id :
419 f o r i i n r_sc [ r ] :
420 c on s t r _ a r r i v a l = model . addConstr ( quicksum (X_R[ i , j , r ] f o r j i n r_sc [ r ] ) ==

quicksum (X_R[ j , i , r ] f o r j i n r_sc [ r ] ) , name = ’ Constr_3 ’ )
421

422 # 4. Nodes t ha t are v i s i t e d by veh i c l e r
423 f o r r i n R_id :
424 f o r i i n r_sc [ r ] :
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425 model . addConstr (Z_R [ i , r ] <= quicksum (X_R[ i , j , r ] f o r j i n r_sc [ r ] ) )
426 f o r j i n r_sc [ r ] :
427 c o n s t r _ v i s i t s _ r = model . addGenConstr Indicator (X_R[ i , j , r ] , True , Z_R [ i , r ] ,GRB.

EQUAL, 1 , name = ’ Constr_4 ’ )
428

429 # 2. Each customer i has to be v i s i t e d by a t l eas t one veh i c l e r
430 f o r s i n S_id :
431 s_r [ s ] = s_r [ s ] i f i s i n s t ance ( s_r [ s ] , l i s t ) e lse [ s_r [ s ] ]
432 f o r i i n s_c [ s ] :
433 cons t r_v i s i t _new = model . addConstr ( quicksum (Z_R [ i , r ] f o r r i n s_r [ s ] ) >= 1 , name

= ’ Constr_2 ’ )
434

435 # 5. The demand de l i ve red to i i s zero i f veh i c l e r does not v i s i t i
436 f o r r i n R_id :
437 f o r i i n r_sc [ r ] :
438 constr_demand_5 = model . addGenConstr Indicator (Z_R [ i , r ] , False , Q_R[ i , r ] , GRB.

EQUAL, 0 , name = ’ Constr_5 ’ )
439

440 # 6. Demand s a t i s f a c t i o n cons t r a i n t
441 f o r s i n S_id :
442 s_r [ s ] = s_r [ s ] i f i s i n s t ance ( s_r [ s ] , l i s t ) e lse [ s_r [ s ] ]
443 f o r i i n s_c [ s ] :
444 constr_demand_6 = model . addConstr ( quicksum (Q_R[ i , r ] f o r r i n s_r [ s ] ) ==

df_horeca_demand_scenarios . a t [ f ’ { i } ’ , f ’ set_ { horeca_set } ’ ] , name = ’ Constr_6 ’ )
445

446 # 7. No load i s de l i ve red to s a t e l l i t e s
447 f o r r i n R_id :
448 r_s [ r ] = r_s [ r ] i f i s i n s t ance ( r_s [ r ] , l i s t ) e lse [ r_s [ r ] ]
449 f o r i i n r_s [ r ] :
450 constr_demand_7 = model . addConstr (Q_R[ i , r ] == 0 , name = ’ Constr_7 ’ )
451

452 # 7b . The accumulated load i s zero a t s a t e l l i t e s
453 f o r r i n R_id :
454 r_s [ r ] = r_s [ r ] i f i s i n s t ance ( r_s [ r ] , l i s t ) e lse [ r_s [ r ] ]
455 f o r i i n r_s [ r ] :
456 constr_demand_7b = model . addConstr (L_R [ i , r ] == 0 , name = ’ Constr_7b ’ )
457

458 #8a . Maximum capac i t y o f veh i c l e r i n d i c a t o r vers ion :
459 f o r r i n R_id :
460 f o r i i n r_sc [ r ] :
461 f o r j i n r_c [ r ] :
462 const r_capac i ty_8a = model . addGenConstr Indicator (X_R[ i , j , r ] , True , L_R [ j , r ] −

L_R [ i , r ] − Q_R[ j , r ] , GRB.EQUAL, 0 , name = ’ Constr8 ’ )
463

464 # 8b . No L_R i f not v i s i t e d
465 f o r r i n R_id :
466 f o r i i n r_sc [ r ] :
467 const r_capac i ty_8b = model . addGenConstr Indicator (Z_R [ i , r ] , False , L_R [ i , r ] , GRB.

EQUAL, 0 , name = ’ Constr_8b ’ )
468

469 # 8c . The load de l i ve red to customer i by veh i c l e r i s always less than or equal to the
accumulated load of r a t customer i :

470 f o r r i n R_id :
471 f o r i i n r_c [ r ] :
472 const r_capac i ty_8c = model . addConstr (Q_R[ i , r ] <= L_R [ i , r ] , name = ’ Constr_8c ’ )
473

474 # 8d . The accumulated load of veh i c l e r a t customer i i s always less than or equal to the
maximum capac i t y o f veh i c l e r :

475 f o r r i n R_id :
476 f o r i i n r_c [ r ] :
477 const r_capac i ty_8d = model . addConstr ( L_R [ i , r ] <= capaci ty_se , name = ’ Constr_8d ’

)
478

479 # 12. Distance t r a v e l l e d per veh i c l e r
480 f o r r i n R_id :
481 const r_d is tance_12 = model . addConstr (D_R[ r ] == quicksum ( d i s t . a t [ road_nodes_dict [ i ] ,

road_nodes_dict [ j ] ] * X_R[ i , j , r ] f o r i i n r_sc [ r ] f o r j i n r_sc [ r ] ) , name = ’ Constr_12 ’ )
482

483

484 f o r ( i , j , r ) , value i n X_R_in i t . i tems ( ) :
485 X_R[ i , j , r ] . s t a r t = value
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486

487 f o r ( i , r ) , value i n Q_R_ini t . i tems ( ) :
488 Q_R[ i , r ] . s t a r t = value
489

490 # S ta r t op t im i sa t i on
491 p r i n t ( ” s t a r t op t im i z i ng ” )
492 model . setParam ( ’ OutputFlag ’ , True ) # s i l e n c i ng gurob i output or not
493 model . setParam ( ’MIPGap ’ , mip_VRP_E2) ; # f i n d the opt ima l so l u t i o n wi th

op t ima l i t ygap of 20%
494 model . setParam ( ’ SoftMemLimit ’ , 50)
495 model . setParam ( ’MIPFocus ’ ,0 )
496 model . setParam ( ’Seed ’ , 123)
497 i f t i me_ l im i t :
498 model . setParam ( ’ T ime l im i t ’ , t ime_ l im i t )
499 model . _obj = None
500 model . _bd = None
501 model . _obj_value = [ ]
502 model . _t ime = [ ]
503 model . _ s t a r t = t ime . t ime ( )
504 model . op t im ize ( )
505

506 mip_gap_E2 = model .MIPGap
507 end_time_VRP_road = t ime . t ime ( )
508 time_VRP_E2 = end_time_VRP_road − start_t ime_VRP_road
509

510

511 #%% Sp l i t long t r i p s road veh ic les
512 p r i n t ( ’ Working on s p l i t t r i p s VRP E2 f o r Ns : ’ , Ns)
513 # Create l i s t o f t r i p s per veh i c l e
514 r_v = { }
515 s_v = { }
516 s_x = 0
517 Nv = np . arange (1 , i n t (500/Ns) )
518 f o r r i n R_id :
519 v_Nv = [ ]
520 s_Nv = [ ]
521 s_x += 1
522 f o r n i n Nv :
523 vehic le_Nv = [ f ’S{ s_x }_V{ n } ’ ]
524 v_Nv = v_Nv + vehic le_Nv
525 f o r s i n r_s [ r ] :
526 f o r m in Nv :
527 vehicle_Nv_s = [ f ’S{ s_x }_V{m} ’ ]
528 s_Nv = s_Nv + vehicle_Nv_s
529 s_v [ s ] = s_Nv
530 r_v [ r ] = v_Nv
531

532 # Create V_id , se t o f a l l t r i p s
533 V_id = [ ]
534 f o r r i n R_id :
535 f o r v i n r_v [ r ] :
536 V_id . append ( v )
537

538 # Sp l i t the t r i p s found by VRP E2
539 X = { }
540 f o r r i n R_id :
541 f o r i i n r_sc [ r ] :
542 f o r j i n r_sc [ r ] :
543 X[ i , j , r ] = X_R[ i , j , r ] . X
544

545 Y_V = { }
546 f o r r i n R_id :
547 f o r v i n r_v [ r ] :
548 f o r i i n r_sc [ r ] :
549 f o r j i n r_sc [ r ] :
550 Y_V [ i , j , v ] = 0
551

552 L_R_tot = { }
553 f o r r i n R_id :
554 L_R_R = 0
555 f o r i i n r_sc [ r ] :
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556 L_R_R += Q_R[ i , r ] . X
557 L_R_tot [ r ] = L_R_R
558

559 f o r r i n R_id :
560 sum_X = 1
561 L_R = 0
562 f o r v i n r_v [ r ] :
563 L_V = 0
564 f o r k i n r_sc [ r ] :
565 sum_X += X[ r_s [ r ] [ 0 ] , k , r ]
566 i f sum_X > 0:
567 sum_X = 0
568 i = r_s [ r ] [ 0 ]
569 veh i c l e = 1
570 whi le veh i c l e == 1:
571 f o r j i n r_sc [ r ] :
572 i f X [ i , j , r ] == 1 :
573 L_V += Q_R[ j , r ] . X
574 X[ i , j , r ] = 0
575 Y_V [ i , j , v ] = 1
576 i = j
577 i f j == r_s [ r ] [ 0 ] :
578 veh i c l e = 0
579 break
580

581 # Create Z_V and D_V
582 Z_V = { }
583 D_V = { }
584

585 f o r v i n V_id :
586 f o r i i n DS_id :
587 Z_V [ i , v ] = 0
588

589 f o r r i n R_id :
590 f o r v i n r_v [ r ] :
591 dis tance_v = 0
592 f o r i i n r_sc [ r ] :
593 Z_V [ i , v ] = 0
594 f o r j i n r_sc [ r ] :
595 i f Y_V [ i , j , v ] == 1:
596 dis tance_v += d i s t . a t [ road_nodes_dict [ i ] , road_nodes_dict [ j ] ]
597 Z_V [ i , v ] = 1
598 D_V[ v ] = dis tance_v
599

600

601

602 # Create Q_V and L_V f o r VRP water
603 Q_V = { }
604 L_V = { }
605 T_V = { }
606 vessels = pd . read_excel ( path + ” Water_vehic les . x l sx ” , index_co l =0)
607

608 f o r v i n V_id :
609 f o r i i n S_id :
610 L_V [ i , v ] = 0
611

612 W_id = vessels . index . t o l i s t ( )
613 f o r r i n R_id :
614 f o r w in W_id :
615 L_V [ r_s [ r ] [ 0 ] ,w] = 0
616 f o r v i n r_v [ r ] :
617 num_cust = 0
618 Load = 0
619 f o r i i n r_c [ r ] :
620 i f Z_V [ i , v ] == 1:
621 num_cust += 1
622 Q_V[ i , v ] = df_horeca_demand_scenarios . a t [ f ’ { i } ’ , f ’ set_ { horeca_set } ’ ]
623 Load += Q_V[ i , v ]
624 L_V [ r_s [ r ] [ 0 ] , v ] = Load
625 i f num_cust > 0 :
626 T_V [ v ] = t ranssh ip_s + t ranssh ip_c * num_cust + D_V[ v ] / speed_v
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627 i f num_cust == 0:
628 T_V [ v ] = 0
629

630

631

632 # Create LS_V [ i ] : t o t a l load picked up at s a t l l i t e
633 LS_V = { }
634 f o r i i n S_id :
635 load = 0
636 f o r v i n V_id :
637 load += L_V [ i , v ]
638 LS_V [ i ] = load
639

640 # Only se l ec t v w i th routes
641 V_id_new = [ ]
642 f o r r i n R_id :
643 f o r v i n r_v [ r ] :
644 v i s i t s = 0
645 f o r i i n r_c [ r ] :
646 i f Z_V [ i , v ] == 1:
647 v i s i t s += 1
648 i f v i s i t s >= 1:
649 V_id_new . append ( v )
650 V_id = V_id_new . copy ( )
651 Nr_v_VRP_E2 = len ( V_id_new )
652 #%%
653 # To ta l d is tance road :
654 D_r = 0
655 f o r r i n R_id :
656 i f D_R[ r ] . X >0:
657 D_r += D_R[ r ] . X
658

659 # Create leng th t r i p s needed f o r schedul ing
660 E_V = { } # End customer o f t r i p v
661 f o r r i n R_id :
662 f o r v i n r_v [ r ] :
663 dis tance_v = 0
664 f o r i i n r_sc [ r ] :
665 Z_V [ i , v ] = 0
666 f o r j i n r_sc [ r ] :
667 i f Y_V [ i , j , v ] == 1:
668 dis tance_v += d i s t . a t [ road_nodes_dict [ i ] , road_nodes_dict [ j ] ]
669 Z_V [ i , v ] = 1
670 i f Y_V [ i , r_s [ r ] [ 0 ] , v ] == 1:
671 E_V [ v ] = i
672 D_V[ v ] = dis tance_v
673

674 #%%
675 v_s = { }
676 f o r r i n R_id :
677 f o r v i n r_v [ r ] :
678 v_s [ v ] = r_s [ r ] [ 0 ]
679 #%%
680 # Determine c loses t veh i c l e depot l o ca t i o n f o r each t r i p
681 depots = [103144 , 101875 , 101642 , 102344 ,100243]
682 v_d = { }
683 f o r v i n V_id :
684 d is t_depo t = 99999
685 f o r d i n depots :
686 d is t_v_d = d i s t . a t [ d , road_nodes_dict [ v_s [ v ] ] ]
687 i f d is t_v_d < d is t_depo t :
688 d is t_depo t = d is t_v_d
689 depot_v = d
690 v_d [ v ] = depot_v
691

692

693

694 # Distance to go from t r i l k to t r i p l D_E[ k , l ]
695 D_E = { } # Distance from end customer o f t r i p l to s a t e l l i t e o f k , minus the

d is tance from end customer o f l to s a t e l l i t e o f l
696 f o r l i n V_id :



B.3. First-Echelon Trip Generation 115

697 D_E[ ’ zero ’ , l ] = d i s t . a t [ v_d [ l ] , road_nodes_dict [ v_s [ l ] ] ]
698 D_E[ l , ’ zero ’ ] = 99999
699 f o r k i n V_id :
700 D_E[ l , k ] = d i s t . a t [ road_nodes_dict [E_V [ l ] ] , road_nodes_dict [ v_s [ k ] ] ] − d i s t . a t [

road_nodes_dict [E_V [ l ] ] , road_nodes_dict [ v_s [ l ] ] ]
701 D_E[ ’ zero ’ , ’ zero ’ ] = 0
702

703 # To ta l d is tance of t r i p l + d is tance to s t a r t o f k − d is tance from l a s t customer o f l to
s a t e l l i t e o f l

704

705 D_T = { } # Distance from end customer o f t r i p l to s a t e l l i t e o f k , minus the
d is tance from end customer o f l to s a t e l l i t e o f l

706 f o r l i n V_id :
707 D_T [ ’ zero ’ , l ] = d i s t . a t [ v_d [ l ] , road_nodes_dict [ v_s [ l ] ] ]
708 D_T [ l , ’ zero ’ ] = D_V[ l ] − d i s t . a t [ road_nodes_dict [E_V [ l ] ] , road_nodes_dict [ v_s [ l ] ] ] +

d i s t . a t [ road_nodes_dict [E_V [ l ] ] , v_d [ l ] ]
709 f o r k i n V_id :
710 D_T [ l , k ] = D_V[ l ] + d i s t . a t [ road_nodes_dict [E_V [ l ] ] , road_nodes_dict [ v_s [ k ] ] ] −

d i s t . a t [ road_nodes_dict [E_V [ l ] ] , road_nodes_dict [ v_s [ l ] ] ]
711 D_T [ ’ zero ’ , ’ zero ’ ] = 0

B.3. First-Echelon Trip Generation
1 # Old f i l e : Total_model_FLP_VRPs_MIP_times_parameters . py
2

3 #%% Import l i b r a r i e s
4 impor t gurobipy as gb
5 impor t t ime
6 impor t os
7 impor t numpy as np
8 impor t pandas as pd
9 impor t p i c k l e
10 impor t copy
11 from gurobipy impor t quicksum , GRB
12 impor t warnings
13

14

15 #%% Create i n i t i a l s o l u t i o n VRP E1
16 p r i n t ( ’ Creat ing i n i t i a l s o l u t i o n VRP E1 f o r Ns : ’ , Ns)
17 # Heu r i s t i c s routes vessels X_W, L_W, Q_W wi th stock new + B
18 WV_id = W_id + V_id
19 WV0_id = zero + WV_id
20

21 L_de l i ve r = { }
22 X_W_init = { }
23 Q_W_init = { }
24 L_W_ini t = { }
25 S_ i n i t = { }
26 B_ i n i t = { }
27 D_ i n i t = { }
28

29 # Determine c loses t DC f o r each s a t e l l i t e
30 DC_S = { }
31 f o r s i n S_id :
32 dist_DC = 999999
33 f o r dc i n DC:
34 dist_s_DC = d i s t _ f e . a t [ canal_nodes_dict [ dc ] , canal_nodes_dict [ s ] ]
35 i f dist_s_DC < dist_DC :
36 dist_DC = dist_s_DC
37 dc_s = dc
38 DC_S[ s ] = dc_s
39

40

41 S_DC = { ’DC_1 ’ : [ ] , ’DC_2 ’ : [ ] , ’DC_3 ’ : [ ] }
42

43 f o r s i n S_id :
44 dc = DC_S. get ( s )
45 i f dc i n S_DC:
46 S_DC[ dc ] . append ( s )
47 DC_used = [ ]
48 f o r d i n DC:
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49 used = 0
50 f o r s i n S_id :
51 i f s i n S_DC[ d ] :
52 used = 1
53 i f used ==1:
54 DC_used . append ( d )
55 DC = DC_used . copy ( )
56 DS_id = DC + S_id
57

58

59

60 #%% I n i t i a l s o l u t i o n VRP−E1 wi th mu l t i p l e depots w i th neighbourhoods
61

62 W_id = vessels . index . t o l i s t ( )
63 WV_id = W_id + V_id
64 WV0_id = zero + WV_id
65 f o r i i n DS_id :
66 f o r k i n WV_id :
67 L_W_ini t [ i , k ] = 0
68 f o r l i n WV0_id :
69 Q_W_init [ i , l ] = 0
70 f o r j i n DS_id :
71 f o r w in W_id :
72 X_W_init [ i , j ,w] = 0
73 L_de l i ve r [ j ,w] = 0
74

75 f o r i i n S_id :
76 f o r k i n WV0_id :
77 f o r l i n WV0_id :
78 B_ i n i t [ i , k , l ] = 0
79 D_ i n i t [ i , k , l ] = 0
80

81 S_ l e f t = S_id . copy ( )
82 L_ l e f t = LS_V . copy ( )
83 Nr_ v i s i t s = np . arange (0 ,Ns+1)
84 S_sa t i s f i ed = 0
85 V_ l e f t = V_id . copy ( )
86 S_save = S_id . copy ( )
87

88 dc_count = 0
89 S_DC_sat isf ied = 0
90

91 v is i ted_wv = { }
92 v i s i t e d _wv_ l i s t = [ ]
93 f o r i i n S_id :
94 v is i ted_wv [ i ] = [ ]
95

96 f o r w in W_id :
97 i f S_sa t i s f i ed == len ( S_id ) :
98 break
99 d = DC[ dc_count ]
100 capacity_w = capac i t y_ fe
101 i = DS_id [ 0 ]
102 L_W_ = 0
103 S_ l e f t = S_save . copy ( )
104

105 f o r n i n N r _ v i s i t s :
106 d i s t _o l d = 99999
107 v_to_remove = [ ]
108 f o r s i n S_ l e f t :
109

110 i f s not i n S_DC[ d ] :
111

112 cont inue
113 e l i f s i n S_DC[ d ] :
114

115 i f n == 0:
116 i = DC_S[ s ]
117

118 dis tance_ = d i s t _ f e . a t [ canal_nodes_dict [ i ] , canal_nodes_dict [ s ] ]
119 i f d is tance_ < d i s t _o l d :
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120 d i s t _o l d = dis tance_
121 j = s
122 L_ l e f t _ = L _ l e f t [ j ]
123 k = i
124 i f n == 0:
125 i = DC_S[ s ]
126 depot = DC_S[ s ]
127 i = k
128 L_request = 0
129 v i s i t e d _ v _ l i s t = [ ]
130 v i s i t e d _ v _ l i s t = v is i ted_wv [ j ] . copy ( )
131 f o r wv i n v i s i t e d _ v _ l i s t :
132 B_ i n i t [ j ,w,wv ] = 1
133 D_ i n i t [ j ,w,wv ] = 1 # New
134

135 f o r v i n V_ l e f t :
136 i f L_V [ j , v ] > 0 :
137 i f L_request < capacity_w :
138 L_request += L_V [ j , v ]
139 i f L_request <= capacity_w :
140 v_to_remove . append ( v )
141 # V_ l e f t . remove ( v )
142 L_de l i ve r [ j ,w] = L_request
143 v i s i t e d _wv_ l i s t = [ ]
144 v i s i t e d _wv_ l i s t = v is i ted_wv [ j ] . copy ( )
145 f o r wv i n v i s i t e d _ v _ l i s t :
146 D_ i n i t [ j , v ,wv ] = 1 # New
147

148 v i s i t e d _wv_ l i s t . append (w)
149 B_ i n i t [ j , v , ’ zero ’ ] = 1
150 f o r wv i n v i s i t e d _wv_ l i s t :
151 B_ i n i t [ j , v ,wv ] = 1
152 v i s i t e d _wv_ l i s t . append ( v )
153 v is i ted_wv [ j ] = v i s i t e d _wv_ l i s t
154 v i s i t e d _ v _ l i s t . append ( v )
155 e l i f L_request > capacity_w :
156 L_request −= L_V [ j , v ]
157 cont inue
158 f o r wv i n v i s i t e d _ v _ l i s t :
159 D_ i n i t [ j ,w,wv ] = 1
160 f o r v i n v_to_remove :
161 V_ l e f t . remove ( v )
162 Q_W_init [ j ,w] = L_de l i ve r [ j ,w]
163 capacity_w −= Q_W_init [ j ,w]
164 L_W_ += Q_W_init [ j ,w]
165

166 L_ l e f t _ −= Q_W_init [ j ,w]
167 L_ l e f t [ j ] = L_ l e f t _
168 i f L _ l e f t [ j ] == 0 :
169 S_save . remove ( j )
170 S_sa t i s f i ed += 1
171 S_DC_sat isf ied += 1
172

173 i f S_sa t i s f i ed == len ( S_id ) :
174 i f Q_W_init [ j ,w] > 0 :
175 L_W_ini t [ j ,w] = L_W_
176 X_W_init [ i , j ,w] = 1
177 X_W_init [ j , depot ,w] = 1
178 B_ i n i t [ j ,w, ’ zero ’ ] = 1
179 break
180 i f Q_W_init [ j ,w] > 0 :
181 X_W_init [ i , j ,w] = 1
182 B_ i n i t [ j ,w, ’ zero ’ ] = 1
183 L_W_ini t [ j ,w] = L_W_
184 i = j
185 S_ l e f t . remove ( j )
186 p r i n t ( ’ removed : ’ , j )
187 p r i n t ( ’ S_DC_sat isf ied : ’ , S_DC_sat isf ied )
188 i f S_DC_sat isf ied == len (S_DC[ d ] ) :
189 dc_count += 1
190 p r i n t ( ’DC s a t i s f i e d count ’ )
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191 S_DC_sat isf ied = 0
192 X_W_init [ j , depot ,w] = 1
193 break
194 i f len ( S_ l e f t ) == 0:
195 X_W_init [ j , depot ,w] = 1
196 break
197 found = False
198 f o r k i n S_ l e f t :
199 i f k i n S_DC[ d ] :
200 found = True
201 i f not found :
202 X_W_init [ j , depot ,w] = 1
203 break
204 i f Q_W_init [ j ,w] == 0:
205 X_W_init [ i , depot ,w] = 1
206 i f S_DC_sat isf ied == len (S_DC[ d ] ) :
207 dc_count += 1
208 S_DC_sat isf ied = 0
209 break
210

211 #
212 # I n i t i a l s o l u t i o n Z_WV
213 Z_WV_init = { }
214 f o r i i n DS_id :
215 f o r w in WV_id :
216

217 Z_WV_init [ i ,w] = 0
218

219 f o r w in W_id :
220 f o r i i n DS_id :
221 f o r j i n DS_id :
222 i f X_W_init [ i , j ,w] == 1:
223 Z_WV_init [ i ,w] = 1
224 Z_WV_init [ j ,w] = 1
225 p r i n t (w, i , j )
226 D_ i n i t [ i ,w, ’ zero ’ ] = 1
227

228 f o r v i n V_id :
229 f o r i i n S_id :
230 i f Z_V [ i , v ] == 1:
231 Z_WV_init [ i , v ] = 1
232 D_ i n i t [ i , v , ’ zero ’ ] = 1
233 #%%
234 i f S_DC_sat isf ied == len (S_DC[ d ] ) :
235 p r i n t ( ’ yes ’ )
236 DC_W = { }
237

238 f o r w in W_id :
239 f o r d i n DC:
240 f o r i i n S_id :
241 i f X_W_init [ i , d ,w] == 1:
242 DC_W[w] = d
243 #%%
244

245 # I n i t i a l s o l u t i o n Y
246 Y_ i n i t = { }
247 f o r i i n DS_id :
248 f o r k i n WV_id :
249 f o r l i n WV_id :
250 Y_ i n i t [ i , k , l ] = 0
251 i f k != l :
252 i f Z_WV_init [ i , k ] == 1:
253 i f Z_WV_init [ i , l ] == 1 :
254 Y_ i n i t [ i , k , l ] = 1
255

256 # Make sure B_ i n i t [ i , k , l ] i s zero i f not both veh ic les v i s i t i
257 f o r i i n S_id :
258 f o r k i n WV_id :
259 f o r l i n WV_id :
260 i f Y _ i n i t [ i , k , l ] == 0 :
261 i f B _ i n i t [ i , k , l ] > 0 :
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262 p r i n t ( ’ f i x ed e r r o r ’ , i , k , l )
263 i f B _ i n i t [ i , l , k ] > 0 :
264 p r i n t ( ’ f i x ed e r r o r ’ , i , l , k )
265 B_ i n i t [ i , k , l ] = 0
266 B_ i n i t [ i , l , k ] = 0
267

268 # I n i t i a l s o l u t i o n D_w
269 D_w_in i t = 0
270 D_w_s = { }
271 f o r w in W_id :
272 f o r i i n DS_id :
273 f o r j i n DS_id :
274 i f X_W_init [ i , j ,w] == 1:
275 D_w_in i t += d i s t _ f e . a t [ canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ]
276 D_w_s [ j ,w] = d i s t _ f e . a t [ canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ]
277

278 p r i n t ( ’ Distance on the waterways f o r i n i t i a l s o l u t i o n : ’ , D_w_in i t )
279

280 # Check B_ i n i t [ i , k , l ]
281 f o r i i n S_id :
282 f o r k i n WV_id :
283 f o r l i n WV_id :
284 i f Y _ i n i t [ i , k , l ] == 1 :
285 bb = B_ i n i t [ i , k , l ] + B_ i n i t [ i , l , k ]
286 i f bb < 1:
287 p r i n t ( B_ i n i t [ i , k , l ] , B _ i n i t [ i , l , k ] , ’ e r r o r f o r ’ , i , k , l )
288 b = B_ i n i t [ i , k , l ] + B_ i n i t [ i , l , k ]
289 i f b > 1 :
290 p r i n t ( ’ e r r o r f o r ’ , i , k , l )
291

292

293 # Check i f a l l demand i s de l i ve red
294 Del ivered = 0
295 f o r k i n W_id :
296 f o r i i n S_id :
297 i f Z_WV_init [ i , k ] >= 1:
298 Del ivered += Q_W_init [ i , k ]
299 p r i n t ( De l ivered )
300

301

302 # Only se l ec t w t ha t are used
303 W_used = [ ]
304 f o r w in W_id :
305 w_v i s i t s = 0
306 f o r i i n S_id :
307 i f Z_WV_init [ i ,w] == 1:
308 w_v i s i t s += 1
309 i f w_v i s i t s >= 1:
310 W_used . append (w)
311

312 Nr_w_ in i t = len (W_used)
313 W_id = W_used . copy ( )
314 WV_id = W_id + V_id
315 WV0_id = zero + WV_id
316 W0_id = zero + W_id
317 V0_id = zero + V_id
318

319 f o r i i n S_id :
320 f o r k i n V0_id :
321 f o r l i n V0_id :
322 i f B _ i n i t [ i , k , l ] == 1 :
323 D_ i n i t [ i , k , l ] = 1
324 f o r k i n W0_id :
325 f o r l i n W0_id :
326 i f B _ i n i t [ i , k , l ] == 1 :
327 D_ i n i t [ i , k , l ] = 1
328

329

330 # New i n i t i a l s o l u t i ons only f o r w in W_used
331 Z_WV_init_used = { }
332 f o r w in WV_id :
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333 f o r i i n DS_id :
334 Z_WV_init_used [ i ,w] = 0
335

336 f o r w in W_id :
337 f o r i i n DS_id :
338 f o r j i n DS_id :
339 i f X_W_init [ i , j ,w] == 1:
340 Z_WV_init_used [ i ,w] = 1
341 Z_WV_init_used [ j ,w] = 1
342

343 f o r v i n V_id :
344 f o r i i n S_id :
345 i f Z_V [ i , v ] == 1:
346 Z_WV_init_used [ i , v ] = 1
347

348 Y_in i t_used = { }
349 f o r i i n DS_id :
350 f o r k i n WV_id :
351 f o r l i n WV_id :
352 Y_in i t_used [ i , k , l ] = 0
353 i f k != l :
354 i f Z_WV_init [ i , k ] == 1:
355 i f Z_WV_init [ i , l ] == 1 :
356 Y_in i t_used [ i , k , l ] = 1
357

358

359 X_W_init_used = { }
360 Q_W_init_used = { }
361 L_W_init_used = { }
362 B_in i t_used = { }
363 D_in i t_used = { }
364

365 f o r i i n DS_id :
366 f o r k i n WV_id :
367 L_W_init_used [ i , k ] = L_W_ini t [ i , k ]
368 f o r l i n WV0_id :
369 Q_W_init_used [ i , l ] = Q_W_init [ i , l ]
370 f o r j i n DS_id :
371 f o r w in W_id :
372 X_W_init_used [ i , j ,w] = X_W_init [ i , j ,w]
373 L_de l i ve r [ j ,w] = 0
374

375 f o r i i n S_id :
376 f o r k i n WV0_id :
377 f o r l i n WV0_id :
378 B_in i t_used [ i , k , l ] = B_ i n i t [ i , k , l ]
379 D_in i t_used [ i , k , l ] = D_ i n i t [ i , k , l ]
380 p r i n t ( ’Number o f road veh i c l e t r i p s : ’ , len ( V_id ) )
381 # Check values f o r Z_WV_init
382 f o r w in W_id :
383 f o r i i n DS_id :
384 f o r j i n DS_id :
385 i f X_W_init [ i , j ,w] == 1:
386 i f Z_WV_init [ i ,w] != 1 :
387 p r i n t ( ’ e r r o r ’ , w, i )
388 i f Z_WV_init [ j ,w] != 1 :
389 p r i n t ( ’ e r r o r ’ , w, j )
390

391 #%%
392 model . dispose ( )
393

394 #%% VRP E1
395 p r i n t ( ’ Working on VRP E1 f o r Ns : ’ , Ns)
396 start_VRP_E1 = t ime . t ime ( )
397 model = gb . Model ( ’VRP_E1 ’ )
398 np . random . seed (123)
399 MIPGap = 0.25
400 t ime_ l im i t = t_lim_VRP_E1
401 K = 9999
402 p r i n t ( ” Wai t ing t ime vessels added in ob j ec t i v e ” )
403 # Var iab les
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404 # New
405 # Path from i to j , i f used by vessel w: = 1 , e lse : = 0
406 X_W = { }
407 f o r w in W_id :
408 f o r i i n DS_id :
409 f o r j i n DS_id :
410 X_W[ i , j ,w] = model . addVar ( vtype = GRB.BINARY, name = ’X_W ’ )
411

412 # Binary va r iab le , Y [ i , k , l ] = 1 i f both k and l v i s i t i
413 Y = { }
414 f o r k i n WV_id :
415 f o r l i n WV_id :
416 f o r i i n DS_id :
417 Y[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’Y ’ )
418

419

420 # A r r i v a l t ime of veh i c l e r a t i
421 A_WV = { }
422 f o r i i n DS_id :
423 f o r k i n WV_id :
424 A_WV[ i , k ] = model . addVar ( l b = −500, ub = 999999 , vtype = GRB.CONTINUOUS, name = ’

A_WV ’ )
425

426 # D i f f e rence i n a r r i v a l t imes of veh i c l e
427 A_D = { }
428 f o r i i n S_id :
429 f o r k i n WV_id :
430 f o r l i n WV_id :
431 A_D[ i , k , l ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’A_D ’ )
432

433 # D i f f e rence i n a r r i v a l t imes of veh i c l e
434 A_DD = { }
435 f o r i i n S_id :
436 f o r k i n WV_id :
437 f o r l i n WV_id :
438 A_DD[ i , k , l ] = model . addVar ( l b = −999999, ub = 999999 , vtype = GRB.CONTINUOUS,

name = ’A_DD ’ )
439

440

441 # New
442 # Quant i ty de l i ve red to customer i or picked up at s a t e l l i t e i by veh i c l e r
443 Q_W = { }
444 f o r w in WV0_id :
445 f o r i i n DS_id :
446 Q_W[ i ,w] = model . addVar ( l b = 0 .0 , vtype = GRB. INTEGER, name = ’Q_W’ )
447

448

449 # New
450 # Customer or s a t e l l i t e i s v i s i t e d by veh i c l e r : = 1 , i f not : = 0
451 Z_W = { }
452 f o r w in W_id :
453 f o r i i n DS_id :
454 Z_W[ i ,w] = model . addVar ( vtype = GRB. INTEGER, name = ’Z_W ’ )
455

456 # Customer or s a t e l l i t e i s v i s i t e d by veh i c l e r : = 1 , i f not : = 0
457 Z_WV = { }
458 f o r k i n WV_id :
459 f o r i i n DS_id :
460 Z_WV[ i , k ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_WV ’ )
461

462

463 # New
464 # Accumulated load of road veh i c l e r a t customer i
465 L_W = { }
466 f o r w in WV_id :
467 f o r i i n DS_id :
468 L_W[ i ,w] = model . addVar ( l b =0.0 , vtype = GRB. INTEGER, name = ’L_W ’ )
469

470

471 # Accumulated load de l i ve red to s a t e l l i t e i by veh ic les before and i nc l ud i ng k
472 LS = { }
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473 f o r i i n S_id :
474 f o r k i n WV0_id :
475 LS [ i , k ] = model . addVar ( l b = 0 .0 , vtype = GRB. INTEGER, name = ’LS ’ )
476

477

478 # t o t a l d is tance t r a v e l l e d over water
479 D_w = model . addVar ( vtype = GRB. INTEGER, name = ’D_w ’ )
480

481 # Number o f water veh i c les used
482 Nw = { }
483 f o r w in W_id :
484 Nw[w] = model . addVar ( vtype = GRB.BINARY, name = ’Nw ’ )
485

486

487 # Stock a t s a t e l l i t e i a f t e r a r r i v a l o f veh i c l e k
488 S = { }
489 f o r i i n S_id :
490 f o r k i n WV_id :
491 S[ i , k ] = model . addVar ( l b = −100, vtype = GRB. INTEGER, name = ’S ’ )
492

493 B = { }
494 f o r i i n S_id :
495 f o r k i n WV0_id :
496 f o r l i n WV0_id :
497 B[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’B ’ )
498

499

500 # New f o r depar ture t imes
501 D = { }
502 f o r i i n S_id :
503 f o r k i n WV0_id :
504 f o r l i n WV0_id :
505 D[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’D ’ )
506

507

508 D_WV = { }
509 f o r i i n DS_id :
510 f o r k i n WV_id :
511 D_WV[ i , k ] = model . addVar ( l b = 0 .0 , ub = 999999 , vtype = GRB.CONTINUOUS, name = ’

D_WV ’ )
512

513 W = { }
514 f o r i i n DS_id :
515 f o r w in W0_id :
516 W[ i ,w] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’W’ )
517

518

519 # Objec t i ve f unc t i on
520 model . se tOb jec t i ve ( quicksum ( d i s t _ f e . a t [ canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] * X_W[ i , j

,w] f o r w in W_id f o r i i n DS_id f o r j i n DS_id ) + 100 * quicksum (Nw[w] f o r w in W_id ) +
quicksum (W[ i ,w] f o r i i n S_id f o r w in W_id ) )

521

522 model . modelSense = GRB.MINIMIZE
523 model . update ( )
524

525 # Cons t ra in ts
526 # 1. A veh i c l e never goes from i to i
527 f o r w in W_id :
528 f o r i i n DS_id :
529 f o r j i n DS_id :
530 i f i == j :
531 constr_w_1 = model . addConstr (X_W[ i , j ,w] == 0 , name= ’ Constr_1 ’ )
532

533 # 2. Vehic le r can only leave node i f i t a lso a r r i ved there
534 f o r w in W_id :
535 f o r i i n DS_id :
536 # i f i != j :
537 constr_w_2 = model . addConstr ( quicksum (X_W[ i , j ,w] f o r j i n DS_id ) == quicksum (

X_W[ j , i ,w] f o r j i n DS_id ) , name= ’ Constr_2 ’ )
538

539 # 2b . New f o r neighbourhoods , X_W[ i , j ,w]=0 i f i , j not assigned to same depot as w
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540 f o r w in W_id :
541 f o r d i n DC:
542 i f d != DC_W[w ] :
543 f o r i i n S_id :
544 f o r j i n S_DC[ d ] :
545 constr_w_2b = model . addConstr (X_W[ i , j ,w] == 0 , name= ’ Constr_2b ’ )
546

547 # 3a . New f o r neighbourhoods , Z_WV[ i ,w] = 0 i f not i n DC_W
548 f o r w in W_id :
549 f o r d i n DC:
550 i f d != DC_W[w ] :
551 f o r s i n S_DC[ d ] :
552 constr_w_3a = model . addConstr (Z_WV[ s ,w] == 0 , name= ’ Constr_3a ’ )
553

554 # 3. Nodes t ha t are v i s i t e d by veh i c l e w
555 f o r w in W_id :
556 f o r i i n DS_id :
557 constr_w_3b = model . addConstr (Z_WV[ i ,w] == quicksum (X_W[ i , j ,w] f o r j i n DS_id ) ,

name= ’ Constr_3 ’ )
558

559 # 4b . Nodes t ha t are v i s i t e d by veh i c l e r
560 f o r v i n V_id :
561 f o r i i n DS_id :
562 constr_w_4c = model . addConstr (Z_WV[ i , v ] == Z_V [ i , v ] , name= ’ Constr_4 ’ )
563

564 # New
565 # 5. The demand de l i ve red to i i s zero i f veh i c l e r does not v i s i t i
566 f o r w in W_id :
567 f o r i i n DS_id :
568 constr_w_5 = model . addGenConstr Indicator (Z_WV[ i ,w] , False , Q_W[ i ,w] , GRB.EQUAL,

0 , name= ’ Constr_5 ’ )
569

570 # 6. Demand s a t i s f a c t i o n cons t r a i n t
571 f o r i i n S_id :
572 constr_w_6 = model . addConstr ( quicksum (Q_W[ i ,w] f o r w in W_id ) == LS_V [ i ] , name= ’

Constr_6 ’ ) #s_v [ i ] ) ) #
573 constr_w_6b = model . addConstr (Q_W[ i , ’ zero ’ ] == 0 , name= ’ Constr_6b ’ )
574

575 # New
576 # 7. No load i s de l i ve red to DC
577 # 8. The accumulated load at the DC i s zero
578 f o r w in W_id :
579 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
580 f o r i i n DC:
581 constr_w_7 = model . addConstr (Q_W[ i ,w] == 0 , name= ’ Constr_7 ’ )
582 constr_w_8 = model . addConstr (L_W[ i ,w] == 0 , name= ’ Constr_8 ’ )
583

584 # 8b . No load de l i ve red by road veh ic les
585 f o r v i n V_id :
586 f o r i i n DS_id :
587 constr_w_8b = model . addConstr (Q_W[ i , v ] == 0 , name= ’ Constr_8b ’ )
588 constr_w_8c = model . addConstr (L_W[ i , v ] == 0 , name= ’ Constr_8c ’ )
589

590 # 9a . Maximum capac i t y o f veh i c l e r i n d i c a t o r vers ion :
591 f o r w in W_id :
592 f o r i i n DS_id :
593 f o r j i n S_id :
594 constr_w_9a = model . addGenConstr Indicator (X_W[ i , j ,w] , True , L_W[ j ,w] − L_W[ i ,

w] − Q_W[ j ,w] , GRB.EQUAL, 0 , name= ’ Constr_9a ’ )
595

596 # New
597 # 9b . No L_R i f not v i s i t e d
598 f o r w in W_id :
599 f o r i i n DS_id :
600 constr_w_9b = model . addGenConstr Indicator (Z_WV[ i ,w] , False , L_W[ i ,w] , GRB.EQUAL,

0 , name= ’ Constr_9b ’ )
601

602 # New
603 # 9c . The load de l i ve red to customer i by veh i c l e r i s always less than or equal to the

accumulated load of r a t customer i :
604 f o r w in W_id :
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605 f o r i i n S_id :
606 constr_w_9c = model . addConstr (Q_W[ i ,w] <= L_W[ i ,w] , name= ’ Constr_9c ’ )
607

608 # New
609 # 9d . The accumulated load of veh i c l e r a t customer i i s always less than or equal to the

maximum capac i t y o f veh i c l e r :
610 f o r w in W_id :
611 f o r i i n S_id :
612 constr_w_9d = model . addConstr ( L_W[ i ,w] <= capac i ty_ fe , name= ’ Constr_9d ’ )
613

614

615 # # A r r i v a l t ime cons t r a i n t s :
616 f o r k i n WV_id :
617 f o r i i n S_id :
618 constr_t ime_span = model . addConstr (A_WV[ i , k ] >= 0 , name = ’ constr_t ime_span ’ )
619

620

621 # 10. Sequent ia l v i s i t s to s a t e l l i t e s by vessels
622 f o r w in W_id :
623 f o r i i n DS_id :
624 f o r j i n S_id :
625 constr_t ime_10a = model . addGenConstr Indicator (X_W[ i , j ,w] , True , A_WV[ j ,w] −

A_WV[ i ,w] − d i s t _ f e . a t [ canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] / ( speed_fe * 60) − W[ i
,w] − Q_W[ i ,w] * 0.2 , GRB.GREATER_EQUAL, 0 , name= ’ Constr_10 ’ )

626

627 # 10b . The a r r i v a l t ime at the f i r s t s a t e l l i t e o f t r i p w i s the a r r i v a l t ime at the depot
− t r a v e l t ime − serv i ce t ime

628 f o r w in W_id :
629 f o r j i n S_id :
630 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
631 f o r i i n DC:
632 constr_t ime_10b = model . addGenConstr Indicator (X_W[ i , j ,w] , True , A_WV[ j ,w] −

A_WV[ i ,w] − d i s t _ f e . a t [ canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] / ( speed_fe * 60) −
serv ice_ t ime_fe / 60 , GRB.EQUAL, 0 , name = ’ Constr_10b ’ )

633

634

635 # 11. Binary va r i ab l e Y [ i , k , l ] i s one i f both k and l v i s i t i
636 f o r i i n S_id :
637 f o r k i n WV_id :
638 f o r l i n WV_id :
639 i f k != l :
640 constr_Y_11 = model . addConstr (Y [ i , k , l ] == gb . and_ (Z_WV[ i , k ] , Z_WV[ i , l ] ) ,

name= ’ Constr_11 ’ )
641

642

643 # 12. A r r i v a l t imes of veh i c les a t s a t e l l i t e s cannot be the same
644 f o r i i n S_id :
645 f o r k i n WV_id :
646 f o r l i n WV_id :
647 constr_t ime_12a = model . addConstr (A_DD[ i , k , l ] == A_WV[ i , k ] − A_WV[ i , l ] , name=

’ Constr_12a ’ )
648 constr_t ime_12b = model . addConstr (A_D[ i , k , l ] == gb . abs_ (A_DD[ i , k , l ] ) , name= ’

Constr_12b ’ )
649

650

651 # 13a . A r r i v a l t imes of road veh ic les a t s a t e l l i t e s cannot be the same
652 f o r i i n S_id :
653 f o r k i n V_id :
654 f o r l i n V_id :
655 i f k != l :
656 constr_t ime_13a = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_D[ i , k , l ] ,

GRB.GREATER_EQUAL, 3 , name= ’ Constr_13a ’ ) #180)
657 constr_t ime_13a_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13a_1 ’ )
658

659

660 # 13b . A r r i v a l t imes of a water veh i c les i s l a t e r than the depar ture t ime of another
water veh i c l e

661 f o r i i n S_id :
662 f o r k i n W_id :
663 f o r l i n W_id :
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664 i f k != l :
665 constr_t ime_13b = model . addGenConstr Indicator (B [ i , k , l ] , True , A_WV[ i , k ] −

D_WV[ i , l ] + 0.0001 , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13b ’ ) #600)
666 constr_t ime_13b_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13b_1 ’ )
667 # 13b . A r r i v a l t imes of water and road veh ic les a t s a t e l l i t e s cannot be the same
668 f o r i i n S_id :
669 f o r k i n W_id :
670 f o r l i n V_id :
671 i f k != l :
672 constr_t ime_13c = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_D[ i , k , l ] ,

GRB.GREATER_EQUAL, 0.0101 , name= ’ Constr_13c ’ ) #600)
673 constr_t ime_13c_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13c_1 ’ )
674

675 #13c . A r r i v a l t imes at s a t e l l i t e s cannot be l a t e r than the maximum time span
676 f o r i i n S_id :
677 f o r k i n WV_id :
678 constr_t ime_13d = model . addConstr (D_WV[ i , k ] <= time_span − 1 , name= ’ Constr_13d ’ )
679

680

681 # 14. A r r i v a l t ime i s i n f i n i t e i f a veh i c l e does not v i s i t s a t e l l i t e i
682 f o r i i n S_id :
683 f o r k i n WV_id :
684 constr_t ime_14 = model . addGenConstr Indicator (Z_WV[ i , k ] , False , A_WV[ i , k ] , GRB.

EQUAL, 0)
685

686 # # S a t e l l i t e synchron isa t ion cons t r a i n t s :
687

688 # 15. Binary va r i ab l e = 1 i f veh i c l e k a r r i v e s a t the same t ime or a f t e r veh i c l e l
689 f o r i i n S_id :
690 f o r k i n WV_id :
691 constr_binary_150 = model . addGenConstr Indicator (Z_WV[ i , k ] , True , B [ i , k , ’ zero ’ ] ,

GRB.EQUAL, 1 )
692 f o r l i n WV_id :
693 constr_binary_15a = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_WV[ i , k ] − K

* B[ i , k , l ] − A_WV[ i , l ] , GRB.LESS_EQUAL, 0 )
694 constr_binary_15b = model . addGenConstr Indicator (Y [ i , k , l ] , True , B [ i , k , l ] + B [

i , l , k ] , GRB.EQUAL, 1)
695 const r_b inary_15c = model . addConstr (B [ i , k , l ] + B [ i , l , k ] <= 1)
696 constr_binary_15d = model . addGenConstr Indicator (Z_WV[ i , k ] , False , B [ i , k , l ] ,

GRB.EQUAL, 0 )
697 constr_binary_15e = model . addGenConstr Indicator (Z_WV[ i , k ] , False , B [ i , l , k ] ,

GRB.EQUAL, 0 )
698

699 # 16. Load de l i ve red to s a t e l l i t e i by a l l veh i c les before k and k
700 f o r i i n S_id :
701 f o r k i n WV0_id :
702 f o r l i n WV0_id :
703 constr_load_16a = model . addGenConstr Indicator (B [ i , k , l ] , True , LS [ i , k ] −

LS [ i , l ] − Q_W[ i , k ] , GRB.GREATER_EQUAL, 0 )
704

705 f o r i i n S_id :
706 f o r k i n WV_id :
707 constr_load_16b = model . addConstr (LS [ i , k ] <= quicksum (Q_W[ i ,w] f o r w in W_id ) )
708 constr_ load_16c = model . addGenConstr Indicator (Z_WV[ i , k ] , False , LS [ i , k ] , GRB.

EQUAL, 0 )
709

710 # 17. New Stock a t s a t e l l i t e s cons t r a i n t s
711 f o r i i n S_id :
712 f o r k i n WV_id :
713 constr_stock_17a = model . addGenConstr Indicator (Z_WV[ i , k ] , True , S [ i , k ] +

quicksum (L_V [ i , l ] * B[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.EQUAL, 0)
714

715 f o r i i n S_id :
716 f o r k i n WV_id :
717 constr_stock_17b = model . addConstr (S [ i , k ] >= 0)
718 constr_stock_17c = model . addConstr (S [ i , k ] <= capac i ty_s [ i ] + capac i t y_ fe )
719

720 constr_water_km = model . addConstr (D_w == quicksum ( d i s t _ f e . a t [ canal_nodes_dict [ i ] ,
canal_nodes_dict [ j ] ] * X_W[ i , j ,w] f o r w in W_id f o r i i n DS_id f o r j i n DS_id ) )
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721

722

723 f o r w in W_id :
724 f o r i i n S_id :
725 constr_Nw = model . addGenConstr Indicator (Z_WV[ i ,w] , True , Nw[w] , GRB.EQUAL, 1)
726

727 # New f o r depar ture t imes
728 f o r i i n S_id :
729 f o r v i n V_id :
730 const r_depar ture_1 = model . addGenConstr Indicator (Z_WV[ i , v ] , True , D_WV[ i , v ] −

A_WV[ i , v ] − t ranssh ip_s / 60 , GRB.EQUAL, 0 , name = ’ constr_dep_1 ’ )
731 f o r w in W_id :
732 const r_depar ture_2 = model . addGenConstr Indicator (Z_WV[ i ,w] , True , D_WV[ i ,w] −

A_WV[ i ,w] − W[ i ,w] − Q_W[ i ,w] * 0.2 , GRB.EQUAL, 0 , name = ’ constr_dep_2 ’ )
733

734

735 f o r i i n S_id :
736 f o r k i n V0_id :
737 f o r l i n V0_id :
738 const r_depar ture_3 = model . addGenConstr Indicator (B [ i , k , l ] , True , D[ i , k , l ] ,

GRB.EQUAL, 1 , name = ’ constr_dep_3 ’ )
739 f o r k i n W0_id :
740 f o r l i n W0_id :
741 const r_depar ture_4 = model . addGenConstr Indicator (B [ i , k , l ] , True , D[ i , k , l ] ,

GRB.EQUAL, 1 , name = ’ constr_dep_4 ’ )
742

743 f o r k i n WV_id :
744 const r_depar ture_8 = model . addGenConstr Indicator (Z_WV[ i , k ] , False , quicksum (D[ i

, k , l ] f o r l i n WV_id ) + quicksum (D[ i , l , k ] f o r l i n WV_id ) , GRB.EQUAL, 0 , name = ’
constr_dep_8 ’ )

745 f o r l i n WV_id :
746 const r_depar ture_5 = model . addGenConstr Indicator (Y [ i , k , l ] , True , D_WV[ i , k ] −

K* D[ i , k , l ] − D_WV[ i , l ] + 0.0001 , GRB.LESS_EQUAL, 0 , name = ’ constr_dep_5 ’ )
747 const r_depar ture_6 = model . addGenConstr Indicator (Y [ i , k , l ] , True , D[ i , k , l ] + D

[ i , l , k ] , GRB.EQUAL, 1 , name = ’ constr_dep_6 ’ )
748

749

750 f o r i i n S_id :
751 f o r k i n W_id :
752 const r_depar ture_7 = model . addGenConstr Indicator (Z_WV[ i , k ] , True , quicksum (L_V [ i

, l ] * D[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.LESS_EQUAL, 0 , name = ’
constr_dep_7 ’ )

753 constr_departure_7_b = model . addGenConstr Indicator (Z_WV[ i , k ] , True , quicksum (L_V
[ i , l ] * D[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.GREATER_EQUAL, − capac i ty_s [ i ] ,
name = ’ constr_dep_7_b ’ )

754

755

756

757 f o r ( i , j , w) , value i n X_W_init_used . i tems ( ) :
758 X_W[ i , j , w ] . s t a r t = value
759

760 f o r ( i , w) , value i n Q_W_init_used . i tems ( ) :
761 Q_W[ i ,w ] . s t a r t = value
762

763 f o r ( i ,w) , value i n L_W_init_used . i tems ( ) :
764 L_W[ i ,w ] . s t a r t = value
765

766 f o r ( i ,w) , value i n Z_WV_init_used . i tems ( ) :
767 Z_WV[ i ,w ] . s t a r t = value
768

769 f o r ( i , k , l ) , value i n Y_in i t_used . i tems ( ) :
770 Y[ i , k , l ] . s t a r t = value
771

772 f o r ( i , k , l ) , value i n B_in i t_used . i tems ( ) :
773 B[ i , k , l ] . s t a r t = value
774

775

776 # S ta r t op t im i sa t i on
777

778 p r i n t ( ” s t a r t op t im i z i ng ” )
779 model . setParam ( ’ OutputFlag ’ , True )
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780 model . setParam ( ’MIPGap ’ , mip_VRP_E1) ;
781 model . setParam ( ’ F e a s i b i l i t y T o l ’ , 1e−6)
782 model . setParam ( ’MIPFocus ’ , 0)
783 model . setParam ( ’SubMIPNodes ’ , 20000)
784 model . setParam ( ’Seed ’ , 123)
785 model . setParam ( ’ SoftMemLimit ’ , 70)
786 i f t i me_ l im i t :
787 model . setParam ( ’ T ime l im i t ’ , t ime_ l im i t )
788 model . _obj = None
789 model . _bd = None
790 model . _obj_value = [ ]
791 model . _t ime = [ ]
792 model . _ s t a r t = t ime . t ime ( )
793 model . op t im ize ( )
794 mip_gap_vrp_E1 = model .MIPGap
795

796 end_VRP_E1 = t ime . t ime ( )
797 time_VRP_E1 = end_VRP_E1 − start_VRP_E1
798

799 #%% Save r e su l t s VRP E1
800 X_W_init_s = model . g e tA t t r ( ’X ’ , X_W)
801 Y_ in i t _s = model . g e tA t t r ( ’X ’ , Y)
802 A_WV_init_s = model . g e tA t t r ( ’X ’ , A_WV)
803 A_D_ini t_s = model . g e tA t t r ( ’X ’ , A_D)
804 A_DD_init_s = model . g e tA t t r ( ’X ’ , A_DD)
805 Q_W_init_s = model . g e tA t t r ( ’X ’ , Q_W)
806 Z_WV_init_s = model . g e tA t t r ( ’X ’ , Z_WV)
807 L_W_ini t_s = model . g e tA t t r ( ’X ’ , L_W)
808 LS_ in i t_s = model . g e tA t t r ( ’X ’ , LS)
809 S_ in i t _s = model . g e tA t t r ( ’X ’ , S)
810 B_ in i t _s = model . g e tA t t r ( ’X ’ , B)
811 D_ in i t _s = model . g e tA t t r ( ’X ’ , D)
812 D_WV_init_s = model . g e tA t t r ( ’X ’ , D_WV)
813 W_ini t_s = model . g e tA t t r ( ’X ’ , W)
814

815 D_w_VRP_E1 = D_w.X
816 p r i n t ( ’ Distance on waterways a f t e r VRP_E1: ’ , D_w_VRP_E1)
817 W_used_VRP_E1 = [ ]
818 f o r w in W_id :
819 w_v i s i t s = 0
820 f o r i i n S_id :
821 i f Z_WV_init_s [ i ,w] == 1:
822 w_v i s i t s += 1
823 i f w_v i s i t s >= 1:
824 W_used_VRP_E1 . append (w)
825 Nr_w_VRP_E1 = len (W_used_VRP_E1)
826 W_id = W_used_VRP_E1 . copy ( )
827

828 # Ca lcu la te t ime i t takes to perform t r i p s f o r road veh ic les
829 Nc_V = { } #Number o f customers v i s i t e d i n t r i p v Nc_V
830 f o r r i n R_id :
831 f o r v i n r_v [ r ] :
832 Nc_V [ v ] = quicksum (Z_V [ i , v ] f o r i i n r_c [ r ] )
833 Nc_V [ ’ zero ’ ] = 0
834

835

836 P_V = { }
837 f o r l i n V_id :
838 P_V [ ’ zero ’ , l ] = D_T [ ’ zero ’ , l ] / ( speed_v * 60) + ( t ranssh ip_c / 60) * Nc_V [ ’ zero ’ ] +

t ranssh ip_s / 60
839 f o r k i n V0_id :
840 P_V [ l , k ] = D_T [ l , k ] / ( speed_v * 60) + ( t ranssh ip_c / 60) * Nc_V [ l ] + t ranssh ip_s /

60
841 P_V [ l , k ] = P_V [ l , k ] . getValue ( )
842 P_V [ ’ zero ’ , ’ zero ’ ] = 0
843

844 #%%
845 f o r w in W_id :
846 f o r i i n DS_id :
847 i f Z_WV_init_s [ i ,w] == 1:
848 p r i n t (w, i ,A_WV[ i ,w ] . X)
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849

850 #%%
851 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
852 f o r i i n DC:
853 p r i n t ( i )
854 p r i n t ( D_r , mip_gap_E2 , D_w_VRP_E1, mip_gap_vrp_E1 )
855 #%%
856 DC_W = { }
857 f o r w in W_id :
858 f o r d i n DC:
859 f o r i i n S_id :
860 i f X_W_init_s [ i , d ,w] == 1:
861 DC_W[w] = d
862 #%%
863 wi th open ( f ’ output_VRPs_ { s a v e_ t i t l e } _ {Ns} _ { t_lim_VRP_E2 } . t x t ’ , ’w ’ ) as f :
864 f . w r i t e ( f ’D_r_VRP_E2 : \ n { D_r } \ n ’ )
865 f . w r i t e ( f ’MIP_VRP_E2 : \ n {mip_gap_E2 } \ n ’ )
866 f . w r i t e ( f ’D_w_VRP_E1 : \ n {D_w_VRP_E1 } \ n ’ )
867 f . w r i t e ( f ’MIP_VRP_E1 : \ n { mip_gap_vrp_E1 } \ n ’ )
868 f o r var_name , var_values i n [
869 ( ’X_W ’ , X_W_init_s ) ,
870 ( ’Y ’ , Y_ in i t _s ) ,
871 ( ’A_WV ’ , A_WV_init_s ) ,
872 ( ’A_D ’ , A_D_in i t_s ) ,
873 ( ’A_DD ’ , A_DD_init_s ) ,
874 ( ’Q_W’ , Q_W_init_s ) ,
875 ( ’Z_WV ’ , Z_WV_init_s ) ,
876 ( ’L_W ’ , L_W_ini t_s ) ,
877 ( ’LS ’ , LS_ in i t_s ) ,
878 ( ’S ’ , S_ in i t _s ) ,
879 ( ’B ’ , B_ in i t _s ) ,
880 ( ’D ’ , D_ in i t _s ) ,
881 ( ’D_WV ’ , D_WV_init_s ) ,
882 ( ’W’ , W_in i t_s ) ,
883 ( ’P_V ’ , P_V) ,
884 ( ’ L_V ’ , L_V ) ,
885 ( ’LS_V ’ , LS_V) ,
886 ( ’Z_V ’ , Z_V) ,
887 ( ’ v_s ’ , v_s ) ,
888 ( ’ L_V ’ , L_V ) ,
889 ( ’D_T ’ , D_T) ,
890 ( ’ v_d ’ , v_d ) ,
891 ( ’ canal_nodes_dict ’ , canal_nodes_dict )
892 ] :
893 f . w r i t e ( f ’ { var_name } : \ n ’ )
894 f o r key , value i n var_values . i tems ( ) :
895 i f i s i n s t ance ( value , gb . LinExpr ) :
896 value = value . getValue ( )
897 f . w r i t e ( f ’ { key } : { value } \ n ’ )
898 f . w r i t e ( ’ V_id : \ n ’ )
899 f o r v i n V_id :
900 f . w r i t e ( f ’ { v } \ n ’ )
901 f . w r i t e ( ’W_id : \ n ’ )
902 f o r w in W_id :
903 f . w r i t e ( f ’ {w } \ n ’ )
904 f . w r i t e ( ’ S_id : \ n ’ )
905 f o r s i n S_id :
906 f . w r i t e ( f ’ { s } \ n ’ )
907 f . w r i t e ( ’DC: \ n ’ )
908 f o r d i n DC:
909 f . w r i t e ( f ’ { d } \ n ’ )
910 wi th open ( f ’ output_VRPs_plot_ { s a v e_ t i t l e } _ {Ns} _ { t_lim_VRP_E2 } . t x t ’ , ’w ’ ) as f :
911 f o r var_name , var_values i n [
912 ( ’Y_V ’ , Y_V) ,
913 ( ’ s_c ’ , s_c ) ,
914 ( ’ v_d ’ , v_d ) ,
915 ( ’ road_nodes_dict ’ , road_nodes_dict )
916 ] :
917 f . w r i t e ( f ’ { var_name } : \ n ’ )
918 f o r key , value i n var_values . i tems ( ) :
919 i f i s i n s t ance ( value , gb . LinExpr ) :
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920 value = value . getValue ( )
921 f . w r i t e ( f ’ { key } : { value } \ n ’ )
922

923

924 model . dispose ( )

B.4. Scheduling Problem
B.4.1. Road Vehicle Scheduling

1 #%% Import l i b r a r i e s
2 impor t gurobipy as gb
3 impor t t ime
4 impor t os
5 impor t numpy as np
6 impor t pandas as pd
7 impor t p i c k l e
8 impor t math
9 impor t copy
10 impor t sys
11 impor t ma t p l o t l i b . pyp lo t as p l t
12 from openpyxl impor t load_workbook
13 from gurobipy impor t quicksum , GRB
14

15 #%% Set path
16 server = ’ True ’
17

18 i f server == ’ False ’ :
19 path = os . getcwd ( ) + ” \ Inpu ts \ \ ”
20 path_out = os . getcwd ( ) + ” \ Outputs \ \ ”
21 from FLP_solver_def ini t ion_number_customers_horeca_sets_Laudy impor t FLP_num_cust
22 from FLP_so lver_def in i t ion_horeca_sets_capac i ty_ass ignment impor t FLP_capacity
23

24 i f server == ’ True ’ :
25 path = os . getcwd ( ) + ” / Inpu ts / ”
26 path_out = os . getcwd ( ) + ” / Outputs / ”
27

28

29 #%% Scenario inpu ts
30 d i r ec ted = ’ t r ue ’ # I nd i ca t e wether to use d i r ec ted or und i rec ted d is tance

mat r i x
31 FLP_const ra in t = ’ num_cust ’ # Which FLP cons t r a i n t to use , e i t h e r capac i t y or num_cust
32 Nc = 750 # I n se r t the number o f customers to cons ider
33 horeca_sets = np . arange (1 ,11) # Which horeca sets to eva luate
34 horeca_set = 1 # I f not t e s t i n g a l l horeca sets , i n s e r t one to evaluate
35

36

37

38 #%% Import network and scenar io data
39 df_horeca_demand_scenarios = pd . read_excel ( path + f ’ df_horeca_demand_scenarios . x l sx ’ ,

index_co l =0)
40 df_horeca_demand_scenarios . index = df_horeca_demand_scenarios . index . astype ( s t r )
41 df_horeca_data_ in fo = pd . read_excel ( path + f ’ d f_horeca_data_ in fo . x l sx ’ , index_co l =0)
42 df_horeca_data_ in fo . index = df_horeca_data_ in fo . index . astype ( s t r )
43 customer_ locat ions = df_horeca_data_ in fo . i l o c [ : , 0 ]
44

45 i f server == ’ False ’ :
46 df_SE_shor tes t_d is t_d i rec ted_Fa lse = p i c k l e . load ( open ( path + ’

d f_SE_shor tes t_d is t_d i rec ted −False_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
47 df_SE_shor tes t_d is t_d i rec ted_True_1 = p i c k l e . load ( open ( path + ’

d f_SE_shor tes t_d is t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
48 df_SE_shor tes t_d is t_d i rec ted_True = df_SE_shor tes t_d is t_d i rec ted_True_1 . f i l l n a (1001)
49 d ic t_FE_shor tes t_d is t_d i rec ted_True_1 = p i c k l e . load ( open ( path + ’

d i c t_FE_sho r tes t_d i s t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
50

51 i f server == ’ True ’ :
52 p i c k l e _ o f f = open ( path + ’ d f_SE_shor tes t_d is t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ )
53 df_SE_shor tes t_d is t_d i rec ted_True_1 = pd . read_p ick le ( p i c k l e _ o f f )
54 df_SE_shor tes t_d is t_d i rec ted_True = df_SE_shor tes t_d is t_d i rec ted_True_1 . f i l l n a (1001)
55

56 p i c k l e _ o f f = open ( path + ’ d i c t_FE_sho r tes t_d i s t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ )
57 d ic t_FE_shor tes t_d is t_d i rec ted_True_1 = pd . read_p ick le ( p i c k l e _ o f f )
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58 df_SE_shor tes t_d is t_d i rec ted_Fa lse = d ic t_FE_shor tes t_d is t_d i rec ted_True_1
59 assigned = [ ]
60 i nd i ces = [ ]
61 customers = [ [ 0 ] * 3 ] * len ( customer_ locat ions )
62 f o r customer_id i n df_horeca_data_ in fo . index . t o l i s t ( ) :
63 i f df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] > 0 :
64 i nd i ces . append ( customer_id )
65 assigned . append ( { ’ road_node ’ : i n t ( d f_horeca_data_ in fo . a t [ customer_id , ’ road_node ’ ] ) , ’

demand ’ : i n t ( df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] ) } )
66 customers = pd . DataFrame ( assigned , index= ind i ces ) # df_horeca_data_ in fo . index . t o l i s t ( ) )
67

68

69 s a t e l l i t e _ l o c a t i o n s = pd . read_excel ( path + ” sa t e l l i t e _nodes_s t o r age_ f u l l . x l sx ” , index_co l =0)
70 veh ic les = pd . read_excel ( path + ” Road_vehicles . x l sx ” , index_co l =0)
71 road_nodes = pd . read_excel ( path + ” sate l l i tes_customers_road_nodes . x l sx ” , index_co l = 0)
72

73 i f d i r ec ted == ’ t r ue ’ :
74 d i s t = d f_SE_shor tes t_d is t_d i rec ted_True
75 e l i f d i r ec ted == ’ f a l s e ’ :
76 d i s t = d f_SE_shor tes t_d is t_d i rec ted_Fa lse
77

78 #%% Parameters
79 speed_v = i n t ( os . getenv ( ’ speed_v ’ ) )
80 t ranssh ip_s = i n t ( os . getenv ( ’ t ranssh ip_s ’ ) )
81 t ranssh ip_c = i n t ( os . getenv ( ’ t ranssh ip_c ’ ) )
82 f e v _ p r o f i l e = 5
83 capac i t y_ fe = i n t ( os . getenv ( ’ capac i t y_ fe ’ ) )
84 speed_fe_str = os . getenv ( ’ speed_fe ’ )
85 speed_fe = f l o a t ( speed_fe_str )
86 serv ice_ t ime_fe = i n t ( os . getenv ( ’ se rv ice_ t ime_fe ’ ) )
87 capac i ty_s = i n t ( os . getenv ( ’ capac i ty_s ’ ) )
88 capaci ty_se = i n t ( os . getenv ( ’ capaci ty_se ’ ) )
89 Ns = i n t ( os . getenv ( ’ N rSa t e l l i t e s ’ ) )
90 d f_ fe_d is tance_mat r i x = d ic t_FE_shor tes t_d is t_d i rec ted_True_1 [ f ’ v esse l _p ro f i l e _ { f e v _ p r o f i l e } ’

] . copy ( )
91 d i s t _ f e = d f_ fe_d is tance_mat r i x . f i l l n a (99999)
92

93 # New dis tance mat r i x f o r mu l t i p l e water veh i c l e depots :
94 dict_FE_new = pd . read_csv ( path + ’ distance_matr ix_DCs . csv ’ , sep= ’ ; ’ , header=None )
95 dist_fe_new = pd . DataFrame ( dict_FE_new )
96 dist_fe_new . index = dist_fe_new . index + 1
97 new_index = { o ld_ index : o ld_ index + 1 f o r o ld_ index i n dist_fe_new . columns }
98 dist_fe_new = dist_fe_new . rename ( columns=new_index )
99 d i s t _ f e = dist_fe_new . f i l l n a (99999)
100

101 t_ l imi ts_VRP_E2_st r = os . getenv ( ’ t_l imits_VRP_E2 ’ )
102 t_l imits_VRP_E2 = eval ( t_ l imi ts_VRP_E2_st r )
103 t_lim_VRP_E1 = i n t ( os . getenv ( ’ t_lim_VRP_E1 ’ ) )
104 t_ l im_sched_road = i n t ( os . getenv ( ’ t_ l im_sched_road ’ ) )
105 t_ l im_sched_water = i n t ( os . getenv ( ’ t_ l im_sched_water ’ ) )
106 t _ l im_sched_ to ta l = i n t ( os . getenv ( ’ t _ l im_sched_ to ta l ’ ) )
107 t ime_span = i n t ( os . getenv ( ’ time_span ’ ) )
108 mip_VRP_E2_str = os . getenv ( ’mip_VRP_E2 ’ )
109 mip_VRP_E2 = f l o a t ( mip_VRP_E2_str )
110 mip_VRP_E1_str = os . getenv ( ’mip_VRP_E1 ’ )
111 mip_VRP_E1 = f l o a t ( mip_VRP_E1_str )
112 mip_sched_r_str = os . getenv ( ’ mip_sched_r ’ )
113 mip_sched_r = f l o a t ( mip_sched_r_str )
114 mip_sched_w_str = os . getenv ( ’mip_sched_w ’ )
115 mip_sched_w = f l o a t ( mip_sched_w_str )
116 mip_sched_t_str = os . getenv ( ’ mip_sched_t ’ )
117 mip_sched_t = f l o a t ( mip_sched_t_str )
118 storage_set = os . getenv ( ’ s torage_set ’ )
119 s a v e_ t i t l e = os . getenv ( ’ s a v e_ t i t l e ’ )
120

121

122 capac i ty_s = { }
123 f o r i i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
124 capac i ty_s [ i ] = s a t e l l i t e _ l o c a t i o n s . a t [ i , f ’ capac i ty_ { s torage_set } ’ ]
125

126 #%% Import i n i t i a l s o l u t i o n
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127

128 N_s = [ ]
129 r e s u l t s = [ ]
130 f o r t_lim_VRP_E2 in t_l imits_VRP_E2 :
131 p r i n t ( s a v e_ t i t l e ) #%%
132 V_id = [ ]
133 W_id = [ ]
134 S_id = [ ]
135 X_W_init_s = { }
136 Q_W_init_s = { }
137 L_W_ini t_s = { }
138 Z_WV_init_s = { }
139 Y_ in i t _s = { }
140 B_ in i t _s = { }
141 A_WV_init_s = { }
142 A_DD_init_s = { }
143 S_ in i t _s = { }
144 LS_ in i t_s = { }
145 D_ in i t _s = { }
146 D_WV_init_s = { }
147 W_ini t_s = { }
148 P_V = { }
149 LS_V = { }
150 Z_V = { }
151 v_s = { }
152 L_V = { }
153 D_T = { }
154 v_d = { }
155 canal_nodes_dict = { }
156 D_r_VRP_E2 = None
157 D_w_VRP_E1 = None
158 MIP_VRP_E2 = None
159 MIP_VRP_E1 = None
160 DC = [ ]
161 wi th open ( f ’ output_VRPs_ { s a v e_ t i t l e } _ {Ns} _ { t_lim_VRP_E2 } . t x t ’ , ’ r ’ ) as f :
162 cur ren t_va r = None
163 f o r l i n e i n f :
164 l i n e = l i n e . s t r i p ( )
165 i f l i n e . endswith ( ’ : ’ ) :
166 cur ren t_va r = l i n e [ : −1 ]
167 e l i f cu r ren t_va r i s not None :
168 par ts = l i n e . s p l i t ( ’ : ’ )
169 i f cu r ren t_va r == ’ V_id ’ :
170 V_id . append ( l i n e . s t r i p ( ) )
171 e l i f cu r ren t_va r == ’W_id ’ :
172 W_id . append ( l i n e . s t r i p ( ) )
173 e l i f cu r ren t_va r == ’ S_id ’ :
174 S_id . append ( l i n e . s t r i p ( ) )
175 e l i f cu r ren t_va r == ’DC ’ :
176 DC. append ( l i n e . s t r i p ( ) )
177 e l i f cu r ren t_va r == ’D_r_VRP_E2 ’ :
178 D_r_VRP_E2 = f l o a t ( l i n e )
179 p r i n t (D_r_VRP_E2)
180 e l i f cu r ren t_va r == ’MIP_VRP_E2 ’ :
181 MIP_VRP_E2 = f l o a t ( l i n e )
182 p r i n t (MIP_VRP_E2)
183 e l i f cu r ren t_va r == ’D_w_VRP_E1 ’ :
184 D_w_VRP_E1 = f l o a t ( l i n e )
185 p r i n t ( ’D_w_VRP_E1 ’ )
186 e l i f cu r ren t_va r == ’MIP_VRP_E1 ’ :
187 MIP_VRP_E1 = f l o a t ( l i n e )
188 e l i f len ( pa r t s ) == 2:
189 key , value = par t s
190 i f cu r ren t_va r == ’ V_id ’ :
191 V_id . append ( value . s t r i p ( ) )
192 e l i f cu r ren t_va r == ’LS_V ’ :
193 key , value = l i n e . s p l i t ( ’ : ’ )
194 key = key . s t r i p ( )
195 value = value . s t r i p ( )
196 LS_V [ key ] = i n t ( value )
197 e l i f cu r ren t_va r == ’ v_s ’ :
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198 key , value = l i n e . s p l i t ( ’ : ’ )
199 key = key . s t r i p ( )
200 value = value . s t r i p ( )
201 v_s [ key ] = value
202 e l i f cu r ren t_va r == ’ canal_nodes_dict ’ :
203 key , value = l i n e . s p l i t ( ’ : ’ )
204 key = key . s t r i p ( )
205 value = value . s t r i p ( )
206 canal_nodes_dict [ key ] = i n t ( value )
207 e l i f cu r ren t_va r == ’ v_d ’ :
208 value = value . rep lace ( ” ’ ” , ” ” )
209 v_d [ key ] = i n t ( value )
210 else :
211 key_parts = l i n e . s p l i t ( ’ ( ’ ) [ 1 ] . s p l i t ( ’ ) ’ ) [ 0 ] . s p l i t ( ’ , ’ )
212 key_parts = [ pa r t . s t r i p ( ” ’ ” ) f o r pa r t i n key_parts ]
213 i nd i ces = tup l e ( key_parts )
214 value = l i n e . s p l i t ( ’ : ’ ) [ −1 ]
215 i f cu r ren t_va r == ’X_W ’ :
216 X_W_init_s [ i nd i ces ] = f l o a t ( value )
217 e l i f cu r ren t_va r == ’Q_W’ :
218 Q_W_init_s [ i nd i ces ] = f l o a t ( value )
219 e l i f cu r ren t_va r == ’L_W ’ :
220 L_W_ini t_s [ i nd i ces ] = f l o a t ( value )
221 e l i f cu r ren t_va r == ’Z_WV ’ :
222 Z_WV_init_s [ i nd i ces ] = f l o a t ( value )
223 e l i f cu r ren t_va r == ’Y ’ :
224 Y_ in i t _s [ i nd i ces ] = f l o a t ( value )
225 e l i f cu r ren t_va r == ’B ’ :
226 B_ in i t _s [ i nd i ces ] = f l o a t ( value )
227 e l i f cu r ren t_va r == ’A_WV ’ :
228 A_WV_init_s [ i nd i ces ] = f l o a t ( value )
229 e l i f cu r ren t_va r == ’A_DD ’ :
230 A_DD_init_s [ i nd i ces ] = f l o a t ( value )
231 e l i f cu r ren t_va r == ’S ’ :
232 S_ in i t _s [ i nd i ces ] = f l o a t ( value )
233 e l i f cu r ren t_va r == ’LS ’ :
234 LS_ in i t_s [ i nd i ces ] = f l o a t ( value )
235 e l i f cu r ren t_va r == ’D ’ :
236 D_ in i t _s [ i nd i ces ] = f l o a t ( value )
237 e l i f cu r ren t_va r == ’D_WV ’ :
238 D_WV_init_s [ i nd i ces ] = f l o a t ( value )
239 e l i f cu r ren t_va r == ’W’ :
240 W_ini t_s [ i nd i ces ] = f l o a t ( value )
241 e l i f cu r ren t_va r == ’P_V ’ :
242 P_V [ i nd i ces ] = f l o a t ( value )
243 e l i f cu r ren t_va r == ’Z_V ’ :
244 Z_V [ i nd i ces ] = f l o a t ( value )
245 e l i f cu r ren t_va r == ’D_T ’ :
246 D_T [ i nd i ces ] = f l o a t ( value )
247 e l i f cu r ren t_va r == ’L_V ’ :
248 L_V [ i nd i ces ] = f l o a t ( value )
249 zero = [ ’ zero ’ ]
250 WV_id = W_id + V_id
251 WV0_id = zero + WV_id
252 W0_id = zero + W_id
253 V0_id = zero + V_id
254 DS_id = DC + S_id
255

256 #%% Create i n i t i a l s o l u t i o n f o r schedul ing road veh ic les T_V [ l , k , r ]
257 p r i n t ( ’ Creat ing i n i t i a l s o l u t i o n road schedul ing f o r Ns : ’ , Ns)
258 veh ic les = pd . read_excel ( path + ” Road_vehicles . x l sx ” , index_co l =0)
259 R_v_ = veh ic les . index . t o l i s t ( )
260 R_v = R_v_ [ 0 : len ( V_id ) ]
261

262 T_V_in i t_s = { }
263 f o r r i n R_v :
264 f o r l i n V0_id :
265 f o r k i n V0_id :
266 T_V_in i t_s [ l , k , r ] = 0
267

268 numb = 0
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269 f o r v i n V_id :
270 T_V_in i t_s [ ’ zero ’ , v , R_v [numb ] ] = 1
271 T_V_in i t_s [ v , ’ zero ’ ,R_v [numb ] ] = 1
272 numb += 1
273

274 T_V_init_s_new = { }
275 f o r r i n R_v :
276 f o r l i n V0_id :
277 f o r k i n V0_id :
278 T_V_init_s_new [ l , k , r ] = 0
279 R_v_new_init = [ ]
280 V_ i d_ l e f t = V_id . copy ( )
281 f o r r i n R_v :
282 r_use = 0
283 t r i p = 1
284 f o r v i n V_ i d_ l e f t :
285 depot = v_d [ v ]
286 T_V_init_s_new [ ’ zero ’ , v , r ] = 1
287 s = v_s [ v ]
288 t r i p = 0
289 a r r i v a l = A_WV_init_s [ s , v ]
290 f o r k i n V_ i d_ l e f t :
291 i f depot == v_d [ k ] :
292 i f Y_ in i t _s [ s , k , v ] == 1:
293 i f A_WV_init_s [ s , k ] >= a r r i v a l + P_V [ v , k ] :
294 T_V_init_s_new [ v , k , r ] = 1
295 T_V_init_s_new [ k , ’ zero ’ , r ] = 1
296 V_ i d_ l e f t . remove ( v )
297 V_ i d_ l e f t . remove ( k )
298 t r i p = 1
299 r_use = 1
300 break
301 else :
302 cont inue
303 i f t r i p == 0:
304 T_V_init_s_new [ v , ’ zero ’ , r ] = 1
305 V_ i d_ l e f t . remove ( v )
306 r_use = 1
307 i f r_use == 1:
308 R_v_new_init . append ( r )
309 break
310 #%%
311 R_v = R_v_new_init . copy ( )
312 T_V_init_s_new_1 = { }
313 V_done = { }
314 f o r r i n R_v :
315 f o r l i n V0_id :
316 f o r k i n V0_id :
317 T_V_init_s_new_1 [ l , k , r ] = T_V_init_s_new [ l , k , r ]
318 i f T_V_init_s_new_1 [ l , k , r ] == 1:
319 V_done [ k ] = 1
320 V_done [ l ] = 1
321

322

323

324 #%% Schedule road veh ic les
325 p r i n t ( ’ Working on road schedul ing f o r Ns : ’ , Ns)
326 s ta r t_sched_r = t ime . t ime ( )
327 model = gb . Model ( ’ Schedul ing_road ’ )
328 np . random . seed (123)
329 t ime_ l im i t = t_l im_sched_road
330 K = 9999
331

332

333 X_W = X_W_init_s
334 Q_W = Q_W_init_s
335

336

337 t o t a l _ l o ad = 0
338 f o r i i n S_id :
339 t o t a l _ l o ad += LS_V [ i ]
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340 l oad_de l i ve red = 0
341 l oad_de l i ve red = quicksum (Q_W[ i ,w] f o r w in W_id )
342 p r i n t ( i , ’ load de l i ve red by w: ’ , load_de l ivered , ’ load requ i red by v : ’ ,LS_V [ i ] )
343 p r i n t ( ’ t o t a l load requ i red : ’ , t o t a l _ l o ad )
344

345 # Binary va r iab le , Y [ i , k , l ] = 1 i f both k and l v i s i t i
346 Y = { }
347 f o r k i n WV_id :
348 f o r l i n WV_id :
349 f o r i i n DS_id :
350 Y[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’Y ’ )
351

352 # A r r i v a l t ime of veh i c l e r a t i
353 A_W = { }
354 f o r i i n DS_id :
355 f o r w in W_id :
356 A_W[ i ,w] = model . addVar ( l b = −500, vtype = GRB.CONTINUOUS, name = ’A_W ’ )
357

358 # A r r i v a l t ime of veh i c l e r a t i
359 A_WV = { }
360 f o r i i n DS_id :
361 f o r k i n WV_id :
362 A_WV[ i , k ] = model . addVar ( l b = −500, ub = 999999 , vtype = GRB.CONTINUOUS, name = ’

A_WV ’ )
363

364 # D i f f e rence i n a r r i v a l t imes of veh i c l e
365 A_D = { }
366 f o r i i n S_id :
367 f o r k i n WV_id :
368 f o r l i n WV_id :
369 A_D[ i , k , l ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’A_D ’ )
370

371 # D i f f e rence i n a r r i v a l t imes of veh i c l e
372 A_DD = { }
373 f o r i i n S_id :
374 f o r k i n WV_id :
375 f o r l i n WV_id :
376 A_DD[ i , k , l ] = model . addVar ( l b = −999999, ub = 999999 , vtype = GRB.CONTINUOUS,

name = ’A_DD ’ )
377

378 # Customer or s a t e l l i t e i s v i s i t e d by veh i c l e r : = 1 , i f not : = 0
379 Z_WV = { }
380 f o r k i n WV_id :
381 f o r i i n DS_id :
382 Z_WV[ i , k ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_WV ’ )
383

384 # Accumulated load of road veh i c l e r a t customer i
385 L_W = { }
386 f o r w in WV_id :
387 f o r i i n DS_id :
388 L_W[ i ,w] = model . addVar ( l b =0.0 , vtype = GRB.CONTINUOUS, name = ’L_W ’ )
389

390

391 # Accumulated load de l i ve red to s a t e l l i t e i by veh ic les before and i nc l ud i ng k
392 LS = { }
393 f o r i i n S_id :
394 f o r k i n WV0_id :
395 LS [ i , k ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’LS ’ )
396

397

398 # Number o f water veh i c les used
399 Nw = { }
400 f o r w in W_id :
401 Nw[w] = model . addVar ( vtype = GRB.BINARY, name = ’Nw ’ )
402

403 # Stock a t s a t e l l i t e i a f t e r a r r i v a l o f veh i c l e k
404 S = { }
405 f o r i i n S_id :
406 f o r k i n WV_id :
407 S[ i , k ] = model . addVar ( l b = −100, vtype = GRB. INTEGER, name = ’S ’ )
408
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409 B = { }
410 f o r i i n S_id :
411 f o r k i n WV0_id :
412 f o r l i n WV0_id :
413 B[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’B ’ )
414

415

416 D_w = { }
417 f o r w in W0_id :
418 D_w[w] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’D_w ’ )
419

420

421 #T i s mat r i x per road veh i c l e r , w i th t r i p s k , l i n V0 , i f r f i r s t performs t r i p k and
then l , T [ k , l , r ] = 1

422 T_V = { }
423 f o r r i n R_v :
424 f o r k i n V0_id :
425 f o r l i n V0_id :
426 T_V [ k , l , r ] = model . addVar ( vtype = GRB.BINARY, name = ’T_V ’ )
427

428 A_R = { }
429 f o r r i n R_v :
430 f o r v i n V0_id :
431 A_R[ v , r ] = model . addVar ( l b = −500, vtype = GRB.CONTINUOUS, name = ’A_R ’ )
432

433 N_R = { }
434 f o r r i n R_v :
435 N_R[ r ] = model . addVar ( vtype = GRB.BINARY, name = ’N_R ’ )
436

437 Z_RV = { }
438 f o r r i n R_v :
439 f o r v i n V_id :
440 Z_RV[ v , r ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_RV ’ )
441

442 C_R = { }
443 f o r r i n R_v :
444 C_R[ r ] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’C_R ’ )
445

446 # New f o r depar ture t imes
447 D = { }
448 f o r i i n S_id :
449 f o r k i n WV0_id :
450 f o r l i n WV0_id :
451 D[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’D ’ )
452

453

454 D_WV = { }
455 f o r i i n DS_id :
456 f o r k i n WV_id :
457 D_WV[ i , k ] = model . addVar ( l b = 0 .0 , ub = 999999 , vtype = GRB.CONTINUOUS, name = ’

D_WV ’ )
458

459 W = { }
460 f o r i i n DS_id :
461 f o r w in W0_id :
462 W[ i ,w] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’W’ )
463

464 D_r = { }
465 f o r r i n R_v :
466 D_r [ r ] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’ D_r ’ )
467

468 # Objec t i ve f unc t i on
469 model . se tOb jec t i ve ( 0.1* quicksum (D_r [ r ] f o r r i n R_v ) + 500* quicksum (N_R[ r ] f o r r i n

R_v ) ) # + 500 * quicksum (N_F [ f ] f o r f i n F ) )
470

471

472 model . modelSense = GRB.MINIMIZE
473 model . update ( )
474

475 # Cons t ra in ts
476 # 1. A veh i c l e never goes from i to i
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477 f o r w in W_id :
478 f o r i i n DS_id :
479 f o r j i n DS_id :
480 i f i == j :
481 constr_w_1 = model . addConstr (X_W[ i , j ,w] == 0 , name= ’ Constr_1 ’ )
482

483 # 2. Vehic le r can only leave node i f i t a lso a r r i ved there
484 f o r w in W_id :
485 f o r i i n DS_id :
486 # i f i != j :
487 constr_w_2 = model . addConstr ( quicksum (X_W[ i , j ,w] f o r j i n DS_id ) == quicksum (

X_W[ j , i ,w] f o r j i n DS_id ) , name= ’ Constr_2 ’ )
488

489 # 3. Nodes t ha t are v i s i t e d by veh i c l e w
490 f o r w in W_id :
491 f o r i i n DS_id :
492 constr_w_3b = model . addConstr (Z_WV[ i ,w] == quicksum (X_W[ i , j ,w] f o r j i n DS_id ) ,

name= ’ Constr_3 ’ )
493

494 # 4b . Nodes t ha t are v i s i t e d by veh i c l e r
495 f o r v i n V_id :
496 f o r i i n DS_id :
497 constr_w_4c = model . addConstr (Z_WV[ i , v ] == Z_V [ i , v ] , name= ’ Constr_4 ’ )
498

499 # New
500 # 5. The demand de l i ve red to i i s zero i f veh i c l e r does not v i s i t i
501 f o r w in W_id :
502 f o r i i n DS_id :
503 constr_w_5 = model . addGenConstr Indicator (Z_WV[ i ,w] , False , Q_W[ i ,w] , GRB.EQUAL,

0 , name= ’ Constr_5 ’ )
504

505 # 6. Demand s a t i s f a c t i o n cons t r a i n t
506 f o r i i n S_id :
507 constr_w_6 = model . addConstr ( quicksum (Q_W[ i ,w] f o r w in W_id ) == LS_V [ i ] , name= ’

Constr_6 ’ ) #s_v [ i ] ) ) #
508 constr_w_6b = model . addConstr (Q_W[ i , ’ zero ’ ] == 0 , name= ’ Constr_6b ’ )
509

510 # New
511 # 7. No load i s de l i ve red to DC
512 # 8. The accumulated load at the DC i s zero
513 f o r w in W_id :
514 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
515 f o r i i n DC:
516 constr_w_7 = model . addConstr (Q_W[ i ,w] == 0 , name= ’ Constr_7 ’ )
517 constr_w_8 = model . addConstr (L_W[ i ,w] == 0 , name= ’ Constr_8 ’ )
518

519 # 8b . No load de l i ve red by road veh ic les
520 f o r v i n V_id :
521 f o r i i n DS_id :
522 constr_w_8b = model . addConstr (Q_W[ i , v ] == 0 , name= ’ Constr_8b ’ )
523 constr_w_8c = model . addConstr (L_W[ i , v ] == 0 , name= ’ Constr_8c ’ )
524

525 # 9a_new . With X_W as an input , the cons t r a i n t can be r ew r i t t e n as :
526 f o r w in W_id :
527 f o r i i n DS_id :
528 f o r j i n S_id :
529 i f X_W[ i , j ,w] == 1:
530 constr_9a_new = model . addConstr (L_W[ j ,w] − L_W[ i ,w] − Q_W[ j ,w] == 0 , name

= ’ Constr_9a_new ’ )
531

532 # 9b . No L_R i f not v i s i t e d
533 f o r w in W_id :
534 f o r i i n DS_id :
535 constr_w_9b = model . addGenConstr Indicator (Z_WV[ i ,w] , False , L_W[ i ,w] , GRB.EQUAL,

0 , name= ’ Constr_9b ’ )
536

537 # 9c . The load de l i ve red to customer i by veh i c l e r i s always less than or equal to the
accumulated load of r a t customer i :

538 f o r w in W_id :
539 f o r i i n S_id :
540 constr_w_9c = model . addConstr (Q_W[ i ,w] <= L_W[ i ,w] , name= ’ Constr_9c ’ )
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541

542 # 9d . The accumulated load of veh i c l e r a t customer i i s always less than or equal to the
maximum capac i t y o f veh i c l e r :

543 f o r w in W_id :
544 f o r i i n S_id :
545 constr_w_9d = model . addConstr ( L_W[ i ,w] <= capac i ty_ fe , name= ’ Constr_9d ’ )
546

547

548 # # A r r i v a l t ime cons t r a i n t s :
549

550 # 10_new . With X_W as inpu t
551 f o r w in W_id :
552 f o r i i n DS_id :
553 f o r j i n S_id :
554 i f X_W[ i , j ,w] == 1:
555 constr_10_new = model . addConstr (A_WV[ j ,w] − A_WV[ i ,w] − d i s t _ f e . a t [

canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] / ( speed_fe * 60) − W[ i ,w] − Q_W[ i ,w] * 0.2 >=
0 , name= ’ Constr_10_new ’ )

556

557 # 10b . The a r r i v a l t ime at the f i r s t s a t e l l i t e o f t r i p w i s the a r r i v a l t ime at the depot
− t r a v e l t ime − serv i ce t ime

558 f o r w in W_id :
559 f o r j i n S_id :
560 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
561 f o r i i n DC:
562 i f X_W[ i , j ,w] == 1:
563 constr_t ime_10b = model . addConstr (A_WV[ j , w] − A_WV[ i , w] − d i s t _ f e . a t [

canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] / ( speed_fe * 60) − serv ice_ t ime_fe / 60 == 0 ,
name= ’ Constr_10b ’ )

564

565 # 11. Binary va r i ab l e Y [ i , k , l ] i s one i f both k and l v i s i t i
566 f o r i i n S_id :
567 f o r k i n WV_id :
568 f o r l i n WV_id :
569 i f k != l :
570 constr_Y_11 = model . addConstr (Y [ i , k , l ] == gb . and_ (Z_WV[ i , k ] , Z_WV[ i , l ] ) ,

name= ’ Constr_11 ’ )
571

572

573 # 12. A r r i v a l t imes of veh i c les a t s a t e l l i t e s cannot be the same
574 f o r i i n S_id :
575 f o r k i n WV_id :
576 f o r l i n WV_id :
577 constr_t ime_12a = model . addConstr (A_DD[ i , k , l ] == A_WV[ i , k ] − A_WV[ i , l ] , name=

’ Constr_12a ’ )
578 constr_t ime_12b = model . addConstr (A_D[ i , k , l ] == gb . abs_ (A_DD[ i , k , l ] ) , name= ’

Constr_12b ’ )
579

580

581 # 13a . A r r i v a l t imes of road veh ic les a t s a t e l l i t e s cannot be the same
582 f o r i i n S_id :
583 f o r k i n V_id :
584 f o r l i n V_id :
585 i f k != l :
586 constr_t ime_13a = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_D[ i , k , l ] ,

GRB.GREATER_EQUAL, t ranssh ip_s , name= ’ Constr_13a ’ ) #180)
587 constr_t ime_13a_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13a_1 ’ )
588

589 # 13b . A r r i v a l t imes of a water veh i c les i s l a t e r than the depar ture t ime of another
water veh i c l e

590 f o r i i n S_id :
591 f o r k i n W_id :
592 f o r l i n W_id :
593 i f k != l :
594 constr_t ime_13b = model . addGenConstr Indicator (B [ i , k , l ] , True , A_WV[ i , k ] −

D_WV[ i , l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13b ’ ) #600)
595 constr_t ime_13b_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13b_1 ’ )
596

597 # 13b . A r r i v a l t imes of water and road veh ic les a t s a t e l l i t e s cannot be the same
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598 f o r i i n S_id :
599 f o r k i n W_id :
600 f o r l i n V_id :
601 i f k != l :
602 constr_t ime_13c = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_D[ i , k , l ] ,

GRB.GREATER_EQUAL, 0.01 , name= ’ Constr_13c ’ ) #600)
603 constr_t ime_13c_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13c_1 ’ )
604

605 #13c . A r r i v a l t imes at s a t e l l i t e s cannot be l a t e r than the maximum time span
606 f o r i i n S_id :
607 f o r k i n WV_id :
608 constr_t ime_13d = model . addConstr (D_WV[ i , k ] <= time_span , name= ’ Constr_13d ’ )
609

610

611 # 14. A r r i v a l t ime i s i n f i n i t e i f a veh i c l e does not v i s i t s a t e l l i t e i
612 f o r i i n S_id :
613 f o r k i n WV_id :
614 constr_t ime_14 = model . addGenConstr Indicator (Z_WV[ i , k ] , False , A_WV[ i , k ] , GRB.

EQUAL, 0)
615

616 # # S a t e l l i t e synchron isa t ion cons t r a i n t s :
617

618 # 15. Binary va r i ab l e = 1 i f veh i c l e k a r r i v e s a t the same t ime or a f t e r veh i c l e l
619 f o r i i n S_id :
620 f o r k i n WV_id :
621 constr_binary_150 = model . addGenConstr Indicator (Z_WV[ i , k ] , True , B [ i , k , ’ zero ’ ] ,

GRB.EQUAL, 1 )
622 f o r l i n WV_id :
623 constr_binary_15a = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_WV[ i , k ] − K

* B[ i , k , l ] − A_WV[ i , l ] , GRB.LESS_EQUAL, 0 )
624 constr_binary_15b = model . addGenConstr Indicator (Y [ i , k , l ] , True , B [ i , k , l ] + B [

i , l , k ] , GRB.EQUAL, 1)
625 const r_b inary_15c = model . addConstr (B [ i , k , l ] + B [ i , l , k ] <= 1)
626 constr_binary_15d = model . addGenConstr Indicator (Z_WV[ i , k ] , False , B [ i , k , l ] ,

GRB.EQUAL, 0 )
627 constr_binary_15e = model . addGenConstr Indicator (Z_WV[ i , k ] , False , B [ i , l , k ] ,

GRB.EQUAL, 0 )
628

629 # 16. Load de l i ve red to s a t e l l i t e i by a l l veh i c les before k and k
630 f o r i i n S_id :
631 f o r k i n WV0_id :
632 f o r l i n WV0_id :
633 constr_load_16a = model . addGenConstr Indicator (B [ i , k , l ] , True , LS [ i , k ] −

LS [ i , l ] − Q_W[ i , k ] , GRB.GREATER_EQUAL, 0 )
634

635 f o r i i n S_id :
636 f o r k i n WV_id :
637 constr_load_16b = model . addConstr (LS [ i , k ] <= quicksum (Q_W[ i ,w] f o r w in W_id ) )
638 constr_ load_16c = model . addGenConstr Indicator (Z_WV[ i , k ] , False , LS [ i , k ] , GRB.

EQUAL, 0 )
639

640 # 17. New Stock a t s a t e l l i t e s cons t r a i n t s
641 f o r i i n S_id :
642 f o r k i n WV_id :
643 constr_stock_17a = model . addGenConstr Indicator (Z_WV[ i , k ] , True , S [ i , k ] +

quicksum (L_V [ i , l ] * B[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.EQUAL, 0)
644

645 f o r i i n S_id :
646 f o r k i n WV_id :
647 constr_stock_17b = model . addConstr (S [ i , k ] >= 0)
648 constr_stock_17c = model . addConstr (S [ i , k ] <= capac i ty_s [ i ] + capac i t y_ fe )
649

650 f o r w in W_id :
651 constr_water_km = model . addConstr (D_w[w] == quicksum ( d i s t _ f e . a t [ canal_nodes_dict [ i ] ,

canal_nodes_dict [ j ] ] * X_W[ i , j ,w] f o r i i n DS_id f o r j i n DS_id ) )
652

653

654 f o r w in W_id :
655 f o r i i n S_id :
656 constr_Nw = model . addGenConstr Indicator (Z_WV[ i ,w] , True , Nw[w] , GRB.EQUAL, 1)
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657

658

659 # Road veh ic les schedul ing
660

661 # Each veh i c l e r can only leave the depot once
662 f o r r i n R_v :
663 cons t r_18f = model . addConstr ( quicksum (T_V [ ’ zero ’ , k , r ] f o r k i n V0_id ) <= 1)
664

665 # Each t r i p i s performed once
666 f o r k i n V_id :
667 constr_18b = model . addConstr ( quicksum (T_V [ l , k , r ] f o r l i n V0_id f o r r i n R_v ) == 1)
668

669 # Tr i p k can be performed by veh i c l e r i f the s t a r t t ime of t r i p k i s l a t e r than the end
t ime of t r i p l

670 f o r r i n R_v :
671 f o r k i n V_id :
672 f o r l i n V0_id :
673 constr_18c = model . addGenConstr Indicator (T_V [ l , k , r ] , True , A_R[ k , r ] − A_R[ l , r

] − P_V [ l , k ] , GRB.GREATER_EQUAL, 0 )
674

675 # A t r i p can never be performed a f t e r i t s e l f
676 f o r r i n R_v :
677 f o r l i n V0_id :
678 constr_18d = model . addConstr (T_V [ l , l , r ] == 0)
679

680 # Vehic le r can only end t r i p l i f i t a lso s t a r t ed i t
681 f o r r i n R_v :
682 f o r l i n V0_id :
683 # i f i != j :
684 constr_18e = model . addConstr ( quicksum (T_V [ l , k , r ] f o r k i n V0_id ) == quicksum (

T_V [ k , l , r ] f o r k i n V0_id ) )
685

686 # Number o f road veh ic les used
687 f o r r i n R_v :
688 f o r k i n V_id :
689 constr_19 = model . addGenConstr Indicator (T_V [ ’ zero ’ , k , r ] , True , N_R[ r ] , GRB.EQUAL,

1)
690

691

692 f o r r i n R_v :
693 constr_19d = model . addConstr ( quicksum (T_V [ ’ zero ’ , k , r ] f o r k i n V_id ) >= N_R[ r ] , name

= ’ constr_19d ’ )
694

695 # Z_RV = 1 i f r performs t r i p v
696 f o r k i n V_id :
697 f o r r i n R_v :
698 constr_20a = model . addConstr (Z_RV[ k , r ] == quicksum (T_V [ l , k , r ] f o r l i n V0_id ) )
699

700 # Set A_R to zero i f r does not perform t r i p
701 f o r v i n V_id :
702 f o r r i n R_v :
703 constr_20b = model . addGenConstr Indicator (Z_RV[ v , r ] , False , A_R[ v , r ] , GRB.EQUAL,

0)
704

705 # Connect A_R wi th A_WV
706 f o r v i n V_id :
707 constr_20c = model . addConstr (A_WV[ v_s [ v ] , v ] == quicksum (A_R[ v , r ] f o r r i n R_v ) )
708

709 # Completion t ime f o r veh i c l e r i s the s t a r t t ime of the l a s t t r i p + the t ime to perform
the l a s t t r i p

710 f o r r i n R_v :
711 f o r v i n V_id :
712 constr_21a = model . addGenConstr Indicator (T_V [ v , ’ zero ’ , r ] , True , C_R[ r ] − A_R[ v , r ]

− P_V [ v , ’ zero ’ ] , GRB.EQUAL, 0)
713

714

715 f o r k i n WV_id :
716 f o r i i n S_id :
717 constr_t ime_span = model . addConstr (A_WV[ i , k ] >= 0 , name = ’ constr_t ime_span ’ )
718

719
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720 # New f o r depar ture t imes
721 f o r i i n S_id :
722 f o r v i n V_id :
723 const r_depar ture_1 = model . addGenConstr Indicator (Z_WV[ i , v ] , True , D_WV[ i , v ] −

A_WV[ i , v ] − t ranssh ip_s / 60 , GRB.EQUAL, 0 , name = ’ constr_dep_1 ’ )
724 f o r w in W_id :
725 const r_depar ture_2 = model . addGenConstr Indicator (Z_WV[ i ,w] , True , D_WV[ i ,w] −

A_WV[ i ,w] − W[ i ,w] − Q_W[ i ,w] * 0.2 , GRB.EQUAL, 0 , name = ’ constr_dep_2 ’ )
726

727

728 f o r i i n S_id :
729 f o r k i n V0_id :
730 f o r l i n V0_id :
731 const r_depar ture_3 = model . addGenConstr Indicator (B [ i , k , l ] , True , D[ i , k , l ] ,

GRB.EQUAL, 1 , name = ’ constr_dep_3 ’ )
732 f o r k i n W0_id :
733 f o r l i n W0_id :
734 const r_depar ture_4 = model . addGenConstr Indicator (B [ i , k , l ] , True , D[ i , k , l ] ,

GRB.EQUAL, 1 , name = ’ constr_dep_4 ’ )
735

736 f o r k i n WV_id :
737 const r_depar ture_8 = model . addGenConstr Indicator (Z_WV[ i , k ] , False , quicksum (D[ i

, k , l ] f o r l i n WV_id ) + quicksum (D[ i , l , k ] f o r l i n WV_id ) , GRB.EQUAL, 0 , name = ’
constr_dep_8 ’ )

738 f o r l i n WV_id :
739 const r_depar ture_5 = model . addGenConstr Indicator (Y [ i , k , l ] , True , D_WV[ i , k ] −

K* D[ i , k , l ] − D_WV[ i , l ] , GRB.LESS_EQUAL, 0 , name = ’ constr_dep_5 ’ )
740 const r_depar ture_6 = model . addGenConstr Indicator (Y [ i , k , l ] , True , D[ i , k , l ] + D

[ i , l , k ] , GRB.EQUAL, 1 , name = ’ constr_dep_6 ’ )
741

742

743 f o r i i n S_id :
744 f o r k i n W_id :
745 const r_depar ture_7 = model . addGenConstr Indicator (Z_WV[ i , k ] , True , quicksum (L_V [ i

, l ] * D[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.LESS_EQUAL, 0 , name = ’
constr_dep_7 ’ )

746 constr_departure_7_b = model . addGenConstr Indicator (Z_WV[ i , k ] , True , quicksum (L_V
[ i , l ] * D[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.GREATER_EQUAL, − capac i ty_s [ i ] ,
name = ’ constr_dep_7_b ’ )

747

748

749 # Distance on the road per veh i c l e
750 f o r r i n R_v :
751 cons t r_d is tance_r = model . addConstr ( D_r [ r ] == quicksum (T_V [ l , k , r ] * D_T [ l , k ] f o r l i n

V0_id f o r k i n V0_id ) )
752

753

754 f o r ( i ,w) , value i n L_W_ini t_s . i tems ( ) :
755 i f w i n WV_id :
756 L_W[ i ,w ] . s t a r t = value
757

758 f o r ( i ,w) , value i n Z_WV_init_s . i tems ( ) :
759 i f w i n WV_id :
760 Z_WV[ i ,w ] . s t a r t = value
761

762 f o r ( i , k , l ) , value i n Y_ in i t _s . i tems ( ) :
763 i f k i n WV_id :
764 i f l i n WV_id :
765 Y[ i , k , l ] . s t a r t = value
766

767 f o r ( i , k , l ) , value i n B_ in i t _s . i tems ( ) :
768 i f k i n WV0_id :
769 i f l i n WV0_id :
770 B[ i , k , l ] . s t a r t = value
771

772 f o r ( i , k ) , value i n A_WV_init_s . i tems ( ) :
773 i f k i n WV_id :
774 A_WV[ i , k ] . s t a r t = value
775

776 f o r ( i , k , l ) , value i n A_DD_init_s . i tems ( ) :
777 i f k i n WV_id :
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778 i f l i n WV_id :
779 A_DD[ i , k , l ] . s t a r t = value
780

781 f o r ( i ,w) , value i n S_ in i t _s . i tems ( ) :
782 i f w i n WV_id :
783 S[ i ,w ] . s t a r t = value
784

785 f o r ( i , k ) , value i n LS_ in i t_s . i tems ( ) :
786 i f k i n WV0_id :
787 LS [ i , k ] . s t a r t = value
788

789 f o r ( i , k , l ) , value i n T_V_init_s_new_1 . i tems ( ) :
790 T_V [ i , k , l ] . s t a r t = value
791

792 f o r ( i , k , l ) , value i n D_ in i t _s . i tems ( ) :
793 i f k i n WV0_id :
794 i f l i n WV0_id :
795 D[ i , k , l ] . s t a r t = value
796

797 f o r ( i , k ) , value i n D_WV_init_s . i tems ( ) :
798 i f k i n WV_id :
799 D_WV[ i , k ] . s t a r t = value
800

801 f o r ( i , k ) , value i n W_in i t_s . i tems ( ) :
802 i f k i n W0_id :
803 W[ i , k ] . s t a r t = value
804

805 # S ta r t op t im i sa t i on
806 p r i n t ( ” s t a r t op t im i z i ng ” )
807 model . setParam ( ’ OutputFlag ’ , True )
808 model . setParam ( ’MIPGap ’ , mip_sched_r ) ;
809 model . setParam ( ’ F e a s i b i l i t y T o l ’ , 1e−5)
810 model . setParam ( ’MIPFocus ’ , 0)
811 model . setParam ( ’SubMIPNodes ’ , 20000)
812 model . setParam ( ’Seed ’ , 123)
813 model . setParam ( ’ SoftMemLimit ’ , 120)
814 model . setParam ( ’ Threads ’ , 40)
815

816 i f t i me_ l im i t :
817 model . setParam ( ’ T ime l im i t ’ , t ime_ l im i t )
818 model . _obj = None
819 model . _bd = None
820 model . _obj_value = [ ]
821 model . _t ime = [ ]
822 model . _ s t a r t = t ime . t ime ( )
823 model . op t im ize ( )
824 MIP_sched_r = model .MIPGap
825 end_sched_r = t ime . t ime ( )
826 t ime_sched_r = end_sched_r − s ta r t_sched_r
827

828

829

830 #%% Save so l u t i ons
831

832 r_used_road = 0
833 f o r r i n R_v :
834 i f N_R[ r ] . X == 1:
835 r_used_road += 1
836 p r i n t ( r_used_road )
837

838 Nr_R_r = r_used_road
839

840

841 max_complete = 0
842 f o r r i n R_v :
843 f o r k i n V0_id :
844 f o r l i n V0_id :
845 i f T_V [ l , k , r ] . X == 1:
846 i f C_R[ r ] . X > max_complete :
847 max_complete = C_R[ r ] . X
848 max_start_R_r = max_complete
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849

850 W_used_VRP = [ ]
851 f o r w in W_id :
852 w_v i s i t s = 0
853 f o r i i n S_id :
854 i f Z_WV[ i ,w ] . X == 1:
855 w_v i s i t s += 1
856 i f w_v i s i t s >= 1:
857 W_used_VRP. append (w)
858

859 Nr_w_r = len (W_used_VRP)
860

861 road_km_R_r = { }
862 to ta l_road_km = 0
863 f o r r i n R_v :
864 save_road_km = 0
865 f o r l i n V0_id :
866 f o r k i n V0_id :
867 i f T_V [ l , k , r ] . X == 1:
868 save_road_km += D_T [ l , k ]
869 tota l_road_km += D_T [ l , k ]
870 road_km_R_r [ r ] = save_road_km
871 D_r_r = tota l_road_km
872

873

874 X_W_init_sw = X_W
875 Y_in i t_sw = model . g e tA t t r ( ’X ’ , Y)
876 A_WV_init_sw = model . g e tA t t r ( ’X ’ , A_WV)
877 A_D_init_sw = model . g e tA t t r ( ’X ’ , A_D)
878 A_DD_init_sw = model . g e tA t t r ( ’X ’ , A_DD)
879 Q_W_init_sw = Q_W
880 Z_WV_init_sw = model . g e tA t t r ( ’X ’ , Z_WV)
881 L_W_init_sw = model . g e tA t t r ( ’X ’ , L_W)
882 LS_in i t_sw = model . g e tA t t r ( ’X ’ , LS)
883 S_in i t_sw = model . g e tA t t r ( ’X ’ , S)
884 B_in i t_sw = model . g e tA t t r ( ’X ’ , B)
885 T_V_ini t_sw = model . g e tA t t r ( ’X ’ , T_V)
886 A_R_init_sw = model . g e tA t t r ( ’X ’ , A_R)
887 D_ini t_sw = model . g e tA t t r ( ’X ’ , D)
888 D_WV_init_sw = model . g e tA t t r ( ’X ’ , D_WV)
889 W_init_sw = model . g e tA t t r ( ’X ’ , W)
890 D_w_init_sw = model . g e tA t t r ( ’X ’ ,D_w)
891

892 # Selec t on ly R_v t ha t are used f o r i n road veh i c l e schedul ing
893 R_v_new = [ ]
894 f o r r i n R_v :
895 g = [ ]
896 f o r k i n V_id :
897 G = T_V [ ’ zero ’ , k , r ] . X
898 i f G > 0:
899 g = [ r ]
900 break
901 R_v_new = R_v_new + g
902

903 #Selec t on ly values of T_V f o r new R_V
904 T_V_new_init_sw = { }
905

906 f o r r i n R_v_new :
907 f o r l i n V0_id :
908 f o r k i n V0_id :
909 T_V_new_init_sw [ k , l , r ] = T_V_ini t_sw [ k , l , r ]
910

911 R_v = R_v_new . copy ( )
912 R_sched_r = len (R_v )
913 p r i n t ( ’ Distance on the road a f t e r road schedul ing : ’ , D_r_r )
914

915 #%%
916 wi th open ( f ’ output_road_ { s a v e_ t i t l e } _ {Ns} _ { t_lim_VRP_E2 } . t x t ’ , ’w ’ ) as f :
917 f . w r i t e ( f ’D_r_VRP_E2 : \ n {D_r_VRP_E2 } \ n ’ )
918 f . w r i t e ( f ’MIP_VRP_E2 : \ n {MIP_VRP_E2 } \ n ’ )
919 f . w r i t e ( f ’D_w_VRP_E1 : \ n {D_w_VRP_E1 } \ n ’ )
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920 f . w r i t e ( f ’MIP_VRP_E1 : \ n {MIP_VRP_E1 } \ n ’ )
921 f . w r i t e ( f ’ R_sched_r : \ n { R_sched_r } \ n ’ )
922 f . w r i t e ( f ’ D_r_r : \ n { D_r_r } \ n ’ )
923 f . w r i t e ( f ’ MIP_sched_r : \ n { MIP_sched_r } \ n ’ )
924 f o r var_name , var_values i n [
925 ( ’X_W ’ , X_W_init_sw ) ,
926 ( ’Y ’ , Y_ in i t_sw ) ,
927 ( ’A_WV ’ , A_WV_init_sw ) ,
928 ( ’A_D ’ , A_D_init_sw ) ,
929 ( ’A_DD ’ , A_DD_init_sw ) ,
930 ( ’Q_W’ , Q_W_init_sw ) ,
931 ( ’Z_WV ’ , Z_WV_init_sw ) ,
932 ( ’L_W ’ , L_W_init_sw ) ,
933 ( ’LS ’ , LS_in i t_sw ) ,
934 ( ’S ’ , S_ in i t_sw ) ,
935 ( ’B ’ , B_ in i t_sw ) ,
936 ( ’D ’ , D_in i t_sw ) ,
937 ( ’D_WV ’ , D_WV_init_sw ) ,
938 ( ’W’ , W_init_sw ) ,
939 ( ’T_V ’ , T_V_new_init_sw ) ,
940 ( ’A_R ’ , A_R_init_sw ) ,
941 ( ’D_w ’ , D_w_init_sw ) ,
942 ( ’P_V ’ , P_V) ,
943 ( ’ L_V ’ , L_V ) ,
944 ( ’LS_V ’ , LS_V) ,
945 ( ’Z_V ’ , Z_V) ,
946 ( ’ v_s ’ , v_s ) ,
947 ( ’ L_V ’ , L_V ) ,
948 ( ’D_T ’ , D_T) ,
949 ( ’ v_d ’ , v_d ) ,
950 ( ’ canal_nodes_dict ’ , canal_nodes_dict )
951 ] :
952 f . w r i t e ( f ’ { var_name } : \ n ’ )
953 f o r key , value i n var_values . i tems ( ) :
954 i f i s i n s t ance ( value , gb . LinExpr ) :
955 value = value . getValue ( )
956 f . w r i t e ( f ’ { key } : { value } \ n ’ )
957 f . w r i t e ( ’ V_id : \ n ’ )
958 f o r v i n V_id :
959 f . w r i t e ( f ’ { v } \ n ’ )
960 f . w r i t e ( ’W_id : \ n ’ )
961 f o r w in W_id :
962 f . w r i t e ( f ’ {w } \ n ’ )
963 f . w r i t e ( ’ S_id : \ n ’ )
964 f o r s i n S_id :
965 f . w r i t e ( f ’ { s } \ n ’ )
966 f . w r i t e ( ’R_v : \ n ’ )
967 f o r r i n R_v :
968 f . w r i t e ( f ’ { r } \ n ’ )
969 f . w r i t e ( ’DC: \ n ’ )
970 f o r d i n DC:
971 f . w r i t e ( f ’ { d } \ n ’ )
972 #%%
973 model . dispose ( )

B.4.2. Vessel Scheduling
1 #%% Import l i b r a r i e s
2 impor t gurobipy as gb
3 impor t t ime
4 impor t os
5 impor t numpy as np
6 impor t pandas as pd
7 impor t p i c k l e
8 impor t math
9 impor t copy
10 impor t sys
11 impor t ma t p l o t l i b . pyp lo t as p l t
12 from openpyxl impor t load_workbook
13 from gurobipy impor t quicksum , GRB
14
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15 #%% Set path
16 server = ’ True ’
17

18 i f server == ’ False ’ :
19 path = os . getcwd ( ) + ” \ Inpu ts \ \ ”
20 path_out = os . getcwd ( ) + ” \ Outputs \ \ ”
21 from FLP_solver_def ini t ion_number_customers_horeca_sets_Laudy impor t FLP_num_cust
22 from FLP_so lver_def in i t ion_horeca_sets_capac i ty_ass ignment impor t FLP_capacity
23

24 i f server == ’ True ’ :
25 path = os . getcwd ( ) + ” / Inpu ts / ”
26 path_out = os . getcwd ( ) + ” / Outputs / ”
27

28

29 #%% Scenario inpu ts
30 d i r ec ted = ’ t r ue ’ # I nd i ca t e wether to use d i r ec ted or und i rec ted d is tance

mat r i x
31 FLP_const ra in t = ’ num_cust ’ # Which FLP cons t r a i n t to use , e i t h e r capac i t y or num_cust
32 Nc = 750 # I n se r t the number o f customers to cons ider
33 horeca_sets = np . arange (1 ,11) # Which horeca sets to eva luate
34 horeca_set = 1 # I f not t e s t i n g a l l horeca sets , i n s e r t one to evaluate
35

36

37 #%% Import network and scenar io data
38 df_horeca_demand_scenarios = pd . read_excel ( path + f ’ df_horeca_demand_scenarios . x l sx ’ ,

index_co l =0)
39 df_horeca_demand_scenarios . index = df_horeca_demand_scenarios . index . astype ( s t r )
40 df_horeca_data_ in fo = pd . read_excel ( path + f ’ d f_horeca_data_ in fo . x l sx ’ , index_co l =0)
41 df_horeca_data_ in fo . index = df_horeca_data_ in fo . index . astype ( s t r )
42 customer_ locat ions = df_horeca_data_ in fo . i l o c [ : , 0 ]
43

44 i f server == ’ False ’ :
45 df_SE_shor tes t_d is t_d i rec ted_Fa lse = p i c k l e . load ( open ( path + ’

d f_SE_shor tes t_d is t_d i rec ted −False_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
46 df_SE_shor tes t_d is t_d i rec ted_True_1 = p i c k l e . load ( open ( path + ’

d f_SE_shor tes t_d is t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
47 df_SE_shor tes t_d is t_d i rec ted_True = df_SE_shor tes t_d is t_d i rec ted_True_1 . f i l l n a (1001)
48 d ic t_FE_shor tes t_d is t_d i rec ted_True_1 = p i c k l e . load ( open ( path + ’

d i c t_FE_sho r tes t_d i s t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
49

50 i f server == ’ True ’ :
51 p i c k l e _ o f f = open ( path + ’ d f_SE_shor tes t_d is t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ )
52 df_SE_shor tes t_d is t_d i rec ted_True_1 = pd . read_p ick le ( p i c k l e _ o f f )
53 df_SE_shor tes t_d is t_d i rec ted_True = df_SE_shor tes t_d is t_d i rec ted_True_1 . f i l l n a (1001)
54

55 p i c k l e _ o f f = open ( path + ’ d i c t_FE_sho r tes t_d i s t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ )
56 d ic t_FE_shor tes t_d is t_d i rec ted_True_1 = pd . read_p ick le ( p i c k l e _ o f f )
57 df_SE_shor tes t_d is t_d i rec ted_Fa lse = d ic t_FE_shor tes t_d is t_d i rec ted_True_1
58 assigned = [ ]
59 i nd i ces = [ ]
60 customers = [ [ 0 ] * 3 ] * len ( customer_ locat ions )
61 f o r customer_id i n df_horeca_data_ in fo . index . t o l i s t ( ) :
62 i f df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] > 0 :
63 i nd i ces . append ( customer_id )
64 assigned . append ( { ’ road_node ’ : i n t ( d f_horeca_data_ in fo . a t [ customer_id , ’ road_node ’ ] ) , ’

demand ’ : i n t ( df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] ) } )
65 customers = pd . DataFrame ( assigned , index= ind i ces ) # df_horeca_data_ in fo . index . t o l i s t ( ) )
66

67

68 s a t e l l i t e _ l o c a t i o n s = pd . read_excel ( path + ” sa t e l l i t e _nodes_s t o r age_ f u l l . x l sx ” , index_co l =0)
69 veh ic les = pd . read_excel ( path + ” Road_vehicles . x l sx ” , index_co l =0)
70 road_nodes = pd . read_excel ( path + ” sate l l i tes_customers_road_nodes . x l sx ” , index_co l = 0)
71

72 i f d i r ec ted == ’ t r ue ’ :
73 d i s t = d f_SE_shor tes t_d is t_d i rec ted_True
74 e l i f d i r ec ted == ’ f a l s e ’ :
75 d i s t = d f_SE_shor tes t_d is t_d i rec ted_Fa lse
76

77 #%% Parameters
78

79 speed_v = i n t ( os . getenv ( ’ speed_v ’ ) )



B.4. Scheduling Problem 145

80 t ranssh ip_s = i n t ( os . getenv ( ’ t ranssh ip_s ’ ) )
81 t ranssh ip_c = i n t ( os . getenv ( ’ t ranssh ip_c ’ ) )
82 f e v _ p r o f i l e = 5
83 capac i t y_ fe = i n t ( os . getenv ( ’ capac i t y_ fe ’ ) )
84 speed_fe_str = os . getenv ( ’ speed_fe ’ )
85 speed_fe = f l o a t ( speed_fe_str )
86 serv ice_ t ime_fe = i n t ( os . getenv ( ’ se rv ice_ t ime_fe ’ ) )
87 capac i ty_s = i n t ( os . getenv ( ’ capac i ty_s ’ ) )
88 capaci ty_se = i n t ( os . getenv ( ’ capaci ty_se ’ ) )
89

90 t_ l imi ts_VRP_E2_st r = os . getenv ( ’ t_l imits_VRP_E2 ’ )
91 t_l imits_VRP_E2 = eval ( t_ l imi ts_VRP_E2_st r )
92 t_lim_VRP_E1 = i n t ( os . getenv ( ’ t_lim_VRP_E1 ’ ) )
93 t_ l im_sched_road = i n t ( os . getenv ( ’ t_ l im_sched_road ’ ) )
94 t_ l im_sched_water = i n t ( os . getenv ( ’ t_ l im_sched_water ’ ) )
95 t _ l im_sched_ to ta l = i n t ( os . getenv ( ’ t _ l im_sched_ to ta l ’ ) )
96 t ime_span = i n t ( os . getenv ( ’ time_span ’ ) )
97 mip_VRP_E2_str = os . getenv ( ’mip_VRP_E2 ’ )
98 mip_VRP_E2 = f l o a t ( mip_VRP_E2_str )
99 mip_VRP_E1_str = os . getenv ( ’mip_VRP_E1 ’ )
100 mip_VRP_E1 = f l o a t ( mip_VRP_E1_str )
101 mip_sched_r_str = os . getenv ( ’ mip_sched_r ’ )
102 mip_sched_r = f l o a t ( mip_sched_r_str )
103 mip_sched_w_str = os . getenv ( ’mip_sched_w ’ )
104 mip_sched_w = f l o a t ( mip_sched_w_str )
105 mip_sched_t_str = os . getenv ( ’ mip_sched_t ’ )
106 mip_sched_t = f l o a t ( mip_sched_t_str )
107 storage_set = os . getenv ( ’ s torage_set ’ )
108 s a v e_ t i t l e = os . getenv ( ’ s a v e_ t i t l e ’ ) #
109

110 Ns = i n t ( os . getenv ( ’ N rSa t e l l i t e s ’ ) )
111

112

113

114 d f_ fe_d is tance_mat r i x = d ic t_FE_shor tes t_d is t_d i rec ted_True_1 [ f ’ v esse l _p ro f i l e _ { f e v _ p r o f i l e } ’
] . copy ( )

115 d i s t _ f e = d f_ fe_d is tance_mat r i x . f i l l n a (99999)
116

117 # New dis tance mat r i x f o r mu l t i p l e water veh i c l e depots :
118 dict_FE_new = pd . read_csv ( path + ’ distance_matr ix_DCs . csv ’ , sep= ’ ; ’ , header=None )
119 dist_fe_new = pd . DataFrame ( dict_FE_new )
120 dist_fe_new . index = dist_fe_new . index + 1
121 new_index = { o ld_ index : o ld_ index + 1 f o r o ld_ index i n dist_fe_new . columns }
122 dist_fe_new = dist_fe_new . rename ( columns=new_index )
123 d i s t _ f e = dist_fe_new . f i l l n a (99999)
124 mip_s_r = 0.1
125

126

127 capac i ty_s = { }
128 f o r i i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
129 capac i ty_s [ i ] = s a t e l l i t e _ l o c a t i o n s . a t [ i , f ’ capac i ty_ { s torage_set } ’ ]
130

131

132 #%% Import i n i t i a l s o l u t i o n
133

134 N_s = [ ]
135 r e s u l t s = [ ]
136 f o r t_lim_VRP_E2 in t_l imits_VRP_E2 :
137 V_id = [ ]
138 W_id = [ ]
139 S_id = [ ]
140 R_v = [ ]
141 X_W_init_sw = { }
142 Q_W_init_sw = { }
143 L_W_init_sw = { }
144 Z_WV_init_sw = { }
145 Y_in i t_sw = { }
146 B_in i t_sw = { }
147 A_WV_init_sw = { }
148 A_DD_init_sw = { }
149 S_in i t_sw = { }
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150 LS_in i t_sw = { }
151 T_V_new_init_sw = { }
152 D_ini t_sw = { }
153 D_WV_init_sw = { }
154 W_init_sw = { }
155 A_R_init_sw = { }
156 D_w_init_sw = { }
157

158 P_V = { }
159 LS_V = { }
160 Z_V = { }
161 v_s = { }
162 L_V = { }
163 D_T = { }
164 v_d = { }
165 D_r_VRP_E2 = None
166 D_w_VRP_E1 = None
167 D_r_r = None
168 MIP_VRP_E2 = None
169 MIP_VRP_E1 = None
170 MIP_sched_r = None
171 R_sched_r = None
172 canal_nodes_dict = { }
173 DC = [ ]
174 wi th open ( f ’ output_road_ { s a v e_ t i t l e } _ {Ns} _ { t_lim_VRP_E2 } . t x t ’ , ’ r ’ ) as f :
175 cur ren t_va r = None
176 f o r l i n e i n f :
177 l i n e = l i n e . s t r i p ( )
178 i f l i n e . endswith ( ’ : ’ ) :
179 cur ren t_va r = l i n e [ : −1 ]
180 e l i f cu r ren t_va r i s not None :
181 par ts = l i n e . s p l i t ( ’ : ’ )
182 i f cu r ren t_va r == ’ V_id ’ :
183 V_id . append ( l i n e . s t r i p ( ) )
184 e l i f cu r ren t_va r == ’W_id ’ :
185 W_id . append ( l i n e . s t r i p ( ) )
186 e l i f cu r ren t_va r == ’ S_id ’ :
187 S_id . append ( l i n e . s t r i p ( ) )
188 e l i f cu r ren t_va r == ’R_v ’ :
189 R_v . append ( l i n e . s t r i p ( ) )
190 e l i f cu r ren t_va r == ’DC ’ :
191 DC. append ( l i n e . s t r i p ( ) )
192 e l i f cu r ren t_va r == ’D_r_VRP_E2 ’ :
193 D_r_VRP_E2 = f l o a t ( l i n e )
194 e l i f cu r ren t_va r == ’MIP_VRP_E2 ’ :
195 MIP_VRP_E2 = f l o a t ( l i n e )
196 e l i f cu r ren t_va r == ’D_w_VRP_E1 ’ :
197 D_w_VRP_E1 = f l o a t ( l i n e )
198 e l i f cu r ren t_va r == ’MIP_VRP_E1 ’ :
199 MIP_VRP_E1 = f l o a t ( l i n e )
200 e l i f cu r ren t_va r == ’D_w_VRP_E1 ’ :
201 D_w_VRP_E1 = f l o a t ( l i n e )
202 e l i f cu r ren t_va r == ’ R_sched_r ’ :
203 R_sched_r = f l o a t ( l i n e )
204 e l i f cu r ren t_va r == ’ D_r_r ’ :
205 D_r_r = f l o a t ( l i n e )
206 e l i f cu r ren t_va r == ’ MIP_sched_r ’ :
207 MIP_sched_r = f l o a t ( l i n e )
208 e l i f len ( pa r t s ) == 2:
209 key , value = par t s
210 i f cu r ren t_va r == ’LS_V ’ :
211 key , value = l i n e . s p l i t ( ’ : ’ )
212 key = key . s t r i p ( )
213 value = value . s t r i p ( )
214 LS_V [ key ] = i n t ( value )
215 e l i f cu r ren t_va r == ’ v_s ’ :
216 key , value = l i n e . s p l i t ( ’ : ’ )
217 key = key . s t r i p ( )
218 value = value . s t r i p ( )
219 v_s [ key ] = value
220 e l i f cu r ren t_va r == ’ canal_nodes_dict ’ :
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221 key , value = l i n e . s p l i t ( ’ : ’ )
222 key = key . s t r i p ( )
223 value = value . s t r i p ( )
224 canal_nodes_dict [ key ] = i n t ( value )
225 e l i f cu r ren t_va r == ’D_w ’ :
226 key , value = l i n e . s p l i t ( ’ : ’ )
227 key = key . s t r i p ( )
228 value = value . s t r i p ( )
229 D_w_init_sw [ key ] = value
230 e l i f cu r ren t_va r == ’ v_d ’ :
231 key , value = l i n e . s p l i t ( ’ : ’ )
232 value = value . rep lace ( ” ’ ” , ” ” )
233 v_d [ key ] = i n t ( value )
234 else :
235 key_parts = l i n e . s p l i t ( ’ ( ’ ) [ 1 ] . s p l i t ( ’ ) ’ ) [ 0 ] . s p l i t ( ’ , ’ )
236 key_parts = [ pa r t . s t r i p ( ” ’ ” ) f o r pa r t i n key_parts ]
237 i nd i ces = tup l e ( key_parts )
238 value = l i n e . s p l i t ( ’ : ’ ) [ −1 ]
239 i f cu r ren t_va r == ’X_W ’ :
240 X_W_init_sw [ i nd i ces ] = f l o a t ( value )
241 e l i f cu r ren t_va r == ’Q_W’ :
242 Q_W_init_sw [ i nd i ces ] = f l o a t ( value )
243 e l i f cu r ren t_va r == ’L_W ’ :
244 L_W_init_sw [ i nd i ces ] = f l o a t ( value )
245 e l i f cu r ren t_va r == ’Z_WV ’ :
246 Z_WV_init_sw [ i nd i ces ] = f l o a t ( value )
247 e l i f cu r ren t_va r == ’Y ’ :
248 Y_in i t_sw [ i nd i ces ] = f l o a t ( value )
249 e l i f cu r ren t_va r == ’B ’ :
250 B_in i t_sw [ i nd i ces ] = f l o a t ( value )
251 e l i f cu r ren t_va r == ’A_WV ’ :
252 A_WV_init_sw [ i nd i ces ] = f l o a t ( value )
253 e l i f cu r ren t_va r == ’A_DD ’ :
254 A_DD_init_sw [ i nd i ces ] = f l o a t ( value )
255 e l i f cu r ren t_va r == ’S ’ :
256 S_in i t_sw [ i nd i ces ] = f l o a t ( value )
257 e l i f cu r ren t_va r == ’LS ’ :
258 LS_in i t_sw [ i nd i ces ] = f l o a t ( value )
259 e l i f cu r ren t_va r == ’D ’ :
260 D_ini t_sw [ i nd i ces ] = f l o a t ( value )
261 e l i f cu r ren t_va r == ’D_WV ’ :
262 D_WV_init_sw [ i nd i ces ] = f l o a t ( value )
263 e l i f cu r ren t_va r == ’W’ :
264 W_init_sw [ i nd i ces ] = f l o a t ( value )
265 e l i f cu r ren t_va r == ’P_V ’ :
266 P_V [ i nd i ces ] = f l o a t ( value )
267 e l i f cu r ren t_va r == ’Z_V ’ :
268 Z_V [ i nd i ces ] = f l o a t ( value )
269 e l i f cu r ren t_va r == ’D_T ’ :
270 D_T [ i nd i ces ] = f l o a t ( value )
271 e l i f cu r ren t_va r == ’L_V ’ :
272 L_V [ i nd i ces ] = f l o a t ( value )
273 e l i f cu r ren t_va r == ’T_V ’ :
274 T_V_new_init_sw [ i nd i ces ] = f l o a t ( value )
275 e l i f cu r ren t_va r == ’A_R ’ :
276 A_R_init_sw [ i nd i ces ] = f l o a t ( value )
277 zero = [ ’ zero ’ ]
278 WV_id = W_id + V_id
279 WV0_id = zero + WV_id
280 W0_id = zero + W_id
281 V0_id = zero + V_id
282 DS_id = DC + S_id
283

284

285 Nr_vessels = np . arange (1 , len (W_id ) + 1)
286 F = [ ]
287 f o r n i n Nr_vessels :
288 f = [ f ’ Vessel_ { n } ’ ]
289 F = F + f
290

291 T_W_init_sw = { }
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292 f o r f i n F :
293 f o r l i n W0_id :
294 f o r k i n W0_id :
295 T_W_init_sw [ l , k , f ] = 0
296

297 numb = 0
298 f o r w in W_id :
299 T_W_init_sw [ ’ zero ’ ,w, F [numb ] ] = 1
300 T_W_init_sw [w, ’ zero ’ ,F [ numb ] ] = 1
301 numb += 1
302

303 # Determine c loses t DC f o r each s a t e l l i t e
304 DC_S = { }
305 f o r s i n S_id :
306 dist_DC = 999999
307 f o r dc i n DC:
308 dist_s_DC = d i s t _ f e . a t [ canal_nodes_dict [ dc ] , canal_nodes_dict [ s ] ]
309 i f dist_s_DC < dist_DC :
310 dist_DC = dist_s_DC
311 dc_s = dc
312 DC_S[ s ] = dc_s
313

314

315 S_DC = { ’DC_1 ’ : [ ] , ’DC_2 ’ : [ ] , ’DC_3 ’ : [ ] }
316

317 f o r s i n S_id :
318 dc = DC_S. get ( s )
319 i f dc i n S_DC:
320 S_DC[ dc ] . append ( s )
321

322

323 #%% Schedule water veh i c les
324 p r i n t ( ’ Working on water schedul ing f o r Ns : ’ , Ns)
325 start_sched_w = t ime . t ime ( )
326 model = gb . Model ( ’ Schedul ing_water ’ )
327 np . random . seed (123)
328 t ime_ l im i t = t_ l im_sched_water
329 K = 9999
330

331 X_W = X_W_init_sw
332 Q_W = Q_W_init_sw
333

334 t o t a l _ l o ad = 0
335 f o r i i n S_id :
336 t o t a l _ l o ad += LS_V [ i ]
337 l oad_de l i ve red = 0
338 l oad_de l i ve red = quicksum (Q_W[ i ,w] f o r w in W_id )
339 p r i n t ( i , ’ load de l i ve red by w: ’ , load_de l ivered , ’ load requ i red by v : ’ ,LS_V [ i ] )
340 p r i n t ( ’ t o t a l load requ i red : ’ , t o t a l _ l o ad )
341

342 DC_W = { }
343 f o r w in W_id :
344 f o r d i n DC:
345 f o r i i n S_id :
346 i f round ( X_W_init_sw [ i , d ,w ] ) == 1:
347 DC_W[w] = d
348

349 # Binary va r iab le , Y [ i , k , l ] = 1 i f both k and l v i s i t i
350 Y = { }
351 f o r k i n WV_id :
352 f o r l i n WV_id :
353 f o r i i n DS_id :
354 Y[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’Y ’ )
355

356 # A r r i v a l t ime of veh i c l e r a t i
357 A_WV = { }
358 f o r i i n DS_id :
359 f o r k i n WV_id :
360 A_WV[ i , k ] = model . addVar ( l b = −500, ub = 999999 , vtype = GRB.CONTINUOUS, name = ’

A_WV ’ )
361
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362 # D i f f e rence i n a r r i v a l t imes of veh i c l e
363 A_D = { }
364 f o r i i n S_id :
365 f o r k i n WV_id :
366 f o r l i n WV_id :
367 A_D[ i , k , l ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’A_D ’ )
368

369 # D i f f e rence i n a r r i v a l t imes of veh i c l e
370 A_DD = { }
371 f o r i i n S_id :
372 f o r k i n WV_id :
373 f o r l i n WV_id :
374 A_DD[ i , k , l ] = model . addVar ( l b = −999999, ub = 999999 , vtype = GRB.CONTINUOUS,

name = ’A_DD ’ )
375

376 # Customer or s a t e l l i t e i s v i s i t e d by veh i c l e r : = 1 , i f not : = 0
377 Z_WV = { }
378 f o r k i n WV_id :
379 f o r i i n DS_id :
380 Z_WV[ i , k ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_WV ’ )
381

382 # Accumulated load of road veh i c l e r a t customer i
383 L_W = { }
384 f o r w in WV_id :
385 f o r i i n DS_id :
386 L_W[ i ,w] = model . addVar ( l b =0.0 , vtype = GRB.CONTINUOUS, name = ’L_W ’ )
387

388

389 # Accumulated load de l i ve red to s a t e l l i t e i by veh ic les before and i nc l ud i ng k
390 LS = { }
391 f o r i i n S_id :
392 f o r k i n WV0_id :
393 LS [ i , k ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’LS ’ )
394

395 # Number o f water veh i c les used
396 Nw = { }
397 f o r w in W_id :
398 Nw[w] = model . addVar ( vtype = GRB.BINARY, name = ’Nw ’ )
399

400 # Stock a t s a t e l l i t e i a f t e r a r r i v a l o f veh i c l e k
401 S = { }
402 f o r i i n S_id :
403 f o r k i n WV_id :
404 S[ i , k ] = model . addVar ( l b = −100, vtype = GRB. INTEGER, name = ’S ’ )
405

406 B = { }
407 f o r i i n S_id :
408 f o r k i n WV0_id :
409 f o r l i n WV0_id :
410 B[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’B ’ )
411

412

413 # New f o r schedul ing
414 D_w = { }
415 f o r w in W0_id :
416 D_w[w] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’D_w ’ )
417

418

419 # Schedul ing water veh i c les
420 T_W = { }
421 f o r f i n F :
422 f o r k i n W0_id :
423 f o r l i n W0_id :
424 T_W[ k , l , f ] = model . addVar ( vtype = GRB.BINARY, name = ’T_W ’ )
425

426 A_F = { }
427 f o r f i n F :
428 f o r w in W0_id :
429 A_F [w, f ] = model . addVar ( l b = −500, vtype = GRB.CONTINUOUS, name = ’A_F ’ )
430

431 N_F = { }
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432 f o r f i n F :
433 N_F [ f ] = model . addVar ( vtype = GRB.BINARY, name = ’N_F ’ )
434

435 P_W = { }
436 f o r k i n W0_id :
437 f o r l i n W0_id :
438 P_W[ l , k ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’P_W ’ )
439

440 # New f o r depar ture t imes
441 D = { }
442 f o r i i n S_id :
443 f o r k i n WV0_id :
444 f o r l i n WV0_id :
445 D[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’D ’ )
446

447

448 D_WV = { }
449 f o r i i n DS_id :
450 f o r k i n WV_id :
451 D_WV[ i , k ] = model . addVar ( l b = 0 .0 , ub = 999999 , vtype = GRB.CONTINUOUS, name = ’

D_WV ’ )
452

453 W = { }
454 f o r i i n DS_id :
455 f o r w in W0_id :
456 W[ i ,w] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’W’ )
457

458 D_max = { }
459 f o r l i n W_id :
460 D_max [ l ] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’D_max ’ )
461

462 Z_FW = { }
463 f o r f i n F :
464 f o r w in W_id :
465 Z_FW[w, f ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_FW ’ )
466

467

468 # Objec t i ve f unc t i on
469 model . se tOb jec t i ve ( quicksum (N_F [ f ] f o r f i n F ) )
470

471 model . modelSense = GRB.MINIMIZE
472 model . update ( )
473

474 # Cons t ra in ts
475 # 3. Nodes t ha t are v i s i t e d by veh i c l e w
476 f o r w in W_id :
477 f o r i i n DS_id :
478 constr_w_3b = model . addConstr (Z_WV[ i ,w] == quicksum (X_W[ i , j ,w] f o r j i n DS_id ) ,

name= ’ Constr_3 ’ )
479

480 # 4b . Nodes t ha t are v i s i t e d by veh i c l e r
481 f o r v i n V_id :
482 f o r i i n DS_id :
483 constr_w_4c = model . addConstr (Z_WV[ i , v ] == Z_V [ i , v ] , name= ’ Constr_4 ’ )
484

485 # New
486 # 5. The demand de l i ve red to i i s zero i f veh i c l e r does not v i s i t i
487 f o r w in W_id :
488 f o r i i n DS_id :
489 constr_w_5 = model . addGenConstr Indicator (Z_WV[ i ,w] , False , Q_W[ i ,w] , GRB.EQUAL,

0 , name= ’ Constr_5 ’ )
490

491 # 6. Demand s a t i s f a c t i o n cons t r a i n t
492 f o r i i n S_id :
493 constr_w_6 = model . addConstr ( quicksum (Q_W[ i ,w] f o r w in W_id ) == LS_V [ i ] , name= ’

Constr_6 ’ ) #s_v [ i ] ) ) #
494 constr_w_6b = model . addConstr (Q_W[ i , ’ zero ’ ] == 0 , name= ’ Constr_6b ’ )
495

496 # New
497 # 7. No load i s de l i ve red to DC
498 # 8. The accumulated load at the DC i s zero
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499 f o r w in W_id :
500 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
501 f o r i i n DC:
502 constr_w_7 = model . addConstr (Q_W[ i ,w] == 0 , name= ’ Constr_7 ’ )
503 constr_w_8 = model . addConstr (L_W[ i ,w] == 0 , name= ’ Constr_8 ’ )
504

505 # 8b . No load de l i ve red by road veh ic les
506 f o r v i n V_id :
507 f o r i i n DS_id :
508 constr_w_8b = model . addConstr (Q_W[ i , v ] == 0 , name= ’ Constr_8b ’ )
509 constr_w_8c = model . addConstr (L_W[ i , v ] == 0 , name= ’ Constr_8c ’ )
510

511 # 9a_new . With X_W as an input , the cons t r a i n t can be r ew r i t t e n as :
512 f o r w in W_id :
513 f o r i i n DS_id :
514 f o r j i n S_id :
515 i f X_W[ i , j ,w] == 1:
516 constr_9a_new = model . addConstr (L_W[ j ,w] − L_W[ i ,w] − Q_W[ j ,w] == 0 , name

= ’ Constr_9a_new ’ )
517

518 # 9b . No L_R i f not v i s i t e d
519 f o r w in W_id :
520 f o r i i n DS_id :
521 constr_w_9b = model . addGenConstr Indicator (Z_WV[ i ,w] , False , L_W[ i ,w] , GRB.EQUAL,

0 , name= ’ Constr_9b ’ )
522

523 # New
524 # 9c . The load de l i ve red to customer i by veh i c l e r i s always less than or equal to the

accumulated load of r a t customer i :
525 f o r w in W_id :
526 f o r i i n S_id :
527 constr_w_9c = model . addConstr (Q_W[ i ,w] <= L_W[ i ,w] , name= ’ Constr_9c ’ )
528

529 # New
530 # 9d . The accumulated load of veh i c l e r a t customer i i s always less than or equal to the

maximum capac i t y o f veh i c l e r :
531 f o r w in W_id :
532 f o r i i n S_id :
533 constr_w_9d = model . addConstr ( L_W[ i ,w] <= capac i ty_ fe , name= ’ Constr_9d ’ )
534

535

536 # # A r r i v a l t ime cons t r a i n t s :
537 # 10_new . With X_W as inpu t
538 f o r w in W_id :
539 f o r i i n DS_id :
540 f o r j i n S_id :
541 i f X_W[ i , j ,w] == 1:
542 constr_10_new = model . addConstr (A_WV[ j ,w] − A_WV[ i ,w] − d i s t _ f e . a t [

canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] / ( speed_fe * 60) − W[ i ,w] − Q_W[ i ,w] * 0.2 >=
0 , name= ’ Constr_10_new ’ )

543

544 f o r w in W_id :
545 f o r j i n S_id :
546 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
547 f o r i i n DC:
548 i f X_W[ i , j ,w] == 1:
549 constr_t ime_10b = model . addConstr (A_WV[ j , w] − A_WV[ i , w] − d i s t _ f e . a t [

canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] / ( speed_fe * 60) − serv ice_ t ime_fe / 60 == 0 ,
name= ’ Constr_10b ’ )

550

551

552 # 11. Binary va r i ab l e Y [ i , k , l ] i s one i f both k and l v i s i t i
553 f o r i i n S_id :
554 f o r k i n WV_id :
555 f o r l i n WV_id :
556 i f k != l :
557 constr_Y_11 = model . addConstr (Y [ i , k , l ] == gb . and_ (Z_WV[ i , k ] , Z_WV[ i , l ] ) ,

name= ’ Constr_11 ’ )
558

559 # 12. A r r i v a l t imes of veh i c les a t s a t e l l i t e s cannot be the same
560 f o r i i n S_id :
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561 f o r k i n WV_id :
562 f o r l i n WV_id :
563 constr_t ime_12a = model . addConstr (A_DD[ i , k , l ] == A_WV[ i , k ] − A_WV[ i , l ] , name=

’ Constr_12a ’ )
564 constr_t ime_12b = model . addConstr (A_D[ i , k , l ] == gb . abs_ (A_DD[ i , k , l ] ) , name= ’

Constr_12b ’ )
565

566 # 13a . A r r i v a l t imes of road veh ic les a t s a t e l l i t e s cannot be the same
567 f o r i i n S_id :
568 f o r k i n V_id :
569 f o r l i n V_id :
570 i f k != l :
571 constr_t ime_13a = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_D[ i , k , l ] ,

GRB.GREATER_EQUAL, t ranssh ip_s , name= ’ Constr_13a ’ ) #180)
572 constr_t ime_13a_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13a_1 ’ )
573

574 # 13b . A r r i v a l t imes of a water veh i c les i s l a t e r than the depar ture t ime of another
water veh i c l e

575 f o r i i n S_id :
576 f o r k i n W_id :
577 f o r l i n W_id :
578 i f k != l :
579 constr_t ime_13b = model . addGenConstr Indicator (B [ i , k , l ] , True , A_WV[ i , k ] −

D_WV[ i , l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13b ’ ) #600)
580 constr_t ime_13b_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13b_1 ’ )
581

582 # 13b . A r r i v a l t imes of water and road veh ic les a t s a t e l l i t e s cannot be the same
583 f o r i i n S_id :
584 f o r k i n W_id :
585 f o r l i n V_id :
586 i f k != l :
587 constr_t ime_13c = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_D[ i , k , l ] ,

GRB.GREATER_EQUAL, 0.01 , name= ’ Constr_13c ’ ) #600)
588 constr_t ime_13c_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13c_1 ’ )
589

590 #13c . A r r i v a l t imes at s a t e l l i t e s cannot be l a t e r than the maximum time span
591 f o r i i n S_id :
592 f o r k i n WV_id :
593 constr_t ime_13d = model . addConstr (D_WV[ i , k ] <= time_span , name= ’ Constr_13d ’ )
594

595

596 # 14. A r r i v a l t ime i s i n f i n i t e i f a veh i c l e does not v i s i t s a t e l l i t e i
597 f o r i i n S_id :
598 f o r k i n WV_id :
599 constr_t ime_14 = model . addGenConstr Indicator (Z_WV[ i , k ] , False , A_WV[ i , k ] , GRB.

EQUAL, 0 , name = ’ Constr_14 ’ )
600

601 # # S a t e l l i t e synchron isa t ion cons t r a i n t s :
602

603 # 15. Binary va r i ab l e = 1 i f veh i c l e k a r r i v e s a t the same t ime or a f t e r veh i c l e l
604 f o r i i n S_id :
605 f o r k i n WV_id :
606 constr_binary_150 = model . addGenConstr Indicator (Z_WV[ i , k ] , True , B [ i , k , ’ zero ’ ] ,

GRB.EQUAL, 1 , name = ’ Constr_150 ’ )
607 f o r l i n WV_id :
608 constr_binary_15a = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_WV[ i , k ] − K

* B[ i , k , l ] − A_WV[ i , l ] , GRB.LESS_EQUAL, 0 , name = ’ Constr_15a ’ )
609 constr_binary_15b = model . addGenConstr Indicator (Y [ i , k , l ] , True , B [ i , k , l ] + B [

i , l , k ] , GRB.EQUAL, 1 , name = ’ Constr_15b ’ )
610 const r_b inary_15c = model . addConstr (B [ i , k , l ] + B [ i , l , k ] <= 1)
611 constr_binary_15d = model . addGenConstr Indicator (Z_WV[ i , k ] , False , B [ i , k , l ] ,

GRB.EQUAL, 0 , name = ’ Constr_15d ’ )
612 constr_binary_15e = model . addGenConstr Indicator (Z_WV[ i , k ] , False , B [ i , l , k ] ,

GRB.EQUAL, 0 , name = ’ Constr_15e ’ )
613

614 # 16. Load de l i ve red to s a t e l l i t e i by a l l veh i c les before k and k
615 f o r i i n S_id :
616 f o r k i n WV0_id :
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617 f o r l i n WV0_id :
618 constr_load_16a = model . addGenConstr Indicator (B [ i , k , l ] , True , LS [ i , k ] −

LS [ i , l ] − Q_W[ i , k ] , GRB.GREATER_EQUAL,0 , name = ’ Constr_16a ’ )
619

620 f o r i i n S_id :
621 f o r k i n WV_id :
622 constr_load_16b = model . addConstr (LS [ i , k ] <= quicksum (Q_W[ i ,w] f o r w in W_id ) ,

name = ’ Constr_16b ’ )
623 constr_ load_16c = model . addGenConstr Indicator (Z_WV[ i , k ] , False , LS [ i , k ] , GRB.

EQUAL, 0 , name = ’ Constr_16c ’ )
624

625 # 17. New Stock a t s a t e l l i t e s cons t r a i n t s
626 f o r i i n S_id :
627 f o r k i n WV_id :
628 # f o r l i n WV_id :
629 constr_stock_17a = model . addGenConstr Indicator (Z_WV[ i , k ] , True , S [ i , k ] +

quicksum (L_V [ i , l ] * B[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.EQUAL, 0 , name = ’
Constr_17a ’ )

630

631 f o r i i n S_id :
632 f o r k i n WV_id :
633 constr_stock_17b = model . addConstr (S [ i , k ] >= 0 , name = ’ Constr_17b ’ )
634 constr_stock_17c = model . addConstr (S [ i , k ] <= capac i ty_s [ i ] + capac i ty_ fe , name =

’ Constr_17c ’ )
635

636 f o r w in W_id :
637 constr_water_km = model . addConstr (D_w[w] == quicksum ( d i s t _ f e . a t [ canal_nodes_dict [ i ] ,

canal_nodes_dict [ j ] ] * X_W[ i , j ,w] f o r i i n DS_id f o r j i n DS_id ) , name = ’ Constr_water_km
’ )

638

639

640 f o r w in W_id :
641 f o r i i n S_id :
642 constr_Nw = model . addGenConstr Indicator (Z_WV[ i ,w] , True , Nw[w] , GRB.EQUAL, 1 ,

name = ’ Constr_Nw ’ )
643

644 cons t r_ t r i ps_per fo rmed = model . addConstr ( quicksum (T_W[ i , j , f ] f o r i i n W_id f o r j i n W0_id
f o r f i n F ) == len (W_id ) , name = ’ c on s t r _ t r i p s ’ )

645

646

647 f o r k i n WV_id :
648 f o r i i n S_id :
649 constr_t ime_span = model . addConstr (A_WV[ i , k ] >= 0 , name = ’ constr_t ime_span ’ )
650

651 f o r r i n R_v :
652 f o r k i n V_id :
653 f o r l i n V_id :
654 i f k != l :
655 i f T_V_new_init_sw [ l , k , r ] == 1:
656 c on s t r _ r e l a x _ i n i t = model . addConstr (A_WV[ v_s [ k ] , k ] − A_WV[ v_s [ l ] ,

l ] − P_V [ l , k ] >= 0 , name = ’ Cons t r _ r e l a x_ i n i t ’ )
657

658 # New f o r mu l t i p l e water veh i c l e depots :
659 f o r l i n W_id :
660 f o r k i n W_id :
661 constr_21 = model . addConstr (P_W[ l , k ] == D_w[ l ] / ( speed_fe *60) + ( d i s t _ f e . a t [

canal_nodes_dict [DC_W[ l ] ] , canal_nodes_dict [DC_W[ k ] ] ] / ( speed_fe *60) ) + serv ice_ t ime_fe
/ 60 + quicksum (Z_WV[ i , l ] * W[ i , l ] f o r i i n S_id ) , name = ’ Constr_21 ’ ) #quicksum (Z_WV[ i , l
] f o r i i n S_id ) * ( t ranssh ip_s / 60) + serv ice_ t ime_fe / 60)

662

663 # Each veh i c l e f can only leave the depot once
664 f o r f i n F :
665 cons t r_22f = model . addConstr ( quicksum (T_W[ ’ zero ’ , k , f ] f o r k i n W_id ) <= 1 , name = ’

Constr_22f ’ )
666

667 # Each t r i p i s performed once
668 f o r k i n W_id :
669 constr_22b = model . addConstr ( quicksum (T_W[ l , k , f ] f o r l i n W0_id f o r f i n F ) == 1 ,

name = ’ Constr_22b ’ )
670

671
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672 #A vessel can only perform t r i p s i n the same neighbourhood :
673 f o r f i n F :
674 f o r k i n W_id :
675 depot_k = DC_W[ k ]
676 f o r l i n W_id :
677 i f DC_W[ l ] != depot_k :
678 const r_neighbour = model . addGenConstr Indicator (Z_FW[ k , f ] , True , Z_FW[ l , f

] , GRB.EQUAL, 0 , name = ’ Constr_neighbour ’ )
679 constr_neighbour_b = model . addGenConstr Indicator (Z_FW[ k , f ] , True , T_W[ l , k

, f ] + T_W[ k , l , f ] , GRB.EQUAL, 0 , name = ’ Constr_neighbour_b ’ )
680

681

682 # Z_FW = 1 i f f performs t r i p w
683 f o r k i n W_id :
684 f o r f i n F :
685 constr_22b_1 = model . addConstr (Z_FW[ k , f ] == quicksum (T_W[ l , k , f ] f o r l i n W0_id ) ,

name = ’ Constr_22b_1 ’ )
686

687 f o r f i n F :
688 f o r l i n W_id :
689 constr_22b_2 = model . addGenConstr Indicator (Z_FW[ l , f ] , True , quicksum (T_W[ ’ zero ’ , k

, f ] f o r k i n W_id ) , GRB.EQUAL, 1 , name = ’ Constr_22b_2 ’ )
690

691 f o r l i n W_id :
692 constr_22c = model . addConstr (D_max [ l ] == gb .max_(D_WV[ i , l ] f o r i i n S_id ) , name = ’

Constr_22c ’ ) # gb .max_(D_WV[ i , l ] f o r i i n S_id )
693

694 # New: T r i p k can be performed by veh i c l e f i f the s t a r t t ime of t r i p k i s l a t e r than the
end of t r i p l

695 f o r f i n F :
696 f o r k i n W_id :
697 f o r l i n W_id :
698 constr_22c_new = model . addGenConstr Indicator (T_W[ l , k , f ] , True , A_F [ k , f ] −

D_max [ l ] − quicksum (X_W[ i , d , l ] * d i s t _ f e . a t [ canal_nodes_dict [ i ] , canal_nodes_dict [ d ] ] f o r
i i n S_id f o r d i n DC) / ( speed_fe * 60) , GRB.GREATER_EQUAL, 0 , name = ’ Constr_22c_new ’ )

699

700 # A t r i p can never be performed a f t e r i t s e l f
701 f o r f i n F :
702 f o r l i n W0_id :
703 constr_22d = model . addConstr (T_W[ l , l , f ] == 0 , name = ’ Constr_22d ’ )
704

705 # Vehic le f can only end t r i p l i f i t a lso s t a r t ed i t
706 f o r f i n F :
707 f o r l i n W0_id :
708 # i f i != j :
709 constr_22e = model . addConstr ( quicksum (T_W[ l , k , f ] f o r k i n W0_id ) == quicksum (

T_W[ k , l , f ] f o r k i n W0_id ) , name = ’ Constr_22e ’ )
710

711 # Number o f water veh i c les used
712 f o r f i n F :
713 f o r k i n W_id :
714 constr_23 = model . addGenConstr Indicator (T_W[ ’ zero ’ , k , f ] , True , N_F [ f ] , GRB.EQUAL,

1 , name = ’ Constr_23 ’ )
715

716 # Connect A_F wi th A_WV
717 f o r w in W_id :
718 constr_24 = model . addConstr (A_WV[DC_W[w] ,w] == quicksum ( quicksum (T_W[ k ,w, f ] f o r k i n

W0_id ) * A_F [w, f ] f o r f i n F ) , name = ’ Constr_24 ’ )
719

720

721 # New f o r depar ture t imes
722 f o r i i n S_id :
723 f o r v i n V_id :
724 const r_depar ture_1 = model . addGenConstr Indicator (Z_WV[ i , v ] , True , D_WV[ i , v ] −

A_WV[ i , v ] − t ranssh ip_s / 60 , GRB.EQUAL, 0 , name = ’ constr_dep_1 ’ )
725 f o r w in W_id :
726 const r_depar ture_2 = model . addGenConstr Indicator (Z_WV[ i ,w] , True , D_WV[ i ,w] −

A_WV[ i ,w] − W[ i ,w] − Q_W[ i ,w] * 0.2 , GRB.EQUAL, 0 , name = ’ constr_dep_2 ’ )
727

728

729 f o r i i n S_id :
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730 f o r k i n V0_id :
731 f o r l i n V0_id :
732 const r_depar ture_3 = model . addGenConstr Indicator (B [ i , k , l ] , True , D[ i , k , l ] ,

GRB.EQUAL, 1 , name = ’ constr_dep_3 ’ )
733 f o r k i n W0_id :
734 f o r l i n W0_id :
735 const r_depar ture_4 = model . addGenConstr Indicator (B [ i , k , l ] , True , D[ i , k , l ] ,

GRB.EQUAL, 1 , name = ’ constr_dep_4 ’ )
736

737 f o r k i n WV_id :
738 const r_depar ture_8 = model . addGenConstr Indicator (Z_WV[ i , k ] , False , quicksum (D[ i

, k , l ] f o r l i n WV_id ) + quicksum (D[ i , l , k ] f o r l i n WV_id ) , GRB.EQUAL, 0 , name = ’
constr_dep_8 ’ )

739 f o r l i n WV_id :
740 const r_depar ture_5 = model . addGenConstr Indicator (Y [ i , k , l ] , True , D_WV[ i , k ] −

K* D[ i , k , l ] − D_WV[ i , l ] , GRB.LESS_EQUAL, 0 , name = ’ constr_dep_5 ’ )
741 const r_depar ture_6 = model . addGenConstr Indicator (Y [ i , k , l ] , True , D[ i , k , l ] + D

[ i , l , k ] , GRB.EQUAL, 1 , name = ’ constr_dep_6 ’ )
742

743

744 f o r i i n S_id :
745 f o r k i n W_id :
746 const r_depar ture_7 = model . addGenConstr Indicator (Z_WV[ i , k ] , True , quicksum (L_V [ i

, l ] * D[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.LESS_EQUAL, 0 , name = ’
constr_dep_7 ’ )

747 constr_departure_7_b = model . addGenConstr Indicator (Z_WV[ i , k ] , True , quicksum (L_V
[ i , l ] * D[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.GREATER_EQUAL, − capac i ty_s [ i ] ,
name = ’ constr_dep_7_b ’ )

748

749

750 f o r ( i ,w) , value i n L_W_init_sw . i tems ( ) :
751 L_W[ i ,w ] . s t a r t = value
752

753 f o r ( i ,w) , value i n Z_WV_init_sw . i tems ( ) :
754 Z_WV[ i ,w ] . s t a r t = value
755

756 f o r ( i , k , l ) , value i n Y_in i t_sw . i tems ( ) :
757 Y[ i , k , l ] . s t a r t = value
758

759 f o r ( i , k , l ) , value i n B_in i t_sw . i tems ( ) :
760 B[ i , k , l ] . s t a r t = value
761

762 f o r ( i , k ) , value i n A_WV_init_sw . i tems ( ) :
763 A_WV[ i , k ] . s t a r t = value
764

765 f o r ( i , k , l ) , value i n A_DD_init_sw . i tems ( ) :
766 A_DD[ i , k , l ] . s t a r t = value
767

768 f o r ( i ,w) , value i n S_in i t_sw . i tems ( ) :
769 S[ i ,w ] . s t a r t = value
770

771 f o r ( i , k ) , value i n LS_in i t_sw . i tems ( ) :
772 LS [ i , k ] . s t a r t = value
773

774 f o r ( i , k , l ) , value i n D_in i t_sw . i tems ( ) :
775 D[ i , k , l ] . s t a r t = value
776

777 f o r ( i , k ) , value i n D_WV_init_sw . i tems ( ) :
778 D_WV[ i , k ] . s t a r t = value
779

780 f o r ( i , k ) , value i n W_init_sw . i tems ( ) :
781 W[ i , k ] . s t a r t = value
782

783 f o r ( i , k , l ) , value i n T_W_init_sw . i tems ( ) :
784 T_W[ i , k , l ] . s t a r t = value
785

786

787 # S ta r t op t im i sa t i on
788

789 p r i n t ( ” s t a r t op t im i z i ng ” )
790 model . setParam ( ’ OutputFlag ’ , True )
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791 model . setParam ( ’MIPGap ’ , mip_sched_w )
792 model . setParam ( ’ F e a s i b i l i t y T o l ’ , 1e−4)
793 model . setParam ( ’MIPFocus ’ , 0)
794 model . setParam ( ’SubMIPNodes ’ , 20000)
795 model . setParam ( ’Seed ’ , 123)
796 model . setParam ( ’ SoftMemLimit ’ , 100)
797 model . setParam ( ’ Threads ’ , 40)
798 i f t i me_ l im i t :
799 model . setParam ( ’ T ime l im i t ’ , t ime_ l im i t )
800 model . _obj = None
801 model . _bd = None
802 model . _obj_value = [ ]
803 model . _t ime = [ ]
804 model . _ s t a r t = t ime . t ime ( )
805 model . op t im ize ( )
806 mip_gap_water = model .MIPGap
807 end_sched_w = t ime . t ime ( )
808 time_sched_w = end_sched_w − start_sched_w
809

810 #%% Save so l u t i ons
811 water_km_w = 0
812 f o r w in W_id :
813 water_km_w += D_w[w ] . X
814

815

816 W_used_w = [ ]
817 f o r w in W_id :
818 w_v i s i t s = 0
819 f o r i i n S_id :
820 i f Z_WV[ i ,w ] . X == 1:
821 w_v i s i t s += 1
822 i f w_v i s i t s >= 1:
823 W_used_w . append (w)
824 Nr_w_w = len (W_used_w)
825

826 f_used_water = 0
827 f o r f i n F :
828 i f N_F [ f ] . X == 1:
829 f_used_water += 1
830 p r i n t ( f_used_water )
831 Nr_F_w = f_used_water
832

833

834 max_start_F_ = 0
835 f o r f i n F :
836 f o r w in W_id :
837 i f A_F [w, f ] . X > max_start_F_ :
838 max_start_F_ = A_F [w, f ] . X
839

840 max_start_F_w = max_start_F_
841 max_start = 0
842 f o r v i n V_id :
843 f o r i i n S_id :
844 i f A_WV[ i , v ] . X > max_start :
845 max_start = A_WV[ i , v ] . X
846 max_start_V_w = max_start
847

848 F_new = [ ] # Make set o f water veh i c les F the s ize used in schedul ing
water veh i c les

849 f o r f i n F :
850 i f N_F [ f ] . X == 1:
851 F_new . append ( f )
852 F = F_new . copy ( )
853 F_sched_w = len (F )
854 p r i n t ( ’ Distance on waterways a f t e r water schedul ing : ’ , water_km_w )
855

856 X_W_init_wf = X_W
857 Y_ in i t _w f = model . g e tA t t r ( ’X ’ , Y)
858 A_WV_init_wf = model . g e tA t t r ( ’X ’ , A_WV)
859 A_D_ini t_wf = model . g e tA t t r ( ’X ’ , A_D)
860 A_DD_init_wf = model . g e tA t t r ( ’X ’ , A_DD)
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861 Q_W_init_wf = Q_W
862 Z_WV_init_wf = model . g e tA t t r ( ’X ’ , Z_WV)
863 L_W_ini t_wf = model . g e tA t t r ( ’X ’ , L_W)
864 LS_ in i t_wf = model . g e tA t t r ( ’X ’ , LS)
865 S_ in i t _w f = model . g e tA t t r ( ’X ’ , S)
866 B_ in i t _w f = model . g e tA t t r ( ’X ’ , B)
867 A_F_in i t_wf = model . g e tA t t r ( ’X ’ , A_F)
868 T_W_init_wf = model . g e tA t t r ( ’X ’ , T_W)
869 T_V_in i t_wf = T_V_new_init_sw # T_V i n i t i a l s o l u t i o n f o r t o t a l

schedul ing i s s t i l l the found so l u t i o n i n road schedul ing
870 D_in i t_wf = model . g e tA t t r ( ’X ’ , D)
871 D_WV_init_wf = model . g e tA t t r ( ’X ’ , D_WV)
872 W_ini t_wf = model . g e tA t t r ( ’X ’ , W)
873

874 T_W_new_init_wf = { }
875

876 f o r f i n F :
877 f o r l i n W0_id :
878 f o r k i n W0_id :
879 T_W_new_init_wf [ k , l , f ] = T_W_init_wf [ k , l , f ]
880

881 #%%
882 wi th open ( f ’ output_water_ { s a v e_ t i t l e } _ {Ns} _ { t_lim_VRP_E2 } . t x t ’ , ’w ’ ) as f :
883 f . w r i t e ( f ’D_r_VRP_E2 : \ n {D_r_VRP_E2 } \ n ’ )
884 f . w r i t e ( f ’MIP_VRP_E2 : \ n {MIP_VRP_E2 } \ n ’ )
885 f . w r i t e ( f ’D_w_VRP_E1 : \ n {D_w_VRP_E1 } \ n ’ )
886 f . w r i t e ( f ’MIP_VRP_E1 : \ n {MIP_VRP_E1 } \ n ’ )
887 f . w r i t e ( f ’ R_sched_r : \ n { R_sched_r } \ n ’ )
888 f . w r i t e ( f ’ D_r_r : \ n { D_r_r } \ n ’ )
889 f . w r i t e ( f ’ MIP_sched_r : \ n { MIP_sched_r } \ n ’ )
890 f . w r i t e ( f ’ F_sched_w : \ n { F_sched_w } \ n ’ )
891 f . w r i t e ( f ’D_w_w : \ n {water_km_w } \ n ’ )
892 f . w r i t e ( f ’MIP_sched_w : \ n { mip_gap_water } \ n ’ )
893 f o r var_name , var_values i n [
894 ( ’X_W ’ , X_W_init_wf ) ,
895 ( ’Y ’ , Y_ in i t _w f ) ,
896 ( ’A_WV ’ , A_WV_init_wf ) ,
897 ( ’A_D ’ , A_D_ini t_wf ) ,
898 ( ’A_DD ’ , A_DD_init_wf ) ,
899 ( ’Q_W’ , Q_W_init_wf ) ,
900 ( ’Z_WV ’ , Z_WV_init_wf ) ,
901 ( ’L_W ’ , L_W_ini t_wf ) ,
902 ( ’LS ’ , LS_ in i t_wf ) ,
903 ( ’S ’ , S_ in i t _w f ) ,
904 ( ’B ’ , B_ in i t _w f ) ,
905 ( ’D ’ , D_ in i t_wf ) ,
906 ( ’D_WV ’ , D_WV_init_wf ) ,
907 ( ’W’ , W_in i t_wf ) ,
908 ( ’T_V ’ , T_V_in i t_wf ) ,
909 ( ’A_F ’ , A_F_in i t_wf ) ,
910 ( ’T_W ’ , T_W_new_init_wf ) ,
911 ( ’P_V ’ , P_V) ,
912 ( ’ L_V ’ , L_V ) ,
913 ( ’LS_V ’ , LS_V) ,
914 ( ’Z_V ’ , Z_V) ,
915 ( ’ v_s ’ , v_s ) ,
916 ( ’ L_V ’ , L_V ) ,
917 ( ’D_T ’ , D_T) ,
918 ( ’ v_d ’ , v_d ) ,
919 ( ’ canal_nodes_dict ’ , canal_nodes_dict )
920 ] :
921 f . w r i t e ( f ’ { var_name } : \ n ’ )
922 f o r key , value i n var_values . i tems ( ) :
923 i f i s i n s t ance ( value , gb . LinExpr ) :
924 value = value . getValue ( )
925 f . w r i t e ( f ’ { key } : { value } \ n ’ )
926 f . w r i t e ( ’ V_id : \ n ’ )
927 f o r v i n V_id :
928 f . w r i t e ( f ’ { v } \ n ’ )
929 f . w r i t e ( ’W_id : \ n ’ )
930 f o r w in W_id :
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931 f . w r i t e ( f ’ {w } \ n ’ )
932 f . w r i t e ( ’ S_id : \ n ’ )
933 f o r s i n S_id :
934 f . w r i t e ( f ’ { s } \ n ’ )
935 f . w r i t e ( ’R_v : \ n ’ )
936 f o r r i n R_v :
937 f . w r i t e ( f ’ { r } \ n ’ )
938 f . w r i t e ( ’F : \ n ’ )
939 f o r k i n F :
940 f . w r i t e ( f ’ { k } \ n ’ )
941 p r i n t ( ’F i s w r i t t e n ’ )
942 f . w r i t e ( ’DC: \ n ’ )
943 f o r d i n DC:
944 f . w r i t e ( f ’ { d } \ n ’ )

B.4.3. Integrated Scheduling
1 #%% Import l i b r a r i e s
2 impor t gurobipy as gb
3 impor t t ime
4 impor t os
5 impor t numpy as np
6 impor t pandas as pd
7 impor t p i c k l e
8 impor t math
9 impor t copy
10 impor t sys
11 impor t ma t p l o t l i b . pyp lo t as p l t
12 impor t warnings
13 from openpyxl impor t load_workbook
14 from gurobipy impor t quicksum , GRB
15

16 #%% Set path
17 server = ’ True ’
18

19 i f server == ’ False ’ :
20 path = os . getcwd ( ) + ” \ Inpu ts \ \ ”
21 path_out = os . getcwd ( ) + ” \ Outputs \ \ ”
22 from FLP_solver_def ini t ion_number_customers_horeca_sets_Laudy impor t FLP_num_cust
23 from FLP_so lver_def in i t ion_horeca_sets_capac i ty_ass ignment impor t FLP_capacity
24

25 i f server == ’ True ’ :
26 path = os . getcwd ( ) + ” / Inpu ts / ”
27 path_out = os . getcwd ( ) + ” / Outputs / ”
28

29

30 #%% Scenario inpu ts
31 d i r ec ted = ’ t r ue ’ # I nd i ca t e wether to use d i r ec ted or und i rec ted d is tance

mat r i x
32 FLP_const ra in t = ’ num_cust ’ # Which FLP cons t r a i n t to use , e i t h e r capac i t y or num_cust
33 Nc = 750 # I n se r t the number o f customers to cons ider
34 horeca_sets = np . arange (1 ,11) # Which horeca sets to eva luate
35 horeca_set = 1 # I f not t e s t i n g a l l horeca sets , i n s e r t one to evaluate
36

37

38 #%% Import network and scenar io data
39 df_horeca_demand_scenarios = pd . read_excel ( path + f ’ df_horeca_demand_scenarios . x l sx ’ ,

index_co l =0)
40 df_horeca_demand_scenarios . index = df_horeca_demand_scenarios . index . astype ( s t r )
41 df_horeca_data_ in fo = pd . read_excel ( path + f ’ d f_horeca_data_ in fo . x l sx ’ , index_co l =0)
42 df_horeca_data_ in fo . index = df_horeca_data_ in fo . index . astype ( s t r )
43 customer_ locat ions = df_horeca_data_ in fo . i l o c [ : , 0 ]
44

45 i f server == ’ False ’ :
46 df_SE_shor tes t_d is t_d i rec ted_Fa lse = p i c k l e . load ( open ( path + ’

d f_SE_shor tes t_d is t_d i rec ted −False_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
47 df_SE_shor tes t_d is t_d i rec ted_True_1 = p i c k l e . load ( open ( path + ’

d f_SE_shor tes t_d is t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
48 df_SE_shor tes t_d is t_d i rec ted_True = df_SE_shor tes t_d is t_d i rec ted_True_1 . f i l l n a (1001)
49 d ic t_FE_shor tes t_d is t_d i rec ted_True_1 = p i c k l e . load ( open ( path + ’

d i c t_FE_sho r tes t_d i s t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ ) )
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50

51 i f server == ’ True ’ :
52 p i c k l e _ o f f = open ( path + ’ d f_SE_shor tes t_d is t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ )
53 df_SE_shor tes t_d is t_d i rec ted_True_1 = pd . read_p ick le ( p i c k l e _ o f f )
54 df_SE_shor tes t_d is t_d i rec ted_True = df_SE_shor tes t_d is t_d i rec ted_True_1 . f i l l n a (1001)
55

56 p i c k l e _ o f f = open ( path + ’ d i c t_FE_sho r tes t_d i s t_d i rec ted −True_nodes_al l . p i c k l e ’ , ’ rb ’ )
57 d ic t_FE_shor tes t_d is t_d i rec ted_True_1 = pd . read_p ick le ( p i c k l e _ o f f )
58 df_SE_shor tes t_d is t_d i rec ted_Fa lse = d ic t_FE_shor tes t_d is t_d i rec ted_True_1
59 assigned = [ ]
60 i nd i ces = [ ]
61 customers = [ [ 0 ] * 3 ] * len ( customer_ locat ions )
62 f o r customer_id i n df_horeca_data_ in fo . index . t o l i s t ( ) :
63 i f df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] > 0 :
64 i nd i ces . append ( customer_id )
65 assigned . append ( { ’ road_node ’ : i n t ( d f_horeca_data_ in fo . a t [ customer_id , ’ road_node ’ ] ) , ’

demand ’ : i n t ( df_horeca_demand_scenarios . a t [ f ’ { customer_id } ’ , f ’ set_ { horeca_set } ’ ] ) } )
66 customers = pd . DataFrame ( assigned , index= ind i ces )
67

68 s a t e l l i t e _ l o c a t i o n s = pd . read_excel ( path + ” sa t e l l i t e _nodes_s t o r age_ f u l l . x l sx ” , index_co l =0)
69 veh ic les = pd . read_excel ( path + ” Road_vehicles . x l sx ” , index_co l =0)
70 road_nodes = pd . read_excel ( path + ” sate l l i tes_customers_road_nodes . x l sx ” , index_co l = 0)
71

72 i f d i r ec ted == ’ t r ue ’ :
73 d i s t = d f_SE_shor tes t_d is t_d i rec ted_True
74 e l i f d i r ec ted == ’ f a l s e ’ :
75 d i s t = d f_SE_shor tes t_d is t_d i rec ted_Fa lse
76

77 #%% Parameters
78 speed_v = i n t ( os . getenv ( ’ speed_v ’ ) )
79 t ranssh ip_s = i n t ( os . getenv ( ’ t ranssh ip_s ’ ) )
80 t ranssh ip_c = i n t ( os . getenv ( ’ t ranssh ip_c ’ ) )
81 f e v _ p r o f i l e = 5
82 capac i t y_ fe = i n t ( os . getenv ( ’ capac i t y_ fe ’ ) )
83 speed_fe_str = os . getenv ( ’ speed_fe ’ )
84 speed_fe = f l o a t ( speed_fe_str )
85 serv ice_ t ime_fe = i n t ( os . getenv ( ’ se rv ice_ t ime_fe ’ ) )
86 capac i ty_s = i n t ( os . getenv ( ’ capac i ty_s ’ ) )
87 capaci ty_se = i n t ( os . getenv ( ’ capaci ty_se ’ ) )
88 storage_set = os . getenv ( ’ s torage_set ’ )
89 d f_ fe_d is tance_mat r i x = d ic t_FE_shor tes t_d is t_d i rec ted_True_1 [ f ’ v esse l _p ro f i l e _ { f e v _ p r o f i l e } ’

] . copy ( )
90 d i s t _ f e = d f_ fe_d is tance_mat r i x . f i l l n a (99999)
91

92 # New dis tance mat r i x f o r mu l t i p l e water veh i c l e depots :
93 dict_FE_new = pd . read_csv ( path + ’ distance_matr ix_DCs . csv ’ , sep= ’ ; ’ , header=None )
94 dist_fe_new = pd . DataFrame ( dict_FE_new )
95 dist_fe_new . index = dist_fe_new . index + 1
96 new_index = { o ld_ index : o ld_ index + 1 f o r o ld_ index i n dist_fe_new . columns }
97 dist_fe_new = dist_fe_new . rename ( columns=new_index )
98 d i s t _ f e = dist_fe_new . f i l l n a (99999)
99

100

101 t_ l imi ts_VRP_E2_st r = os . getenv ( ’ t_l imits_VRP_E2 ’ )
102 t_l imits_VRP_E2 = eval ( t_ l imi ts_VRP_E2_st r )
103

104 t_lim_VRP_E1 = i n t ( os . getenv ( ’ t_lim_VRP_E1 ’ ) )
105 t_ l im_sched_road = i n t ( os . getenv ( ’ t_ l im_sched_road ’ ) )
106 t_ l im_sched_water = i n t ( os . getenv ( ’ t_ l im_sched_water ’ ) )
107 t _ l im_sched_ to ta l = i n t ( os . getenv ( ’ t _ l im_sched_ to ta l ’ ) )
108 t ime_span = i n t ( os . getenv ( ’ time_span ’ ) )
109 mip_VRP_E2_str = os . getenv ( ’mip_VRP_E2 ’ )
110 mip_VRP_E2 = f l o a t ( mip_VRP_E2_str )
111 mip_VRP_E1_str = os . getenv ( ’mip_VRP_E1 ’ )
112 mip_VRP_E1 = f l o a t ( mip_VRP_E1_str )
113 mip_sched_r_str = os . getenv ( ’ mip_sched_r ’ )
114 mip_sched_r = f l o a t ( mip_sched_r_str )
115 mip_sched_w_str = os . getenv ( ’mip_sched_w ’ )
116 mip_sched_w = f l o a t ( mip_sched_w_str )
117 mip_sched_t_str = os . getenv ( ’ mip_sched_t ’ )
118 mip_sched_t = f l o a t ( mip_sched_t_str )
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119 s a v e_ t i t l e = os . getenv ( ’ s a v e_ t i t l e ’ )
120 Ns = i n t ( os . getenv ( ’ N rSa t e l l i t e s ’ ) )
121

122 capac i ty_s = { }
123 f o r i i n s a t e l l i t e _ l o c a t i o n s . index . t o l i s t ( ) :
124 capac i ty_s [ i ] = s a t e l l i t e _ l o c a t i o n s . a t [ i , f ’ capac i ty_ { s torage_set } ’ ]
125

126

127 #%% Import i n i t i a l s o l u t i o n
128 N_s = [ ]
129 r e s u l t s = [ ]
130 f o r t_lim_VRP_E2 in t_l imits_VRP_E2 :
131 V_id = [ ]
132 W_id = [ ]
133 S_id = [ ]
134 R_v = [ ]
135 F = [ ]
136 X_W_init_wf = { }
137 Q_W_init_wf = { }
138 L_W_ini t_wf = { }
139 Z_WV_init_wf = { }
140 Y_ in i t _w f = { }
141 B_ in i t _w f = { }
142 A_WV_init_wf = { }
143 A_DD_init_wf = { }
144 S_ in i t _w f = { }
145 LS_ in i t_wf = { }
146 T_V_in i t_wf = { }
147 T_W_new_init_wf = { }
148 D_in i t_wf = { }
149 D_WV_init_wf = { }
150 W_ini t_wf = { }
151 A_F_in i t_wf = { }
152

153 P_V = { }
154 LS_V = { }
155 Z_V = { }
156 v_s = { }
157 L_V = { }
158 D_T = { }
159 v_d = { }
160 D_r_VRP_E2 = None
161 D_w_VRP_E1 = None
162 D_r_r = None
163 D_w_w = None
164 MIP_VRP_E2 = None
165 MIP_VRP_E1 = None
166 MIP_sched_r = None
167 MIP_sched_w = None
168 R_sched_r = None
169 F_sched_w = None
170 canal_nodes_dict = { }
171 DC = [ ]
172 wi th open ( f ’ output_water_ { s a v e_ t i t l e } _ {Ns} _ { t_lim_VRP_E2 } . t x t ’ , ’ r ’ ) as f :
173 cur ren t_va r = None
174 f o r l i n e i n f :
175 l i n e = l i n e . s t r i p ( )
176 i f l i n e . endswith ( ’ : ’ ) :
177 cur ren t_va r = l i n e [ : −1 ]
178 e l i f cu r ren t_va r i s not None :
179 par ts = l i n e . s p l i t ( ’ : ’ )
180 i f cu r ren t_va r == ’ V_id ’ :
181 V_id . append ( l i n e . s t r i p ( ) )
182 e l i f cu r ren t_va r == ’W_id ’ :
183 W_id . append ( l i n e . s t r i p ( ) )
184 e l i f cu r ren t_va r == ’ S_id ’ :
185 S_id . append ( l i n e . s t r i p ( ) )
186 e l i f cu r ren t_va r == ’R_v ’ :
187 R_v . append ( l i n e . s t r i p ( ) )
188 e l i f cu r ren t_va r == ’F ’ :
189 F . append ( l i n e . s t r i p ( ) )
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190 e l i f cu r ren t_va r == ’DC ’ :
191 DC. append ( l i n e . s t r i p ( ) )
192 e l i f cu r ren t_va r == ’D_r_VRP_E2 ’ :
193 D_r_VRP_E2 = f l o a t ( l i n e )
194 e l i f cu r ren t_va r == ’MIP_VRP_E2 ’ :
195 MIP_VRP_E2 = f l o a t ( l i n e )
196 e l i f cu r ren t_va r == ’D_w_VRP_E1 ’ :
197 D_w_VRP_E1 = f l o a t ( l i n e )
198 e l i f cu r ren t_va r == ’MIP_VRP_E1 ’ :
199 MIP_VRP_E1 = f l o a t ( l i n e )
200 e l i f cu r ren t_va r == ’D_w_VRP_E1 ’ :
201 D_w_VRP_E1 = f l o a t ( l i n e )
202 e l i f cu r ren t_va r == ’ R_sched_r ’ :
203 R_sched_r = f l o a t ( l i n e )
204 e l i f cu r ren t_va r == ’ D_r_r ’ :
205 D_r_r = f l o a t ( l i n e )
206 e l i f cu r ren t_va r == ’ MIP_sched_r ’ :
207 MIP_sched_r = f l o a t ( l i n e )
208 e l i f cu r ren t_va r == ’ F_sched_w ’ :
209 F_sched_w = f l o a t ( l i n e )
210 e l i f cu r ren t_va r == ’D_w_w ’ :
211 D_w_w = f l o a t ( l i n e )
212 e l i f cu r ren t_va r == ’MIP_sched_w ’ :
213 MIP_sched_w = f l o a t ( l i n e )
214 e l i f len ( pa r t s ) == 2:
215 key , value = par t s
216 i f cu r ren t_va r == ’LS_V ’ :
217 key , value = l i n e . s p l i t ( ’ : ’ )
218 key = key . s t r i p ( )
219 value = value . s t r i p ( )
220 LS_V [ key ] = i n t ( value )
221 e l i f cu r ren t_va r == ’ v_s ’ :
222 key , value = l i n e . s p l i t ( ’ : ’ )
223 key = key . s t r i p ( )
224 value = value . s t r i p ( )
225 v_s [ key ] = value
226 e l i f cu r ren t_va r == ’ canal_nodes_dict ’ :
227 key , value = l i n e . s p l i t ( ’ : ’ )
228 key = key . s t r i p ( )
229 value = value . s t r i p ( )
230 canal_nodes_dict [ key ] = i n t ( value )
231 e l i f cu r ren t_va r == ’ v_d ’ :
232 key , value = l i n e . s p l i t ( ’ : ’ )
233 value = value . rep lace ( ” ’ ” , ” ” )
234 v_d [ key ] = i n t ( value )
235 else :
236 key_parts = l i n e . s p l i t ( ’ ( ’ ) [ 1 ] . s p l i t ( ’ ) ’ ) [ 0 ] . s p l i t ( ’ , ’ )
237 key_parts = [ pa r t . s t r i p ( ” ’ ” ) f o r pa r t i n key_parts ]
238 i nd i ces = tup l e ( key_parts )
239 value = l i n e . s p l i t ( ’ : ’ ) [ −1 ]
240 i f cu r ren t_va r == ’X_W ’ :
241 X_W_init_wf [ i nd i ces ] = f l o a t ( value )
242 e l i f cu r ren t_va r == ’Q_W’ :
243 Q_W_init_wf [ i nd i ces ] = f l o a t ( value )
244 e l i f cu r ren t_va r == ’L_W ’ :
245 L_W_ini t_wf [ i nd i ces ] = f l o a t ( value )
246 e l i f cu r ren t_va r == ’Z_WV ’ :
247 Z_WV_init_wf [ i nd i ces ] = f l o a t ( value )
248 e l i f cu r ren t_va r == ’Y ’ :
249 Y_ in i t _w f [ i nd i ces ] = f l o a t ( value )
250 e l i f cu r ren t_va r == ’B ’ :
251 B_ in i t _w f [ i nd i ces ] = f l o a t ( value )
252 e l i f cu r ren t_va r == ’A_WV ’ :
253 A_WV_init_wf [ i nd i ces ] = f l o a t ( value )
254 e l i f cu r ren t_va r == ’A_DD ’ :
255 A_DD_init_wf [ i nd i ces ] = f l o a t ( value )
256 e l i f cu r ren t_va r == ’S ’ :
257 S_ in i t _w f [ i nd i ces ] = f l o a t ( value )
258 e l i f cu r ren t_va r == ’LS ’ :
259 LS_ in i t_wf [ i nd i ces ] = f l o a t ( value )
260 e l i f cu r ren t_va r == ’D ’ :



B.4. Scheduling Problem 162

261 D_in i t_wf [ i nd i ces ] = f l o a t ( value )
262 e l i f cu r ren t_va r == ’D_WV ’ :
263 D_WV_init_wf [ i nd i ces ] = f l o a t ( value )
264 e l i f cu r ren t_va r == ’W’ :
265 W_ini t_wf [ i nd i ces ] = f l o a t ( value )
266 e l i f cu r ren t_va r == ’P_V ’ :
267 P_V [ i nd i ces ] = f l o a t ( value )
268 e l i f cu r ren t_va r == ’Z_V ’ :
269 Z_V [ i nd i ces ] = f l o a t ( value )
270 e l i f cu r ren t_va r == ’D_T ’ :
271 D_T [ i nd i ces ] = f l o a t ( value )
272 e l i f cu r ren t_va r == ’L_V ’ :
273 L_V [ i nd i ces ] = f l o a t ( value )
274 e l i f cu r ren t_va r == ’T_V ’ :
275 T_V_in i t_wf [ i nd i ces ] = f l o a t ( value )
276 e l i f cu r ren t_va r == ’A_F ’ :
277 A_F_in i t_wf [ i nd i ces ] = f l o a t ( value )
278 e l i f cu r ren t_va r == ’T_W ’ :
279 T_W_new_init_wf [ i nd i ces ] = f l o a t ( value )
280

281 zero = [ ’ zero ’ ]
282 WV_id = W_id + V_id
283 WV0_id = zero + WV_id
284 W0_id = zero + W_id
285 V0_id = zero + V_id
286 DS_id = DC + S_id
287

288 #%%
289 # Determine c loses t DC f o r each s a t e l l i t e
290 DC_S = { }
291 f o r s i n S_id :
292 dist_DC = 999999
293 f o r dc i n DC:
294 dist_s_DC = d i s t _ f e . a t [ canal_nodes_dict [ dc ] , canal_nodes_dict [ s ] ]
295 i f dist_s_DC < dist_DC :
296 dist_DC = dist_s_DC
297 dc_s = dc
298 DC_S[ s ] = dc_s
299

300

301 S_DC = { ’DC_1 ’ : [ ] , ’DC_2 ’ : [ ] , ’DC_3 ’ : [ ] }
302

303 f o r s i n S_id :
304 dc = DC_S. get ( s )
305 i f dc i n S_DC:
306 S_DC[ dc ] . append ( s )
307

308 #%% Schedul ing t o t a l
309 p r i n t ( ’ Working on t o t a l schedul ing f o r Ns : ’ , Ns)
310 star t_sched_wr = t ime . t ime ( )
311 model = gb . Model ( ’ Schedu l ing_ to ta l ’ )
312 np . random . seed (123)
313 t ime_ l im i t = t_ l im_sched_ to ta l
314 K = 9999
315

316 X_W = X_W_init_wf
317 Q_W = Q_W_init_wf
318

319 DC_W = { }
320 f o r w in W_id :
321 f o r d i n DC:
322 f o r i i n S_id :
323 i f round ( X_W_init_wf [ i , d ,w ] ) == 1:
324 DC_W[w] = d
325

326 t o t a l _ l o ad = sum( Q_W_init_wf [ i ,w] f o r i i n S_id f o r w in W_id )
327 p r i n t ( ’Q_W’ , sum( Q_W_init_wf [ i ,w] f o r i i n S_id f o r w in W_id ) )
328

329 # Binary va r iab le , Y [ i , k , l ] = 1 i f both k and l v i s i t i
330 Y = { }
331 f o r k i n WV_id :
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332 f o r l i n WV_id :
333 f o r i i n DS_id :
334 Y[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’Y ’ )
335

336 # A r r i v a l t ime of veh i c l e r a t i
337 A_WV = { }
338 f o r i i n DS_id :
339 f o r k i n WV_id :
340 A_WV[ i , k ] = model . addVar ( l b = −500, ub = 999999 , vtype = GRB.CONTINUOUS, name = ’

A_WV ’ )
341

342 # D i f f e rence i n a r r i v a l t imes of veh i c l e
343 A_D = { }
344 f o r i i n S_id :
345 f o r k i n WV_id :
346 f o r l i n WV_id :
347 A_D[ i , k , l ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’A_D ’ )
348

349 # D i f f e rence i n a r r i v a l t imes of veh i c l e
350 A_DD = { }
351 f o r i i n S_id :
352 f o r k i n WV_id :
353 f o r l i n WV_id :
354 A_DD[ i , k , l ] = model . addVar ( l b = −999999, ub = 999999 , vtype = GRB.CONTINUOUS,

name = ’A_DD ’ )
355

356 # Customer or s a t e l l i t e i s v i s i t e d by veh i c l e r : = 1 , i f not : = 0
357 Z_WV = { }
358 f o r k i n WV_id :
359 f o r i i n DS_id :
360 Z_WV[ i , k ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_WV ’ )
361

362

363 # New
364 # Accumulated load of road veh i c l e r a t customer i
365 L_W = { }
366 f o r w in WV_id :
367 f o r i i n DS_id :
368 L_W[ i ,w] = model . addVar ( l b =0.0 , vtype = GRB.CONTINUOUS, name = ’L_W ’ )
369

370

371 # Accumulated load de l i ve red to s a t e l l i t e i by veh ic les before and i nc l ud i ng k
372 LS = { }
373 f o r i i n S_id :
374 f o r k i n WV0_id :
375 LS [ i , k ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’LS ’ )
376

377 # Number o f water veh i c les used
378 Nw = { }
379 f o r w in W_id :
380 Nw[w] = model . addVar ( vtype = GRB.BINARY, name = ’Nw ’ )
381

382 # Stock a t s a t e l l i t e i a f t e r a r r i v a l o f veh i c l e k
383 S = { }
384 f o r i i n S_id :
385 f o r k i n WV_id :
386 S[ i , k ] = model . addVar ( l b = −100, vtype = GRB. INTEGER, name = ’S ’ )
387

388 B = { }
389 f o r i i n S_id :
390 f o r k i n WV0_id :
391 f o r l i n WV0_id :
392 B[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’B ’ )
393

394 # New f o r schedul ing ! ! !
395 D_w = { }
396 f o r w in W0_id :
397 D_w[w] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’D_w ’ )
398

399

400 #T i s mat r i x per road veh i c l e r , w i th t r i p s k , l i n V0 , i f r f i r s t performs t r i p k and
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then l , T [ k , l , r ] = 1
401 T_V = { }
402 f o r r i n R_v :
403 f o r k i n V0_id :
404 f o r l i n V0_id :
405 T_V [ k , l , r ] = model . addVar ( vtype = GRB.BINARY, name = ’T_V ’ )
406

407 A_R = { }
408 f o r r i n R_v :
409 f o r v i n V0_id :
410 A_R[ v , r ] = model . addVar ( l b = −500, vtype = GRB.CONTINUOUS, name = ’A_R ’ )
411

412 N_R = { }
413 f o r r i n R_v :
414 N_R[ r ] = model . addVar ( vtype = GRB.BINARY, name = ’N_R ’ )
415

416 Z_RV = { }
417 f o r r i n R_v :
418 f o r v i n V_id :
419 Z_RV[ v , r ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_RV ’ )
420

421

422 # Schedul ing water veh i c les
423 T_W = { }
424 f o r f i n F :
425 f o r k i n W0_id :
426 f o r l i n W0_id :
427 T_W[ k , l , f ] = model . addVar ( vtype = GRB.BINARY, name = ’T_W ’ )
428

429 A_F = { }
430 f o r f i n F :
431 f o r w in W0_id :
432 A_F [w, f ] = model . addVar ( l b = −500, vtype = GRB.CONTINUOUS, name = ’A_F ’ )
433

434 N_F = { }
435 f o r f i n F :
436 N_F [ f ] = model . addVar ( vtype = GRB.BINARY, name = ’N_F ’ )
437

438 P_W = { }
439 f o r k i n W0_id :
440 f o r l i n W0_id :
441 P_W[ l , k ] = model . addVar ( l b = 0 .0 , vtype = GRB.CONTINUOUS, name = ’P_W ’ )
442

443

444 C_R = { }
445 f o r r i n R_v :
446 C_R[ r ] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’C_R ’ )
447

448 # New f o r depar ture t imes
449 D = { }
450 f o r i i n S_id :
451 f o r k i n WV0_id :
452 f o r l i n WV0_id :
453 D[ i , k , l ] = model . addVar ( vtype = GRB.BINARY, name = ’D ’ )
454

455

456 D_WV = { }
457 f o r i i n DS_id :
458 f o r k i n WV_id :
459 D_WV[ i , k ] = model . addVar ( l b = 0 .0 , ub = 999999 , vtype = GRB.CONTINUOUS, name = ’

D_WV ’ )
460

461 W = { }
462 f o r i i n DS_id :
463 f o r w in W0_id :
464 W[ i ,w] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’W’ )
465

466 D_max = { }
467 f o r l i n W_id :
468 D_max [ l ] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’D_max ’ )
469
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470 Z_FW = { }
471 f o r f i n F :
472 f o r w in W_id :
473 Z_FW[w, f ] = model . addVar ( vtype = GRB.BINARY, name = ’Z_FW ’ )
474

475 D_r = { }
476 f o r r i n R_v :
477 D_r [ r ] = model . addVar ( vtype = GRB.CONTINUOUS, name = ’ D_r ’ )
478

479

480 # Objec t i ve f unc t i on
481 model . se tOb jec t i ve (0 .01* quicksum (D_r [ r ] f o r r i n R_v ) + 400* quicksum (N_R[ r ] f o r r i n

R_v ) + 500 * quicksum (N_F [ f ] f o r f i n F ) )
482

483 model . modelSense = GRB.MINIMIZE
484 model . update ( )
485

486 # Cons t ra in ts
487 # 1. A veh i c l e never goes from i to i
488 f o r w in W_id :
489 f o r i i n DS_id :
490 f o r j i n DS_id :
491 i f i == j :
492 constr_w_1 = model . addConstr (X_W[ i , j ,w] == 0 , name= ’ Constr_1 ’ )
493

494

495 # 2. Vehic le r can only leave node i f i t a lso a r r i ved there
496 f o r w in W_id :
497 f o r i i n DS_id :
498 # i f i != j :
499 constr_w_2 = model . addConstr ( quicksum (X_W[ i , j ,w] f o r j i n DS_id ) == quicksum (

X_W[ j , i ,w] f o r j i n DS_id ) , name= ’ Constr_2 ’ )
500

501 # 3. Nodes t ha t are v i s i t e d by veh i c l e w
502 f o r w in W_id :
503 f o r i i n DS_id :
504 constr_w_3b = model . addConstr (Z_WV[ i ,w] == quicksum (X_W[ i , j ,w] f o r j i n DS_id ) ,

name= ’ Constr_3 ’ )
505

506 # 4b . Nodes t ha t are v i s i t e d by veh i c l e r
507 f o r v i n V_id :
508 f o r i i n DS_id :
509 constr_w_4c = model . addConstr (Z_WV[ i , v ] == Z_V [ i , v ] , name= ’ Constr_4 ’ )
510

511 # New
512 # 5. The demand de l i ve red to i i s zero i f veh i c l e r does not v i s i t i
513 f o r w in W_id :
514 f o r i i n DS_id :
515 constr_w_5 = model . addGenConstr Indicator (Z_WV[ i ,w] , False , Q_W[ i ,w] , GRB.EQUAL,

0 , name= ’ Constr_5 ’ )
516

517 # 6. Demand s a t i s f a c t i o n cons t r a i n t
518 f o r i i n S_id :
519 constr_w_6 = model . addConstr ( quicksum (Q_W[ i ,w] f o r w in W_id ) == LS_V [ i ] , name= ’

Constr_6 ’ )
520 constr_w_6b = model . addConstr (Q_W[ i , ’ zero ’ ] == 0 , name= ’ Constr_6b ’ )
521

522 # 7. No load i s de l i ve red to DC
523 # 8. The accumulated load at the DC i s zero
524 f o r w in W_id :
525 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
526 f o r i i n DC:
527 constr_w_7 = model . addConstr (Q_W[ i ,w] == 0 , name= ’ Constr_7 ’ )
528 constr_w_8 = model . addConstr (L_W[ i ,w] == 0 , name= ’ Constr_8 ’ )
529

530 # 8b . No load de l i ve red by road veh ic les
531 f o r v i n V_id :
532 f o r i i n DS_id :
533 constr_w_8b = model . addConstr (Q_W[ i , v ] == 0 , name= ’ Constr_8b ’ )
534 constr_w_8c = model . addConstr (L_W[ i , v ] == 0 , name= ’ Constr_8c ’ )
535
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536

537 # 9a_new . With X_W as an input , the cons t r a i n t can be r ew r i t t e n as :
538 f o r w in W_id :
539 f o r i i n DS_id :
540 f o r j i n S_id :
541 i f X_W[ i , j ,w] == 1:
542 constr_9a_new = model . addConstr (L_W[ j ,w] − L_W[ i ,w] − Q_W[ j ,w] == 0 , name

= ’ Constr_9a_new ’ )
543

544 # 9b . No L_R i f not v i s i t e d
545 f o r w in W_id :
546 f o r i i n DS_id :
547 constr_w_9b = model . addGenConstr Indicator (Z_WV[ i ,w] , False , L_W[ i ,w] , GRB.EQUAL,

0 , name= ’ Constr_9b ’ )
548

549 # New
550 # 9c . The load de l i ve red to customer i by veh i c l e r i s always less than or equal to the

accumulated load of r a t customer i :
551 f o r w in W_id :
552 f o r i i n S_id :
553 constr_w_9c = model . addConstr (Q_W[ i ,w] <= L_W[ i ,w] , name= ’ Constr_9c ’ )
554

555 # New
556 # 9d . The accumulated load of veh i c l e r a t customer i i s always less than or equal to the

maximum capac i t y o f veh i c l e r :
557 f o r w in W_id :
558 f o r i i n S_id :
559 constr_w_9d = model . addConstr ( L_W[ i ,w] <= capac i ty_ fe , name= ’ Constr_9d ’ )
560

561 # # A r r i v a l t ime cons t r a i n t s :
562

563 # 10_new . With X_W as inpu t
564 f o r w in W_id :
565 f o r i i n DS_id :
566 f o r j i n S_id :
567 i f X_W[ i , j ,w] == 1:
568 constr_10_new = model . addConstr (A_WV[ j ,w] − A_WV[ i ,w] − d i s t _ f e . a t [

canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] / ( speed_fe * 60) − W[ i ,w] − Q_W[ i ,w] * 0.2 >=
0 , name= ’ Constr_10_new ’ )

569

570

571 f o r w in W_id :
572 f o r j i n S_id :
573 DC = DC i f i s i n s t ance (DC, l i s t ) e lse [DC]
574 f o r i i n DC:
575 i f X_W[ i , j ,w] == 1:
576 constr_t ime_10b = model . addConstr (A_WV[ j , w] − A_WV[ i , w] − d i s t _ f e . a t [

canal_nodes_dict [ i ] , canal_nodes_dict [ j ] ] / ( speed_fe * 60) − serv ice_ t ime_fe / 60 == 0 ,
name= ’ Constr_10b ’ )

577

578 # 11. Binary va r i ab l e Y [ i , k , l ] i s one i f both k and l v i s i t i
579 f o r i i n S_id :
580 f o r k i n WV_id :
581 f o r l i n WV_id :
582 i f k != l :
583 constr_Y_11 = model . addConstr (Y [ i , k , l ] == gb . and_ (Z_WV[ i , k ] , Z_WV[ i , l ] ) ,

name= ’ Constr_11 ’ )
584

585

586 # 12. A r r i v a l t imes of veh i c les a t s a t e l l i t e s cannot be the same
587 f o r i i n S_id :
588 f o r k i n WV_id :
589 f o r l i n WV_id :
590 constr_t ime_12a = model . addConstr (A_DD[ i , k , l ] == A_WV[ i , k ] − A_WV[ i , l ] , name=

’ Constr_12a ’ )
591 constr_t ime_12b = model . addConstr (A_D[ i , k , l ] == gb . abs_ (A_DD[ i , k , l ] ) , name= ’

Constr_12b ’ )
592

593

594 # 13a . A r r i v a l t imes of road veh ic les a t s a t e l l i t e s cannot be the same
595 f o r i i n S_id :
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596 f o r k i n V_id :
597 f o r l i n V_id :
598 i f k != l :
599 constr_t ime_13a = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_D[ i , k , l ] ,

GRB.GREATER_EQUAL, t ranssh ip_s , name= ’ Constr_13a ’ ) #180)
600 constr_t ime_13a_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13a_1 ’ )
601

602 # 13b . A r r i v a l t imes of a water veh i c les i s l a t e r than the depar ture t ime of another
water veh i c l e

603 f o r i i n S_id :
604 f o r k i n W_id :
605 f o r l i n W_id :
606 i f k != l :
607 constr_t ime_13b = model . addGenConstr Indicator (B [ i , k , l ] , True , A_WV[ i , k ] −

D_WV[ i , l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13b ’ ) #600)
608 constr_t ime_13b_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13b_1 ’ )
609

610

611 # 13b . A r r i v a l t imes of water and road veh ic les a t s a t e l l i t e s cannot be the same
612 f o r i i n S_id :
613 f o r k i n W_id :
614 f o r l i n V_id :
615 i f k != l :
616 constr_t ime_13c = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_D[ i , k , l ] ,

GRB.GREATER_EQUAL, 0.01 , name= ’ Constr_13c ’ ) #600)
617 constr_t ime_13c_1 = model . addGenConstr Indicator (Y [ i , k , l ] , False , A_D[ i , k ,

l ] , GRB.GREATER_EQUAL, 0 , name= ’ Constr_13c_1 ’ )
618

619 #13c . A r r i v a l t imes at s a t e l l i t e s cannot be l a t e r than the maximum time span
620 f o r i i n S_id :
621 f o r k i n WV_id :
622 constr_t ime_13d = model . addConstr (D_WV[ i , k ] <= time_span , name= ’ Constr_13d ’ )
623

624

625 # 14. A r r i v a l t ime i s i n f i n i t e i f a veh i c l e does not v i s i t s a t e l l i t e i
626 f o r i i n S_id :
627 f o r k i n WV_id :
628 constr_t ime_14 = model . addGenConstr Indicator (Z_WV[ i , k ] , False , A_WV[ i , k ] , GRB.

EQUAL, 0 , name = ’ Constr_14 ’ )
629

630 # # S a t e l l i t e synchron isa t ion cons t r a i n t s :
631

632 # 15. Binary va r i ab l e = 1 i f veh i c l e k a r r i v e s a t the same t ime or a f t e r veh i c l e l
633 f o r i i n S_id :
634 f o r k i n WV_id :
635 constr_binary_150 = model . addGenConstr Indicator (Z_WV[ i , k ] , True , B [ i , k , ’ zero ’ ] ,

GRB.EQUAL, 1 , name = ’ Constr_150 ’ )
636 f o r l i n WV_id :
637 constr_binary_15a = model . addGenConstr Indicator (Y [ i , k , l ] , True , A_WV[ i , k ] − K

* B[ i , k , l ] − A_WV[ i , l ] , GRB.LESS_EQUAL, 0 , name = ’ Constr_15a ’ )
638 constr_binary_15b = model . addGenConstr Indicator (Y [ i , k , l ] , True , B [ i , k , l ] + B [

i , l , k ] , GRB.EQUAL, 1 , name = ’ Constr_15b ’ )
639 const r_b inary_15c = model . addConstr (B [ i , k , l ] + B [ i , l , k ] <= 1 , name = ’

Constr_15c ’ )
640 constr_binary_15d = model . addGenConstr Indicator (Z_WV[ i , k ] , False , B [ i , k , l ] ,

GRB.EQUAL, 0 , name = ’ Constr_15d ’ )
641 constr_binary_15e = model . addGenConstr Indicator (Z_WV[ i , k ] , False , B [ i , l , k ] ,

GRB.EQUAL, 0 , name = ’ Constr_15e ’ )
642

643 # 16. Load de l i ve red to s a t e l l i t e i by a l l veh i c les before k and k
644 f o r i i n S_id :
645 f o r k i n WV0_id :
646 f o r l i n WV0_id :
647 constr_load_16a = model . addGenConstr Indicator (B [ i , k , l ] , True , LS [ i , k ] −

LS [ i , l ] − Q_W[ i , k ] , GRB.GREATER_EQUAL,0 , name = ’ Constr_load_16a ’ )
648

649 f o r i i n S_id :
650 f o r k i n WV_id :
651 constr_load_16b = model . addConstr (LS [ i , k ] <= quicksum (Q_W[ i ,w] f o r w in W_id ) ,
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name = ’ Constr_load_16b ’ )
652 constr_ load_16c = model . addGenConstr Indicator (Z_WV[ i , k ] , False , LS [ i , k ] , GRB.

EQUAL, 0 , name = ’ Constr_load_16c ’ )
653

654 # 17. New Stock a t s a t e l l i t e s cons t r a i n t s
655 f o r i i n S_id :
656 f o r k i n WV_id :
657 # f o r l i n WV_id :
658 constr_stock_17a = model . addGenConstr Indicator (Z_WV[ i , k ] , True , S [ i , k ] +

quicksum (L_V [ i , l ] * B[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.EQUAL, 0 , name = ’
Constr_stock_17a ’ )

659

660 f o r i i n S_id :
661 f o r k i n WV_id :
662 constr_stock_17b = model . addConstr (S [ i , k ] >= 0 , name = ’ Constr_stock_17b ’ )
663 constr_stock_17c = model . addConstr (S [ i , k ] <= capac i ty_s [ i ] + capac i ty_ fe , name =

’ Constr_stock_17c ’ )
664

665 f o r w in W_id :
666 constr_water_km = model . addConstr (D_w[w] == quicksum ( d i s t _ f e . a t [ canal_nodes_dict [ i ] ,

canal_nodes_dict [ j ] ] * X_W[ i , j ,w] f o r i i n DS_id f o r j i n DS_id ) , name = ’ Constr_water_km
’ )

667

668

669 f o r w in W_id :
670 f o r i i n S_id :
671 constr_Nw = model . addGenConstr Indicator (Z_WV[ i ,w] , True , Nw[w] , GRB.EQUAL, 1 ,

name = ’ Constr_Nw ’ )
672

673 # New f o r schedul ing
674

675 # Each veh i c l e r can only leave the depot once
676 f o r r i n R_v :
677 cons t r_18f = model . addConstr ( quicksum (T_V [ ’ zero ’ , k , r ] f o r k i n V0_id ) <= 1 , name = ’

Constr_18f ’ )
678

679 # Each t r i p i s performed once
680 f o r k i n V_id :
681 constr_18b = model . addConstr ( quicksum (T_V [ l , k , r ] f o r l i n V0_id f o r r i n R_v ) == 1 ,

name = ’ Constr_18b ’ )
682

683 # Tr i p k can be performed by veh i c l e r i f the s t a r t t ime of t r i p k i s l a t e r than the end
t ime of t r i p l

684 f o r r i n R_v :
685 f o r k i n V_id :
686 f o r l i n V0_id :
687 constr_18c = model . addGenConstr Indicator (T_V [ l , k , r ] , True , A_R[ k , r ] − A_R[ l , r

] − P_V [ l , k ] , GRB.GREATER_EQUAL, 0 , name = ’ Constr_18c ’ )
688

689 # A t r i p can never be performed a f t e r i t s e l f
690 f o r r i n R_v :
691 f o r l i n V0_id :
692 constr_18d = model . addConstr (T_V [ l , l , r ] == 0 , name = ’ Constr_18d ’ )
693

694 # Vehic le r can only end t r i p l i f i t a lso s t a r t ed i t
695 f o r r i n R_v :
696 f o r l i n V0_id :
697 # i f i != j :
698 constr_18e = model . addConstr ( quicksum (T_V [ l , k , r ] f o r k i n V0_id ) == quicksum (

T_V [ k , l , r ] f o r k i n V0_id ) , name = ’ Constr_18e ’ )
699

700

701 # Number o f road veh ic les used
702 f o r r i n R_v :
703 f o r k i n V_id :
704 constr_19 = model . addGenConstr Indicator (T_V [ ’ zero ’ , k , r ] , True , N_R[ r ] , GRB.EQUAL,

1 , name = ’ Constr_19 ’ )
705

706 # Z_RV = 1 i f r performs t r i p v
707 f o r k i n V_id :
708 f o r r i n R_v :
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709 constr_20a = model . addConstr (Z_RV[ k , r ] == quicksum (T_V [ l , k , r ] f o r l i n V0_id ) ,
name = ’ Constr_20a ’ )

710

711 # Set A_R to zero i f r does not perform t r i p
712 f o r v i n V_id :
713 f o r r i n R_v :
714 constr_20b = model . addGenConstr Indicator (Z_RV[ v , r ] , False , A_R[ v , r ] , GRB.EQUAL,

0 , name = ’ Constr_20b ’ )
715

716 # Connect A_R wi th A_WV
717 f o r v i n V_id :
718 constr_20c = model . addConstr (A_WV[ v_s [ v ] , v ] == quicksum (A_R[ v , r ] f o r r i n R_v ) , name

= ’ Constr_20c ’ )
719

720 # Completion t ime f o r veh i c l e r i s the s t a r t t ime of the l a s t t r i p + the t ime to perform
the l a s t t r i p

721 f o r r i n R_v :
722 f o r v i n V_id :
723 constr_20d = model . addGenConstr Indicator (T_V [ v , ’ zero ’ , r ] , True , C_R[ r ] − A_R[ v , r ]

− P_V [ v , ’ zero ’ ] , GRB.EQUAL, 0 , name = ’ Constr_20d ’ )
724

725

726 f o r k i n WV_id :
727 f o r i i n S_id :
728 constr_t ime_span = model . addConstr (A_WV[ i , k ] >= 0 , name = ’ constr_t ime_span ’ )
729

730 # Each veh i c l e f can only leave the depot once
731 f o r f i n F :
732 cons t r_22f = model . addConstr ( quicksum (T_W[ ’ zero ’ , k , f ] f o r k i n W_id ) <= 1 , name = ’

Constr_22f ’ )
733

734 # Each t r i p i s performed once
735 f o r k i n W_id :
736 constr_22b = model . addConstr ( quicksum (T_W[ l , k , f ] f o r l i n W0_id f o r f i n F ) == 1 ,

name = ’ Constr_22b ’ )
737

738 #A vessel can only perform t r i p s i n the same neighbourhood :
739 f o r f i n F :
740 f o r k i n W_id :
741 depot_k = DC_W[ k ]
742 f o r l i n W_id :
743 i f DC_W[ l ] != depot_k :
744 const r_neighbour = model . addGenConstr Indicator (Z_FW[ k , f ] , True , Z_FW[ l , f

] , GRB.EQUAL, 0 , name = ’ Constr_neighbour ’ )
745 constr_neighbour_b = model . addGenConstr Indicator (Z_FW[ k , f ] , True , T_W[ l , k

, f ] + T_W[ k , l , f ] , GRB.EQUAL, 0 , name = ’ Constr_neighbour_b ’ )
746

747

748 # Z_FW = 1 i f f performs t r i p w
749 f o r k i n W_id :
750 f o r f i n F :
751 constr_22b_1 = model . addConstr (Z_FW[ k , f ] == quicksum (T_W[ l , k , f ] f o r l i n W0_id ) ,

name = ’ Constr_22b_1 ’ )
752

753 f o r f i n F :
754 f o r l i n W_id :
755 constr_22b_2 = model . addGenConstr Indicator (Z_FW[ l , f ] , True , quicksum (T_W[ ’ zero ’ , k

, f ] f o r k i n W_id ) , GRB.EQUAL, 1)
756

757 f o r l i n W_id :
758 model . addConstr (D_max [ l ] == gb .max_(D_WV[ i , l ] f o r i i n S_id ) ) # gb .max_(D_WV[ i , l ] f o r

i i n S_id )
759

760 # New: T r i p k can be performed by veh i c l e f i f the s t a r t t ime of t r i p k i s l a t e r than the
end of t r i p l

761 f o r f i n F :
762 f o r k i n W_id :
763 f o r l i n W_id :
764 constr_22c_new = model . addGenConstr Indicator (T_W[ l , k , f ] , True , A_F [ k , f ] −

D_max [ l ] − quicksum (X_W[ i , d , l ] * d i s t _ f e . a t [ canal_nodes_dict [ i ] , canal_nodes_dict [ d ] ] f o r
i i n S_id f o r d i n DC) / ( speed_fe * 60) , GRB.GREATER_EQUAL, 0 , name = ’ Constr_22c_new ’ )
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765

766 # A t r i p can never be performed a f t e r i t s e l f
767 f o r f i n F :
768 f o r l i n W0_id :
769 constr_22d = model . addConstr (T_W[ l , l , f ] == 0 , name = ’ Constr_22d ’ )
770

771 # Vehic le f can only end t r i p l i f i t a lso s t a r t ed i t
772 f o r f i n F :
773 f o r l i n W0_id :
774 # i f i != j :
775 constr_22e = model . addConstr ( quicksum (T_W[ l , k , f ] f o r k i n W0_id ) == quicksum (

T_W[ k , l , f ] f o r k i n W0_id ) , name = ’ Constr_22e ’ )
776

777 # Number o f water veh i c les used
778 f o r f i n F :
779 f o r k i n W_id :
780 constr_23 = model . addGenConstr Indicator (T_W[ ’ zero ’ , k , f ] , True , N_F [ f ] , GRB.EQUAL,

1 , name = ’ Constr_23 ’ )
781

782

783 # New f o r mu l t i p l e depots water veh i c les :
784 # Connect A_F wi th A_WV
785 f o r w in W_id :
786 constr_24 = model . addConstr (A_WV[DC_W[w] ,w] == quicksum ( quicksum (T_W[ k ,w, f ] f o r k i n

W0_id ) * A_F [w, f ] f o r f i n F ) , name = ’ Constr_24 ’ )
787

788 # New f o r depar ture t imes
789 f o r i i n S_id :
790 f o r v i n V_id :
791 const r_depar ture_1 = model . addGenConstr Indicator (Z_WV[ i , v ] , True , D_WV[ i , v ] −

A_WV[ i , v ] − t ranssh ip_s / 60 , GRB.EQUAL, 0 , name = ’ constr_dep_1 ’ )
792 f o r w in W_id :
793 const r_depar ture_2 = model . addGenConstr Indicator (Z_WV[ i ,w] , True , D_WV[ i ,w] −

A_WV[ i ,w] − W[ i ,w] − Q_W[ i ,w] * 0.2 , GRB.EQUAL, 0 , name = ’ constr_dep_2 ’ )
794

795

796 f o r i i n S_id :
797 f o r k i n V0_id :
798 f o r l i n V0_id :
799 const r_depar ture_3 = model . addGenConstr Indicator (B [ i , k , l ] , True , D[ i , k , l ] ,

GRB.EQUAL, 1 , name = ’ constr_dep_3 ’ )
800 f o r k i n W0_id :
801 f o r l i n W0_id :
802 const r_depar ture_4 = model . addGenConstr Indicator (B [ i , k , l ] , True , D[ i , k , l ] ,

GRB.EQUAL, 1 , name = ’ constr_dep_4 ’ )
803

804 f o r k i n WV_id :
805 const r_depar ture_8 = model . addGenConstr Indicator (Z_WV[ i , k ] , False , quicksum (D[ i

, k , l ] f o r l i n WV_id ) + quicksum (D[ i , l , k ] f o r l i n WV_id ) , GRB.EQUAL, 0 , name = ’
constr_dep_8 ’ )

806 f o r l i n WV_id :
807 const r_depar ture_5 = model . addGenConstr Indicator (Y [ i , k , l ] , True , D_WV[ i , k ] −

K* D[ i , k , l ] − D_WV[ i , l ] , GRB.LESS_EQUAL, 0 , name = ’ constr_dep_5 ’ )
808 const r_depar ture_6 = model . addGenConstr Indicator (Y [ i , k , l ] , True , D[ i , k , l ] + D

[ i , l , k ] , GRB.EQUAL, 1 , name = ’ constr_dep_6 ’ )
809

810 f o r i i n S_id :
811 f o r k i n W_id :
812 const r_depar ture_7 = model . addGenConstr Indicator (Z_WV[ i , k ] , True , quicksum (L_V [ i

, l ] * D[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.LESS_EQUAL, 0 , name = ’
constr_dep_7 ’ )

813 constr_departure_7_b = model . addGenConstr Indicator (Z_WV[ i , k ] , True , quicksum (L_V
[ i , l ] * D[ i , k , l ] f o r l i n V_id ) + L_V [ i , k ] − LS [ i , k ] , GRB.GREATER_EQUAL, − capac i ty_s [ i ] ,
name = ’ constr_dep_7_b ’ )

814

815 # New new
816 # Distance on the road per veh i c l e
817 f o r r i n R_v :
818 cons t r_d is tance_r = model . addConstr ( D_r [ r ] == quicksum (T_V [ l , k , r ] * D_T [ l , k ] f o r l i n

V0_id f o r k i n V0_id ) )
819
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820

821 f o r ( i ,w) , value i n L_W_ini t_wf . i tems ( ) :
822 L_W[ i ,w ] . s t a r t = value
823

824 f o r ( i ,w) , value i n Z_WV_init_wf . i tems ( ) :
825 Z_WV[ i ,w ] . s t a r t = value
826

827 f o r ( i , k , l ) , value i n Y_ in i t _w f . i tems ( ) :
828 Y[ i , k , l ] . s t a r t = value
829

830 f o r ( i , k , l ) , value i n B_ in i t _w f . i tems ( ) :
831 B[ i , k , l ] . s t a r t = value
832

833 f o r ( i , k ) , value i n A_WV_init_wf . i tems ( ) :
834 A_WV[ i , k ] . s t a r t = value
835

836 f o r ( i ,w) , value i n S_ in i t _w f . i tems ( ) :
837 S[ i ,w ] . s t a r t = value
838

839 f o r ( i , k ) , value i n LS_ in i t_wf . i tems ( ) :
840 LS [ i , k ] . s t a r t = value
841

842 f o r ( i , k , l ) , value i n T_V_in i t_wf . i tems ( ) :
843 i f k i n V0_id :
844 i f i i n V0_id :
845 i f l i n R_v :
846 T_V [ i , k , l ] . s t a r t = value
847

848 f o r ( i , k , l ) , value i n T_W_new_init_wf . i tems ( ) :
849 T_W[ i , k , l ] . s t a r t = value
850

851 f o r ( i , k , l ) , value i n D_ in i t_wf . i tems ( ) :
852 D[ i , k , l ] . s t a r t = value
853

854 f o r ( i , k ) , value i n D_WV_init_wf . i tems ( ) :
855 D_WV[ i , k ] . s t a r t = value
856

857 f o r ( i , k ) , value i n W_in i t_wf . i tems ( ) :
858 W[ i , k ] . s t a r t = value
859

860 model . update ( )
861

862 p r i n t ( ” s t a r t op t im i z i ng ” )
863 model . setParam ( ’ OutputFlag ’ , True )
864 model . setParam ( ’MIPGap ’ , mip_sched_t )
865 model . setParam ( ’ F e a s i b i l i t y T o l ’ , 1e−3)
866 model . setParam ( ’MIPFocus ’ , 1)
867 model . setParam ( ’SubMIPNodes ’ , 20000)
868 model . setParam ( ’ SoftMemLimit ’ , 120)
869 model . setParam ( ’Seed ’ , 123)
870 i f t i me_ l im i t :
871 model . setParam ( ’ T ime l im i t ’ , t ime_ l im i t )
872 model . _obj = None
873 model . _bd = None
874 model . _obj_value = [ ]
875 model . _t ime = [ ]
876 model . _ s t a r t = t ime . t ime ( )
877 model . op t im ize ( )
878 mip_gap_tota l = model .MIPGap
879 end_sched_wr = t ime . t ime ( )
880 t ime_sched_wr = end_sched_wr − star t_sched_wr
881

882

883 #%% Save so l u t i ons t o t a l schedul ing
884 road_km_R_wr = { }
885 to ta l_road_km = 0
886 f o r r i n R_v :
887 save_road_km = 0
888 f o r l i n V0_id :
889 f o r k i n V0_id :
890 i f T_V [ l , k , r ] . X == 1:
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891 save_road_km += D_T [ l , k ]
892 tota l_road_km += D_T [ l , k ]
893 road_km_R_wr [ r ] = save_road_km
894

895 road_km_wr = tota l_road_km
896

897

898 water_km_wr = 0
899 f o r w in W_id :
900 water_km_wr += D_w[w ] . X
901

902 r_used = 0
903 R_f i na l = [ ]
904 f o r r i n R_v :
905 i f N_R[ r ] . X == 1:
906 r_used += 1
907 R_f i na l . append ( r )
908 p r i n t ( r_used )
909 Nr_R_wr = r_used
910 p r i n t ( ’ d is tance on the roads wr : ’ , road_km_wr , ’ d is tance on the waterways wr : ’ ,

water_km_wr )
911 f_used = 0
912 F_ f i n a l = [ ]
913 f o r f i n F :
914 i f N_F [ f ] . X == 1:
915 f_used += 1
916 F_ f i n a l . append ( f )
917 p r i n t ( f_used )
918 Nr_F_wr = f_used
919

920 W_used_wr = [ ]
921 f o r w in W_id :
922 w_v i s i t s = 0
923 f o r i i n S_id :
924 i f Z_WV[ i ,w ] . X == 1:
925 w_v i s i t s += 1
926 i f w_v i s i t s >= 1:
927 W_used_wr . append (w)
928 Nr_w_wr = len (W_used_wr )
929 #%%
930 max_complete = 0
931 f o r r i n R_v :
932 f o r k i n V0_id :
933 f o r l i n V0_id :
934 i f T_V [ l , k , r ] . X == 1:
935 i f C_R[ r ] . X > max_complete :
936 max_complete = C_R[ r ] . X
937

938 max_start_R_wr = max_complete
939

940 max_start = 0
941 f o r f i n F :
942 f o r w in W_id :
943 i f A_F [w, f ] . X > max_start :
944 max_start = A_F [w, f ] . X
945 max_start_F_wr = max_start
946

947 N_s . append ( t_lim_VRP_E2 )
948

949 r e s u l t s . append ( { ’ road_km_wr ’ : road_km_wr ,
950 ’ water_km_wr ’ : water_km_wr ,
951 ’ Nr_R_wr ’ : Nr_R_wr ,
952 ’ Nr_F_wr ’ : Nr_F_wr ,
953 ’MIP_VRP_E2 ’ : MIP_VRP_E2 ,
954 ’MIP_VRP_E1 ’ : MIP_VRP_E1 ,
955 ’ MIP_sched_r ’ : MIP_sched_r ,
956 ’MIP_sched_w ’ : MIP_sched_w ,
957 ’ MIP_sched_wr ’ : mip_gap_total ,
958 ’D_r_VRP_E2 ’ : D_r_VRP_E2 ,
959 ’ D_r_r ’ : D_r_r ,
960 ’D_w_VRP_E1 ’ : D_w_VRP_E1,
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961 ’D_w_w ’ : D_w_w,
962 ’ Nr_R_r ’ : R_sched_r ,
963 ’Nr_F_w ’ : F_sched_w ,
964 ’ Nr_w_wr ’ : Nr_w_wr ,
965 ’ t ime_sched_wr ’ : time_sched_wr ,
966 ’ max_complete_R_wr ’ : max_start_R_wr , ’ max_start_F_wr ’ : max_start_F_wr } )
967 p r i n t ( r e s u l t s )
968

969 X_W_final = X_W
970 Y_ f i na l = model . g e tA t t r ( ’X ’ , Y)
971 A_WV_final = model . g e tA t t r ( ’X ’ , A_WV)
972 A_D_f inal = model . g e tA t t r ( ’X ’ , A_D)
973 A_DD_final = model . g e tA t t r ( ’X ’ , A_DD)
974 Q_W_final = Q_W
975 Z_WV_final = model . g e tA t t r ( ’X ’ , Z_WV)
976 L_W_final = model . g e tA t t r ( ’X ’ , L_W)
977 LS_ f ina l = model . g e tA t t r ( ’X ’ , LS)
978 S_ f i na l = model . g e tA t t r ( ’X ’ , S)
979 B_ f i na l = model . g e tA t t r ( ’X ’ , B)
980 A_F_f ina l = model . g e tA t t r ( ’X ’ , A_F)
981 T_W_final = model . g e tA t t r ( ’X ’ , T_W)
982 T_V_f ina l = model . g e tA t t r ( ’X ’ , T_V)
983 D_f i na l = model . g e tA t t r ( ’X ’ , D)
984 D_WV_final = model . g e tA t t r ( ’X ’ , D_WV)
985 W_final = model . g e tA t t r ( ’X ’ , W)
986 wi th open ( f ’ ou t pu t _ t o t a l _ { s a v e_ t i t l e } _ {Ns} _ { t_lim_VRP_E2 } . t x t ’ , ’w ’ ) as f :
987 f o r var_name , var_values i n [
988 ( ’X_W ’ , X_W_final ) ,
989 ( ’Y ’ , Y_ f i na l ) ,
990 ( ’A_WV ’ , A_WV_final ) ,
991 ( ’A_D ’ , A_D_f inal ) ,
992 ( ’A_DD ’ , A_DD_final ) ,
993 ( ’Q_W’ , Q_W_final ) ,
994 ( ’Z_WV ’ , Z_WV_final ) ,
995 ( ’L_W ’ , L_W_final ) ,
996 ( ’LS ’ , LS_ f i na l ) ,
997 ( ’S ’ , S_ f i na l ) ,
998 ( ’B ’ , B_ f i na l ) ,
999 ( ’D ’ , D_ f i na l ) ,
1000 ( ’D_WV ’ , D_WV_final ) ,
1001 ( ’W’ , W_f inal ) ,
1002 ( ’T_V ’ , T_V_f ina l ) ,
1003 ( ’A_F ’ , A_F_f ina l ) ,
1004 ( ’T_W ’ , T_W_final ) ,
1005 ( ’P_V ’ , P_V) ,
1006 ( ’ L_V ’ , L_V ) ,
1007 ( ’LS_V ’ , LS_V) ,
1008 ( ’Z_V ’ , Z_V) ,
1009 ( ’ v_s ’ , v_s ) ,
1010 ( ’ L_V ’ , L_V ) ,
1011 ( ’D_T ’ , D_T) ,
1012 ( ’ canal_nodes_dict ’ , canal_nodes_dict )
1013 ] :
1014 f . w r i t e ( f ’ { var_name } : \ n ’ )
1015 f o r key , value i n var_values . i tems ( ) :
1016 i f i s i n s t ance ( value , gb . LinExpr ) :
1017 value = value . getValue ( )
1018 f . w r i t e ( f ’ { key } : { value } \ n ’ )
1019 f . w r i t e ( ’ V_id : \ n ’ )
1020 f o r v i n V_id :
1021 f . w r i t e ( f ’ { v } \ n ’ )
1022 f . w r i t e ( ’W_id : \ n ’ )
1023 f o r w in W_id :
1024 f . w r i t e ( f ’ {w } \ n ’ )
1025 f . w r i t e ( ’ S_id : \ n ’ )
1026 f o r s i n S_id :
1027 f . w r i t e ( f ’ { s } \ n ’ )
1028 f . w r i t e ( ’ R_ f i na l : \ n ’ )
1029 f o r r i n R_ f i na l :
1030 f . w r i t e ( f ’ { r } \ n ’ )
1031 f . w r i t e ( ’ F_ f i n a l : \ n ’ )
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1032 f o r k i n F_ f i n a l :
1033 f . w r i t e ( f ’ { k } \ n ’ )
1034 p r i n t ( ’F i s w r i t t e n ’ )
1035 f . w r i t e ( ’DC: \ n ’ )
1036 f o r d i n DC:
1037 f . w r i t e ( f ’ { d } \ n ’ )
1038 #%%
1039 resul ts_NS = pd . DataFrame ( resu l t s , index = N_s )
1040 p r i n t ( resul ts_NS )
1041 wi th pd . Exce lWr i te r ( path_out + ’ Resu l t s_ fu l l _ s t o rage . x l sx ’ , engine = ’ openpyxl ’ ,mode = ’ a ’ )

as w r i t e r :
1042

1043 resul ts_NS . to_exce l ( w r i t e r , sheet_name = f ’ F ina l_ { s a v e_ t i t l e } _ {Ns} ’ )
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