
 

An Experimental Evaluation of 

Auto-scaling Techniques for 

Distributed Stream Processing 

Systems 

J.B. Kanis 





An Experimental Evaluation of
Auto-scaling Techniques for

Distributed Stream Processing
Systems

by

J. B. Kanis

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on March 28, 2023 at 15:30 PM.

Student number: 4719808
Project duration: April 20, 2022 – March 28, 2023
Thesis committee: Dr. A. Katsifodimos, TU Delft, supervisor

Dr. J.E.A.P. Decouchant, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Abstract

The introduction of cloud hosting has made it possible to elastically provision distributed stream pro-
cessing systems (SPEs). By dynamically scaling the different operators of the system, resource con-
sumption can be minimised while meeting the system service-level objectives. In the literature, many
different auto-scaling techniques are proposed that make scaling decisions based on the current state of
the system. However, these techniques are poorly evaluated and are rarely compared with each other.
This makes it difficult to determine the state-of-the-art for auto-scaling techniques targeting SPEs, which
slows down its development. In this paper, we design and implement a modular framework to evaluate
the performance of state-of-the-art auto-scalers targeting SPEs. We implement state-of-the-art auto-
scalers Dhalion [18], DS2 [36], and Varga et al. [66], using Kubernetes horizontal pod auto-scaler [38]
as baseline. We perform an end-to-end experimental evaluation of the auto-scalers and investigate
their performance when run on different queries and workload patterns. Furthermore, we investigate
the convergence time of the auto-scalers and evaluate their scaling accuracy. The results emphasise
the difficulty of capturing the complex relationships of different operators and the struggle to balance
resource efficiency and the performance of the system. Moreover, it shows the inherent weakness of
reactive auto-scalers to react slowly to changing workloads and reveals the importance of considering
the current health of the system when issuing scaling actions.
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1
Introduction

With the increase in available data on the web, more and more applications require data to be pro-
cessed in an online fashion. As data streams are infinite, have non-static arrival rates, and require
on-demand processing, additional challenges are brought to the field of data processing. While the
first stream-processing engines were designed to run only on individual servers, the increase in data
availability combined with the need for fast and real-time results has made distributed processing es-
sential. As a result, stream processing has shifted towards distributed stream processing. Popular
Stream Processing Engines (SPEs), such as Apache Flink [15], Apache Storm [62], or Apache Heron
[30] do not only support parallel stream computations but also support deploying stream processing
operators in elastic cloud environments.

This brings additional challenges in terms of providing adequate resources for SPEs. Traditionally,
static provisioning required the user to reserve resources before the application’s deployment, forcing
the users to rent the number of resources required for peak traffic to meet the system’s service-level
objectives (SLOs). This results in the system being over-provisioned most of the time, inducing sig-
nificant overhead costs for users. With the emergence of cloud-computing technology, the process of
acquiring and releasing resources has been simplified, allowing for elastic provisioning of resources
and renting resources on-demand [45]. By reducing the number of resources used by the application
in low traffic and increasing the number of resources in peak traffic, users can use the resources more
efficiently, reducing resource costs and energy consumption while meeting the system’s SLOs.

However, acquiring and releasing resources on demand is a complex task that requires constant mon-
itoring of the application. Appropriate scaling decisions should be made that take the health of the
system, the current and expected workload, and the complex relationships between different parts of
the system into consideration. Moreover, as scaling actions can be costly and take time to execute,
inaccurate decisions can induce significant overhead, leaving the system in an undesirable state for a
long time. Manual execution of this task is time-consuming, expensive, and requires extensive knowl-
edge of the application. Because of this, the process is often performed by automated systems that
are put in charge of making scaling decisions. These systems are referred to as auto-scalers.

In the literature, many different auto-scalers are proposed for the dynamic scaling of SPEs. As SPEs
deal with high workload fluctuations, complex relationships between their operators and high scaling
overhead, elastic provisioning of SPEs is a difficult challenge. Auto-scalers attempt to solve this prob-
lem by making use of various techniques like control-theory [36], queue theory [20], or reinforcement
learning [44, 12]. While these auto-scalers are well designed and depend on well-established theoreti-
cal frameworks, they lack proper evaluation of their performance. Additionally, evaluation experiments
often require only a few scaling actions and are run over simple workload patterns for a short amount
of time. An overview of the evaluation benchmarks and their comparison with different auto-scalers is
presented in table 1.1. As shown, experiments are performed over many different data sets and are
rarely compared with other auto-scalers. This makes it difficult to determine the current state-of-the-art
for auto-scaler for SPEs and slows down the development of these solutions.
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2 1. Introduction

Paper Year Dataset Autoscaler
Comparison

DRS [19, 20] 2017 Pattern detection over video and micro-blogs No
Hidalgo et al. [31] 2017 Processing of a Twitter- and news stream No

Liu et al. [41] 2017 Sentiment analysis, 2-stage word count topology Stela [67],
Heinze et al. [27]

Lombardi et al. [43] 2017 Twitter dataset real-world and syntactic No
Dhalion [18] 2017 2-stage word count topology No
Elastic-PPQ [48] 2018 DEBS 2013 non-burstiness & bursty workloads No
Cardellini et al. [8] 2018 Query from DEBS 2015 grand challenge No
DS2 [36] 2018 2-stage word count topology Dhalion
Doan et al. [12] 2020 Clarcknet Traces [63] Arabnejad et al. [3]
Varga et al. [66] 2021 A keyed processing function over generated data No

Table 1.1: Summary of evaluation methods of recent proposals for auto-scalers for SPEs. The table shows the use of diverse
datasets for the evaluation of auto-scalers and a general lack of proper performance comparisons between auto-scalers.

In this work, we design and implement a framework for evaluating the performance of auto-scalers for
SPEs. We implement the framework for Apache Flink [15] and deploy the framework in Kubernetes
[38]. Using this framework, we implement and evaluate state-of-the-art auto-scalers Dhalion [18], DS2
[36], and Varga et al. [66]. As a baseline, we use Kubernetes’ built-in general-purpose Horizontal Pod
Auto-scaler (HPA) [38]. In this evaluation, we compare the performance of the auto-scalers when run
on top of different operator topologies and different workloads. We investigate the time the auto-scalers
need to find the optimal parallelism configuration and analyse the performance of the auto-scalers when
run with different configurations.

In this work we make the following contributions:

• We provide an overview of state-of-the-art auto-scaling solutions for SPEs and provide an exten-
sive analysis of their evaluation methods.

• We distinguish five categories of experiments used for the evaluation of auto-scaling solutions for
SPEs and investigate common metrics used for the comparison of their performance.

• We tackle the shortcomings of state-of-the-art evaluationmethods for auto-scalers targeting SPEs
and design a modular framework for the end-to-end evaluation of their performance. The frame-
work is designed to be easily extensible with additional operator topologies, workloads, and auto-
scalers.

• We extend auto-scalers HPA [38] and Varga et al. [66] to support operator-based scaling and im-
plement them together with state-of-the-art auto-scalers Dhalion [18] and DS2 [36] in the frame-
work.

• We investigate the sensitivity of the parameters of the auto-scalers and determine the optimal
parameters for the auto-scalers to be used in the experimental evaluation.

• We compare the performance of state-of-the-art auto-scalers when run with different auto-scaler
configurations under a diverse set of workloads and operator topologies.

• We make several suggestions for future research in the area of auto-scalers for SPEs and their
evaluation methods.

We start with an investigation into the state-of-the-art of auto-scalers for SPEs. In chapter 2, we in-
troduce the topic of auto-scaling, cloud computing, and stream processing. Furthermore, it includes
a literature survey regarding evaluation methods for auto-scalers for SPEs and provides an overview
of common metrics used to investigate their performance. Chapter 3 contains a literature overview
regarding the development of auto-scalers for SPEs, followed by a more detailed description of the
state-of-the-art in chapter 4. This is followed by chapter 5 where we discuss the design for the evalu-
ation framework. Here we discuss the different technologies we will use, introduce different workload
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patterns and discuss the different queries the experiments will run on. Chapter 6 discusses the im-
plementation of this framework, together with the different design choices made. This section can be
especially useful for the reader who wishes to extend the framework with additional workloads, queries,
or auto-scalers. Finally, we discuss the results of the experiments in chapter 7. Finally, chapter 8 dis-
cusses the results obtained in chapter 7 and provides several suggestions for future research.





2
Background

2.1. Cloud Computing and elasticity
Cloud computing and elasticity Cloud computing is a broad paradigm that is focused on the on-
demand provisioning of infrastructures, services and applications [47]. Over the past decade, cloud
systems like Amazon AWS1, Microsoft Azure 2, and Google Cloud 3 have been employed to work as
management middle-ware to provide processing power, storage space, and bandwidth to clients [45].
Cloud users can rent these resources on demand and run their applications on them. Doing so, these
infrastructures allow for elastic scaling of resources while paying as you go. Key characteristics of cloud
computing include the extensive use of virtualisation (using virtual machines and containerisation),
unlimited scalability of resources and extensive service level objectives (SLOs) that both the cloud’s
providers and users have to meet [7].

Provisioning A question brought forward by this development is how to make efficient use of these
services. On one hand, cloud users want to minimise costs and rent as few resources as possible, while
they are, at the same time, required to meet the SLOs of their users. Traditionally, this would require
cloud users to rent enough resources to be able to handle peak traffic without SLO violations. On
low traffic this would result in over-provisioning, inducing additional costs for running the application.
As an alternative, cloud users can choose to rent fewer resources, reducing costs, but resulting in
under-provisioning in peak traffic, leading to SLO violations.

Elastic provisioning With the introduction of elastic scaling in cloud computing, users are now able
to use elastic-provisioning, where the number of resources used corresponds to the current workload
of the system. Optimally, the number of resources used at any point in time should be the minimal
amount of resources required to process the incoming workload without any SLO violations. In this
work, we refer to this as optimal-provisioning. The challenge here is, however, to decide when to
scale the system and how. This is a difficult task that requires constant monitoring of the system.
Scaling decisions should take the health of the system, the current and expected workload, and the
complex relationships between different parts of the system into consideration. As performing these
tasks manually is difficult and expensive, scaling decisions are often made by automated systems
called auto-scalers.

2.2. Auto-scalers
Auto-scalers are automatic systems in charge of the scaling activities of an application, without requiring
human intervention [45]. Auto-scalers determine when to scale the application and how. The goal of
an auto-scaler is to automatically scale the application to minimise the number of resources used,
1https://aws.amazon.com/
2https://azure.microsoft.com/en-us
3https://cloud.google.com/
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6 2. Background

while at the same time minimising SLO violations. In the literature, different types of auto-scalers have
been suggested, addressing different area-specific challenges. In this section, we further discuss auto-
scalers and how they follow the MAPE-loop for autonomous systems. We then discuss different areas
of deployment and different techniques used for making scaling decisions and estimating the future
workload of the system.

2.2.1. MAPE-loop
Auto-scalers follow the MAPE-loop for autonomous systems [33, 47]. The MAPE-loop (as shown in fig-
ure 2.1) consists of a loop of four phases: monitoring, analysis, planning, and execution. Of these four
steps, auto-scalers are concerned with the analysis and planning phase, leaving the other two phases
to external systems. In this section, we discuss each of the four phases individually and comment on
the role auto-scalers have in these phases.

Monitoring

Analysis

Planning

Execution

Auto
-scal

er

Figure 2.1: Visualisation of the MAPE-loop for autonomous systems [33]. Auto-scalers are only concerned with the analysis and
planning phase, leaving the monitoring and execution phase to external systems.

Monitoring phase In the monitoring phase, a monitoring tool monitors the employed system and
collects the necessary information the auto-scaler needs to make scaling decisions. This is not done
by the auto-scaler itself, but by an external monitoring tool. The monitoring tool collects performance
metrics, whose quality highly influences the quality of the auto-scaler [45]. Based on the source of the
metrics, Ghanbari et al. [24] categorise performance metrics into seven categories: hardware, general
OS processes, load balancer, web server, application server, database server, or message queue.
Overall, the monitoring tool needs to minimise additional overhead when collecting metrics, as this can
have a significant impact on the performance of the processing system. Many auto-scaler proposals
like DRS [20] or DS2 [36] spend additional efforts in their auto-scaler evaluation to ensure themonitoring
system does not induce significant costs on the overall system.

Analysis phase The performance metrics collected by the external monitoring tool are passed to
the auto-scaler for analysis. In the analysis phase, the collected raw metrics are combined into more
complex metrics, like the true processing rate used by Kalavri et al. [36], or the relative lag change,
proposed by Varga et al. [66]. Other approaches use the data to predict future workloads [31, 43]. This
allows the auto-scalers to perform scaling actions before the actual workload change occurs, which is
especially useful in systems where adding resources may take a long time. Systems that base their
scaling decisions on predicted future workloads are called pro-active auto-scalers. Auto-scalers that
make scaling decisions on the current workload are called reactive auto-scalers. While reactive auto-
scalers may respond too late to workload changes, proactive auto-scalers can be inaccurate in their
workload estimations, leading to additional costs.
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Planning phase After the data analysis, and the current or future state of the application is known, the
auto-scaler decides on the scaling actions to undertake. With these actions, the auto-scaler attempts
to both minimise the number of resources used and the amount of SLO violations.

Execution phase After the auto-scaler suggests a scaling action, the action is forwarded to an ex-
ternal system that is responsible for its execution. This may be done by calling a cloud provider’s API,
or with a specialised module provided by the application itself. The auto-scaler is not aware of the
complexities of the underlying system and does not deal with it [45]. Scaling an application takes time
and may temporarily reduce the performance of the application. To prevent unnecessary costs, the
auto-scaler needs to be aware of this and propose scaling actions appropriately.

2.2.2. Areas of deployment
Many different applications are hosted on cloud infrastructures and support elastic scaling. As these
different applications have different complexities and different needs for resource consumption, auto-
scalers are designed for specific applications, like distributed data stores, distributed stream processing
engines, and high-performance computing. While some auto-scalers focus on one of these specific
applications, other auto-scalers attempt to generalise over different applications to propose general-
purpose auto-scalers. In this section, we discuss the different applications auto-scalers are designed
for and comment on their underlying complexities.

General purpose General-purpose auto-scalers are designed to be used for any type of application.
This requires the auto-scaler to generalise over different types of applications and make simplifying as-
sumptions. The workload of the system is estimated using general metrics such as the average CPU
load and workload intensity. While these metrics are shown to correlate well with quality-of-service
metrics [56], they only provide a simplified insight into the performance of the application and do not
work well for all scenarios. While some general purpose operators (like [44]) do allow defining custom
metrics, the methods are not able to capture the sophisticated underlying relationship between differ-
ent parts of the application, resulting in decreased performance. The evaluation of general-purpose
auto-scalers is generally done on the business-logic tier of web applications [22, 2]. These systems
generally consist of self-contained units that do not require the auto-scaler to consider their underlying
relationships. Some auto-scalers consider multi-tier applications, where different parts of the system
can be scaled individually. Nisar et al. [1], for example, split a web application into both a business-tier
and a database-tier aspect and suggest scaling actions for both of them individually.

Distributed data stores Distributed data stores are systems that manage large amounts of data
and ensure the accessibility of the data for its users. For this, the system is not only concerned with
managing fluctuating workloads where the system must process incoming data requests, but it should
also consider the smart placement of specific data on servers and use replication for both accessibility
and fault-tolerance of the system. In addition, databases tend to have specific requirements such as
ACID compliance, making scaling itself already a difficult challenge. To solve this problem, Barker
et al. [5] propose ShuttleDB that introduces a migration and replication method, combining VM-level
and database level scaling. They propose an auto-scaler that uses the latency of the system to issue
scaling actions accordingly. Casalicchio et al. [9] design an auto-scaler for the already elastic data
store Cassandra. The auto-scaler attempts to minimise the energy consumption of the system while
ensuring data availability and scaling according to the workload.

Distributed stream processing systems Distributed stream processing systems consist of different
operators that continuously retrieve, process, and emit data. These operators are linked to each other
in a topology, having data flow from operator to the operator until it eventually leaves the system.
This makes the operators strongly dependent on each other. Given that every operator has different
processing speeds and differs in the amount of data they output, deciding which operators to scale and
when to do so, is a difficult challenge. Scaling a single operator may influence the upstream operators
in the topology, also requiring scaling operators in those systems. As addressed in Floratou et al. [18],
and Kalavri et al. [36], determining the optimal operator-specific parallelism can be a difficult challenge.
Allowing the operators to share the resources between operators, simplifies this process significantly.
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Varga et al. [66] propose an auto-scaler that only scales the available workers of the system, having
the SPE dividing the resources between operators dynamically using Flink Reactive [49].

High performance computing High-performance computing (HPC) is concerned with the execution
of complex calculations on high-performance infrastructures. To support elastic scaling, these systems
often rely on specific generalisations, requiring the calculations to be implemented as batch jobs or by
enforcing specific design patterns [34]. A more challenging field of HPC includes the processing of
irregularly structured problems. These processes include tightly coupled parallel processes that are
not always able to scale, making auto-scaling these applications a challenging task [57, 26].

2.3. Auto-scaling Techniques
Lorido-Botran et al. distinguish five categories for auto-scalers, based on the theory it is based on:
using threshold-based rules, reinforcement learning, queuing theory, control theory, and time series
analysis. We will discuss the five categories individually.

2.3.1. Threshold-based rules
Auto-scaling policies using threshold-based rules are one of the most simplistic scaling policies out
there. They consist of several rules concerning one or more metrics. The rules can be formalised as a
number of conditions that have to hold, followed by an action that should be performed. For example,
if the latency of the system is above 10s for more than 1 minute, we scale the system up with 20%
of its capacity. Its simplistic nature makes the policy easy to understand and intuitive for cloud users.
Though, they are unable to cover the complex nature of the system and require extensive tuning of
its parameters to achieve high performance [45]. Heinze et al. [28] address this issue by including a
feedback system that optimises its thresholds to achieve higher performance. Simmons et al. [59] use
a hierarchical strategy tree that switches between different policies depending on its performance over
time.

The threshold-based approach only concerns the planning phase of the MAPE loop and is by default
reactive in its nature. Though, by combining the approach with other techniques, it can be extended to a
more sophisticated auto-scaler with better performance. The conditions of the rules can, for example,
be based on a prediction module using queuing theory [53] or time series analysis [11], making the
auto-scaler proactive.

2.3.2. Reinforcement learning
Another technique is to use reinforcement learning [60] for determining the scaling decisions of the
auto-scaler [12, 8, 27, 61, 39]. A reinforcement learning model acts as an agent interacting with its
environment. The agent selects and executes actions provided as an action set, changing the state of
the environment. Based on the ’goodness’ of the action, the agent receives a reward. Using trial and
error, the agent learns to optimise the reward it receives. In the literature, multiple ways of ’learning’
have been suggested, like using Q-learning and SARSA [60].

When using reinforcement learning for auto-scaling, the action set, state space, and reward function
have to be defined. Both the action set and state space depend on the application, the auto-scaler is
deployed in. The reward function generally takes into account the cost of acquiring resources (horizon-
tally or vertically) and the cost of violating SLOs.

The main advantage of auto-scalers using reinforcement learning is that they require minimal configu-
ration. While other techniques, like threshold-based rules, require tedious tweaking of parameters, a
reinforcement model does not require prior knowledge about the workload distribution but figures this
out by itself. Still, as Doan et al. [12] explain, designing the reward function of the system is no easy
task and also requires tweaking of the parameters for optimal performance. In addition, the algorithm
requires significant time to learn how to scale the application accurately. To minimise the training time,
authors propose using a hybrid approach where an auto-scaler using threshold-based rules is run until
the accuracy of the reinforcement model is good enough to be deployed [61, 39].
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2.3.3. Queuing theory
Queuing theory [25] is the mathematical study of queues and has been extensively used for modelling
internet applications. It is generally used to analyse systems of stationary nature, having constant
arrival and processing rates. Given a queuing model and some input parameters, the model can predict
performance metrics. In auto-scalers, this can be employed in the analysis phase when estimating the
performance of the system in terms of queuing length or for estimating the expected latency. These
prediction modules can be used to estimate future system performance [69, 65], or to estimate the
expected performance of the system when given a specific amount of resources [50].

The standard description of a queuing model is Kendall’s notation [58]. Here a queue is denoted as
A/S/c/K/N/D, with A being the inter-arrival time distribution, S the service time distribution, c the number
of servers, K the maximum queue length, N the population size (finite or infinite), and D the queue
discipline (e.g. FIFO, LIFO). When K, N, or D are not present, K = ∞, N= ∞, and D = FIFO is assumed.
This model of a queue can be used to model complex applications with different types of operators,
creating a queuing network. Solving the model using periodically calculated parameters corresponding
to the current status of the system, provides insights into the performance of the system that can be
used as input for the planning phase of the MAPE loop. Some auto-scalers using control theory for
their auto-scalers are [69, 65, 20, 50, 22].

2.3.4. Control theory
Control theory [40] is generally used for the automatic management of information processing systems.
The idea is to deploy a model or an algorithm that steers the application towards a desired state. To do
so, the controller has access to a controlled variable that it attempts to hold close to a desired value by
adjusting the manipulated variable. For auto-scalers, the controlled variable can be, for example, the
system’s average CPU load, or its processing latency. The manipulated variable can, for example, be
the parallelism for the system, or the number of resources assigned to the system. Some control-theory
based auto-scalers are [68, 23, 48, 56, 36]. In general, three different types of controllers are used for
auto-scaling [45]: fixed gain controllers, adaptive controllers, and model predictive controllers.

Fixed gain controllers Fixed gain controllers are the most simple ones and consist of a fixed model
with pre-set parameters. The model represents the relationship between the control variable and the
manipulated variable, allowing the controller to determine how to adjust the manipulated variable to
move the control variable to the desired state. While this makes for a simple model with predictable
behaviour, it requires a lot of manual fine-tuning of the parameters and is not able to adjust itself to a
changing environment. This makes the controller undesirable as an auto-scaler when run in a dynamic
environment.

Adaptive controller The adaptive controller is similar to the fixed gain controller, but adjusts the
parameters of the model depending on the conditions of the environment. While this makes the model
more complex and more difficult to understand, it can adapt to changing environments, making it more
suitable to be used for auto-scalers that run for a long time in changing environments.

Model predictive controllers The model predictive controller predicts the future behaviour of the
system, allowing it to respond to changes in the control variable before they occur. The prediction
module can be created using different performance models using moving average [52], time series
analysis [37], or linear regression [21].

2.3.5. Time series analysis
Time series analysis [11] is a widely used method for analysing data as a sequence of data points
collected over a period of time. Given a list of periodically collected data points, future values can be
predicted by identifying the underlying pattern of the data and extrapolating it to future values. As an
alternative approach, future values can also be directly predicted using techniques such as moving
average, exponential smoothing, and auto-regression [45].

Time series analysis is used in the analysis phase of auto-scalers to predict future workloads [2, 42, 43,
44, 31, 5]. Taking a proactive approach, future workloads or resource requirements can be estimated
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and the application can be scaled beforehand. This allows the auto-scaler to deal with the delay of
adding resources to the system and has therefore been recognised as an effective auto-scaling tech-
nique. Though, the accuracy of the time series analysis depends on the predictability of the pattern
of the workload and may therefore not always predict sudden increases or burstiness. In addition, the
accuracy of the model might reduce significantly as workload characteristics change over time.

2.4. Stream Processing
In the literature, many auto-scalers are designed for distributed stream processing systems. These
systems perform operations on unbound data streams that continuously arrive at the system and require
on-demand processing. They generally consist of several individual operators that pipe the output of
their operator into the input of another operator. This makes the performance of the operators strongly
dependent on the performance of the other operators, making operator-based scaling a complex task.
In this section, we introduce the topic of stream processing, provide insight into its run-time behaviour,
and discuss efficient resource provisioning.

2.4.1. The basics of stream processing
With the increase in data availability on the web, there has been a shift in focus from batch processing
to online processing of data. Batch processing is the processing of bounded streams, and online
processing is the processing of bounded data streams.

Data streams Data streams can be conceptualised as a list of data records that arrive at specific
points in time at the system. There are two types of data streams: bounded streams and unbounded
streams. A bounded stream is a finite set of data records that has a defined start and end. Due to its
finite nature, the data can first be ingested by the system before performing operations on it. This allows
the system to collect characteristics of the data that allow for efficient optimisations when performing
operations on the data. Unbounded streams, on the other hand, are infinite sets of data that have no
defined end. The data arrives as it is generated and must be continuously processed, as its infinite
nature makes it impossible to wait for all input data to arrive. As we do not know what data will arrive
in the future, it is difficult to perform optimise the performance operations on the data.

Processing online data streams As the data characteristics of unbound streams are generally un-
known before processing, the operations are pre-defined as queries. The SPE splits these queries
into several operators that all perform simple operations on the incoming data. These operators are
then chained together into a topology by directing the output of an operator into the input of another
operator. We visualise an example of such a topology in figure 2.2. In this figure, we have the data of
a single data stream arriving at the source of the system. The source operator ingests the data and
sends it to the filter operator. This operator filters the data and and sends it to the sink operator. The
sink operator then outputs the data to be processed by another external system.

Bids Source Filter Sink

Figure 2.2: Example operator topology based on query 2 of the Apache Beam Nexmark Benchmark [6].

Different operators Overall, a stream processing topology may consist of many different operators.
We list some of the most commonly used operators here.

• Source: A source is the entry of the streaming application. It retrieves data from an external
application and inserts it into the stream application.

• Sink: A sink is the last operator in the streaming application. It receives the results of the appli-
cation and outputs it to an external system.

• Map: A map operator is a stateless computation that executes function f on a specific operator.
A map function retrieves record r, and returns f(r), in a one-to-one fashion.
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• Filter: A filter operation is a stateless computation that, given a record r, and condition c checks
whether condition c(r) holds. If it holds, it passes the record to the next operator, else it discards
it.

• KeyBy: A key-by operation is an operation that partitions a data stream into disjoint data streams,
distinguished by key k. This allows for aggregating or joining records with for which key k is the
same.

• Join: A join operation is an operation that joins records from two data streams into a single record
based on a join condition. This is a very expensive operation, as it, depending on the join type,
requires storing the records of one or both streams in memory.

• Window: A window operation groups together different operators based on a specific window
condition. The window condition is mostly based on the arrival time of an operator and defines, for
example, how far apart records might have occurred to consider them for the same aggregation.

• Aggregation: An aggregation operation merges records into a single value.

Resource Assignment The stream processing engine consists of several different operators that all
have different resource requirements. While some operators perform simple tasks, other operators
perform complex tasks that require the maintenance of a large amount of state. Some operators would
therefore require more resources than other operators. Operators consist of several workers that per-
form the operations defined by the operators. In our work, we assume workers have the same amount
of resources assigned to them. The more workers assigned to an operator, the more resources it has,
and the higher its throughput. The parallelism of an operator is defined as the number of workers as-
signed to the operator. We refer to the defined parallelism of every operator in the topology as the
systems parallelism configuration.

2.4.2. Stream processing at run-time
We describe the run-time behaviour of an SPE from two points of view: from a global view, and a local
view. The global view explains how the SPE interacts with its surrounding environment, and the local
view explains how the individual operators of the stream processing engine behave and interact with its
neighbour operators. While describing the run-time behaviour of SPEs, we introduce several metrics
that allow us to investigate the SPE’s performance.

Global view The processing of unbound data streams starts with data records arriving at the source
operators of the stream application system. The amount of records that arrive per second is defined
as the input_rate of the system. The source operator will attempt to process as much data as possible.
When more data is arriving than the system can process, the data is discarded or temporarily stored
in a queue of the SPE or of an external messaging system. For our work, we assume the data is
stored in an external messaging system from which the source operators fetch data. When storing the
data in a queue, the stream application will attempt to process both the records in the queue and the
newly arriving records. The time records spent in the queue are defined as the latency of the system.
The amount of records in the queue is defined as the system’s lag. The amount of records that are
being processed by the system, is defined as the systems throughput. Here, we distinguish two types
of throughput, the input-throughput and the output-throughput. The input throughput is the number of
records the system can input per second. The output throughput is the number of records the system
outputs to its sink. In the perfect system, the system’s input throughput should be equal to the input
rate, with the lag being 0. The output-throughput, however, highly depends on the operators of the
system and may differ from the input_throughput.

Local view Every operator in the system retrieves records from its upstream operators, executes
their operation, and then outputs its results to the downstream operator. When the operator is not able
to process all incoming records, the records are added to a local queue and processed later. When the
queue runs out of space, the upstream operator is blocked from outputting any more records to the op-
erator, forcing it to slow down its processing speed so that the downstream operator can keep up. This
will, again, cause the upstream operator to not keep up with the incoming rate of their upstream opera-
tor, eventually slowing down the entire streaming application. The initial operator blocking its upstream
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operator is called the bottleneck operator. The bottleneck operators experiencing back-pressure are
said to be back-pressured by the bottleneck operator. The amount of time per second the operator
is not able to process its incoming data due to it being back-pressured is the operator back-pressure-
time. Besides not being able to process data due to back pressure, the operator can also be idle due
to fewer records arriving at the operator than it can process. We define the operator’s idle time as the
time the operator spends waiting instead of processing the incoming data stream. The idle-time of the
operator is its back-pressure-time together with the time per second the operator is waiting for input.
The busy-time of the operator is the opposite of the idle-time, being defined as the time the operator is
processing data per second (1 - idle-time).

2.4.3. Elasticity and stream processing applications
It is the job of the auto-scaler to determine the optimal parallelism of every individual operator in the
systems. Here, the parallelism configuration must correspond to the system’s input rate. We define
four different scenarios describing the state of resources provisioning of the SPE: under-provisioning,
over-provisioning, perfect-provisioning and oscillation,

Under-provisioning To be able to process all incoming data, a stream processing system should
have sufficient resources available for all its operators. When not enough resources are available
to the stream operator, we call the application to be under-provisioned. When the system is under-
provisioned, the queue and the latency of the system go up and the throughput of the system will drop
below the system’s input rate. In addition, some of the operators will likely be back-pressured. When
this happens, resources should be added to the application.

Over-provisioning When the system has more resources available, than it needs, we call the ap-
plication to be over-provisioned. When the system is over-provisioned, the lag of the system is zero,
the input throughput of the system is equal to the input rate of the system, and both the busy-time
and CPU-load of the operators are low. When this happens, resources should be removed from the
application to reduce costs.

Perfect-provisioning While the term perfect-provisioning is not generally used in the literature, we
define perfect-provisioning as the scenario where the system is both not under-provisioning and over-
provisioning. When perfect-provisioning, the system is using minimal resources, while being able to
keep up with the incoming workload.

Oscillation Changing the parallelism configuration of an SPE, generally induces additional scaling
overhead. This can cause the system to oscillate between different parallelism configurations. When,
for example, the auto-scaler decides to scale down from an over-provisioning state, the resulting scaling
overhead of the scale-down action might trigger a scale-up action, returning to the initial configuration.
This can cause the system to oscillate between these two different parallelism configurations, inducing
additional overhead and reducing the performance of the system. Introducing a cool-down-period, after
a scaling action where scaling is not allowed, allows the system to stabilise before deciding on a scaling
action again, preventing the system from oscillating.

2.5. Experimental evaluation of auto-scalers for distributed stream
processing

We investigate the state-of-the-art for the evaluation of auto-scalers targeting SPEs. To do so, we sur-
vey the literature and identify five types of experiments that are commonly used when analysing the
auto-scalers performance. When doing so, we find that latency is the most commonly used perfor-
mance metric that, together with the resource utilisation of the system, provides a good overall insight
into the effectiveness of the auto-scaler. In this section, we start by discussing the method of paper
selection we use for the survey, followed by an overview of the different experimental evaluation meth-
ods used. Finally, we provide an overview of commonly used metrics when analysing the performance
of auto-scalers targeting SPEs.
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2.5.1. Paper selection
The papers used in the literature survey are selected in two steps. First, we select papers from the
following query on Google Scholar. 4:
(”autoscaling” OR ”auto-scaling” OR ”auto-scaler”) AND (”stream processing”
OR” ”streaming systems” OR ”streaming system” OR ”data stream” OR
”data streaming”) AND ”cloud” AND ”elastic”
This results in a total of 42 accessible and non-duplicate papers. From these papers, we filter out
unrelated papers that do not address the auto-scaling of elastic applications, resulting in a total of 27
papers. We select the papers addressing the problem of auto-scaling of SPEs and go through their
related work sections in search of additional papers. This results in a total of 18 papers regarding
auto-scaling for SPEs, ranging from 2014 to 2021. We survey and investigate the evaluation methods
of these papers from the year 2017 and up.

2.5.2. Experiment types
From the papers, we distinguish five types of experiments that are generally performed when evaluating
auto-scalers for SPEs. In this section, we discuss each type of experiment individually and summarise
the evaluation methods used in the selected papers in table 2.1.

Paper Year Performance Accuracy Convergence Prediction Overhead
DRS [19, 20] 2017 W Yes No No Yes
Hidalgo et al. [31] 2017 W, C Yes No No No
Liu et al. [41] 2017 W, A No No No No
Lombardi et al. [43] 2017 W, C Yes No Yes Yes
Dhalion [18] 2017 W No Yes No No
Elastic-PPQ [48] 2018 W, C No No No No
Cardellini et al. [8] 2018 C No No No No
DS2 [36] 2018 W, A Yes Yes No Yes
Doan et al. [12] 2020 A No No No No
Varga et al. [66] 2021 No No No No Yes

Table 2.1: Evaluation methods used in state-of-the-art auto-scalers for Distributed Stream Processing. Under performance, W
refers to performance evaluations under different workloads, C to performance evaluations under different configurations, and A
to evaluations comparing different auto-scalers.

Performance analysis The performance analysis is the most commonly performed evaluation of
auto-scalers. The goal of the analysis is to investigate the performance of the auto-scaler and compare
its behaviour when run under different types of workload [36, 43, 48, 31, 19, 18], or with different auto-
scaler configurations [43, 48, 8, 41, 31].

The general approach is for the authors to select several performance metrics, that measure the effec-
tiveness of the auto-scaler and use these to compare its performance in different experimental runs. As
a baseline, authors may choose to use a simple auto-scaler using threshold-based rules [8] or run the
application without any auto-scaler at all [19]. Common metrics used for this are the latency of the sys-
tem [19, 20, 41, 8], the number of resources used [43, 36, 8], and the system’s throughput [31, 41, 48].
Other metrics may include the average CPU usage [31, 48], the systems downtime percentage [8], or
the system’s buffer usage [12].

Sometimes, the authors follow the behaviour of the auto-scaler throughout the execution of the experi-
ment and comment on the effectiveness of its behaviour. Floratou et al. [18], for example, show through
the analysis of the auto-scalers run-time behaviour that when running the auto-scaler no back-pressure
can persist in the system. Fu et al. [20] analyse the performance of their auto-scaler by comparing the
performance of the stream processing system with and without running the auto-scaler.

Parallelism accuracy A second way authors evaluate auto-scalers is by analysing the accuracy of
the suggested parallelism of the system. Optimally, the suggested parallelism of the auto-scaler should

4https://scholar.google.com/

https://scholar.google.com/
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be as low as possible without under-provisioning or over-provisioning. In the literature, both Fu et al.
[20] and Kalavri et al. [36] have the auto-scaler analyse the system with a constant-workload. After
proposing a scaling action, the authors run the system with different parallelism configurations to in-
spect the behaviour of the system when run on specific configurations. This allows them to identify the
optimal parallelism configuration and comment on the accuracy of the proposed parallelism configu-
ration. When choosing the initial parallelism configuration of the system, Hidalgo et al. [31] have the
auto-scaler predict the system when run with minimal parallelism, half the optimal parallelism, and the
optimal parallelism, investigating the influence of the systems parallelism configuration on the auto-
scalers performance. Extending this experiment to investigate the auto-scalers’ prediction accuracy
when over-provisioning, would provide additional insights into the parallelism accuracy when deciding
to scale down. The inspected papers, however, did not consider this scenario.

Convergence time Another way to evaluate an auto-scaler is by analysing the time the auto-scaler
requires to converge to a specific parallelism. We say that an auto-scaler converges when the auto-
scaler stops suggesting scaling actions on a constant input rate. Both [18] and [36] perform this exper-
iment. Floratou et al. [18] start the system at minimal parallelism and a constant input rate. Measuring
the number of scaling actions the application needs to converge, the authors show that the auto-scaler
eventually assigns enough resources to the system to be able to handle the incoming workload. Kalavri
et al. [36] extend this experiment by also reducing the input rate after convergence to test both the con-
vergence time of the auto-scaler when under-provisioning and when over-provisioning.

Prediction accuracy Pro-active auto-scalers predict the future behaviour of the workload to be able
to react to workload changes before they occur. These systems generally make use of a prediction
module that allows them to predict the future workload or future CPU usage. Lombardi et al. [43]
evaluate their prediction model by comparing their predicted CPU usage with the actual CPU usage
the system had at a certain point in time. This provides an indication of the accuracy of the prediction
module.

Overhead estimation When deploying an auto-scaler to minimise the resources costs in a cloud
environment, it is important to know the costs of the auto-scaler deployment. Costs can be induced by
the auto-scaler deployment itself, or by the monitoring system that retrieves the necessary information
about the auto-scaler. Fu et al. [20] investigate additional overhead when running their auto-scaler on
top of an SPE. Kalavri et al. [36] investigate the overhead incurred by metric measurement. Lombardi
et al. [43] analyse additional overhead caused by tweaking of the auto-scalers configurations, and
Varga et al. [66] analyse the overhead caused by the scaling actions.

Other Furthermore, evaluations may be performed for the auto-scaler-specific functionalities. Lom-
bardi et al.[43], for example, perform an additional evaluation of the auto-scaler when multiple stream
processing applications are run on the same cluster.

2.5.3. Performance analysis metrics
We further investigate the different performance metrics used by the auto-scalers to evaluate their per-
formance. These metrics indicate the auto-scalers effectiveness and can be used to compare different
auto-scalers, different configurations, or the auto-scalers’ performance under different workloads. We
now briefly discuss the use of the different metrics. Our findings of the literature search are summarised
in table 2.2.

Latency Latency (also referred to as total latency [41] or delay [48]) is one of the most used metrics
and can be defined as the time it takes for a record to be processed by the system. It is calculated as
the difference in the arrival time of a tuple, and the time it is processed. High latency is an indication
of the under-provisioning of the system. The latency of the system cannot be used to distinguish the
difference between efficient provisioning and over-provisioning, as the latency will be minimal in both
cases. For this reason, latency is generally used in combination with the number of resources used or
the total CPU usage, to distinguish between these two cases. Generally, papers focus on the average
latency of the system [43, 41, 36]. Though some papers also consider the variance [20] or percentiles
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Paper Year Metrics used
Latency Resource efficiency Throughput Resource usage

DRS [19, 20] 2017 Yes Yes No No
Hidalgo et al. [31] 2017 No Yes Yes Yes
Liu et al. [41] 2017 Yes Yes Yes No
Lombardi et al. [43] 2017 Yes Yes No No
Dhalion [18] 2017 Yes Yes No No
Elastic-PPQ [48] 2018 Yes Yes Yes Yes
Cardellini et al. [8] 2018 Yes Yes No No
DS2 [36] 2018 Yes Yes No No
Doan et al. [12] 2020 No No No No
Varga et al. [66] 2021 No No No No

Table 2.2: Metrics used for evaluation of auto-scaler performance of state-of-the-art auto-scalers for distributed stream process-
ing.

of the latency [8] to get an indication of the stability of the system when running the auto-scaler for
longer periods. Cardellini et al. [8] define an SLO for the maximum latency and show how often the
SLO is violated when running the system.

Resource efficiency As the aim of the auto-scalers is to maintain high performance with minimal
resources, It is important to keep track of the number of resources used by the system when running
the auto-scaler. While papers generally consider the accuracy of the number of resources suggested,
the amount of resources used is often not aggregated and compared between different experiment runs.
A reason for this can be that most experiments in the literature are run for a short amount of time and
only require a few scaling actions. Some examples where the number of resources are aggregated
and compared between runs are [8] and [43], which compare the average amount of replicas used.
The amount of resources used is generally defined as the total amount of replicas in the system [8, 18,
43]. When running a topology with multiple operators this would be the sum of the parallelisms of the
operators. Kalavri et al. [36] only considers the number of replicas of the ’main operator’ of the system.

Throughput Throughput can also be used as an indication of the performance of the auto-scaler.
Throughput is generally used as the input throughput, defined as the number of records the system
accepts into its system per second. While the latency is also influenced by the lag of the system, the
throughput allows for investigating the accuracy of the proposed parallelism by comparing it with the
input rate. In addition, Mencagli et al. [48] use the throughput to investigate the stability of the system
under specific configurations. Floratou et al.[18] define a throughput SLO and show that the suggested
scaling actions by the auto-scaler eventually meet the SLO.

Resource usage While the latency and throughput can showwhether the system is over-provisioning,
they are unable to distinguish over-provisioning and perfect-provisioning from each other. Further in-
vestigating the resource usage allows us to make this distinguishment. When over-provisioning, re-
sources will be idle for a significant amount of time. To measure the current resource usage, Mencagli
et al. [48] use idle time as a percentage of the time the system is waiting for incoming records. Hidalgo
et al. [31] use both the CPU usage and memory usage. Other papers do use the resource usage in
their system when deciding whether to scale down [43, 66], but do not consider it in the evaluation of
the system.

Other Besides these three metrics, papers do use other metrics to measure the performance of the
system. Kalavri et al. [36] and Floratou et al. [18], for example, measure the number of steps it takes
for their auto-scaler to converge to the optimal parallelism. Doan et al. [12] use the total amount of
buffer usage to determine whether the auto-scaler is over-provisioning or not. Cardellini et al. [8] also
consider the system’s downtime caused by scaling actions proposed by the auto-scaler. Also, more
auto-scaler-specific metrics are used. Doan et al. [12], for example, use the rewards generated by
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the reward function of their reinforcement model to get an estimation of both the performance of the
auto-scaler and the training time required to achieve high accuracy.

2.5.4. Conclusion
The recent developments around cloud computing have opened up the possibility for the elastic pro-
visioning of distributed applications. Auto-scalers are systems that, given metrics from an external
monitoring system, automatically decide whether to scale the application and by how much. They
are designed for many types of applications and are based on five different techniques, which are
threshold-based rules, reinforcement learning, queuing theory, control theory, and time series analysis
[55]. Over the past several years, many auto-scalers are developed for distributed stream processing
systems (SPEs). SPEs process complex queries by dividing them into smaller operators that are piped
into each other creating an operator topology. When scaling the system, auto-scalers have to con-
sider the relationships between these operators, making effective scaling of the application a difficult
job. Furthermore, the lack of proper evaluation of the performance of these auto-scalers has made it
difficult to determine the state-of-the-art of auto-scalers targeting SPEs and has slowed down its de-
velopment. In this section, the evaluation methods of state-of-the-art auto-scalers targeting SPEs are
evaluated and the results show that auto-scalers are often poorly evaluated with simple experiments
based on unrealistic scenarios. Therefore, five types of experiments are distinguished that are used
to analyse the performance of auto-scalers for SPEs showing that performance analysis is the most
common one. When analysing the performance of these auto-scalers, latency and throughput are often
used as performance metrics.
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Related work

Throughout the literature, many proposals for auto-scalers targeting distributed stream processing ap-
plications have been made. One of the first auto-scalers specifically designed for distributed stream
processing engines (SPEs) that support state-full operations was proposed by Gedik et al. [23]. Their
solution makes use of a simple control algorithm deployed on local hosts that execute scaling actions
when backpressure is observed. Heinze et al. [27] attempt to optimise the utilisation of the system
while maintaining low latency. They show that an auto-scaler using threshold-based rules can result
in good performance when run on individual hosts. Still, when running on the entire system, it results
in low performance due to its simplistic assumptions. Because of the dependency of the threshold-
based approach on its initial configuration, the authors show that reinforcement learning can result in
high performance while minimising the initial configuration costs. This problem is further addressed by
Heinze et al. [28], where the authors propose an online parameter optimisation technique that detects
changes in the workload pattern and adapts the scaling policy accordingly.

Lohrmann et al. [42] propose a predictive latency model that is based on queuing theory. The module
allows the system to investigate the expected latency given a specific parallelism for each operator. Us-
ing this model, the system can estimate the optimal parallelism for the topology by comparing different
configurations. Xu et al. [67] introduce Stela as a stream processing engine that supports elastic scaling
with minimal scaling overhead, while optimising the post-scaling throughput by smartly assigning the
workers to specific operators. While they support scaling operators, they do not implement any scaling
policy. Hochreiner et al. [32] proposes a distributed stream processing engine that supports elastic
scaling, and that allows for scaling the system at run-time. Using this implementation, they introduce a
simple auto-scaler that uses threshold-based rules to test the scaling capabilities of the system.

Floratou et al. [18] propose a framework to create self-regulating streaming systems that are self-tuning,
self-stabilizing, and self-healing. The authors propose two scaling policies based on the back-pressure
status of the system. Hidalgo et al. [31] propose a self-adaptive processing graph that divides the
workload of overloaded operators over multiple replicas. Using a control algorithm they can scale the
topology both reactive and proactive, improving the performance and resource efficiency of the system.
Liu et al. [41] develop a profiling model as a feedback-control loop that learns the relationship between
the provisioned resources and the application’s performance and scales the application accordingly.
Lombardi et al. [43] propose ELYSIUM as an auto-scaler that optimises resource consumption by both
considering horizontal scaling and vertical scaling. They investigate the trade-off between both scaling
actions and combine them into an auto-scaler. Fu et al. propose DRS [19, 20] as a queuing-theory-
based auto-scaler that models the relationship between the provisioned resources and the application
performance. Just as [42], they compare the expected performance of different resource allocations
and choose the most optimal one. Only, instead of modelling each operator as an individual queuing
system, they model the entire topology as a generalised Jackson network, allowing for more accurate
performance estimations.

17
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Cardellini et al. [8] propose an auto-scaler for stream processing in a decentralised environment. They
propose a two-layered hierarchical structure that allows for autonomous control over the individual
operators in the system. Their solution contains two reinforcement-based learning approaches that are
evaluated against a simple threshold-based approach.

Kalavri et al. [36] propose DS2 as a control-based auto-scaler for distributed stream processing. Intro-
ducing the notion of true processing and true output rate the authors propose an auto-scaler that can
estimate the optimal parallelism for every operator in a single iteration. The authors show that this ap-
proach outperforms state-of-the-art system Dhalion [18] requires multiple scaling actions to reach the
optimal configuration, while DS2 only requires 1. Mencagli et al. [48] propose Elastic-ppq as a system
that can process spatial preference queries over dynamic data streams. Combining Elastic-ppq with
an auto-scaler, the authors can scale their system to the current workload, minimising resource usage.

Lombardi et al. [44] propose PASCAL as a general-purpose auto-scaler architecture that makes use
of reinforcement learning. It combines a proactive approach to forecasting incoming workloads with a
profiling system for estimating the optimal provisioning. The authors implement PASCAL for an SPE
(Apache Storm) and a distributed datastore (Apache Cassandra) and show its effectiveness for both
use cases. Doan et al. [12] propose using fuzzy deep reinforcement learning for auto-scaling stream-
ing architectures. Here, they estimate the initial Q-values of the reinforcement system by use of a
deep neural network. This significantly shortens the training time of the model and increases its perfor-
mance. Still, the authors note that it is a non-trivial task to tune the parameters of the reward function
of reinforcement learning systems. Varga et al. [66] propose two custom metrics that can be used
in combination with Kubernetes’ out-of-the-box auto-scaler HPA [38] for the scaling of SPEs. In ad-
dition, they perform an experimental evaluation of the role of state size on the scaling overhead of
Apache Flink. Arkian et al. [4] propose Gesscale as an auto-scaling for distributed stream processing
in geo-distributed environments. Using a performance model, the system decides when to scale the
application and on which geo-distributed servers to add resources to optimise the maximal sustainable
throughput of the system.
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Auto-scalers for Stream Processing

In this work, a benchmarking framework that allows for the performance analysis of auto-scalers for
SPEs has been designed and implemented. Using this framework, the performance of several state-of-
the-art auto-scalers are evaluated and compared. In the section below, the process of selecting these
systems and the underlying theory of the auto-scalers will be discussed in more detail.

4.1. Paper selection
In section 2.5, an analysis of the literature was performed and several auto-scalers targeting SPEs were
distinguished. From these auto-scalers, we excluded auto-scalers that are designed for application-
specific scenarios, such as decentralised environment [8], and geo-distributed servers [4]. Further-
more, we excluded PASCAL [44], and the auto-scaler of Doan et al. [12], as they require extensive
training of the auto-scaler before they can be deployed. This leaves us with DRS [20], Dhalion [18],
DS2 [36], and Varga et al. [66]. DRS relies on a queue-theory-based prediction module that is difficult
to implement for different queries. For this reason, we do not consider DRS in the performance evalu-
ation of this paper but do suggest implementing the auto-scaler in future works. Furthermore, we use
general-purpose auto-scaler HPA as a baseline in the experiment.

4.2. Dhalion
Dhalion [18] is a general-purpose framework for self-regulating stream processing applications. It is
designed as a general-purpose system that provides self-regulatory capabilities to underlying stream
processing systems. While implementing some of these capabilities themselves, it is up to the user
to extend the logic of Dhalion to fit their specific use case. In this section, we discuss the overall
architecture of Dhalion, followed by the authors’ auto-scaler design.

The framework Dhalion’s framework consists of three layers: a symptom detection layer, a diagnosis
generation layer, and a resolution layer (figure 4.1). The detection layer is responsible for monitoring the
application and identifying symptoms that may indicate the system to be in an unhealthy state (like back-
pressure detection, or data skew). The layer receives metrics, analyses them to identify symptoms,
and passes the found symptoms to the diagnosis generation layer. Some examples of symptoms
are backpressure, data skew, or lag. After receiving the symptoms, the diagnosis generation layer
investigates them and determines what could be the cause of these symptoms (like under-provisioning,
over-provisioning, data-skew, and slow operators). The diagnoses are then passed to the resolution
layer which takes appropriate action given the diagnosis (e.g. scaling, re-partitioning, restarting a node).

Auto-scaler In the paper, the authors design and implement a reactive auto-scaler that is based
on threshold-based rules as an example application of their framework. We consider their proposed
auto-scaler in our experimental evaluation. Every five minutes, the system analyses the state of the
application, collecting metrics which are passed to the symptom generation layer. The symptom gen-
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Figure 4.1: The three-layered framework of auto-scaler Dhalion [18].

eration layer analyses the metrics and determines whether there is back-pressure or lag. Given the
symptoms, the diagnosis generation layer investigates whether the symptoms can be explained by
over-provisioning or under-provisioning. If it is back-pressure, the bottleneck operator of the system
is said to be under-provisioned. If there is no back-pressure, every operator without lag is said to be
over-provisioned. This information is then passed to the resolution layer, which issues an appropriate
scaling action to the under-and over-provisioning operators accordingly.

If an operator is under-provisioned, the auto-scaler determines a scale-up factor to scale the operator
up with. This scale-up-factor is determined in the following way:

𝑠𝑐𝑎𝑙𝑒_𝑢𝑝_𝑓𝑎𝑐𝑡𝑜𝑟 = 1 + 𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑓_𝑟𝑒𝑐𝑜𝑟𝑑𝑠_𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑓_𝑟𝑒𝑐𝑜𝑟𝑑𝑠_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 (4.1)

The scale-up factor denotes the amount of data the system was not able to handle. For example, if
the system suspends 20% of the incoming records and can process 80% of the incoming records, then
the scale_factor would be 1+20/80 = 1.25. Given that the operator has a current parallelism of 8, the
new suggested parallelism would be 8 ∗ 1.25 = 10.
If an operator is said to be over-provisioned, Dhalion scales the operator down with a pre-defined
scale-down factor. This factor is set manually by the user. The authors use a scale-down factor of 0.8
in their experiments. An over-provisioning operator with parallelism 20, would in that case be scaled to
a parallelism of 20 ∗ 0.8 = 16.

4.3. DS2
DS2 [36] is a reactive control theory based auto-scaler for distributed stream processing operators.
The goal of the auto-scaler is to scale the target application to satisfy the SASO properties: stability (no
oscillation), accuracy (accurately finding optimal parallelism), short-settling times, and not overshoot-
ing. It addresses the problem that state-of-the-art auto-scalers for stream processors, like Dhalion,
require multiple scaling actions before they converge to the optimal parallelism. This introduces addi-
tional scaling overhead and takes significant time before the system can handle the changed workload,
violating SLOs or introducing extra costs due to over-provisioning. To combat this issue, DS2 contains
a comprehensive performance model that can estimate the parallelism for all operators within a single
scaling decision. This is done with the use of two custom metrics: useful time, and true rate.

Useful time Useful time is defined as the time spent by an operator instance in deserialization, pro-
cessing, and serialization activities. This is the time the operator is processing the stream and excludes
time spent awaiting input or output.

True rate The true processing rate is defined as the number of records in which operators process
records per unit of useful time. The operator uses two different types of true rates: true input rates
and true output rates. True input rate is calculated as the input throughput of the operator, divided by
the useful time. The true output rate is calculated as the output throughput of the operator, divided by
the useful time. Both metrics represent the input/output of the operator when it is run at a full 100%
capacity.
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Scaling factor Using these metrics, a per-operator scaling factor is calculated in the following way.
Given an operator, we sum the true output rates of upstream operators that directly feed into the oper-
ator and call this the aggregated output rate of the upstream operators. The scale factor of the operator
is now defined as:

𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_𝑜𝑢𝑡𝑝𝑢𝑡_𝑟𝑎𝑡𝑒𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠

𝑡𝑟𝑢𝑒_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔_𝑟𝑎𝑡𝑒𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟
(4.2)

For the source operators, the input-rate of the system is used as the true output rate. Using the formula,
the scale factor for every operator in the system is calculated in a single traversal of the topology. The
result is the optimal parallelism configuration for the entire topology.

4.4. HPA
Horizontal Pod Autoscaler (HPA) [38] is the built-in general-purpose autoscaler of Kubernetes. It runs
as a simple loop that monitors a control variable (e.g. CPU- or memory usage) and attempts to keep
the control variable close to a specified target variable by scaling the application. Scaling is done
horizontally (hence the name) by increasing or decreasing the number of replicas in the cluster.

Given a resource metric to monitor and a target value for the resource metric, HPA periodically fetches
the current value of the resource metric. Using this value, it determines the desired parallelism of the
system with the following formula:

𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 = ⌈𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑒𝑡𝑟𝑖𝑐_𝑣𝑎𝑙𝑢𝑒𝑡𝑎𝑟𝑔𝑒𝑡_𝑚𝑒𝑡𝑟𝑖𝑐_𝑣𝑎𝑙𝑢𝑒 ⌉ (4.3)

The resulting desired-replicas value is saved in a list containing all previous results. HPA then takes
the highest desired-replicas value predicted in the previous 𝑛minutes (5 minutes by default) and scales
the application to this amount of replicas. This so-called, stabilization window prevents the system from
oscillating between desired configurations as a result of scaling costs.

HPA allows themonitoring of multiple control variables. When doing so, it calculates the desired amount
of replicas for both variables individually and chooses the highest desired amount of replicas. Because
HPA is only able to change the number of replicas in the system, it is not able to change the individual
parallelism of an operator in the topology. To apply HPA to stream processing, we can have HPA scale
the number of workers present in the system and have the stream processing engine detect changes
in the parallelism of workers and spread the workload equally over these workers. An example of a
system that allows doing so is Flink Reactive [49]. For the experimental evaluation, we let HPA keep
track of the average CPU usage of the workers in the topology. From this point on, we refer to HPA
targeting the workers’ CPU usage as HPA-CPU.

4.5. HPA-Varga
Varga et al. [66] propose an architecture extending the HPA autoscaler for auto-scaling of distributed
stream processing [66]. The authors propose two different metrics to be used as resource metrics for
HPA: relative-lag-change and utilisation. Because HPA can only scale the number of available workers
for the entire system, the metrics are measured over the entire system.

Utilisation Utilisation is a metric providing additional insight into the system’s performance. It allows
the auto-scaler to distinguish over-provisioning from perfect-provisioning, by analysing howmuch of the
available resources are used for processing. Utilisation makes use of the idle-time-per-second metric.
The utilisation of the system is calculated using the following formula:

𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 = 1 − 𝑎𝑣𝑔(𝑖𝑑𝑙𝑒_𝑡𝑖𝑚𝑒_𝑝𝑒𝑟_𝑠𝑒𝑐𝑜𝑛𝑑) (4.4)

Utilisation is a value between 0 and 1. When setting the target value close to one, the auto-scaler
suggests faster scale-down actions to get higher utilisation. This results in lower costs but might result
in under-provisioning. When lowering the target value, the auto-scaler will suggest scale-down actions
less often, possibly resulting in over-provisioning.
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Relative lag change rate Relative lag change is a metric that provides an estimation of the size of
the workload the system is not able to handle. It makes use of the derivative of the system’s lag and the
application’s input throughput. The relative lag change rate is calculated using the following formula:

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑙𝑎𝑔_𝑐ℎ𝑎𝑛𝑔𝑒_𝑟𝑎𝑡𝑒 = 1 + 𝑑𝑒𝑟𝑖𝑣(𝑡𝑜𝑡𝑎𝑙_𝑙𝑎𝑔)
𝑖𝑛𝑝𝑢𝑡_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (4.5)

The relative-lag-change rate denotes the rate at which the workload is increasing (> 1) or decreasing (<
1). When equal to 1, the lag is not changing and the system can handle the workload. For this reason,
the target value of the relative lag change rate is set at 1.0. Because HPA only considers the metric
requesting the highest parallelism, the authors propose ignoring the relative lag change rate when the
lag is below a specified threshold. This allows the auto-scaler to consider the suggested parallelism of
the utilisation metric, supporting scale-down actions when over-provisioning.

4.6. Conclusion
For the experimental evaluation of auto-scalers targeting SPEs, we select auto-scalers DS2 [36],
Dhalion [18], and Varga et al. [66] to be evaluated in the experimental evaluation using Kubernetes
built-in general-purpose horizontal pod auto-scaler (HPA) [38] as baseline. Dhalion makes use of
threshold-based rules and issues scaling actions based on the back-pressure status of the system.
DS2 is a control theory based auto-scaler that estimates the optimal parallelism configuration of the
optimal system in a single iteration by using the true input and output rate of the operators. Varga et al.
[66] propose two application-specific metrics named utilisation and relative-lag-change to be used as
control-variables in HPA. Furthermore, as baseline HPA with CPU-utilisation as target value was used.



5
Experimental design

The aim of this work is to investigate how state-of-the-art auto-scalers for SPEs perform in different
real-world scenarios and to evaluate their performance. In this section, we discuss the design of the
experiments and comment on the different design choices we make. We start by discussing the dif-
ferent experiments we integrate into the framework and the performance metrics we use evaluating
the performance of the auto-scalers. Next, we comment on the different technologies we use for the
implementation of the framework.

5.1. Experiment requirements
For our experimental evaluation, we create a framework that supports end-to-end evaluation of auto-
scalers with different workloads on different operator topologies. The framework is easy to extend
with new scenarios and new auto-scalers can easily be added. For the design of this framework, we
take inspiration from the current state-of-the-art for the evaluation of auto-scalers targeting SPEs, as
described in section 2.5.2. We differ in two ways from current state-of-the-art methods for auto-scaler
comparisons: the auto-scalers are evaluated end-to-end and the framework supports the comparison
of different auto-scalers.

End-to-end evaluation State-of-the-art auto-scalers targeting SPEs are generally evaluated with
shallow experiments that are run for a small amount of time with unrealistic changes in input rate
that only require one or two scaling actions. Kalavri et al. [36], for example, evaluate their operators’
performance on constant input rate with different initial parallelism configurations and Floratou et al.
[18] investigate a single topology with two input-rate changes. While this provides a controlled environ-
ment for the authors to reason about the accuracy of the auto-scaler, it does not show the performance
of the auto-scaler in any production-like environment, where the auto-scaler is run for a long amount
of time and has to deal with different complex input-rate patterns. For our experimental evaluation,
we focus on these more production-like environments and investigate the auto-scalers when run for
a significantly longer period. This way we can see how the auto-scaler deals with scaling overhead,
reason over the timing of certain scaling actions, and how the auto-scaler reacts to different workload
patterns when run with different topologies.

Auto-scaler comparison Another limitation of state-of-the-art evaluation of auto-scalers for SPEs is
the general absence of a comparison between auto-scalers. One reason for this is the absence of a
general testing framework in which auto-scalers can be implemented and compared. Currently, authors
are required to build both the testing environment and other state-of-the-art auto-scalers from scratch,
requiring much additional work. Kalavri et al. [36] design an auto-scaler for several SPEs, allowing it
to reuse the testing framework of Dhalion [18] and compare its performance with it. This evaluation
framework, however, is very limited. For our experimental evaluation, we design a modular framework
that can easily be extended with more auto-scalers and that can compare their performance. This
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brings about two challenges: how to compare different auto-scalers effectively, and how to create a
framework that can be extended with more auto-scalers.

5.2. Experimental types
As discussed in the previous section, we design a system that supports end-to-end evaluation of auto-
scaler and allows for the comparison of the performance of different auto-scalers. As shown in section
2.5.2, we distinguish five different experiments for evaluating auto-scalers for SPEs: performance anal-
ysis, parallelism accuracy, convergence time, prediction accuracy, and overhead analysis. As the main
goal is to create a framework that allows for the comparison of different auto-scalers we primarily focus
on the performance analysis experiment. We later extend this to also include the possibility to reason
over the parallelism accuracy of the system and to compare the convergence time of different auto-
scalers. We do not consider the prediction accuracy experiment, because of its auto-scaler-dependent
nature, and consider the overhead analysis to be out-of-scope for this work. Furthermore, as we dis-
cuss in section 6, the auto-scalers make use of the same monitoring system and only differ in their
auto-scaler logic. As the auto-scalers are deployed as individual containers, we consider the differ-
ence in overhead negligible.

Performance analysis The goal of the evaluation framework is to gather insights into the overall
performance of the auto-scaler under different workloads when run on different operator topologies.
The performance of the auto-scaler is then compared to the performance of other auto-scalers or to
itself when run with different configurations. As discussed in section 2.5.2, the performance analysis
experiment is done by selecting several metrics that are collected during run-time and used to evaluate
the performance of the system. For these metrics, we focus on the two most common performance
metrics used in the performance analysis for auto-scalers targeting SPEs: latency and throughput.
In addition, we investigate the efficiency of the resource usage of the auto-scaler and investigate the
scaling overhead induced by the auto-scalers. We discuss the performance metrics in more detail in
section 5.3. The auto-scalers are run for a configurable amount of time on different operator topologies
with a diverse number of workloads. These workloads include a sinus pattern, an increasing pattern,
a decreasing pattern and a randomly generated pattern (more information in section 5.4.3).

Convergence time While the main focus of the experiment is the performance analysis of auto-
scalers, we add an additional experiment similar to the one of [18] and [36] investigating the conver-
gence time of the auto-scalers. For this, we use the convergence workload, as described in section
5.4.3. By starting at minimal parallelism, we let the auto-scalers converge to a constant input rate. After
the auto-scaler converges, the input rate is decreased, requiring the auto-scaler to scale down. This
combination allows us to investigate the convergence time of the auto-scalers when scaling up and
scaling down. Adapting fast to a change in the system’s workload reduces the time the system spends
in a sub-optimal state, minimising latency. Furthermore, requiring more scaling actions to adapt to a
new workload results in additional scaling overhead.

Parallelism Accuracy Ideally, an auto-scaler should suggest a parallelism configuration that can
handle the incoming workload while minimising the resources. To investigate the accuracy of the sug-
gested parallelisms of auto-scalers, both Kalavri et al. [36] and Fu et al. [20] run the systems on different
parallelism settings and determine which parallelism is the most optimal one. Then, by comparing the
suggested parallelism of the auto-scaler and the actual optimal parallelism, they can determine the
accuracy of the auto-scaler. Though, when running the auto-scaler in a production-like environment,
the suggested parallelism should also consider scaling overhead and workload variations. This makes
determining the optimal parallelism a bit more complex. While, for example, a scaling decision that re-
sults in over-provisioning can be considered inaccurate, when after scaling the workload of the system
suddenly goes up, this can again be considered to be an accurate decision. For this reason, when
running the auto-scalers in a production-like environment, it is difficult, or even impossible to determine
the optimal parallelism at a certain time. For this reason, we do not perform a parallelism accuracy
analysis as DS2 [36] and Dhalion [20]. However, we can get an estimation of the overall performance
and resource usage of the auto-scalers on the entire run. By comparing the performance and the re-
source usage of different auto-scalers with each other, we can get an indication of the efficiency, and
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with that the accuracy of the system’s predictions.

5.3. Performance metrics
For the comparison of different auto-scalers, we select several metrics that provide insight into the over-
all performance of the auto-scaler. As discussed before, for this we focus on the two most commonly
used metrics for the evaluation of auto-scalers targeting SPEs: latency and throughput. In addition,
to get an estimation of the efficiency of resource usage of the system, we investigate the number of
resources used by the system and the number of scaling actions it triggered. Finally, to investigate
the convergence time of the system, we investigate the system’s convergence time while running the
system on the convergence workload (section 5.4.3.

Latency As shown in section 5.3, latency is the most used metric used for evaluating auto-scalers
targeting SPEs. For this, authors generally use the overall latency of the system [41, 20]. The overall
latency is the difference in time between the record arriving at the SPe and when the SPE is done
processing the record. This is, however, difficult to measure and is affected by the topology operators
of the system. Instead, we define latency as the difference in time between the records arriving at the
SPE and the time it is received by the SPE. When using a messaging system as middleware, this would
be the time the records spend inside the messaging system before being emitted by the SPE. We follow
Cardellini et al. [8] in their approach by aggregating the latency and investigating the average latency,
the 50th percentile latency and the 95th percentile latency. In addition, we also look at the maximum
latency of the system.

Throughput For throughput, both the input-throughput and output-throughput can be used. The
input throughput is the number of records that enter the SPE and the output throughput is the number
of records per second that leave the SPE. As the output rate depends on the selectivity of the system’s
operators, we choose the input rate as the metric we look at for the throughput. By comparing the input
throughput with the input rate, we can see whether the system can keep up with the input rate.

Resources efficiency We also want to get an estimation of the efficiency of the auto-scalers in terms
of resource consumption. For this, we consider both the average and maximum amount of workers
deployed at any point in time. This is equal to the sum of the parallelism of the operators.

Convergence time Finally, as we also investigate the convergence time of the system, we want to
get an estimation for this. For this, we consider the total amount of time it takes for the auto-scaler to
converge when using the convergence workload (section 5.4.3). In addition, we also measure the total
number of scaling actions required before converging to a parallelism configuration.

Resource usage As throughput cannot distinguish over-provisioning from perfect-provisioning, we
also consider the resource usage. The higher the resource usage, the more efficient the resources
are used. This allows us to distinguish over-provisioning from both under-provisioning and perfect-
provisioning. When the throughput is equal to the input-rate and the resource usage is high, the system
is perfect-provisioning. For the experiments, we use the average CPU-usage as metric for the resource
usage.

Number of scaling actions Another metric, not generally considered in the performance analysis of
auto-scalers for SPEs, is the number of scaling actions issued by the auto-scaler. Depending on the
topology of the system, scaling the application can induce a significant overhead. This is especially the
case with stateful operators, who need to store their state before being able to scale the application.
Because of this, the number of scaling actions performed by the application can have a significant
impact on the performance of the system. For this reason, we also consider the total number of scaling
actions performed during the experiment.
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5.4. End-to-end Auto-scaler evaluation
For evaluating the auto-scalers, we create a modular framework that can test the auto-scalers end-
to-end in a production-like environment. As a basis for this framework, we select the Apache Beam
Nexmark Benchmarking framework [64, 6]. This is a benchmarking framework specifically designed
for benchmarking SPEs and is used in the evaluation of state-of-the-art auto-scaler DS2 [36]. The
framework consists of a large number of stream-processing queries, which are implemented together
with a data generator. We select several queries from the benchmarking framework and extend the data
generator to generate data in different syntactic patterns. In this section, we start by providing some
background information for the Nexmark benchmarking framework. Next, we discuss the different
queries and the different workloads we use for the experimental evaluation.

5.4.1. Bench-marking framework
For the experimental design, we consider the Nexmark Benchmark suite for queries over continuous
data streams [64]. This framework is later extended with more complex queries by the Apache Beam
as the Apache Beam Nexmark suite [6]. The Apache Beam Nexmark suite is state-of-the-art in terms of
benchmarking queries over data streams and is used for the evaluation of state-of-the-art auto-scaler
DS2 [36]. The framwork is implemented1 for state-of-the-art SPE Apache Flink [15].

The Nexmark benchmark suite concerns an EBay-like online auction store, containing person-, auction-
, and bid objects that arrive at the system as three separate streams. Persons are newly registered
users with an ID, name, email address, credit card number, city, and state field. Auctions are auctions
hosted by players containing an id, name, description, initial bid, sell price, timestamp, expiration date,
the sellers-ID, and a category. A bid holds the auction ID it corresponds to, a Person-ID of the bidder, a
price, and a timestamp. The benchmark contains a wide variety of queries having different processing
weights and different state sizes. We select a number of these queries for our experiments.

5.4.2. Queries
From the Apache BeamNexmark suite, we select queries 1, 2, 3, 5, 8, and 11 based on their processing
requirements and different state sizes. These queries are already used in the evaluation of state-of-
the-art auto-scaler DS2 [36] and contain a wide variety of stream processing complexities.

Query 1 Query 1 is a simple query that contains a simple 1-to-1 mapping function. The query accepts
the Bids stream and converts the bid value from dollars to euros. This query tests the processing speed
of the system and acts as a reference point for the other queries. The corresponding topology of the
query is visualised in figure 5.1.

Bids Source Map Sink

Figure 5.1: Operator topology of query 1 of the Apache Beam Nexmark Benchmark [6].

Query 2 Query 2 is also a simple query that selects the bids that correspond to specific auction IDs.
The query filters out the bids with different auction IDs and prints out the item ID and the corresponding
bid. The topology of the query is visualised in figure 5.2.

Figure 5.2: Operator topology of query 2 of the Apache Beam Nexmark Benchmark [6].

1https://github.com/nexmark/nexmark

https://github.com/nexmark/nexmark
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Query 3 Query 3 is a more complex query, that tests the join functionality of the system. It filters out
persons from a specific state and joins them with the auctions that they are hosting. As join operators
require saving the data that has previously been seen by the system for future join operations, the
state of the query grows large. This results in high processing times and large scaling overhead. The
topology of the query is visualised in figure 5.3.

Auction Source

Join Sink

Person Source Filter

Figure 5.3: Operator topology of query 3 of the Apache Beam Nexmark Benchmark [6].

Query 5 Query 5 is a sliding window aggregation that selects the auction with the highest number
of bids placed in the previous period. The sliding window size of the query is set to 60 minutes with
a 1-minute interval. As the query keeps track of a counter for every unique auction ID it finds, the
state of the query can grow significantly. However, when using hash-partitioning without data-skew,
the processing time of the query is, in opposition to query 3, linear to the input rate. The topology of
the query is visualised in query 5.4.

Bids Source Sliding window Sink

Figure 5.4: Operator topology of query 5 of the Apache Beam Nexmark Benchmark [6].

Query 8 Query 8 concerns a window join of the person and the auction stream. The goal of query 8
is to select the persons that have joined and created auctions in the last period of 10 seconds. Due to
the small window size, the state of the operation will not grow too big as in query 3. The topology of
query 8 is shown in figure 5.5.

Auction Source

Window Join Sink

Person Source

Figure 5.5: Operator topology of query 8 of the Apache Beam Nexmark Benchmark [6].

Query 11 Query 11 is the only query of our selected six that is introduced by the Apache Beam
Nexmark benchmark suite. The query concerns a session window that counts the number of bids users
make during the session. While previous queries had windows of constant size, the session window
may take a variable amount of time, introducing additional challenges for the SPE. The topology of
query 11 is shown in figure 5.6.
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Bids Source Session Window Sink

Figure 5.6: Operator topology of query 11 of the Apache Beam Nexmark Benchmark [6].

5.4.3. Workloads
For our end-to-end evaluation of state-of-the-art auto-scalers, we investigate their performance under
different circumstances. For this, we adapt the Apache Beam Nexmark workbench to generate syn-
tactic workloads. We use the following workloads for the experimental evaluation: cosine, random,
increasing, decreasing, and convergence workload. All but the convergence workload are run over a
total of 140 minutes. The convergence workload is run for a total of 90 minutes. In this section, we
describe the different workload patterns and discuss their relevance for the experimental evaluation.

Cosine workload The cosine workload follows a cosine pattern, as shown in figure 5.7. The cosine
workload allows for testing both the scaling up and scaling down capabilities of the auto-scalers. To
mimic a more real-world scenario, we introduce a bit of random noise in the input rate of every minute.

0 20 40 60 80 100 120 140
Minutes

1
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1e6 Input rate (rec/s)

Figure 5.7: Workload following the cosine pattern with a minimum input rate of 250.000 records per second, a maximum input
rate of 2.200.000 records per second, a maximum of 100.000 random noise and a cosine period of 60 minutes.

Random workload To mimic more real-world scenarios, we introduce the random workload. The
random workload starts at a specific input rate and adds or subtracts a random number to the input
rate of the system. By not following a predefined pattern, we make it more difficult for the auto-scalers
to anticipate changes in the input rate, potentially uncovering unwanted behaviour programmed into
the auto-scalers.
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Figure 5.8: Workload following the random pattern with a maximum change in input-rate of 500.000 records per second. The
maximum input-rate is set at 2.5 million records per second.

Increasing workload The increasing workload includes a simple workload that starts at a specific
value and then randomly increases over time. In the experiments, we start at zero input rate and set
the initial parallelism of the system to its minimum. This removes the need for the auto-scalers to
converge to the proper parallelism to get up to track with the initial input rate.
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Figure 5.9: Workload following the increasing pattern starting at zero records per second, randomly increasing over 140 minutes
until it reaches a maximum of 2.5 million records per second.

Decreasing workload The decreasing workload is the opposite of the random workload. It starts at
a specific workload and then randomly decreases towards zero. Because of the high initial workload,
we try to guess the optimal parallelism of the workload to reduce the time it takes for the auto-scaler to
converge to the initial perfect parallelism.
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Figure 5.10: Workload following the decreasing pattern starting at 2.5 million records per second, randomly decreasing over 140
minutes until it reaches close to zero records per second.

Convergence workload To investigate the time it takes for auto-scalers to converge to the optimal
parallelism configuration, we introduce a convergence workload inspired by Kalavri et al. [36]. The
convergence workload starts at an input rate of 0 records per second with the operators having minimal
parallelism. Then, the input rate is increased to a higher input rate and kept constant until the auto-
scaler converges. After this, the input rate is lowered to a lower input rate which requires the system
to scale down again. This allows us to investigate the time the auto-scalers need for scaling up and
down.
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Figure 5.11: Workload following the convergence pattern, starting at 0 records per second, increasing to 2 million records per
second, decreasing to 1 million records per second.

5.5. Stream Processing Engine
For the experimental evaluation, we use Apache Flink [15] as SPE. Apache Flink is an open-source
stream-processing and batch-processing framework that can be deployed in distributed environments.
It is used in the experimental analysis of both DS2 [36] and Varga et al. [66], and is widely considered
to be state-of-the-art. In this section, we discuss Apache Flink and its underlying technologies. We
start by discussing its architecture, followed by its supported operators, scaling functionality, and its
backpressure mechanism. Finally, we discuss the metrics that are made available through its built-in
monitoring system.

5.5.1. Architecture
A simple Apache Flink deployment [14] (referred to as a job) consists of three parts: the Job-manager
and Task-managers. The job-manager coordinates the job and assigns tasks to the task-managers.
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User Flink Client Job-manager

Task-manager

Apache Flink

Figure 5.12: Visualisation of the architecture of Apache Flink [17].

The task-managers are the workers of the system and execute tasks assigned to them by the job
manager. The user interacts with the job-manager through the Flink client. The Flink client compiles
the job submitted by the user and sends it to the job-manager to be deployed. Flink’s architecture is
visualised in figure 5.12.

Jobmanager The job-manager is the coordinator of the job. It receives a job description, which
includes the dataflow graph (operator topology), parallelism and other configurations from the user and
creates an execution graph for the task-managers. In this execution graph, every task-manager in the
cluster is assigned a task, retrieving data from other task-managers, processing it and forwarding it to
the next task-managers. The task of the job-manager is to supervise the execution of the job, manage
failure and issue checkpoints.

Taskmanagers A task-manager is a worker in Apache Flink, each having a set amount of resources
assigned to it in terms of CPU and memory. A task-manager gets assigned tasks from the job-manager,
telling it what data to accept, how to process it and where to forward it to. A task-manager can perform
one or more tasks at the same time, sharing resources between the different tasks. When performing
the tasks, the task-manager will occasionally be instructed to make a checkpoint, backing up all the
data it is currently processing. In case of a failure, the system rolls back to the last checkpoint, ensuring
exactly-once state consistency and fault tolerance.

5.5.2. operators
A job includes a dataflow graph describing how data should flow through the different operators. Apache
Flink supports a large number of operators.

• Map: Takes one element and produces one element.

• Filter: Evaluates a boolean function for each element and returns the element if the boolean
function is True

• Flatmap: Takes one element and produces zero, one or more elements as a result.

• KeyBy: Partition a stream into disjoint partitions, based on a key. Apache Flink implements this
function by use of a hash partition that sends similar keys to similar partitions.

• Window: Given a stream, group the data according to some characteristic defined by the window.

• Join: Given two streams, combine them into a single stream.
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Some of these operations require information from previously processed records. These operations
are called stateful. Stateful operations can be costly and are more expensive to scale. Defining a
window constraint to the stateful operations allows the system to remove the information of records
that fall outside the window. This lowers the costs of the operation and makes the system run more
efficiently.

5.5.3. Dynamic scaling
Apache Flink supports elastic scaling in two ways: using Flink Reactive, or by redeploying the job.

Reactivemode The reactive mode of Apache Flink is a feature that allows for automatic scaling of the
streaming application. Apache Flink monitors the number of task-managers deployed in the cluster.
When a task-manager gets added or removed, Flink will automatically include or remove the task-
manager from the current job and divide the workload equally between all available task-managers.
Apache Flink will share the resources for all operators between the available resources and ensure
optimal performance given the resources. This removes scaling complexity and only requires the user
to determine the appropriate amount of resources for Flink Reactive. While this makes for more easy
deployment of Apache Flink, it does take away a lot of control from the user, removing the ability for
the user to assign resources to individual operators.

Redeployment To maintain control over the resource assignment, the system can also be scaled by
redeploying the job. Apache Flink does not have an automatic procedure for this, so the user has to
manually do so. This is done by first instructing the job-manager to create a checkpoint and stop the
job. After stopping the job, the user can deploy a new job with a different configuration. As this requires
stopping the job for a considerable amount of time, restarting the job will induce significant overhead.
Though, it does give control over the resource assignment to the user.

5.5.4. Backpressure mechanism
Taskmanagers have two buffers in Apache Flink: an input-buffer, and an output-buffer. The in-buffer
contains all incoming records that the operator has received, but has not yet processed and the output-
buffer contains all records that the operator has processed but are not yet been accepted into the
input-buffer of the downstream operator. The operator only processes records if there is enough space
in the output-buffer. When an operator is not able to handle the incoming workload, its input-buffer gets
filled and no longer accepts records from its upstream operator. The output-buffer of this operator then
starts to fill as the records cannot be transferred to the downstream operator. This lets the upstream
operator slow down its processing speed, triggering the same process for its upstream operator. This
continues, eventually slowing down the speed at which the source operators accept incoming records.
The entire system is now back-pressured.

5.5.5. Available Metrics
Apache Flink contains a built-in monitoring and metric system that allow users to effectively monitor
the status of Flink jobs [16]. Apache Flink contains several pre-defined metrics that users can extend
with custom-built metrics that fit their needs. The metric system provides information about the CPU
usage, memory usage, and thread usage of the task-managers, together with their network usage
and the status of their buffers. For each job, it reports the operators’ backpressure time, throughput,
and latency. When using Apache Kafka as a messaging system, the monitoring system also provides
information about Kafka’s input rate, lag, and the input-throughput of the system.

5.6. Container deployment
For the deployment of the different parts of the system, we package the individual parts in separate
containers. The containers are then deployed on a Kubernetes server. These two technologies are
now discussed individually.

5.6.1. Containers
A container is a standard unit of software, packaging the code and its dependencies required for run-
ning it in any computing environment, making it portable to be run across cloud and OS distributions
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[13]. Traditionally, applications were run on physical servers, providing no support for resource alloca-
tion of the application. When virtualisation was introduced, it became possible to run multiple virtual
machines in isolated operating systems on top of a single server. This enabled the users to divide the
resources of the server flexibly between the individual machines, allowing for better scalability of the
application. Containers work relatively the same as virtual machines, only with relaxed isolation con-
straints. This allows the containers to share the operating system with other applications while keeping
their own file system and their assigned resources. This results in a much lightweight application that
is decoupled from the underlying infrastructure, making it portable across cloud and OS distributions.
For the containerisation of the different components of the framework, we use Docker2.

5.6.2. Kubernetes
Kubernetes [38] is an open-source system for automatic deployment, scaling, and management of
containerised applications. The bundling of an application into containers allows Kubernetes to run the
application as a distributed system. Kubernetes provides deployment patterns, automatically handles
container failures, provides manual and automatic resource allocations, and supports both horizontal
and vertical scaling of these containers.

5.7. Messaging System
For the experimental setup, we use Apache Kafka as a messaging system functioning as middleware
between the data generator and the SPE. We first introduce the need for a messaging system and then
provide some background information about Apache Kafka.

5.7.1. The need for a messaging system
Large distributed systems consist of a large number of components that require continuous commu-
nication for sharing data and information. Maintaining this communication while dealing with network
unreliability, strong coupling, and heterogeneity of components can be challenging [46]. One solution
for this is connection-oriented communication with protocols such as TCP, as characterised in figure
5.13. This allows for fast and inexpensive communication between applications, but requires the com-
ponents of the system to be constantly available, requires the distributed system to be transparent, and
requires standardisation of the data structures shared between components [46].

Producer ConsumerTightly Coupled Communication

Figure 5.13: Traditional messaging using tightly coupled communication. Figure is inspired by [46].

An alternative approach is the introduction of a messaging system as middle-ware to manage the com-
munication between different components. Data is sent from the producer to the messaging system,
which stores the data in a queue. The consumer can then retrieve the data from the messaging system
(figure 5.14). This allows for loosely coupled communication between the producer and the messaging
system and does not require the consumer to be constantly available. Furthermore, the components
do not need to be aware of each other’s location, and no standard data structure is required but can
be negotiated with the messaging system.

Producer
Messaging System

Message Queue
Consumer

Figure 5.14: Messaging system supporting loosely coupled communication. Figure is inspired by [46].

2https://www.docker.com/
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5.7.2. Apache Kafka
Apache Kafka [35] is a state-of-the-art messaging system that was initially designed at Linked-In, open-
sourced in 2011, and further developed from a messaging queue to a full-fetched stream processing
system [10]. The key notion of Kafka is to be a stateless broker, requiring consumers to maintain
their state regarding data that is processed [46]. This requires Kafka to persist a single message copy
independently from the number of consumers, resulting in high throughput and low latency. Kafka is
designed as a Zookeeper-based distributed system [70], which allows for efficient scaling. Apache
Kafka is a good solution for data movement and is often used to pipe data streams to different SPEs
[46].

In Apache Kafka, data is stored in partitions, which are replicated over the cluster given a replica factor.
Partitions are stored on individual Kafka servers, called Kafka brokers. Producers determine in which
partition a message should be stored and send messages directly to the responsible broker. This is
the broker containing the lead partition. The responsible broker stores the message in the partition
and copies it to its replicas. Consumers can subscribe to one or more partitions, reading the data from
the partitions. Kafka allows the categorisation of data into different topics. These topics indicate the
type of data that is being stored and requires the data to be stored in separate partitions. Figure 5.15
illustrates an example of a Kafka cluster setup with three Kafka brokers, managing two topics with a
replication factor of two.

Kafka Cluster

Kafka Broker 2Kafka Broker 0 Kafka Broker 1

Topic A | Partition 0

Topic B | Partition 0

Topic A | Partition 0

Topic A | Partition 1

Topic A | Partition 1

Topic B | Partition 0

Topic B | Partition 1

Topic B | Partition 2

Topic B | Partition 1

Topic B | Partition 2

Consumer

Producer

ConsumerConsumer

Producer

Kafka Broker 0

Topic B | Partition 1

Topic B | Partition 0

Topic A | Partition 0 Topic A | Partition 0

Topic A | Partition 1

Topic B | Partition 0

ProducerProducer

Figure 5.15: Example Kafka Cluster architecture with two topics: one having two partitions, and one having three partitions. The
cluster is configured to have a replication factor of two.

5.8. Monitoring System
As discussed in section 2.2.1, auto-scalers depend on external monitoring systems to monitor the sys-
tem and provide the necessary metrics. As a monitoring system for the framework, we use Prometheus
[54]. Prometheus is an open-source monitoring tool that can monitor arbitrary applications, store the
data accordingly and allow for retrieving, querying, and visualising the data accordingly.

5.8.1. Prometheus
Prometheus is originally built and open-sourced by Soundcloud in 2012 as a monitoring and alerting
toolkit [54]. It collects and stores data as a time series, allowing for querying and over-time analysis
of the data. Data is collected by scraping instrumented jobs that expose their current metric status
through a web server. It also contains several built-in configurations allowing for automatic service dis-
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covery. Running Prometheus with this setting enabled in a Kubernetes cluster allows Prometheus to
automatically discover containers run in the cluster and collect their provided metrics. In addition, the
Prometheus server can be queried by external services, providing the requested information. Snap-
shots can be created from the Prometheus deployment, storing the collected data as a backup. Using
this, Prometheus can be snapshot and removed after running the experiment and later redeployed for
analysis.

5.8.2. Conclusion
The evaluation framework extends the state-of-the-art for the evaluation of auto-scalers targeting SPEs
by introducing proper end-to-end evaluation of the auto-scalers when run on different workloads and
with different operator topologies. The framework is designed to compare the performance of state-of-
the-art auto-scalers and can easily be extended with more workloads and different operator topologies.
We have selected queries 1, 2, 3, 5, 8, and 11 from the Apache Beam Nexmark benchmark [6] as
operator topologies, and proposed a cosine, random, increasing, decreasing, and a special conver-
gence workload pattern. To compare the performance of the different auto-scalers, we have selected
performance metrics latency, throughput, resources efficiency, resource usage, and the total number
of scaling actions. As it is impossible to determine the optimal parallelism in a changing workload, the
input rate with the system’s input throughput was compared to get an estimation of the auto-scalers’
parallelism accuracy. Furthermore, the system ran on a special convergence workload to investigate
the convergence time of the auto-scalers. For the experimental evaluation, we use open-source state-
of-the-art SPE Apache Flink and Apache Kafka as a messaging system. We deploy the framework in
Kubernetes.
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As discussed in section 5, we design an evaluation framework for a performance analysis of state-of-
the-art auto-scalers targeting SPEs. This framework consists of five parts: A data generator, an SPE
(Apache Flink), a messaging system connecting the data generator and the SPE (Apache Kafka), a
monitoring system (SPE), and auto-scalers. Figure 6.1 provides a global overview of the interaction
between the different parts. We start by discussing the overall framework and the interaction between
its different parts. Next, we discuss the implementation of the selected state-of-the-art auto-scalers
and their integration within the Framework.

6.1. Kubernetes
Deployment The framework consists of five different systems: The data generator, Apache Kafka,
Apache Flink, Prometheus, and the auto-scaler. These different systems are containerised and run
as separate deployments in a Kubernetes cluster. The data generator, Prometheus, and the auto-
scaler are deployed as individual containers. Apache Kafka runs its brokers in separate containers
and requires Zookeeper to be deployed to coordinate its deployment. Apache Flink separates the job-
manager deployment from the task-manager deployment. The job-manager and each individual task-
manager are run as separate containers. Furthermore, an NFS server is run for persistent storage
used by the check-pointing system of Apache Flink.

System interactions Interactions between the different systems are visualised in figure 6.1. The
data generator generates data records that are passed to messaging service Apache Kafka. These
records are then consumed by Apache Flink’s task-managers, who are coordinated by the job-manager.
When scaling, the task-managers create a checkpoint and save it to the NFS server. When starting a
new job, this checkpoint is used as starting point for the system. Prometheus retrieves metrics from
Apache Kafka and the job-manager and makes these available to the auto-scaler through its API. In
addition, the auto-scaler directly communicates with the job-manager to retrieve additional information
about the job. The Scale-Manager, which is run as part of the auto-scaler deployment, interacts with
the Kubernetes API for scaling the number of available task-managers and redeploying the job. It also
instructs the job-manager through its API to stop the current job and create a checkpoint.

6.2. Data Generator
The data generator is responsible for generating the records that require processing by the SPE. As
described in section 5.4.3, the data generator needs to be able to generate different workloads. In this
section, we discuss the overall architecture of the data generator and its modules. We explain how the
data generator can easily be extended to generate additional workloads and discuss its deployment
inside the Kubernetes cluster.
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Figure 6.1: System overview of the Kubernetes cluster, displaying its container deployments and their interactions.

6.2.1. Architecture
The data generator consists of two parts: the data generator and a modular pattern generator. The
architecture of the data generator is visualised in figure 6.2.
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ImplementationLoad Pattern
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Figure 6.2: Architectural overview of the data generator.

Data generator We adapt the existing Nexmark benchmark implementation 1 to be able to produce
records following an arbitrary input workload. The workload is fed to the system through an array of
per-minute input rates. Every minute, the next input rate from the array is used as the number of records
1https://github.com/nexmark/nexmark

https://github.com/nexmark/nexmark
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the data generator generates per second. During the experiments, we disable the hot-item functionality
built into the original Nexmark Benchmark system. This lets all persons host three actions and place 10
bids over time, preventing data skew. When a stream is not being used in the current query, no data is
generated. We extend the data generator to support parallel execution, allowing for higher input rates.

Pattern generator We extend the system with a modular load-pattern generator module, that gener-
ates the array representing the syntactic workload to be used by the data generator. After the necessary
configurations are set, the data generator fetches the load pattern from this module before starting the
data generator. We implement a large number of load patterns, including the cosine, random, de-
creasing, increasing, and convergence load patterns. In addition, we add the possibility to add random
spikes to different workloads. We are, however, unable to use this functionality for our experimental
evaluation due to time constraints.

6.2.2. Implementation
We implement the system in Java, with Apache Maven 3.0 as a project management system and
compression tool. During deployment, the workbench uses 18 CPUs and 18 GB of memory. The data
generator is run with a parallelism of 36, each one of them acting as a separate Kafka producer. This
allows the data generator to produce a total of 2.5 million records per second. Data generated by the
data generator is forwarded to the Kafka cluster, who makes the data available to Apache Flink.

6.3. Apache Kafka
To add fault tolerance and prevent data loss, Apache Kafka is used as messaging service. It receives
data from the data generator and passes it through to Apache Flink. When Apache Flink is unable
to process the incoming data due to under-provisioning or unavailability, Apache Kafka stores it in its
local FIFO queue. Apache Kafka provides performance metrics used by some of the auto-scalers and
our performance analysis. We discuss the available metrics of Apache Kafka and then discuss its
implementation in our cluster.

6.3.1. Implementation
So, as discussed before, the data generator connects to Apache Kafka by multiple Kafka producers.
In total, we have three Kafka brokers handling the incoming requests, each requesting 2 CPUs and
4GB of memory. For each topic, the replication factor is set to one and we set the number of partitions
to the maximum amount of consumers available in the setup, which is similar to the maximum amount
of available task-managers. To prevent massive amounts of data to be stored on our server, we set
the retention time (time for the data to be removed from the partition) to five minutes, with the retention
check interval set to five seconds. As we have limited storage on the server, we assume data will spend
no longer than 5 minutes in the Kafka queue before being processed by Apache Flink. 5 minutes is,
because of this, an upper bound for the latency of the system at any point in time.

6.3.2. Metrics
While Kafka provides several metrics that can be useful for the implementation of different auto-scalers,
we only use the total amount of messages received by the Kafka brokers to determine the system’s
input rate. Varga et al. [66] also use the maximum queue size of any of the Kafka partitions for their
original HPA-Varga implementation to get an estimation of the total amount of records in the queue.
Apache Flink, however, has since added a metric that shows the total amount of pending records in
the Kafka queue, providing a better estimation of the total lag.

We use the following metrics of Apache Kafka:

• Input_rate: the sum of the total amount of messages received by the Kafka brokers per second.

6.4. Apache Flink
As SPE we use Apache Flink. As a basis for the Nexmark queries, we use the implementation used
for DS2’s [36] evaluation 2. As the original queries require manual scaling, we extend the queries to
2https://github.com/strymon-system/ds2

https://github.com/strymon-system/ds2
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support our custom scaling protocol. The topology of the queries follows the topologies discussed in
section 5.4.1. The sources of the topology fetch the data from Apache Kafka and feed them into the
system. Apache Flink attempts to retrieve as many records as it can handle, fetching records from the
queue in FIFO order. If Apache Flink is under-provisioned, its backpressure mechanism automatically
slows down the rate at which records are fed into the system, increasing the size of the Kafka queue.

6.4.1. Scaling
For the experimental evaluation, we use operator-based scaling. We do this by disabling slot sharing in
the task-managers, only allowing them to work on a single operator. Because operator-based scaling
can is not natively supported by Apache Flink, we write a scaling module that does this automatically.
When receiving a scaling request, it lets the task-managers create a checkpoint that is saved at the per-
sistent volume and stops the job. After the checkpoint is created and the job is stopped, Kubernetes is
instructed to change the number of available task-managers to the required number of task-managers.
If the number amount of task-managers is exceeded, the available task-managers are divided relatively
to the number of requested resources over the operators. After the new task-managers are available, a
new job-manager is deployed with the requested parallelism. After this, scaling is done. During scaling,
Apache Flink is not able to process the incoming records, increasing the size of the Kafka queue.

6.4.2. Metrics
During the experiment, many metrics provided by Apache Flink are used for the decision-making of the
auto-scalers and the performance evaluation. These metrics are retrieved by Apache Flink’s built-in
monitoring system and are made available through Prometheus. We list the metrics retrieved from this
system below. While most of the metrics are available in Prometheus, some information is fetched
by the auto-scalers directly from the job-manager. This includes the current topology, its parallelism
configuration, a mapping between task-managers and the operators they are assigned to, and the CPU
load of the task-managers. Also, the scaling module fetches information about the current status of the
stopping job and the checkpoint that is being made.

We use the following metrics of Apache Flink:

• Latency: The average amount of time records spend in the Kafka queue before being emitted by
Apache Flink.

• Input throughput: The number of records per second being emitted by Apache Flink. For DS2,
we also fetch this metric on a per-operator basis.

• Output throughput: The number of records per second processed by Apache Flink. For DS2, we
also fetch this metric on a per-operator basis.

• Lag: We fetch the lag as the total number of records Flink knows are pending in the Kafka cluster.

• CPU-load: The average utilisation of the task-managers CPU.

• Backpressure-status: A binary value indicating whether an operator is considered to be back-
pressured.

• Backpressure-time: The amount of time per second task-managers spend back-pressured.

• Buffer-in usage: A per-operator metric indicating how much the operators’ buffers are filled.

• Idle-time: The amount of time per second task-managers spend waiting for input.

• Amount of task-managers: The total amount of task-managers available to the Job-manager at
any point in time.

• Instance-input-rate: the input rate of an individual operator instance. The sum of the instance
input rates is equal to the input throughput.

• Instance-output-rate: the output rate of an individual operator instance. The sum of the output
rates of all sink instances is equal to the output throughput.

• Instance-busy-time: the amount of time per second an individual operator instance spends pro-
cessing records.
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6.5. Prometheus
For monitoring the system, we use Prometheus. Prometheus is configured to automatically discover
services in the Kubernetes cluster and scrape them accordingly. Auto-scalers fetch data fromPrometheus
by calling its API with a query, requesting the necessary information. In practice, we found that metrics
are not always correctly retrieved, making Prometheus return empty results when querying. For this
reason, we take the average result over three times the scrape interval, to prevent empty results.

Implementation Prometheus is deployed using Helm [29] as a separate container in the cluster. It is
configured to automatically discover and scrape services deployed in the Kubernetes cluster, scraping
metrics from Apache Flink, Apache Kafka, the Kubernetes cluster, and itself. The scrape interval of the
system is set to five seconds.

Fetching performancemetrics After running an experiment, performancemetrics are retrieved from
Kubernetes by calling its API. In addition, a snapshot of the Prometheus instance is saved, together with
the timestamps of the time the experiment took place in. This allows for further analysis and querying
of Prometheus after the experiment is finished and the containers are removed. The data fetched from
Prometheus is saved in a standardised format, allowing for automatic reading and generation of plots
using Python’s Pandas 3 and MathplotLib 4 libraries.

6.6. Auto-scaler Architecture
The auto-scaler is run from a main function that accepts the provided parameters and instantiates the
requested auto-scaler with the provided configuration. Every auto-scaler contains a run() method that
starts the functionality of the auto-scaler. An auto-scaler contains three helper classes: a Configu-
rations class containing all configurations provided by the user, an ApplicationManager that acts as
an adapter between the auto-scaler and the interactions with external applications, and a ScaleMan-
ager that contains the functionality required by the application to scale the application. The interaction
between the different parts of the system is visualised in figure 6.3. We discuss the different mod-
ules of the auto-scalers in this section. In section 6.7, we discuss the implementation of the individual
auto-scalers.

6.6.1. Auto-scaler Logic
The main module of the framework is the module containing the auto-scalers logic. In figure 6.3 this is
visualised as the module named DS2. We implement four different auto-scalers: Dhalion, DS2, HPA-
CPU, and HPA-Varga. To minimise code duplication, we design the auto-scalers as shown in figure
6.4. DS2, Dhalion, and HPA extend an auto-scaler class that can be instantiated and run from the Main
class. The HPA auto-scaler module is defined as an abstract class, containing the basic functionality
of HPA. Both HPA-CPU and HPA-Varga extend this functionality with their own metrics.

6.6.2. Configurations
The Configurations class contains all configurations of the auto-scaler that it requires during run-time.
As can be seen in figure 6.3, we have three types of classes surrounding the Configurations class: the
ExperimentData class, a global Configurations class and the auto-scaler specific configurations class
(shown in the example as DS2-Configurations).

Configurations The Configurations class contains all configurations that are required for all auto-
scalers and includes configurations for the scaling module, configurations for the Prometheus module,
and some general cluster configurations.

ExperimentData The ExperimentData class is a separate class that includes data specific to the
experiments that are run. This includes a mapping between source operator names and their cor-
responding parameters to set their parallelism, a method that maps topic names to source operators,
and some name conversions to allow compatibility with the output of Prometheus and the job-manager.
3https://pandas.pydata.org/
4https://matplotlib.org/

https://pandas.pydata.org/
https://matplotlib.org/
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Figure 6.3: Example architecture of the implementation of the DS2 auto-scaler. It shows its different modules and the loosely
coupled interaction of the auto-scaler with the ScaleManager and other external applications.
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Figure 6.4: Diagram visualising the implementation and inheritance of shared functionalities of the different auto-scalers.
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When introducing additional experiments, this class can be updated with additional experiment details.
Extending this feature to use a more structured approach, like a JSON input file would allow for even
better configurability of the application.

Auto-scaler specific configurations When auto-scalers require additional configurations, an auto-
scaler-specific configuration can be created to extend the configurations class. By enforcing this con-
figuration class type in the constructor of the auto-scaler, the main function creating and running the
auto-scaler is forced to provide the configurations required for running the auto-scaler. We discuss the
auto-scaler dependent configurations in section 6.7.

6.6.3. Application Manager
The Application Manager functions as an adapter between the auto-scaler and the external services.
It consists of three parts: the global ApplicationManager, service-specific managers, and an auto-
scaler-specific application manager. Their interactions can be seen in figure 6.3 with the JobMan-
ager, PrometheusManager, and KubernetesManager as service-specific managers, and the DS2-
ApplicationManager as the auto-scaler specific manager. We now discuss the three individual parts of
the Application Manager.

Service specific application Manager During deployment, the auto-scaler interacts with multiple
services in the cluster. As these interactions may change over time, we create for every external service
a separate manager that is responsible for all interactions with that specific service. For our experiment,
this is a Kubernetes Manager responsible for the interaction with the clusters’ API, a Job-manager
Manager, responsible for the interaction with the job-manager of Apache Flink, and a Prometheus
manager, responsible for the interaction with Prometheus.

ApplicationManager The applications manager acts as an adapter between the auto-scaler and
the external service managers. It provides all functionality that is required by the auto-scalers and
performs this by interacting with the service-specific application managers. When services change or
a new service is required for running the auto-scalers, interactions with external services have only to
be changed in the application manager, without the need for changing the logic of the auto-scalers.
The ApplicationManager contains the shared functionality required by the different auto-scalers.

Autoscaler specific application manager When an auto-scaler requires additional interactions with
external services, the ApplicationManager can be extended with an application-specific manager. In
this manager, auto-scaler-specific functionality can be placed, decoupling the auto-scalers’ functionality
from its interactions with external services.

6.6.4. Scale-Manager
As the execution of the scaling actions is not part of the auto-scaler, we create an additional module
that scales the system. The Scale-Manager provides two types of scaling: by using Flink Reactive
or by performing operator-based scaling. When using Flink reactive, the Scale-Manager changes the
parallelism of the current task-manager deployment, after which Flink Reactive divides the resources
between the operators automatically. When performing operator-based scaling, the auto-scaler does
so by stopping the current job and creating a checkpoint. The task-managers are scaled, after which
a new job-manager configuration file is generated with the new parallelism configurations. When the
task-managers are ready, the new job-manager is deployed with the previously created checkpoint.
After scaling, depending on the configuration of the system, the Scale-Manager triggers a cool-down
period that disables scaling for a period, allowing the system to recover from its scaling action.

When higher parallelism is requested than supported by the cluster, the Scale-Manager can be con-
figured to cancel the scaling action or to divide the available resources relatively to the requested
resources. When, for example, in a three-operator topology a parallelism of 10, 30, and 20 is re-
quested, but a maximum of 30 task-managers are available, the operators are scaled to a parallelism
of 5, 15, and 10 respectively. For our cluster, we set the maximum amount of task-managers to 80
task-managers. Due to technical constraints, we also enforce a maximal increase in a parallelism of
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15 per operator per scaling action, as larger scaling actions tend to crash the cluster. Finally, an over-
provisioning factor can be configured for the auto-scalers. This over-provisioning factor increases or
decreases the per-operator parallelism accordingly.

6.6.5. Implementation
The auto-scalers are implemented in Python and are containerised and run as a Docker container [13].
The interaction with the Prometheus pod and the job-manager pod is done by accessing their API using
HTTP requests.

6.7. Auto-scaler Logic
We design a modular system for the implementation of the auto-scalers, separating the auto-scalers’
logic from its interactions with the cluster. This allows the auto-scalers to share functionalities, allowing
for fast implementation of additional auto-scalers. First, we discuss the global framework and the design
choices we made. Next, we discuss the implementation of the individual auto-scalers, whose theory we
discuss in section 4. As these auto-scalers are designed for different SPEs and are based on metrics
not directly available in Apache Flink, we have to make some adaptations to make the auto-scaler
work in our current context. We first discuss Dhalion and DS2, followed by HPA-CPU, and HPA-Varga.
Metrics mentioned in this section are discussed in more detail in section 5.3.

Auto-scaler run-time blueprint In the literature, auto-scalers generally consist out of a module that,
when called, determines whether to scale the system at that specific point in time. For this, it is up to the
user to determine when to call this module and what to do with the result. To create a fair comparison
between the different auto-scalers, we use the same ’decision moments’ for each auto-scaler. This is
done by running the auto-scaler in a loop, waiting for some time and then calling the decision module
of the auto-scaler. If the proposed parallelism configuration is different from the current parallelism, the
Scale-Manager is called, and the system is scaled accordingly. After the scaling, and the cool-down
period followed by it, the loop repeats. For our experiments, we set the iteration period to 15 seconds,
equal to the time we average the Prometheus’ values over.

6.7.1. Dhalion Implementation
Implementation We implement Dhalion as described in the original paper. We first check whether
back-pressure exists in the system, by checking the backpressure-status of the individual operators in
the topology. As the source operators do not have upstream operators, we check whether the lag of
the system is increasing at a larger speed than the kafka-lag-rate-to-be-backpressured threshold. If
backpressure exists, we determine the cause of the backpressure by following the back-pressured op-
erator downstream, until we find the first operator that is not back-pressured. This operator is recorded
as the system’s bottleneck and is scaled up accordingly. If no back-pressure exists in the system, we
assume the system is in a healthy state and explore the possibility to scale down some of the oper-
ators that are potentially over-provisioned. As described in the original paper, we select all operators
that do not have records in their buffer. We say an operator has no lag if its buffer-in-usage is below
the buffer-usage-close-to-zero threshold. As the source operators of the topology only fetch records
from the Kafka queue when it can process them, we look at the size of the Kafka queue instead of
the buffer-in usage of the source operators. For this, we say a source-operator has no lag if the lag of
the system is smaller than the kafka-lag-close-to-zero threshold. If an operator has no lag, it is scaled
down accordingly.

Scaling up Dhalion determines the scale-up factor of the operator by comparing its queue size (the
workload it was not able to handle) with its input throughput (the workload it was able to handle).
Because of the back-pressure mechanism of Apache Flink, we can only use the size of the Kafka queue
to estimate the load the system was unable to handle. As this is an indication of the performance of the
entire system and not of the operator itself, we look at the backpressure time of its upstream operators
instead. An operator’s backpressure time is the time per second it spends backpressured. When
scaling up a bottleneck operator, we take the largest backpressure time of its upstream operators and
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calculate the scale-up factor in the following way:

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑠𝑐𝑎𝑙𝑒_𝑢𝑝_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑏𝑎𝑐𝑘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑡𝑖𝑚𝑒
1 − 𝑏𝑎𝑐𝑘𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑡𝑖𝑚𝑒 (6.1)

As the source operators do not have an upstream operator, we calculate the scale-up factor using the
input rate and the change in the system’s lag. We calculate the scale-up factor for the source operators
using the following equation

𝑠𝑜𝑢𝑟𝑐𝑒_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑠𝑐𝑎𝑙𝑒_𝑢𝑝_𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑟𝑎𝑡𝑒(𝑙𝑎𝑔)
𝑖𝑛𝑝𝑢𝑡 − 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (6.2)

Scaling down For scaling down the operator, Dhalion allows the user to provide the scale-down factor
as the initial configuration of the system. In the experimental evaluation of Dhalion, the authors set this
factor to 1.2, scaling the operator’s parallelism down with 20%. For our experimental evaluation, we
also use this configuration.

Configurations As described above, Dhalion has four configurations that have to be provided by the
user. The configurations and their default values are shown in table 6.1.

Dhalion Configurations Default Value

Scale-down factor 1.2
Kafka-lag-rate-to-be-backpressured threshold 1000 records/s
Buffer-usage-close-to-zero threshold 0.2
Kafka-close-to-zero threshold 10,000 records

Table 6.1: Default configuration settings of auto-scaler Dhalion.

6.7.2. DS2 Implementation
Impementation For DS2, we use the decision-making module of the original DS2 implementation of
Kalavri et al. [36], available on GitHub 5. To connect the DS2 module with our application, we fetch
the necessary metrics required for the decision-making, and write them to file. The file locations are
then passed as parameters to the DS2 module when running it using Cargo 6. When the DS2 module
finishes processing, it returns the recommended parallelisms. These are then passed to the Scale-
Manager, scaling Apache Flink accordingly.

Metrics As metrics, DS2 requires the topology of the system, its parallelism configuration, per-topic
input rates, and for each operator instance its instance-input-rate, instance-output-rate, instance-true-
processing-rate, and instance-true-output-rate. The instance-input-rate and instance-output-rate are
directly provided by Apache Flink, as discussed in section 5.3. The instance-true-processing-rate is
calculated by dividing the instance-input-rate by its instance-busy-time. The instance-true-output-rate
is calculated by dividing the instance-output-rate with the instance-busy-time.

Over-provisioning-factor The original implementation of DS2 assumes records to be discarded
when the SPE is unable to process them, having a constant lag of 0. Because of this, DS2 proposes
parallelism configurations that can process the incoming workload but are not able to process the build-
up lag in the system. This results in the Kafka queue being filled up constantly, having high latency
and bad overall performance. To counter this effect, we make use of an over-provisioning factor, that
increases the recommended parallelism of DS2 with itself. As default, we use an over-provisioning
factor of 1.2, resulting in a 20% higher parallelism than DS2 requests.

Configurations Table 6.2 provides an overview of the auto-scaler configurations of DS2 and their
default values.
5https://github.com/strymon-system/ds2
6https://doc.rust-lang.org/cargo/

https://github.com/strymon-system/ds2
https://doc.rust-lang.org/cargo/
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DS2 Configurations Default Value

Over-provisioning factor 1.2

Table 6.2: Default configuration settings of DS2.

6.7.3. HPA-CPU Implementation
Operator-based scaling HPA is a general-purpose auto-scaler that is unable to capture the com-
plex relationships between different operators. This means that HPA does not support operator-based
scaling and is only able to scale the number of available task-managers in the cluster. Because of this,
we implement HPA ourselves and adapt it to support operator-based scaling. We implement two auto-
scalers for HPA. Our first auto-scaler targets the CPU utilisation of the task-managers and is used as
a baseline in the experimental evaluation. We call this auto-scaler HPA-CPU. The second auto-scaler
uses the metrics suggested by Varga et al. [66]. We refer to this auto-scaler as HPA-Varga. As HPA-
CPU and HPA-Varga use the same basic HPA functionality, we implement HPA in a separate module
that can be extended for HPA-CPU and HPA-Varga.

HPA implementation In every iteration, HPA determines the optimal parallelism for every operator
in the topology. This is added to a list, where the suggested parallelism is saved together with a
timestamp. The highest suggested parallelism of the previous scale-down-window-period is selected
as the desired parallelism of the operator. The combination of the desired parallelisms of the operators
is then passed to the Scale-Manager to execute the desired scaling action.

HPA-CPU HPA-CPU attempts to keep the average CPU utilisation of every operator close to the
CPU-utilisation-target-value. For this, the operator has to retrieve the CPU load of the different task-
managers, which is directly available in Prometheus. The provided information, does, however not
include the operator the task-manager belongs to. This information is fetched from the Job-Manager
API, providing a mapping between the task-manager-IDs and the operators. Using this information, the
CPU load of the task-managers belonging to the operators is averaged and used as controlled value
for HPA-CPU. HPA will now attempt to have the average CPU load match the CPU-load-target-value,
which we set at 0.7, or 70%.

Configurations Table 6.3 provides an overview of the different configurations used by HPA-CPU and
their default values.

HPA-CPU Configurations Default Value

Scale-down-window-period 300s
CPU-utilisation-target-value 0.7

Table 6.3: Default configuration settings of HPA-CPU.

6.7.4. HPA-Varga Implementation
Operator-based scaling HPA-Varga is originally designed to be used in combination with Flink Re-
active. This creates several problems when implementing it for operator-based scaling. We reuse the
HPA module used for HPA-CPU and configure it to use the utilisation and relative-lag-change as con-
trolled variables. We set the default target value of the utilisation to 0.7 and the default target value of
the relative-lag-change to 1.0.

Relative-lag-change value When extending HPA-Varga to operator-based scaling, we run into a
problem when considering the relative-lag-change. For calculating the relative-lag-change, the original
implementation uses the size of the Kafka queue (lag). As this is an indication of the health of the entire
system and not of an individual operator, we cannot directly use it for operator-based scaling. To solve
this, we check whether the lag of the system is increasing. If the lag of the system is increasing slower
than the minimum-kafka-lag-rate-when-backpressured threshold, we set the relative-lag-change of all
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operators to -1. This makes the auto-scaler suggest minimal parallelism for the relative-lag-change
value. As HPA always picks the highest parallelismwhen dealing withmultiple controlled variables, HPA
will now always propose the suggested parallelism determined by the utilisation factor. If the lag is larger
than the minimum-kafka-lag-rate-when-backpressured threshold, we assume there is backpressure in
the system. Using the backpressure_status metric, we search for the bottleneck operator causing the
lag. If none of the operators is experiencing backpressure, we assume that the source operators are
the cause of the backpressure. After we identified the cause of the backpressure, we calculate the
operators’ relative-lag-change using the lag of the Kafka queue and set the relative-lag-change of the
other operators to -1. We do this because the bottleneck operator can be seen as the cause of the
increase in the lag, resulting in the high relative-lag-change.

Relative-lag-change metrics In the original implementation of Varga et al., the maximum lag in one
of the consumers is used to estimate the total Kafka queue size. The authors calculate the Kafka queue
size by multiplying the maximum consumer lag by the number of consumers in the system. While this
gives a rough estimation of the health of the system, it only provides an upper bound for the Kafka
queue size. In a recent update of Apache Flink, we are now able to get the exact size of the Kafka
queue, using the pending-records metric. For our implementation, we use this metric instead of Kafka’s
maximum consumer lag to get the current lag of the system. We calculate the derivative of the rate
in change of the lag using Prometheus’ built-in derived function. This function estimates the metrics’
derivative by considering the values of the previous derivative-period-length, which we set, just as in
the original paper, to 60 seconds.

Utilisation For the utilisation value of every individual operator, we average the idle time of the op-
erators’ instances. We then subtract the idle time from 1, resulting in the per-operator utilisation time.
This value is then used to determine the optimal parallelism.

Configurations Table 6.4 provides an overview of the different configurations used by HPA-Varga
and their default values. Just as with HPA-CPU, we set the scale-down-window size to HPA’s default
value of 300 seconds. We consider the system to be back-pressured when the Kafka lag is increasing
faster than 1000 records per second.

HPA-Varga Configurations Default Value

Scale-down-window-size 300s
Utilization-target-value 0.7
Relative-lag-change-target-value 1.0
Kafka-lag-rate-to-be-backpressured threshold 1000 records
Derivative-period length 60s

Table 6.4: Default configuration settings of HPA-Varga.

6.8. Conclusion
The different systems required for the evaluation framework are containerised and ran in a Kubernetes
cluster. The data generator and the auto-scalers are designed to minimise work when adding new
workload patterns and auto-scalers. This is done by placing shared functionality in common modules
and by separating the data-pattern generation logic from the data generator itself. Furthermore, in-
teractions between the auto-scalers and external systems are performed through an adapter, making
it possible to change the auto-scalers’ interaction with external systems without having to change its
logic. The auto-scaler logic of HPA-Varga and HPA-CPU is adapted to support operator-based scaling.
Furthermore, a custom version of HPA is implemented that supports operator-based scaling.





7
Results

In this chapter, the results of the experimental evaluation are presented and used to compare the
performance of the auto-scalers. We start with a parameter optimisation of the most significant config-
urations of the auto-scalers to ensure good performance in the remainder of the experiments. Next, we
investigate the performance of the auto-scalers when run on different workloads. We investigate the
ability of the auto-scalers to react to fast increases in the workload and their ability to save resources
when the workload goes down. Next, we investigate the performance of the auto-scalers when run on
different types of queries. The queries have different structures, different sources, and different opera-
tor types, resulting in the queries having different resource requirements. We investigate how well the
auto-scalers can estimate the number of resources needed by the auto-scalers and how they respond
to this in terms of run-time behaviour. After that, we investigate the convergence time of the auto-
scalers and investigate the accuracy of the proposed parallelism configurations. We finish the chapter
by providing an overview of the experiments we perform and their results. Furthermore, we discuss
the performance of the individual auto-scalers and comment on their strengths and weaknesses.

Some of the experiments result in a crash in Apache Flink. This tends to happen during scaling where
task-managers are responsible for a lot of state and fail to create a checkpoint. This causes the job-
manager to lose connection with the task-managers causing the job to fail. During experimentation,
this issue mostly happens with auto-scaler HPA-Varga. HPA-Varga often issues large scale-down op-
erations when the workload of the system is decreasing. When the input rate goes up again and the
auto-scaler issues scale-up requests, the low number of task-managers are all responsible for a large
amount of state and fail to create a checkpoint. As we are unable to fix this problem within our time
constraints, we leave the results of HPA-Varga out when this happens and leave it for future work.

7.1. Parameter Optimisation
When deploying an auto-scaler, the user is often required to configure the auto-scaler for optimal per-
formance. Choosing the right configurations is essential for the auto-scaler to function properly in a
production environment. This can, however, be a difficult task that requires extensive knowledge of the
system and of the auto-scaler itself. The auto-scalers we use for the experimental evaluation contain
several parameters that have to be set before deployment. In this section, we investigate the impact the
different parameters have, reason over their influence on the run-time behaviour of the auto-scalers,
and select the most appropriate parameters for the remainder of the experimental evaluation. While
doing so, we comment on the basic mechanics the auto-scalers use for determining the right scaling
actions and show how this is found in the results of the experiments. We start by discussing the experi-
mental setup, together with the parameters chosen per auto-scaler to investigate. Next, we present the
results of the experiments, discuss the influence of the parameters on the behaviour of the auto-scalers
and select the parameters to use during the experimental evaluation.

47
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7.1.1. Experimental Setup
Ideally, we would optimise the parameters of the auto-scalers on every experiment we perform in the
experimental evaluation. As this would require us to run every experiment multiple times on every
auto-scaler, we are unable to do so due to time constraints. Instead, we choose to evaluate the auto-
scalers on the cosine workload pattern. While the pattern of the cosine workload is predictable, it
shows the ability of the auto-scalers to both scale up and down the parallelism of the system, providing
insight into these two activities. Furthermore, we run the auto-scaler on both queries 1 and 11. With
query 1 being a state-less query, it is also representative of query 2. Query 11 is a state-full session-
window operation that requires significantly more resources than query 1. We choose this query as a
representative for queries 3, 5, and 8. We set the maximum input rate of the cosine pattern to 2.200.000
records/second and the minimum to 200.000 records/second, with a random noise that deviates a
maximum of 100,000 records per second from the actual input rate. We use a cosine period of 60
minutes and run the experiment for a total of 140 minutes. For query 1, every operator starts with an
initial parallelism of 5 and for query 11 with an initial parallelism of 10. For every auto-scaler, we select
the most significant configuration that can have the most impact on the performance of the auto-scaler.
For Dhalion, this is the scale-down-factor, for DS2, this is the over-provisioning factor, for HPA-CPU
this is the CPU-utilisation-target-value and for HPA-Varga this is the Utilisation-target-value. The rest
of the auto-scaler configurations are set to their default value as discussed in section 6.7.

7.1.2. Dhalion
For Dhalion we investigate the impact of the scale-down factor on the performance of the auto-scaler.
As discussed in section 6.7, the scale-down factor is a pre-set configuration that determines by how
much Dhalion scales down an operator in the system when it decides it should scale down. In the
original paper, this value is set to 1.2. For our experiment, we investigate the performance of the auto-
scaler when set to 1.1, 1.15, 1.2, 1.25, and 1.3. We summarise the results of Dhalion in table 7.1 and
7.2 and graphs 7.1, 7.2.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 1.1 16.8 31 14.8 0.121 65.1 27
Dhalion 1.15 15.4 32 20.1 3.6 80.1 27
Dhalion 1.2 13.2 30 68.3 23.7 233.3 27
Dhalion 1.25 14.2 38 104.1 36.1 339.5 27
Dhalion 1.3 15.1 41 106.9 41.8 348.7 26

Table 7.1: Dhalion Configurations for query 1.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 1.1 34.5 66 84.7 7.8 366 26
Dhalion 1.15 32.1 66 107.1 24.7 334.2 27
Dhalion 1.2 22.8 51 130.7 60 353.3 27
Dhalion 1.25 35.7 73 121.5 52.2 358.2 26
Dhalion 1.3 30.9 73 145.3 90.2 388.6 27

Table 7.2: Dhalion Configurations for query 11

The scale-down-factor In general, the higher the scale-down factor, the more aggressively the auto-
scaler reduces resources when it finds the system to be in a healthy state with the buffers of the operator
empty. Scaling down the operator parallelism by too much causes backpressure in the system, increas-
ing the lag. This again triggers a scale-up action, converging the auto-scaler to the optimal parallelism.
Though, as we scale down all operators with an empty buffer, while only scaling up the single bottleneck
of the system, it may take multiple scale-up actions before we correct for the overly-aggressive scale-
down action. Setting the scale-down factor too high would therefore induce significant costs and the
configuration should therefore be set carefully. Setting the scale-down factor too low would, however,
cause the system to respond to a workload reduction slowly, resulting in constant over-provisioning.
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Figure 7.1: Task-managers deployed by Dhalion with different scale-down factors when run on query 1 with the cosine workload
pattern.
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Figure 7.2: Task-managers deployed by Dhalion with different scale-down factors when run on query 11 with the cosine workload
pattern.

While this ensures low latency, it does result in inefficient use of the task-managers.

Performance analysis Looking at the results in table 7.1 and 7.2, we see the average amount of
task-managers deployed in the experiment increasing the further away the configuration is set from
1.2 for both query 1 and 11. One would expect the latency to decrease when the number of deployed
task-managers increases. While this is the case for the scale-down-factor parameters lower than 1.2,
the latency only increases with a higher scale-down-factor. The increase in latency can be explained
by two things. First, scaling down too aggressively causes backpressure and may require an additional
scale-up action to correct for its inaccuracy. In the run of Dhalion on Query 1 with a scale-down factor of
1.25, this can be seen to even trigger a scale-up action while the input rate is decreasing. The second
problem that arises can be observed in query one, where the runs with the scale-down factor of 1.25
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and 1.3 both result in a parallelism of 1 for every operator on the lowest point of the cosines pattern.
While this is enough to process 200.000 records per second, it should be scaled up again when the
input rate starts rising. Scaling up again is, however, performed slowly. This is because Dhalion only
scales up a single bottleneck operator at a time and because a significant increase in parallelism from
parallelism 1 requires a high scale factor. One scale-up operation for an operator might therefore not be
enough to handle the incoming workload, requiring multiple scaling operations per operator. In query
11, only the run with scale-down-factor 1.1 can keep up with the steep workload increase. It manages
to do so by barely scaling down from the initial parallelism configuration when the workload was high.
While this results in low latency, it comes at the cost of the auto-scaler over-provisioning the system
extensively when the workload is low.

The optimal scale-down-factor As the scale-down factor should be set to let the auto-scaler respond
correctly to a decreasing workload and not to correct an inherent flaw of the auto-scaler itself when
scaling up, we prefer using the scale-down factor of 1.2 for the experimental evaluation. While the
scale-down factor of 1.2 induces more latency than a lower factor, it reduces the average number of
task-managers significantly. Furthermore, 1.2 was also the scale-down factor used by Floratou et al.
[18] when evaluating Dhalion. For this reason, we use the scale-down factor of 1.2 for the experimental
evaluation.

Conclusion

• Dhalion is slow in its response to increasing workloads. By scaling down slowly at the decreasing
part of the cosine pattern, Dhalion can handle the increasing part better.

• The higher the scale-down factor, the more aggressively the system is scaled down. When scal-
ing down too aggressively, an additional scale-up action is required to converge to the optimal
parallelism.

• Setting a too-low scale-down factor results in over-provisioning of the system.

• The experimental evaluation has pointed out a scale-down factor of 1.2 to be an appropriate
trade-off between preventing over-provisioning and reducing latency.

7.1.3. DS2
For DS2, we investigate the impact of the over-provisioning factor on the performance of the auto-
scaler. The over-provisioning factor is introduced for DS2 to account for the lag that builds up when
the auto-scaler is unable to process the incoming workload when scaling. DS2 is designed to suggest
a parallelism configuration that allows the system to process the same amount of tuples per second
as the input rate. This means that it is not designed to provide enough resources to also decrease the
lag of the system, resulting in high latency. The over-provisioning factor allows for deploying resources
on top of the resources suggested by DS2 to process additional records and reduce the lag of the
system. To illustrate the need for the over-provisioning factor and show the danger of setting the over-
provisioning factor too high, we run DS2 with an over-provisioning factor of 1.0, 1.2 and 1.4. The results
are summarised in table 7.3 and 7.4, and graphs 7.3 and 7.4.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
DS2 1.0 6.5 15 311.8 317.5 554.6 23
DS2 1.2 9.4 15 39.4 29.3 110.5 23
DS2 1.4 10.3 15 11.7 3.6 41.7 22

Table 7.3: DS2 Configurations for query 1.

Performance analysis As seen in the tables, the average latency of DS2without any over-provisioning
is higher than 5 minutes for both queries 1 and 11. This is caused by the lag building up during scaling
operations and never being reduced. When setting an over-provisioning factor of 1.2 or 1.4, more re-
sources are used, resulting in significantly lower latency. The maximum number of task-managers for
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Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
DS2 1.0 9.4 30 388.5 388.9 588.9 26
DS2 1.2 13.2 30 284.1 316.3 499.2 26
DS2 1.4 15.8 33 160 137.2 405.5 26

Table 7.4: DS2 Configurations for query 11.
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Figure 7.3: Task-managers deployed by DS2 with different scale-down factors when run on query 1 with the cosine workload
pattern.
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Figure 7.4: Task-managers deployed by DS2 with different scale-down factors when run on query 11 with the cosine workload
pattern.

query 1 is 15 for all three configurations and in query 11 30 for both factors 1.0 and 1.2. The similarity
in this metric is caused by the initial parallelism of the system from which the system is scaled down
to never reach its initial parallelism again. When not considering the initial parallelism, the maximum
parallelisms of the three configurations grow relative to the over-provisioning factor with configurations
1.0, 1.2, and 1.4 having in query 1 a maximum number of task-managers of 10, 13, and 15 respectively.
Furthermore, as can be seen in figure 7.3, the scaling operations of all three configurations take place
at the same time and only differ in the parallelisms the auto-scalers scale to. Furthermore, DS2 has
trouble adjusting to the change in workload in the increasing parts of the cosine pattern. This explains
the high average latency in query 11 for all three configurations. While DS2 with over-provisioning
factor 1.4 is only using one or two additional task-managers on average in comparison with factor 1.2,
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Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
HPA-Varga 0.6 9.6 17 12 3.2 42.6 26
HPA-Varga 0.7 10.2 26 34.8 24.3 113.3 26
HPA-Varga 0.8 9.4 23 85.1 55.9 285.8 26

Table 7.5: HPA-Varga Configurations for query 1.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
HPA-Varga 0.6 - - - - - -
HPA-Varga 0.7 26.5 69 219.3 244.1 379.8 26
HPA-Varga 0.8 - - - - - -

Table 7.6: HPA-Varga Configurations for query 11.

it does have significantly lower latency than the other two factors. The reduction in latency in query 11
when using factor 1.4 is also much higher than in query 1. This can be explained by the scaling costs
of statefull query 11 being more costly than in query 1.

The optimal over-provisioning factor In general, DS2 seems to function better with an over-provisioning
factor of 1.4. This over-provisioning factor does, however, not only correct for the scaling overhead, but
also corrects for the inaccuracy of DS2’s suggested parallelism configurations. The parallelism config-
urations suggested by DS2 generally lead to under-provisioning, inducing high latency. As we do not
want to correct for inherent inaccuracies of the auto-scaler logic itself, we prefer the over-provisioning
factor of 1.2. Furthermore, an increase of 40% of resources is too much and not realistically accepted
by SLOs. For these reasons, we use an over-provisioning factor of 1.2 for this experimental evaluation.

Conclusion :

• DS2 requires an over-provisioning factor to allow the system to process lag caused by scaling
actions.

• When using an over-provisioning factor of 1.0, the system is unable to reach an input throughput
equal to or larger than the input-rate of the system for both queries 1 and 11.

• An over-provisioning factor of 1.4 only requires a few more task managers on average while
significantly reducing the latency of the system.

• We select 1.2 as the default configuration for DS2’s over-provisioning factor as we do not want
to correct for inaccuracies of the auto-scalers logic itself and because increasing the suggested
resources by more than 20% is too much and not realistically acceptable by SLOs.

7.1.4. HPA-Varga
HPA-Varga has two metrics that it tries to keep at target value: relative-lag-change and utilisation. As
discussed in section 4, when the relative lag change is larger than one, the system is unable to keep
up with the input rate. When the relative lag change is smaller than one, the system can process both
the input rate and the lag, eventually returning to a relative lag change of one when the lag is gone. For
this reason, we set the relative-lag-change-target-value to one and do not consider other target values
for the metric. Setting an appropriate value for the utilisation target is, however, a bit more complex.
The utilisation metric corresponds to the time per second the task-managers spend processing records.
The higher the utilisation-target-value, the faster the auto-scaler scales down the auto-scalers and the
slower the auto-scaler scales up the auto-scalers. We investigate the performance of HPA-Varga with
a utilisation-target-value of 0.6, 0.7, and 0.8. The results are summarised in table 7.5, 7.6, and graphs
7.5 and 7.6. Due to technical problems, we are unable to run HPA-Varga with parameters 0.6 and 0.8
on query 11. This leaves us with only a run with a utilisation target value of 0.7 for query 11, making it
impossible to compare the behaviour of the three configurations on query 11. We leave this for future
work.
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Figure 7.5: Task-managers deployed by HPA-Varga with different utilisation target values when run on query 1 with the cosine
workload pattern.

Figure 7.6: Task-managers deployed by HPA-Varga with 0.7 utilisation target values when run on query 11 with the cosine
workload pattern.

Performance analysis The higher the utilisation target, the more the auto-scaler attempts to use the
full capacity of the task-managers, scaling down faster and scaling up later. In the results of query
1, we see, however, that HPA-Varga with a utilisation target of 0.6 has the lowest latency and uses
fewer resources than the runner-up of HPA-Varga with a utilisation target value of 0.7. After the input
rate drops down in the first cosine period, the auto-scalers with a higher utilisation target value scale
down faster than the auto-scaler with a lower utilisation target. As HPA-Varga with a utilisation target
of 0.6 scales down slower than the other two auto-scalers, it handles the workload better when it starts
rising again, scaling up quickly without letting the lag increase too much. The other two configurations
do, however, scale up slower, increasing the lag. From these two configurations, HPA-Varga with a
utilisation target of 0.7 can recover more quickly from this increase than the auto-scaler with a utilisation
target of 0.8. Furthermore, while both auto-scalers save resources by scaling down faster than HPA-
Varga with a utilisation target of 0.6 when the input rate is decreasing, HPA-Varga with a utilisation target
of 0.7 eventually uses more resources when catching up with the input-rate when it is increasing. HPA-
Varga with a utilisation target of 0.8 does save a bit more resources than HPA-Varga with a utilisation
target of 0.6 but has significantly higher latency. In query 11, we only manage to get results for HPA-
Varga with a utilisation target of 0.7. Here, we see the auto-scaler taking a long time to catch up
when the workload of the system is increasing, after which the auto-scaler issues a large scale-down
action that drops the auto-scaler to minimal parallelism. While this saves resources, it also results in
the auto-scaler having trouble handling the input rate when it is increasing again, resulting in high lag.
HPA-Varga with a utilisation target of 0.6 would scale down slower, using more resources when the
input rate starts increasing again. This would allow the auto-scaler to handle the steep increase in
workload better than HPA-Varga with a utilisation target of 0.7.
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Optimal utilisation target value In the experimental evaluation, we find that the tendency of utili-
sation target 0.6 to maintain an over-provisioned state for a longer period of time enabled it to handle
sudden increases in the workload more efficiently. This allows it to be both resource efficient and
achieve low latency when run on the cosine pattern. HPA-Varga with utilisation target 0.7 shows to be
more aggressive when scaling down the auto-scaler from an over-provisioned state. This reduces the
resource consumption of the auto-scaler, but makes it more difficult for the auto-scaler to handle the
input-rate when it starts increasing again. Still, if the workload remains low for a longer period of time
or would increase slower than it does in the cosine pattern, the auto-scaler would be more resource
efficient than the auto-scaler with utilisation target 0.6. Furthermore, a utilisation target of 0.6 sets the
target of the auto-scaler to use only 60% of the resources available by the task-managers. While the
utilisation target works well for the cosine pattern, the auto-scaler would when run on other workload-
patterns tend to over-provision. As a utilisation target of 0.7 seems more reasonable for an auto-scaler
to target, we choose to use the utilisation target of 0.7 for the experimental evaluation.

Conclusion

• The higher the utilisation target value, the faster HPA-Varga scales down and the slower it scales
up.

• The utilisation target of 0.6 achieves low latency and is resource effective when run on the cosine
pattern. By leaving the system in an over-provisioned state when the input rate is low, the system
can handle the increasing parts of the cosine pattern better, resulting in low latency and more
efficient resource usage.

• A utilisation target of 0.6 prefers the system to be in an over-provisioned state. While this results
in a good performance on the cosine pattern, it is likely to over-provision when run on other
workload patterns. For this reason, we prefer the more resource-efficient utilisation target of 0.7
for the experimental evaluation.

7.1.5. HPA-CPU
For HPA-CPU, we investigate the impact of setting a different CPU-utilisation-target-value. The higher
the target value, the more efficient HPA-CPU will try to use the task-managers, issuing scaling-down
actions faster and postponing scale-up actions. We investigate the performance of HPA-CPU with a
CPU-utilisation-target-value of 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. The results are summarised in table 7.7
and 7.8, and graphs 7.7 and 7.8.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
HPA-CPU 0.5 17 32 4 0.013 30.2 26
HPA-CPU 0.6 13.4 24 3.9 0.012 28.2 26
HPA-CPU 0.7 11.4 21 6.4 0.018 35.8 26
HPA-CPU 0.8 9.8 22 36 14.2 136.1 26
HPA-CPU 0.9 8.7 16 102 43.7 302.6 26
HPA-CPU 1.0 4.3 15 327.7 377.9 60.6 3

Table 7.7: HPA-CPU Configurations for query 1.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
HPA-CPU 0.5 23.9 49 30.2 0.029 141.8 26
HPA-CPU 0.6 19.5 53 107.8 52.8 318.9 26
HPA-CPU 0.7 14.2 34 178 146.9 399.9 26
HPA-CPU 0.8 11 30 254.9 294.3 488.1 25
HPA-CPU 0.9 8.8 30 296 328.9 539.9 20
HPA-CPU 1.0 7.4 30 339.1 385.1 582 7

Table 7.8: HPA-CPU Configurations for query 11.
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Figure 7.7: Task-managers deployed by HPA-CPU with different CPU-utilisation target values when run on query 1 with the
cosine workload pattern.
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Figure 7.8: Task-managers deployed by HPA-CPU with different CPU-utilisation target values when run on query 11 with the
cosine workload pattern.

CPU-utilisation target HPA-CPU scales the application to keep the CPU-utilisation metric close to
the CPU-utilisation target. To achieve this, it scales more conservatively when the CPU-utilisation target
is high and more aggressively when the CPU-utilisation target is low. This results in the general trend
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of HPA-CPU with a high target value using few task-managers but having high latency. HPA-CPU with
a low target value uses more task-managers but also achieves low latency. To find the optimal target
value for both queries, we have to find the best trade-off between these two extremes.

Setting CPU-utilisation target value too high The first thing one might notice is that the target
value of 1.0 has little scaling actions for queries 1 and 11. The auto-scaler scales down from its initial
parallelism configuration towards a parallelism of 1 per operator and then stays there for the remainder
of the experiment. This is also the case for the target value of 0.9 for query 11 where it uses few
resources, and sometimes scales up or down an operator with a single task-manager. A reason for
this is that the CPU load seems to max out around 90% utilisation. Every task-manager is assigned
a single CPU, which it uses to maintain communication with the job-manager, run its application logic,
run its garbage collection module, and process incoming records. As the CPU-utilisation metric only
shows the percentage of the CPU that is being used for processing records, a full 100% utilisation can
never be reached and the task-manager maxes out the maximum number of records it can process
per second before this happens. The auto-scaler assumes, though, that the auto-scaler can process
more workload and that the system should scale down the 100% CPU usage. For this reason, a target
value smaller than 0.9 is desirable.

Setting the CPU-utilisation target value too low When comparing the remaining target values, we
notice that the target value of 0.8 leads to under-provisioning, having significantly higher latency than
the other configurations. For query 1, target values 0.5, 0.6, and 0.7 all have low latency with target-
value 0.7 using the least amount of task-managers. Both 0.5 and 0.6 use more task-managers while
reaching similar latency as the 0.7 target value, with the 0.5 target value even over-provisioning with
more than 50%. For query 11, only the 0.5 configuration has low latency. When the input rate is going
up, HPA-CPU fails to scale the auto-scalers sufficiently, resulting in under-provisioning and increasing
the lag. A reason for this is that the scale factor is calculated by dividing the current value by the target
value of the system. The lower the target value, the higher the scale factor can grow when the system
is unable to keep up with the input rate. For this reason, only the target value of 0.5 can scale enough
to keep up with the fast-increasing workload.

The optimal CPU-utilisation target value While the CPU-utilisation-target-value of 0.5 achieves as
only target-value low latency in both query 1 and 11, it also leads to over-provisioning for query 1. Its low
target value allows the auto-scaler to increase fast enough to manage the increasing workload of the
cosine pattern. When the workload in the system is changing less rapidly, the low target-value results
in over-provisioning, making the target value unsuitable as the default configuration in the experimental
evaluation. Target-value 0.7 achieves a more appropriate trade-off between its latency and its resource
efficiency. For query 1 it uses significantly fewer resources than the 0.5 target value while maintaining
similar latency. It appears, however, unable to scale up fast enough to keep up with the fast-increasing
workload in query 11. Still, the auto-scaler can recover from this sudden increase in workload, eventu-
ally reducing the lag in the system to zero. For this reason, we select the CPU-utilisation-target-value
of 0.7 as the best all-round configuration to be used for the experimental evaluation.

Conclusion

• The higher the CPU-utilisation target, the fewer task-managers are deployed and the higher the
latency.

• As the CPU-utilisation metric of Apache Flink does not include the processing time the task-
managers require for its management and garbage collection, the value of the metric can never
grow bigger than 90%. This makes the CPU-utilisation-target-value of 0.9 and above unsuitable
as CPU-utilisation target values.

• Low CPU-utilisation-target-values can produce higher scaling factors than high CPU-utilisation-
target-values, allowing it to scale faster.

• We select 0.7 as the default CPU-utilisation-target-value for HPA-CPU for the experimental eval-
uation.
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7.1.6. Conclusion
To optimise the configurations of the auto-scalers for this experimental evaluation, the most significant
configurations of each auto-scaler was compared. The auto-scalers ran on query 1 and 11 with the
workload following the cosine pattern. For Dhalion, 0.8 is selected as optimal scale-down-factor. For
DS2 1.2 is selected as over-provisioning factor. HPA-Varga 0.7 is selected as optimal utilisation-target-
value and for HPA-CPU 0.7 is selected as optimal CPU-utilisation-target-value.
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7.2. Workload Comparison
In this section, we investigate the performance of the auto-scalers when run on different workloads.
The auto-scalers are run on the cosine-, random-, decreasing-, and increasing workload, when run on
a stateless operator topology (query 1) and a statefull operator topology.

7.2.1. Cosine pattern
The Cosine workload is designed to test the scale-up behaviour and the scale-down behaviour of the
auto-scalers. During the experiment, we run the auto-scalers on the cosine pattern as defined in 5.4.3.
The cosine pattern starts at 2.2 million records per second, following the cosine pattern down to 200,000
records per second at its lowest point. The cosine period is set to 60 minutes and the experiment is
run for 140 minutes. During the discussion of the results, we first comment on the performance of the
different auto-scalers, after which we dive into more detail regarding the different bottlenecks of the
auto-scalers to effectively scale the system. The results of the experiment are summarised in table 7.9
and 7.10. Furthermore, we visualise the task-managers and latency of the different auto-scalers when
run on query 11 in graphs 7.9 and 7.10.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 13.2 30 68.3 23.7 233.3 27
DS2 9.4 15 39.4 29.3 110.5 23
HPA-CPU 11.4 21 8.6 0.018 35.8 26
HPA-Varga 10.2 26 17 24.3 113.3 26

Table 7.9: Auto-scaler run on query 1 with cosine pattern.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 22.8 51 130.7 60 353.3 27
DS2 13.2 30 284.1 316.3 499.2 26
HPA-CPU 14.2 34 178 146.9 399.9 26
HPA-Varga 26.5 69 219.3 244.1 379.8 26

Table 7.10: Auto-scaler run on query 11 with cosine pattern.
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Figure 7.9: Task-managers deployed by the auto-scalers when run on query 11 with the cosine workload pattern.

Performance analysis There is a large difference in the performance of the auto-scalers in both
queries 1 and 11. With HPA-CPU having low latency in query 1 without using a lot of additional task-
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Figure 7.10: Average latency of the different auto-scalers when run on query 11 with the cosine workload pattern. As can be
seen in the graph, all four auto-scalers have trouble keeping up with the workload when the input-rate is increasing, causing
significant latency. Dhalion is the only auto-scaler able to maintain low latency when scaling up from the under-provisioned state
at the beginning of the experiment.

managers, it is unable to keep up with the increasing workload in query 11. In query 1, Dhalion uses the
most resources and achieves the highest latency. In query 11, it, however, achieves the lowest latency
of all four auto-scalers in query 11. DS2 is the most resource-efficient auto-scaler for both queries 1
and 11, never issuing scaling operations that surpass the initial configuration of the system. In both
queries it, however, is unable to keep up with the workload, resulting in high latency. HPA-Varga works
well for query 1 but is unable to effectively scale the system to handle the workload in query 11, using
the most amount of resources while achieving high latency.

Increasing workload The main bottleneck of the auto-scalers is the increasing part of the cosine
pattern. While most of the auto-scalers can handle the increase in input rate for query 1, all four auto-
scalers fail to scale up fast enough to manage the steep increase of the more intense workload of query
11. When this happens, Dhalion, HPA-CPU, and HPA-Varga successfully scale up the system until the
Kafka queue is empty and the system is back in a healthy state. DS2, on the other hand, does not
concern itself with the system’s health and only scales the system based on the change in input rate.
This causes the auto-scaler to scale down the system before it can reduce the latency, keeping the
latency high.

Initial parallelism configuration In query 11, the experiment starts in an under-provisioned state.
This causes Dhalion, HPA-CPU, and HPA-Varga to issue scale-up actions until the system is back in a
healthy state. Considering the backpressure status of the system, Dhalion is the only auto-scaler that
successfully identifies the operator that is being under-provisioned and scales it accordingly resulting
in an immediate decrease in the system lag. HPA-CPU and HPA-Varga, on the other hand, require
multiple scaling actions before they can find a parallelism configuration that can handle the systems
workload and work away the lag.

Conclusion

• The main bottleneck for the auto-scalers is the steep workload increase of the cosine pattern.
While none of the auto-scalers can keep up with the steep workload increase, HPA-CPU, HPA-
Varga, and Dhalion keep scaling up the system until they work away the lag of the system.

• DS2 only bases its scaling operations on the input rate and does not consider the health of the
system. Because of this, the auto-scaler fails to reduce the lag of the system, resulting in high
latency.
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• Considering the backpressure status of the system, Dhalion can identify and scale up the operator
being under-provisioned in the system more effectively than any of the four operators.

7.2.2. Random
Next, we run the different auto-scalers on the random workload, as defined in section 5.4.3. This
workload is designed to mimic a more real-world scenario, where the workload is difficult to predict.
For this reason, we pay extra attention to the behaviour of the individual auto-scalers and discuss the
correctness of their behaviour in certain situations. The pattern is generated from an initial input rate of
1,250,000 records per second. Every minute, the input rate is increased or decreased with a random
number between zero and 500,000 records per second. As an additional constraint, we do not allow
the input rate to surpass the maximum input rate of 2.5 million records per second. The experiments
on query 1 start with an initial parallelism of 5 per operator and the experiments on query 11 start with
an initial parallelism of 10 per operator. The results are summarised in table 7.11 and 7.11 and graphs
7.13, 7.12, 7.15, and 7.15. Due to technical constraints, we are unable to run HPA-Varga on the random
workload for query 11 without crashing the system. For this reason, its results are left out.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 14.9 33 76.1 29.7 337.9 27
DS2 9.4 16 71.8 41.9 223.2 26
HPA-CPU 11.1 24 20.1 0.125 155.6 26
HPA-Varga 10.4 31 51.4 24.5 215.3 26

Table 7.11: Auto-scaler run on query 1 with random pattern.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 35.3 76 84.7 35.5 310.1 26
DS2 14.8 32 295.8 341.3 611.8 26
HPA-CPU 14.2 30 273.8 313.1 499.7 27
HPA-Varga - - - - - -

Table 7.12: Auto-scaler run on query 11 with random pattern.
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Figure 7.11: Task-managers deployed by the auto-scalers when run on query 11 with the cosine workload pattern.

Performance analysis For query 1, HPA-CPU achieves low latency without using many additional
resources in comparison with DS2 and HPA-Varga. DS2 uses around 2 task-managers less than HPA-
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Figure 7.12: Average latency of the different auto-scalers when run on query 1 with the random workload pattern.
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Figure 7.13: Task-managers deployed by the auto-scalers when run on query 1 with the random workload pattern.

CPU, achieving a high average latency of 71 seconds. HPA-Varga sits between DS2 and HPA-CPU
in terms of both the average amount of task-managers and average latency. It does, however, use a
maximum of 31 task-managers during the experiment, which is almost double the maximum number of
task-managers used by DS2. Dhalion performs worse than the other three auto-scalers, using almost
50% more resources than the others while achieving high latency. For query 11, Dhalion also uses
significantly more task-managers than DS2 and HPA-CPU. It does, however, manage to achieve as
only auto-scaler a relatively low average latency. Both DS2 and HPA-CPU have an average latency of
around five minutes, using less than half the task-managers Dhalion uses.

Under-provisioning detection The random load pattern starts in a slightly under-provisioned state,
quickly increasing to the maximum input rate of 2.5 million records per second. This requires the
auto-scalers to respond quickly with a scale-up action to prevent an increase in the lag of the system.
HPA-CPU is the only auto-scaler that correctly responds to this, with the other auto-scalers issuing
scale-down actions instead. Using the CPU utilisation of the task-managers, HPA-CPU can determine
that the system is currently being under-provisioned and scales the operators accordingly. Because
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Figure 7.14: Task-managers deployed by the auto-scalers when run on query 11 with the random workload pattern.
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Figure 7.15: Average latency of the different auto-scalers when run on query 11 with the random workload pattern.

the experiment just launched, the Kafka queue is still almost empty and no backpressure is measured
by the system. This causes HPA-Varga and Dhalion to not register the system as under-provisioned,
issuing scale-down operations. This is different in query 11, where it takes more resources to process
the same number of records. This results in back pressure being registered faster, allowing Dhalion to
respond more quickly. HPA-CPU, Dhalion, and DS2 issue scale-up actions, with only Dhalion scaling
up with enough additional resources to work away the lag of the system. Because of the way HPA-CPU
calculates its scale factor, it is unable to produce a scale factor high enough that allows it to scale to
the parallelism it requires, taking more time before it can work away the lag.

HPA-CPU behaviour HPA-CPU performs well on query 1 but fails to scale the system fast enough to
keep up when the workload is increasing fast in query 11. As we discuss in the experimental evaluation
of the Cosine pattern, HPA-CPU is unable to significantly increase the parallelism of an operator due
to its way of calculating the scale factor. This results in HPA-CPU scaling up the operators too slowly,
inducing significant latency in query 11. In query 1, the scale factors it uses are enough to scale
operators, resulting in both low latency and low resource usage.

Dhalion behaviour In general, Dhalion reacts too slowly to changes in the input rate, taking nearly
20 minutes to reach the required parallelism configuration of the workload. While this is a common
problem with reactive auto-scalers reacting only when the system is already unable to keep up with
the workload, Dhalion has two additional issues. First, Dhalion uses the backpressure status of the
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operator topology to determine the health of the system. As it takes time for backpressure to present
itself in the system when the system is under-provisioned, Dhalion recognises under-provisioning late.
Secondly, Dhalion only scales a single operator per scaling action, requiring multiple scaling actions.
As scaling actions take a long time to execute, this causes Dhalion to respond late to workload changes.
Still, Dhalion is designed to keep scaling up until the system is back in a healthy state. This ensures that
given enough time, Dhalion will eventually catch up with the lag and recover from an unhealthy state.
This persistence, in combination with its tendency to use rather high scale-up factors when scaling up,
allows it as the only auto-scaler to recover from the second increase of workload in query 11.

DS2 behaviour Comparing the auto-scalers, DS2 seems to be able to adjust faster and more flexibly
to the change in input rate in both queries 1 and 11. Still, it is almost constantly under-provisioned only
catching up with the lag when the input rate is close to zero. When the input rate goes down, DS2
tends to almost immediately issue a scale-down action, no matter the current state of the system. This
results in the system being almost constantly under-provisioned and having high latency.

HPA-Varga behaviour While only being able to run HPA-Varga on query 1, we can see that the
auto-scaler is able to keep the system in a relatively healthy state, while not using too many task-
managers. The scaling actions of HPA-Varga appear quite similar to the scaling-actions of HPA-CPU,
scaling down to low parallelism in only 2 scaling actions when the workload drops down and also having
trouble scaling-up fast enough to keep up with fast increasing workload. HPA-Varga tends to scale the
application more conservative than HPA-CPU, resulting in it using less resources. This also leaves
the system in an under-provisioned state for a longer amount of time, causing backpressure and high
latency.

Conclusion

• For query 1, HPA-CPU can achieve low latency while using similar resources as HPA-CPU and
HPA-Varga and fewer resources than Dhalion.

• Dhalion is the only auto-scaler that can keep up with the steep increase in workload in query 11.
When doing so, it uses more than twice the resources as the other auto-scalers

• HPA-CPU correctly identifies the under-provisioned state at the start of query 1, keeping latency
low. It is, however, unable to scale up fast enough in query 11 to keep up with the steep increase
in workload at the beginning.

• Using the backpressure status, Dhalion fails to identify under-provisioning at the beginning of
query 1. Still, its large scale-up actions allow it to recover quickly from this mistake.

• While performing well on query 1, HPA-CPU increases the parallelism in query 11 by too little,
resulting in high latency.

• Dhalion is less resource efficient than the other auto-scalers. This enables the auto-scaler to
keep up with steep workload increases when other auto-scalers are unable to.

• DS2 can respond fast and flexibly to changes in the input rate but fails to consider the current
state of the system, scaling down before it can process the lag.

• The similarity of the CPU-utilisation metric and the utilisation metric results in similar behaviour
between HPA-Varga and HPA-CPU. They both scale down fast in response to a decrease in
workload but fail to scale up fast enough in response to fast-increasing workloads. From the two,
HPA-Varga seems to scale up more conservatively, using fewer resources, but having higher
latency.

7.2.3. Increasing workload
The increasing workload pattern is designed to investigate the scale-up functionality of the auto-scalers.
The pattern is predictable and requires the auto-scalers to carefully time their scaling actions. The
pattern starts at zero input rate and goes up over a period of 140 minutes until it reaches 2,500,000
records per second. As there is initially no data to process, the system starts at an initial parallelism of
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1 per operator. We run the experiment on queries 1 and 11. The performance metrics are summarised
in table 7.13 and 7.2 and graphs 7.16 and 7.17. Due to technical constraints, we were unable to
successfully run HPA-Varga on the increasing workload for query 11. For this reason, it is left out of the
results.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 15.3 44 44.8 6.5 169.4 27
DS2 9.1 15 30 0.033 158 13
HPA-CPU 10.7 21 4.8 0.017 32.2 24
HPA-Varga 8.4 16 10.9 2.3 38.7 20

Table 7.13: Auto-scaler run on query 1 with increase pattern.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 28.8 67 98.4 44.5 329.2 27
DS2 12.8 30 246.9 313.5 385.2 26
HPA-CPU 17.7 44 125.5 117.3 324.5 26
HPA-Varga - - - - - -

Table 7.14: Auto-scaler run on query 11 with increase pattern.
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Figure 7.16: Task-managers deployed by the auto-scalers when run on query 1 with the increasing workload pattern.

Performance analysis - Query 1 With an average latency of 4.8 seconds, HPA-CPU achieves the
lowest average latency for query 1. For this, it uses slightly more task-managers than HPA-Varga which
has, as runner-up, an average latency of 10.9 seconds. HPA-Varga uses the least amount of task-
managers for query 1, using a maximum of 16 task-managers. While the 50th percentile of the latency
of DS2 is low, its average latency is high. This is caused by the auto-scaler starting to oscillate when
the input rate reaches 2 million records per second, inducing scaling overhead and causing the latency
to go up. DS2 has significantly fewer scaling actions than the other auto-scalers, only scaling four
times in the first 90 minutes. Dhalion has a high average latency and uses 50% more task-managers
than HPA-CPU. It notices the under-provisioning of the system too late, scaling up when the latency is
already high. Furthermore, after scaling up and working away the lag, it spends the next 50 minutes
scaling down from the over-provision state, using more resources than it needs.

Performance analysis - Query 11 Running on query 11, Dhalion achieves the lowest average latency
of 98.4 seconds while using almost twice as many task-managers as the other auto-scalers. HPA-CPU
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Figure 7.17: Task-managers deployed by the auto-scalers when run on query 11 with the increasing workload pattern.

comes in second with an average latency of 125.5 seconds, using on average 17.7 task-managers.
DS2 uses the least amount of task-managers, scaling down from the initial configuration of parallelism
30 and never reaching it again. DS2 is, however, almost constantly under-provisioning, resulting in
an average latency of above four minutes. While DS2 only required 13 scale actions for query 1,
it here uses just as many as Dhalion and HPA-CPU. All three auto-scalers respond too late to the
increasing workload, causing high latency in all three of them. From this, DS2 is never able to recover,
maintaining high latency throughout the experiment. By deploying more task-managers Dhalion can
recover faster from this than HPA-CPU. During the experiment, both auto-scalers repeat the cycle of
under-provisioning, scaling up to work away the lag, and then slowly scaling down until it is under-
provisioning again.

Conclusion

• HPA-CPU achieves low latency in query 1 while using slightly more task-managers than HPA-
Varga.

• Until the 100-minute mark, DS2 only issues four scaling actions while keeping up with the input
rate. After this point, DS2 starts oscillating, increasing the latency of the system.

• Dhalion, DS2 and HPA-CPU have high latency and do not scale the system in time in query 11,
causing high latency.

• Dhalion uses more than twice the task-managers on average, achieving significantly lower aver-
age latency.

7.2.4. Decreasing
The decreasing workload pattern is designed to investigate the scale-down functionality of the auto-
scalers. The pattern is predictable and requires the auto-scalers to carefully time their scaling actions.
The pattern starts at 2,500,000 records per second and decreases over a period of 140 minutes until
it reaches an input rate close to zero. We start the experiment with an initial parallelism of 5 when run
on query 1 and 10 when run on query 11. The performance metrics are summarised in table 7.15 and
7.16 and graphs 7.18 and 7.19. Due to technical constraints, we were unable to successfully run both
Dhalion and HPA-Varga on the decreasing workload for query 11. For this reason, it is left out of the
results.

Performance analysis - query 1 When run on query 1, HPA-CPU has the lowest latency of the
auto-scalers using 3 more task-managers than the runner-up HPA-Varga. HPA-Varga uses the least
amount of task-managers while achieving an average latency of 24.2 seconds. Dhalion uses more
task-managers than any of the auto-scalers, achieving an average of 44.4 seconds. DS2 uses a similar
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Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 16.7 38 44.4 20 182.7 27
DS2 10.1 16 127.5 148.6 260.3 24
HPA-CPU 13.7 23 6.4 0.017 36.8 21
HPA-Varga 10 18 24.2 11.9 92.8 22

Table 7.15: Auto-scaler run on query 1 with decrease pattern.

Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion - - - - - -
DS2 14.4 30 343.8 354 429.1 26
HPA-CPU 23.8 49 107.9 40.4 323.6 23
HPA-Varga - - - - - -

Table 7.16: Auto-scaler run on query 11 with decrease pattern.
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Figure 7.18: Task-managers deployed by the auto-scalers when run on query 1 with the decreasing workload pattern.
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Figure 7.19: Task-managers deployed by the auto-scalers when run on query 11 with the decreasing workload pattern.

amount of task-managers as HPA-Varga but has an average latency of over twominutes. The decrease
pattern starts in an under-provisioned state, requiring the auto-scalers to scale up to prevent extensive
increase in the latency. Both HPA-CPU and HPA-Varga do this effectively, reducing the latency to
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zero in 10 minutes. Dhalion is late to respond to the under-provisioned state, allowing the latency to
grow bigger and requiring more time and resources to work away the lag. DS2 fails to recognise the
system to be in an under-provisioned state, only scaling down from the initial parallelism. This causes
high latency for the first 100 minutes of the system, eventually catching up with the lag when the input
rate has dropped down to around 1 million records per second. In the first half of the experiment,
the input-rate remains quite stable around 2.5 million records per second. Here, HPA-CPU and HPA-
Varga auto-scalers seem to be oscillating, failing to find the optimal parallelism configuration. During the
experiment, Dhalion fails to distinguish optimal-provisioning from over-provisioning, issuing scale-down
operations every time it finds the system to be in a healthy state, eventually causing under-provisioning.

Performance analysis - query 11 In query 11, DS2 uses significantly fewer task-managers thanHPA-
CPU but also achieves a lot higher average latency. HPA-CPU uses 10 more task-managers than DS2
on average, even increasing the total number of task-managers to 49. This results, however, in an
average latency of 107.8 seconds. The 50th percentile of the application, however, has a latency of
40.4 seconds, which is still quite acceptable for the system. Just as with query 1, DS2 fails to recognise
the system to be in an under-provisioned state at the beginning of the experiment, never working away
the lag and keeping high latency during the experiment. HPA-CPU does recognise the system to be in
an under-provisioned state but fails to scale up the application enough to handle the input rate. Only
when the input rate drops down below 1 million records per second, HPA-CPU can work away the lag
and maintain low latency.

Conclusion

• Both HPA-CPU and HPA-Varga achieve low latency while using a few resources in query 1. HPA-
CPU has low latency while using more resources than HPA-Varga. HPA-Varga is more resource-
efficient, having a higher average latency.

• DS2 fails to recognise the system to be in an under-provisioned state at the beginning of the
experiments. It is constantly under-provisioning, never working away the initial lag and causing
high latency throughout the entire experiment.

• Dhalion is unable to determine the difference between over-provisioning and perfect-provisioning.
It keeps scaling down resources until it reaches an under-provisioned state, triggering scale-
up actions again leading the application to an over-provisioned state where it works away the
lag. From here, it repeats the process and starts scaling down again until it reaches an under-
provisioned state.

• For query 11, HPA-CPU fails to scale up the application enough to handle the input rate, only
catching up with the lag halfway through the experiment, resulting in high latency.
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7.3. Query Comparison
In this section, we investigate the performance of the auto-scalers when run on different queries. The
queries consist of different operator topologies containing different operators that all have different
resource requirements. We investigate how well the auto-scaler estimates the resources needed to
process the input rate and how they respond to this in terms of run-time behaviour. As discussed in
section 5.4.1, we implement and run the experiments on queries 1, 2, 3, 5, 8, and 11 from the Apache
Beam Nexmark Suite [6]. Queries 1 and 2 are simple stateless queries that perform a mapping and a
filter operation on the incoming records. Queries 3 and 8 are both join operations that require saving
incoming records for joining with incoming records. In query 3 we configure the system to save the
records for a maximum of five minutes after which the records are deleted. Query 8 uses a tumbling
window that defines the period in which records must arrive to be allowed to join. Queries 5 and 11 both
aggregate over the bids stream by counting the occurrences of unique auction and person IDs. Query
5 does so over a sliding window, and query 11 does so over a session window. The experiments are
run on the cosine workload pattern. As some of the queries require significantly more resources than
others when processing records, we use different parameters for the cosine pattern. The parameters
used for the cosine pattern per query are shown in table 7.17. The results of the experimental runs are
summarised in table 7.18.

Query Min. input rate Mix. input rate Max. random noise
1 200,000 2,200,000 100,000
2 200,000 2,200,000 100,000
3 3,000 33,000 1,500
5 10,000 110,000 7,500
11 200,000 2,200,000 100,000

Table 7.17: Input rates used when run on different queries with the workload following the cosine workload pattern.

Technical problems When running the experiments on query 8, we found that the job-manager kept
crashing during scaling. When scaling the system, the job is stopped and task-managers are instructed
to save their state by creating checkpoints. These checkpoints are then used by the new job to retrieve
the state of the previous job and to continue processing. In query 8, scaling operations issued by the
auto-scalers often result in task-managers failing to create a checkpoint. This causes the job to fail
and prevents the SPE from processing the incoming records. While the auto-scalers often succeed in
restarting the job later in the experiment, the failing job has a significant impact on the results of the
experiments. For this reason, we have decided to keep the query out of the experimental evaluation
of the system and leave it for future work.

7.3.1. Queries 1 and 2
Both queries 1 and 2 are stateless queries consisting of three operators that require little processing
power to process their incoming records. By setting the input-rate high, we can still stress the system
and require active scaling to keep the system both resource efficient and have low latency. As can be
seen in the table, the results of both queries are rather similar. For both queries 1 and 2, HPA-CPU
and HPA-Varga achieve low latency while using not too many task managers. From these two auto-
scalers, HPA-Varga is more resource efficient but achieves higher latency than HPA-CPU. Dhalion uses
the most resources in both queries 1 and 2 and at the same time achieves the highest latency. As can
be seen in graph 7.1, Dhalion scales up slowly when the input rate is rising in the cosine pattern. This
increases the latency, causing Dhalion to scale up even further to work away the lag. When scaling
down after working away the lag, Dhalion is again slow in scaling down, keeping the system in an
over-provisioned state for a long time. DS2 is the most resource-efficient in queries 1 and 2. It issues
fewer scaling actions for both queries but keeps the system in an under-provisioned state when the
input rate is high. As DS2 tends to be quite conservative when scaling, the proposed configurations
lead in this case to slight under-provisioning, resulting in high latency. With its initial parallelism being
the maximum number of task managers deployed in both queries 1 and 2, DS2 proposes less high
parallelism configurations than the other auto-scalers.
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Query Auto-scaler 𝑎𝑣𝑔(𝑇𝑀) 𝑚𝑎𝑥(𝑇𝑀) 𝑎𝑣𝑔(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙50(𝑙𝑎𝑡) 𝑃𝑐𝑡𝑙95(𝑙𝑎𝑡) 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
1 Dhalion 13.2 30 68.3 23.7 233.3 27
1 DS2 9.4 15 39.4 29.3 110.5 23
1 HPA-CPU 11.4 21 8.6 0.018 35.8 26
1 HPA-Varga 10.2 26 17 24.3 113.3 26

2 Dhalion 13.2 29 87.4 15.4 314.7 27
2 DS2 8.9 15 40.5 36.3 122.2 21
2 HPA-CPU 10.7 19 8.6 0.021 38.9 26
2 HPA-Varga 8.9 19 17 11.2 56.9 26

3 Dhalion 16.1 50 1.7 0.015 14.3 27
3 DS2 - - - - - -
3 HPA-CPU 7.8 50 73.7 41.2 275.5 23
3 HPA-Varga 11.1 50 72.1 44.5 205.4 24

5 Dhalion 8.9 30 11 0.023 56.2 26
5 DS2 23.2 68 81 53.9 245.9 26
5 HPA-CPU 5.3 30 18.6 0.95 67.8 23
5 HPA-Varga 5.8 30 60.9 39 198.9 24

11 Dhalion 22.8 51 130.7 60 353.3 27
11 DS2 13.2 30 284.1 316.3 499.2 26
11 HPA-CPU 14.2 34 178 146.9 399.9 26
11 HPA-Varga 26.5 69 219.3 244.1 379.8 26

Table 7.18: Results of auto-scaler runs on operator topologies of Apache Beam Nexmark Queries 1, 2, 3, 5, and 11.

7.3.2. Query 3
Query 3 is a statefull join operation that requires the system to save all incoming records in state for at
least five minutes. As this data has to be transferred to the new topology when scaling, this processmay
be quite expensive. As this requires considerable more resources to process the incoming records,
we lower the input-rate for query 3 significantly to make it possible to run the query on our designated
server. This also reduces the workload of the system, lowering the overall resource requirements.

7.3.3. Queries 5 and 11
Query 5 and 11 are both a three operator based topologies that count unique IDs provided by the Bid
stream. Query 5 uses a five minute sliding window that fires a new window every minute and query 11
uses a session window that ends a session after ten seconds of inactivity. In practice, this results in
significantly larger windows for query five, requiring more resources from the system. To allow query 5
to be run on our designated server, we use a lower input-rates for query 5. We use the same input-rates
as query 1 and 2 for query 11.

Query 5 For query 5, both Dhalion and HPA-CPU achieve low latency. While the average latency
of Dhalion is slightly lower than that of HPA-CPU, HPA-CPU uses almost half the task-managers as
Dhalion. HPA-Varga uses a similar number of resources as HPA-CPU but has significantly higher
latency. HPA-CPU assigns on average 1 or 2 task-managers to each operator. In comparison to
HPA-Varga, it scales up faster when the input rate is increasing, allowing the system to process the
increasing input rate. HPA-Varga scales up too late, increasing the latency. Dhalion also scales up in
time to prevent the latency to increase when the workload is increasing. The scaling actions issued by
Dhalion are larger than those of HPA-CPU, causing over-provisioning and resulting in higher resource
usage. While DS2 scales more conservatively in queries 1, 2 and 11, resulting in low resource usage
in these queries, it uses significantly more resources for query 5. Investigations into the scaling actions
issued by DS2 reveal the auto-scaler issues large parallelisms for the sink operator of the topology.
The parallelism of the source operators and the count operator are throughout the entire experiment
set between 1 and 5, while the parallelism of the sink is set much higher, even once having a parallelism
of 62. Because the sink operators require few resources, this is extreme over-provisioning. The high
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parallelisms of the sink operator are caused by the busy time of the operator becoming zero, resulting
in a division by zero in the DS2 module, returning infinite as desired parallelism. Adding an additional
check to ensure no zero is passed to the DS2 module would fix this problem. Furthermore, DS2 is
often under-provisioning the other two operators, causing the auto-scaler to have high latency.

Query 11 The high input rate used in query 11 requires the auto-scalers to deploy more resources
than the other queries. To keep up with the workload and prevent over-provisioning, the auto-scalers
must issue larger scale-up actions when the input rate is increasing and larger scale-down actions when
the input rate is decreasing. While HPA-CPU and HPA-Varga manage to scale down fast to prevent
over-provisioning, they fail to scale up fast enough when the input rate is increasing resulting in high
latency. Dhalion scales down too slowly the third time the workload is decreasing, resulting in over-
provisioning. This over-provisioning state does, again, help the auto-scaler to scale up fast enough
when the input rate is increasing, resulting in significantly lower latency. While DS2 can scale rather
flexibly and issues large scaling operations, it is almost constantly under-provisioning resulting in high
latency. The long cool-down period may be cause all four auto-scalers to have trouble keeping up with
the increasing workload. To prevent oscillation and to let the system recover from the increase in lag
after the scaling action, we disable scaling for a total of five minutes. As the parallelism configuration is
set using the information before the scaling action, the auto-scalers are cannot respond to changes in
the workload during this period. When the input rate is increasing as fast as in query 11, the parallelism
configuration issued when scaling may be under-provisioning during the cool-down period. To prevent
this, auto-scalers may issue larger scaling actions to prevent this scenario from happening. While
especially HPA-CPU manages to do this in query 1, it is still not enough in query 11, leading to under-
provisioning.

7.3.4. Conclusion
In this section, the performance of the auto-scalers when run on different queries has been compared.
The results show that HPA-CPU and HPA-Varga are resource efficient and achieved low latency when
run on queries 1, 2, 3, and 5. Here, HPA-Varga uses less resources but also has a higher latency than
HPA-CPU. However, both auto-scalers were unable to scale fast enough to keep up with the steep
workload increase in query 11. This causes the auto-scalers to be under-provisioned for a long time,
resulting in high latency. DS2 is often the most resource efficient in comparison with the other auto-
scalers. It responds quick to changes in the workload, barely over-provisioning when the workload is
decreasing. However, DS2 does often issue scale down operations while the latency of the system
is still high. This causes the auto-scaler in having the highest latency in query 3, 5, and 11, with only
Dhalion having higher latency in query 1 and 2. In query 5, a busy time of 0 of the sink operator causes
DS2 to suggest high parallelism for the sink operator. This makes the auto-scaler almost three times
as resource inefficient as the other auto-scalers. In all five queries, Dhalion uses significantly more
resources than the other auto-scalers. This is caused by Dhalion scaling down slowly, resulting in
over-provisioning. By over-provisioning on the decreasing part of the cosine pattern, Dhalion is able to
better handle the steep increase in workload when the input-rate is going up again. Hence, it allows
Dhalion to have the lower latency in query 11 than the other auto-scalers.
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Autoscaler Query 1 Query 11
Stage 1 Stage 2 Stage 1 Stage 2

𝑇𝑖𝑚𝑒𝑚𝑖𝑛 𝑆𝑐𝑎𝑙𝑒𝑛𝑜 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 𝑆𝑐𝑎𝑙𝑒𝑛𝑜 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 𝑆𝑐𝑎𝑙𝑒𝑛𝑜 𝑇𝑖𝑚𝑒𝑚𝑖𝑛 𝑆𝑐𝑎𝑙𝑒𝑛𝑜
Dhalion 40+ - 40+ - - - - -
DS2 40+ - 11 3 40+ - 40+ -
HPA-CPU 40+ - 9 2 40+ - 40+ -
HPA-Varga 40+ - 40+ - - - - -

Table 7.19: Converge times of auto-scalers on convergence workload for query 1 and 11. Stage one represents the part of the
experiment where the input-rate is set to 2 million records per second. Stage two represents the part of the experiment where
the input-rate is set to 1 million records per second.

7.4. Convergence Time
For the convergence time evaluation, we investigate the time it takes for the auto-scalers to converge
to a specific parallelism configuration when the input rate is constant. For this, we use the convergence
workload pattern that consists of three stages. The experiment starts at stage zero with an input rate of
zero minutes, allowing the auto-scalers to start up. Then, the input rate is increased to 2 million records
per second and stays there for a total of 40 minutes (stage 1). After this, we reduce the input rate to 1
million records per second and keep it there for the remaining 40 minutes of the experiment (stage 2).
As defined in section 2.5.2, we say an auto-scale converges when it stops suggesting scaling actions
on a constant input rate. For both input rates, we measure the time it takes before the auto-scaler
converges and the number of scaling operations it requires. By investigating the throughput of the
system and the average CPU utilisation under the chosen parallelism configuration, we comment on
the accuracy of the proposed configuration. The results are summarised in table 7.19 and graphs 7.20
and 7.21. Due to technical constraints, we are unable to run both Dhalion and HPA-Varga for query 11.
We, therefore, leave it out of the results.
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Figure 7.20: Online task-managers during convergence experiment on query 1.

Convergence time In the table, we see that only DS2 and HPA-CPU can converge in stage 2 of
query 1. DS2 takes 11 minutes and 3 scaling actions to converge and HPA-CPU takes 9 minutes and
2 scaling actions to converge. This suggests that HPA-CPU can converge faster to an appropriate
parallelism configuration than DS2. Both HPA-Varga and HPA-CPU are unable to converge in any
of the experiments. One reason for this, which is also suggested in the experimental evaluation of
Kalavri et al. [36], is that both auto-scalers scale a single operator at a time, requiring multiple steps to
scale all operators accordingly. Furthermore, as the operators are linked together, changing the paral-
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Figure 7.21: Online task-managers during convergence experiment on query 11.

lelism of a single operator may cause other auto-scalers to become under-provisioned, requiring even
move-scaling actions. DS2 and HPA-CPU, on the other hand, determine for each operator individually
whether to scale them. This allows them to converge to a specific configuration faster than HPA-Varga
and Dhalion.

Prediction accuracy The parallelism configuration suggested by DS2 requires a total of 9 task-
managers, while HPA-CPU requires 10 task-managers. After working away the lag, both HPA-CPU
and DS2 have a throughput of 1 million records per second, showing that their final configuration is in-
deed enough to manage the input rate. The fact that DS2 achieves the same throughput as HPA-CPU
while using fewer resources, shows that HPA-CPU is over-provisioning. When converged, HPA-CPU
has an average CPU-utilisation value of 56%. DS2 has an average CPU-utilisation value of 65%. While
the averages also include the CPU utilisation of the sink-operator which is generally low and cannot
get scaled down further, it indicates that both auto-scalers are likely still over-provisioned. Future in-
vestigation into the optimal parallelism under different input rates will provide further insights into the
accuracy of the auto-scalers.

Query 1 - Converging in stage 1 None of the auto-scalers succeeds in converging to the input rate
of 2,000,000 records per second in stage one. Dhalion, HPA-CPU and HPA-Varga first try to reduce
the lag in the system, after which they scale down to converge to the input rate. Due to the initial slow
start of the auto-scalers and because the auto-scalers scale up rather slowly, they take a long time to
scale up enough so they can handle both the input rate and reduce the lag at the same time. Only
after the lag is gone, the auto-scalers scale down converging to the input rate. As this process takes
longer than 40 minutes, none of these three auto-scalers manages to converge in stage 1. DS2, on
the other hand, can scale more flexibly and scales up to appropriate parallelism in only a few scale
actions. This parallelism, however, is not enough for the auto-scaler to reduce the lag in the system.
This results in the busy time metric continuously shifting value, causing changes in the true input- and
output rates measured by the auto-scaler. Together with the additional lag caused by scaling, this
causes the auto-scaler to oscillate, never converging.

Query 1 - Converging in stage 2 In stage two, the auto-scalers start in an over-provisioned state,
scaling down to the optimal parallelism. From this state, DS2 and HPA-CPU manage to converge
within 2 and 3 scaling actions. Dhalion and HPA-Varga, on the other hand, fail to do so. Dhalion is
designed to scale down by 20% when the system is in a healthy state. Starting at a parallelism of 25
task-managers, it takes many scaling actions for Dhalion to reach a parallelism configuration for the
new workload. HPA-Varga can scale down rather fast and finds a parallelism configuration where it
stays for roughly 10 minutes. After this, it starts oscillating, repeatedly scaling up and down some of
its operators. One reason for this might be the utilisation metric of the source-operators of the system
changes frequently triggering scaling actions.
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Query 11 Both HPA-CPU and DS2 fail to converge when run on query 11. As the workload of query
11 is higher than that of query 1, it requires the auto-scalers to scale up the operators more. While DS2
can do this successfully, HPA-CPU scales up too slowly, increasing the lag of the system. The auto-
scaler keeps scaling up until it has processed the lag of the system, only starting to scale down when it
is already in stage two of the experiment for 20 minutes. The remaining 20 minutes are not enough for
HPA-CPU to converge. While DS2 can scale up faster than HPA-CPU, it also fails to converge in both
stage 1 and stage 2. Its parallelism configuration is unable to reduce the lag of the system, causing the
auto-scaler to oscillate.

Conclusion

• In query 1, only HPA-CPU and DS2 manage to converge in stage two of the experiment. When
converged, both auto-scalers have a throughput similar to the input rate. To achieve this, DS2
uses slightly fewer resources than HPA-CPU. Their average CPU-utilisation metrics suggest both
DS2 and HPA-CPU are over-provisioning.

• All four auto-scalers are unable to converge in stage one of the experiment within 40 minutes.
Dhalion, HPA-CPU, and HPA-Varga require a longer period to converge as they try to first work
away the lag before converging to a lower parallelism configuration. DS2 manages to scale up
faster than the other auto-scalers but fails to work away the lag. This causes instability in the
busy-time metric of the operator, causing the auto-scaler to oscillate.

• None of the auto-scalers succeed in converging in query 11. HPA-CPU scales up too slowly,
taking an hour to recover from the high input rate of stage 1. DS2 manages to scale up faster but
oscillates in both stage 1 and stage 2, never converging.

7.5. Overview of the results
In this section, an overview of the experimental evaluation of Dhalion, DS2, HPA-Varga, and HPA-CPU
is provided. First, the different experiments and their results in terms of latency, resource efficiency,
convergence time and accuracy are evaluated. Thereafter, the run-time behaviour of the individual
auto-scalers and their strengths and weaknesses are discussed.

7.5.1. Experimental evaluation
For the experimental evaluation, the experiments were divided into four parts, which are parameter
optimisation, a performance analysis of the auto-scalers when run on different workload patterns, a
performance analysis of the auto-scalers when run on different queries, and a convergence time anal-
ysis. The different experiments are discussed in the paragraphs below.

Parameter optimisation As the auto-scalers have several parameters that have to be set appropri-
ately for optimal performance, we have run and compared the auto-scalers with different parameters
set for their most significant configurations. As we do not have the resources to optimise the parame-
ters for every experimental run, the auto-scalers were run on a cosine workload on two queries that are
presentable for the other queries and compared with their resource efficiency and latency. Using the
results, the best parameters for the auto-scalers were selected and used in the remaining experiments.
By comparing the performance of the different parameters settings, we choose a scale-down-factor of
1.2 for Dhalion, an over-provisioning factor of 1.2 for DS2, a utilisation target of 0.7 for HPA-Varga, and
for HPA-CPU a CPU utilisation target of 0.7.

Workload comparison Using these parameters, the performance of the auto-scalers was compared
to the random, cosine, increasing, and decreasing workloads that were defined in section 5.4.3. The
results show that the auto-scalers struggle with rapid increases in the workload which are found in the
increasing parts of the cosine and random workloads. We hypothesise that this is caused by the long
cool-down period we issue after scaling, preventing auto-scalers to scale even when the system is being
under-provisioned. For all four of the workloads, HPA-CPU and HPA-Varga have the best performance
in terms of latency and resource usage when run on query 1. HPA-Varga is more resource efficient than
HPA-CPU, while HPA-CPU achieves lower latency. However, the auto-scalers struggle to scale up fast
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enough when run on query 11, resulting in high latency. This is especially a problem when running on
the cosine and random workload patterns, as both of them include steep workload increases. Dhalion
on the other hand achieves both high latency and high resource usage on all four of the workload
patterns. Nevertheless, by over-provisioning on the periods with low workloads, Dhalion can handle
sudden increases in workload on the cosine and random pattern better compared to other auto-scalers.
On both the increasing and decreasing workload, Dhalion struggles to find the correct scaling factor,
spending most of its time recovering from inaccurate scaling decisions. Furthermore, DS2 is more
resource efficient than the other auto-scalers and has a fast response to changes in the input rate.
When doing so, DS2 does not consider the size of the Kafka queue, which leads to it scaling down
even when the system is back-pressured. This results in high latency. Additionally, DS2 performs
well on the decreasing workload, issuing only a few scaling actions and steadily following the trend
of the workload pattern. However, the suggested parallelism configurations are under-provisioning,
resulting in high latency. On the decreasing workload pattern, DS2 struggles to correct for the initial
under-provisioned state at the beginning of the experiment, causing the auto-scaler to oscillate.

Query comparison The impact of the different query configurations on the performance of the auto-
scalers has been investigated. As the different queries have different operator topologies that have
different resource requirements, we have investigated how well the auto-scalers estimate the resources
needed to process the input rate and how they respond to this in terms of run-time behaviour. The
results show that when run on queries 1, 2, and 5, HPA-CPU and HPA-Varga perform well with HPA-
Varga being more resource-efficient and HPA-CPU having lower latency. However, both auto-scalers
do struggle with the more resource-intense queries 3 and 11, having high latency in both of them.
Except for query 5, DS2 is more resource efficient compared to other auto-scalers. When run on query
5, a division by zero error causes the auto-scaler to issue large scaling operations on the sink operator.
DS2 is generally under-provisioning and often fails to work away the lag of the system resulting in
high latency. Dhalion uses significantly more resources compared to the other auto-scalers on all five
queries. While the slow scaling of Dhalion often results in high latency, Dhalion can handle the fast
increase in the workload of the more resource-intense queries 3 and 11 better. This results in low
latency in both queries.

Convergence time The convergence time of the auto-scalers has been investigated by running them
on the convergence workload pattern on both queries 1 and 11. The results indicate that only DS2 and
HPA-CPU manage to converge on the second part of the experiment on query 1. Here, DS2 uses
fewer resources than HPA-CPU while both achieving a throughput equal to the input rate. Moreover,
the CPU utilisation of both auto-scalers is low, indicating that both auto-scalers are over-provisioning.
Further analysis of the performance of different parallelism configurations on the constant input rates
would provide better insights into the accuracy of the auto-scalers. In the other experiments, all four
auto-scalers are unable to converge to a parallelism configuration within the 40-minute period. This is
because the auto-scalers have to work away the lag before they can converge to a parallelism config-
uration. As this takes a long time, the auto-scalers are unable to converge in time.

7.5.2. Auto-scaler performance
Four state-of-the-art auto-scalers targeting SPEs were evaluated and compared during different ex-
periments. The results of these experiments provide insights into the run-time behaviour of the auto-
scalers. In this section, the auto-scalers are individually discussed and evaluated based on their
strengths and weaknesses.

Dhalion The scaling mechanism of Dhalion causes the auto-scaler to be slow to scale up and down.
This causes under-provisioning when the input rate goes up and over-provisioning when the input
rate goes down. While this generally leads to bad performance, the over-provisioning state does help
Dhalion to handle sudden increases in workload. Dhalion uses back-pressure to estimate the health
of the system. As back-pressure is measured when the system is already under-provisioning, scal-
ing actions performed by Dhalion are already too late. However, the back-pressure status does allow
Dhalion to accurately determine the bottleneck of the system, which issues well-targeted scaling ac-
tions. Hence, during most of the experiments, Dhalion appears to be resource inefficient and has high
latency.
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DS2 DS2 scales more flexibly, having its scaling actions directly reflect the change in input rate.
However, when issuing scaling actions, DS2 does fail to consider the health of the system when making
scaling decisions, often scaling down before it can reduce the latency. Furthermore, the parallelism
configurations proposed by DS2 are often under-provisioning, which further increases the latency. In
general, DS2 is resource efficient when scaling but often has high latency. It also issues fewer scaling
actions, settling on a parallelism configuration faster than the other auto-scalers.

HPA-Varga HPA-Varga can issue large scale-down actions resulting in a fast reaction to decreasing
workloads. However, it has a slow response to increasing workloads, eventually scaling up to an over-
provisioned state to work away the lag. In general, the auto-scaler is resource efficient and can correctly
estimate the appropriate parallelism configuration when the workload is not increasing too fast. When
it is increasing fast, the auto-scaler is often too late in issuing scale-up actions, resulting in high latency.

HPA-CPU HPA-CPU is resource efficient and has low latency when the input rate is not increasing too
much. When the workload is increasing fast, it has the same problems as HPA-Varga and fails to scale
up fast enough to prevent the latency from increasing. In general, its performance is comparable with
HPA-Varga, with HPA-Varga being a bit more resource-efficient and HPA-CPU having lower latency.
By using the CPU utilisation, HPA-CPU can recognise under-provisioning before back-pressure is de-
tected, allowing it to scale up faster than Dhalion. While the auto-scaler is not aware of the underlying
structure of the operator topology, it can detect operators that are over- or under-provisioning and scale
them accordingly.





8
Discussion and future work

8.1. Discussion
In this thesis, an extensive study of state-of-the-art auto-scalers targeting SPEs has been performed,
which shows that auto-scalers targeting SPEs are poorly evaluated using simple experiments with un-
realistic workload patterns. As a result, no comparison of the auto-scalers’ performance can be made,
making it difficult to determine the state-of-the-art. This slows down the development of auto-scaling
solutions. In this thesis, we develop and implement a modular framework that can evaluate state-of-
the-art auto-scalers targeting SPEs. Using this framework we evaluate and compare the performance
of auto-scalers Dhalion [18], DS2 [36], HPA-Varga [66], using HPA-CPU [38] as a baseline.

The framework Five types of experiments are identified to evaluate the performance of auto-scalers
targeting SPEs, which are performance analysis, parallelism accuracy, convergence time, prediction
accuracy, and overhead estimation. Additionally, latency, resource efficiency, throughput, and re-
source usage have been identified as the four most common metrics used for evaluating the per-
formance of the auto-scalers. Hence, the framework is designed to provide an end-to-end evalua-
tion of the auto-scalers that can analyse and compare the auto-scalers’ performance, converge time
and parallelism accuracy. Latency and resource efficiency are used to measure the performance of
the auto-scalers, and throughput and CPU usage are used to measure the parallelism accuracy of
the auto-scalers. Furthermore, a convergence workload pattern was implemented to investigate the
auto-scalers’ convergence time. The framework is designed to be modular and easily extendable with
additional auto-scalers, workload patterns, and queries.

The auto-scalers State-of-the-art auto-scalers Dhalion [18], DS2 [36], and HPA-Varga [66] have been
implemented and compared using Kubernetes build-in horizontal pod auto-scaler [38] targeting CPU-
utilisation as a baseline. As HPA-Varga and HPA-CPU cannot scale operators individually, their logic
was adapted to support operator-based scaling. Furthermore, the metrics used by the auto-scalers are
mapped to the metrics available in Apache Kafka and Apache Flink, making them compatible with the
framework. The auto-scalers were implemented in a modular fashion, dividing the specialised auto-
scaler logic from the rest of the framework and maintaining common functionalities in shared modules.
This allows for fast implementation of additional auto-scalers and makes it easy to use the auto-scalers
in different environments.

Experimental evaluation Using the framework, four different experiments, starting with a parameter
optimisation to optimise the parameters of the auto-scalers, were performed to evaluate the perfor-
mance of the selected auto-scalers. The auto-scalers were run on different workload patterns following
a cosine, a randomly generated, an increasing and a decreasing workload pattern and on Apache Beam
Nexmark queries 1, 2, 3, 5 and 11. The results show good performance of HPA-CPU and HPA-Varga
on runs with slow workload increases, with HPA-Varga being more resource-efficient and HPA-CPU
having lower latency. When the workload increases rapidly, the queries scale up slowly, causing high
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latency. DS2, on the other hand, is resource efficient and has its scaling actions directly reflect the
changes in input rate. However, it fails to consider the health of the system by scaling down before it
can reduce the lag. Furthermore, its parallelism configurations are often under-provisioning, increasing
the latency. Finally, Dhalion reacts slowly to workload changes, causing over-provisioning when the
input rate decreases and under-provisioning when the input rate increases. Using the back-pressure
status of the system, the auto-scaler can identify and scale bottleneck operators consistently, ensuring
the system eventually returns to a healthy state. In the convergence time experiments, only DS2 and
HPA-CPU succeed to converge in a single experiment. In the other experiments, the auto-scalers were
unable to converge within the 40-minute period. The parallelism configurations of DS2 and HPA-CPU
both allow the system to achieve the same throughput as the input rate. However, both of them have
low CPU utilisation, indicating that both auto-scalers are over-provisioning.

8.2. Limitations
Paper selection When investigating auto-scalers targeting SPEs, mainly papers from 2017 and 2018
were considered, only using two papers from the period after 2019. While this can be explained as a
decrease in attention to this field of research, it can also be caused by a bias in the paper selection
method. The paper selection was based on an initial Google Scholar search, after which papers were
selected from their related work sections. From these papers, auto-scalers were selected on the re-
ceived attention and their adaptability of the proposed solution to different queries and workloads. This
resulted in a bias for older papers. More extensive research into the developments of auto-scalers
targeting SPEs over the past several years may provide better insights into the evaluation methods of
these auto-scalers and can help better tailor the framework to the needs of the more recent works.

Parameter optimisation For the experimental evaluation, the auto-scalers’ parameters were opti-
mised by comparing their performance on queries 1 and 11 with the workload following the cosine
pattern. Using the results, the most appropriate parameters were selected and used for all experi-
ments of the experimental evaluation. While we argue that these two experiments are representative
of the rest, there might be different configurations than the selected ones that can achieve better perfor-
mance for specific experimental settings. However, the selected configurations have an overall good
and representative performance for each auto-scaler. We recognise the need for exhaustive parameter
optimisation to improve the confidence of our results. Although the long run-times of the experiments
and the volume of the required runs make this infeasible in the scope of this project, we urge future
research to include such optimisation experiments.

Scaling limitations To prevent SPEs from crashing during scaling, the change in parallelism is lim-
ited to 15 per operator. While DS2 and HPA-CPU do not scale by this large amount, Dhalion and
HPA-Varga occasionally proposed larger scaling actions. As this affects the results of these experi-
ments, performing the experiments on a cluster that does not need these restrictions might improve
the accuracy of the results.

Statistical significance As the experiments are influenced by many factors and are only run once
due to time constraints, we cannot claim that the results of the experiments are statistically significant.
Running the experiments again may provide different results and lead to different conclusions. Overall,
we do recognise specific patterns of the auto-scalers allowing us to comment on their specific behaviour.
Still, without running the experimentsmultiple times, we are unable to quantify the statistical significance
and cannot comment on the possible variance between multiple similar experimental runs.

8.3. Future work
Different input rates To run the experiments on our designated cluster, we used lower input rates for
the more resource-intensive queries during the performance analysis. As this makes it more difficult to
estimate the actual resource intensity of the queries, the effect of more resource-intense queries on the
performance of the queries is difficult to compare. Running the experiments with the same input rates
allows for better comparison between the performance of the auto-scalers and may provide additional
insights into the effectiveness of the auto-scalers on different operator topologies.
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Convergence experiments In the convergence experiments, only auto-scalers DS2 and HPA-CPU
managed to converge within the 40-minute period. As most of the auto-scalers require more time to
converge, increasing the period length would allow more auto-scalers to converge, providing better
insight into the convergence time of the auto-scalers. The parallelism configurations the auto-scalers
converged to can also be used to investigate the parallelism accuracy of the auto-scalers using systems
throughput and CPU usage. By running the system on different parallelism configurations, the optimal
parallelism configuration under specific input rates can be determined. This information can then be
used to determine the parallelism accuracy of the parallelism configurations more accurately.

Proactive auto-scalers In the experimental evaluation, we find that many of the auto-scalers react
too slowly to workload changes, causing resource inefficiency and high latency. This is an inherent
flaw of reactive auto-scalers, only responding to workload changes when the system is already failing
to process the workload. Over the past several years, the focus of research has shifted more towards
developing proactive auto-scalers (like PASCAL [44], or Doan et al. [12]). These auto-scalers base
their scaling decisions on predicted future workloads. This allows them to respond earlier to workload
changes, already having the resources ready when the workload starts increasing. While we were
unable to include proactive auto-scalers in the experimental evaluation because of their long training
time, doing so in future work will provide better insights into their behaviour andmay help in investigating
the trade-off of these two approaches.

Production environments The goal of the framework is to provide the necessary tools for an end-to-
end evaluation of the auto-scalers under different workloads and queries. While this is a step up from
the current state-of-the-art for auto-scaler evaluation, it still does not fully capture the auto-scalers be-
haviour in production-like environments. These systems run for a much longer time, have much larger
states, and deal with less predictable workloads that may include data skew. Working towards an eval-
uation framework that can capture the challenges of real-time production environments, would provide
more valuable insights into the performance of the auto-scalers and would assist the development of
auto-scalers for these settings.

DS2 improvements DS2 does not consider the systems lag and suggests parallelism configurations
that are unable to process both the input rate and the lag. In this work, we corrected this by using an
over-provisioning factor. However, the over-provisioning factor may not always accurately capture the
influence of the scaling overhead throughout the experiment, which influences the results of the perfor-
mance analysis. Furthermore, extending the auto-scalers logic to consider the scaling-overhead when
proposing scaling actions may result in better results and a more accurate representation of the auto-
scaler. Beside this, DS2’s suggested parallelism configurations generally lead to under-provisioning.
This is caused by DS2 incorrectly assuming that when assigning a task-manager enough workload,
the busy time of the task-managers can increase to 100%. In practice, the back-pressure mecha-
nism slows down the record intake before that can happen, leaving DS2 to constantly overestimate the
true-processing rate of the operators. Calculating the true-processing rate by considering a better esti-
mation of the maximum busy time will result in more accurate parallelism configurations, better overall
performance, and a more fair representation of the DS2 auto-scaler.

HPA-CPU andHPA-Varga improvements Both the CPU-usage used by HPA-CPU and the utilisation
of HPA-Varga are limited in terms of the maximum value they can reach. When the system is under-
provisioning, the utilisation metric and CPU-usage increase to its maximum value. As the scale factor
of HPA is calculated under the assumption that the control value can go up or down indefinitely, no
matter how much further the workload increases, both metrics will result in the same scale actions.
This causes both HPA-CPU and HPA-Varga to scale up too slowly when the workload is increasing
fast. Incorporating the limited ranges of the metrics into the scale-factor calculation may remove this
limitation and result in better performance of the auto-scalers.
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Dhalion improvements The general problem of Dhalion is that it scales too slowly. This causes
Dhalion to have poor performancewhen the input rate is increasing and decreasing. ExtendingDhalions’
logic to scale up more than one operator at a time and allowing it to estimate how much to scale down
by using a performance metric like the CPU usage can result in a better performing and more resource-
efficient auto-scaler.
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