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Abstract
This paper presents a comprehensive approach to integrating a trajectory planner and follower for
autonomous vehicles (AVs) using model predictive contouring control (MPCC). The planner generates
collision-free trajectories with a kinematic bicycle model, while the follower tracks them using a dynamic
bicycle model with a smaller integration step size and higher update frequency. The hierarchical ar-
chitecture allows for a long planning horizon and a fast control loop. Mismatches between the planner
and follower can result in tracking errors and conservative trajectories. To address this, a feedback-
hierarchical interface is proposed, feeding back the mismatch error from follower to planner. Obstacles
are then inflated with this error, minimizing harmful deviations and collision risks. The paper validates
the Local Motion Planner using a simulator with a dynamic bicycle model, testing different follower-
solver settings in urban scenarios. The results show a reduction in collision rate of 23% compared to
a single-layer MPCC planner, with similar levels of lateral error and task duration.
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1
Introduction

Between 20 and 50 million individuals are involved in traffic accidents annually [1]. Of these millions of
people, about 1.3 million are the victims of fatal accidents. Road traffic injuries are the leading cause of
death for children and young adults aged 5-29 years. Most of these accidents are the result of mistakes
made by human errors. Driver error and irresponsibility may play a far smaller role in vehicle crashes
if drivers were to use autonomous vehicles (AVs). Additionally, AVs will give a method of personal
mobility for those who are physically or visually impaired and unable to drive [2]. Last but not least,
autonomous cars would enable more efficient use of travel time, freeing up valuable hours for work or
leisure and lessening the quantifiable negative consequences of driving stress.

1.1. Advanced Driver-Assistance Systems (ADAS)
Self-driving automobiles have a lengthy history, which is not unexpected given the potential effects of
this new technology. Although the concept has been around since the 1920s, autonomous automobiles
did not appear to be a realistic option until the 1980s. The inaugural DARPA Grand Challenge, which
took place in 2004, was the next significant development in autonomous car technology. It was a
driverless car competition that sparked much interest in autonomous vehicles. Since then, several
activities and significant tests of autonomous vehicle systems have been conducted in industry, but the
pace of research has risen simultaneously in both academic and industrial settings.

One of the key benefits of autonomous cars in relation to pedestrians is their potential to reduce
accidents caused by human error, which is a leading cause of road accidents. Pedestrians are often at
risk due to drivers’ failure to yield, distracted driving, or impaired judgment. By eliminating these factors,
autonomous cars can provide a safer environment for pedestrians, potentially reducing the number of
accidents and fatalities. Furthermore, the advanced sensors and algorithms utilized by autonomous
vehicles can enhance their ability to detect and respond to pedestrians, even in low-visibility conditions,
further increasing safety.

Over the past three decades, research into creating autonomous car technology has significantly
increased in both academia and industry. Recent breakthroughs in computer processing and sensor
technologies, as well as the potential disruptive effects on automobile transportation and the anticipated
social benefit of reducing accidents, have all fuelled these innovations.

Autonomous vehicles (AVs) possess benefits in the field of safety, accessibility, and environmental
impact. These include the potential of AVs in reducing the number of (fatal) road accidents, mobility for
people with lesser physical abilities required for driving manually, and reducing environmental impact
mainly by driving more energy-efficiently, together with shared mobility (Mobility As A Service / MaaS).
Advanced Driving Assistance Systems (ADAS) are already being deployed in new cars to aid with im-
proving driver safety and automated vehicles will in the future utilise extensions of ADAS functionalities
which are currently being researched.
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2 Chapter 1. Introduction

Figure 1.1: Levels of automation according to the SAE J3016 Standard. [4]

1.2. Levels of Driving Automation
A car’s level of automation can range from totally human-operated to fully autonomous. A scale from 0
to 5 is included in the SAE J3016 standard [3] for rating vehicle automation. According to this standard,
a vehicle at level 0 has a human driver handling every aspect of driving, which means the car has no
autonomous features. Basic driving aids including Electronic Stability Control (ESC), Anti-lock Braking
Systems (ABS), and Adaptive Cruise Control (ACC) are included in Level 1. Advanced assistance is
included at level 2, such as longitudinal/lateral control or emergency braking. At level 3, the system can,
in some circumstances, monitor its surroundings and engage in fully autonomous driving. However, if
the driving job veers outside the autonomous system’s operational area, the human operator must
still take over. A vehicle with level 4 automation may drive completely autonomously under certain
circumstances and will safely take over control if the operator refuses to do so when asked. All driving
modes are completely automated for level 5 systems, meaning full autonomy and basically no need for
a (backup) driver at all. This is visualized in figure 1.1. With this thesis, we aim to contribute toward
level 4. With a follower, we remove the need for a human to take over in urban scenarios.

1.3. The Vulnerable Road User
So-called Vulnerable Road Users (VRUs), such as bicyclists and pedestrians, account for half of the
1.3 million annual casualties. To increase the safety of VRUs, active safety technologies such as
Autonomous Emergency Braking (AEB) are increasingly being integrated with commercial cars seen
on the road. Additionally, some cars already have automated steering functionalities.

In complicated urban areas with VRUs present, significant obstacles must be overcome to ensure
safety and performance while driving. The self-driving car should be aware of the VRUs’ existence and
able to deduce their intent to adjust its course and prevent accidents. This is why motion planning tech-
niques are necessary to deliver safe (collision-free) and system-compliant performance in challenging
situations with moving and stationary obstacles.

1.4. Local Motion Planner Architecture
The design of a self-driving car’s autonomous system is often divided into two key components: the per-
ception system and the decision-making system [2]. The perception system could be broken down into
several subsystems that are in charge of functions including autonomous vehicle localization, mapping
of static obstacles, mapping of road infrastructure, detection and tracking of moving obstacles, detec-
tion and identification of traffic signalization, and more. Although this separation is somewhat vague
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Figure 1.2: The autonomous vehicles hierarchy according to Badue: ”Overview of the typical architecture of the automation
system of self-driving cars. TSD denotes Traffic Signalization Detection and MOT denotes Moving Objects Tracking.” [5]

and there aremultiple distinct versions in the literature, the decision-making system is frequently divided
into many subsystems responsible for activities including global route planning, behavior selection, lo-
cal path planning, or trajectory planning including obstacle avoidance, and control, also called following
or tracking. This hierarchy is visualized in the hierarchies presented in the survey by Badue [5] , in fig-
ure 1.2. We assume the route waypoints and obstacle trajectories as given and focus on trajectory
planning around obstacles and trajectory following regarding local feedback control of the vehicle.

1.5. Thesis Objectives
This thesis aims to develop an implementation of a trajectory planner-follower architecture including
a feedback-hierarchical interface between the two controllers. This way we split the responsibility of
obstacle avoidance from vehicle stability and actuator control, while still maintaining a feedback cycle
considering the mismatch between the controllers. The method extends the existing motion planner of
the SafeVRU [6] platform, and builds on the work from [7].

A sensitivity analysis is done regarding the follower prediction horizon, integration step size, and
update frequency. This analysis includes rigorous testing in simulation and a comparison between
different settings and with the follower disabled.





2
Preliminaries

This chapter introduces other work related to the thesis. The ROS [8] packages used are maintained
by the R2CLab [9].

2.1. Model Predictive Control
For the design of a planner and follower, Model Predictive Control (MPC) is used. Due to its ability to
deal with Multi-Input Multi-Output systems, model-based control dates back to 1970 when it was used
in the process industry. This control technique suits our purpose well due to its predictive capabilities
which enable anticipatory corrections, easy extension to multi-variable non-linear processes, and han-
dling of constraints representing things like the road or obstacles [10].

Techniques based on numerical optimization minimize or maximize a function with constrained vari-
ables. Function optimization and model-predictive approaches such as model predictive control (MPC),
are the most often used numerical optimization-based strategies for self-driving car trajectory planning
[11]. By minimizing a cost function that takes into account the limiting factors or constraints of the
trajectory, such as position, velocity, acceleration, and jerk, function optimization methods determine
a trajectory. These techniques may conveniently take into account the kinematic, dynamic, and en-
vironmental constraints of the vehicle and its surroundings. However, because each motion state is
optimized separately and depends on global waypoints, these strategies have a large computational
cost.

The foundation of MPC is optimal control [10]. The fundamental idea of MPC is to predict system
behavior using a model of this system. The so-called Optimal Control Problem is solved for a finite
horizon to obtain the optimal predicted control input variables of each point in the horizon. This is illus-
trated in figure 2.1. The control input variable(s) of the first point in the horizon will be selected as the
control action to be executed. Then the other control actions are discarded and the process is repeated
for the next time step [12]. More information about Model Predictive Control can be found in dedicated
literature on the subject, such as by Rawlings et al. (2020) [10].

A controller using MPC solves the following nonlinear model predictive control problem:

minu
N−1∑
k=0

J (ξk,uk)

s.t. : ξk+1 = h (ξk,uk) , k = 0, . . . , N − 1
umin ≤ uk ≤ umax, ξmin ≤ ξk ≤ ξmax
ξ0 = ξcurrent

u :=
[
uT
0 , . . . ,u

T
N−1

]T
, ξ :=

[
ξT0 , . . . , ξ

T
N−1

]T
,

(2.1)

where J (ξk,uk) is the objective function. The predicted state and input of the vehicle at prediction
step k = 0, . . . , N − 1 (N is the prediction horizon), are denoted by state variables ξk ∈ [ξmin, ξmax]
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6 Chapter 2. Preliminaries

Figure 2.1: Basic MPC scheme by Martin Behrendt [13]

and input variables uk ∈ [umin,umax] respectively, and ξcurrent is the measured state of the vehicle.
The control problem in equation (2.1) minimizes an objective function with certain constraints, such as
respecting the prediction model and state and input constraints.

The primary consideration when selecting a model for implementation is the trade-off between accu-
racy and computational cost. A highly intricate model, characterized by mathematical complexity, can
effectively capture the future behavior of a system when exposed to known inputs. However, achieving
this level of accuracy requires additional computational effort for performing calculations, as it involves
a greater number of operations. The computational effort is further influenced by the analysis of the
integration time step and horizon length. This may become problematic regarding embedded hardware
limitations of the system.

Another consideration is that in practice every system faces limitations imposed by safety measures,
environmental regulations, consumer requirements, and physical restrictions like power and operating
speed. These constraints can be categorized into two main types:

• Hard constraints, which must not be violated under any circumstances, as they establish the
feasible range of solutions.

• Soft constraints, which can be temporarily violated if necessary. They serve to address extreme
initial conditions and ensure continuity between successive states.

2.1.1. Local Model Predictive Contouring Control
MPC is put into practice in the lmpcc package. This package uses Model Predictive Contouring Control
(MPCC) [14] to perform trajectory planning by implementing a ForcesPro solver [15]. MPCC solves the
optimization problem of Eq. (2) in Section II of the paper. ForcesPro generates an efficient solver that
gives a fast and reliable numerical solution to the mathematical optimization problem.

A lmpcc_follower package was added to implement trajectory following, also performing MPCC, but
with different requirements and thus a different ForcesPro solver. The follower package was built to
integrate well with the existing planner functionalities. Therefore the prediction models, the modules
responsible for adding constraints and objectives, and the interfaces for communicating with a simulator
or real robot are defined in one common place and used by both controllers.

2.2. Simulation
Verification tests were done in a simulated environment. This environment consists of an ego-vehicle
simulator, a roadmap, and a pedestrian simulator. These are visualized in figure 2.2.

2.2.1. Ego-Vehicle Simulator
The simple_sim package was used to simulate the ego-vehicle dynamic behavior. This package per-
forms numerical integration using the scipy.integrate method [16]. The integration method uses the
integration function RK45, which solves the initial value problem (IVP) [17] given by equation (2.2):
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Figure 2.2: The simulation environment visualized in RViz. We see the ego-vehicle as a car model, pedestrians as human
figures in different colors and the roadmap route reference as a green line.

ξ(u)′ = f (u, ξ(u))
ξ(u0) = ξ0

(2.2)

with initial state ξ0 known. A kinematic bicycle and dynamic bicycle model were added as vehicle
models. The dynamic model implements either a linear or a Dugoff tire model. These models are given
in Section III of the thesis paper. The simulator runs at and outputs the state ξ at 200 Hz. It updates
the vehicle model inputs u at the rate of controller frequency. The controllers both get their states ξ
directly from the simulator.

Model validation
The vehicle and tire models were validated by comparing their output with a ’back-of-the-envelope’
calculation, using the point mass centripetal force formula equation (2.3):

Fc = mv2

r
(2.3)

where Fc is the centripetal force,m is the mass, v is the longitudinal velocity and r is the radius. The ve-
hicle drives in a constant-radius circle with constant longitudinal velocity to calculate lateral tire forces,
which should equal the centripetal force exerted on a point mass according to the formula above. Re-
sults of these experiments are visualized in figure 2.3. Tests were conducted with various longitudinal
velocities and radii.

2.2.2. Roadmap
To describe the route which the vehicle has to traverse, we make use of the roadmap package. This
package takes a route consisting of waypoints (X,Y,Ψ) points and converts these waypoints to poly-
lines. It takes the hardcoded waypoints and fits lanes through the waypoints via a Clothoid and/or Cubic
spline fitting. A spline is generated over the received waypoints in two steps:

1. A Clothoid spline is fitted through waypoints and is sampled to obtain equally spaced waypoints
at consistent spacial frequency.

2. Cubic splines are fitted through each segment of the Clothoid spline.

A path is then generated from these splines and used as a reference by the trajectory planner.
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Figure 2.3: Result of vehicle and tire model validation test. On the left, we see the measured and expected tire forces and
boxplots of those tire forces on the right.

2.2.3. Pedestrian Simulator
To simulate dynamic obstacles representing Vulnerable Road Users (VRUs), the pedestrian_simulator
package was used. It simulates obstacles with positions (X,Y ), orientation Ψ, and forward velocity vx.
The pedestrians spawn at a specified position and move towards a specified relative or absolute goal
position with a specified forward velocity. These parameters may be set exactly or within a range. The
pedestrians move independently of each other and the ego-vehicle.



3
Paper

The thesis is written in the form of a paper and is attached to the following pages.
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Trajectory Planning and Following
in Urban Environments

Victor van der Drift
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Delft, The Netherlands

Abstract—This paper presents a comprehensive approach to
integrating a trajectory planner and follower for autonomous ve-
hicles (AVs) using model predictive contouring control (MPCC).
The planner generates collision-free trajectories with a kinematic
bicycle model, while the follower tracks them using a dynamic
bicycle model with a smaller integration step size and higher
update frequency. The hierarchical architecture allows for a long
planning horizon and a fast control loop. Mismatches between
the planner and follower can result in tracking errors and
conservative trajectories. To address this, a feedback-hierarchical
interface is proposed, feeding back the mismatch error from
follower to planner. Obstacles are then inflated with this error,
minimizing harmful deviations and collision risks. The paper
validates the Local Motion Planner using a simulator with a
dynamic bicycle model, testing different follower-solver settings
in urban scenarios. The results show a reduction in collision rate
of 23% compared to a single-layer MPCC planner, with similar
levels of lateral error and task duration.

Index Terms—Autonomous Vehicle Navigation, Motion and
Path Planning, Trajectory Tracking, Collision Avoidance, Model
Predictive Contouring Control

I. INTRODUCTION

Autonomous vehicles provide numerous advantages, in-
cluding increased safety, accessibility, and energy efficiency.
Much effort has gone into studies and development of Ad-
vanced Driver-Assistance Systems (ADAS) systems both by
academics and industry since the middle 1980s [1]. To reach
levels of high automation, the vehicle should be capable
of performing all driving functions. However, ensuring the
safety of Vulnerable Road Users (VRUs) such as pedestrians
and cyclists is a major challenge. In this paper, a Local

Motion Planner (LMP) is proposed that incorporates a two-
layer planner-follower architecture, working towards a level
of driving automation 4 by the SAE J3015 standard [2] to
reduce the number of accidents caused by human driver error.

Motion planning techniques are important for delivering
safe and system-compliant behavior in complex urban envi-
ronments with VRUs. They highlight the importance of a clear
interface between the perception and decision-making subsys-
tems in the autonomous system, which should comprise global
route planning, behavior selection, local trajectory planning,
and actuator control.

Overall, this study attempts to provide insights into the
challenges and potential related to the employment of ADAS
in self-driving cars, particularly in terms of assuring the safety
of VRUs. This study is a continuation of the work done by
Molteni et al. (2021) [3], who researched and implemented a
Local Motion Planner in MATLAB. The focus of this work is
on the implementation of a trajectory follower and feedback-
hierarchical interface within the LMPCC Model Predictive
Contouring Control [4] ROS package, visualized in Fig. 1.

The LMP should predict a trajectory over a sufficiently
long horizon to foresee possible collisions. However, it should
also perform well regarding the car dynamics within its
environment. Unforeseen deviations from the trajectory may
result in collisions with obstacles, even if the planner provided
a collision-free trajectory. Since the LMP uses an optimization-
based solution, there exists a possibility of optimization fail-
ure. The LMP must be able to handle these situations robustly.

(a) Actual obstacle inflation in action, visualized in RViz (b) Obstacle inflation illustration (exaggeration)

Fig. 1: Predicted planner trajectory in blue and predicted follower trajectory in green. The circles visualize the safe areas of
the vehicle and obstacles. The feedback-hierarchical interface is visualized as safe radii of the obstacles are inflated by ϵ (light
red area). Note: It may look like the blue and red areas collide in Fig. 1a, but this is not the case, since the planner considers
dynamic obstacle future trajectories.



A. Related work
This section provides an overview of the related research

on planning and following modules in autonomous driving
systems. It focuses on developing planning algorithms to
generate safe and collision-free trajectories. Additionally,
various path-following control methods are discussed to
ensure accurate trajectory execution, while respecting vehicle
dynamics. The integration between the planning and following
modules is discussed, including hierarchical architectures and
feedback-hierarchical interfaces. The research in these areas
aims to enhance the capabilities of autonomous vehicles and
improve their effectiveness and reliability in autonomous
driving in urban scenarios.

1) Planning: The cornerstone of autonomy in autonomous
driving is critical decision-making. Planning is a decision-
making process that occurs between vehicle perception and
control and may output paths or trajectories. Path planning
algorithms construct a geometric path from an initial to a final
point, passing through pre-defined via-points in the joint space
or the workspace of the robot. Trajectory planning algorithms
augment a given geometric path with temporal information
[5]. The basic goal of planning is to offer AVs a safe and
collision-free trajectory to their destinations while taking into
consideration vehicle motion, maneuverability around other
road users, traffic regulations, and road boundaries [6]. Since
this work aims to ensure VRU safety in urban environments,
planning is an essential research and development area as it
plays a vital part in dynamic obstacle evasion.

Numerous research on planning has been done in recent
years. A clear overview of different state-of-the-art motion
planning techniques including grid-based techniques, potential
field approaches [7], sampling-based approaches, and numer-
ical discrete optimization, such as model predictive control
(MPC) [4], [8]–[10] is given by Gonzalez et al. (2016) [11].
Essential within planning for obstacle avoidance, is the correct
handling of uncertain environments. Scenario-Based trajectory
optimization in uncertain dynamic environments translates
probabilistic constraints into deterministic ones [12]. Lagrange
duality between autonomous agents and dynamic obstacles
with uncertain predictions is used to obtain deterministic
reformulations of the collision avoidance constraints [13].

The two levels of present planning algorithms are route
planning and path or trajectory planning. A route planner plans
the journey route from start to finish, carving the whole route
up into several sections divided by waypoints. An example
of this would be your go-to consumer navigation application,
such as Google Maps. The path or trajectory planner makes
sure these sections are well-traversed, adhering to necessary
requirements. A digital map and localization system are used
in the route planning step to identify routes and vehicle states.
A path or trajectory can be constructed at the path or trajectory
planning stage using a route and ambient information gathered
from sensors like cameras, lidars, or radars [1].

2) Following: The following module (also known as track-
ing or control) receives the trajectory created by the planning

module and computes control commands which are sent to the
actuators of the steering wheel, throttle, and brakes of the AV.
In this way, the follower executes the planned trajectory as
best as the physical environment allows [1].

To minimize errors brought on mostly by the inaccuracies
of the trajectory planner prediction model, tracking techniques
stabilize tracking the trajectory generated by the trajectory
planner. Numerous path-following control methods have
been analyzed [14]. Model-free approaches such as Pure
Pursuit [15], PID-Stanley [16], and Neural Network [17]
do not require extensive resources regarding hardware
and software, and are relatively simple to implement.
Model-based path-following methods include sliding-mode
control [18], LQR controllers [19] and MPC controllers [3],
[20]–[22] or a H∞-MPC disturbance rejection and trajectory
following combination [23]. Regarding the models necessary,
passivity-based Model Predictive Control (PB/MPC) is a
method enabling the inclusion of high complexity models by
stabilizing a system using a framework of energy shaping,
adding to the constraints of the MPC problem [24], [25].
Also, modeling steering system delay [26] or road dynamics
[27] and estimating model parameters such as cornering
stiffness [26] and its uncertainty [28] could greatly improve
effectiveness and reliability of a follower.

3) Interaction interfaces: The integrated architecture and
interaction between planner and follower are not trivial. The
simplest method of integrating separate systems is to design a
one-way top-down hierarchical system, which feeds the path
or trajectory from the planner into the follower directly [29].
Hierarchical planner-follower architectures benefit from both
a large planner time horizon to effectively avoid obstacles
and a fast follower control loop to ensure the stability and
performance of the system.

However, if the mismatch of the planner and follower is
too large, the target trajectory from the planner may be too
conservative or impossible to track for the follower [30]. This
can be overcome by integrating the architecture, for example
by merging the planning and following into one optimization
[30]–[32], or with a feedback-hierarchical interface between
planner and follower [3]. If the follower becomes infeasible
or the (soft) constraints are violated, the planner should re-plan
a trajectory concerning the limits of the follower.

Another hierarchical control scheme for trajectory planning
and following is using two Nonlinear Model Predictive Con-
trollers, linking the terminal velocity of the follower to the
corresponding value of the planner [21].

An adaption of a simultaneous local path planning and
path following control framework, performing lane change
and double-lane change maneuvers dynamically changes the
lookahead distance with changing road shapes and curvatures,
resulting in better performance regarding route error [33].

When using decoupled stabilization systems such as elec-
tronic stability control (ESC), collision avoidance may not
function as intended due to the ESC stabilization actions
leading to tracking errors. A single hierarchical MPC frame-



work solves this by prioritizing collision avoidance above
stabilization above path tracking by using soft constraints with
different decreasing weights [34].

B. Contribution

In this work, an implementation of a trajectory planner-
follower architecture with a feedback-hierarchical interface
is presented. By adding a follower that also tracks velocity,
the evasive performance is increased while keeping lateral
deviation from the route and task duration similar as op-
posed to without a follower. A sensitivity study regarding the
follower solver settings was done. The problem of planner-
follower mismatch is addressed by using the lateral offset
error to increase safety margins in planner obstacle avoidance.
This feedback-hierarchical interface is easier to implement
than fully integrated interfaces, while still taking into account
planner inaccuracies and planner-follower mismatch. A PID-
Stanley backup follower is implemented to handle MPC infea-
sibilities. The proposed planner-follower architecture is vali-
dated in simulation. The system is implemented in ROS/C++
and integrates within the SafeVRU [35] framework.

II. PRELIMINARIES

A. Robot Description

We consider an ego-vehicle or robot as a nonlinear discrete-
time system, whose dynamics can be represented by the
following model:

ξk+1 = h (ξk,uk) (1)

where ξk ∈ Rnξ and uk ∈ Rnu are the state and input at
discrete time instance k, and nξ and nu are the state and
input dimensions respectively. The robot moves in workspace
(X,Y,Ψ) ∈ R3 ⊆ Rnξ , which is a horizontal plane with
orientation. Obstacles move in this same space.

The robot is given obstacle trajectories in (X,Y ) by a
pedestrian simulator, a reference path (X,Y ) ∈ R2 ⊆ Rnξ by
a route planner, and reference velocity along this path vx as
constant. The robot will track the reference path and velocity
but can deviate from this reference to avoid collisions with
obstacles. The robot is modeled as a non-holonomic system
and its area is modeled as a set of circles of radius rego. The
obstacles are modeled as moving circles of radius robstacle.

B. Problem Formulation

For the design of a planner and follower, Model Predic-
tive Control (MPC) is used. This control technique suits
our purpose well due to its predictive capabilities, enabling
anticipatory corrections and handling of constraints such as
the road or obstacles [36].

A controller using MPC solves the following nonlinear
model predictive control problem:

minu
N−1∑
k=0

J (ξk,uk)

s.t. : ξk+1 = h (ξk,uk) , k = 0, . . . , N − 1
umin ≤ uk ≤ umax, ξmin ≤ ξk ≤ ξmax

ξ0 = ξcurrent

u :=
[
uT
0 , . . . ,u

T
N−1

]T
, ξ :=

[
ξT0 , . . . , ξ

T
N−1

]T
uk ∈ U , ξk ∈ X

(2)
where J (ξk,uk) is the objective function, which is dif-

ferent regarding the planner or follower and is given in their
respective implementations in Section III-A and Section III-B.
The predicted state and input of the vehicle at prediction step
k = 0, . . . , N − 1 (N is the prediction horizon), are denoted
by state variables ξk ∈ [ξmin, ξmax] and input variables
uk ∈ [umin,umax] respectively, and ξcurrent is the measured
state of the vehicle. X and U are the set of admissible states
and inputs. Eq. (2) consists of minimizing an objective func-
tion with certain constraints, such as respecting the prediction
model and state and input constraints. The prediction models
and constraints for the planner and follower are different and
elaborated upon in Section III.

One downside of MPC is that it may get stuck in a local
optimum. This could result in unsafe or slow motion, even
when a better plan exists. A solution could be a planner layer
above the MPC planner, to guide the local MPC planner [37],
but this is not considered in this work.

1) Contouring Control: An extension of MPC is called
Model Predictive Contouring Control (MPCC). Its goal is
to reduce contouring error, which is defined as the normal
deviation or shortest distance between the planned path and
the current position [4], [8], [10], as seen in Fig. 2. As a result,
it is an excellent indicator of how much the vehicle deviates
from the reference path in the lateral direction. The contouring
error ϵ̂c and objective Jϵ̂c are defined in Eq. (3):

ϵ̂c (ξk, θk) = sinϕ (θk) (xk − xd (θk))

− cosϕ (θk) (yk − yd (θk))

ϕ (θk) = arctan

(
∇yd (θk)
∇xd (θk)

)
θk+1 =θk + vk, vk ∈ [0, vmax] , vmax > 0

Jϵ̂c (ξk, θk) =ϵ̂
cQϵ̂c ϵ̂

c

(3)

where (xk, yk) are the x- and y-position of the system respec-
tively, (xd (θk) , yd (θk)) are the desired path coordinates along
path parameter (θk) at time k and vk and vmax are the current
and maximum longitudinal velocities along the path. Qϵ̂c is a
weight. This contouring error penalized in the objective along
the MPC horizon in Eq. (2) [8].

In Lam et al. (2013) [9] the MPCC method subject to state
and actuator constraints facilitates real-time implementation,
by adjusting actuation speed automatically to maintain ac-
curacy. The applicability of the design with more complex



Fig. 2: Contouring error ϵ̂c by Lam et al (2010) [8].
The contouring error is the lateral distance between the path
and the ego-vehicle.

robotic models is shown with the successful implementation
of the model of an AV (modified Toyota Prius) [4], [35].

2) Collision avoidance: To perform obstacle collision
avoidance, ellipsoidal constraints cobst,jk (ξk) > 1 are added
to Eq. (2) [4]. The ellipsoidal constraint is given by Eq. (4):

[
∆xjk
∆yjk

]T
R(ψ)T

[
1
d2 0
0 1

d2

]T [
∆xjk
∆yjk

]T
R(ψ)︸ ︷︷ ︸

cobst,jk (ξk)

> 1 (4)

We approximate the area of the ego-vehicle as a union of
ndiscs circles representing discs with radius rego and the area
of obstacles with a circle of radius robstacle. Thus the distance
d kept between the ego vehicle is d = rego + robstacle.
The distance between an obstacle and ego-vehicle disc j is
separated into its ∆xj and ∆yj components and R(ψ) is a
rotation matrix.

III. METHOD

For the design of the Local Motion Planner, we build on the
existing MPCC planner from Brito et al (2019) [4], having a
long horizon with a large integration step size and a simple
kinematic prediction model. We extend the planner with a
follower, another MPCC to track the planned trajectory. The
follower uses a dynamic model with a smaller integration step
size to better predict actual vehicle behavior. Control inputs
should include dynamic behavior, resulting in longitudinal
acceleration and steering rate. The follower will feed the
planner-follower mismatch back to the planner to correct the
deviation and has a PID controller as a backup follower if
the MPCC does not produce feasible results. See Fig. 3 for a
diagram of this architecture.

A. Planning

The trajectory planner produces a collision-free trajectory
over a long planning horizon in the dynamic environment
surrounding the vehicle. It is responsible for following the
road and a reference velocity while avoiding obstacles. It uses

Local Motion Planner

Simulator
(Plant)

MPCC 
(Controller)

Planner
MPCC 

(Controller)

States ?k

Control 
inputs uk

Reference
trajectory
[X,Y,? ,vx]

Contouring error ?

Pedestrian
simulator

Road map
(Reference)

Reference path [X,Y]

Pedestrian trajectories [X,Y]

Environment

PID 
(Controller)

Solver timeout / 
feasibility flag

Follower

Control 
inputs uk

Control 
inputs uk

?

Set Velocity
(Reference)

Reference
velocity vx

Fig. 3: A diagram of the architecture of the Local Motion
Planner and the Environment. The output from either the
MPCC or PID controller will be chosen, depending on the
status of the MPCC controller. See Section III-B.

MPCC with a kinematic bicycle model [3], [38], such as in
Fig. 4a, as a prediction model to control longitudinal accelera-
tion ax and steering rate ω simultaneously. The planner solves
a nonlinear model predictive control problem, such as Eq. (2),
including contouring penalty Jϵ̂c and collision avoidance con-
straint cobst,jk explained in Section II. Its prediction horizon
consists of N = 25 steps with dt = 0.2s, thus resulting in a
horizon of 5 seconds. The planner updates at a frequency of
10Hz. State and input constraints are given by Table I.

The kinematic bicycle model is given by Eq. (5):

TABLE I: Constraints on the planner and follower MPCC
modules.

Symbol Lower Bound Upper Bound Units
vx 0.10 6.00 m/s
vy -1.00 1.00 m/s
rz -1.00 1.00 rad/s
δ -0.45 0.45 rad
ax -6.00 2.00 m/s2

ω -0.20 0.20 rad/s



(a) Kinematic bicycle model [3] (b) Front tire slip angle and lateral force [39]

Fig. 4: Bicycle and tire models. In these figures, v and V are the longitudinal velocity also denoted by vx in Eqs. (5) and (7).

Ẋ = vx cos(Ψ + β)

Ẏ = vx sin(Ψ + β)

Ψ̇ =
vx
lr

sin(β)

v̇x = ax

δ̇ = ω

β = tan−1

(
lr

lf + lr
tan(δ)

)
(5)

with states ξ = [X,Y,Ψ, vx, δ] and inputs u = [ax, ω]. X , Y ,
and Ψ represent the vehicle’s absolute position and orientation
on the map, vx and Ψ̇ are the vehicle longitudinal velocity
and the yaw rate respectively. The longitudinal acceleration
ax is directed parallel to the longitudinal axis of the vehicle.
δ is the road wheel angle and ω the steering change rate. β
is the sideslip angle and lf and lr are the distances of the
front and rear axes to the center of gravity of the vehicle
respectively. Values for these constants are given by Table II.

B. Following

The follower is used to track the collision-free trajectory
that is calculated by the planner. This trajectory consists of
the kinematic states X,Y,Ψ, vx along the prediction horizon
of the planner.

Since the sampling frequencies and integration step sizes
of the planner and follower will not align, re-sampling is
necessary. This was done by fitting and evaluating the kine-
matic states of the trajectory through cubic splines to ob-
tain a continuous trajectory, consisting of segments τ i(t) =

[τ ix, τ
i
y, τ

i
Ψ, τ

i
vx ]

T , with τ ij given by Eq. (6):

τ ij(t) = aijt
3 + bijt

2 + cijt+ dj (6)

where j could be one of states X,Y,Ψ, vx. Together the cubic
splines form a smooth trajectory τ : [0, T ] → R4 from the
car state to the goal state. These splines are then sampled
with the follower integrator step size to use as a reference for
the follower controllers. More details about the cubic spline
implementation are given by [40].

The follower consists of two controllers: an MPCC
controller and a PID-Stanley controller. The output of the
MPCC is always preferred, but the PID will be chosen if the
MPCC takes too long or becomes infeasible. Both controllers
are discussed below.

1) MPCC follower: To track the trajectory in an optimal
manner and predict the future dynamic behavior of the car,
an MPCC controller was used. The MPCC follower follows
the collision-free trajectory provided by the planner while also
considering the vehicle dynamics. Therefore the model chosen
is a rewritten version from Laurense (2019) [20], also used by
Schwarting (2018) [10]. It is a dynamic model with a linear
tire model which is given by Eqs. (7) to (9):

Ẋ = vx cos(Ψ + β)

Ẏ = vx sin(Ψ + β)

Ψ̇ = rz

v̇x = rzvy −
1

m
Flat,f sin(δ) + ax cos(δ)

v̇y = −rzvx +
1

m
(Flat,f cos(δ) + Flat,r) + ax sin(δ)

ṙz =
1

Iz
(lfFlat,f cos(δ)− lrFlat,r + lfax sin(δ))

δ̇ = ω

β = tan−1

(
lr

lf + lr
tan(δ)

)

(7)

with states ξ = [X,Y,Ψ, vx, vy, rz, δ] and inputs u = [ax, ω].
X , Y , and Ψ are global coordinates and orientation on the
horizontal plane, vx and vy are the longitudinal and lateral
velocities in the local frame of the vehicle, rz is the angular
velocity of the vehicle around the vertical axis or yaw rate, δ
is the steering angle, β is the side slip angle, and ax and
ω represent control variables longitudinal acceleration and
steering rate. Model constants lf and lr are the distances from
the center of gravity to the front and rear axes respectively, as
illustrated in Fig. 4a and m and Iz denote the vehicle mass and
yaw inertia respectively. Values for these constants are given



TABLE II: Vehicle and tire model constants

Symbol Value Units
lf 1.123 m
lr 1.577 m
m 1590 kg
Iz 2830 kg ∗m2

Cαf 188990 N/rad
Cαr 194370 N/rad

by Table II. The lateral tire forces Flat,i, in which i could be
f for the front tire and r for the rear tire, are calculated with
tire models explained below.

Regarding tire models, we first calculate the slip angle αi

with Eq. (8), where i may be replaced with f (front) or r
(rear). The slip angle of a tire is defined as the angle between
the orientation of the velocity vector of the wheel and the
orientation of the tire. An illustration of the slip angle is given
in Fig. 4b. Here ΘV f is the angle that the velocity vector at the
front wheel makes with the longitudinal axis of the vehicle.
ΘV r will be this angle for the rear tire.

ΘV f = tan−1

(
vy + lfrz

vx

)
ΘV r = tan−1

(
vy − lrrz

vx

)
αf = δ −ΘV f

αr = −ΘV r

(8)

The linear tire model is given by Eq. (9):

Flat,i = Cαiαi (9)

where Cαi is the lateral slip stiffness where i can again be
replaced with f, r for front and rear tire respectively. The
values used are given by Table II.

The controller solves the nonlinear model predictive control
problem given by Eq. (2), and its objectives are:

• path tracking in a contouring control way, minimizing
the contouring error of the car with respect to the X,Y
trajectory calculated by the planner.

• velocity tracking by using the vx trajectory calculated by
the planner as reference velocity.

• minimizing control inputs.
Therefore the cost function is as follows:

Jfollower := Jϵ̂c + Jvx + Jax
+ Jω (10)

where

Jvx := ∥vx − vx,ref∥2Wvx
(11)

and the contouring objective Jϵ̂c uses the contouring
error from Eq. (3) and is further explained by Brito et
al. (2019) [4]. Jax + Jω are cost functions regarding the
control inputs. State and input constraints are given in Table I.

2) PID-Stanley follower: This follower functions as a
backup, when the MPCC follower becomes infeasible. The
X,Y,Ψ states are used by two separate controllers for lon-
gitudinal and lateral movement. The longitudinal control is
calculated by a double PID controller, which first calculates a
velocity and then a control acceleration. To calculate a steering
angle for lateral control, we use a steering angle control law
from Stanley, the robot that won the DARPA Grand Challenge
[16]. The control law is given by Eq. (12):

δ = (Ψref −Ψ) + arctan
KS(Yref − Y )

vx
(12)

where Ks denotes the Stanley gain and the other symbols
mean the same as explained at Eq. (5). Subscript ref means
reference.

The PID-Stanley follower has no regard for dynamics and
performs no predictive evaluation. It does not provide any
feedback to the planner and can not correct inputs and is thus
only used as a backup.

C. Feedback-hierarchical interface

A feedback-hierarchical interface is implemented in the
following way: the reference trajectory in X,Y coordinates,
which is given as the prediction horizon from the planner,
is interpolated using cubic splines. Then the contouring error
between this interpolation and the prediction horizon from the
follower is calculated with every follower control loop update.
It gives an array of contouring errors ϵ̂c along the prediction
horizon, using Eq. (3). The maximum value from this array ϵ
is then sent to the planner and to inflate safe obstacle distances
d, where d = rego + robstacle + ϵ from Eq. (4). In the next
planner control loop, the planner now has to account for the
predicted deviation from its previous predicted horizon, by
planning around the obstacles with inflated radii.

This is illustrated in Fig. 1b, where the blue line indicates
the planner horizon and the green line is the follower horizon.
The red circle is the regular obstacle safe radius and the ring
around this is the inflation of the safe radius ϵ. It can be seen
in action in Fig. 1a.

D. Validation

1) Simulation: To validate the control method, the simula-
tor simple sim from the R2CLab was [41] used as a ROS node.
It simulates a dynamic bicycle model with a linear or Dugoff
tire model. The system was integrated with the SafeVRU
framework through an interface for the LMPCC package.

This dynamic bicycle model is given by Eq. (7): In most
normal driving scenarios in urban environments, slip angles
are small. Thus lateral tire forces can be approximated well
by the linear model, due to the tire force being proportional
to slip ratio [39]. This means that a linear model will suffice
in common urban driving scenarios. However, since evasions
imply more dynamic maneuvers and to give the simulator a
higher fidelity model than the controller, a Dugoff model [39]
was implemented, given by Eqs. (8) and (13):



Fig. 5: The track (x, y) and speed vx of experiment A with
MPCC follower. The grey crosses × are the route via-points.

The Dugoff tire model is given by Eq. (13):

µ = µ0

(
1− ervx

√
κ2 + tan2 αi

)
λ =

µFz(1− κ)

2

√
(Cκiκ)

2
+ (Cαi tanαi)

2

f(λ) =

{
λ(2− λ) if λ < 1

1 if λ ≥ 1

Flat ,i =
Cαi tanαi

1− κ
f(λ)

(13)

in which µ is the tire-road friction coefficient, µ0 represents the
peak friction coefficient, er is the friction reduction coefficient,
κ is the wheel slip, Fz is the normal force and Cκi is the
longitudinal slip stiffness.

Validation of the dynamic model was done by measuring the
total lateral tire forces in simulation while driving in constant-
radius circles at constant longitudinal velocity. These forces
were compared to steady-state lateral forces regarding cen-
tripetal forces on a point mass using the formula Fy =

mv2
x

r ,
where Fy is the total lateral force, vx is the longitudinal

Fig. 7: Pedestrian evasion Experiment B.

velocity, m is the mass and r is the radius of the circle.
Validation tests were done with different radii and velocities.

IV. EXPERIMENTS

We validate the local motion planner on a simulated self-
driving vehicle. Two types of experiments are conducted, one
with and one without pedestrians.

A. Lateral error through curve

The goal of the first experiment is to validate the local
motion planner performance regarding lateral deviation from
the path and experiment task duration. The lateral deviation
is the contouring error between the planner and the reference
path, and the experiment task duration is the time it takes from
start to finish the experiment. In this experiment, the car will
drive straight, make a turn, and then drive straight again, as
seen in Fig. 5. No obstacles are present. Tests were done with
the follower disabled, with only the PID follower enabled,
and with the MPCC follower, using the dynamic model with
settings prediction horizon length N = 25, integration step
size dt = 0.02s, and controller clock frequency cf = 100Hz.

As seen in Fig. 6, adding a follower hardly affects the lateral
error with respect to no follower. The task duration increased
a bit in some runs with the follower, but the medians (orange
line) and means (green triangle) are still similar in value.

B. Pedestrian evasion

The second experiment tests the ability of the Local Motion
Planner to effectively evade pedestrians while still tracking a
reference path.

(a) Lateral deviation (m) from the path through the curve. (b) Experiment task duration (s) through the curve.

Fig. 6: Experiment results of Section IV-A. The line in the middle of the box is the median, the triangle is the mean µ, and
σ is the standard deviation. Since the PID follower is not velocity-controlled, a larger spread along its task duration is seen.
However, the MPC follower behaves similarly to no follower, and there seems no difference in lateral error between the three.



(a) Horizon lengths N for:
integration stepsize=0.02s and clock frequency=100Hz

(b) Stepsizes dt (s) for:
horizon length N=20 and clock frequency=100Hz

Fig. 8: Results of experiments with settings adjacent to those of promising experiment (#22).

This reference path is set up as a straight road of 100 meters,
where 16 pedestrians are spawned in 3 locations, with random
positions and orientations within these locations, and with a
speed ranging from 0 m/s to 1 m/s. These pedestrians will
walk with the following behavior:

1) Parallel to the road, simulating a sidewalk;
2) Orthogonal to the road, simulating a pedestrian crossing;
3) At random on and next to the road, simulating a

pedestrian-car shared space.
These locations and behavior are visualized in Fig. 7. The

green strip is the reference path or route of the car.
All experiments were done in sets of 100 test runs, to

account for statistical factors considering the randomness in
pedestrian spawning and the two solvers’ optimization pro-
cesses [42]. For each experiment, the follower horizon length,
integration step size, and clock frequency could be set. The
results of the experiments regarding different solvers with
these settings are given in Table III.

From these results, we regard three metrics:

• Success :=
∑100

1 (no time-out & no collisions)%

• Lateral error := mean of the contouring error

• Duration := mean of the duration until task completion

These metrics are visualized in Fig. 10. The horizontal and
vertical axes represent the mean duration and mean lateral
error respectively. These should be as low as possible. The
success rate is indicated by color, where green means a high
success rate and red low success rate. This should be as high

as possible. A 1D success rate plot is given next to the scatter
plot for extra readability and redundancy. Every dot represents
an experiment with different settings. Experiment × represents
an experiment without a follower, so any experiment with a
higher success rate, lower duration, and lower lateral error can
be considered as performing better.

As seen in Fig. 10, some settings produce worse results
than without a follower, but some settings result in a
significantly improved Local Motion Planner. Settings
corresponding to experiment #22 (green triangle △) seem
to have the most potential since it has the highest success
rate and no significant reduction in lateral error and task
duration. A run of this experiment is visualized in Appendix C.

Another metric is added to compare the settings:

• Score := success rate2
lateral error∗duration

This way all metrics are combined into one number to
represent the best settings. Since evading obstacles is the main
goal of this controller, the success rate metric is weighed
heavier. Since experiment #22 has the highest success rate,
it will be compared to experiments with adjacent settings. In
Fig. 8a all these metrics are combined into a bar graph. In
this graph, the metrics are normalized with their corresponding
results of experiment 0 (without a follower), where a higher
number indicates more preferable behavior. A normalized
success rate larger than 1, indicates a higher success rate
compared to experiment 0. A normalized lateral error larger
than 1, indicates a smaller lateral error compared to experiment
0. Therefore it is quickly deduced from Fig. 8a that with a



Fig. 9: The control loop runtimes of experiment #22. The red line is 1/clock frequency. The planner and follower runtimes
should be below 0.1 s and 0.01 s respectively. As seen in the plot, this is not always achieved. Note the unequal axes.

step size of 0.02 s and clock frequency of 100 Hz, the horizon
length should optimally be N=20. Similarly, it can be deduced
from Fig. 8b that for a horizon length of N=20, the integration
step size should optimally be 0.02 s.

It should also be verified if the planner and follower actually
run at their specified clock frequencies. Multithreading helps
the parallel calculation of both controllers. For experiment #22,
the clock frequencies are 10 Hz and 100 Hz for the planner and
follower respectively. In Fig. 9 it can be seen that the desired
clock frequencies are mostly achieved, but there is still room
for improvement. The follower control loop exceeds 0.01 s in
9.8% of the time, triggering the PID-Stanley follower.

Fig. 10: Results of scenario a. Dots correspond to experiments
with different settings. × is the run without a follower, and △
is the best run with a follower #22.

To validate the obstacle inflation the settings from experi-
ment #22 were also tested with obstacle inflation turned off.
The results given by Fig. 11 confirm that enabling inflation
yields better performance regarding obstacle avoidance.

The common settings of the best experiments were evalu-
ated. It can be concluded from the results that a horizon size
(horizon length * integration step size) of around 0.04s to
0.05 seconds with a small integration step size is preferable.
A too-small horizon size will lead to the follower not being
able to adequately predict the behavior of the car, leading to
sudden braking and poor tracking performance. Boxplots from
the lateral error Fig. 12 and task duration Fig. 13 show the
performance of each experiment regarding those metrics, apart
from only the mean of these values in other figures.

Fig. 11: Inflation validation results for N=20, integration
stepsize=0.02s and clock frequency=100Hz. Better results are
seen with inflation enabled.



V. CONCLUSION AND FUTURE WORK

The implemented Local Motion Planner architecture can
increase obstacle avoidance performance in urban scenarios.
The addition of a follower and feedback-hierarchical interface
improves the success rate of the LMPCC framework by 23%
while keeping lateral deviation from the path and task duration
time at similar levels as without a follower. The dynamic
model used by the follower adds higher certainty regarding
pedestrian safety, due to its capabilities of correcting the
control inputs of the planner regarding the dynamic behavior
of the car. It also gives feedback to the planner if the planned
trajectory is not dynamically desirable, in the form of inflation
of obstacles by the amount of deviation from the initial plan.

A fail-safe design with a PID-Stanley controller as a
backup follower assures the car will continue in a controlled
manner, braking if the planner fails too, but still following
the intentioned trajectory.

Further work should validate the Local Motion Planner ex-
perimentally using the SafeVRU platform. This could include
changing road conditions, such as altering the tire-road friction
coefficient µ in the simulator and implementing a µ estimator
in the follower.

Also, a better representation of the vehicle dynamics could
be implemented, by extending the dynamic bicycle model
with a delay, actuator and steering dynamics, or 3D chassis
dynamics incorporating the roll and pitch of the vehicle in
high acceleration movement. For this to become worthwhile,
the simulator model should first be upgraded too.

Expanding the dynamics to also include longitudinal jerk,
lateral and yaw acceleration, and jerk and steering acceleration
could also improve performance while keeping into account
motion sickness.

Another addition could be to incorporate the human driver
into this system as a form of shared control MPC or replace
the PID-Stanley with another type of controller as a backup to
increase redundancy. As the MPC planner might get stuck in a
local optimum, a layer above the planner guiding it to a more
optimal solution could help the planner get better results. And
of course, better (auto)tuning may improve results further.
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APPENDIX A: TABLE OF EXPERIMENT RESULTS

In this appendix, Table III is given of the results of different follower solvers with their settings. Every experiment consists
of 100 test runs in the environment described in subsection IV-B.

Experiment 0 corresponds to an experiment where the follower is disabled, as a benchmark. In total 6 experiments with
disabled followers were conducted, of which the results with the highest success rate were chosen. (a) corresponds to the
experiment of pedestrian evasion with 16 pedestrians, visualized in Fig. 7, (b) corresponds to the experiment of pedestrian
evasion of 2 pedestrians.

The metrics are defined as follows:

• score := success2
lateral error∗duration

• success :=
∑runs per experiment

1 (no time-out & no pedestrians hit) ∗ 100%

• lateral error := mean of the contouring error

• duration := mean of the duration until task completion

• N := length of prediction horizon follower

• stepsize := integration stepsize of follower solver

• frequency := clock frequency of follower

• horizon := size of the horizon of follower, N*stepsize
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APPENDIX B: LATERAL DEVIATION AND TASK DURATION RESULTS

In this appendix, Figs. 12 and 13 are given to visualize the consistency in lateral deviation from the route and task duration
per experiment regarding the experiment visualized in Fig. 7. All experiments consisted of 100 runs and their performance is
sorted on the mean of the corresponding results. The green triangle represents the mean, the orange line represents the median
and the grey area above the boxplot represents the spread of the data.



Fig. 12: Boxplots of lateral errors regarding the experiments. Fig. 13: Boxplots of durations regarding the experiments.



APPENDIX C: A RUN OF EXPERIMENT #22

In this appendix, Figs. 14, 15, 16, 17, 18, 19 show several key parts of a run of an experiment with settings #22. A video
of this run can be watched via [43].



Fig. 14: t = 0s: Start. Here we see the ego-vehicle at the start of the experiment, accelerating to cruising speed.

Fig. 15: t = 4s: Brake. Here we see the ego-vehicle braking to evade the pedestrians.



Fig. 16: t = 12s Wait. Here we see the ego-vehicle waiting for the pedestrians to pass.

Fig. 17: t = 19s Continue. Here we see the ego-vehicle accelerating to continue driving the route.



Fig. 18: t = 27s Inflation. Here we see the ego-vehicle planning around a pedestrian. Due to planner-follower mismatch, the
obstacles are inflated with ϵ = 0.1m.

Fig. 19: t = 29s Evasion. Here we see the ego-vehicle evading the pedestrian effectively, inflation has returned to ϵ = 0m.





4
Discussion

Automated driving and autonomous cars have emerged as groundbreaking technological advance-
ments that promise to revolutionize the transportation industry. The benefits of this innovation include
improved road safety, increased efficiency, and enhanced mobility. This potential increase in safety
not only saves lives, but also reduces the strain on healthcare systems and decreases the economic
burden associated with traffic accidents.

However, there are concerns that must be addressed to ensure the well-being of pedestrians in
an automated driving landscape. Firstly, there is a need to consider the human aspect of pedestrian-
vehicle interactions. Pedestrians often rely on visual and auditory cues from drivers to anticipate their
behavior and make informed decisions while crossing the road. Autonomous vehicles lack the human
characteristics that pedestrians are accustomed to, making it challenging for pedestrians to accurately
predict their movements. This unpredictability can deteriorate confidence in the technology and lead to
a decrease in pedestrian comfort and safety. Addressing this issue requires the development of clear
and intuitive communication methods, such as visual indicators or audible signals.

Another primary concern revolves around the issue of liability and responsibility. In the event of
an accident involving an autonomous vehicle, determining who should be held accountable can be
complex. Should it be the manufacturer of the technology, the vehicle owner, or a combination of
both? Also, if the autonomous car had to choose between saving the life of a child on the road, or its
passenger, what should it do? These legal and ethical dilemmas pose significant challenges that need
to be addressed to ensure a fair and just system.

Additionally, vulnerable road users, such as children, elderly individuals, or individuals with dis-
abilities, require special attention in the context of autonomous cars. These groups may face unique
challenges when navigating the road, and it is crucial to ensure that the technology accounts for their
specific needs. For instance, children may behave unpredictably, and individuals with visual impair-
ments may rely heavily on auditory cues. Considering the diverse range of pedestrian behaviors and
abilities is essential in designing autonomous systems that prioritize the safety and inclusion of all road
users.

Lastly, the reliance on complex technology also introduces cybersecurity risks. As autonomous
cars become increasingly connected, they become potential targets for cyberattacks. A breach in the
system could have severe consequences, ranging from unauthorized access to personal data to po-
tential physical harm if control of the vehicle is compromised. The development of robust cybersecurity
measures and protocols is crucial to safeguard the integrity and security of these autonomous systems.

In conclusion, while automated driving and autonomous cars offer significant potential benefits for
pedestrian safety, there are specific concerns that need to be addressed to ensure the well-being of
vulnerable road users. By developing technology that accurately interprets and responds to pedestrian
cues, establishing clear and intuitive communication methods, and accounting for the diverse needs of
pedestrians, a transportation system that prioritizes the safety and inclusivity of all road users can be
created.
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