
Bluetooth
Ultra-simple
Gamepad
Design of a wireless
cooperative gaming device
Floris van der Heijde
Jorn van der Linden
Koen van Remundt
23rd December 2021

Abstract

The design, production and testing of the Bluetooth Ultrasimple Gamepad, or BUG for short, is
laid out in this report. In the current market, most of the controllers available are multi-button
controllers with analogue sticks. These controllers are expensive and can not be used for many
web browser games which rely on a keyboard input to work. In order for these controllers to
work, a video game or self developed app can be used, but this can be difficult or expensive for
many users. In the implementation of the BUG, the controller was made to be used by a single
hand, having a clear ”main” button, an intuitive reconfiguration scheme and to have Bluetooth
connection which is present in a lot of laptops and PCs currently in use. With this approach, the
user can have a cheap, simple and comfortable alternative to existing gamepads. It can be stated
that, although not for everybody, the BUG is a good and fun alternative for users. This can be
seen because the general user experience is rated at 5 out of 5 points by 50% of the participants,
4 out of 5 by 46.7% of the participants and only 1, or 3.3% of the participants has given a rating
of 2 out of 5.

Preface

The project took place over 10 weeks during which the team members worked towards the devel-
opment of a Bluetooth Ultra-simple Gamepad. The team consisted of 3 members: Floris van der
Heijde, Jorn van der Linden, and Koen van Remundt. All three members have completed the vast
majority of the Electrical Engineering Bachelor and the Delft University of Technology.

The project was suggested by prof.dr.ir. Rob Kooij as a way to do research on the differences
in collaboration within teams of heterogeneous and homogeneous cultural background. During the
project an initial prototype was developed as a proof of concept which happened rather quickly.
Thus the choice was made to develop a set of more fully developed prototypes.

We would like to thank prof.dr.ir Rob Kooij for his suggestion of the project and his suggestions
throughout the project. We would also like to thank dr.ing. I.E. Lager for his guidance throughout
the project.

Floris van der Heijde, Jorn van der Linden, and Koen van Remundt
December 2021

Contents

1 Introduction 11
1.1 Gamepads . 11
1.2 State of the art analysis - Gamepads . 11
1.3 State of the art analysis - Bluetooth protocol . 12

2 Programme of Requirements 13
2.1 Project requirements . 13
2.2 Technical requirements. 13
2.3 Additional requirements . 14

3 Prototype Design 15
3.1 3D Design. 15

3.1.1 Gamepad design . 15
3.2 User Interface. 15

3.2.1 Requirements. 16
3.2.2 Overview and Design Considerations . 16

3.3 Electronics . 18
3.3.1 MCU with separate Bluetooth module . 18
3.3.2 Raspberry Pi . 18
3.3.3 ESP32-C3 (MCU with integrated Bluetooth) 19

3.4 Software . 19
3.4.1 Requirements. 19
3.4.2 Program. 19

3.5 Testing . 19
3.5.1 Functionality . 19
3.5.2 Potential user testing . 20
3.5.3 Survey and Data acquisition . 20
3.5.4 Data analysis . 20
3.5.5 Survey analysis . 21
3.5.6 Conclusions. 22

4 Final Design 23
4.1 3D Model . 23
4.2 User Interface. 24

4.2.1 Requirements. 24
4.2.2 User Interface Design . 24

4.3 Electronics . 26
4.3.1 Requirements. 26
4.3.2 Architectural design . 26
4.3.3 Schematics . 27
4.3.4 PCB design . 31

4.4 Software - BUG. 32
4.4.1 ESP general software . 32

8 CONTENTS

4.4.2 Bluetooth communication on ESP . 34
4.5 Software - PC. 35

5 Testing 37
5.1 Final system testing . 37

5.1.1 Range . 37
5.1.2 Accuracy . 38
5.1.3 Delay . 38
5.1.4 Charging/Discharging . 39
5.1.5 Simultaneous connections . 40

5.2 Public testing . 40

6 Conclusion 43

7 Discussion 45
7.1 Recommendations . 45

7.1.1 3D Model . 45
7.1.2 User Interface. 45
7.1.3 Electronics . 45
7.1.4 ESP Software. 46
7.1.5 PC Software . 46
7.1.6 Safety . 46
7.1.7 Testing . 46

Appendices 47

A Terminology 49

B Prototyping Code 51
B.1 Python data acquisition code . 51
B.2 C++ code for the Prototype . 52

B.2.1 Simple Bluetooth connectivity and LED control 52

C Test data and Figures 55
C.1 Test subjects figures . 55
C.2 Survey results . 57

D Custom GATT profile overview 61
D.1 Key binding characteristic . 61
D.2 Indication characteristic . 62
D.3 Sleep timer characteristic . 62
D.4 Information characteristic . 62

E 3D Model: Breakdown of design process 63

F ESP Code 65
F.1 Main code. 65

F.1.1 Main . 65
F.2 Customised library . 76

G PC Software code 85
G.1 Backend. 85
G.2 Frontend / GUI .103

H Results final testing 113
H.1 Range test .113
H.2 Accuracy .113
H.3 Delay .114

H.3.1 Results .115

CONTENTS 9

H.4 Public testing .116

I Falstad simulations: Pictures and URLs 117
I.1 Bidirectional LED .117
I.2 Wake-up circuit .117
I.3 ID RC circuit .118

J Schematics of the BUG 119

K Tested games 121

Chapter 1

Introduction

1.1 Gamepads
In the gaming industry the vast majority of gamepads is designed for one person to control the
full input of the game. For multiplayer games it is commonly the case that each person has their
own gamepad with all full input possibilities and controls their own part of the game for example
their own character. In some cases multiple people have to work together to control one entity
but this still is done with full gamepads each and having relatively broad control input.

The proposed idea by Rob Kooij is to make gamepads with only one button each so every
person can only control a single input of the game. The gamepads would have to connect to a
computer. This would result in multiple people having to work together to control a game, for
example solving a maze. The eventual interest would be to see if there is a significant difference
in how homogeneous and heterogeneous groups of different cultures work together in completing
the game.

Throughout the thesis certain terms and jargon will be used. In some cases specific choices
were made to avoid confusion. An overview of the most important terms and jargon can be found
in Appendix A.

1.2 State of the art analysis - Gamepads
The current market of gamepads is in vast majority the more complicated x-box and PlayStation
style. Simpler gamepads do exist, such as the Nintendo Switch Joy-Cons. However gamepads with
only a single button don’t really exist. There are some big red button style gamepads for quiz
style gameplay but nothing really which is made to work as a team on controlling a game. One of
the largest video game digital distributors, Steam, did data analysis on the gamepads used with
their platform. From this analysis it was found that PlayStation and Xbox controllers account for
92% of the used gamepads[1]. Furthermore a market research team performed a market analysis
on the gamepad market and determined the 6 most important companies in this market[2]. None
of these companies offer single button gamepads on their webstore.

Wireless gamepads often use Bluetooth to interface with the computer and control the game.
A way to communicate keystrokes to control a game would be to use a wireless keyboard. There
are quite a few hobby projects only that discuss making a Bluetooth keyboard, one project uses
that principle to make a simple gamepad with direction controls and two buttons. This final
project can be simplified to just be essentially a one button Bluetooth keyboard. For a single
game 3-5 gamepads would be needed to control a game. Given that most Bluetooth systems
support a maximum of 7 simultaneous connections, this would be fine for one team. However it

12 Introduction

could be interesting to allow for multiple teams to play simultaneously this would require more
than 7 connections. To facilitate more than seven gamepads a Bluetooth mesh network could be
a possibility or a tree structure where every set of gamepads has one host which is the interface
between the computer and gamepads.

1.3 State of the art analysis - Bluetooth protocol
A common wireless protocol to connect peripherals to computers is the Bluetooth protocol. This
protocol was introduced in 1998 to reduce the amount of cables used. Currently the Bluetooth
technology could be split into two parts: Bluetooth Classic and Bluetooth Low Energy (BLE) [3].
Bluetooth Classic is based on the original technology and consist of various profiles, such as data
transfer, audio streaming or a HID profile. A HID (Human Interface Device) profile is used for
communication with a keyboard, a mouse, or a gamepad.

The BLE technology is the newer version, introduced with Bluetooth version 4.0 in 2010. The
technology makes very low power communication possible and uses another method of commu-
nication. The communication is based on the General Access Profile (GAP) and the General
Attribute Profile (GATT) [4]. These profiles can be seen as network layers, each containing mul-
tiple other layers. The GAP is used as a framework to discover other devices and establish a
connection. GATT provides a framework over BLE to communicate and interchange data. By
defining a standard how certain data is formatted, it makes the protocol compatible between
different manufacturers.

Figure 1.1: Schematic overview of the GATT
protocol, as shown in [4].

The GATT is based on attributes, which are grouped
in services. An example is an HID service, combining
multiple attributes together which are all directly related
to the HID. The battery percentage is not directly re-
lated, so this would be grouped in another service. Each
service contains zero or more characteristics: these con-
tain the user data. The user data itself is send or received
using descriptors: each characteristic contains zero or
more of them. A schematic view of this can be seen in
Figure 1.1.

All characteristics and services are identified using an
unique user ID (UUID). Most common data is send using
services with a UUID defined by Bluetooth SIG. This
concept makes it possible the protocol still works when
using devices made by different manufacturers. If data
is not defined by the list from Bluetooth SIG, another
UUID can be chosen, as long as it does not conflict with
a predefined UUID.

Using BLE, is can be unclear which device is the
server and which is the client. It is intuitive to call a
computer a server, but most of the time this is not the
case: with a HID the computer uses the data send from
the HID and is thus the client. Thus, a HID is usually a
BLE server.

Chapter 2

Programme of Requirements

2.1 Project requirements
• The gamepads need to be safe.

• The gamepads have to emulate a keystroke on the computer.

• Must make it possible to play simple games such as Pac-Man.

• Test multiple different implementations of the technology and controller designs.

• The use of the devices must be user friendly.

– The device must be wireless

– It must be clear to the user which key the user is controlling

– It must not be difficult to connect a BUG to a computer

• The designed gamepad needs to be tested by at least sixteen players, playing in teams of
four (not simultaneously).

2.2 Technical requirements
• Device must be able to work wireless.

– The used protocol for communications must be able to work without additional custom
drivers or software.

– The used protocol must be able to connect easily.

• Device must be rechargeable.

– It must contains a rechargeable battery.

– The battery must be charged safely.

– The user must be able to see if the device is fully charged or not.

– The charging time is at most the same as the time the device can be used on a single
charge.

• Device must be able to run for at least an hour.

– The battery must have a large enough capacity.

14 Programme of Requirements

– The power consumption must be minimised.

• At least four gamepads should be able to work simultaneously.

• The gamepad design must contain at least:

– A button.

– A method to switch the game controller off.

– A form of indication to the user which key bind is currently assigned to the gamepad.

2.3 Additional requirements
The following requirements are not mandatory requirements, but it could be argued these follow
the user friendly-requirement from section 2.1.

• A way to reconfigure the key binding from the gamepad itself.

• Reconfiguring the key binding and other settings through optional PC software.
This gives a wider range of possibilities for key bindings and thus applications for the
gamepad.

• Testing with more than eight players simultaneously using the same host PC.
This makes it clear if it is possible to connect and use more gamepads simultaneously, so
other games could be played.

Chapter 3

Prototype Design

3.1 3D Design
While designing the 3D model, two form factors were worked out. Both shapes will be printed
using a 3D printer and the preference of the participants will be gathered. These two form factors
are the Credit Card and the nunchuck.

3.1.1 Gamepad design
Credit Card Model

The first model, a classic, SNES-like custom box was designed with the dimensions of a credit
card (see Figure 3.1a). This model is fairly simple, mainly to get a feeling of the model and to
test the Bluetooth connection and software. It was also used to get some preferences for the LED
layout from test participants.

The design process is very straight forward, a simple box is designed with filleted corners. On
the top side, some mounts for LEDs are made to test some indicator layouts. On the other side of
the top surface, a mount for a button is made, which is a small 6mm tactile push button. Some
cutouts are added to make it possible to add a wider, more comfortable button cap in the future.
Inside, some mounting holes for the used development kit of the ESP32-C3 are added. Why this
MCU is picked will be discussed in subsection 3.3.3.

Nunchuck Model

The second model is a more ergonomic model, very comparable to the Nintendo® Wii Nunchuck.
This design is used to test several locations of the buttons.

Instead of reinventing the wheel, an online model (licensed with Creative Commons - Attribu-
tion) is used for initial testing [5]. This model is made to accompany three (12mm) tactile push
buttons and a joystick, but an adapter is designed to fix a fourth push button on top. Inside
an Arduino Pro Mini is fitted to read the button states and send them over an UART serial
connection to a PC. A picture of this model can be seen in Figure 3.1b.

3.2 User Interface
The way a user interacts with the gamepad is important to take into consideration during design.
As every user might hold the device slightly differently and there might be a difference in the
way right and left handed people hold the device. The gamepad should also make it clear, at a

16 Prototype Design

(a) The Credit Card design (b) The nunchuck design

Figure 3.1: The two prototype designs

glance, what the current key binding is and the team the gamepad is assigned to. To accomplish
the mentioned goals a list of user interface components was determined and aspects of it will be
tested as will be explained in later chapters.

3.2.1 Requirements
The Requirements for the prototype user interface are a button to register a key press, a way
to switch the device on and off, an indication of the device’s key bind, a charging port, and a
charging status indication. Additionally the reconfiguration from the gamepad itself was taken as
one optional requirement to address as the added functionality would be rather significant.

3.2.2 Overview and Design Considerations
An overview of all the user interface components and a quick summary of how each will function
will be discussed. For each part, the design considerations will be explained.

Wake up

The BUG consumes a significant amount of power when active. To reduce the power consumption
when the device is not in use several options were considered. The first option would be to have a
physical power switch that disconnects the power source from the rest of the circuit. The second
option would be to set the ESP chip to deep sleep and wake up the BUG with a button press. As
the preference was to keep the user interface as simple as possible, adding the wake up system to
an existing button was preferred. As the configuration button isn’t in use during gaming, it would
be easier to add the extra functionality to the configuration button. This also avoids accidental
triggering of deep sleep during gaming which might happen if the main button was used for the
functionality.

Configuration button

The Configuration button will allow the user to set the gamepad to deep sleep mode and wake
it up again with a short press. A long press of the Configuration button will reset the gamepad

3.2 User Interface 17

to factory settings. In factory settings the gamepad has no Bluetooth connections, a default
keybinding, a team assignment, and if applicable a right handed configuration. Furthermore, the
configuration button will cycle through a number of default keys for easy reconfiguration to the
most used keys when the device is turned on and not set to a custom key (see section 4.5).

The Configuration button will have to be in a location on the gamepad which is hard to
accidentally touch during common use. This is important to prevent the user to accidently shut
down the gamepad during use. For the nunchuck design, the best location meeting this criteria
would be on the flat underside, point B in Figure 3.1b. This location is highly unlikely to be
touched by the user during use. For the credit card design, the possible locations would be on the
front facing in the centre or potentially on one of the sides. As it is important to avoid accidental
presses of the button the sides might not be ideal as some users might hold the device touching
some of the sides. Thus the proposed location would be centre front facing. Furthermore the
button can be mounted flush with the casing to make it more difficult to accidentally press.

The Button

The gamepad’s main button will, when the device is paired, send the bound keystroke to the
paired device over the Bluetooth connection. The Button is the main input for the gamepad thus
it has to be relatively easy to recognise and press. To this end the possibilities are to have it
slightly raised and to have the button in a different colour than the gamepad casing. Further the
location of the button is important. For the nunchuck design, the button on the initial prototype
has four possible locations, as indicated by the numbers in Figure 3.1b. The overall preferred
location would be determined during testing. For the credit card design, there is really only one
logical location for The Button which is on the front facing as in the prototype design see the
circular debossed section in Figure 3.1a.

Key LEDs

The LED array on the gamepad will be used to indicate the current key binding and the current
assigned team. This will be done by lighting up the LED(s) corresponding to the bound key and
the colour of the LED(s) will indicate the assigned team. The LED array can also be used to
indicate the gamepad is in pairing mode by pulsing blue.

The key LED array has two possible designs to indicate the gamepad current key binding.
The LED array could be either in the shape of the keyboard arrow keys or a plus shape. Both
possibilities have advantages and disadvantages. The arrow key layout clearly shows which side
is up but could be slightly more restricting in indicating possible keys. Contrary the plus shape
is less clear in what is up but has slightly more flexibility in indicating keys. The LEDs will also
be able to indicate the team assignment by using different colours, and by blinking blue they can
indicate pairing mode. The decision on which layout will be used will be done using testing data
on user preference which will be further explained in section 3.5.

The location for the LEDs has essentially one conceivable spot on the credit card design which
is on the front facing as seen in Figure 3.1a. The nunchuck design might have some more options
for the LEDs depending on the size, theoretically the best options would probably be A or D in
Figure 3.1b. During testing peoples preferences regarding the location will be gathered as well.

Charging port

A port will be present on the device to recharge the internal battery unit so the user doesn’t
have to deal with replacing batteries. For the charging port several options are possible, both for
location and the physical port. For location on the Nunchuck model the most logical place where
it won’t interfere with user actions is the bottom at point B in Figure 3.1b. This is also an intuitive
place as most devices have the charging port at the bottom. Location-wise the same location is
logical for the credit card design which would be the short side near the LEDs in Figure 3.1a.

18 Prototype Design

Regarding the options for the physical port the most common two options would be micro-USB
or USB-C as these are most universally used on smaller devices. For the prototype a micro-USB
port is used as this is what was present on the devkit. For location regardless off which design
is decided upon the most logical and intuitive place would be next to the charging port as this is
common for most devices that use a light to indicate charging status.

Charging LED

A separate LED will be used to indicate the charging state of the gamepad. The charging LED
will burn red when the device is charging and green when the device is done charging. The best
way to do this would be an LED with multiple colour options, ideally these colours would also
be easily distinguishable by colour blind people. In this case a red-blue charging-done indicator
would be great. However the more intuitive case for charging status indicators is red-green, as
most humans associate red with stop and green with go. Thus depending on availability the status
LED might be red-green.

The most logical location for the charging LED would be near the charging port.

3.3 Electronics
For the product, both a MCU and a Bluetooth module is needed. This can be done with a separate
MCU (such as a Arduino-like IC) and a separate Bluetooth module, but also with an integrated
solution, such as an ESP32. BLE is preferred over classic Bluetooth due to power considerations,
as BLE is more efficient. BLE 5 is preferred over BLE 4 due to it being slightly more power
efficient but also to use the newest version, so the BUG will be more future proof.

3.3.1 MCU with separate Bluetooth module
For this prototype, a SAMD211 MCU is used since it is easily programmable and has enough
power for the initial, rough prototyping. As Bluetooth module, the BT836B module is used: this
module is compatible with Bluetooth version 5 and is controllable with AT commands2.

It was found out quickly that controlling the Bluetooth module is very challenging using the
raw AT commands. Configuring the module has been done, but using it and sending the proper
commands seemed hard, mainly because the documentation wasn’t as clear as it should have been.
This option was the more expensive option (the MCU and Bluetooth module are €12,50 combined),
and a serial connection is needed between the MCU and Bluetooth module. This conversion of
data to an UART protocol is most likely to be less fast than an integrated solution within an IC.
Therefore, it was decided to suspend further efforts in making this a possible solution.

3.3.2 Raspberry Pi
Raspberry Pi (RPi) would be overkill since things such as ethernet, (mini)HDMI and an SD card
would all be unnecessary. Besides that, the RPi zero, the smallest of the RPi’s, has a size of 65mm
x 30mm which could barely fit in the controllers. This would not leave enough space for extra
electronics such as buttons and a battery. A RPi only comes in development kits, so making a
custom PCB for added features will only make it even bigger. This means that it is not an option
to add or remove functionalities.

1The SAMD21 is a variant of the more known Arduino MCU.
2The AT command set (or the Hayes command set) is a low level command set used mainly for communication
with modems.[6]

3.4 Software 19

3.3.3 ESP32-C3 (MCU with integrated Bluetooth)
A big advantage of an integrated solution, is that communication between the MCU and the
Bluetooth module is completely within the IC: the fastest way possible. Since this is universal,
libraries for this integration exist and can be used right away: this frees the developer from writing
a Bluetooth driver. Prototyping was done using a so called development kit, a circuit board with
this ESP32-C3 module pre-soldered with all the needed peripherals. After a short amount of time,
a proof of concept was achieved (Bluetooth communication, sending key strokes to a PC), making
this solution very appealing. Combined with the cost of this module (the MCU with flash and
the on board antenna), which is only €2,50 per module, makes this pretty much the best possible
solution in this case.

3.4 Software
In this section, an overview for the software written for the prototype will be discussed, and how
it interacts with a PC.

3.4.1 Requirements
The software would have to meet several requirements. Mainly the prototype would have to be
able to connect to a PC over Bluetooth and send a programmed keystroke to the PC. It should also
be able to show which key binding is currently active using the WS2812 LEDs on the prototype.

3.4.2 Program
The main requirement is to have the ESP development kit be able to connect to a PC and send
a keystroke. To achieve this goal a ESP library was found on Github that allows the ESP32 chip
to act as a Bluetooth keyboard. [7] This would allow for the BUG to send a keystroke when the
button is pressed. An example provided by this library with a similar concept was found which
provided some code to form a clearer understanding of how this library worked.

For the second requirement a library made by the manufacturers of the WS2812 LEDs was
used to allow for easy control of the LEDs with intuitive functions. [8] These functions allow for
each LED to be set to a specific colour, to set an overall brightness, clear all the LEDs, and to set
all the LEDs to one colour.

These libraries together provided what was needed for the prototype to function as desired.
The final code combining the libraries power consisted of several parts. First the libraries are
included so they can be used in the code, next the name is set under which the BUG can be found
over Bluetooth. Following that several definitions are done, and some character initialisations.
After this the WS2812 are initialised so they can be called with a name and functions can be used
to address them. Consequently the setup code which runs every time the BUG starts. In the
setup code the Bluetooth is started, the pixels are started as well, and the button was set as a
pulldown button thus being connected to ground as default.

3.5 Testing
Both prototypes were tested for both functionality of the designs but also to acquire potential user
data/input.

3.5.1 Functionality
The first testing was to determine whether the prototypes functioned as expected. Only one
of the prototypes had the development kit implemented with the Bluetooth connectivity. Thus

20 Prototype Design

the Bluetooth transmission could only be tested with the credit card prototype. The nunchuck
design had a MCU implemented which could be connected over a wired serial connection to a PC.
From the serial connection the button presses could be emulated as a keyboard press and logged.
For initial testing both gamepads were used to play the Google T-rex game3. Both gamepads
functioned well and no real problems were encountered during this testing. Some initial data was
collected by the project team on the preferred buttons on the nunchuck. The initial data on the
preferred button showed a strong preference for button 4/the top button.

3.5.2 Potential user testing
The two possible designs for the gamepad and multiple options for the user interface components
required outside input as to make less biased decisions. The project team could be biased towards
a possible design if it is easier to develop for. To gather potential users opinions some small scale
tests were executed. Though for less biased results a larger sample group would have been better
due to time constraints a small sample group was used. From the sample group the button press
data was collected for the nunchuck and a small survey was done as will be explained further in
the next section. The test subjects were found by contacting friends and family and stopping
by the ETV (Elektrotechnische Vereeniging) the study association of the Electrical Engineering
program at the TU Delft.

3.5.3 Survey and Data acquisition
In this section an overview of the testing procedure and survey and data acquisition.

Testing procedure

The testing was done by having two subjects cooperatively playing a game of Pong against the
computer. In this cooperative game of Pong both players controlled one direction of the bar, one
user up one user down. To stop users from thinking to much about what button they want to
use questions from the survey were asked during playing so the button use becomes subconscious.
After about 5 min of playing the users switched gamepad and thus direction control. This allowed
the users to try both gamepads and thus give their preference in the survey.

Data acquisition

The button press data logged by the laptop was stored for every two test subjects as this way the
users could smoothly keep playing. During testing the time was manually logged when the users
switched to be able to separate the key logging by test subject during data analysis. One problem
was encountered during testing when a subject accidentally unplugged the gamepad which resulted
in the loss of the testing data for that session. Following this incident the data acquisition code
was altered to also save data if the serial connection was broken physically. The Python code for
data acquisition and key stroke emulation can be seen in section B.1.

3.5.4 Data analysis
The data that was collected during the small scale tests had to be analysed to see whether the
predictions were confirmed. To this end the recorded key presses were imported into Excel. The
data sets were first split so each subjects data could be individually analysed. Consequently the
data was split into 20 second sections and the number of presses per section for each button
were determined. The resulting timeline of button presses could be plotted as a stacked graph
to show which buttons were pressed in each time slot and how the preferred button might have
changed over time. The data and graphs can be seen in Appendix C. After looking at the results
individually, an average of button presses per time interval was made for each button for each
3A very simple game needing only the space key to be played. See https://www.trex-game.skipser.com/.

https://www.trex-game.skipser.com/

3.5 Testing 21

user. These averages were added up to create a total of the averages of button presses for each
button per time interval. The resulting values for each button were turned into a pie chart to give
an overview of the most used button on average. The resulting pie chart with percentages can be
seen in Figure 3.2. As evident from the figure button 4 is the most used button during the small
scale test, however it is worth noting that button 2 and 3 which are in a similar location on the
gamepad together have a larger usage.

3.5.5 Survey analysis

Figure 3.2: Overview of average button
usage

The survey was done through Google Forms which automat-
ically creates an overview of the answer data including pie
charts where possible. The full results can be seen in Ap-
pendix C. The most interesting data from this survey was
the preferred gamepad option of the test subjects and the
preferred button on the gamepad. The overall preference can
be clearly seen in Figure 3.3a as two thirds of people preferred
the nunchuck design. Though only a small sample size was
used this does confirm the suspicions that the more ergonomic
design of the nunchuck design would be favoured by users.
Further the results of the button preference are interesting,
as can be seen from Figure 3.3b the subjects indicated pref-
erence matches the button usage quite closely. The button
preference also shows a similar division in that button 2 and
3 together have about the same share as button 4. It could
potentially be interesting to see if aspects like handedness or
age effect the gamepad preference or button preference however with such a small sample size it
would not have any statistical relevance. Thus the decision was made not to do this analysis.

The questions regarding the key bind LEDs are also interesting to quickly consider. Regarding
the possible layouts, the arrow key style layout received the majority but only just, see Appendix C.
Furthermore, the small sample size means this cannot be considered conclusive. Finally the LED
location for the nunchuck is interesting, location A in Figure 3.1b was suggested 3 times, location
D 5 times, and C 1 time.

(a) The test subjects gamepad preference (b) The test subjects button preference

Figure 3.3: Survey results

22 Prototype Design

3.5.6 Conclusions
The initial small scale test confirmed the predictions that the nunchuck is indeed favoured over
the credit card, and the preferred button is the top button/number 4. Due to time constraints this
was only a very small sample size thus the results are not very conclusive. However the preferences
were quite significant differences thus it was taken as significant enough to move forward with the
nunchuck design.

Chapter 4

Final Design

In his chapter the stages of the final design will be discussed. The design process has been split
in several sections: User Interface, 3D Model, Electronics, and Software. The design processes
of each of these sections were done simultaneously and not consecutively thus there is a decent
amount of overlap in the sections and a large amount of inter-sectional referencing.

4.1 3D Model
Using the results discussed in subsection 3.5.6, the final design is based on the nunchuck model.
The steps for the 3D model itself are discussed in Appendix E. Even though the buttons on
the front of the initial prototype are evenly popular when joint as the location on the top, it is
decided to not use the front to make sure the Bluetooth antenna can be shifted forward as much
as possible. This is done so minimal interference with the Bluetooth signal is experienced when
using the BUG. This makes it impossible to position a button in the front of the model. The
indication LEDs are positioned on the side, since they must be mounted flat on the circuit board.
It was mentioned by a decent amount of people testing the prototype this was a desirable location
and it is the cleanest method of integrating them into the design. Worth mentioning is that this
location is non-ideal for left handed people, but since the indication is not needed during the time
the BUG is used, this is considered acceptable. The arrow layout (opposed to the plus layout) is
chosen, since it was found the most people preferred this and it fits the gamepad model better.
The printed circuit board is placed vertical to make sure all components can be fitted directly to
a single board. The printed circuit board is offset to one side to make sure the push buttons are
centred in the model. This immediately ensures a lithium polymer battery can be fitted inside.
As for the indication LEDs on the side of the model, a small two millimetre thick square of EVA
material (hot glue) is added to diffuse the indicator lights. This material is cheap, easy to work
with and diffuses the light nicely.

All these decisions are made with a PCB design and orientation in mind. With the decisions
above, a vertical placed PCB, as shown in Figure 4.1 could be used to make all buttons, LEDs
and other electronics accessible. The main downside is the USB-C connection: it needs to be
an angled connection which is difficult to find and slightly more expensive. In section 4.2, it is
discussed why USB-C is chosen as power supply. The Li-Po battery is shown in Figure 4.1, but is
positioned behind the PCB and thus not clearly visible.

The main shape of the BUG is made with the prototype nunchuck model in mind: it is not in
the scope of this project to make the most ergonomic gamepad possible, but a usable, somewhat
comfortable gamepad to house the electronics. The model is made with computer aided design
software (CAD), creating a rough shape and rounding the edges. A test model was developed
using a 3D printer and the ergonomic features were subjectively tested. Inside the 3D model,

24 Final Design

Figure 4.1: Exploded view of the 3D model of the BUG, making the placement and shape of the printed circuit
board on the inside clearly visible.

a shape for the printed circuit board is defined and exported to the PCB software for further
development.

The model will be closed with a ledge in front to secure the front. This is done because the first
models fabricated showed some movement at the front of the case, which is unwanted behaviour
of the gamepad. Two screws are used to fit the two halves together, as shown in Figure 4.1. It
could be done with only ledges, but this makes debugging a lot more difficult. In a final model
(possibly manufactured using injection moulding), ledges could be used to cut some costs, but the
use of screws does improve the ability to repair. The ledge in front had to be quite robust, since it
was prone to breaking due to the nature of 3D printing1 and would be solved when using injection
moulding.

4.2 User Interface

Figure 4.2: Side on view of the
BUG model with numbers

In this section the final decided User Interface components will be
explained, mostly the choices were based on the testing done with
the initial prototype design.

4.2.1 Requirements
The requirements the user interface part has to comply with con-
sist of the main interaction button, the method for switching of
the device, rechargeability, and the current keybinding indication.
As an additional requirement the possibility of PC software for
reconfiguration of the BUGs is part of user interface.

4.2.2 User Interface Design
In this section a quick overview will be given of the User interface
components as previously described in section 3.2 and the final
design decisions made based on the testing with the prototypes.

1Due to the way 3D printing works by placing layers onto each other, sections consisting off small surface area are
more likely to break in the direction off the layers, thus two layers snapping apart.

4.2 User Interface 25

Configuration button

Figure 4.3: Bottom view of the
nunchuck model

As mentioned in section 3.2 a logical and intuitive location for the
configuration key would be the underside and the survey showed
similar thoughts by the test subjects. Thus the choice was made to
place the configuration key on the underside of the device at number
3 in Figure 4.2. As for the functionality the suggested functionality
as discussed in section 3.2 was implemented. This allows the con-
figuration key to turn the BUG on and off, cycle the keybinding,
and set the BUG to factory settings. In Figure 4.3 an view from the
underside can be seen showing the configuration button.

The Button

The button location was determined during testing with the initial
prototype as explained in subsection 3.5.6. The final location for the button was chosen to be the
top, location 1 in Figure 4.2, as this was the most preferred. Functionality wise the button lets the
ESP know it needs to send a keystroke as is desired. The button can be seen in red in Figure 4.4.

Key LEDs

Figure 4.4: Side top view of the
nunchuck model

The Key LEDs were placed on the side, as the chosen design is
the nun-chuck design. During the survey, it was found this is a
suitable and intuitive position. Furthermore due to the orientation
of the PCB not many other places were possible. It was decided
to use the left-hand side for the LEDs as this would be visible
for most people using it as when the BUG is held with the right
hand only the right side is covered. This corresponds to location
2 in Figure 4.2. As the majority of the human population is right
handed [9] and the LEDs can still be relatively easily viewed when
holding the device left-handed, this seemed like the best option.
The LEDs can be seen in Figure 4.4 as the transparent light blue
windows.

Charging port

To meet the requirement of rechargeability a charging port is required and as mentioned in sec-
tion 3.2 the most logical place would be the bottom. With the charging port located at the bottom
of the BUG the user can also continue to use the BUG while charging. Thus the charging port
would be located next to the configuration switch as can be seen in Figure 4.3. Regarding what
type of port the decision was made to go with USB-C as more and more devices are moving toward
using USB-C and the EU is hoping to mandate the use of USB-C on smaller electronic device[10].
The new mandate might not apply to the BUGs but by using the universal standard the device
becomes more user friendly as user won’t require a separate charging cable for the BUG.

Charging LED

The charging status LED is placed next to the charging port as this is an intuitive place to indicate
the charging port. The charging LED can be seen in Figure 4.3 to the left of the charging port.
During component research the availability of 2in1 red-blue LEDs was not within the budget so the
choice was made to go for red-green 2in1 LED this will be further explained in section 4.3.3. The
red-green LED will unfortunately not be ideal for colourblind people however a different solution
with 2 more easily distinguishable colours could be developed but would be outside the scope of
this project.

26 Final Design

PC software

The PC software could be partially developed as there was time during the project. The PC
software would allow a user to individually change the keybinding, the LED layout, the LED
colour, the operation mode, and the sleep timer through a GUI. This will be further explained in
section 4.5.

4.3 Electronics

4.3.1 Requirements
In order to design something, one needs to set out what the designed hardware should do. This
list of requirements are the following for the BUG:

1. The BUG needs to be safe

2. A button press needs to be detected

3. Communication should be possible using a Bluetooth connection

4. The BUG needs to be able to power itself

5. The BUG needs to be able to recharge without disconnecting any components

6. The BUG can enter and exit a low power mode or the battery can be disconnected without
opening up the BUG.

7. The BUG can indicate which keyboard button it is configured to

There are features which can be nice to have, but are not essential for the easy and comfortable
usage of the BUG. These are not stated under the Requirements, but will be discussed later on.

4.3.2 Architectural design
With these requirements an architectural design can be made. This means that the entire elec-
tronics from this project will be split into blocks with certain tasks. These blocks have a well
understood and concrete connection with each other, while the tasks they need to perform are
well defined. This allows for the blocks to be easily designable within the project. The initial
architecture design can be seen in Figure 4.5.

Figure 4.5: The initial Architecture design.

The most important block of the BUG is the micro controller unit (MCU). The MCU will make
sure the software can be implemented in the BUG and communicate with the hardware. It reads
the state of the buttons (Pressable hardware), controls the indication hardware and Bluetooth

4.3 Electronics 27

connection. The low-level Bluetooth protocol itself is handled by the dedicated hardware inside
the Wireless communication-block.

Another aspect is the power, managed by the Energy management-block. This block connects
to the energy storage (a battery, for example) and makes sure this storage is properly charged. It
takes an input (the external power connector) and generates a steady voltage output for the rest
of the system to work.

4.3.3 Schematics
The block diagram will be further developed in this section about schematics. This means that
the block will be worked out and discussed per block. The entire overview of the schematics can
be seen in Appendix J.

Wireless communication

Figure 4.6: Two examples of whip
antennas.

When sending data wirelessly, an antenna is an essential compon-
ent. There are three widely used types of antenna. The first type
is the whip antenna. Whip antennas are the type of antennas you
would typically see on top of a car. They are rods which extend
a certain distance and are generally quite flexible and long. These
antennas have a good performance[11] and take up little space on
a PCB[12]. They can also be easily replaced since they have a
connector connected to the PCB. This reason, combined with the
fact that they are already impedance matched, makes them a plug-
and-play kind of antenna[12]. Downsides are their size and their
cost. Since these antennas are fairly long, they might not even fit in our application. Performance
is the main advantage, but since we do not need the best performance (only a range of about 3m)
this option will probably be overkill.

Figure 4.7: Three examples of chip anten-
nas[12]

Chip antennas are made in a package like any other
passive component on a PCB. Most of them are already
matched to 50 Ohm for a certain frequency, but some ex-
tra tuning is often required[11]. These chip antennas are
also able to be replaced without ordering an entirely new
PCB, simply by reheating the solder and pulling them off
or using other tools which are able to do that. Although
this is not as easy as unplugging a whip antenna, it is still
possible when needed. One of the main advantages is the
space it takes up on a PCB. Although a clearance area
is required, this one is relatively small compared to other
on-PCB applications.

Figure 4.8: Two examples of a trace an-
tenna[11][12]

A PCB or trace Antenna is an antenna created by
creating a trace on a PCB which has the shape and func-
tionality of an antenna. This has to be done at all layers
and cannot have conductive material near it. This means
that there is very little assembly when producing this
antenna. This also makes this antenna practically free,
since the costs will be in the PCB production cost[12].
When producing the PCB, it is made of copper most of-
ten and it is set in “stone” when ordering the PCB. This means that very little tweaking can
be done once the PCB has been produced. This means that per setup, you require a new PCB
for side-by-side comparisons, making testing more expensive[12]. Because somebody is basically
designing their own antenna from scratch, one should possess a lot of knowledge[1] or simulation
beforehand about viable options[11]. Although there are some pre-made setups, adjusting these

28 Final Design

setups to fit your needs will still require knowledge to make an educated adjustment. In sec-
tion 4.3.3 the decision for the antenna will be made

MCU

As discussed in section 3.3, the ESP MCU was chosen. Due to the reasons mentioned in the
section, the software already written and the experience obtained with this MCU, the decision
was made to continue working with the ESP as an MCU.
Another consideration is if a ESP32-C3 chip, module or Dev kit is used. A chip is just the ESP32
C3 core, without flash memory or any other peripherals to make the MCU work. This allows a
lot of freedom in PCB layout, specifications and reducing redundant hardware. This comes at
the cost of effort. More research needs to be done into antennas, flash memory and computer
architecture.

The use of a module makes the design easier. Most modules come with a trace antenna with
a matched network, flash memory, crystal oscillator, decoupling capacitors and other protection
hardware. This allows the user to focus on making the functional product. This does come at
the cost of interchangeability. If the modules do not have enough flash memory, it is very difficult
to desolder the shielding, the flash IC and put the new components back on without damaging
any of the components. If the antenna is not as functional as one might want, a new one can be
connected to most modules, but the trace antenna’s space will be wasted. One of the main things
one still has to do is make a power supply for the module. The module works on 3.3V, while USB
works with 5V and a LiPo battery will work with 3.7V.

Lastly, a dev kit will be the least interchangeable, while having the most subsystems in
place. Besides the components discussed in the module, a Devkit most often brings micro usb
connectability, an LDO which allows the board to be powered by USB, some reset and boot
buttons, LEDs, USB serial converter and a pinout which is breadboard compatible. These extra
capabilities come with the cost of a lot of extra space, more power consumption and even less
interchangeability.

Since the Dev kit has a lot of capabilities which are not going to be used, while taking a
lot of space which can be better used for a battery, the Dev kit was used in the prototype which
most often will be fully charged or powered by cable. The chips will be a lot of work and time
to implement and mainly test, since a custom antenna should be used. Debugging this antenna
may require new printed circuit board designs, which is not possible within the time frame of this
research. That is why the decision was made to start with implementing a module on a PCB and,
if there is enough time, the chip might also be used to save on space and power.

In terms of modules, the requirements were an onboard antenna, 4MB of Flash memory and
at least 4 GPIO pins and 2 ADC channels. With these requirements, 2 modules were considered.
The ESP32-C3 12F and the ESP32-C3 13. The differences between these are mainly: Both modules
have an antenna on top, pins on the sides, but the 12F also has pins on the bottom and 4 NC
(no connection) pins[13]. The 13 has no pins on the bottom, making routing easier, but soldering
harder, since the pins are closer to each other (from 2mm distance in the 12F to 1.5mm in the
13)[14]. Another difference is the size. The 12F is a total size of 16mm x 24mm or 384𝑚𝑚2. The
13 is 18mm x 20mm or 360𝑚𝑚2.

In the end, the ESP32-C3 13 has been chosen as MCU since the MCU will be mounted in
the front, with little space available on the sides of the MCU, making routing the PCB nearly
impossible if there can be no traces below the MCU. This also means that a trace antenna will be
used.

Energy storage

Energy can be stored in multiple ways, but batteries are most common is user appliances. Since
the BUG should be rechargeable, NiMH or LiPo batteries are possibilities. Since the limited
size available inside the gamepad, a small battery is needed with a decent capacity to be able to

4.3 Electronics 29

use the BUG for a certain amount of time. Since, as will be discussed in section 4.3.3, a lot of
integrated circuit solutions are available for LiPo-battery charging, a LiPo battery is chosen. With
the available size inside the gamepad of 35x17x15mm (l x b x h), a 250mAh battery can be used.
The LiPo battery has as advantage that is supplies 3.4V (empty) to 4.2V (fully charged), which
is all above the minimum voltage for the MCU.
Besides satisfying these requirements, does the battery also have safety protection. The battery
has integrated over current, over- and undervoltage prevention build into the LiPo[15]. All this
functionality is on the small PCB called the PCM.

Energy management

The energy management is responsible for charging the LiPo battery and providing a steady 3.3
volt to the MCU. The charger should allow an input voltage of 5V, since it will be powered by
an USB connector). To safely charge a LiPo battery, it should first be charged with a constant
current. When the LiPo is almost finished charging, the charging should swap to be constant
voltage. This is usually achieved by a dedicated battery management IC. Three possible power
paths are possible, with direct battery supply as the most simple solution and more complex,
bypass solutions which don’t depend on the battery voltage to work [16].

Since the MCU needs 3.3 volts and a LiPo should at least supply 3.4 volts, the LiPo voltage
should always be above MCU voltage. This makes the direct battery supply possible and, since
it uses the least components, the cheapest. An IC capable of these restrictions is the MCP73832.
This is a simple IC which can be programmed with a resistor with what current the battery
should be charged. It also provides a logic output whether the battery is currently charging or
not. However, this particular IC is not available at JLCPCB, which company is used to fabricate
and assemble the circuit boards for this project. A different IC, which is pin compatible and
provides the same function, is found with the name TP4054 [17].

The logic output is either low when not charging or high impedance when charging. With this
output pulled up to the USB power, a LED could be used to indicate if the device is currently
charging only when the USB power is connected. The easy way of doing this is by adding a single
LED which indicates if the device is charging and is turned off when the device is ready. However,
it is desirable to be able to differentiate between done charging and not charging. To achieve this,
both state of the output of the TP4054 should be detected. By adding two additional resistors
and a NPN bipolar transistor, a bipolar LED can be used to indicate with two colours if the device
is charging (red) or done (green). A schematic of this circuit can be found in Figure 4.9. The
pull up resistors (R5 and R6) are also used as the current limiting resistors for the LED. During
testing it was found these resistances were too high to have a well lit LED, so they are swapped
for 680Ω resistors.

To provide the MCU a clean 3.3V power input, some sort of voltage regulation is needed. This
can either be done using a buck down converter or a voltage regulator. Since the LiPo can be as
low as 3.4V, a very low dropout voltage is needed. Since the MCU needs a fairly stable power
input [14], a buck converter is not a valid solution, since it introduces a ripple effect. To generate a
stable voltage for the MCU, a low dropout regulator (LDO) is chosen. Since the voltage difference
between the input and output is dissipated inside the LDO, this introduces some power losses, but
are considered acceptable since a wider range of the battery voltage output can be used. The LDO
needs to convert an input between 3.4V and 4.2V to an output of 3.3V, so a minimal dropout of
0.1V is needed. Ultimately, an LDO with a dropout voltage of 0,09V is used: the HT7333 [18].
This IC is cheap, is able to provide enough current (up to 250mA) to the system and can handle
all voltage ranges.

External Power Connection

In subsection 4.2.2, it is decided to use an USB-C connector. In section 4.1, it is decided to use
an angled connector.

30 Final Design

Figure 4.9: The circuit with the bidirectional LED indicating the charging status

Pressable Hardware

The cheapest and easiest to use option is a tactile button, a small button which is directly soldered
to the PCB. Since in section 4.1 it is determined an angled button should be used, the button itself
is already decided. For the main button, a simple low pass filter is used as a debouncing filter.
Without it, the button can repeatedly ’bounce’ between its pressed and released state during the
transitions.

Figure 4.10: The schematics of the wake-up
circuitry

The same button is used as configuration button, dis-
cussed in subsection 4.2.2, but placed at the bottom of
the gamepad. This button has various functions defined
by the software, but has also two different possible out-
puts at the hardware level. When the BUG is powered
on, a signal (”RDY”) is set high and disables the feed-
back this button has to the enable-pin of the ESP32.
When RDY is set low, this button momentarily pulls
the enable-pin low when pressed and restarts the BUG.
The schematic achieving this behaviour can be seen in
Figure 4.10 and a simple simulation can be seen in sec-
tion I.1.

Indication Hardware

Task of the Indication Hardware is to indicate to the user which configuration is active in a BUG.
Due to positive feedback during the prototype testing, it is decided to use LEDs. To be able to
differentiate between different teams, RGB LEDs are preferred. According to subsection 3.5.5, it
is decided to use four LEDs in the arrow-keys layout. Conventional RGB leds will use 12 GPIO
pins in this case. Another option would be to use WS2812-style LEDs, which require a serial
input and can be daisy chained2. This requires only a single GPIO and simple routing, while also
maintaining full RGB functionality. Each WS2812 LED trims the first 24 bits from the serial data
stream and applies it to its (LED) output, and forwards the remainder of the data stream to its
data out pin. An example of this can be seen in Figure 4.11. For this design, the WS2812 solution
is chosen due to the MCU not having enough available GPIO pins for the conventional method.

2Daisy chaining: connecting multiple devices by connecting the output of one to the input of another device.

4.3 Electronics 31

Figure 4.11: A abstract example of a datastream leaving a WS2812

Miscellaneous Hardware

Beside the required hardware, there will be hardware present which is not meant for one of the
requirements, but does make the experience for the testers or end-users better. One of the extra
features is a voltage measurement of the battery voltage. It consists of a simple voltage divider
with a capacitor added to create a buffer when reading the voltage level. The ESP has got an
internal analogue-digital converter (ADC), which is used for this case.

Another option would be to set a standard starting button for the factory settings (see sub-
section 4.2.2) by a resistor divider and the second ADC. This ADC happens to be reserved for
the wireless radio [14]. An RC-oscillator with different timing values is also a possibility, but this
would require an additional current limiting resistor (22Ω in Figure 4.12b), which is not imple-
mented on the PCB. During the research to this RC-oscillator, the PCB was already ordered as
seen in Figure 4.12a so it was decided to handle this issue purely with the firmware of the BUG.

(a) The circuit made on the BUG PCB
(b) The circuit with the added current limiting resistor

Figure 4.12: The two options for ID voltage division

4.3.4 PCB design
When it comes to PCB design, a lot of the constraints to work with were already laid out in
section 4.1. This consists of the board shape, the exact location of the MCU, the WS2812, the main
button, the configuration button and the external power connector were already predetermined
and these can be seen in Figure 4.13a and Figure 4.13b. The battery needed to be at the front,
but no specific place was given.

The PCB was going to be machine produced and a large part of the basic components(ability
to be machine soldered) were going to be soldered by machine. This meant that these basic
components needed to be on the same side of the PCB. Since the battery, WS2812, two buttons
and the USB-C connector were not basic components and they were all at the front, this left the
back of the PCB as the only logical place to place these basic components.

With this knowledge, the most logical place to put the Energy management components in
the orange outline seen in Figure 4.13b, since this was close to the external power connector.

32 Final Design

After this, the place for the battery connector (P3) was selected at a place near the orange outline
without taking up a lot of valuable space. That is why the current location was chosen and
therefor also the place of the battery in the front. The last components still needing a place were
the components for the wake up circuit. Since there is a large part of the PCB still free in between
the MCU and the Energy managers, this place was chose for the wake up circuit.

(a) The PCB from the front. The red outline is
where the hardware for the architectural block
”Pressable Hardware” is present, while the grey
outline coincides with the indication hardware,
the black outline is where the ”Energy storage”
is and the lime outline(bottom right) is where the
”External Power

(b) The PCB from the back. The red outline
is where the hardware for the architectural block
”Pressable Hardware” is present, the blue outline
coincides with ”MCU” and ”Wireless Hardware”
and the orange outline is where the ”(stored) En-
ergy Management is housed.

Figure 4.13: The front and back of the PCB.

4.4 Software - BUG

4.4.1 ESP general software
Process overview

The main software for the ESP went through several iterations. Initially the new iterations were
build upon the prototype code added new functionality whenever desired. The first addition being
the configuration key. This process led to a complex code which was very difficult to read.

The next big step was to split the code over several files making functions for all the interactions
with the library. This significantly improved the flexibility of the code making it much easier to
change functionality. It was however still executing a lot of functions repeatedly without any good
reason.

The final iteration of the code was split over many headers so each collection of functions could
be separated out to further improve legibility. Furthermore some additional functions allowed for
a restructuring of the main code so functions were no longer executed unnecessarily.

Code overview

The final code is split over ten files: one main file and nine header files. For each part of the BUG
that requires code to operate a header file was made containing the functions needed for that part.

The main code see subsection F.1.1 starts by setting some parameters. Firstly, the use of
NIMBLE [7] which ensures more efficient storage of the files on the ESP. Secondly, the debug
parameter which can enable serial output for all the functions for easier debugging. After this

4.4 Software - BUG 33

the libraries mentioned in subsection 3.4.2 are included and the header files containing all the
functions.

Next the setup is run which calls the ”initSystem()” function see section F.1.1. This function
starts the serial connection if debug is active. It also starts the bleKeyboard library (section F.2)
and neopixel library [8] so their functions can be used. After this the pins are declared according
to the pin number variables in the variables header see section F.1.1. Next, the ”memory2lib()”
function is called which takes all the variables stored in the memory and writes them to the library,
see section F.1.1. Finally, the Identify flag is set to low and the ready pin set to high.

The main loop comes next which is split into two sections one for when the BUG is connected
and when it is not connected see Figure 4.14. When the BUG enters the Connected state it
enables the LEDs and resets the sleep-timer, see section F.1.1. After this it will enter a while loop
which will run continuously as long as the BUG stays connected. During this loop it will check
whether any of the events in Figure 4.14 occur and call the associated functions as can be seen in
Appendix F. When the BUG is not connected it will enter the ”not connected” while loop where
it will blink the LEDs blue, continuously check for activity on the configuration button, and check
if the sleep-timer has expired. All the code and functions can be found in Appendix F.

Function/state overview

The functions in Figure 4.14 each implement some desired functionality from the UI and require-
ments.

The ”BLE Char updated” function is to ensure library updates send from the PC are imple-
mented immediately. This is done by updating the indication LEDs. As the rest will happen
automatically because the other functions pull their information directly from the library. This
fulfils the additional requirement for PC reconfiguration see section 2.3. It also helps towards the
user friendly nature of the design as changes can be instantly seen, see section 2.1.

The ”Button pressed” function is called on a button press and tells the library to send a
keystroke to the PC as long as the button is pressed. This fulfils the requirement for sending
keystrokes to the PC.

The ”Conf pressed” and ”Conf released” functions implement the functionality for the config-
uration button as described in subsection 4.2.2. The key cycling is implemented using an array
stored in the library which tells the BUG which directions should be present and whether space
should be included. Finally, it tells the BUG whether W, A, S, and D keys are used or if arrow
keys are used. This fulfils the mandatory requirement for turning the device on and off, see sec-
tion 2.2. It also fulfils the additional requirement of allowing the key binding be changed on the
BUG itself, see section 2.3.

Finally, the ”Sleeptimer exceeded” function stores all the library variables regarding keybind-
ing, indication LEDs colour, indication LEDs layout, key cycling, and the sleeptimer duration.
After all the variables have been stored the BUG is set to deep sleep. This helps towards the
requirement of power consumption minimisation.

Battery function

One function that is interesting to discuss a bit more is the battery function. For this function sev-
eral measurements were taken. First the ESP ADC was measured by connecting a programmable
power supply to the battery header and slowly incrementing the supplied voltage while logging
both the supplied voltage and the ADC output value. Using these values a formula for converting
the ADC readout to battery voltage was made. The second measurement is the voltage curve of
the battery taken from full to empty as will be further explained in subsection 5.1.4. The acquired
voltage curve will be matched to battery percentages so a formula can be extracted to convert
battery voltage to battery percentage.

34 Final Design

The battery function starts by taking 20 readings from the ADC and averaging these, this
is done to ensure that the effect of potential errors is minimal. Next the formula to convert to
battery voltage is applied after which this is converted to battery percentage using the acquired
formula. Finally the battery percentage is rounded to the closest 5 for a slightly neater readout.

The ADC on the ESP32C3 can vary from chip to chip [19] due to reference voltage deviation.
As due to time constraints the measurement for the ADC to battery voltage transformation was
done with only one BUG. This deviation might cause inaccuracies in the battery readings.

Figure 4.14: Overview of the main loop

4.4.2 Bluetooth communication on ESP
The ESP module must be capable of communicating as a Human Interface Device (HID) (a
BLE keyboard), while ideally also accepting some sort of communication to make reconfiguration
possible. This makes sure the BUG will work directly when connected to a PC and still have
some method for reconfiguration. This can be implemented by creating a custom BLE service (see
section 1.3) with multiple characteristics for specific parts of the BUG.

Since it was found in subsection 3.4.2 the BLE-Keyboard library [7] works as intended, it was
used in the final implementation for the BLE connection. The library sets up the BLE Server
with correct GATT services. The library is then altered to provide an extra GATT service for
configuration of the BUG. Four characteristics are added inside this service:

• Key bind containing the char-code of the key bind to be send when the button is pressed.

• Layout containing both the colour of the indication leds and information which leds should
be turned on.

• Sleeptimer containing the time in seconds before the BUG should be turned off due to
inactivity.

• Mode containing various data. This characteristic can be used to reset the BUG, to identify
the BUG and to set which mode it is currently functioning in.

A more comprehensive view of how the data is composed bitwise can be found in Appendix D.

The reveived data is interpret as raw data, thus looking at the binary data instead of the
characters this data represents. This is done to minimise the amount of data to be send. The
interpretation is done by the modified BLE Keyboard library.

All received data is saved internally inside the scope of the library, since this is more straight-
forward when dealing with receiving data over BLE. Multiple functions are created to set and read
this data from the main program. Aside from the data itself, a flag can be set to notify the main
program to restart the inactivity timer. This is done each time when a characteristic is updated
using BLE.

4.5 Software - PC 35

The library is also stripped from unused functions to improve readability. To send a key press,
the library takes the integer value from the local stored key bind, instead of an input from the
main program. All variables are still readable and writable using functions from the main program,
since this is needed to store the data to memory on shutdown and restore it on start up.

When one of the variables is updated, either internally or via the BLE connection, the new
value is broadcast with the corresponding descriptor. This is done using exactly the same format
as is used to set the variables using BLE. When doing this, it is possible for a PC interface to
get the variables and display them in a GUI. The variables are always available for a client, even
when they are set before the connection is established.

4.5 Software - PC
Although the need for a PC software is completely optional, it is found it could add a lot of
functionality. A lot of games use, instead of the arrow keys, the keys W, A, S and D for directions.
Making them all rotate with the configuration button would be sub-optimal. It could also be
possible the user wants to use the BUG for a specific user case where custom key binds are
needed. Instead of reprogramming the BUGs, reconfiguration is possible via the created BLE
GATT-service described in subsection 4.4.2 and Appendix D. The PC software provides some
graphical user interface (GUI) for controlling these variables instead of using some tool to view,
send and receive custom data over this GATT profile.

For this software, multiple options were considered. At first, some communication between a
code and the BUGs should be established. Windows is not well known for its compatibility with
BLE devices, so a lot of problems emerged. For example, when a library was able to connect
to the BUG, show its GATT services and read them, the HID protocol was disabled. This HID
protocol is needed for the functionality for the BUG.

The PC software is partly implemented using Qt, a IDE with implemented GUI creator based
on C++. Qt has got a working Bluetooth integration which makes it possible to read all GATT
services from connected devices, while maintaining the HID profile. The PC software is made by
editing an BLE example from the Qt resources [20], mainly because it was used to show a very
detailed proof of concept. Many of the design choices of the GUI originated from this example or
weren’t thoroughly considered but based on intuitive choices.

Looking at the used code for the PC software, it can be clearly seen it is adapted from the
used example. The code is based on functions controlled by the GUI and BLE communications.
The program itself only connects to the service regarding the reconfiguration of the BUG. When
opening the reconfiguration screen of a specific BUG, as shown in Figure 4.15, all relevant data is
fetched and processed using the BLE connection. All characteristics (for example the key bind)
can independently be set. This proof of concept shows it could also be possible to build a game
entirely within this environment, where the controls and indication LEDs of independent BUGs
could be adapted to different levels or rooms.

The current state of the PC Software is far from a finished package. It shows configuration
is possible using a GUI, but still contains various bugs and workflow issues. A BUG can only
be configured when selected the first time, re-selecting it will throw errors. The software also
struggles with updating the configuration when multiple BUGs are connected simultaneously. For
a final product, the GUI should be fixed or ideally be completely rewritten, making it possible to
use the PC software for bulk pairing (and disconnecting) multiple devices at once.

36 Final Design

Figure 4.15: Screenshot of the GUI. Left the overview of connected BUGs can be seen (named ”Leopard Moth”).
Right, the configuration screen can be seen of a specific BUG. Each characteristic can be set independently from
this screen.

Chapter 5

Testing

The final step for the project is testing. Primarily the functionality of the final design needs to
be tested. This final testing will include testing range, delay, charging, and more. Besides these
more technical tests, user testing needs to be done and the users opinions will need to be gathered.
During user testing the aim will also be to determine how many simultaneous connections operate
smoothly.

5.1 Final system testing
Some small scale, low level testing has already been done. This consists of some questions like
“Does it power on?” or “Can the BUG be seen by a Bluetooth device?”. These are done by
reversing our design and production process; if soldering was done right was the first test, then
the functionality of the separate components was tested, and at last the functionality of blocks. The
requirements set out in the beginning are the last to test. Not only is it tested if the requirements
are met, but also to what extent. As an example, the BUG does connect wirelessly to a PC, but
for what distance can it still have this functionality? Answers to these questions are going to be
answered in the tests conducted in this chapter. The parameters (and the requirements) being
tested are: Range, accuracy, delay, number of simultaneously functioning BUGs, and the time it
takes to charge or discharge the BUGs.

5.1.1 Range
Plan

The range test will test at what range the BUGs Bluetooth connection disconnects. This will be
done by connecting a BUG next to a PC, walking back slowly, one pace at a time, and checking
whether the button presses are not detected on the PC anymore. If this is the case, the tester
should stand still and check for a little longer if the Bluetooth connection will be disconnected. If
this is not the case, the tester will walk back very slowly and check when the BUG starts flashing.
This will give us 2 parameters to work with: The accurate range and the Bluetooth range: The
accurate range is the range where the BUG is unlikely to miss a button press, while the Bluetooth
range is the range at which the BUG starts to disconnect and search for a new Bluetooth device
to connect to.

To ensure reliable data, ten functional BUGs are going to be tested 3 times. All the BUGs will
be tested when they are just disconnected from the external power supply to ensure that all BUGs
are in the same state of charge. Once a BUG is done with the first test, it will be disconnected
and kept on until the BUG goes into deep sleep. Once this is the case and the next set of tests
can be done.

38 Testing

This test will evaluate some of the project requirements, mainly whether the device works
wirelessly and as part of user friendly as for party games some range will be desired.

Results

The results for the range test can be seen in full in section H.1. After all the results had been
logged for each BUG 3 times, the averages per test were taken over all BUGs. The total average of
these averages was taken as the average maximum range. The resulting average maximum range
is 71.3 m. It is worth noting that this is the range BUGs on average disconnect so not a practical
use max range. Furthermore it seemed that a delay started appearing in the transmission of the
BUGs to the PC the further apart the two were. However this delay could also have been due to
the way the observation of the keystroke was done.

5.1.2 Accuracy
Plan

The accuracy test is there to test how often a button press is correctly received on the PC when
the button is pressed. This will be done by setting a couple of distances and pressing the button
of a BUG 50 times. The key bind of the BUG will be set down arrow. By having the PC open on
a spreadsheet it will be easy to tell how many times the down key was pressed and thus how many
key presses were received. The distances of these tests depend on the outcome of the first test.
The proposal is to test the BUG at 50%, 75%, 100% and 125% of the accuracy range obtained
from the range test. There are several potential ways for the key presses to be received incorrectly.
Firstly, some can just not arrive and there will be no key press registered. Secondly, a key press
can arrive but the key release arrives either too slow or not at all, this results in too many key
presses being registered. Finally, related to the first if the BUG disconnects during the 50 presses
it won’t register them all.

In case that at a certain distance the BUG won’t connect at all the number of registered keys
will be logged at zero. As the test is being done in the hallway of a building on some occasions
people will walk in between the BUG and the PC. In such cases an attempt was made to either
wait for the people to pass or the test would be redone if the results seem to be affected by it.

Figure 5.1: The accuracy of the BUG plotted
against the range

Results

The received key strokes per BUG per distance were
logged and converted to a percentage of 50. For these
percentages the Mean Square Error (MSE) was then cal-
culated. The MSE then represents the number of Key
presses that is not received correctly. The percentage of
accurately received button presses is plotted against the
range in Figure 5.1. The full results can be found in sec-
tion H.2. As for gaming a very high accuracy would be
desired, the functional range is within 40 metres. Since
in most cases the user will be within this distance from the PC, this is acceptable. Finally it is
important to note that most gaming won’t occur in empty 100 metre hallways and thus this test
is not necessarily the most accurate for real use situations.

5.1.3 Delay
Plan

To test the delay of the key press to a PC, the time between the key press and the detection of the
key press must be measured. The key press itself is hard to register, but is approached by using the

5.1 Final system testing 39

serial output of a BUG. The received time for the serial message is compensated using the baud
rate: the message was 25 characters (400 bits) long over a bit rate of 115200 bit/s. This means
a standard delay for the serial message of 400/115200 = 3.47222 milliseconds. The timestamp of
the received key press is also registered. This is achieved by a small Python script (section H.3)
acting as a serial logger and key logger at the same time. The distance between the gamepad and
the PC is constant and for each BUG, the button will be pressed 50 times. The python script will
output the average delay from the BLE key press to the compensated serial input in seconds.

Results

The test of the delay was done for the 10 initially functional BUGs as the 11th has a damaged serial
connection. The overall average delay of all the BUGs was 1,37 milliseconds. This is considerably
less than the average human reaction time [21]. The full test results can be seen in section H.3. It
is worth noting that this test was done very close to the computer and delay over greater distance
might be larger.

5.1.4 Charging/Discharging
Plan

Figure 5.2: The accuracy of the BUG plotted against the
range

The BUGs are rechargeable and use a LiPo
battery as their power source. This battery
will discharge over time and will then need to
be charged. This test aims to determine the
average charge time from empty to full and
discharge time from full to empty. Empty
is defined as the point the battery can no
longer supply enough power to the BUG. Full
is defined as the point when the battery stops
charging when connected to USB-C.

Both tests were done with a testing circuit
consisting of an MCU1, a Current sense amp-
lifier2, and an micro SD port. This circuit was
build on a breadboard, an overview can be seen in Figure 5.2. The circuit measures the current
between the BUG and the battery which shows if the BUG is charging, discharging, on or off. It
will also allow the easy detection of brown outs and whether the BUG is fully charged.

The charging test will be done by connecting the BUG to the test circuit as seen in Figure 5.2
and connecting the USB-C to the BUG to charge the battery. The test circuit will then log the
current going to the battery and the voltage over the battery. The test will be started when the
battery is empty and stopped when the battery is full. As the circuit also logs the timestamp for
each value a clear charging timeline will be recorded thus giving a clear charge duration.

The discharging test will be done in a similar way to the charging test only without the USB-C
charging cable connected to the BUG. The test will be done with a recently charged BUG and
run from full to empty. Again using the logged timestamps a clear indication of discharge time
will result. The BUG discharge will be tested while the BUG is on and connected as this will be
it’s most common state. The BUG does draw slightly more power when sending key presses but
this effect is very small mostly because most button presses are very short. Thus the active and
connected state will be seen as the average power consumption.

Results
1a Seeeduino XIAO
2an INA 219

40 Testing

Figure 5.3: The battery voltage over time while charging
and discharging

The testing for the charge and discharge cycle
was only done for one BUG as the test takes
quite a long time to execute and only one test
circuit was available. During testing some er-
rors also occurred which unfortunately caused
test date to be lost. In the end the cycle re-
corded was the end of one charge cycle, a full
discharge cycle, and the majority of the next
charge cycle. The full acquired graph can be
seen in Figure 5.3. Looking at the graph we
can see that the discharge cycle starts at about
01:52:00 and ends at about 04:16:00. This
means that a discharge cycle takes about 2
hours and 21 minutes. Given that the start
of the graph is essentially stable which suggests the battery was fully charged and that the end of
the graph is almost at the same level. It is relatively safe to say that the charge cycle was nearly
complete by the end of the measurement. If the duration is taken for the final charge cycle of the
graph it is found to be 1 hour and 52 minutes, to be on the safe side another 30 minutes to one
hour can be added to reach the same level as at the start. This would result in a charge time of
about two and a half hours.

5.1.5 Simultaneous connections
Plan

The BUGs work over BLE 5.0 which theoretically has no limit for the amount of simultaneous
connections. However, most hardware has some limit built in, or at least a limit of how many
connections can communicate at the same time. It is rather difficult for many devices to find a
clear indication of how many connections can be sustained simultaneously. It would be interesting
to connect up to ten BUGs simultaneously so that to teams of five could play against each other on
one machine. To test the possibility of ten simultaneous connections it was attempted to connect
as many BUGs as possible to the PC used for testing3. To see if all BUGs could transmit data
the key input was checked on the laptop for each BUG.

Results

The testing happened on several occasions. Initially when nine BUGs were functional it was
checked whether all nine could connect simultaneously. This went quite smoothly as all BUGs
connected and were able to send their button press to the PC. It was unclear whether all BUGs
could send a key press at the same time however in most cooperative games their is no need to
press nine buttons simultaneously.

On a later occasion before a user test it was again tested if now ten BUGs could be connected
simultaneously. Unfortunately on this occasion it was not possible to connect more than eight
simultaneously as the BUGs would no longer appear as possible to connect after eight connections
were established. It is possible this is due to an update performed on the library to ensure smoother
reconnecting on windows and android.

5.2 Public testing
Since the BUGs are designed to be used by people playing games, the BUGs are also tested by
people playing a game. To gather data in this test setup, a small survey is taken afterwards. It
is seen people need some time to adapt to the controls and feeling of controlling only a part of
3HP Zbook studio G4

5.2 Public testing 41

the game. The results seemed to be better when the test participants were communicating when
playing, but this is not measured quantitatively. The games tested are listed in Appendix K, but
this is not an exclusive list of compatible games.

The test group consists of 30 people between the ages of 17 and 26 (See Figure H.1a). Most
of them mentioned they have played games before, 70% of them are familiar with party games.
This genre is known for playing small mini games together (or against each other), similar to the
game style created with the BUG. It should be noted that the set of test subjects likes to play
these kind of games, thus enjoying the use of the BUG more than the average person might. This
could lead to more positive results. See Figure H.1b for an overview of the games played by the
test participants.

The test participants were asked about the comfort and size of the gamepad. Most of the
participants rated the BUG as comfortable (see Figure H.2a). A big portion of the participants likes
the size, however 26% thought it was too small and 13% thought it was too large (Figure H.2b).
It could be stated the size is acceptable, since it is preferred by the average user.

The responses to the user interface are good: most people think the key bind indication with
the LEDs on the side is clear and rate the overall user experience with a 4.4 out of 5. (See
Figure H.3). Most people do however expect a high battery life of the BUG. The current version
should be working for more or less two hours, most people expect it to work much longer. This
could be because of the common game controllers available now (such as an Xbox controller)
having a battery life of up to 30 hours. If this needed to be achieved, a redesign should be done,
which is discussed in section 7.1.

Chapter 6

Conclusion

To see if this project was a success, one has to see if all the requirements in the beginning are met.
To do this, the requirements were tested in the tests from chapter 5. To take the requirements
laid out in chapter 2 from top to bottom; The gamepad is safe. In the 4 weeks working with the
BUGs, none have malfunctioned in a dangerous way. This means all the LiPo batteries are intact
and working. Some of the other components only malfunctioned by ceasing to function, but not
creating a possible dangerous situation. No dangerous sharp edges were found and nobody was
harmed when working with or using the BUGs. This is not the best way of testing if a product is
safe. There are protocols which test if a product is safe. Since the BUGs are not going to be on
the market and there was an insufficient amount of time, these protocol tests are not performed.
As can be seen in the Range test, the PC noticed all the key presses until around 35 meters. This
means that the keystroke was emulated perfectly in the first 35 meters. Because of this reason, the
requirement to work wireless is also met. As can be seen in chapter 3, 2 controller designs were
tested. The nunchuck model was rated the best. Both a separate BLE - MCU combination and
an integrated BLE and MCU module were tested, the integrated solution being superior. Out of
the charge and discharge tests, it can be stated that the BUGs can charge with a USB-C power
supply, and charging and discharging takes about the same time.

The devices were found very user friendly according to the 30 test participants, which were
able to play games like Pac-Man using the BUGs. At least five BUGs were used simultaneously
by playing the game Bomberman, requiring five key inputs.

Chapter 7

Discussion

7.1 Recommendations
Although the prototype made in this research is received with positive feedback from test parti-
cipants, some recommendations could be made when further developing this product.

7.1.1 3D Model
Before releasing the final gamepad, the 3D model should be evaluated. The current design is made
functional, but with limited attention for ergonomic design. The design should also be adapted to
injection moulding, requiring different design steps to create a durable model. Both issues could
be resolved with a redesign. An important effect of a redesign is the PCB needs to be redesigned
as well, since this is based on the basic shape of the gamepad.

7.1.2 User Interface
Although the user interface itself is good, some small remarks can be noted for a possible redesign.
It is found it is very easy to press the configuration button when disconnection the charging cable,
starting the BUG. This should be fixed, but this is possible when a charging dock for up to four
BUGs is introduced. This makes charging overall a lot easier and user friendly, since it eliminates
the hassle with multiple cables. A minor detail which could be fixed to make the BUG more
colour blindness friendly is changing the charge indicator led from red-green to red-blue. Finally,
the indication LEDs are not ideally located for left handed people, this could again benefit from
a redesign.

7.1.3 Electronics
The MCU could be swapped for a more power efficient solution. The complete system currently
draws 100mA, which is quite high for a BLE solution. Other solutions integrating an MCU with
a BLE module are possible. An example of such a solution is a Nordic Semiconductor IC (NRF-
series), which is known for its low power dissipation and wide input voltage range(1.8 up to 3.6V),
but these require a custom antenna. When such an IC is implemented, the firmware needs to be
rewritten as well since these MCUs use a different architecture. There is a hardware bug in the
current BUGs. This bug is the ESP that need to be soldered upside-down. This was because the
pinout was a bottom view in the datasheet [14]. This was not picked up on during design and
review. It is still possible to solder, but it takes substantially more time to solder compared to
soldering them directly onto the PCB

46 Discussion

The used WS2812 LEDs for the indication for the key binding might not be the best solution
for a final product. With the use of charlieplexing [22], twelve individual LEDs could be controlled
by only four GPIO pins. By setting the IO pins to either low, high or high impedance, a specific
LED can be controlled. By pulsing every LED with a frequency of at least 50Hz, all LEDs can
appear to be on at the same time. This behaviour also has the positive side effect the LEDs will
draw less power. This solution will however be more complex with the routing of the PCB and a
different approach with the software of the ESP.

7.1.4 ESP Software
It will always be possible to further improve the software, but some remarks were found that
could be improved in further versions. The BUG must save the configuration to its memory when
received, instead when going to shutdown. This prevents the loss of configuration data when going
in to a brownout state when the voltage of the battery is too low. Another remark is regarding
recognisability of the BUGs: it should be possible to assign a custom Bluetooth name to the
BUGs. Finally, the battery function could be optimised to be more accurate to all BUGs as it is
currently based on a single ESP which can cause inaccuracies.

7.1.5 PC Software
The current software is far from perfect. It should be rewritten, but certain functions could be
good to implement. One of these functions could be a mass connect function to connect multiple
BUGs without the Windows Bluetooth menu. Also a mass configuration, so four or five BUGs
could be configured to e.g. WASD plus space mode at the same time. To make interaction with
custom games possible, an API could be designed to easily adjust the settings per BUG during
gameplay.

7.1.6 Safety
As said in chapter 6, there are protocols to test if a product is safe. Since this can also involve
looking for the limits of a system before it fails and since there were a limited amount of BUGs
available, these tests were not performed before.

7.1.7 Testing
The testing has mainly been done with the student demographic. This was the demographic which
was accessible during the Covid-19 pandemic. These tests could be repeated with a wider range
of people.

Appendices

Appendix A

Terminology

To avoid confusion or explain some abbreviations used in this thesis, a table of explanations can
be found below:

Term Definition
BUG Bluetooth Ultrasimple Gamepad, the prototype as a complete unit.
Gamepad The complete handheld device, sometimes referred to as ’Controller’. To avoid confusion

with the MCU, this is called the gamepad.
Key binding The key press the gamepad sends to the connected device.
MCU Micro Controller Unit, the processing power module used.
AT Hayes Command Set, AT being short for Attention. This command set is used in a very

low level communication with various chipsets.
BLE Bluetooth Low Energy
GATT Profile Generic Attribute Profile
HID Human Interface Device, such as a keyboard, mouse or gamepad.
IC Integrated Circuit, a small chip containing an internal circuit.
PCB Printed Circuit Board, a board that allows for the mounting of electrical components

and has internal connection paths to form a circuit
GUI Graphical User Interface, a way of giving instructions to a computer using things that

can be seen on the screen such as symbols and menus
PWM Pulse Width Modulation. An alternating signal which is high for a percentage of time

which can be used to supply less power then when the signal is always high
LDO Low DropOut regulator. An electrical component allowing to supply a steady supply

voltage

Appendix B

Prototyping Code

In this appendix the code for the project will be listed this includes the versions of the code for
the prototype, the data acquisition code, and the GUI code.

B.1 Python data acquisition code
For the data collection, a small python script is written which reads the serial input. It logs the
button number which is received and simulates a key press.

1 # -*- coding: utf-8 -*-
2 ”””
3 Created on Wed Sep 29 21:31:17 2021
4

5 @author: Jorn
6 ”””
7

8 import keyboard
9 import serial

10 import csv # https://www.pythontutorial.net/python-basics/python-write-csv-file/
11 from datetime import datetime

#https://thispointer.com/python-how-to-get-current-date-and-time-or-timestamp/↪

12 import os
13

14 serialPort = serial.Serial(”COM10”, 38400, timeout=2)
15

16 header = [”timestamp”, ”button”]
17

18 #serialPort.open()
19

20 btn = 0
21

22 timestamp = datetime.now()
23 timestampStr = timestamp.strftime(”%Y%m%d-%H%M%S”)
24

25 f = open(os.path.dirname(os.path.realpath(__file__))+'/'+timestampStr+'.csv', 'w',
newline='')↪

26 writer = csv.writer(f)
27

52 Prototyping Code

28 writer.writerow(['time','button'])
29

30 serialPort.read_all()
31

32 print(”Logger and keyboard emulator started. Quit with Ctrl+C to close COM-port”)
33

34 try:
35 while(1):
36

37 # infinite loop to check incoming data on serial port. Convert to int
38 if(serialPort.in_waiting>0):
39 serialString = serialPort.readline()
40 btn = int(serialString.decode('Ascii').split(”,”)[0])
41

42 # If released, release space. If pressed, press space and log button number
43 if (btn == 0):
44 keyboard.release('down')
45 else:
46 keyboard.press('down')
47 timestamp = datetime.now()
48 timestampStr = timestamp.strftime(”%H:%M:%S”)
49 writer.writerow([”\””+timestampStr+”\””, btn])
50

51 except:
52 serialPort.close()
53 f.close()
54 print(”Serial port closed, csv saved.”)

B.2 C++ code for the Prototype
In this section the different versions of the C++ code for the prototype will be listed

B.2.1 Simple Bluetooth connectivity and LED control
The initial code for the ESP development kit that includes the indicator LEDs and basic Bluetooth
transmission capabilities. Does not allow for easy reprogramming, a change of key binding requires
re-flashing the gamepad.

1 /*
2 @Title BUG ESP code including indication LEDs Devkit
3 @Author Floris van der Heijde
4 @Delft University of Technology
5 @Date 05-10-2021
6

7 @Hardware
8 ESP-C3-12F kit dev board
9 neopixles

10

11 18 Pulldown button pin
12 19 Neopixle output pin
13

14 */
15

16 #include <BleKeyboard.h>

B.2 C++ code for the Prototype 53

17 #include <Adafruit_NeoPixel.h>
18

19 //Set the name of the BUG(Bluetooth Ultrasimple Gamepad
20 BleKeyboard bleKeyboard(”BUG-ESP”);
21

22 #define buttonPin 18 //set the buttonpin
23 #define NEOPIN 19 //set the pin for the neopixels
24 #define NUMPIXELS 5 //set the amount of neopixels
25 #define WHITE 255, 255, 255 //set the rgb value for white
26 #define BLUE 0, 0, 255 //set the rgb value for blue
27 #define RED 255, 0, 0 //set the rgb value for red
28 #define GREEN 0, 255, 0 //set the rgb value for green
29 #define PURPLE 255, 0, 255 //set the rgb value for purple
30 #define OFF 0, 0, 0 //set the rgb value for OFF
31

32 //Define char for space arrow up, down, left, and right
33 char space = 32;
34 char arrowup = 218;
35 char arrowdown = 217;
36 char arrowleft = 216;
37 char arrowright = 215;
38

39 //select the desired key and colour
40 #define key arrowup
41 #define colour GREEN
42

43

44 //NEOPIXEL known numbers button on the top: 0=left, 1=top, 2=centre, 3=bottom, 4=right
45

46 Adafruit_NeoPixel pixels(NUMPIXELS, NEOPIN, NEO_GRB + NEO_KHZ800);
47 #define DELAYVAL 500 // Time (in milliseconds) to pause between pixels
48

49 void setup() {
50 bleKeyboard.begin(); //start ble keyboard
51 pinMode(buttonPin, INPUT_PULLDOWN); //set buttonpin as pulldown so standard low
52 pixels.begin();
53 }
54

55 void loop() {
56

57 //if BUG set to arrowup light up the top led in the selected colour
58 if (key == arrowup) {
59 pixels.clear(); //reset the pixels
60 pixels.setBrightness(15); //set the pixel brightness
61 pixels.setPixelColor(0, pixels.Color(OFF)); //set the pixels corresponding to the key to

the selected colour↪

62 pixels.setPixelColor(1, pixels.Color(colour));
63 pixels.setPixelColor(2, pixels.Color(OFF));
64 pixels.setPixelColor(3, pixels.Color(OFF));
65 pixels.setPixelColor(4, pixels.Color(OFF));
66 pixels.show(); //display the pixels according to the settings
67

68 }
69 //if BUG set to space light up the middle row of leds in the selected colour

54 Prototyping Code

70 if (key == space) {
71 pixels.clear();
72 pixels.setBrightness(15);
73 pixels.setPixelColor(0, pixels.Color(colour));
74 pixels.setPixelColor(1, pixels.Color(OFF));
75 pixels.setPixelColor(2, pixels.Color(colour));
76 pixels.setPixelColor(3, pixels.Color(OFF));
77 pixels.setPixelColor(4, pixels.Color(colour));
78 pixels.show();
79

80 }
81 //if BUG set to arrowdown light up the botton led in the selected colour
82 if (key == arrowdown) {
83 pixels.clear();
84 pixels.setBrightness(15);
85 pixels.setPixelColor(0, pixels.Color(OFF));
86 pixels.setPixelColor(1, pixels.Color(OFF));
87 pixels.setPixelColor(2, pixels.Color(OFF));
88 pixels.setPixelColor(3, pixels.Color(colour));
89 pixels.setPixelColor(4, pixels.Color(OFF));
90 pixels.show();
91

92 }
93 //if BUG set to arrowright light up the right led in the selected colour
94 if (key == arrowright) {
95 pixels.clear();
96 pixels.setBrightness(15);
97 pixels.setPixelColor(0, pixels.Color(OFF));
98 pixels.setPixelColor(1, pixels.Color(OFF));
99 pixels.setPixelColor(2, pixels.Color(OFF));

100 pixels.setPixelColor(3, pixels.Color(OFF));
101 pixels.setPixelColor(4, pixels.Color(colour));
102 pixels.show();
103

104 }
105 //if BUG set to arrowleft light up the left led in the selected colour
106 if (key == arrowleft) {
107 pixels.clear();
108 pixels.setBrightness(15);
109 pixels.setPixelColor(0, pixels.Color(colour));
110 pixels.setPixelColor(1, pixels.Color(OFF));
111 pixels.setPixelColor(2, pixels.Color(OFF));
112 pixels.setPixelColor(3, pixels.Color(OFF));
113 pixels.setPixelColor(4, pixels.Color(OFF));
114 pixels.show();
115

116 }
117 while (digitalRead(buttonPin) ==HIGH) {
118 bleKeyboard.press(key); //continuously send a spacebar when button is pressed
119 }
120 bleKeyboard.release(key); //stop sending the spacebar when the button is released
121 delay(5);
122 }

Appendix C

Test data and Figures

C.1 Test subjects figures

In this section the figures providing an overview of every test subjects button usage and preference
is given.

0

1

2

3

4

5

6

7

8

9

20
:2
8:
20

20
:2
8:
40

20
:2
9:
00

20
:2
9:
20

20
:2
9:
40

20
:3
0:
00

20
:3
0:
20

20
:3
0:
40

20
:3
1:
00

20
:3
1:
20

20
:3
1:
40

20
:3
2:
00

20
:3
2:
20

20
:3
2:
40

20
:3
3:
00

20
:3
3:
20

20
:3
3:
40

20
:3
4:
00

20
:3
4:
20

20
:3
4:
40

Subject 1

1 2 3 4

1%

29%

0%

70%

Subject 1 preference

1 2 3 4

0

2

4

6

8

10

12

11
:4

4:
20

11
:4

4:
40

11
:4

5:
00

11
:4

5:
20

11
:4

5:
40

11
:4

6:
00

11
:4

6:
20

11
:4

6:
40

11
:4

7:
00

11
:4

7:
20

11
:4

7:
40

11
:4

8:
00

11
:4

8:
20

11
:4

8:
40

Subject 2

1 2 3 4

1

0%

2

78%

3

19%

4

3%

subject 2 preference

1 2 3 4

Figure C.1: Button usage and preference of subject 1 and 2

56 Test data and Figures

0

2

4

6

8

10

12

11:48:4011:49:0011:49:2011:49:4011:50:0011:50:2011:50:4011:51:0011:51:2011:51:4011:52:0011:52:20

subject 3

1 2 3 4

1

5%
2

10%

3

81%

4

4%

subject 3 preference

1 2 3 4

0

2

4

6

8

10

12

12:07:0012:07:2012:07:4012:08:0012:08:2012:08:4012:09:0012:09:2012:09:4012:10:0012:10:20

Subject 4

1 2 3 4

1

1%
2

3%
3

0%

4

96%

Subject 4 preference

1 2 3 4

0

1

2

3

4

5

6

7

8

9

10

12
:1
0:
40

12
:1
1:
00

12
:1
1:
20

12
:1
1:
40

12
:1
2:
00

12
:1
2:
20

12
:1
2:
40

12
:1
3:
00

12
:1
3:
20

12
:1
3:
40

12
:1
4:
00

12
:1
4:
20

12
:1
4:
40

12
:1
5:
00

12
:1
5:
20

12
:1
5:
40

12
:1
6:
00

12
:1
6:
20

12
:1
6:
40

12
:1
7:
00

12
:1
7:
20

12
:1
7:
40

12
:1
8:
00

12
:1
8:
20

Subject 5

1 2 3 4

1

1%

2

0%

3

83%

4

16%

subject 5 preference

1 2 3 4

0

1

2

3

4

5

6

7

8

1
3
:2

5
:4

0

1
3
:2

6
:0

0

1
3
:2

6
:2

0

1
3
:2

6
:4

0

1
3
:2

7
:0

0

1
3
:2

7
:2

0

1
3
:2

7
:4

0

1
3
:2

8
:0

0

1
3
:2

8
:2

0

1
3
:2

8
:4

0

1
3
:2

9
:0

0

1
3
:2

9
:2

0

1
3
:2

9
:4

0

1
3
:3

0
:0

0

1
3
:3

0
:2

0

1
3
:3

0
:4

0

1
3
:3

1
:0

0

1
3
:3

1
:2

0

1
3
:3

1
:4

0

1
3
:3

2
:0

0

1
3
:3

2
:2

0

1
3
:3

2
:4

0

1
3
:3

3
:0

0

1
3
:3

3
:2

0

1
3
:3

3
:4

0

1
3
:3

4
:0

0

1
3
:3

4
:2

0

1
3
:3

4
:4

0

1
3
:3

5
:0

0

1
3
:3

5
:2

0

1
3
:3

5
:4

0

Subject 8

1 2 3 4

1

2%

2

31%

3

2%

4

65%

Subject 8 preference

1 2 3 4

Figure C.2: Button usage and preference of subject 3, 4, 5, and 8

C.2 Survey results 57

0

2

4

6

8

10

12

14

13
:3

6:
20

13
:3

7:
00

13
:3

7:
40

13
:3

8:
20

13
:3

9:
00

13
:3

9:
40

13
:4

0:
20

13
:4

1:
00

13
:4

1:
40

13
:4

2:
20

13
:4

3:
00

13
:4

3:
40

13
:4

4:
20

13
:4

5:
00

13
:4

5:
40

13
:4

6:
20

13
:4

7:
00

13
:4

7:
40

13
:4

8:
20

13
:4

9:
00

13
:4

9:
40

13
:5

0:
20

13
:5

1:
00

13
:5

1:
40

Subject 9

1 2 3 4

1

72%

2

8%

3

0%

4

20%

Subject 9 Preference

1 2 3 4

Figure C.3: Button usage and preference of subject 9

C.2 Survey results
In this section the automatically generated results overview from the Google Forms survey will be
provided. A total of nine responses was gathered.

Female
22.2%

Male
77.8%

(a) Gender distribution among test
participants

20 22 24 26
0

1

2

3

(b) Age of test participants

Left
11.1%

Right
89.9%

(c) Handiness distribution among
test participants

Figure C.4: Characteristics of the test participants

58 Test data and Figures

Keyboard/mouse Wii Playstation Phone Xbox
0

1

2

3

4

Figure C.5: Preference for gamepads among test participants, each bar representing the number of mentions.

Credit card
33.3%

Nunchuck
66.7%

No pref.
0%

(a) Preference for both prototyping
models

4
44.4%

3
22.2%

2
22.2%

1
11.1%

(b) Preference for button location on
nunchuck model

(c) Location of buttons on the nun-
chuck itself

Figure C.6: Preference for prototype configurations (1)

Vertical
77.8%

Horizontal
22.2%

(a) Preference for orientation of
credit card prototype

Plus
44.4%

Arrow keys
55.6%

(b) Preference for layout of indica-
tion LEDs

Figure C.7: Preference for prototype configurations (2)

C.2 Survey results 59

Table C.1: Survey answers, open answer questions

Which LED location do you prefer? (nunchuck)
De zijkant (of evt bovenop)
Bij blauwe knop
Zijkant misschien midden voor
Onder blauw (handpalm)
Aan de linker zijkant
Onder de blauwe knop
Voorkant of tussen 3 en 4
Bovenkant
Tussen button 3 and 4
What do you think would be a good location for the reset/configuration key for the nunchuck?
Onderkant (cable input)
Bij groene
Out of the way
Bij draden
Aan de linker zijkant
Achterkant onder geel
Bij het draad
Onderkant zijkant
Button 3
What do you think would be a good location for the reset/configuration key for the credit card?
Onderkant (bij usb)
Midden
Midden bovenop
Schakelaar bovenkant, maar combi van knoppen
Bij de led array
Onderste led (bovenkant, bij usb)
Bij de boord
Onder bij de led array
Zijkant
Do you have any comments on either gamepad design you would like to share?
Nunchuck eerst getest.
Nunchuck eerst
11 48 switch
Nunchuck first
Switch 12 11
Nunchuck first
Switch 12 25
Ook knop 3 switch 13.36/37 credit card als afgerond
Nunchuck misschien beter als maar 1 knop

Appendix D

Custom GATT profile overview

D.1 Key binding characteristic
The key binding characteristic contains a two digit hexadecimal number. This integer is an almost
direct representation of a key in the ASCII-table representation for keyboard values. The first
128 keys are an exact copy, the last 128 are representations of media and action keys such as the
arrow keys. A section of the complete table can be found in Table D.1. This section only contains
the values for keys which are potentially usable for use with the BUG.

Table D.1: table with ASCII values and possible key bindings represented by those values

Value Key Value Key Value Key Value Key
0x20 Space 0x3B ; 0x6C l 0x82 Left alt
0x2A * 0x3D = 0x6D m 0x84 Right ctrl
0x2B + 0x5B [0x6E n 0x85 Right shift
0x2C , 0x5C \ 0x6F o 0x86 Right alt
0x2D - 0x5D] 0x70 p 0xD7 Right arrow
0x2E . 0x60 ‘ 0x71 q 0xD8 Left arrow
0x2F / 0x61 a 0x72 r 0xD9 Down arrow
0x30 0 0x62 b 0x73 s 0xDA Up arrow
0x31 1 0x63 c 0x74 t 0xB1 Escape
0x32 2 0x64 d 0x75 u 0xB2 Backspace
0x33 3 0x65 e 0x76 v 0xB3 Tab
0x34 4 0x66 f 0x77 w 0xD1 Insert
0x35 5 0x67 g 0x78 x 0xD2 Home
0x36 6 0x68 h 0x79 y 0xD3 Page up
0x37 7 0x69 i 0x7A z 0xD4 Delete
0x38 8 0x6A j 0x80 Left ctrl 0xD5 End
0x39 9 0x6B k 0x81 Left shift 0xD6 Page down

62 Custom GATT profile overview

D.2 Indication characteristic
The indicator characteristic contains four sets of two digit hexadecimal numbers. A schematic
representation can be found below, where the 0x shows it is in hexadecimal format:

0x AA BB CC 0D
In this example, 0xAA represents the amount of red to be shown. 0xBB and 0xCC represent the
amount of green and blue, respectively. 0x0D will always be zero padded: this is a number between
0x00 and 0x0F. When converted to a binary number, each bit represents one of the indicator LEDs
in the following order: the upper led followed by the left - middle - right led of the lower row.

D.3 Sleep timer characteristic
This characteristic contains a value up to 4 digits (hexadecimal), which is a direct representation
of the amount of seconds before the BUG should shut down automatically. For example, the value
0x012C equals 300 in decimal notation. So if this characteristic is set to 0x012C, the BUG will
shutdown after 5 minutes.

D.4 Information characteristic
This characteristic contains a simple input and behaves as the input are some sort of flags. It is
used to implement a factory reset, an identification method. It is also used to implement a mode:
which keys are implemented in the key array circulated by the configuration button. Also, a flag
can be set to use WASD-keys instead of arrows.

Bit number Functionality
0 Factory reset flag
1 Identification flag
2 Flag to use WASD instead of arrows
3 Include space in key array
4 Include up arrow in key array
5 Include left arrow in key array
6 Include down arrow in key array
7 Include right arrow in key array

The implementation of the key array can be found in subsection 4.4.1.

Appendix E

3D Model: Breakdown of design process

The design choices itself are discussed in section 4.1, the design steps are shown here. The used
CAD software is OnShape, an online based editor.

Figure E.1: Basic shape of the
gamepad

Shape of the gamepad
First, a design was made based on the rough dimensions of the
nunchuck model used in section 3.1.1. Since the design of the
most ergonomic gamepad is not the scope of this research, not too
much effort is put into optimising this design. The model is split
vertically into two almost symmetric halves. The right half can be
seen in Figure E.1. The two halves join together by some standing
edge, creating a (theoretically) dust-proof joint between the two
halves. This feature is not tested, since this is not the scope of this
research.

Figure E.2: PCB Outline

PCB Outline
With the basic shape in place, the outline for the PCB can be con-
structed. A shape is created with a margin of 0.5mm to all sides,
to create a tight but still easy fit of the PCB into the gamepad.
At this stage, the screw mounting holes are added, making sure
the screws fix the two halves together while also fixating the PCB
inside the model. The outline of this PCB is exported to the PCB
design software (Altium). A small cutout can be seen in the circuit
board. This is the location of the antenna of the used MCU, to
prevent possible interfering of the Bluetooth signal.

64 3D Model: Breakdown of design process

Figure E.3: LED Guards

Bottom cutouts and LED guards
At the bottom, some room for the USB-c connector and config-
uration button is made. The cut outs are not clearly visible in
Figure E.3. For the indicator LEDs, the light needs to be guided
from the PCB to the side of the gamepad. This is done using LED
guards, making sure each single LED can be clearly distinguished
at the side of the BUG. The introduction of these guards in the
3D model fixes the position of the LEDs on the printed circuit
board. The coordinates of these LEDs are used in the PCB lay-
out.

Figure E.4: Final button

Button
To finalise the 3D model, the button needs to be added. The
button itself used the feedback generated by the tactile button
on the PCB, with a 3D-printed model on top of it to create a
bigger pushable surface. The design should contain a cutout for
the button and some retention for the button, making sure it does
not fall out. This is done by placing the button on top of the model
and a ledge above it do keep the button in place. See Figure E.4
for the implementation. Also a ledge is added at this stage, to keep
the two halves in front together at all times. In Figure E.5, the
complete model can be seen, including the designed circuit board.

Figure E.5: Exploded view of the complete gamepad.

Appendix F

ESP Code

Below, the code programmed on the BUGs can be found. It can also be found on GitHub:
https://github.com/jornvdl/BUG.

F.1 Main code

F.1.1 Main
1 /*
2 *
3 */
4

5 #define USE_NIMBLE
6 #define debug 1 // Set to 1 to enable serial debug information. Baudrate = 115200
7

8 #include <BleKeyboardGATT.h>
9 #include <Adafruit_NeoPixel.h>

10

11 // Import custom libraries
12 #include ”variables.h”
13 #include ”init.h”
14 #include ”factory.h”
15 #include ”led.h”
16 #include ”battery.h”
17 #include ”btn.h”
18 #include ”shutdown.h”
19 #include ”conf.h”
20

21 // setup() is run once at start up
22 void setup() {
23 initSystem();
24 sleepTimer = millis();
25 }
26

27 // loop() is looped after completion of the setup() function.
28 // in this function, the main loop is implemented.
29 void loop() {
30 if (bleKeyboard.isConnected()) {

https://github.com/jornvdl/BUG

66 ESP Code

31 ledsOn(); // Enable LEDs
32 sleepTimer = millis(); // Reset sleeptimer
33

34 while(bleKeyboard.isConnected()) {
35 // React to a button press
36 if (digitalRead(btnPin)) {
37 sleepTimer = millis();
38 btnPress();
39 }
40

41 // React to a configuration press
42 if (digitalRead(confPin)) {
43 sleepTimer = millis();
44 confPress();
45 }
46

47 // Sleeptimer restart requested, so BLE char updated
48 if (*bleKeyboard.flgRstTimer()) {
49 if (debug) Serial.println(”Sleeptimer reset requested from library”);
50 sleepTimer = millis();
51 ledsOn();
52 batterySend();
53 bleKeyboard.flgRstTimer(false);
54 }
55

56 // Factory reset requested over BLE
57 if (*bleKeyboard.flgRstBUG()) {
58 if (debug) Serial.println(”Reset BUG from BLE flag.”);
59 factory();
60 }
61

62 // Identify BUG
63 if (*bleKeyboard.flgIdentify()) {
64 ledsBlink(true, false);
65 }
66

67 // Shutdown if to long inactivity
68 int timeLived = millis() - sleepTimer;
69 if (timeLived > *bleKeyboard.getTimeout()) {
70 if (debug) Serial.println(”Sleeptimer exceeded!”);
71 shutdown();
72 }
73 }
74 }
75

76 else { // !bleKeyboard.isConnected()
77

78 while(!bleKeyboard.isConnected()) {
79 // Let the LEDs blink
80 ledsBlink(false, true);
81

82 // React to a configuration press
83 if (digitalRead(confPin)) {
84 sleepTimer = millis();

F.1 Main code 67

85 confPress();
86 }
87

88 // Shutdown if to long inactivity
89 int timeLived = millis() - sleepTimer;
90 if (timeLived > *bleKeyboard.getTimeout()) {
91 if (debug) Serial.println(”Sleeptimer exceeded!”);
92 shutdown();
93 }
94 }
95 }
96 }

Header: Battery
1 /*
2 * Function to extract battery percentage out of the ADC pin.
3 */
4

5 #ifndef _BATTERY_H
6 #define _BATTERY_H
7

8 void batterySend() {
9 int batmeasure[20];

10 float total;
11 for(int m = 0; m < 20; m++) {
12 batmeasure[m] = analogRead(batPin);
13 total = total + batmeasure[m];
14 }
15 float avg = total/20;
16 float bV = 0.0021*avg - 0.4452;
17 float battPercent = sqrt((bV/a) + (sq(b)/2*a) - (c/a)) - b/(2*a);
18

19 // Round to integer (rounded down to 5%)
20 int batt5 = battPercent/5;
21 int battFin = batt5*5;
22

23 battFin = min(100, max(0, battFin));
24

25 bleKeyboard.setBatteryLevel(battFin);
26

27 if (debug) Serial.println(”Battery percentage calculated and sent”);
28 }
29

30 #endif // _BATTERY_H

Header: Button
1 /*
2 * Button header
3 * btnPress() is called when main detects a button press. It sends the event
4 * to the library and waits until the button is released. It then sends that
5 * event to the library and ends the function, returning to the main scope.
6 */

68 ESP Code

7

8

9 #ifndef _BTN_H
10 #define _BTN_H
11

12

13 void btnPress() {
14 if (debug) Serial.println(”Game button pressed!”);
15

16 bleKeyboard.press();
17 while(digitalRead(btnPin)) {};
18 bleKeyboard.releaseAll();
19

20 batterySend();
21

22 if (debug) Serial.println(”Game button released!”);
23 }
24

25 #endif // _BTN_H

Header: Configuration key
1 /*
2 * This function will handle the configuration button behaviour. It is send here when pressed,
3 * and acts according to the timing values and release of the button. It has a very simple

debounce and 3 functions:↪

4 * - next key, a short press
5 * - shutdown, a middle press
6 * - revert to factory settings, a long press.
7 * Timings of the press durations are set in variables.h
8 */
9

10 #ifndef _CONF_H
11 #define _CONF_H
12

13 bool modeSelect() {
14 bool* ptrMode = bleKeyboard.cirKeys();
15 if (*ptrMode || *(ptrMode+1) || *(ptrMode+2) || *(ptrMode+3) || *(ptrMode+4)) {
16 if (debug) {
17 Serial.print(”modeSelect = true, since ”);
18

Serial.print(*ptrMode);Serial.print(*(ptrMode+1));Serial.print(*(ptrMode+2));Serial.print(*(ptrMode+3));Serial.println(*(ptrMode+4));↪

19 }
20 return 1;
21 }
22 else {
23 if (debug) Serial.println(”modeSelect = false”);
24 return 0;
25 }
26 }
27

28 void confRelease(int pressTime) {
29 if (debug) Serial.println(”conf:released”);
30 int releaseTime = millis();

F.1 Main code 69

31 int durationTime = releaseTime - pressTime;
32 bool* ptrMode = bleKeyboard.cirKeys();
33

34 if((durationTime < shutdownTime) && modeSelect()) {
35 if (debug) Serial.println(”conf:next key”);
36 confSelect++;
37 if(confSelect > 4) confSelect = 0;
38

39

40 while (!*(ptrMode + confSelect)) {
41 confSelect++;
42 if(confSelect > 4) confSelect = 0;
43 }
44

45 //Write new values to library
46 if (*bleKeyboard.flgWASD()) {
47 bleKeyboard.setKeybind (&keyWASD[confSelect]);
48 }
49 else {
50 bleKeyboard.setKeybind (&keyArrows[confSelect]);
51 }
52 bleKeyboard.setLayout (&keyLayout[confSelect]);
53

54 //Update LEDs if BLE connected, otherwise it is handled by ledBlink()
55 if (bleKeyboard.isConnected()) ledsOn();
56

57 }
58 else if(durationTime > shutdownTime && durationTime < factoryTime) {
59 if (debug) Serial.println(”conf:shutdown”);
60 shutdown();
61 }
62 else if(durationTime > factoryTime) {
63 if (debug) Serial.println(”conf:factory”);
64 factory();
65 }
66

67 }
68

69 void confPress(){
70 if (debug) Serial.println(”conf:pressed”);
71 int confTimer = millis();
72 while(digitalRead(confPin) || (millis()-confTimer) < debounceTime) {
73 if ((millis() - confTimer) > shutdownTime && (millis()- confTimer) < factoryTime) {
74 ledsOff();
75 }
76 else if ((millis() - confTimer) >= factoryTime) {
77 ledsBlink(true, false);
78 }
79 else if (!bleKeyboard.isConnected()) ledsBlink(false, true);
80 }
81 confRelease(confTimer);
82 }
83

84 #endif // _CONF_H

70 ESP Code

Header: Factory Settings
1 /*
2 * Function to reset BUG to the factory settings
3 */
4

5 #ifndef _FACTORY_H
6 #define _FACTORY_H
7 void factory() {
8 if (debug) Serial.println(”factory: writing factory settings to library”);
9 if (factWASD) {

10 bleKeyboard.setKeybind (&keyWASD[factConf]);
11 bleKeyboard.flgWASD(true);
12 }
13 else {
14 bleKeyboard.setKeybind (&keyArrows[factConf]);
15 bleKeyboard.flgWASD(false);
16 }
17 bleKeyboard.setColour (&factColour[0]);
18 bleKeyboard.cirKeys (&factMode[0]);
19 bleKeyboard.setLayout (&keyLayout[0]);
20

21 bleKeyboard.flgRstBUG(false);
22 bleKeyboard.flgIdentify(false);
23

24 confSelect = factConf;
25

26 ledsOn();
27 }
28

29

30 #endif // _FACTORY_H

Header: Initialisation
1 /* Initialization header
2 * All initializations will be done here.
3 */
4

5 #ifndef _INIT_H
6 #define _INIT_H
7

8 #include ”memory.h”
9

10

11 void initSystem() {
12 // Enable debug output over serial
13 if (debug) Serial.begin(115200);
14 if (debug) Serial.println(”Debug serial started.”);
15

16 // Start BLE Keyboard server and LED controller
17 bleKeyboard.begin();
18 leds.begin();
19

F.1 Main code 71

20 // Configure GPIO pins
21 pinMode(btnPin, INPUT);
22 pinMode(confPin, INPUT);
23 pinMode(batPin, INPUT);
24 pinMode(rdyPin, OUTPUT);
25

26 // Get data from memory and set to library
27 memory2lib();
28 if (debug) Serial.println(”Memory read and written to lib.”);
29

30 bleKeyboard.flgIdentify(false);
31

32 digitalWrite(rdyPin, HIGH);
33 }
34

35

36 #endif // _INIT_H

Header: LED Control
1 /*
2 * Here, the indicator LED behaviour is managed. Three options are available:
3 * All leds off, a selection (according to a given layout) on or blinking.
4 * All three options have a seperate function and are accompanied by a function
5 * to convert the layout to a more useable format.
6 */
7

8 #ifndef _LED_H
9 #define _LED_H

10

11 int* layout_hextobin(){
12 static int binTemp[] = {0,0,0,0};
13 int layout_main = *bleKeyboard.getLayout();
14

15 binTemp[3] = (layout_main &1);
16 binTemp[2] = (layout_main>>1 &1);
17 binTemp[1] = (layout_main>>2 &1);
18 binTemp[0] = (layout_main>>3 &1);
19

20 //if (debug) Serial.println(”Layout hextobin”);
21

22 return binTemp;
23 }
24

25

26 void ledsOn() {
27 //Set neopixles according to ledBin top = ledBin[3], left = ledBin[2], down = ledBin[1], right =

ledBin[0]↪

28 //neo pixels: top = 0, left = 1, down = 2, right = 3;
29 bool ledBin[4] = {0,0,0,0};
30

31 ledBin[0] = *layout_hextobin();
32 ledBin[1] = *(layout_hextobin()+1);
33 ledBin[2] = *(layout_hextobin()+2);

72 ESP Code

34 ledBin[3] = *(layout_hextobin()+3);
35

36 int* ptrColour = bleKeyboard.getColour();
37 long ledColour = leds.Color(*ptrColour, *(ptrColour+1), *(ptrColour+2));
38

39 for(int i = 0; i < 4; i++) {
40 if (ledBin[i]) {
41 leds.setPixelColor((3-i), ledColour);
42 }
43 else {
44 leds.setPixelColor((3-i), leds.Color(0,0,0));
45 }
46 leds.show();
47 }
48

49 if (debug) Serial.println(”LEDs On/update”);
50

51 }
52

53

54 void ledsOff() {
55 // Turn off all Neopixels, but only if they are currently on to prevent
56 // unneccesary communications
57 bool currentState = 0;
58 for (int j = 0; j < 4; j++) {
59 currentState = currentState || (leds.getPixelColor(j) > 0);
60 }
61

62 if (currentState) {
63 leds.clear();
64 leds.show();
65 if (debug) Serial.println(”LEDs off”);
66 }
67 }
68

69 void ledsBlink(bool keepColour, bool keepLayout) {
70 // Function to let the leds blink. The function must be called in a loop, since it only updates is

state,↪

71 // is does not handle the blinking it self.
72

73 long ledColour;
74

75 // Determining the color to show during blinking
76 if (keepColour) {
77 int* ptrColour = bleKeyboard.getColour();
78 ledColour = leds.Color(*ptrColour, *(ptrColour+1), *(ptrColour+2));
79 }
80 else { // If not using current colour, then select blinkColour set in variables.
81 ledColour = leds.Color(blinkColour[0], blinkColour[1], blinkColour[2]);
82 }
83

84 // Determine if LEDs should be on or off. This is done using the system time
85 // by using the modulo and the millis().
86 int ledPeriod = millis() % (blinkTime * 2);

F.1 Main code 73

87 bool ledEnabled = ledPeriod > blinkTime;
88

89 // Getting current state, to prevent unnecessary updates to the leds
90 bool currentState = 0;
91 for (int j = 0; j < 4; j++) {
92 currentState = currentState || (leds.getPixelColor(j) > 0);
93 }
94

95 // Debug output
96 if (debug && !currentState && ledEnabled) {
97 Serial.print(”LED Blink: on ”);
98 if (keepColour) Serial.print(”[keepcolour]”);
99 if (keepLayout) {

100 Serial.print(”[keeplayout=”);
101 Serial.print(*bleKeyboard.getLayout());
102 Serial.print(”]”);
103 }
104 Serial.print(”\n”);
105 }
106 if (debug && currentState && !ledEnabled) Serial.println(”LED Blink: off”);
107

108 // Set LEDs to corrent state and update
109 for(int i = 0; i < 4; i++) {
110 if(!currentState && ledEnabled) { // If currently off, but supposed to be on
111 if (*(layout_hextobin()+i) || !keepLayout) { // and specific LED should be on
112 leds.setPixelColor((3-i), ledColour); // set LED colour
113 }
114 else { // otherwise set off (layout specific)
115 leds.setPixelColor((3-i), leds.Color(0,0,0));
116 }
117 }
118 else if (currentState && !ledEnabled) { // If currently on, but supposed to be off
119 leds.setPixelColor((3-i), leds.Color(0,0,0)); // Turn off
120 }
121 }
122 leds.show();
123 }
124

125 #endif // _LED_H

Header: Memory management
1 /*
2 * In this file, saving and retrieving data to the internal EEPROM
3 * memory will be handled. Except for the (global) confSelect, this
4 * is stored/saved to the BleKeyboard lib, handling a lot of the data.
5 */
6

7 #ifndef _MEMORY_H
8 #define _MEMORY_H
9

10 #include <Preferences.h>
11

12 Preferences memory;

74 ESP Code

13

14 void memory2lib() {
15 int memKey;
16 int memColour[3];
17 bool memMode[5];
18 int memLayout;
19 int memSleep;
20

21 memory.begin(”bug_data”,true);
22

23 // Select proper factory settings for first init
24 if (!factWASD) {
25 memKey = memory.getInt(”key”, keyArrows[factConf]);
26 } else {
27 memKey = memory.getInt(”key”, keyWASD[factConf]);
28 }
29

30 memColour[0] = memory.getInt(”cRed”, factColour[0]);
31 memColour[1] = memory.getInt(”cGreen”, factColour[1]);
32 memColour[2] = memory.getInt(”cBlue”, factColour[2]);
33 memMode[0] = memory.getInt(”mode0”, factMode[0]);
34 memMode[1] = memory.getInt(”mode1”, factMode[1]);
35 memMode[2] = memory.getInt(”mode2”, factMode[2]);
36 memMode[3] = memory.getInt(”mode3”, factMode[3]);
37 memMode[4] = memory.getInt(”mode4”, factMode[4]);
38 memLayout = memory.getInt(”layout”, keyLayout[factConf]);
39 memSleep = memory.getInt(”timeout”,factSleep);
40 confSelect = memory.getInt(”conf”, factConf);
41 memory.end();
42

43 bleKeyboard.setKeybind (&memKey);
44 bleKeyboard.setColour (&memColour[0]);
45 bleKeyboard.cirKeys (&memMode[0]);
46 bleKeyboard.setLayout (&memLayout);
47 bleKeyboard.setTimeout (&memSleep);
48 bleKeyboard.flgWASD (factWASD);
49 bleKeyboard.flgRstTimer(false);
50 bleKeyboard.flgIdentify(false);
51 bleKeyboard.flgRstBUG (false);
52 }
53

54 void lib2memory() {
55 int* memColour = bleKeyboard.getColour();
56 bool* memMode = bleKeyboard.cirKeys();
57

58 memory.begin(”bug_data”, false);
59 memory.putInt(”key”, *bleKeyboard.getKeybind());
60 memory.putInt(”cRed”, *(memColour));
61 memory.putInt(”cGreen”, *(memColour+1));
62 memory.putInt(”cBlue”, *(memColour+2));
63 memory.putInt(”mode0”, *(memMode));
64 memory.putInt(”mode1”, *(memMode+1));
65 memory.putInt(”mode2”, *(memMode+2));
66 memory.putInt(”mode3”, *(memMode+3));

F.1 Main code 75

67 memory.putInt(”mode4”, *(memMode+4));
68 memory.putInt(”layout”, *bleKeyboard.getLayout());
69 memory.putInt(”timeout”,*bleKeyboard.getTimeout());
70 memory.putInt(”conf”, confSelect);
71 }
72

73 #endif // _MEMORY_H

Header: Shutdown protocol
1 /*
2 * Function to handle shutdown protocol for a correct shutdown.
3 */
4

5 #ifndef _SHUTDOWN_H
6 #define _SHUTDOWN_H
7 #include ”memory.h”
8

9 void shutdown() {
10 if (debug) Serial.println(”Shutting down! Turning LEDs off and writing memory...”);
11 ledsOff(); //Turn Leds off
12 lib2memory(); //Memory storage
13 delay(50);
14 digitalWrite(rdyPin,LOW); //Set the readyPin low
15 esp_deep_sleep_start(); //Set the ESP to deep sleep
16 }
17

18 #endif // _SHUTDOWN_H

Header: Variables
1 /*
2 * Overview of all definitions, global variables. Small configurations can be set here, such
3 * as default factory settings, pin declarations and timing values
4 */
5

6 #ifndef _VARIABLES_H
7 #define _VARIABLES_H
8

9 /////////////////////////// Definitions and values ///////////////////////////
10 // Device Info
11 #define deviceName ”Leopard Moth”
12 #define manufacturer ”Bluetooth Ultrasimple Gamepad”
13

14 // Pin declarations
15 #define btnPin 19
16 #define confPin 2
17 #define ledPin 1
18 #define rdyPin 4
19 #define batPin 0
20

21 // Led configuration variables
22 #define numLeds 4
23 #define blinkTime 600

76 ESP Code

24 int blinkColour[3] = {0x0, 0x0, 0xFF};
25

26 // Configuration button variables
27 #define debounceTime 250 // in millis
28 #define shutdownTime 3000 // in millis
29 #define factoryTime 7000 // in millis
30

31 // Factory settings variables
32 int factSleep = 360; // in seconds
33 int factColour[3] = {0x22, 0xA0, 0xFF}; // R,G,B values
34 bool factMode[5] = {1,1,1,1,0}; // 0 disabled, 1 enabled (order: ↑←↓→␣)
35 int factConf = 0; // Start value of confSelect. Range [0,4]
36 bool factWASD = false; // Use WASD instead of arrows
37

38 // Keybind arrays and corresponding layout
39 #define keyRight 215
40 #define keyLeft 216
41 #define keyDown 217
42 #define keyUp 218
43 #define keyW 119
44 #define keyA 97
45 #define keyS 115
46 #define keyD 100
47 #define keySpace 32
48

49 int keyArrows[5] = {keyUp, keyLeft, keyDown, keyRight, keySpace};
50 int keyWASD[5] = {keyW, keyA, keyS, keyD, keySpace};
51 int keyLayout[5] = {0x01, 0x02, 0x04, 0x08, 0x0E};
52

53 // Battery percentage variables equation in battery.h
54 float a = 0.00005;
55 float b = 0.002;
56 float c = 3.1787;
57

58 ////////////////////////////// Global variables //////////////////////////////
59 // Classes from libraries
60 BleKeyboard bleKeyboard(deviceName, manufacturer);
61 Adafruit_NeoPixel leds(numLeds, ledPin, NEO_GRB + NEO_KHZ800);
62

63 // Mode select
64 int confSelect;
65

66 // Timers
67 volatile long sleepTimer;
68

69 #endif // _VARIABLES_H

F.2 Customised library

Since an existing library is used (see the Github cited in [7]), only the changes and additions are
shown here.

F.2 Customised library 77

Main
1 // Updated BLEKeyboard library base to 0.3.1 (1 oct 2021)
2 // Updated Custom part on 24 nov 2021
3 // ESP32-BLE-Keyboard used as base library, written by T-vK
4 // https://github.com/T-vK/ESP32-BLE-Keyboard
5 //
6 // Added custom GATT profiles and editted library to use with BUG: Bluetooth Ultrasimple

Gamepad↪

7 // Editten by Jorn van der Linden

…

36 /// Flags and values for communication over custom BLE characteristic
37 // KEYBIND CHARACTERISTIC
38 int keystroke; // integer value corresponding to keybind
39

40 // INDICATOR CHARACTERISTIC
41 int colour[3]; // RGB colour value of the LEDs: each int in range 0x00~0xFF
42 int layout; // integer representing layout of indicator leds
43

44 // TIMEOUT CHARACTERISTIC
45 int timeout; // store integer value of timeout before sleep in seconds
46 bool rstTimer; // general flag to reset timer when ANY characteristic is updated
47

48 // INFO CHARACTERISTIC
49 bool rstBUG; // flag: reset to factory settings
50 bool identify; // flag: flash indicators to identify BUG
51 bool wasd; // flag: when circulating, use WASD keybinds instead of arrows
52 bool keys[5]; // flag-array: select which keys to circulate. When all are zero, a custom

key should be set.↪

53

54

55 // When new key is received, update global variable and acknowledge.
56 class keyCallbacks: public BLECharacteristicCallbacks {
57 void onWrite(BLECharacteristic *keyCharacteristic) {
58 uint8_t *data = keyCharacteristic->getData();
59

60 if (*data>0 && *data<256) {
61 keystroke = *data;
62 rstTimer = true;
63 keyCharacteristic->setValue(keystroke);
64 //keyCharacteristic->notify(true); // Something like this to notify, test later.
65 }
66 }
67 };
68 // When new layout is received, update global variable and acknowledge.
69 class indicatorCallbacks: public BLECharacteristicCallbacks {
70 void onWrite(BLECharacteristic *indicatorCharacteristic) {
71 uint8_t *data = indicatorCharacteristic->getData();
72 colour[0] = *data;
73 colour[1] = *(data+1);
74 colour[2] = *(data+2);
75 layout = *(data+3);
76

78 ESP Code

77 int returnValue = (layout << 24) + (colour[2] << 16) + (colour[1] << 8) + colour[0];
78 indicatorCharacteristic->setValue(returnValue);
79

80 rstTimer = true;
81 }
82 };
83 // When new timeout is received, update global variable and acknowledge.
84 class timeoutCallbacks: public BLECharacteristicCallbacks {
85 void onWrite(BLECharacteristic *timeoutCharacteristic) {
86 uint8_t *data = timeoutCharacteristic->getData();
87 if (*(data+1)>0 || *data > 0) {
88 timeout = *data * 256 + *(data+1);
89 timeoutCharacteristic->setValue(timeout);
90 rstTimer = true;
91 }
92 }
93 };
94 // When state is received, check is reset (then do this) or call. Reply with (resetted) states.
95 class stateCallbacks: public BLECharacteristicCallbacks {
96 void onWrite(BLECharacteristic *stateCharacteristic) {
97 uint8_t *data = stateCharacteristic->getData();
98

99 if ((*data & 0x80) == 0x80) { // Reset the BUG
100 rstBUG = true;
101 }
102

103 identify = (*data & 0x40) == 0x40;
104 wasd = (*data & 0x20) == 0x20;
105 keys[4] = (*data & 0x10) == 0x10;
106 keys[0] = (*data & 0x08) == 0x08;
107 keys[1] = (*data & 0x04) == 0x04;
108 keys[2] = (*data & 0x02) == 0x02;
109 keys[3] = (*data & 0x01) == 0x01;
110

111 rstTimer = true;
112

113 int written = rstBUG * 128 + identify * 64 + wasd * 32 + keys[4] * 16 + keys[0] * 8 +
keys[1] * 4 + keys[2] * 2 + keys[1];↪

114 stateCharacteristic->setValue(written);
115 }
116 };

…

201 // Newly added code below
202 // Used UUID's (https://www.uuidgenerator.net/)
203 #define ServiceUUID ”0ba682ae-4f1f-4e9b-be2a-809c224540fd”
204 #define KeyUUID ”3e7f5770-d6b7-4709-9b4b-951c63f97aaa”
205 #define IndicUUID ”6f1f3ce2-cb88-4c5a-9ba1-6e19369b8bbb”
206 #define TimeoutUUID ”6de0e9a1-7f07-4e64-81b0-a8ca334bcccc”
207 #define StateUUID ”99503c7d-6924-413c-bb7d-db7e913fbddd”

…

274 void BleKeyboard::begin(void)
275 {

F.2 Customised library 79

276 BLEDevice::init(deviceName);
277 BLEServer *pServer = BLEDevice::createServer();
278

279 BLEService *pService = pServer->createService(ServiceUUID); // Create a new service for the
GATT service↪

280

281 // Creating multiple characteristics on the GATT service.
282 keyCharacteristic = pService->createCharacteristic(
283 KeyUUID,
284 BLECharacteristic::PROPERTY_WRITE |
285 BLECharacteristic::PROPERTY_READ |
286 BLECharacteristic::PROPERTY_NOTIFY
287);
288 indicatorCharacteristic = pService->createCharacteristic(
289 IndicUUID,
290 BLECharacteristic::PROPERTY_WRITE |
291 BLECharacteristic::PROPERTY_READ |
292 BLECharacteristic::PROPERTY_NOTIFY
293);
294 timeoutCharacteristic = pService->createCharacteristic(
295 TimeoutUUID,
296 BLECharacteristic::PROPERTY_WRITE |
297 BLECharacteristic::PROPERTY_READ |
298 BLECharacteristic::PROPERTY_NOTIFY
299);
300 stateCharacteristic = pService->createCharacteristic(
301 StateUUID,
302 BLECharacteristic::PROPERTY_WRITE |
303 BLECharacteristic::PROPERTY_READ |
304 BLECharacteristic::PROPERTY_NOTIFY
305);
306

307 pService->start();
308

309 // Create callbacks when a new item is received
310 keyCharacteristic->setCallbacks(new keyCallbacks());
311 indicatorCharacteristic->setCallbacks(new indicatorCallbacks());
312 timeoutCharacteristic->setCallbacks(new timeoutCallbacks());
313 stateCharacteristic->setCallbacks(new stateCallbacks());
314 }

…

553 size_t BleKeyboard::press()
554 {
555 uint8_t k = keystroke;
556 uint8_t i;
557 // Check if it is possible to hardcode the use of 'keystroke' var
558 if (k >= 136) { // it's a non-printing key (not a modifier)
559 k = k - 136;
560 } else if (k >= 128) { // it's a modifier key
561 _keyReport.modifiers |= (1<<(k-128));
562 k = 0;
563 } else { // it's a printing key
564 k = pgm_read_byte(_asciimap + k);

80 ESP Code

565 if (!k) {
566 setWriteError();
567 return 0;
568 }
569 if (k & 0x80) { // it's a capital letter or other character reached with shift
570 _keyReport.modifiers |= 0x02; // the left shift modifier
571 k &= 0x7F;
572 }
573 }
574

575 // Add k to the key report only if it's not already present
576 // and if there is an empty slot.
577 if (_keyReport.keys[0] != k && _keyReport.keys[1] != k &&
578 _keyReport.keys[2] != k && _keyReport.keys[3] != k &&
579 _keyReport.keys[4] != k && _keyReport.keys[5] != k) {
580

581 for (i=0; i<6; i++) {
582 if (_keyReport.keys[i] == 0x00) {
583 _keyReport.keys[i] = k;
584 break;
585 }
586 }
587 if (i == 6) {
588 setWriteError();
589 return 0;
590 }
591 }
592 sendReport(&_keyReport);
593 return 1;
594 }

…

744 int* BleKeyboard::getKeybind() { // not needed when using hardcoded keys in lib
745 return &keystroke;
746 }
747

748 int* BleKeyboard::getTimeout() {
749 return &timeout;
750 }
751

752 int* BleKeyboard::getColour() {
753 return &colour[0];
754 }
755

756 int* BleKeyboard::getLayout() {
757 return &layout;
758 }
759

760 void BleKeyboard::setKeybind(int* k) {
761 keystroke = *k;
762 keyCharacteristic->setValue(keystroke);
763 }
764

765 void BleKeyboard::setTimeout(int* t) {

F.2 Customised library 81

766 timeout = *t;
767 timeoutCharacteristic->setValue(timeout);
768 }
769

770 void BleKeyboard::setColour(int* c) {
771 for (int i = 0; i < 3; i++) {
772 colour[i] = *(c+i);
773 }
774 int returnValue = (layout << 24) + (colour[2] << 16) + (colour[1] << 8) + colour[0];
775 indicatorCharacteristic->setValue(returnValue);
776 }
777

778 void BleKeyboard::setLayout(int* l) {
779 layout = *l;
780 int returnValue = (layout << 24) + (colour[2] << 16) + (colour[1] << 8) + colour[0];
781 indicatorCharacteristic->setValue(returnValue);
782 }
783

784 // Share and reset timer flag
785 bool* BleKeyboard::flgRstTimer() {
786 return &rstTimer;
787 }
788

789 void BleKeyboard::flgRstTimer(bool flg) {
790 rstTimer = flg;
791 }
792

793 // Share and reset factory flag
794 bool* BleKeyboard::flgRstBUG() {
795 return &rstBUG;
796 }
797

798 void BleKeyboard::flgRstBUG(bool flg) {
799 rstBUG = flg;
800

801 int written = rstBUG * 128 + identify * 64 + wasd * 32 + keys[4] * 16 + keys[0] * 8 +
keys[1] * 4 + keys[2] * 2 + keys[1];↪

802 stateCharacteristic->setValue(written);
803 }
804

805 // Share mode flags
806 bool* BleKeyboard::flgIdentify() {
807 return &identify;
808 }
809

810 void BleKeyboard::flgIdentify(bool flg) {
811 identify = flg;
812

813 int written = rstBUG * 128 + identify * 64 + wasd * 32 + keys[4] * 16 + keys[0] * 8 +
keys[1] * 4 + keys[2] * 2 + keys[1];↪

814 stateCharacteristic->setValue(written);
815 }
816

817 bool* BleKeyboard::flgWASD() {

82 ESP Code

818 return &wasd;
819 }
820

821 void BleKeyboard::flgWASD(bool flg) {
822 wasd = flg;
823

824 int written = rstBUG * 128 + identify * 64 + wasd * 32 + keys[4] * 16 + keys[0] * 8 +
keys[1] * 4 + keys[2] * 2 + keys[1];↪

825 stateCharacteristic->setValue(written);
826 }
827

828 bool* BleKeyboard::cirKeys() {
829 return &keys[0];
830 }
831

832 void BleKeyboard::cirKeys(bool* k) {
833 for (int i = 0; i < 5; i++) {
834 keys[i] = *(k+i);
835 }
836

837 int written = rstBUG * 128 + identify * 64 + wasd * 32 + keys[4] * 16 + keys[0] * 8 +
keys[1] * 4 + keys[2] * 2 + keys[1];↪

838 stateCharacteristic->setValue(written);
839 }

Header
106 class BleKeyboard : public Print, public BLEServerCallbacks, public BLECharacteristicCallbacks
107 {
108 private:
109 BLEHIDDevice* hid;
110 BLECharacteristic* inputKeyboard;
111 BLECharacteristic* outputKeyboard;
112 BLECharacteristic* inputMediaKeys;
113 BLECharacteristic* keyCharacteristic;
114 BLECharacteristic* indicatorCharacteristic;
115 BLECharacteristic* timeoutCharacteristic;
116 BLECharacteristic* stateCharacteristic;

…

132 public:

…

154 int* getKeybind();
155 int* getTimeout();
156 int* getColour();
157 int* getLayout();
158 void setKeybind(int* k);
159 void setTimeout(int* t);
160 void setColour(int* c);
161 void setLayout(int* l);
162 bool* flgRstTimer();
163 void flgRstTimer(bool flg);
164 bool* flgRstBUG();

F.2 Customised library 83

165 void flgRstBUG(bool flg);
166 bool* flgIdentify();
167 void flgIdentify(bool flg);
168 bool* flgWASD();
169 void flgWASD(bool flg);
170 bool* cirKeys();
171 void cirKeys(bool* k);

Appendix G

PC Software code

Below, the code can be found for the PC Software. It can be split into two parts: the backend
written in C++, and the frontend / GUI design written with QML. The program was designed
and compiled using Qt (version 5.15.2 with the WinGW compiler). The code isn’t clean, since it
is just used as a proof of concept for the BUG configuration over BLE. Since the main program
is practically the same as the example provided by Qt, only the files changed are included in the
Appendix. All other files can be found in the Github of this project: https://github.com/jornvdl/
BUG.

G.1 Backend
These files (Devicehandler.cpp and its header) are responsible for providing and processing the
data to the GUI.

Devicehandler.cpp
1 /***
2 **
3 ** Copyright (C) 2017 The Qt Company Ltd.
4 ** Contact: https://www.qt.io/licensing/
5 **
6 ** This file is part of the examples of the QtBluetooth module of the Qt Toolkit.
7 **
8 ** $QT_BEGIN_LICENSE:BSD$
9 ** Commercial License Usage

10 ** Licensees holding valid commercial Qt licenses may use this file in
11 ** accordance with the commercial license agreement provided with the
12 ** Software or, alternatively, in accordance with the terms contained in
13 ** a written agreement between you and The Qt Company. For licensing terms
14 ** and conditions see https://www.qt.io/terms-conditions. For further
15 ** information use the contact form at https://www.qt.io/contact-us.
16 **
17 ** BSD License Usage
18 ** Alternatively, you may use this file under the terms of the BSD license
19 ** as follows:
20 **
21 ** ”Redistribution and use in source and binary forms, with or without
22 ** modification, are permitted provided that the following conditions are

https://github.com/jornvdl/BUG
https://github.com/jornvdl/BUG

86 PC Software code

23 ** met:
24 ** * Redistributions of source code must retain the above copyright
25 ** notice, this list of conditions and the following disclaimer.
26 ** * Redistributions in binary form must reproduce the above copyright
27 ** notice, this list of conditions and the following disclaimer in
28 ** the documentation and/or other materials provided with the
29 ** distribution.
30 ** * Neither the name of The Qt Company Ltd nor the names of its
31 ** contributors may be used to endorse or promote products derived
32 ** from this software without specific prior written permission.
33 **
34 **
35 ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS↪

36 ** ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR↪

38 ** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT↪

39 ** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL,↪

40 ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE,↪

42 ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY↪

43 ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE↪

45 ** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
46 **
47 ** $QT_END_LICENSE$
48 **
49 **/
50

51 #include ”devicehandler.h”
52 #include ”deviceinfo.h”
53 #include <QtEndian>
54 #include <QRandomGenerator>
55 #include <QTextStream>
56 #include <QKeyEvent>
57 #include <QList>
58

59

60 QString gattUUID = ”0ba682ae-4f1f-4e9b-be2a-809c224540fd”;
61 QString bindUUID = ”3e7f5770-d6b7-4709-9b4b-951c63f97aaa”;
62 QString indcUUID = ”6f1f3Ce2-cb88-4c5a-9ba1-6e19369b8bbb”;
63 QString timeUUID = ”6de0e9a1-7f07-4e64-81b0-a8ca334bcccc”;
64 QString settUUID = ”99503c7d-6924-413c-bb7d-db7e913fbddd”;
65

66 QLowEnergyCharacteristic bindChar;
67 QLowEnergyCharacteristic layoutChar;
68 QLowEnergyCharacteristic timeoutChar;
69 QLowEnergyCharacteristic infoChar;

G.1 Backend 87

70

71 QTextStream out(stdout);
72

73 int __timeout;
74 bool __layout[4];
75 int __mode;
76 int __colour;
77

78 bool flgID;
79

80 bool BLEUpdated = true;
81

82 void DeviceHandler::fetchBLEData() const
83 {
84 // layout
85 QString tempresult;
86 QByteArray a = layoutChar.value();
87 int result;
88 if (a.isEmpty()) {
89 out << ”None” << Qt::endl;
90 __layout[0] = 0;
91 __layout[1] = 0;
92 __layout[2] = 0;
93 __layout[3] = 0;
94 }
95

96 bool valid;
97 QString templayout;
98 tempresult += a.toHex();
99 out << ”Tempresult layout: ” << tempresult << Qt::endl;

100 templayout = tempresult.right(1);
101 result = templayout.toInt(&valid,16);
102 out << ” layout:” << result << Qt::endl;
103 __layout[0] = (result & 0b0001) == 0b0001;
104 __layout[1] = (result & 0b0010) == 0b0010;
105 __layout[2] = (result & 0b0100) == 0b0100;
106 __layout[3] = (result & 0b1000) == 0b1000;
107

108 // colour
109 QString tempcolour;
110 tempcolour = tempresult.right(8);
111 tempcolour = tempcolour.left(6);
112 __colour = tempcolour.toInt(&valid, 16);
113

114 a.clear();
115 a += timeoutChar.value();
116 if (a.isEmpty()) {
117 out << ”None” << Qt::endl;
118 __timeout = 0 ;
119 }
120

121 tempresult.clear();
122 tempresult += a.toHex();
123 tempresult = tempresult.left(4);

88 PC Software code

124 out << ”Tempresult timeout: ” << tempresult << Qt::endl;
125 __timeout = tempresult.toInt(&valid,16);
126

127 out << ” timeout: ” << __timeout << Qt::endl;
128

129 // Add mode read-out
130 a.clear();
131 a += infoChar.value();
132 if (a.isEmpty()) {
133 out << ”None” << Qt::endl;
134 __mode = 0 ;
135 }
136

137 tempresult.clear();
138 tempresult += a.toHex();
139 tempresult = tempresult.left(2);
140 out << ”Tempresult mode: ” << tempresult << Qt::endl;
141 __mode = tempresult.toInt(&valid,16);
142

143 }
144

145 QString DeviceHandler::getKeybind() const
146 {
147 QByteArray a = bindChar.value();
148 int result;
149 QString tempresult;
150 if (a.isEmpty()) {
151 out << ”None” << Qt::endl;
152 return ”None”;
153 }
154

155 tempresult = a;
156 bool valid;
157 tempresult += a.toHex();
158 tempresult.remove(0,1);
159 tempresult.remove(2,6);
160 result = tempresult.toInt(&valid,16);
161

162 // Lookup table to convert some values to icons (space, arrows, etc)
163 QString strResult;
164 switch (result) {
165 case 32:
166 strResult = ”Space”;
167 break;
168 case 80:
169 strResult = ”l Ctrl”;
170 break;
171 case 81:
172 strResult = ”l Shift”;
173 break;
174 case 82:
175 strResult = ”l Alt”;
176 break;
177 case 84:

G.1 Backend 89

178 strResult = ”r Ctrl”;
179 break;
180 case 85:
181 strResult = ”r Shift”;
182 break;
183 case 86:
184 strResult = ”r Alt”;
185 break;
186 case 215:
187 strResult = ”→”;
188 break;
189 case 216:
190 strResult = ”←”;
191 break;
192 case 217:
193 strResult = ”↓”;
194 break;
195 case 218:
196 strResult = ”↑”;
197 break;
198 case 177:
199 strResult = ”Escape”;
200 break;
201 case 178:
202 strResult = ”Bckspc”;
203 break;
204 case 0xB3:
205 strResult = ”Tab”;
206 break;
207 case 0xD1:
208 strResult = ”Insert”;
209 break;
210 case 0xD2:
211 strResult = ”Tab”;
212 break;
213 case 0xD3:
214 strResult = ”PgUp”;
215 break;
216 case 0xD4:
217 strResult = ”Delete”;
218 break;
219 case 0xD5:
220 strResult = ”End”;
221 break;
222 case 0xD6:
223 strResult = ”PgDown”;
224 break;
225 default:
226 char tmpchar = result;
227 strResult = tmpchar;
228 break;
229 }
230

231 out << ”Keybind: int=” << result << ” char=” << strResult << Qt::endl;

90 PC Software code

232

233 return strResult;
234 }
235

236 int DeviceHandler::getColour() const
237 {
238 // if value updated in BLE, fetch it.
239 if (BLEUpdated) {
240 fetchBLEData();
241 BLEUpdated=false;
242 }
243

244 out << ”Colour = ” << __colour << Qt::endl;
245

246 return __colour;
247 }
248

249 bool DeviceHandler::getLayout0() const
250 {
251 // if value updated in BLE, fetch it.
252 if (BLEUpdated) {
253 fetchBLEData();
254 BLEUpdated=false;
255 }
256

257 out << ”Layout[0] = ” << __layout[0] << Qt::endl;
258

259 return __layout[0];
260 }
261

262 bool DeviceHandler::getLayout1() const
263 {
264 // if value updated in BLE, fetch it.
265 if (BLEUpdated) {
266 fetchBLEData();
267 BLEUpdated=false;
268 }
269

270 out << ”Layout[1] = ” << __layout[1] << Qt::endl;
271

272 return __layout[1];
273 }
274

275 bool DeviceHandler::getLayout2() const
276 {
277 // if value updated in BLE, fetch it.
278 if (BLEUpdated) {
279 fetchBLEData();
280 BLEUpdated=false;
281 }
282

283 out << ”Layout[2] = ” << __layout[2] << Qt::endl;
284

285 return __layout[2];

G.1 Backend 91

286 }
287

288 bool DeviceHandler::getLayout3() const
289 {
290 // if value updated in BLE, fetch it.
291 if (BLEUpdated) {
292 fetchBLEData();
293 BLEUpdated=false;
294 }
295

296 out << ”Layout[3] = ” << __layout[3] << Qt::endl;
297

298 return __layout[3];
299 }
300

301 int DeviceHandler::getTimeout() const
302 {
303 if (BLEUpdated) {
304 fetchBLEData();
305 BLEUpdated=false;
306 }
307

308 out << ”Timeout = ” << __timeout << Qt::endl;
309 return __timeout;
310 }
311

312 int DeviceHandler::getMode() const
313 {
314 if (BLEUpdated) {
315 fetchBLEData();
316 BLEUpdated=false;
317 }
318

319 out << ”Mode = ” << __mode << Qt::endl;
320 return __mode;
321 }
322

323 QString DeviceHandler::getTextMode() const
324 {
325 if (BLEUpdated) {
326 fetchBLEData();
327 BLEUpdated=false;
328 }
329

330 QString output;
331

332 switch (__mode) {
333 case 0:
334 output = ”↑←↓→”;
335 break;
336 case 1:
337 output = ”↑←↓→␣”;
338 break;
339 case 2:

92 PC Software code

340 output = ”WASD”;
341 break;
342 case 3:
343 output = ”WASD␣”;
344 break;
345 case 4:
346 output = ”Presenter”;
347 break;
348 case 5:
349 output = ”Custom key”;
350 break;
351 case 6:
352 output = ”Identify”;
353 break;
354 default:
355 output = ”other”;
356 break;
357 }
358

359 return output;
360 }
361

362 bool DeviceHandler::getIDflg() const
363 {
364 return flgID;
365 }
366

367 void DeviceHandler::updateLayout(int i)
368 {
369 __layout[i] = !__layout[i];
370

371 emit dataChanged();
372 out << ”layout” << i << ” set to ” << __layout[i] << Qt::endl;
373

374 sendLayout();
375 }
376

377 void DeviceHandler::updateColour(QString from_gui)
378 {
379 out << ”from_gui: ” << from_gui << Qt::endl;
380 __colour = from_gui.toInt(NULL, 16);
381

382 sendLayout();
383

384 emit dataChanged();
385 }
386

387 void DeviceHandler::updateMode(int k)
388 {
389 char mout[1];
390

391 if (k < 6) __mode= k;
392

393

G.1 Backend 93

394 switch (__mode) {
395 case 0: // Arrows
396 out << ”mode: arrows” << Qt::endl;
397 mout[0] = 0x0F;
398 break;
399 case 1: // Arrows with space
400 out << ”mode: arrows w/ space” << Qt::endl;
401 mout[0] = 0x1F;
402 break;
403 case 2: // WASD
404 out << ”mode: WASD” << Qt::endl;
405 mout[0] = 0x2F;
406 break;
407 case 3: // WASD with space
408 out << ”mode: WASD w/ space” << Qt::endl;
409 mout[0] = 0x3F;
410 break;
411 case 4: // Arrow left and right (presenter)
412 out << ”mode: presenter” << Qt::endl;
413 mout[0] = 0x05;
414 break;
415 case 7: // Indicate, use current settings
416 // stuff
417 mout[0] = __mode;
418 break;
419 default: // All other options (eg custom key): no flags
420 out << ”mode: custom” << Qt::endl;
421 mout[0] = 0x00;
422 }
423

424 if (k == 7) { // If indicate, flip flag and update value
425 out << ”mode: identify” << Qt::endl;
426 flgID = !flgID;
427 mout[0] =+ flgID * 0x40;
428 out << ”Identify BUG! ID=” << flgID << Qt::endl;
429 }
430 else if (k == 6) {
431 mout[0] = 0x80;
432 out << ”Reset BUG! to factory settings” << Qt::endl;
433 }
434

435

436

437 QByteArray output = QByteArray::fromRawData(mout,1);
438 m_service->writeCharacteristic(infoChar, output, QLowEnergyService::WriteWithResponse);
439

440 setInfo(”Use mode updated.”);
441 emit dataChanged();
442

443 }
444

445

446 DeviceHandler::DeviceHandler(QObject *parent) :
447 BluetoothBaseClass(parent)

94 PC Software code

448 {
449

450 }
451

452 void DeviceHandler::setAddressType(AddressType type)
453 {
454 switch (type) {
455 case DeviceHandler::AddressType::PublicAddress:
456 m_addressType = QLowEnergyController::PublicAddress;
457 break;
458 case DeviceHandler::AddressType::RandomAddress:
459 m_addressType = QLowEnergyController::RandomAddress;
460 break;
461 }
462 }
463

464 DeviceHandler::AddressType DeviceHandler::addressType() const
465 {
466 if (m_addressType == QLowEnergyController::RandomAddress)
467 return DeviceHandler::AddressType::RandomAddress;
468

469 return DeviceHandler::AddressType::PublicAddress;
470 }
471

472 void DeviceHandler::setDevice(DeviceInfo *device)
473 {
474 clearMessages();
475 m_currentDevice = device;
476

477

478

479 // Disconnect and delete old connection
480 if (m_control) {
481 m_control->disconnectFromDevice();
482 delete m_control;
483 m_control = nullptr;
484 }
485

486 // Create new controller and connect it if device available
487 if (m_currentDevice) {
488

489 // Make connections
490 //! [Connect-Signals-1]
491 m_control = QLowEnergyController::createCentral(m_currentDevice->getDevice(), this);
492 //! [Connect-Signals-1]
493 m_control->setRemoteAddressType(m_addressType);
494 //! [Connect-Signals-2]
495 connect(m_control, &QLowEnergyController::serviceDiscovered,
496 this, &DeviceHandler::serviceDiscovered);
497 connect(m_control, &QLowEnergyController::discoveryFinished,
498 this, &DeviceHandler::serviceScanDone);
499

500 connect(m_control, static_cast<void (QLowEnergyControl-
ler::*)(QLowEnergyController::Error)>(&QLowEnergyController::error),↪

G.1 Backend 95

501 this, [this](QLowEnergyController::Error error) {
502 Q_UNUSED(error);
503 setError(”Cannot connect to remote device.”);
504 });
505 connect(m_control, &QLowEnergyController::connected, this, [this]() {
506 setInfo(”Controller connected. Search services...”);
507 m_control->discoverServices();
508 });
509 connect(m_control, &QLowEnergyController::disconnected, this, [this]() {
510 setError(”LowEnergy controller disconnected”);
511 });
512

513 // Connect
514 m_control->connectToDevice();
515 //! [Connect-Signals-2]
516 }
517 }
518

519 void DeviceHandler::sendKeybind(QString value)
520 {
521 out << ” Send keybind: ” << value << Qt::endl;
522 int output = 0x00;
523 if (value == ”Enter”) output = 0xE0;
524 else if (value == ”←”) output = 0xD8;
525 else if (value == ”↑”) output = 0xDA;
526 else if (value == ”→”) output = 0xD7;
527 else if (value == ”↓”) output = 0xD9;
528 else if (value == ”Ctrl”) output = 0x84;
529 else if (value == ”Alt”) output = 0x86;
530 else if (value == ”Shift”) output = 0x81;
531 else if (value == ”Escape”) output = 0xB1;
532 else if (value == ”Space”) output = 0x20;
533 else { //convert to char and then to int
534 QChar tc = value.at(0);
535 tc = tc.toLower();
536 out << ” Converted character: ” << tc << Qt::endl;
537 output = tc.toLatin1();
538 }
539

540 out << ” Converted integer: ” << output << Qt::endl;
541

542 char chartmp[1];
543 chartmp[0] = output;
544 QByteArray number = QByteArray::fromRawData(chartmp,1);
545 m_service->writeCharacteristic(bindChar, number,

QLowEnergyService::WriteWithResponse);↪

546

547 out << ”Written keybind (sent: ” << output << ”)” << Qt::endl;
548 setInfo(”Key bind updated.”);
549 emit dataChanged();
550 }
551

552 void DeviceHandler::sendTimeout(QString value)
553 {

96 PC Software code

554 // Convert value to int
555 int toSend = value.toInt(NULL, 10);
556 out << ”Timer to send: ” << toSend << Qt::endl;
557

558 char charSend[2];
559 charSend[0] = (toSend >> 8);
560 out << ”charSend[0] = ” << int(charSend[0]) << Qt::endl;
561 charSend[1] = (toSend);
562 out << ”charSend[1] = ” << int(charSend[1]) << Qt::endl;
563

564 QByteArray number;
565 number = QByteArray::fromRawData(charSend,2);
566 m_service->writeCharacteristic(timeoutChar, number,

QLowEnergyService::WriteWithResponse);↪

567

568 out << ”Raw timeout send: ” << number.toHex() << Qt::endl;
569 setInfo(”Timeout value updated.”);
570

571 __timeout = toSend;
572

573 emit dataChanged();
574 }
575

576 void DeviceHandler::sendLayout()
577 {
578 // fetch colour
579 //int tmpcol;
580 //tmpcol = 0xff0000; // temporary
581

582 // fetch layout
583 int tmplay = 0x00;
584 tmplay = 8*__layout[3] + 4*__layout[2] + 2*__layout[1] + __layout[0];
585

586 //uint tmp = (tmpcol << 8) + tmplay;
587 QByteArray number;
588 //number.setNum(tmp,16);
589

590 // Split colour into R,G,B value
591

592 char chartmp[4];
593 chartmp[0] = (__colour & 0xff0000) >> 16;
594 chartmp[1] = (__colour & 0x00ff00) >> 8;
595 chartmp[2] = (__colour & 0x0000ff);
596 chartmp[3] = tmplay;
597

598 number = QByteArray::fromRawData(chartmp,4);
599

600 //number.append(tmpcol);
601 //number.fromRawData(tmp,2);
602 m_service->writeCharacteristic(layoutChar, number,

QLowEnergyService::WriteWithResponse);↪

603 out << ”Written layout (sent: ” << number << ”)” << Qt::endl;
604 out << ” layout tmp (set: ” << tmplay << ”)” << Qt::endl;
605 setInfo(”Layout & colour updated.”);

G.1 Backend 97

606 emit dataChanged();
607 }
608

609 //! [Filter HeartRate service 1]
610 void DeviceHandler::serviceDiscovered(const QBluetoothUuid &gatt)
611 {
612 //if (gatt == QBluetoothUuid(QBluetoothUuid::HeartRate)) {
613 if (gatt == QBluetoothUuid(gattUUID)) {
614 setInfo(”Key bind service discovered. Waiting for service scan to be done...”);
615 m_foundGATTService = true;
616 printf(”UUID found! gatt == QBluetoothUuid(gattUUID)\n”);
617 }
618 }
619 //! [Filter HeartRate service 1]
620

621 void DeviceHandler::serviceScanDone()
622 {
623 setInfo(”Service scan done.”);
624

625 // Delete old service if available
626 if (m_service) {
627 delete m_service;
628 m_service = nullptr;
629 }
630

631 //! [Filter HeartRate service 2]
632 // If heartRateService found, create new service
633 if (m_foundGATTService)
634 m_service = m_control->createServiceObject(QBluetoothUuid(gattUUID), this);
635

636 if (m_service) {
637 connect(m_service, &QLowEnergyService::stateChanged, this,

&DeviceHandler::serviceStateChanged);↪

638 //connect(m_service, &QLowEnergyService::characteristicChanged, this,
&DeviceHandler::updateHeartRateValue);↪

639 connect(m_service, &QLowEnergyService::descriptorWritten, this,
&DeviceHandler::confirmedDescriptorWrite);↪

640 m_service->discoverDetails();
641 out << ”m_service found!” << Qt::endl;
642 } else {
643 setError(”Heart Rate Service not found.”);
644 }
645 //! [Filter HeartRate service 2]
646 }
647

648 // Service functions
649 //! [Find HRM characteristic]
650 void DeviceHandler::serviceStateChanged(QLowEnergyService::ServiceState s)
651 {
652 out << ”Service changed!” << Qt::endl;
653 switch (s) {
654 case QLowEnergyService::DiscoveringServices:
655 setInfo(tr(”Discovering services...\n”));
656 break;

98 PC Software code

657 case QLowEnergyService::ServiceDiscovered:
658 {
659 setInfo(tr(”Settings loaded.”));
660 bindChar = m_service->characteristic(QBluetoothUuid(bindUUID));
661 layoutChar = m_service->characteristic(QBluetoothUuid(indcUUID));
662 timeoutChar = m_service->characteristic(QBluetoothUuid(timeUUID));
663 infoChar = m_service->characteristic(QBluetoothUuid(settUUID));
664 if (!bindChar.isValid()) {
665 printf(”Binding characteristic not found.\n”);
666 break;
667 }
668 else {
669 printf(”Binding characteristic valid.\n”);
670 }
671 if (!layoutChar.isValid()) {
672 printf(”Layout characteristic not found.\n”);
673 break;
674 }
675 else {
676 printf(”Layout characteristic valid.\n”);
677 }
678 if (!timeoutChar.isValid()) {
679 printf(”Timeout characteristic not found.\n”);
680 break;
681 }
682 else {
683 printf(”Timeout characteristic valid.\n”);
684 }
685 if (!infoChar.isValid()) {
686 printf(”Settings characteristic not found.\n”);
687 break;
688 }
689 else {
690 printf(”Settings characteristic valid.\n”);
691 }
692

693 // This below is weird, but also key
694 // m_bindingDesc =

bindChar.descriptor(QBluetoothUuid::ClientCharacteristicConfiguration);↪

695 // if (m_bindingDesc.isValid())
696 // printf(”Binding data valid!\n”);
697 //// m_service->writeDescriptor(m_bindingDesc, QByteArray::fromHex(”0100”));
698 // else
699 // printf(”Binding data invalid!\n”);
700

701 // QByteArray a = bindChar.value();
702 // QString result;
703 // if (a.isEmpty()) {
704 // result = QStringLiteral(”<none>”);
705 // out << ”None” << Qt::endl;
706 // break;
707 // }
708 // result = a;
709 // result += QLatin1Char('\n');

G.1 Backend 99

710 // result += a.toHex();
711

712 // out << result << Qt::endl;
713

714 break;
715 }
716 default:
717 //nothing for now
718 break;
719 }
720

721 emit aliveChanged();
722 }
723 //! [Find HRM characteristic]
724

725

726 void DeviceHandler::confirmedDescriptorWrite(const QLowEnergyDescriptor &d, const
QByteArray &value)↪

727 {
728 out << ”Descriptor changed!” << Qt::endl;
729 if (d.isValid() && d == m_bindingDesc && value == QByteArray::fromHex(”0000”)) {
730 //disabled notifications -> assume disconnect intent
731 m_control->disconnectFromDevice();
732 delete m_service;
733 m_service = nullptr;
734 }
735 }
736

737 void DeviceHandler::disconnectService()
738 {
739 m_foundGATTService = false;
740

741 //disable notifications
742 if (m_bindingDesc.isValid() && m_service
743 && m_bindingDesc.value() == QByteArray::fromHex(”0100”)) {
744 m_service->writeDescriptor(m_bindingDesc, QByteArray::fromHex(”0000”));
745 } else {
746 if (m_control)
747 m_control->disconnectFromDevice();
748

749 delete m_service;
750 m_service = nullptr;
751 }
752 }
753

754 bool DeviceHandler::alive() const
755 {
756

757 if (m_service)
758 return m_service->state() == QLowEnergyService::ServiceDiscovered;
759

760 return false;
761 }

100 PC Software code

Devicehandler.h

1 /***
2 **
3 ** Copyright (C) 2017 The Qt Company Ltd.
4 ** Contact: https://www.qt.io/licensing/
5 **
6 ** This file is part of the examples of the QtBluetooth module of the Qt Toolkit.
7 **
8 ** $QT_BEGIN_LICENSE:BSD$
9 ** Commercial License Usage

10 ** Licensees holding valid commercial Qt licenses may use this file in
11 ** accordance with the commercial license agreement provided with the
12 ** Software or, alternatively, in accordance with the terms contained in
13 ** a written agreement between you and The Qt Company. For licensing terms
14 ** and conditions see https://www.qt.io/terms-conditions. For further
15 ** information use the contact form at https://www.qt.io/contact-us.
16 **
17 ** BSD License Usage
18 ** Alternatively, you may use this file under the terms of the BSD license
19 ** as follows:
20 **
21 ** ”Redistribution and use in source and binary forms, with or without
22 ** modification, are permitted provided that the following conditions are
23 ** met:
24 ** * Redistributions of source code must retain the above copyright
25 ** notice, this list of conditions and the following disclaimer.
26 ** * Redistributions in binary form must reproduce the above copyright
27 ** notice, this list of conditions and the following disclaimer in
28 ** the documentation and/or other materials provided with the
29 ** distribution.
30 ** * Neither the name of The Qt Company Ltd nor the names of its
31 ** contributors may be used to endorse or promote products derived
32 ** from this software without specific prior written permission.
33 **
34 **
35 ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS↪

36 ** ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR↪

38 ** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT↪

39 ** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL,↪

40 ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE,↪

42 ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY↪

43 ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE↪

45 ** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”

G.1 Backend 101

46 **
47 ** $QT_END_LICENSE$
48 **
49 **/
50

51 #ifndef DEVICEHANDLER_H
52 #define DEVICEHANDLER_H
53

54 #include ”bluetoothbaseclass.h”
55

56 #include <QDateTime>
57 #include <QTimer>
58 #include <QVector>
59 #include <QKeyEvent>
60 #include <QWidget>
61 #include <QtGui>
62

63 #include <QLowEnergyController>
64 #include <QLowEnergyService>
65

66 class DeviceInfo;
67

68 class DeviceHandler : public BluetoothBaseClass
69 {
70 Q_OBJECT
71 Q_PROPERTY(QString keybind READ getKeybind NOTIFY dataChanged)
72 Q_PROPERTY(bool getIDflg READ getIDflg NOTIFY dataChanged)
73 Q_PROPERTY(int colour READ getColour NOTIFY dataChanged)
74 Q_PROPERTY(int layout0 READ getLayout0 NOTIFY dataChanged)
75 Q_PROPERTY(int layout1 READ getLayout1 NOTIFY dataChanged)
76 Q_PROPERTY(int layout2 READ getLayout2 NOTIFY dataChanged)
77 Q_PROPERTY(int layout3 READ getLayout3 NOTIFY dataChanged)
78 Q_PROPERTY(int timeout READ getTimeout NOTIFY dataChanged)
79 Q_PROPERTY(QString mode READ getTextMode NOTIFY dataChanged)
80

81 Q_PROPERTY(AddressType addressType READ addressType WRITE setAddressType)
82

83 public:
84 enum class AddressType {
85 PublicAddress,
86 RandomAddress
87 };
88 Q_ENUM(AddressType)
89

90 DeviceHandler(QObject *parent = nullptr);
91

92 void setDevice(DeviceInfo *device);
93 void setAddressType(AddressType type);
94 AddressType addressType() const;
95

96 bool alive() const;
97

98

99 // Data

102 PC Software code

100 QString getKeybind() const;
101 int getColour() const;
102 bool getLayout0() const;
103 bool getLayout1() const;
104 bool getLayout2() const;
105 bool getLayout3() const;
106 int getMode() const;
107 QString getTextMode() const;
108 int getTimeout() const;
109 bool getIDflg() const;
110

111 protected:
112

113 signals:
114 void aliveChanged();
115 void statsChanged();
116 void dataChanged();
117

118 public slots:
119 void sendKeybind(QString value);
120 void sendTimeout(QString value);
121 void sendLayout();
122 void disconnectService();
123 void fetchBLEData() const;
124 void updateLayout(int i);
125 void updateColour(QString from_gui);
126 void updateMode(int k);
127

128 private:
129 //QLowEnergyController
130 void serviceDiscovered(const QBluetoothUuid &);
131 void serviceScanDone();
132

133 bool m_foundGATTService;
134

135 //QLowEnergyService
136 void serviceStateChanged(QLowEnergyService::ServiceState s);
137 void confirmedDescriptorWrite(const QLowEnergyDescriptor &d,
138 const QByteArray &value);
139

140 private:
141

142 QLowEnergyController *m_control = nullptr;
143 QLowEnergyService *m_service = nullptr;
144 QLowEnergyDescriptor m_bindingDesc;
145 DeviceInfo *m_currentDevice = nullptr;
146

147 QLowEnergyController::RemoteAddressType m_addressType =
QLowEnergyController::PublicAddress;↪

148

149 };
150

151 #endif // DEVICEHANDLER_H

G.2 Frontend / GUI 103

G.2 Frontend / GUI

Measure.qml

This code generates the configuration page per BUG.

1 /***
2 **
3 ** Copyright (C) 2017 The Qt Company Ltd.
4 ** Contact: https://www.qt.io/licensing/
5 **
6 ** This file is part of the examples of the QtBluetooth module of the Qt Toolkit.
7 **
8 ** $QT_BEGIN_LICENSE:BSD$
9 ** Commercial License Usage

10 ** Licensees holding valid commercial Qt licenses may use this file in
11 ** accordance with the commercial license agreement provided with the
12 ** Software or, alternatively, in accordance with the terms contained in
13 ** a written agreement between you and The Qt Company. For licensing terms
14 ** and conditions see https://www.qt.io/terms-conditions. For further
15 ** information use the contact form at https://www.qt.io/contact-us.
16 **
17 ** BSD License Usage
18 ** Alternatively, you may use this file under the terms of the BSD license
19 ** as follows:
20 **
21 ** ”Redistribution and use in source and binary forms, with or without
22 ** modification, are permitted provided that the following conditions are
23 ** met:
24 ** * Redistributions of source code must retain the above copyright
25 ** notice, this list of conditions and the following disclaimer.
26 ** * Redistributions in binary form must reproduce the above copyright
27 ** notice, this list of conditions and the following disclaimer in
28 ** the documentation and/or other materials provided with the
29 ** distribution.
30 ** * Neither the name of The Qt Company Ltd nor the names of its
31 ** contributors may be used to endorse or promote products derived
32 ** from this software without specific prior written permission.
33 **
34 **
35 ** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS↪

36 ** ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 ** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR↪

38 ** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT↪

39 ** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL,↪

40 ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

USE,↪

42 ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY↪

104 PC Software code

43 ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE↪

45 ** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
46 **
47 ** $QT_END_LICENSE$
48 **
49 **/
50

51 import QtQuick 2.11
52 import QtQuick.Controls 2.4
53 GamePage {
54 id: measurePage
55

56 errorMessage: deviceHandler.error
57 infoMessage: deviceHandler.info
58

59 property real __timeCounter: 0
60 property real __maxTimeCount: 60
61

62 property real __rawbatt: 100
63 property real __rawtimer: 300
64 property real __newkeybind: 216
65

66 property string __sleeptimer: qsTr(”%1s”).arg(__rawtimer)
67 property real minHR: 0
68 property string __modeview: qsTr(”↑←↓→␣”)
69 property string __batteryperc: qsTr(”N/A”)
70

71 function close() {
72 //deviceHandler.stopMeasurement();
73 deviceHandler.disconnectService();
74 app.prevPage();
75 }
76

77

78 function updateLayout() {
79 deviceHandler.sendLayout();
80 }
81

82 function layout0() {
83 deviceHandler.updateLayout(0)
84 }
85

86 function layout1() {
87 deviceHandler.updateLayout(1)
88 }
89

90 function layout2() {
91 deviceHandler.updateLayout(2)
92 }
93

94 function layout3() {
95 deviceHandler.updateLayout(3)

G.2 Frontend / GUI 105

96 }
97

98

99 Column {
100 anchors.horizontalCenter: parent.horizontalCenter
101 anchors.verticalCenter: parent.verticalCenter
102 anchors.verticalCenterOffset: -parent.height*0.4
103 spacing: GameSettings.fieldHeight * 0.2
104

105 Rectangle {
106 id: infobox
107 anchors.horizontalCenter: parent.horizontalCenter
108 width: Math.min(measurePage.width, measurePage.height-GameSettings.fieldHeight*4)

- 2*GameSettings.fieldMargin↪

109 height: width*0.5
110 radius: width*0.05
111 color: GameSettings.viewColor
112

113 Text {
114 id: conftext
115 anchors.centerIn: parent
116 anchors.horizontalCenterOffset: -parent.width*0.20
117 horizontalAlignment: Text.AlignHLeft
118 verticalAlignment: Text.AlignTop
119 width: parent.width * 0.55
120 text: ”\nCurrent BUG configuration\n Key bind:

\t”+deviceHandler.keybind.toUpperCase()+”\n
Sleeptimer:\t”+deviceHandler.timeout+”s\n Mode:
\t”+deviceHandler.mode+”\n Battery: \t”+__batteryperc

↪

↪

↪

121 color: GameSettings.textColor
122 fontSizeMode: Text.Fit
123 minimumPixelSize: 10
124 font.pixelSize: GameSettings.mediumFontSize
125 }
126

127 Image {
128 id: bugfront
129 anchors.centerIn: parent
130 anchors.horizontalCenterOffset: parent.width*0.28
131 height: parent.height * 0.9
132 width: height / 1.143
133 source: ”images/frontview.png”
134 smooth: true
135 antialiasing: true
136

137 }
138 }
139

140 Text {
141 id: keybindinfotext
142 anchors.left: infobox.left
143 anchors.leftMargin: GameSettings.fieldMargin * 0.4
144 anchors.top: infobox.bottom
145 anchors.topMargin: GameSettings.fieldMargin * 0.25

106 PC Software code

146 height: GameSettings.fieldHeight * 0.75
147 text: qsTr(”Set key bind:”)
148 horizontalAlignment: Text.AlignLeft
149 color: GameSettings.textColor
150 fontSizeMode: Text.Fit
151 minimumPixelSize: 10
152 font.pixelSize: GameSettings.mediumFontSize
153 }
154

155 Text {
156 id: colourinfotext
157 anchors.left: keybindinfotext.left
158 anchors.top: keybindinfotext.bottom
159 anchors.topMargin: GameSettings.fieldMargin * 0.05
160 height: GameSettings.fieldHeight * 0.75
161 text: qsTr(”Set colour:”)
162 horizontalAlignment: Text.AlignLeft
163 color: GameSettings.textColor
164 fontSizeMode: Text.Fit
165 minimumPixelSize: 10
166 font.pixelSize: GameSettings.mediumFontSize
167 }
168

169 Text {
170 id: layoutinfotext
171 anchors.left: keybindinfotext.left
172 anchors.top: colourinfotext.bottom
173 anchors.topMargin: GameSettings.fieldMargin * 0.05
174 height: GameSettings.fieldHeight * 0.75
175 text: qsTr(”Set layout:”)
176 horizontalAlignment: Text.AlignLeft
177 color: GameSettings.textColor
178 fontSizeMode: Text.Fit
179 minimumPixelSize: 10
180 font.pixelSize: GameSettings.mediumFontSize
181 }
182

183 Text {
184 id: sleeptimerinfotext
185 anchors.left: keybindinfotext.left
186 anchors.top: layoutinfotext.bottom
187 anchors.topMargin: GameSettings.fieldMargin * 0.05
188 height: GameSettings.fieldHeight * 0.75
189 text: qsTr(”Set sleeptimer:”)
190 horizontalAlignment: Text.AlignLeft
191 color: GameSettings.textColor
192 fontSizeMode: Text.Fit
193 minimumPixelSize: 10
194 font.pixelSize: GameSettings.mediumFontSize
195 }
196

197 Text {
198 id: modeinfotext
199 anchors.left: keybindinfotext.left

G.2 Frontend / GUI 107

200 anchors.top: sleeptimerinfotext.bottom
201 anchors.topMargin: GameSettings.fieldMargin * 0.05
202 height: GameSettings.fieldHeight * 0.75
203 text: qsTr(”Set use mode:”)
204 horizontalAlignment: Text.AlignLeft
205 color: GameSettings.textColor
206 fontSizeMode: Text.Fit
207 minimumPixelSize: 10
208 font.pixelSize: GameSettings.mediumFontSize
209 }
210

211 Rectangle {
212 id: keybindbtn
213 width: 0.3 * infobox.width
214 height: GameSettings.fieldHeight * 0.6
215 radius: GameSettings.buttonRadius
216 anchors.horizontalCenter: parent.horizontalCenter
217 anchors.horizontalCenterOffset: 0.25*infobox.width
218 anchors.verticalCenter: keybindinfotext.verticalCenter
219 anchors.verticalCenterOffset: -0.2 * height
220 color: modeselect.currentIndex === 5 ? GameSettings.buttonColor :

GameSettings.disabledButtonColor↪

221 }
222

223 TextInput {
224 id: keybindbtntxt
225 width: keybindbtn.width
226 height: keybindbtn.height
227 //radius: GameSettings.buttonRadius
228 anchors.horizontalCenter: keybindbtn.horizontalCenter
229 anchors.verticalCenter: keybindbtn.verticalCenter
230 color: modeselect.currentIndex === 5 ? GameSettings.textColor :

GameSettings.disabledTextColor↪

231 horizontalAlignment: Text.AlignHCenter
232 verticalAlignment: Text.AlignVCenter
233 font.pixelSize: height / 2
234 text: deviceHandler.keybind
235

236 activeFocusOnPress: modeselect.currentIndex === 5 ? true : false
237

238 onFocusChanged:
239 if (keybindbtntxt.focus) keybindbtntxt.text = ””;
240 onTextChanged: {
241 if (text != ””) {
242 console.log(”Escaped keybind by key”, keybindbtntxt.text);
243 keybindbtntxt.focus = false;
244 if (keybindbtntxt.text.length === 1) keybindbtntxt.text =

keybindbtntxt.text.toUpperCase();↪

245 if (keybindbtntxt.text === ” ”) keybindbtntxt.text = ”Space”;
246 deviceHandler.sendKeybind(keybindbtntxt.text);
247 }
248 }
249

250 }

108 PC Software code

251

252 Rectangle {
253 id: colourbtn
254 width: 0.3 * infobox.width
255 height: GameSettings.fieldHeight * 0.6
256 radius: GameSettings.buttonRadius
257 anchors.horizontalCenter: keybindbtn.horizontalCenter
258 anchors.verticalCenter: colourinfotext.verticalCenter
259 anchors.verticalCenterOffset: -0.2 * height
260 color: Qt.rgba((deviceHandler.colour >> 16 & 0xFF) / 255,
261 (deviceHandler.colour >> 8 & 0xFF) / 255,
262 (deviceHandler.colour & 0xFF) / 255);
263 }
264

265 TextInput {
266 id: colourbtntxt
267 width: keybindbtn.width
268 height: keybindbtn.height
269 //radius: GameSettings.buttonRadius
270 anchors.horizontalCenter: colourbtn.horizontalCenter
271 anchors.verticalCenter: colourbtn.verticalCenter
272 color: ”white”
273 horizontalAlignment: Text.AlignHCenter
274 verticalAlignment: Text.AlignVCenter
275 font.pixelSize: height / 2
276 text: deviceHandler.colour.toString(16)
277

278

279 validator: RegExpValidator { regExp: /[0-9A-Fa-f]+/ }
280

281 onFocusChanged:
282 if (colourbtntxt.focus) colourbtntxt.text = ””;
283 onTextChanged: {
284 if (text != ””) {
285 if (text.length === 6) {
286 colourbtntxt.focus = false;
287 // TOFIX: Convert to int first
288 console.log(”Color set to”,”#”+text);
289 colourbtn.color = ”#”+text;
290 console.log(”Lightness:”);
291 deviceHandler.updateColour(text);
292 }
293 }
294

295 }
296

297 }
298

299 Layout0Button {
300 id: layoutbtn1
301 width: 0.04 * infobox.width
302 height: width
303 radius: GameSettings.buttonRadius * 0.2
304 anchors.horizontalCenter: colourbtn.horizontalCenter

G.2 Frontend / GUI 109

305 anchors.verticalCenter: layoutbtn2.verticalCenter
306 anchors.verticalCenterOffset: -1.55 * height
307

308 onClicked: layout0()
309

310

311 }
312

313 Layout1Button {
314 id: layoutbtn2
315 width: 0.04 * infobox.width
316 height: width
317 radius: GameSettings.buttonRadius * 0.2
318 anchors.right: layoutbtn1.left
319 anchors.rightMargin: 0.55*width
320 anchors.verticalCenter: layoutinfotext.verticalCenter
321 anchors.verticalCenterOffset: 0.25 * height
322

323 onClicked: layout1()
324 }
325

326 Layout2Button {
327 id: layoutbtn3
328 width: 0.04 * infobox.width
329 height: width
330 radius: GameSettings.buttonRadius * 0.2
331 anchors.verticalCenter: layoutbtn2.verticalCenter
332 anchors.left: layoutbtn2.right
333 anchors.leftMargin: 0.55*width
334

335 onClicked: layout2()
336 }
337

338 Layout3Button {
339 id: layoutbtn4
340 width: 0.04 * infobox.width
341 height: width
342 radius: GameSettings.buttonRadius * 0.2
343 anchors.verticalCenter: layoutbtn2.verticalCenter
344 anchors.left: layoutbtn3.right
345 anchors.leftMargin: 0.55*width
346

347 onClicked: layout3()
348 }
349

350 Rectangle {
351 width: 0.3 * infobox.width
352 height: GameSettings.fieldHeight * 0.6
353 radius: GameSettings.buttonRadius
354 anchors.horizontalCenter: keybindbtn.horizontalCenter
355 anchors.verticalCenter: sleeptimerinfotext.verticalCenter
356 anchors.verticalCenterOffset: -0.2 * height
357 color: GameSettings.buttonColor
358 }

110 PC Software code

359

360 TextInput {
361 id: timerbtn
362 width: 0.3 * infobox.width
363 height: GameSettings.fieldHeight * 0.6
364 //radius: GameSettings.buttonRadius
365 anchors.horizontalCenter: keybindbtn.horizontalCenter
366 anchors.verticalCenter: sleeptimerinfotext.verticalCenter
367 anchors.verticalCenterOffset: -0.2 * height
368 color: GameSettings.textColor
369 horizontalAlignment: Text.AlignHCenter
370 verticalAlignment: Text.AlignVCenter
371 validator: IntValidator { bottom: 0; top: 65535 }
372 font.pixelSize: height / 2
373 text: deviceHandler.timeout
374 }
375

376 ComboBox {
377 id: modeselect
378 width: keybindbtn.width
379 height: GameSettings.fieldHeight * 0.6
380 anchors.horizontalCenter: keybindbtn.horizontalCenter
381 anchors.verticalCenter: modeinfotext.verticalCenter
382 anchors.verticalCenterOffset: -0.2 * height
383

384 model: ListModel {
385 id: modeItems
386 ListElement { text: ”Arrows”}
387 ListElement { text: ”Arrows + space”}
388 ListElement { text: ”WASD”}
389 ListElement { text: ”WASD + space”}
390 ListElement { text: ”Presenter mode”}
391 ListElement { text: ”Custom key”}
392 }
393 onCurrentIndexChanged: {
394 deviceHandler.updateMode(currentIndex);
395 console.log(”Current index: ”,currentIndex);
396 }
397 }
398

399 Keys.onPressed: {
400 if ((event.key === 16777221 | event.key === 16777220) & timerbtn.activeFocus ===

true) {↪

401 timerbtn.focus = false;
402 console.log(”Escaped timer. Timer = ”, timerbtn.text);
403 onClicked: deviceHandler.sendTimeout(timerbtn.text);
404 }
405 if ((event.key === 16777216) & timerbtn.activeFocus === true) {
406 timerbtn.focus = false;
407 timerbtn.text = deviceHandler.timeout;
408 console.log(”Escaped timer. Timer = ”, timerbtn.text);
409 }
410 if (keybindbtntxt.activeFocus) {
411 switch (event.key) {

G.2 Frontend / GUI 111

412 case 16777220:
413 console.log(”Escaped keybind by enter”);
414 keybindbtntxt.text = ”Enter”;
415 keybindbtntxt.focus = false;
416 break;
417 case 16777221:
418 console.log(”Escaped keybind by enter”);
419 keybindbtntxt.text = ”Enter”;
420 keybindbtntxt.focus = false;
421 break;
422 case 16777234:
423 console.log(”Escaped keybind by arrow left”);
424 keybindbtntxt.text = ”←”;
425 keybindbtntxt.focus = false;
426 break;
427 case 16777235:
428 console.log(”Escaped keybind by arrow up”);
429 keybindbtntxt.text = ”↑”;
430 keybindbtntxt.focus = false;
431 break;
432 case 16777236:
433 console.log(”Escaped keybind by arrow right”);
434 keybindbtntxt.text = ”→”;
435 keybindbtntxt.focus = false;
436 break;
437 case 16777237:
438 console.log(”Escaped keybind by arrow down”);
439 keybindbtntxt.text = ”↓”;
440 keybindbtntxt.focus = false;
441 break;
442 case 16777249:
443 console.log(”Escaped keybind by ctrl”);
444 keybindbtntxt.text = ”Ctrl”;
445 keybindbtntxt.focus = false;
446 break;
447 case 16777251:
448 console.log(”Escaped keybind by alt”);
449 keybindbtntxt.text = ”Alt”;
450 keybindbtntxt.focus = false;
451 break;
452 case 16777248:
453 console.log(”Escaped keybind by shift”);
454 keybindbtntxt.text = ”Shift”;
455 keybindbtntxt.focus = false;
456 break;
457 case 16777216:
458 console.log(”Escaped keybind by escape”);
459 keybindbtntxt.text = ”Escape”;
460 keybindbtntxt.focus = false;
461 break;
462 }
463 }
464 }
465 }

112 PC Software code

466

467 GameButton {
468 id: rstButton
469 anchors.horizontalCenter: parent.horizontalCenter
470 anchors.bottom: parent.bottom
471 anchors.bottomMargin: GameSettings.fieldMargin
472 width: parent.width*0.5 - 1.5 * GameSettings.fieldMargin
473 anchors.horizontalCenterOffset: -0.5*GameSettings.fieldMargin - 0.5*width
474 height: GameSettings.fieldHeight
475 enabled: true
476 radius: GameSettings.buttonRadius
477

478 onClicked: {
479 deviceHandler.updateMode(6);
480 }
481

482 Text {
483 anchors.centerIn: parent
484 font.pixelSize: GameSettings.tinyFontSize
485 text: qsTr(”Set to Factory Settings”)
486 horizontalAlignment: Text.AlignHCenter
487 wrapMode: Text.WordWrap
488 color: rstButton.enabled ? GameSettings.textColor : GameSettings.disabledTextColor
489 }
490 }
491

492 GameButton {
493 id: idButton
494 anchors.horizontalCenter: parent.horizontalCenter
495 anchors.bottom: parent.bottom
496 anchors.bottomMargin: GameSettings.fieldMargin
497 width: parent.width*0.5 - 1.5 * GameSettings.fieldMargin
498 anchors.horizontalCenterOffset: 0.5*GameSettings.fieldMargin + 0.5*width
499 height: GameSettings.fieldHeight
500 radius: GameSettings.buttonRadius
501

502 onClicked: deviceHandler.updateMode(7);
503

504 Text {
505 anchors.centerIn: parent
506 font.pixelSize: GameSettings.tinyFontSize
507 text: qsTr(”Identify”)
508 wrapMode: Text.WordWrap
509 color: deviceHandler.getIDflg ? GameSettings.buttonPressedColor :

GameSettings.textColor↪

510 }
511

512

513 }
514 }

Appendix H

Results final testing

H.1 Range test

Here the all the data collected during the range test can be found. For each BUG the range
at which the keys stopped correctly coming through to the PC or the range at which the BUG
disconnected was logged. Afterwards the average per range test was calculated. This can all be
seen in Table H.1

Table H.1: Results of the range test for the tested BUGs

BUG # range test 1[m] range test 2[m] range test 3[m]
1 43,81 85,52 70,55
2 99,57 72 75,5
3 92,6 69,45 73,36
4 85,34 68,36 54,06
5 86,3 79,85 70
6 90,07 77,9 78,75
7 58,46 68,73 66,64
8 71,54 68 68,8
9 70,57 66,4 57,8
10 43,14 67,64 57,82
Average 74,14 72,385 67,33

H.2 Accuracy

As explained in section 5.1 for each BUG at each distance 50 key presses were sent. The actual
received presses were then logged as can be seen in Table H.2. Consequently the number of
received presses was calculated as a percentage of the 50 sent presses. After that the deviation
from 100 was calculated for each of the percentages. Finally the Mean Square Error (MSE) was
determined for each range. Thus resulting in the percentage of incorrectly received key presses.
All the mentioned results can be seen in Table H.2.

114 Results final testing

Table H.2: Results of the accuracy test for the tested BUGs

BUG # Received presses[#] Received presses[%] Deviation[%]
range[m]→ 35.6 53.5 71.3 89.1 35.6 53.5 71.3 89.1 35.6 53.5 71.3 89.1
1 50 50 0 0 100 100 0 0 0 0 -100 -100
2 50 50 50 0 100 100 100 0 0 0 0 -100
3 50 44 105 0 100 88 210 0 0 -12 110 -100
4 50 50 52 65 100 100 104 130 0 0 4 30
5 50 50 50 130 100 100 100 260 0 0 0 160
6 50 50 91 30 100 100 182 60 0 0 82 -40
7 50 50 81 44 100 100 162 88 0 0 62 -12
8 51 92 22 0 102 184 44 0 2 84 -56 -100
9 50 50 41 59 100 100 82 118 0 0 -18 18
10 50 31 0 0 100 62 0 0 0 -38 -100 -100
11 50 51 120 72 100 102 240 144 0 2 140 44
MSE 0,6 28,0 77,3 85,5

H.3 Delay

Used python code

1 # -*- coding: utf-8 -*-
2

3 ”Keylogger vs Serial read”
4

5 import time
6 import keyboard
7 import serial
8

9 COMPort = ”COM4”
10 BtnStr = ”button released”
11

12 serialPort = serial.Serial(COMPort, 115200, timeout=2)
13

14 serialPort.read_all()
15

16 ”””
17 Set timeA when serial
18 Set timeB when keypress
19 Show timeA - timeB
20 Keep averaging until event, then restart
21 ”””
22 try:
23 while(1):
24 nextBUG = False
25 n=0
26 delay_average = 0
27 print(”New BUG!”)
28

29 while(not nextBUG):
30 time_key = 0
31 time_serial = 0
32 print(”Detecting BUG input”)

H.3 Delay 115

33

34 while((time_key == 0) or (time_serial == 0)) :
35

36 if (keyboard.is_pressed(” ”)):
37 while(keyboard.is_pressed(” ”)):
38 {}
39 time_key = time.time()
40 print(”space pressed”)
41

42 if(serialPort.in_waiting>0):
43 serialString = serialPort.readline()
44 if (serialString.decode('Ascii').find(BtnStr) > 0):
45 time_serial = time.time()
46 print(”serial btn rcvd”)
47 if (keyboard.is_pressed(”n”)):
48 while(keyboard.is_pressed(”n”)):
49 {}
50 nextBUG = True
51 break
52

53 ””” Compute average delay with new sample, compensate serial delay”””
54 ””” Serial delay -> 25 chars = 400 bits. 115200 bit/s => 0.0034..sec”””
55 delay_average = delay_average * n + (time_key - time_serial + 0.003472222)
56 n = n + 1
57 delay_average = delay_average / n
58 print(”average =”,delay_average,”sec (n =”,n,”)”)
59

60 except:
61 serialPort.close()

H.3.1 Results
Table H.3: The results of the delay test for all the BUGs

Leopard Moth # delay[ms] (n=50)
1 1,3604
2 1,4448
3 1,2451
4 1,4360
5 1,0805
6 1,4359
7 1,3851
8 1,4787
9 1,4988
10 1,3999

Average 1,3765

116 Results final testing

H.4 Public testing

(a) View of the age of the test participants. (b) Overview of game genres played by the test parti-
cipants.

Figure H.1: Age and game preference of set of test participants

(a) Responses regarding the comfort level of the BUG from
one (bad) to 5 (good).

(b) Responses regarding the size of the BUG from one (too
small) to five (too big). Three states it is a good size.

Figure H.2: Responses of the test panel regarding the 3D model

(a) Responses regarding the clarity of the current key bind
from one (bad) to 5 (good).

(b) Responses regarding the general user experience of the
BUG from one (bad) to five (good).

Figure H.3: Responses of the test panel regarding the user interface

Figure H.4: Responses regarding the expected battery life of a BUG.

Appendix I

Falstad simulations: Pictures and URLs

I.1 Bidirectional LED

Figure I.1: The final circuit with the bidirectional LED indicating the charging status. The simulation from this
model can be found at bit.ly/bugthesis_chargeled.

I.2 Wake-up circuit

Figure I.2: The schematics of the wake-up circuitry. The simulation can be found at bit.ly/bugthesis_wakeup.

https://bit.ly/bugthesis_chargeled
https://bit.ly/bugthesis_wakeup

118 Falstad simulations: Pictures and URLs

I.3 ID RC circuit

(a) The circuit made on the BUG PCB

(b) The circuit with the soldered on resistor

Figure I.3: The two options for ID voltage division. The link to the model can be found at bit.ly/bugthesis_idrc.

https://bit.ly/bugthesis_idrc

Appendix J

Schematics of the BUG

On the next page, the complete schematics of the BUG can be found with brief descriptions with
each part.

120 Schematics of the BUG

Figure J.1: Complete schematics of the BUG

Appendix K

Tested games

Below a list can be found of games which are found suitable when using the BUG. It is also shown
if a score is present, if a versus mode between teams is possible and which key binds are used. It
will also be noted if the game could be played without reconfiguration.

Title Key binds Default Score Versus Link
Pacman Arrows Yes Yes No bit.ly/pacmanbug
Bomberman Arrows with space No Yes Yes1 bit.ly/bomberbug
Snake Arrows Yes Yes No bit.ly/snakebug
Pong Arrow up/down Yes Yes Yes2 bit.ly/pongbug
Temple Run Arrows3 Yes Yes No bit.ly/templebug
Tetris Arrows4 Yes Yes No bit.ly/tetrisbug

1) Bomberman multiplayer is possible in another version (BombTag). It is also possible on a single
PC if more than 8 BUGs could be connected simultaneously.
2) For multiplayer, a non-default configuration is needed.
3) The space key could also be used for boosts, but is not necessary to play the game.
4) Although it is completely playable with the arrow keys, some more keys can be used to add
functionality to the game.

bit.ly/pacmanbug
bit.ly/bomberbug
bit.ly/snakebug
bit.ly/pongbug
bit.ly/templebug
bit.ly/tetrisbug

Bibliography

[1] Steam. “Controller gaming on pc.” (2018), [Online]. Available: https://steamcommunity.
com/games/593110/announcements/detail/1712946892833213377 (visited on 03/12/2021).

[2] Fact.MR. “Gaming controller market.” (2021), [Online]. Available: https ://www.factmr.
com/report/gaming-controller-market (visited on 03/12/2021).

[3] Bluetooth SIG, Inc. “Bluetooth® wireless technology.” (2021), [Online]. Available: https :
//www.bluetooth.com/learn-about-bluetooth/tech-overview/ (visited on 29/11/2021).

[4] K. Townsend, C. Cufí, Akiba and R. Davidson, Getting Started with Bluetooth Low Energy.
O’Reilly Media, Inc., May 2014, Chapter four, ISBN: 9781491949511. [Online]. Available:
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html.

[5] Ferjerez. “Diy controller.” licensed under Creative Commons - Attribution license, Maker-
bot Thingiverse. (2017), [Online]. Available: https://www.thingiverse.com/thing:2669820
(visited on 27/09/2021).

[6] ETSI, At command set for user equipment (ue), version 15.7.0, 2019. [Online]. Available:
https : / /www . etsi . org / deliver / etsi _ ts / 127000_127099 / 127007 / 15 . 07 . 00_60 / ts_
127007v150700p.pdf (visited on 02/12/2021).

[7] T-vK. “Esp32-ble-keyboard.” Used release: v0.3.1-beta, GitHub. (2021), [Online]. Available:
https://github.com/T-vK/ESP32-BLE-Keyboard (visited on 29/11/2021).

[8] Adafruit. “Adafruit𝑛𝑒𝑜𝑝𝑖𝑥𝑒𝑙.” Used release: v1.10.0, GitHub. (2021), [Online]. Available:
https://github.com/adafruit/Adafruit_NeoPixel (visited on 12/10/2021).

[9] M. Papadatou-Pastou, E. Ntolka, J. Schmitz et al., “Human handedness: A meta-analysis,”
Psychological Bulletin, vol. 146, p. 481, 6 Jun. 2020, ISSN: 0033-2909. DOI: 10 . 1037 /
bul0000229. [Online]. Available: https://www.proquest.com/scholarly- journals/human-
handedness-meta-analysis/docview/2406640810/se-2.

[10] “Pulling the plug on consumer frustration and e-waste: Commission proposes a common
charger for electronic devices,” European Commission, Brussels, Aug. 2021. [Online]. Avail-
able: https://ec.europa.eu/commission/presscorner/detail/en/ip_21_4613 (visited on
18/11/2021).

[11] Texas Instruments. “Selecting antennas for low-power wireless applications.” (2008), [Online].
Available: https://www.ti.com/lit/an/slyt296/slyt296.pdf?ts=1632820973946& (visited on
22/11/2021).

[12] Symmetry Electronics. “Internal antennas: Different types and advantages.” (2021), [Online].
Available: https://www.semiconductorstore.com/blog/2021/Internal-Antennas-Different-
Types-and-Advantages-Symmetry-Blog/4357/ (visited on 24/11/2021).

[13] AI-thinker, Esp-c3-12f specification, Version 1.0, 2021. [Online]. Available: https://docs.ai-
thinker.com/_media/esp32/docs/esp-c3-12f_specification.pdf (visited on 02/12/2021).

[14] ——, Esp-c3-13 specification, Version 1.0, 2021. [Online]. Available: https://docs.ai-thinker.
com/_media/esp32/docs/esp-c3-13_specification.pdf (visited on 18/11/2021).

[15] Cellevia Batteries. “Specification approval sheet.” (2016), [Online]. Available: https://www.
tme.eu/Document/aa593083f76c72af8796398caaac30a8/cel0016.pdf (visited on 02/12/2021).

https://steamcommunity.com/games/593110/announcements/detail/1712946892833213377
https://steamcommunity.com/games/593110/announcements/detail/1712946892833213377
https://www.factmr.com/report/gaming-controller-market
https://www.factmr.com/report/gaming-controller-market
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://www.thingiverse.com/thing:2669820
https://www.etsi.org/deliver/etsi_ts/127000_127099/127007/15.07.00_60/ts_127007v150700p.pdf
https://www.etsi.org/deliver/etsi_ts/127000_127099/127007/15.07.00_60/ts_127007v150700p.pdf
https://github.com/T-vK/ESP32-BLE-Keyboard
https://github.com/adafruit/Adafruit_NeoPixel
https://doi.org/10.1037/bul0000229
https://doi.org/10.1037/bul0000229
https://www.proquest.com/scholarly-journals/human-handedness-meta-analysis/docview/2406640810/se-2
https://www.proquest.com/scholarly-journals/human-handedness-meta-analysis/docview/2406640810/se-2
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_4613
https://www.ti.com/lit/an/slyt296/slyt296.pdf?ts=1632820973946&
https://www.semiconductorstore.com/blog/2021/Internal-Antennas-Different-Types-and-Advantages-Symmetry-Blog/4357/
https://www.semiconductorstore.com/blog/2021/Internal-Antennas-Different-Types-and-Advantages-Symmetry-Blog/4357/
https://docs.ai-thinker.com/_media/esp32/docs/esp-c3-12f_specification.pdf
https://docs.ai-thinker.com/_media/esp32/docs/esp-c3-12f_specification.pdf
https://docs.ai-thinker.com/_media/esp32/docs/esp-c3-13_specification.pdf
https://docs.ai-thinker.com/_media/esp32/docs/esp-c3-13_specification.pdf
https://www.tme.eu/Document/aa593083f76c72af8796398caaac30a8/cel0016.pdf
https://www.tme.eu/Document/aa593083f76c72af8796398caaac30a8/cel0016.pdf

124 BIBLIOGRAPHY

[16] Monolithic Power. “How to select a lithium-ion battery charge management ic.” (2021),
[Online]. Available: https ://www.monolithicpower.com/en/how- to- select- lithium- ion-
battery-charge-management-ic (visited on 01/12/2021).

[17] NanJing Top Power, Tp4054 standalone linear li-ion battery charger with thermal regulation
in sot.

[18] Holtek Semiconductors, Ht73xx low power consumption ldo, Rev 1.3, 25th Jan. 2005.
[19] Espressif. “Analog to digital converter (adc).” (2021), [Online]. Available: https : //docs .

espressif . com/projects/esp- idf/en/ latest/esp32c3/api - reference/peripherals/adc .html
(visited on 03/12/2021).

[20] Qt. “Bluetooth low energy heart rate game.” (2017), [Online]. Available: https://doc.qt.io/qt-
5/qtbluetooth-heartrate-game-example.html (visited on 29/11/2021).

[21] Human Benchmark. “Statistics.” (2021), [Online]. Available: https://humanbenchmark.com/
tests/reactiontime/statistics (visited on 13/12/2021).

[22] S. Gupta and D. V. Gadre, “Multiplexing technique yields a reduced-pin-count led display,”
European Documentary Network, 2008.

https://www.monolithicpower.com/en/how-to-select-lithium-ion-battery-charge-management-ic
https://www.monolithicpower.com/en/how-to-select-lithium-ion-battery-charge-management-ic
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/api-reference/peripherals/adc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/api-reference/peripherals/adc.html
https://doc.qt.io/qt-5/qtbluetooth-heartrate-game-example.html
https://doc.qt.io/qt-5/qtbluetooth-heartrate-game-example.html
https://humanbenchmark.com/tests/reactiontime/statistics
https://humanbenchmark.com/tests/reactiontime/statistics

	Introduction
	Gamepads
	State of the art analysis - Gamepads
	State of the art analysis - Bluetooth protocol

	Programme of Requirements
	Project requirements
	Technical requirements
	Additional requirements

	Prototype Design
	3D Design
	Gamepad design

	User Interface
	Requirements
	Overview and Design Considerations

	Electronics
	MCU with separate Bluetooth module
	Raspberry Pi
	ESP32-C3 (MCU with integrated Bluetooth)

	Software
	Requirements
	Program

	Testing
	Functionality
	Potential user testing
	Survey and Data acquisition
	Data analysis
	Survey analysis
	Conclusions

	Final Design
	3D Model
	User Interface
	Requirements
	User Interface Design

	Electronics
	Requirements
	Architectural design
	Schematics
	PCB design

	Software - BUG
	ESP general software
	Bluetooth communication on ESP

	Software - PC

	Testing
	Final system testing
	Range
	Accuracy
	Delay
	Charging/Discharging
	Simultaneous connections

	Public testing

	Conclusion
	Discussion
	Recommendations
	3D Model
	User Interface
	Electronics
	ESP Software
	PC Software
	Safety
	Testing

	Appendices
	Terminology
	Prototyping Code
	Python data acquisition code
	C++ code for the Prototype
	Simple Bluetooth connectivity and LED control

	Test data and Figures
	Test subjects figures
	Survey results

	Custom GATT profile overview
	Key binding characteristic
	Indication characteristic
	Sleep timer characteristic
	Information characteristic

	3D Model: Breakdown of design process
	ESP Code
	Main code
	Main

	Customised library

	PC Software code
	Backend
	Frontend / GUI

	Results final testing
	Range test
	Accuracy
	Delay
	Results

	Public testing

	Falstad simulations: Pictures and URLs
	Bidirectional LED
	Wake-up circuit
	ID RC circuit

	Schematics of the BUG
	Tested games

