
PRIVACY ANALYSIS OF DECENTRALIZED FEDERATED
LEARNING

PRIVACY ANALYSIS OF DECENTRALIZED FEDERATED
LEARNING

Thesis

by

Wenrui YU

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended on Monday 17 July, 2023 at 13:00.

Student number: 5495040
Faculty: EEMCS
Master program: Electrical Engineering
Specialization: Signals and Systems
Project Duration: August, 2022 - July, 2023
Thesis committee: Prof. dr. ir. R. Heusdens, TU Delft, supervisor

Dr. K. Liang, TU Delft
Dr. Q. Li, Tsinghua University

ABSTRACT

Privacy concerns in federated learning have attracted considerable attention recently.
In centralized networks, it has been observed that even without directly exchanging
raw training data, the exchange of other so-called intermediate parameters such as
weights/gradients can still potentially reveal private information. However, there has
been relatively less research conducted on privacy concerns in decentralized networks.

In this report, we analyze privacy leakage in optimization-based decentralized feder-
ated learning, which adopts generally distributed optimization schemes such as ADMM
or PDMM in federated learning. By combining local updates with global aggregations, it
was proved that optimization-based approaches are more advantageous compared to the
traditional average consensus-based approaches, especially in scenarios where the data
at the nodes are not independent and identically distributed (non-IID).

We further extend the privacy bound in distributed optimization to the decentralized
learning framework. Different from the fact in the centralized learning framework the
leaked information is the local gradients of each individual participant at all rounds,
we find that in decentralized cases the leaked information is the difference of the local
gradients within a certain time interval. Motivated by the gradient inversion in centralized
networks, we then design a homogeneous attack to iteratively optimize dummy data
whose gradient differences are close to the true revealed gradient differences. Though
the gradient difference information still brings privacy concerns, we show that it is more
challenging for adversaries to reconstruct private data using the difference of gradients
than using the gradients themselves in the centralized case.

To deal with the privacy attack, we propose several potential defense strategies such
as early stopping, inexact update and quantization etc. The main advantage of these
approaches is that they introduce error/noise/distortion into decentralized federated
learning for protecting private information from being revealed to others without affecting
the training accuracy. In addition, we also show that the larger the batchsize is, the more
difficult for the adversary to reconstruct the private information.

v

ACKNOWLEDGEMENTS

Time flies in TU Delft. I sincerely thank my supervisors, Richard Heusdens and Qiongxiu
Li for their exhaustive guidance and assistance in finishing this thesis. Also, I would like
to thank my parents and friends for their financial and mental support.

Wenrui Yu
Delft, June 2023

vii

CONTENTS

Abstract v

Preface vii

List of Figures xi

1 Introduction 1

2 Preliminaries 5
2.1 Problem Statement . 5
2.2 ADMM/PDMM . 6
2.3 Privacy . 6

2.3.1 Threat Model . 6
2.3.2 Subspace-based Privacy Preservation 7
2.3.3 Privacy Bound in Distributed Setting. 8

3 Setup 11
3.1 Topology . 11
3.2 Case study . 12

3.2.1 Distributed Logistic Regression 12
3.2.2 Distributed Multi-layer Perceptron 14

4 Distributed Optimization via Inexact PDMM 17
4.1 Iteration Method . 17
4.2 Quadratic Approximation . 18
4.3 Experiments . 21

5 Gradient Information-based Attack in Federated Learning 23
5.1 Information Leakage . 23

5.1.1 Gradient Leakage . 23
5.1.2 Difference of Gradients Leakage 24

5.2 Attack . 25
5.2.1 Label Inference Attack . 25
5.2.2 Gradient Information Inversion Attack. 26

5.3 Comparison. 28
5.4 Experiments . 28

6 Defense Strategy 33
6.1 Noise and Perturbations . 33
6.2 Defense Strategies . 35
6.3 Experiments . 36

ix

x CONTENTS

7 Conclusion and Future Work 41
7.1 Conclusion . 41
7.2 Future Work. 41

References 45

A Appendix 47

LIST OF FIGURES

1.1 Federated Averaging [2] . 2
1.2 Two topologies in federated learning . 2

2.1 Threat Model . 7

3.1 Example of RGG with N = 60 . 12

4.1 Dataset and well-trained models . 21
4.2 PDMM with the inexact update. (a) Iterative method. (b) Quadratic Approx-

imation . 22

5.1 Reconstruction of the private data from the difference of gradients 29
5.2 Attack for multi-layer perceptron, ni = 1. (a) The ground truth. (b) The

reconstruction. 30
5.3 Attack for multi-layer perceptron, ni = 2. (a) The ground truth. (b) The

reconstruction. 30

6.1 Reconstruction error of as a function of tmax (logistic regression) 37
6.2 Reconstruction error as a function of kmax (logistic regression) 38
6.3 Reconstruction error as a function of kmax (MLP). (a) The MNIST dataset.

(b) The CIFAR-10 dataset. 38
6.4 Reconstructed inputs for centralized and decentralized FL using the datasets

MNIST (top) and CIFAR-10 (bottom) for different batch size ni = 1,2,4,8
((a)-(d), respectively). 39

xi

1
INTRODUCTION

With the rapid advancement of technology, the world is becoming increasingly intercon-
nected. The advent of the Big Data era means better user behavior prediction and service
improvement. But inevitably, people’s private data are leaked and utilized intentionally or
unintentionally. Consequently, how to protect privacy has become an important issue in
this era.

Federated learning (FL) is a subject born out of this era. Its purpose is to enable
collaborative training of multiple devices without the direct exchange of data [1]. For
example, there is a limit to the number of cases available for a hospital, which makes
it difficult to assist in diagnosis by means of data analysis. Therefore, hospitals from
different areas prefer to seek collaboration with each other. However, patient privacy is
supposed to be strictly confidential and should not be shared. This raises a concern. How
can the information be utilized without sharing privacy?

Federated Averaging (FedAvg) [1] is the first federated learning algorithm that was
proposed along with the concept of FL. It is suitable for such scenarios: there is one server
that connects to all other clients/nodes, as shown in Figure 1.1. Data are distributed on all
the nodes and strictly kept locally, so only other information can be exchanged between
the server and nodes. We expect to train a global model which integrates information from
all nodes. In such a setting, the main procedure of FedAvg can be summarized into three
steps: 1) nodes first train local models based on their own private dataset and send the
local model updates, i.e. gradients or weights, to the server; 2) with the received messages,
the server do the weighted averaging aggregation to determine a global model and returns
it to nodes; 3) nodes update the local models based on the updated global model and
send the model updates back to the server, after which step 2 and 3 are repeated until
convergence.

This type of approach, based on alternatively training local models and aggregating
them with a server, has become the mainstream of federated learning. We call the corre-
sponding topology with a central server as the centralized topology. This communication
mode requires high communication bandwidth and is vulnerable. The server not only
has to take high communication costs but also must be trusted by all nodes. Also, the

1

1

2 1. INTRODUCTION

Figure 1.1: Federated Averaging [2]

entire network would go down as long as the server failed. Therefore, another topology,
what we call decentralized topology, has recently gained attention. It removes the servers
and constructs a connected network through direct communication channels between
nodes.

Figure 1.2: Two topologies in federated learning

Decentralized FL protocols fall into two main categories. The first one is based on
average-consensus protocols. Similar to the training process in the centralized topology,
nodes exchange data after training the model locally. However, the data exchange is
limited to the surrounding neighbors. Examples where the data aggregation is done using
average consensus techniques such as gossiping SGD [3], D-PSGD [4] and variations
thereof [5], [6]. The second category contains protocols that are based on distributed
optimization. These methods formulate the underlying problem as a constrained op-
timization problem and solve the optimization problem using distributed solvers like
ADMM [7]–[9] or PDMM [10]–[12]. The constraints are formulated in such a way that,
after convergence, the learned models at all nodes are identical. Hence, there is no explicit
separation between updating local models and updating the global model.

Despite the fact that FL avoids direct data exchange, it does not necessarily imply
that users can rest easily without any concerns. [13] first pointed out, adversaries can
inverse private data from deep leaked gradients. Subsequently, a series of attacks [14]–[22]
which attempt to reconstruct private data based on leaked gradients or weights have been
continuously proposed and improved.

1

3

Most of the existing works on privacy leakage can apply to centralized topologies,
considering the information leaked during transmission between nodes and the server.
In addition, recently in [23], it is shown that average-consensus based decentralized FL
protocols do not offer privacy advantages over centralized FL, as the traditional gradient
inversion attack can still be applied to these protocols. And for those malicious nodes,
they may have the chance to infer sensitive information more due to the different local
generalizations. The privacy loss of optimization-based decentralized FL protocols, on
the other hand, has, to the best of our knowledge, been rarely investigated.

The main contribution of this work is the extension of the upper bound of privacy
leakage in distributed optimization to decentralized FL. The theory reveals that such
privacy bound is essentially the leakage of gradient differences in a successive period.
Therefore, a series of homogeneous gradient-based attacks still apply to optimized-based
FL. However, in this case, carrying out attacks requires adversaries to possess more
information and have stronger computational and storage resources compared to the
scenario of gradient leakage. We also illustrate specific issues that exist under the general
framework of decentralized FL, such as inexact updates. We find that in fact, some
unavoidable perturbations in the training are helpful for preserving privacy. Thus we also
propose some corresponding feasible defense strategies.

The report is structured as the following

• In Chapter 2 the preliminaries, including ADMM/PDMM framework and related
privacy theory is introduced.

• In Chapter 3 the setup of subsequent experiments is given.

• In Chapter 4 two ways of inexact update of PDMM and related privacy bound are
mentioned.

• In Chapter 5 the corresponding attack in decentralized FL and the comparison to
the centralized FL is analyzed.

• In Chapter 6 possible perturbations and defense strategies are proposed.

• In Chapter 7 we give conclusions of this report and also discuss directions of the
future works.

2
PRELIMINARIES

In this chapter, background information related to decentralized FL will be provided.
Firstly in Section 2.1, decentralized learning is formulated as a general distributed opti-
mization problem. Then in Section 2.2, the implementation of distributed optimization
with the PDMM algorithm is given. Finally, the related privacy preservation approach and
privacy leakage derivation are presented in Section 2.3.

2.1. PROBLEM STATEMENT
Let us define the decentralized topology with graph G = (V ,E), where V is the set of
vertices which represents the nodes and E is the set of undirected edges which represents
the connections between nodes. We use Ni = { j ∈ V | (i , j) ∈ E } to denote the neighbors
of i -th node.

With the connected network, We then consider the summation of the local cost
functions as the objective of collaborative learning. Each local cost function fi (wi , (xi ,ℓi))
represents the sum of costs associated with individual samples, resulting in the equal
weighting of all samples. {(xi ,ℓi) : i ∈ V } is the local dataset and wi ∈ Ru is the model
weights on node i . Here we use fi (wi) as the simplified written of fi (wi , (xi ,ℓi)). In such a
setting, the objective is equivalent to the case of placing all data on a single node. And the
optimization problem can be posed with the constraints to guarantee ∀(i , j) ∈ E : wi = w j

as

min
{wi : i∈V }

∑
i∈V

fi (wi),

subject to ∀(i , j) ∈ E : Bi | j wi +B j |i w j = 0,
(2.1)

where Bi | j ∈ Ru×u is defined as the identity matrix Iu ∈ Ru×u with opposite signs as
the following

∀(
i , j

) ∈ E : Bi | j =
{

Iu , if i < j ,

−Iu , if i > j .
(2.2)

5

2

6 2. PRELIMINARIES

2.2. ADMM/PDMM
We consider employing the ADMM/PDMM framework as an optimization-based ap-
proach for decentralized federated learning. From the monotone operator theory [24],
[25], ADMM [26] is the 1

2 -averaged version of PDMM [10], [11] and thus can be expressed
in one framework. For ADMM, it provides convergence guarantees for arbitrary convex,
closed and proper (CCP) objective functions; while PDMM requires strong convexity.

Let E = |E | as the number of edges and N = |V | as the number of nodes in the graph.
Define C = [c1,c2, . . . ,cn] ∈ R2uE×uN , where ci (l) = Bi | j and c j (l +uE) = B j |i . From [25],
by introducing auxiliary edge variables z , the optimization problem with consensus
constraints shown in Equation 2.1 can be solved by iteratively updating the following
equation:

w (t+1) = argmin
w

(
f (w)+w⊺C⊺z (t) + ρ

2
∥C w∥2

)
, (2.3)

y (t+1) = z (t) +2ρC w (t+1), (2.4)

z (t+1) = (1−θ)z (t) +θP y (t+1). (2.5)

where P ∈ 2uE ×2uE is the permutation matrix and ρ is a constant controlling the rate
of convergence. θ ∈ (0,1] controls the operator averaging, while θ = 1

2 is the case of
Peaceman-Rachford splitting (ADMM) and θ = 1 is Douglas-Rachford splitting (PDMM).

The corresponding individual update is written as [27]

w (t+1)
i = argmin

wi

(
fi (wi)+

∑
j∈Ni

z (t)⊺
i | j Bi | j wi + ρdi

2
w 2

i

)
, (2.6)

∀ j ∈Ni : z (t+1)
j |i = (1−θ)z (t)

j |i +θ
(

z (t)
i | j +2ρBi | j w (t+1)

i

)
, (2.7)

where di = |Ni | is the degree of node i .
It decomposes decentralized learning into a series of sub-problem solving and variable

exchanges. The local model wi is updated in Equation 2.6, while Equation 2.7 represents
the information exchange in the decentralized network.

Algorithm 1 shows the implementation of the synchronous ADMM/PDMM algorithm
in decentralized learning. For convenience, in the remainder of the report, we will do the
analysis with the case of PDMM (θ = 1).

2.3. PRIVACY
This section will first introduce the threat model we consider in this thesis in subsec-
tion 2.3.1. The privacy preservation method by inserting subspace perturbations will be
presented in subsection 2.3.2. The bound of privacy leakage in decentralized learning will
also be discussed in subsection 2.3.3.

2.3.1. THREAT MODEL
In this report, we consider two types of adversaries in decentralized learning. The first type
is eavesdropping, where the eavesdropper can gain access to messages exchanged over
unencrypted channels. The second type is passive (honest-but-curious) nodes, which

2.3. PRIVACY

2

7

Algorithm 1 Synchronous ADMM/PDMM

Initialization of z (0) ▷ Initialization
for t = 0,1, ... do

for each node i ∈ V in parallel do ▷ Update nodes

w (t+1)
i = argminwi

(
fi (wi)+∑

j∈Ni
z (t)⊺

i | j Bi | j wi + ρdi
2 w 2

i

)
for each j ∈Ni do

y (t+1)
i | j = (1−θ)z (t)

j |i +θ
(

z (t)
i | j +2ρBi | j w (t+1)

i

)
end for

end for
for each i ∈ V , j ∈Ni do ▷ Data exchange (unicast)

Node j ← Nodei (y (t+1)
i | j)

end for
for each i ∈ V , j ∈Ni do ▷ Secondary Update

z (t+1)
j |i = y (t+1)

i | j
end for

end for

we refer to as corrupted nodes. These nodes perform the same training steps as other
honest nodes during the training process and do not initiate attacks actively. However,
they collect the received information and try to infer the private data of honest nodes.
Combining both types of adversaries, the maximum information leakage in the network
is: a) All messages exchanged over unencrypted channels during the entire duration; b)
All information possessed and collected by corrupted nodes.

Figure 2.1: Threat Model

2.3.2. SUBSPACE-BASED PRIVACY PRESERVATION
In this section, we will explain a privacy-preserved subspace-based approach [28] pro-
posed in distributed optimization.

The main idea of this method is to insert perturbation in the non-convergent subspace
through the auxiliary variable. Let H̄p = span(C)+ span(PC) and its orthogonal subspace
H̄⊥

p = ker
(
CT

)∩ ker
(
(PC)T

)
. So the auxiliary variable z (t) can be separated into two

components as z (t) = z (t)
H̄p

+ z (t)
H̄⊥

p
, where z (t)

H̄p
= ΠH̄p

z (t) and z (t)
H̄⊥

p
=

(
I −ΠH̄p

)
z (t). ΠH̄p

is

the orthogonal projection onto H̄p . Since C T z (t)
H̄⊥

p
= 0, the component in the orthogonal

subspace does not act on primal variable updates. So we refer H̄p and H̄⊥
p as convergent

2

8 2. PRELIMINARIES

Algorithm 2 Decentralized FL using differential ADMM/PDMM

Initialization of z (0) ▷ Initialization
for t = 0,1, ... do

for each node i ∈ V in parallel do ▷ Update nodes

w (t+1)
i = argminwi

(
fi (wi)+∑

j∈Ni
z (t)⊺

i | j Bi | j wi + ρdi
2 w 2

i

)
for each j ∈Ni do

z (t+1)
j |i = (1−θ)z (t)

j |i +θ
(

z (t)
i | j +2ρBi | j w (t+1)

i

)
∆z (t+1)

j |i = z (t+1)
j |i − z (t)

j |i
end for

end for
for each i ∈ V , j ∈Ni do ▷ Data exchange (unicast)

Node j ← Nodei (∆z (t+1)
j |i)

end for
for each i ∈ V , j ∈Ni do ▷ Secondary Update

z (t+1)
j |i = z (t)

j |i +∆z (t+1)
j |i

end for
end for

subspace and non-convergent subspace respectively and there is no compromise in
accuracy and convergence. To ensure H̄⊥

p is non-empty, we need the number of edges
larger or equal to the number of nodes,i.e. E ≥ N , as shown in [28].

The implementation of subspace perturbation is by randomly initializing the auxiliary
variable z (0)

j |i . With this approach, we can use differential ADMM/PDMM to prevent the

direct leakage of z (t+1)
j |i as shown in Algorithm 2.

For each round t +1 node i only need to transmit ∆z (t+1)
j |i = z (t+1)

j |i −z (t)
j |i to its neighbor

j ∈Ni and the receiving node j can easily recover z (t+1)
j |i = z (t)

j |i +∆z (t+1)
j |i .

Since z (t+1)
j |i can only be determined whenever z (0)

j |i is known, we can use encrypted

channels once at time t = 0 to transmit the initialization z (0)
j |i to protect from eavesdrop-

ping. So that eavesdropping only reveals{
∆z (t)

j |i : t ≥ 1,(i , j) ∈ E
}

. (2.8)

2.3.3. PRIVACY BOUND IN DISTRIBUTED SETTING

In this section, we shortly describe the derivation of the upper bound in privacy loss with
differential PDMM.

Theorem 1. Assume there is at least one corrupt node in the network, then for each honest
node i with at least one honest neighbor, the adversary can learn {w (t)

i : t ≥ 1} as well as

∇ fi

(
w (t)

i

)
−∇ fi

(
w (t+2)

i

)
, t ≥ 0. (2.9)

2.3. PRIVACY

2

9

Proof. Since Equation 2.8 is revealed, the adversary has the knowledge of

∆z (t+1)
j |i −∆z (t)

i | j = z (t+1)
j |i − z (t)

j |i −
(
z (t)

i | j − z (t−1)
i | j

)
= 2ρBi | j w (t+1)

i −2ρBi | j w (t)
i

= 2ρBi | j (w (t+1)
i −w (t)

i), t ≥ 0,

(2.10)

i.e. w (t+1)
i −w (t)

i for ∀t ≥ 0 is known. Since the global model gradually converges, w (t)
i →

w∗ for ∀i ∈ V , w (t)
i at any round t can be backwards computed from the knowledge of

w∗ on corrupted nodes.
For sub-problem Equation 2.6, it has optimality condition as

0 =∇ fi (w (t+1)
i)+ ∑

j∈Ni

B⊺
i | j z (t)

i | j +ρdi w (t+1)
i . (2.11)

And from the two successive z-updates in Equation 2.7, we have

z (t+1)
i | j − z (t−1)

i | j = 2ρBi | j
(
w (t)

i −w (t+1)
j

)
. (2.12)

So combine Equation 2.11 and Equation 2.12, we have the difference of gradients at
time t and t +2 as

∇ fi
(
w (t)

i

)−∇ fi
(
w (t+2)

i

)= ∑
j∈Ni

B⊺
i | j

(
z (t+1)

i | j − z (t−1)
i | j

)
+ρdi

(
w (t+2)

i −w (t)
i

)
= ρdi

(
w (t)

i +w (t+2)
i

)−2ρ
∑

j∈Ni

w (t+1)
j .

(2.13)

Since w (t)
i for ∀i ∈ V is inferred by the adversary, all the terms on the RHS are known.

Thus ∇ fi

(
w (t)

i

)
−∇ fi

(
w (t+2)

i

)
is revealed.

3
SETUP

In this chapter, we will introduce the setups for the relevant experiments in the subsequent
chapters. Section 3.1 proposes the two topologies used and the optimization-based and
average consensus-based algorithms that apply in collaborative learning. Section 3.2
presents two case studies, the convex and non-convex machine learning models we used.

3.1. TOPOLOGY
Decentralized Network

We use random geometric graph (RGG) [29] to simulate the decentralized network
G , as shown in Figure 3.1. In RGG, vertexes are randomly placed in a unit cube. An edge,
i.e. the transmission channel, connects two vertexes, i.e. the number of nodes/clients
when their distance is smaller than a certain radius r . We consider these nodes uniformly
distributed in the two-dimensional region. For a 2-dimensional cube, as long as r ≥√

log (N)
N , the graph is connected with probability P ≥ 1− 1

N 2 [30], where N is the number
of vertexes.

Then we consider the privacy-preserving distributed optimization with subspace per-
turbation and differential PDMM as shown in Algorithm 2. Encrypted channels are used
at time t = 0 to transmitted z (0), thus in the following steps we can limit the information
leakage in the unencrypted channels into the variation of z (t), as shown in Equation 2.8.
The node construction is object-oriented, so each node has its own local variables and a
list of neighbours.
Centralized Network

We set the network to have the same number of nodes as the decentralized network.
In the centralized network, there is no direct transmission between nodes. All nodes
connect and only connect with a central server. The server does not own private data and
does not perform training, but only takes the role of aggregation.

We consider the Federated Averaging (FedAvg)[1] as a representative averaging consensus-
based FL algorithm in such a topology. In each communication round, activated nodes
first train a local model and transmit the weights to the server; then the server does the

11

3

12 3. SETUP

Figure 3.1: Example of RGG with N = 60

weighted averaging to get a global model; the global model is sent back to those nodes
and nodes repeat the steps in the next round. ni is the local dataset size and n =∑N

i=1 ni

is the total number of samples in the systems. So the weight of each local model can be
expressed as ni

n . The pseudo-code is shown in Algorithm 3.
Empirically, for non-convex models, the model will tend to converge to the same local

minimum with common initialization [1].
A special case of FedAvg is FedSgd as shown in Algorithm 4. Consider the FedSgd with

C = 1,E = 1 and B =∞ (batchsize equals local dataset size). In this case, the exchange of

weights is equivalent to the exchange of gradients. Since ∇ fi (w (t)
i) = w (t)−w (t+1)

α , so that

w (t+1) =∑N
i=1

ni
n w (t+1)

i = w (t) −α∑N
i=1

ni
n ∇ fi (w (t)

i).

3.2. CASE STUDY

3.2.1. DISTRIBUTED LOGISTIC REGRESSION
We first consider a classical convex problem in machine learning. Logistic regression can
be used in classification problems. With the nonlinear mapping, we restrict the binary
dependent variable into the range (0,1), so we can choose the cutoff value (0.5) to indicate
the 0/1 label.

For each node i , consider the number of samples as ni and the number of features as
u. There are ni pairs of (xi k ,ℓi k) where xi k ∈Ru is the feature vector and ℓi k ∈ {0,1} is the
label. These are the local information node i holds.

For binary classification problems with logistic regression, we construct the model
with parameter (wi ,bi), where wi ∈ Ru and b ∈ R. We map w⊺

i xi k +bi into range (0,1)

with sigmoid activation, i.e output yi k =σ(w⊺
i xi k +bi) = 1

1+e
−(w⊺

i
xi k+bi)

.

So the local cost function, which defines as the cross entropy, can be presented as

fi (wi ,bi) =−
ni∑

k=1
{ℓi k log yi k + (1−ℓi k) log(1− yi k)}, (3.1)

3.2. CASE STUDY

3

13

Algorithm 3 Federated Averaging

B is the local minibatch size, E is the number of local epochs, α is the learning rate, and
C is the node fraction.
for each round t = 0,1, ... do ▷ Server executation

m ← max(C ·N ,1)
St ← (random set of m nodes)
for each node i ∈ St in parallel do

w (t+1)
i ← NodeUpdate (i , w (t))

end for
w (t+1) ←∑N

i=1
ni
n w (t+1)

i
end for

NodeUpdate(i , w):
B ← (split local dataset Di into batches of size B)
for each epoch e from 1 to E do

for batch b ∈B do
w ← w −α∇ f (w ;b)

end for
end for
return w to server

where log(·) denotes the natural logarithm.
Its gradient can be expressed as

∂ fi

∂wi
=

ni∑
k=1

(
yi k −ℓi k

)
xi k , (3.2)

∂ fi

∂bi
=

ni∑
k=1

(
yi k −ℓi k

)
. (3.3)

For multinomial classification, the activation is modified to softmax, since we need
the outputs to be the confidences of each class, thus the outputs satisfy

∑C
c=1 yi k,c =

1, where we have C classes. we construct the model with parameter (wi ,bi), where
wi = [wi ,1, ..., wi ,C] ∈ Ru×C and bi = [bi ,1, ...,bi ,C] ∈ RC . The output for each class c is

yi k,c =σc (w⊺
i xi k +bi ,c) = e

w⊺
i ,c

xi k+bi ,c

C∑
r=1

e
w⊺

i ,r
xi k+bi ,r

.

The cost function is correspondingly modified as

fi (wi ,bi) =−
ni∑

k=1
log

(
yi k,ℓi k

)
, (3.4)

as well as the gradient
∂ fi

∂wi
=

ni∑
k=1

(
yi k,c −δc,ℓi k

)
xi k (3.5)

3

14 3. SETUP

Algorithm 4 Federated SGD

for each round t = 0,1, ... do ▷ Server executation
for each node i ∈ V in parallel do

∇ fi (w (t+1)
i) ← NodeUpdate (i ,∇ f (w (t)))

end for
∇ f (w (t+1)) ←∑N

i=1
ni
n ∇ fi (w (t+1)

i)
end for

NodeUpdate(i ,∇ f (w))):
w ← w −α∇ f (w)
return ∇ f (w) to server

∂ fi

∂bi
=

ni∑
k=1

yi k,c −δc,ℓi k
(3.6)

where δc,ℓi k
is the Kronecker-delta.

3.2.2. DISTRIBUTED MULTI-LAYER PERCEPTRON

Then we extend the case into a non-convex problem with a 2-layer perceptron. Multi-layer
perceptron is a simple model structure for the classification algorithm which is combined
with several fully connected layers and non-linear activations. In each layer, each neuron
is connected with all neurons from the last layer and uses their weighted sum as the input
of the activation function. It is a classical structure which can solve linearly non-separable
problems like XOR.

For the multi-layer perceptron, the gradient of fi can be calculated by the chain rule.
We set the activation function in the hidden layer as Rectified Linear Unit (ReLU). ReLU is
a nonlinear activation which defines as the positive part of its argument, i.e. ReLU (z) =
max(0, z) = z+|z|

2 . Its gradient is the step function, i.e. ReLU ′(z) =
{

1 If z > 0
0 If z < 0

. The

output layer also uses sigmoid for binary classification and softmax for multi-classification.

For binary classification, Assuming the hidden layer has h neurons, then for the model
parameters (wi 1,bi 1, wi 2,bi 2), wi 1 ∈Ru×h , bi 1 ∈Rh , wi 2 ∈Rh and bi 2 ∈R.

The forward propagation is

zi 1 = w⊺
i 1xi k +bi 1,

zi 2 = w⊺
i 2ReLU(zi 1)+bi 2,

yi k =σ(zi 2).

(3.7)

3.2. CASE STUDY

3

15

So the gradients are known as

∂ fi

∂wi 2
=

ni∑
k=1

(
yi k −ℓi k

)
ReLU(zi 1)

∂ fi

∂bi 2
=

ni∑
k=1

(
yi k −ℓi k

)
∂ fi

∂wi 1
=

ni∑
k=1

(yi k −ℓi k)wi 2x⊺
i ⊙ReLU′ (zi 1)

∂ fi

∂bi 1
=

ni∑
k=1

(
yi k −ℓi k

)
wi 2 ⊙ReLU′ (zi 1) ,

(3.8)

The similar derivation is also applied to the case of multi-classification.

4
DISTRIBUTED OPTIMIZATION VIA

INEXACT PDMM

In decentralized learning, solving sub-problems in Equation 2.6 exactly is often challeng-
ing. Sub-problems can only be solved exactly in a few cases, such as average consensus,
linear regression, etc. In this section, we mention two common approaches for updating
sub-problems in an approximate manner. One approach is to use iterative methods in
Section 4.1, where the approximate value is obtained through a finite number of iterations.
Another approach is to use the quadratic approximation in Section 4.2. The original pri-
vacy bound in Equation 2.9 is derived based on the optimality condition in Equation 2.11,
so when using approximate updates, the boundary of privacy leakage also changes. We
also discuss the changes in the privacy bound. Finally, the utility of inexact updates will
be shown in experiments in Section 4.3.

4.1. ITERATION METHOD
The first approach is to use any learning-based iterative method with several steps in
optimization to get an approximated solution. For the nodes, only a sufficiently close
solution needs to be obtained, not caring about its iterative process. Therefore, we can
use any method provided that convergence is satisfied.
Convergence Analysis

The inexact solution can be seen as introducing additive noise on the weights. From
the quantization scheme in distributed optimization [31], it is known that the optimization
is sure to converge if the sequence

∥∥n(t)
∥∥ is finitely summable, where n(t) is the noise

term in the auxiliary variable z .
Let ŵ (t) = w (t) +e(t) is the inexact solution of the subproblem in round t , e(t) is the

error term. We can obtain ẑ (t) = z (t) +2θρC e(t).
Since

∥∥n(t)
∥∥ = ∥∥2θρC e(t)

∥∥ = 2θρ
∥∥C e(t)

∥∥ ≤ 2θρ ∥C∥∥∥e(t)
∥∥, thus as long as the se-

quence of error
∥∥e(t)

∥∥ satisfies the finite summable condition, there has a same con-
vergence guarantee as the case of quantization.

17

4

18 4. DISTRIBUTED OPTIMIZATION VIA INEXACT PDMM

Privacy Bound
Assuming we use the gradient descent with kmax steps in each w-update. Let k denote

the inner iteration and α denote the fixed learning rate. From Equation 2.6, the inner
iteration at round t can be expressed with the gradient of the new sub-problem as

Fork = 1, . . . ,kmax : w (t ,k)
i = w (t ,k−1)

i −α(∇ fi (w (t ,k−1)
i)+ ∑

j∈Ni

B⊺
i | j z (t)

i | j +ρdi w (t ,k−1)
i), (4.1)

where the initial weight w (t ,0)
i = w (t)

i = w (t−1,kmax)
i and the transmitted weight is w (t+1)

i =
w (t ,kmax)

i .
In terms of the adversary, these intermediate states are kept at local and not revealed,

i.e, only w (t ,0)
i , as well as w (t ,kmax)

i (or w (t+1,0)
i) for t ≥ 1 is exposed, which brings the

difficulty for the attack. Moreover, the derivation only applies to the single batch update.
It means for the case where nodes contain a large-scale dataset, the more commonly used
approach, stochastic gradient descent (SGD), would also blur the upper bound that the
adversary can obtain.

We consider two special cases in which the privacy boundary is still clear. The first
one is the case when kmax = 1, the inexact w-update can be simplified as

w (t+1)
i = w (t)

i −α(∇ fi (w (t)
i)+ ∑

j∈Ni

B⊺
i | j z (t)

i | j +ρdi w (t)
i). (4.2)

Correspondingly, in this case, the bound should be modified as

∇ fi

(
w (t)

i

)
−∇ fi

(
w (t+2)

i

)
= (ρdi− 1

α
)(w (t+2)

i −w (t)
i)+ 1

α
w (t+3)

i +(2ρdi− 1

α
)w (t+1)

i −2ρ
∑

j∈Ni

w (t+2)
j ,

(4.3)
Another case is kmax →∞. For convex cost function fi (w (t)

i), the exact solution can be
reached with infinite iterations. Thus we can use the optimality condition in Equation 2.11
to derive the privacy bound as

∇ fi
(
w (t)

i

)−∇ fi
(
w (t+2)

i

)= ρdi
(
w (t)

i +w (t+2)
i

)−2ρ
∑

j∈Ni

w (t+1)
j . (4.4)

4.2. QUADRATIC APPROXIMATION
[32] provides the quadratic approximation of PDMM (QA-PDMM) with λ-update version.
Here we give a derivation of z-update.

First we quadratically approximate the cost function with a positive constant µ as

f (w) ≈ f
(
w (t))+∇ f

(
w (t))⊺ (

w −w (t))+ µ

2

∥∥w −w (t)∥∥2
. (4.5)

So the minimization has the quadratically approximated form as

w (t+1) ≈ argmin
w

f
(
w (t))+∇ f

(
w (t))⊺ (

w −w (t))+ µ

2

∥∥w −w (t)∥∥2 +w⊺C⊺z (t) + ρ

2
∥C w∥2,

(4.6)
which implies its optimal condition satisfies

∇ f (w (t))+µ(w (t+1) −w (t))+ρC⊺C w (t+1) +C⊺z (t) = 0. (4.7)

4.2. QUADRATIC APPROXIMATION

4

19

So the w update can be written as

w (t+1) = (µI +ρC⊺C)−1 (
µw (t) −∇ f

(
w (t))−C⊺z (t)) . (4.8)

Thus the individual update for each node i in Equation 2.6 finally has the following
form

w (t+1)
i =

µw (t)
i −∇ fi (w (t)

i)−∑
j∈Ni

B⊺
i | j z (t)

i | j
µ+ρdi

. (4.9)

Convergence Analysis

Theorem 2. Assume f (w) is m-strongly convex and β-smooth, then as long as µ> β2

2m , we
have

w (t) → w∗.

Proof. With QA-PDMM, the iterates in Equation 2.3-Equation 2.5 are rewritten as

w (t+1) = argmin
w

f
(
w (t))+∇ f

(
w (t))⊺ (

w −w (t))+ µ

2

∥∥w −w (t)∥∥2 +w⊺C⊺z (t) + ρ

2
∥C w∥2,

(4.10)

y (t+1) = z (t) +2ρC w (t+1), (4.11)

z (t+1) = P y (t+1). (4.12)

Thus we have

∥z (t+1) − z∗∥2
2 = ∥y (t+1) − y∗∥2

2
= ∥z (t) − z∗+2ρC (w (t+1) −w∗)∥2

2
= ∥z (t) − z∗∥2

2 +4ρ(w (t+1) −w∗)⊺C⊺ (
z (t) − z∗+ρC (w (t+1) −w∗)

)
(4.13)

Combined with Equation 4.7, Equation 4.13 can be written as

∥z (t+1) − z∗∥2
2 = ∥z (t) − z∗∥2

2 −4ρ(w (t+1) −w∗)⊺
(∇ f (w (t))−∇ f (w∗)+µ(w (t+1) −w (t))

)
.

(4.14)
We have the different terms on the RHS of Equation 4.14 as

µ(w (t+1) −w∗)⊺
(
w (t+1) −w (t))= µ

2
∥w (t+1) −w∗∥2

2 +
µ

2
∥w (t+1) −w (t)∥2

2 −
µ

2
∥w (t) −w∗∥2

2,

(4.15)
since (a −b)T (a −c) = 1

2

(∥a −c∥2
2 −∥b −c∥2

2 +∥a −b∥2
2

)
, and

(w (t+1) −w∗)⊺
(∇ f (w (t))−∇ f (w∗)

)
= (w (t) −w∗)⊺

(∇ f (w (t))−∇ f (w∗)
)+ (w (t+1) −w (t))⊺

(∇ f (w (t))−∇ f (w∗)
)

≥ (w (t) −w∗)⊺
(∇ f (w (t))−∇ f (w∗)

)− µ
2 ∥w (t+1) −w (t)∥2

2 − 1
2µ∥∇ f (w (t))−∇ f (w∗)∥2

2,
(4.16)

since 2aT b ≤ ∥a∥2
2 +∥b∥2

2.
Since f (w) is assumed m-strongly convex and β-smooth, we have

(w (t) −w∗)⊺
(∇ f (w (t))−∇ f (w∗)

)≥ m∥w (t) −w∗∥2
2, (4.17)

4

20 4. DISTRIBUTED OPTIMIZATION VIA INEXACT PDMM

and

∥∇ f (w (t))−∇ f (w∗)∥2 ≤β∥w (t) −w∗∥2. (4.18)

So the inequality in Equation 4.16 becomes

(w (t+1) −w∗)⊺
(∇ f (w (t))−∇ f (w∗)

)
≥ m∥w (t) −w∗∥2

2 − µ
2 ∥w (t+1) −w (t)∥2

2 − β2

2µ∥w (t) −w∗∥2
2

= (m − β2

2µ)∥w (t) −w∗∥2
2 − µ

2 ∥w (t+1) −w (t)∥2
2,

(4.19)

With Equation 4.15 and Equation 4.19, Equation 4.14 becomes

∥z (t+1)−z∗∥2
2−∥z (t)−z∗∥2

2 ≤−4ρ(m−β
2

2µ
)∥w (t)−w∗∥2

2−4ρ
µ

2

(∥w (t+1) −w∗∥2
2 −∥w (t) −w∗∥2

2

)
.

(4.20)

Iterating over t yields

4ρ(m − β2

2µ)
∑t
ℓ=1 ∥w (ℓ) −w∗∥2

2

≤ 2ρµ
(∥w (0) −w∗∥2

2 −∥w (t+1) −w∗∥2
2

)+∥z (0) − z∗∥2
2 −∥z (t+1) − z∗∥2

2
≤ 2ρµ∥w (0) −w∗∥2

2 +∥z (0) − z∗∥2
2.

(4.21)

So the RHS of Equation 4.21 is bounded and thus we can say that, as long as m− β2

2µ > 0,

i.e. µ> β2

2m , we have

lim
t→∞

∥∥w (t) −w∗∥∥2
2 = 0,

thus

w (t) → w∗.

Privacy Bound
From Equation 4.9, the revised privacy bound can be expressed as

∇ fi

(
w (t)

i

)
−∇ fi

(
w (t+2)

i

)
= −(µ+ρdi)(w (t+1)

i −w (t+3)
i)+µ(w (t)

i −w (t+2)
i)−∑

j∈Ni
B⊺

i | j (z (t)
i | j − z (t+2)

i | j)

= −(µ+ρdi)(w (t+1)
i −w (t+3)

i)+µ(w (t)
i −w (t+2)

i)+2ρdi w (t+1)
i −2ρ

∑
j∈Ni

w (t+2)
j

= (ρdi −µ)w (t+1)
i + (µ+ρdi)w (t+3)

i +µ(w (t)
i −w (t+2)

i)−2ρ
∑

j∈Ni
w (t+2)

j .
(4.22)

So for the QA-PDMM, the adversary can still derive the difference of gradients when
knowing the value of µ. The case is similar with kmax = 1, since the w-update only
has a one-time calculation and the gradient difference can eventually be written as an
expression related to w .

4.3. EXPERIMENTS

4

21

4.3. EXPERIMENTS
We first validate it on a simple case of binary logistic regression in Chapter 3. A connected
RGG network with N = 60 nodes is generated. Each node i holds ni = 1 data samples
xi k ∈ R2 and binary labels ℓi ∈ {0,1}. The two datasets were generated from random
samples drawn from a unit variance Gaussian distribution with mean µ0 = (−1,−1)⊺
(ℓi k = 0) and mean µ1 = (1,1)⊺ (ℓi k = 1). PDMM was used for decentralized learning with
constant ρ = 0.4 and the two weight updates mentioned in this chapter were implemented.
In the iterative method, a fixed learning rate of α= 0.1 is used for gradient descent. We
use the FedAvg in centralized FL as the baseline with the same dataset and single gradient
descent iteration having the same learning rate as the rate used in decentralized FL.

Figure 4.1 shows the whole dataset in the system and a bunch of well-trained local
models after global convergence. These local models converge consistently (overlapped)
and demonstrate good performance in classifying the entire dataset.

Figure 4.1: Dataset and well-trained models

We verify the effectiveness of both inexact updates, as shown in Figure 4.2. For the
iterative method, only a small kmax is needed in each round to approximate the solution
of the subproblem. It can be observed that the increase in kmax does not bring an obvious
faster convergence (curves of kmax ≥ 10 almost overlapped). This implies that nodes
do not need to allocate too many computational resources to approximate the exact
solutions of the subproblems. And for quadratic approximation, finding an appropriate
value for µ is important. A smaller value of µ could accelerate convergence but must

satisfy µ> β2

2m .

4

22 4. DISTRIBUTED OPTIMIZATION VIA INEXACT PDMM

Figure 4.2: PDMM with the inexact update. (a) Iterative method. (b) Quadratic Approximation

5
GRADIENT INFORMATION-BASED

ATTACK IN FEDERATED LEARNING

In this chapter, we analyze the information obtained by eavesdropping and passive nodes
in FL, along with the associated attacks. Section 5.1 describes the gradient information
leakage in communication channels. Section 5.2 discusses the attacks adversaries can em-
ploy to exploit the leaked information. We highlight the differences in privacy-preserving
aspects of average consensus-based and optimization-based FL in Section 5.3. Finally,
Section 5.4 provides corresponding experimental results.

5.1. INFORMATION LEAKAGE
In this section, we describe the information leakage in both average consensus-based
and optimization-based approaches under the assumed threat model in subsection 2.3.1.

5.1.1. GRADIENT LEAKAGE
Considering the threat model discussed in subsection 2.3.1, direct leakage of gradients
only occurs in a few cases. In the average consensus-based approach in both centralized
and decentralized topology, the exchange of gradients/weights in each update can lead to
gradient leakage, such as FedSGD. In the former case, the gradients are obtained directly
from eavesdropping; while in the latter case, the gradient information can be derived by
taking the difference between weights from two consecutive communication rounds.

Another possible case is the original PDMM algorithm. Since the original PDMM al-

gorithm transmits the variable z directly, eavesdropping can reveal
{

z (t)
j |i : t ≥ 1,(i , j) ∈ E

}
.

Also as shown in subsection 2.3.3, if the adversary continuously eavesdrops on the mes-
sages in a sufficient number of communication rounds, the local models w (t)

i can be
approximated. Thus in the optimal condition in Equation 2.11 we can see that the last
two terms on the RHS,

∑
j∈Ni

B⊺
i | j z (t)

i | j and ρdi w (t+1)
i are revealed, gradients ∇ fi (w (t)

i) can

be calculated as −∑
j∈Ni

B⊺
i | j z (t)

i | j −ρdi w (t+1)
i . In conclusion, we can say that differential

PDMM with subspace perturbation can avoid direct gradient leakage.

23

5

24 5. GRADIENT INFORMATION-BASED ATTACK IN FEDERATED LEARNING

But subspace perturbation is only suitable for the decentralized topology as we men-
tioned in subsection 2.3.2 that the number of edges should be larger or equal to the
number of nodes to ensure subspace H̄⊥

p is non-empty. Recently research [33] shows that
optimization-based algorithms in centralized topology, like FedSplit [34] and SCAFFOLD
[35] are actually the special cases of PDMM. We have the PDMM form in the centralized
network as [33]

nodes

 w (t+1)
i = argmin

(
fi (wi)+ ρ

2

∥∥∥wi − z (t)
s|i

∥∥∥2
)

z (t+1)
i |s = 2w (t+1))

i − z (t)
s|i

(5.1)

server

{
w (t+1)

s = 1
N

∑N
i=1 z (t+1)

i |s
z (t+1)

s|i = 2w (t+1)
s − z (t+1)

i |s
(5.2)

In each round, the nodes send {zi |s } to the server and the server updates the parameter
and then sends zs|i to node i ∈ V .

Assuming we have eavesdropping and passive nodes (not the server) as cooperative
adversaries. Since {zi |s , zs|i } are exposed to the adversary, from Equation 5.1 we can obtain

the local model w (t+1)
i = z(t+1)

i |s +z(t)
s|i

2 . For the subproblems, we have the optimality condition
as

0 =∇ fi

(
w (t+1)

i

)
+ρ(w (t+1)

i − z (t)
s|i).

Thus gradients ∇ fi

(
w (t+1)

i

)
of the original problem are revealed.

Approximated Gradient Leakage
In many practical average consensus-based applications, due to the factors like com-

munication overhead, it is not feasible to exchange updates at every round. For example,
in FedAvg, E > 1 or B < ∞ (more than one epoch or using mini-batch SGD). In this
case, when weights are exchanged over non-encrypted channels, the leaked information
essentially contains multiple updates and updates from multiple batches.

This approach in FL indeed does increase the difficulty for adversaries to launch
attacks. However, it is not invulnerable to attacks designed on gradients. For instance,
[36] uses a simple strategy to approximate the gradient of each epoch with multiple
updates. They divide the leaked information by the number of epochs, thus getting an
approximation of the gradient.

5.1.2. DIFFERENCE OF GRADIENTS LEAKAGE
When considering the strategy of inserting subspace perturbation to differential ADMM/PDMM,

we assume that the adversary has access to the eavesdropped information
{
∆z (t)

j |i : t ≥ 1,(i , j) ∈ E
}

.

In the ideal case, by observing an infinite number of rounds of messages transmitted
channel and exact update in each sub-problem, the upper bound of information leakage
for any victim node i is given by the difference of gradients at time t and t +2, which
is shown in Equation 2.9. In specific inexact update mentioned in Chapter 4, with the
knowledge of hyperparameters, such as learning rate α or quadratic approximation factor
µ, the difference of gradients can still be inferred with different expressions.

In other cases, inevitable noises are introduced in the estimation of privacy bound,
thus only an approximation of the difference of gradients can be obtained.

5.2. ATTACK

5

25

5.2. ATTACK
The common attack based on gradient information leakage is described in this section,
including label inference in subsection 5.2.1 and gradient inversion attack in subsec-
tion 5.2.2.

5.2.1. LABEL INFERENCE ATTACK
The private information (xi ,ℓi) for i ∈ V that nodes hold and expect to preserve contains
data xi and label ℓi . The label information is not only sensitive but also can help with the
recovery of private data.
Label inference is available with the gradient

It has been shown that the label information ℓi can be analytically determined from
the leaked gradients of the output layer in the early rounds [14], [37]. Consider the local
model for multi-classification has L layers and is trained with cross-entropy loss.

Firstly consider the case where the gradient only contains one sample update, i.e.
B = 1 [14]. Let zi ,L = (zi ,1, . . . , zi ,C) denote the logits in the output layer, the loss function
is given by

fi (wi) =− log
(ezi ,ℓi∑

j ezi , j

)= log
(∑

j ezi , j
)− zi ,ℓi . (5.3)

Let wi ,L,c denote the weights in the output layer L corresponding to zi ,c , i.e. zi ,c =
w⊺

i ,L,c ai ,L−1 +bi ,L,c , where ai ,L−1 is the activation at layer L −1. The gradient of fi (wi)
with respect to wi ,L,c can then be expressed as [14]:

∇′ fi (wi ,L,c)≜ ∂ fi (wi)

∂wi ,L,c
= ∂ fi (wi)

∂zi ,c

∂zi ,c

∂wi ,L,c
= gc aL−1, (5.4)

and gc is the gradient of the cross entropy in Equation 5.3 with respect to logit c given by

gc = ezi ,c∑
j ezi , j

−δc,ℓi . (5.5)

Hence, gc < 0 for c = ℓi and gc > 0 otherwise. Since the activation aL−1 is independent
of the class index c, the ground-truth label ℓi can be inferred from the shared gradients
since ∇′⊺ fi (wi ,L,ℓi)∇′ fi (wi ,L,c) = gℓi gc∥aL−1∥2 < 0 for c ̸= ℓi and positive only for c = ℓi .

Similar results hold for the case where B > 1 [37]. For B > 1, we have the gradient as
the average of each sample, thus we modified gc for each label c as

gc = 1

B

B∑
k=1

ezi k,c∑
j ezi k, j

− λc

B
, (5.6)

where λc is the number of occurrences of label c in the batch. In the early rounds, the

untrained model has poor performance in predictions, so ezi k,c∑
j e

zi k, j gets close to zero. Thus

in the batch where B > 1, the magnitude of the gradient is almost proportional to the
number of occurrences of label c, i.e.

∇′ fi (wi ,L,c) ≈−λc

B
aL−1 (5.7)

5

26 5. GRADIENT INFORMATION-BASED ATTACK IN FEDERATED LEARNING

Label inference is not available with the difference of gradients
We can analyze the applicability of label inference attacks with the difference of

gradients in a similar way. For B = 1, we have the representation of the last layer as

∇ f (w (t)
i ,L,c)−∇ f (w (t+2)

i ,L,c) = g (t)
c a(t)

L−1 − g (t+2)
c a(t+2)

L−1

= (ez(t)
i ,c∑

j e
z(t)

i , j

−δc,ℓi

)
a(t)

L−1 −
(ez(t+2)

i ,c∑
j ez(t+2)zi , j

−δc,ℓi

)
a(t+2)

L−1

= (ez(t)
i ,c∑

j e
z(t)

i , j

a(t)
L−1 −

ez(t+2)
i ,c∑

j e
z(t+2)

i , j

a(t+2)
L−1

)−δc,ℓi

(
a(t)

L−1 −a(t+2)
L−1

)
(5.8)

It can be observed that the difference of gradients does not contain sign informa-
tion that can be used to distinguish the label. Moreover, for specific cases like logistic
regression, the model only contains one layer. In those one-layer model structures, the
information from L −1 layer is actually the input data x , i.e. a(t)

L−1 = a(t+2)
L−1 = x . Thus we

have
∇ f (w (t)

i ,L,c)−∇ f (w (t+2)
i ,L,c) = g (t)

c x − g (t+2)
c x

=
 ez(t)

i ,c∑
j e

z(t)
i , j

− ez(t+2)
i ,c∑

j e
z(t+2)

i , j

x
(5.9)

where the Kronecker-delta is cancelled out and the expression is the same for both c = ℓi

or c ̸= ℓi . In an extreme sense, it can be stated in special cases that the difference of
gradients does not contain any label information.

5.2.2. GRADIENT INFORMATION INVERSION ATTACK
Gradient Inversion Attack

The gradients of a model often contain some degree of redundancy with respect
to the original data. This also brings the possibility to reconstruct the data by solving
the inverse problem of computing the gradient. Indeed, non-linear inverse mapping
typically does not have an analytical solution in most cases. As a result, finding an explicit,
analytical solution is challenging. Instead, it is more common to rely on learning-based
approaches to approximate the original data from the gradients. These methods aim to
generate dummy data x ′

i that has consistent dummy gradients ∇ fi (wi , (x ′
i ,ℓ′i)) with the

real gradients ∇ fi (wi , (xi ,ℓi)).
We call this type of attack the gradient inversion attack. The corresponding optimiza-

tion problem can be expressed as [13]

(x ′∗
i ,ℓ′∗i) = argmin

x ′
i ,ℓ′i

∥∥∇ fi (wi , (x ′
i ,ℓ′i))−∇ fi (wi , (xi ,ℓi))

∥∥2 . (5.10)

In subsection 5.2.1 we mentioned the label can be inferred analytically, thus only
optimizing x ′

i is feasible. The implementation with B = 1 is shown in Algorithm 5.
For the general case of exchanging weights, it is also feasible to obtain information

from the approximated gradients [15], [38], like to simulate multiple steps of the local
training process [15] or do one-batch approximation [38].

5.2. ATTACK

5

27

Algorithm 5 Gradient Inversion Attack (B = 1)

Initialization of x ′
i k ▷ Initialization

for i t = 1, ...,n do
Di =

∥∥∇ fi (wi , (x ′
i ,ℓi))−∇ fi (wi , (xi ,ℓi))

∥∥2

x ′
i ← x ′

i −α∇x ′
i
Di

end for
return x ′

i

Differential Gradient Attack

Similarly, we can design a new attack for the difference of gradients leakage. We
transfer the problem to minimizing the following objective

(x ′∗
i ,ℓ′∗i) = argmin

x ′
i ,ℓ′i

∥∥∥∇ fi

(
w (t)

i , (x ′
i ,ℓ′i)

)
−∇ fi

(
w (t+2)

i , (x ′
i ,ℓ′i)

)
−

(
∇ fi

(
w (t)

i , (xi ,ℓi)
)
−∇ fi

(
w (t+2)

i , (xi ,ℓi)
))∥∥∥2

.

(5.11)

Since label inference is not applicable, we are looking for ways to improve the quality
of the attack. In the experiments, there are difficulties in the co-convergence of data and
labels. Therefore, in designing the attack, we employed a traversal of the labels to find the
best solution. As shown in Algorithm 6, to avoid being trapped in a local minimum, we
consider adding an extra threshold verification. When the iteration ends and the value of
the objective function is less than the threshold, the data is considered to be successfully
reconstructed, otherwise, the attack is repeated.

Algorithm 6 Differential Gradient Attack (ni = 1)

Initialization of threshold T
for ℓ′i = 1, ...,C do

Initialization of x ′
i k ▷ Initialization

for i t = 1, ...,n do
Di =

∥∥∥∇ fi

(
w (t)

i , (x ′
i ,ℓ′i)

)
−∇ fi

(
w (t+2)

i , (x ′
i ,ℓ′i)

)
−(

∇ fi

(
w (t)

i , (xi ,ℓi)
)
−∇ fi

(
w (t+2)

i , (xi ,ℓi)
))∥∥∥2

x ′
i ← x ′

i −α∇x ′
i
Di

end for
if Di < T then

T =Di

xopt = x ′
i ,ℓopt = ℓ′i ▷ Validation

end if
end for
return xopt , ℓopt

5

28 5. GRADIENT INFORMATION-BASED ATTACK IN FEDERATED LEARNING

5.3. COMPARISON
In this section, we compare the information obtained by adversaries in average consensus-
based and optimization-based FL. In average consensus-based FL, attacks that aim to
obtain gradients or approximate gradients can occur on any target and at any time dur-
ing training. Additionally, label inference can be used to accelerate and improve the
quality of reconstructed information and also reduce the search space. On the other
hand, optimization-based FL methods require adversaries to obtain and store channel
information over successive rounds. After training stops, adversaries perform backward
computations to obtain the difference of gradients and complete the attack. Label infer-
ence is not applicable to the difference of gradients in this case.

Table 5.1: Information obtained by adversary from average consensus-based and optimization-based FL

Average consensus-based Optimization-based
Attack requirement Messages in one round Messages in enough rounds
Information leakage Gradient Difference of gradients
Label inference attack Available Unavailable

We can consider implementing the average consensus-based approach differentially
like differential PDMM. For example, in the first communication round, the gradients are
transmitted through encrypted channels. Subsequent communications only transmit
the difference of the current round’s gradient and the previous round’s gradient. In this
approach, the adversary can obtain ∇ fi (w (t)

i)−∇ fi (w (t−1)
i) within one observation round.

However, as the model almost converges, ∇ fi (w (t)
i) → 0 for all i ∈ N . Consequently,

the gradient can be approximated by backward calculation from a sufficient number of
successive observations, similar to how w (t)

i is obtained in PDMM.

5.4. EXPERIMENTS
In this section, we demonstrate the data reconstruction performance of differential
gradient attacks in decentralized networks. We will provide examples of gradient leakage
attacks in FedAvg and show the comparisons in the next chapter.
Differential Gradient Attack

We first consider the simple case of logistic regression in Section 4.3 with ni = 1
because it is a special example that we do not need to use the learning-based approach to
implement the attack.

Assuming training continues until complete convergence and the adversary observes
and stores all channel messages throughout the entire duration, the adversary can ideally
recover each local model w (t)

i . We can use the privacy bound derived from the optimal
condition, i.e. Equation 2.13. Combine the gradients in Equation 3.2 and Equation 3.3,
we have

∂ fi

∂wi

(t)

− ∂ fi

∂wi

(t+2)

=
ni∑

k=1

(
y (t)

i k − y (t+2)
i k

)
xi k

= ρdi
(
w (t)

i +w (t+2)
i

)−2ρ
∑

j∈Ni

w (t+1)
j ,

(5.12)

5.4. EXPERIMENTS

5

29

∂ fi

∂bi

(t)

− ∂ fi

∂bi

(t+2)

=
ni∑

k=1

(
y (t)

i k − y (t+2)
i k

)
= ρdi

(
b(t)

i +b(t+2)
i

)−2ρ
∑

j∈Ni

b(t+1)
j .

(5.13)

So for ni = 1, (5.12) is just a scaled version of xi k where the scaling is given by (5.13).

Hence, we can analytically compute xi k = ρdi

(
w (t)

i +w (t+2)
i

)
−2ρ

∑
j∈Ni

w (t+1)
j

ρdi

(
b(t)

i +b(t+2)
i

)
−2ρ

∑
j∈Ni

b(t+1)
j

.

Here we use the iterative method with 1000 iterations to almost get the exact solution
in weight update, the reconstruction is shown in Figure 5.1.

Figure 5.1: Reconstruction of the private data from the difference of gradients

It can be observed that private data is recovered successfully, but the label information
cannot be inferred from it.

We then test the differential gradient attack in a general problem. We generated an
RGG with N = 100 nodes. Two-layer perceptrons were constructed for each node using
Pytorch and we used MNIST [39] as the dataset. PDMM was used with constant ρ = 0.4.
The differential gradient attacks were implemented using the L-BFGS algorithm[40] where
the number of iterations was fixed to 30.

Figure 5.2 and Figure 5.3 show the performance of the attack in multi-layer percep-
tron. The recovered images are the results corresponding to the minimum value of the
optimization problems obtained after traversing the label.

For the case ni = 2 in Figure 5.3, the order of the reconstructed images will be different,
but the attack is still effective.
Label Inference

Since the label cannot be analytically computed in the difference of gradients, in the
implementation we traverse all possible labels to find out the optimal solution. The above

5

30 5. GRADIENT INFORMATION-BASED ATTACK IN FEDERATED LEARNING

Figure 5.2: Attack for multi-layer perceptron, ni = 1. (a) The ground truth. (b) The reconstruction.

Figure 5.3: Attack for multi-layer perceptron, ni = 2. (a) The ground truth. (b) The reconstruction.

5.4. EXPERIMENTS

5

31

results with ni = 1 and ni = 2 are the kept optimal solution. Since the wrong label leads to
the wrong solution, successful reconstruction of the image also means that the label is
successfully found. As can be seen, the attack is not available when there are duplicate
labels in the batch. This is consistent with the case of gradient-based attacks. We will
show other results in the next chapter.

6
DEFENSE STRATEGY

In this chapter, we present defense strategies against differential gradient attacks dis-
cussed in Chapter 5. Section 6.1 describes several types of introduced errors and perturba-
tions, which can be used as defense mechanisms. Section 6.2 outlines the corresponding
defense strategies. Additionally, Section 6.3 showcases experimental results demonstrat-
ing the effectiveness of some of these strategies.

6.1. NOISE AND PERTURBATIONS
Convergence Error

As mentioned earlier, one of the prerequisites for the adversary to make a precise
inference on the privacy bound is to have the knowledge of the fully converged global
model w∗. However, in practical applications, the training process often stops after a
finite number of communication rounds, say tmax. As a consequence, the adversary only
knows w∗ up to an error and can therefore only estimate the individual w (t)

i s up to a
certain accuracy.

To quantify this error, let ϵ(tmax)
i = ŵ (tmax)

i −w (tmax)
i be the adversary’s estimation error

in w (tmax)
i . Since the adversary has knowledge of w (t+1)

i −w (t)
i at every iteration, we have

ŵ (t)
i = ŵ (tmax)

i −
tmax−1∑
τ=t

(
w (τ+1)

i −w (τ)
i

)
= w (tmax)

i −
tmax−1∑
τ=t

(
w (τ+1)

i −w (τ)
i

)+ϵ(tmax)
i

= w (t)
i +ϵ(tmax)

i ,

(6.1)

for 1 ≤ t ≤ tmax. So the adversary can only estimate Equation 2.13 up to a certain
accuracy determined by ϵ(tmax)

i at any round t .
More specifically, the introduction of the error in the difference of gradients depends

on the degree of global convergence at tmax. Assume the network has a corrupted node

33

6

34 6. DEFENSE STRATEGY

c ∈ V and adversary uses w (tmax)
c as the approximation of w∗, that is ŵ (tmax)

i = w (tmax)
c for

∀i ∈ V . Thus we have

∇ fi

(
w (t)

i

)
−∇ fi

(
w (t+2)

i

)
= ρdi

(
ŵ (t)

i + ŵ (t+2)
i

)
−2ρ

∑
j∈Ni

ŵ (t+1)
j

= ρdi

(
w (t)

i +w (t+2)
i

)
−2ρ

∑
j∈Ni

w (t+1)
j +2ρdiϵ

(tmax)
i −2ρ

∑
j∈Ni

ϵ
(tmax)
j

= ρdi

(
w (t)

i +w (t+2)
i

)
−2ρ

∑
j∈Ni

w (t+1)
j +2ρ

∑
j∈Ni

(w (tmax)
i −w (tmax)

j).

(6.2)
The term 2ρ

∑
j∈Ni

(w (tmax)
i − w (tmax)

j) is the error introduced on RHS, which only

depends on the distance of model w (tmax)
i and the averaged model of i -th node’s neighbors

at tmax . Thus when w (tmax)
i is closer to the average of its neighbors, less error is introduced.

It should be noted that in a few cases, such as the example of logistic regression
with ni = 1 in Section 5.4, the attack is not affected by the changes in the LHS, i.e.

∇ fi

(
w (t)

i , (x ′
i ,ℓ′i)

)
−∇ fi

(
w (t+2)

i , (x ′
i ,ℓ′i)

)
because the changes in both the numerator and

denominator are the same in the division. In such special cases, the specific value of
w (tmax)

c is not important at all, since the error term only depends on the level of conver-
gence. However, when using the general optimization approach, we need the model w (t)

i

and w (t+2)
i to obtain the dummy gradient. Therefore, the knowledge of ŵ (t)

i and ŵ (t+2)
i

introduces errors in ∇ fi

(
ŵ (t)

i , (x ′
i ,ℓ′i)

)
−∇ fi

(
ŵ (t+2)

i , (x ′
i ,ℓ′i)

)
as well.

Training Error
As mentioned in Chapter 4, in some applications, such as training neural networks,

Equation 2.6 is only solved approximately. That is, at every communication round t , the
optimality condition in Equation 2.11 holds approximately, i.e.

∇ fi (w (t+1)
i)+ ∑

j∈Ni

B⊺
i | j z (t)

i | j +ρdi w (t+1)
i = ε(t+1)

i , (6.3)

where εi denotes an approximation error. So the RHS of (2.13) in this case gets an
additional term ε(t)

i −ε(t+2)
i . The bound is modified as

∇ fi

(
w (t)

i

)
−∇ fi

(
w (t+2)

i

)
= ρdi

(
w (t)

i +w (t+2)
i

)
−2ρ

∑
j∈Ni

w (t+1)
j +ε(t)

i −ε(t+2)
i . (6.4)

The training error only affects the update process of w (t+1)
i , for the adversary, it is

possible to recover the exact w (t)
i in each moment.

Transmission Error
Transmission error refers to message inaccuracies that occur during the transmission

due to factors such as noise, and interference in the communication channels. We denote
it as

∆ẑ (t)
j |i =∆z (t)

j |i +n(t)
j |i . (6.5)

Since Equation 2.10 still hold, we have

∆ẑ (t+1)
j |i −∆ẑ (t)

i | j = 2ρBi | j (w (t+1)
i −w (t)

i)+ (n(t+1)
j |i −n(t)

i | j). (6.6)

6.2. DEFENSE STRATEGIES

6

35

The transmission error is introduced when approximate ŵ (t)
i , i.e.

ŵ (t)
i = w (tmax)

i −
tmax−1∑
τ=t

(
w (τ+1)

i −w (τ)
i

)+ 1

2ρ
Bi | j

tmax−1∑
τ=t

(
n(τ+1)

j |i −n(τ)
i | j

)
= w (t)

i + 1

2ρ
Bi | j

tmax−1∑
τ=t

(
n(τ+1)

j |i −n(τ)
i | j

)
.

(6.7)

Thus we have

∇ fi

(
w (t)

i

)
−∇ fi

(
w (t+2)

i

)
= ρdi

(
ŵ (t)

i + ŵ (t+2)
i

)
−2ρ

∑
j∈Ni

ŵ (t+1)
j

= ρ ∑
j∈Ni

(
ŵ (t)

i − ŵ (t+1)
j

)
−ρ ∑

j∈Ni

(
ŵ (t+1)

j − ŵ (t+2)
i

)
= ρdi

(
w (t)

i +w (t+2)
i

)
−2ρ

∑
j∈Ni

w (t+1)
j

+ 1

2

∑
j∈Ni

(
Bi | j

tmax−1∑
τ=t

(
n(τ+1)

j |i −n(τ)
i | j

)
−B j |i

tmax−1∑
τ=t+1

(
n(τ+1)

i | j −n(τ)
j |i

))

− 1

2

∑
j∈Ni

(
B j |i

tmax−1∑
τ=t+1

(
n(τ+1)

i | j −n(τ)
j |i

)
−Bi | j

tmax−1∑
τ=t+2

(
n(τ+1)

j |i −n(τ)
i | j

))
= ρdi

(
w (t)

i +w (t+2)
i

)
−2ρ

∑
j∈Ni

w (t+1)
j

+ 1

2

∑
j∈Ni

Bi | j
(
n(tmax)

j |i +n(tmax)
i | j −n(t)

i | j −n(t+1)
i | j

)
− 1

2

∑
j∈Ni

B j |i
(
n(tmax)

i | j +n(tmax)
j |i −n(t+1)

j |i −n(t+2)
j |i

)
= ρdi

(
w (t)

i +w (t+2)
i

)
−2ρ

∑
j∈Ni

w (t+1)
j

+ ∑
j∈Ni

Bi | j
(
n(tmax)

j |i +n(tmax)
i | j

)
− 1

2

∑
j∈Ni

Bi | j
(
n(t)

i | j +n(t+1)
i | j +n(t+1)

j |i +n(t+2)
j |i

)
(6.8)

The training error is also introduced in the dummy gradient ∇ fi

(
ŵ (t)

i , (x ′
i ,ℓ′i)

)
−

∇ fi

(
ŵ (t+2)

i , (x ′
i ,ℓ′i)

)
as the case of convergence error.

6.2. DEFENSE STRATEGIES
Early Stopping

With the high convergence of the global model, ∇ fi

(
w (t)

i

)
−∇ fi

(
w (t+2)

i

)
→ 0. Since

the error term in Equation 6.2 is fixed for ∀t ∈ [1, tmax], for the adversary, it is necessary to
store the observation start from the early stage to reduce relative error. To some extent, it
increases the computational and spatial costs of the attacks. Furthermore, early stopping
serves two purposes. On one hand, it helps prevent model overfitting; on the other hand,
it can also increase ϵ(tmax)

i , thereby enhancing the extent of privacy preservation.

6

36 6. DEFENSE STRATEGY

Inexact Update
Since the successful implementation of the attack is based on the subproblem reach-

ing a known certain point (the optimal point or the point that a single step reached),
the inexact approximation of subproblems can form a natural defence. To achieve pri-
vacy preservation, we can implement a strategy of intentionally blurring the adversary’s
approximations of the privacy bounds. In Chapter 4 we mentioned two inexact update
methods for distributed machine learning and gave the convergence guarantee with
finitely summable errors. We can divide the inexact update into two cases. When kmax = 1
or kmax =∞ or use QA-PDMM, the adversary can still infer the privacy bound as long
as they hold the knowledge of hyperparameter, i.e. α and µ. Thus nodes should treat
their own hyperparameters as private information as well, to avoid precise attacks by
adversaries. Another case is kmax > 1, its intermediate state in training is unknowable to
the adversary and therefore the introduction of errors is inevitable.
Quantization

Adaptive transmission quantization can be considered as introducing additive noise
with a uniform distribution in the channel. Similar to inexact updates, this noise ef-
fectively blurs the approximation of privacy bound, adding a level of uncertainty to
the adversary’s knowledge. At the same time, quantization leads to lower bandwidth
requirements and decreased communication costs.
Larger Batchsize

When the node has a larger local dataset , the difficulty of attacks increases signifi-
cantly. More samples mean more information is contained in the difference of gradients,
making the attack harder to converge. In fact, this has a certain similarity to the batchsize
in the stochastic gradient descent. If B = 1, then its gradient update direction is the opti-
mal direction for that sample; if B is larger than the direction is the average of samples,
which obviously increases the difficulty of gradient inversion. Indeed, current gradient
inversion attacks and label inference mainly focus on scenarios with small batches.

6.3. EXPERIMENTS
Early Stopping and Quantization

Figure 6.1 investigates the effect of early stopping of the training after a finite number
of rounds tmax. Here we used the example in Section 4.3 and PDMM updates with
kmax = 1 so the privacy bound can be modified as Equation 4.3 to ensure the error in the
reconstruction is solely due to an inaccurate approximation of w (t)

i .
The reconstruction error is defined as the average Euclidean distance between the

reconstructed samples x̂i k and the original data samples xi k given by

1

N

N∑
i=1

∥x̂i k −xi k∥2. (6.9)

We assume there is one corrupt node, say node j , in the network and used ŵ (tmax)
i =

w (tmax)
j for all honest nodes i as the approximated global-converged model.

We can see that for the green curve, as expected, the reconstruction error will decrease
as tmax increases without quantization, i.e., the longer the adversary waits, the higher the
reconstruction accuracy will be.

6.3. EXPERIMENTS

6

37

The FedAvg uses the gradient at t = tmax to do the reconstruction, i.e. xi k =
∂ fi
∂wi
∂ fi
∂bi

. With

the FedAvg algorithm, the reconstructed error does not depend on tmax so the adversary
can launch the attack at any time and no previous observation is needed. Also, the
reconstruction accuracy is consistently better than the accuracy for decentralized FL.

When we consider the approach of quantization, the noise is introduced in trans-
missions. We set fixed cell width ∆ as the precision of the quantizer and test the impact
on the reconstruction in Figure 6.1. The results show that as the variation in zi | j tends
to level off with convergence, the quantizer can effectively prevent the improvement of
reconstruction accuracy.

Figure 6.1: Reconstruction error of as a function of tmax (logistic regression)

Inexact Update
When the system is trained using inexact updates and the adversary has unknown

knowledge about the level of inaccuracy, the adversary can only attempt to approximate
the upper bound of privacy inferred from the optimal conditions, as indicated by Equa-
tion 2.13. We assume that the adversary has access to the accurate value of w (t)

i , i.e.,
tmax →∞. As shown in Figure 6.2, a lower number of iterations can increase the level of
privacy preservation. For a certain error curve, it rises a bit as the used model gradually
converges. This may be due to the fact that the gradient difference gradually converges to
zero as the model converges. Also, we fix the learning rate and the number of iterations
to solve the subproblems, so the fluctuations caused by the introduced errors are higher
compared to the pre-training period.

Similar results are shown in Figure 6.3 of MLP with MNIST and CIFAR-10 [41] datasets.
This time we alternate the data into images so the performance display is visualized. The
noise reacts to the image resulting in a degradation of the image quality.

6

38 6. DEFENSE STRATEGY

Figure 6.2: Reconstruction error as a function of kmax (logistic regression)

Figure 6.3: Reconstruction error as a function of kmax (MLP). (a) The MNIST dataset. (b) The CIFAR-10 dataset.

6.3. EXPERIMENTS

6

39

Local Dataset Size
Figure 6.4 shows reconstruction results for the MNIST dataset (top) and the CIFAR-10

dataset (bottom) for different values of ni . As can be seen from the figure, the inference of
labels is sometimes wrong with increased ni . As an example, for the MNIST dataset and
ni = 4, the digit 0 is reconstructed but it was not included in the training set.

Figure 6.4: Reconstructed inputs for centralized and decentralized FL using the datasets MNIST (top) and
CIFAR-10 (bottom) for different batch size ni = 1,2,4,8 ((a)-(d), respectively).

7
CONCLUSION AND FUTURE WORK

7.1. CONCLUSION
In this report, we explored privacy concerns in optimization-based decentralized FL.
Optimization-based decentralized FL brings the idea that implicitly imposes constraints
in collaborative training, thus combining the steps of local training and aggregation.
This approach was considered in the previous literature to be friendly to heterogeneous
(non-IID) data. Here we also present its superiority in privacy preservation.

We first extended the upper bound of privacy leakage in distributed optimization to
encompass the framework of decentralized federated learning. We show that the upper
bound of leaked information obtained by passive adversaries is essentially the difference
of gradients in successive periods and can be used to recover private data.

Based on that, we compared it to the well-known gradient leakage attacks prevalent
in centralized topologies. Average-consensus based FL leaks the gradient in the channel
directly and the adversary can launch an attack at any moment; on the contrary, leaking
the difference of gradients reduces the risk and for the adversary, the attack requires
monitoring the global data transmission until all nodes are fully converged or almost
converged. This implies a much higher computational and storage overhead.

The results show that the optimization-based decentralized FL outperforms the aver-
age consensus-based FL in the centralized topology from the privacy-preserving point of
view. Label inference is not available in decentralized FL and the reconstruction of the
gradient inversion attack is poor.

We also discussed the effect of the perturbations introduced during training for ad-
versaries. We find that these perturbations, without compromising accuracy, effectively
interfere with the attack. In this case, the corresponding defense strategies, e.g. early
stopping, inexact update and quantization are the preferred means of protecting privacy.

7.2. FUTURE WORK
We list some directions that are valuable for further research.
Asynchronous ADMM/PDMM

41

7

42 7. CONCLUSION AND FUTURE WORK

In this report, the privacy analysis focuses on the synchronous ADMM/PDMM frame-
work. Asynchronous ADMM/PDMM is a more flexible approach since nodes do not need
to have a global clock. For asynchronous ADMM/PDMM, intuitively, the upper bound of
privacy leakage is also applicable. Because the information adversary eavesdrops include
messages in all channels in the entire duration. Thus adversary has the knowledge of each
local clock. Currently, we have not verified this in the experiments.
Start Time tst ar t for Adversary

As the model converges, the variation of z becomes smaller and the difference of
gradients gradually approaches 0. It implies that the amount of effective information
available to the adversary in the late training period is less. One unexplored issue is
the effect of the start time of adversary listens on the data reconstruction. We know
that the end time of eavesdropping introduces a fixed reconstruction error 2ρdiϵ

(tmax)
i −

2ρ
∑

j∈Ni
ϵ

(tmax)
j , and the reconstruction error acts on the difference of gradients at the

time tst ar t and tst ar t +2. Therefore, it is intuitive that the earlier the eavesdropping is
implemented, the smaller the relative error introduced and the better the adversary can
obtain the attack. This still requires more experiments to verify this.
Quantitative Evaluation of Defense Strategy

Chapter 6 proposed several defense strategies and gave validation for the efficiency
from the aspect that the quality of reconstructed data is worse than the case that is
unprotected or in the centralized topology. Quantifying the effectiveness of privacy
preservation is a topic that requires further research. The convergence error and training
error in the subproblem is related to (sub)linear convergence rates, while the adaptive
quantization error follows a uniform distribution. In addition to affecting the adversary’s
computation of the true gradient difference, convergence error and transmission error
also impact the computation of the pseudo-gradient, since they directly affect ŵ (t)

i .

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, and S. Hampson, “Communication-efficient
learning of deep networks from decentralized data,” p. 10,

[2] C. Wallac and S. Giraldo, Federated learning, machine learning, decentralized data,
https://blog.cloudera.com/federated-learning-machine-learning-
decentralized-data/, Accessed: 2020-12-8.

[3] P. H. Jin, Q. Yuan, F. Iandola, and K. Keutzer, “How to scale distributed deep learn-
ing?” arXiv preprint arXiv:1611.04581, 2016.

[4] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized paral-
lel stochastic gradient descent,” Advances in neural information processing systems,
vol. 30, 2017.

[5] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “D2: Decentralized training over
decentralized data,” in International Conference on Machine Learning, PMLR, 2018,
pp. 4848–4856.

[6] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A segmented gossip
approach,” arXiv preprint arXiv:1908.07782, 2019.

[7] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Püschel, “D-admm: A communication-
efficient distributed algorithm for separable optimization,” IEEE Transactions on
Signal processing, vol. 61, no. 10, pp. 2718–2723, 2013.

[8] W. Li, Y. Liu, Z. Tian, and Q. Ling, “Communication-censored linearized admm for
decentralized consensus optimization,” IEEE Transactions on Signal and Informa-
tion Processing over Networks, vol. 6, pp. 18–34, 2019.

[9] H. Chen, Y. Ye, M. Xiao, M. Skoglund, and H. V. Poor, “Coded stochastic admm
for decentralized consensus optimization with edge computing,” IEEE Internet of
Things Journal, vol. 8, no. 7, pp. 5360–5373, 2021.

[10] G. Zhang and R. Heusdens, “Distributed optimization using the primal-dual method
of multipliers,” IEEE Transactions on Signal and Information Processing over Net-
works, vol. 4, no. 1, pp. 173–187, 2017.

[11] T. W. Sherson, R. Heusdens, and W. B. Kleijn, “Derivation and analysis of the primal-
dual method of multipliers based on monotone operator theory,” IEEE transactions
on signal and information processing over networks, vol. 5, no. 2, pp. 334–347, 2018.

[12] K. Niwa, N. Harada, G. Zhang, and W. B. Kleijn, “Edge-consensus learning: Deep
learning on p2p networks with nonhomogeneous data,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020, pp. 668–678.

43

https://blog.cloudera.com/federated-learning-machine-learning-decentralized-data/
https://blog.cloudera.com/federated-learning-machine-learning-decentralized-data/

44 REFERENCES

[13] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in neural
information processing systems, vol. 32, 2019.

[14] B. Zhao, K. R. Mopuri, and H. Bilen, “Idlg: Improved deep leakage from gradients,”
arXiv preprint arXiv:2001.02610, 2020.

[15] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-how
easy is it to break privacy in federated learning?” Advances in Neural Information
Processing Systems, vol. 33, pp. 16 937–16 947, 2020.

[16] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov, “See through
gradients: Image batch recovery via gradinversion,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 337–16 346.

[17] F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shumailov, and N. Paper-
not, “When the curious abandon honesty: Federated learning is not private,” arXiv
preprint arXiv:2112.02918, 2021.

[18] J. Geng, Y. Mou, Q. Li, et al., “Improved gradient inversion attacks and defenses in
federated learning,” IEEE Transactions on Big Data, 2023.

[19] L. Fowl, J. Geiping, W. Czaja, M. Goldblum, and T. Goldstein, “Robbing the fed:
Directly obtaining private data in federated learning with modified models,” arXiv
preprint arXiv:2110.13057, 2021.

[20] J. Zhu and M. Blaschko, “R-gap: Recursive gradient attack on privacy,” arXiv preprint
arXiv:2010.07733, 2020.

[21] W. Wei, L. Liu, M. Loper, et al., “A framework for evaluating gradient leakage attacks
in federated learning,” arXiv preprint arXiv:2004.10397, 2020.

[22] H. Yang, M. Ge, K. Xiang, and J. Li, “Using highly compressed gradients in feder-
ated learning for data reconstruction attacks,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 818–830, 2022.

[23] D. Pasquini, M. Raynal, and C. Troncoso, “On the privacy of decentralized machine
learning,” arXiv preprint arXiv:2205.08443, 2022.

[24] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,” Appl. comput.
math, vol. 15, no. 1, pp. 3–43, 2016.

[25] T. W. Sherson, R. Heusdens, and W. B. Kleijn, “Derivation and analysis of the primal-
dual method of multipliers based on monotone operator theory,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 5, no. 2, pp. 334–347, Jun.
2019, ISSN: 2373-776X, 2373-7778. DOI: 10.1109/TSIPN.2018.2876754. [Online].
Available: https://ieeexplore.ieee.org/document/8496887/ (visited on
05/23/2022).

[26] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[27] Q. Li, “Communication efficient privacy-preserving distributed optimization using
adaptive differential quantization,” Signal Processing, 2022.

https://doi.org/10.1109/TSIPN.2018.2876754
https://ieeexplore.ieee.org/document/8496887/

REFERENCES 45

[28] Q. Li, R. Heusdens, and M. G. Christensen, “Privacy-preserving distributed opti-
mization via subspace perturbation: A general framework,” IEEE Transactions on
Signal Processing, vol. 68, pp. 5983–5996, 2020.

[29] J. Dall and M. Christensen, “Random geometric graphs,” Physical Review E, vol. 66,
no. 1, p. 016 121, Jul. 24, 2002, ISSN: 1063-651X, 1095-3787. DOI: 10.1103/PhysRevE.
66 . 016121. [Online]. Available: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevE.66.016121 (visited on 09/17/2022).

[30] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”
IEEE transactions on information theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[31] J. A. Jonkman, T. Sherson, and R. Heusdens, “Quantisation effects in distributed
optimisation,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, 2018, pp. 3649–3653.

[32] M. O’Connor, G. Zhang, W. B. Kleijn, and T. D. Abhayapala, “Function splitting and
quadratic approximation of the primal-dual method of multipliers for distributed
optimization over graphs,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 4, no. 4, pp. 656–666, 2018.

[33] G. Zhang, K. Niwa, and W. B. Kleijn, “Revisiting the primal-dual method of multipli-
ers for optimisation over centralised networks,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 8, pp. 228–243, 2022.

[34] R. Pathak and M. J. Wainwright, “Fedsplit: An algorithmic framework for fast fed-
erated optimization,” Advances in neural information processing systems, vol. 33,
pp. 7057–7066, 2020.

[35] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold:
Stochastic controlled averaging for federated learning,” in International Conference
on Machine Learning, PMLR, 2020, pp. 5132–5143.

[36] J. Geng, Y. Mou, F. Li, et al., “Towards general deep leakage in federated learning,”
arXiv preprint arXiv:2110.09074, 2021.

[37] A. Wainakh, F. Ventola, T. Müßig, et al., “User label leakage from gradients in feder-
ated learning,” arXiv preprint arXiv:2105.09369, 2021.

[38] J. Xu, C. Hong, J. Huang, L. Y. Chen, and J. Decouchant, “Agic: Approximate gradient
inversion attack on federated learning,” in 2022 41st International Symposium on
Reliable Distributed Systems (SRDS), IEEE, 2022, pp. 12–22.

[39] L. Deng, “The mnist database of handwritten digit images for machine learning
research [best of the web],” IEEE signal processing magazine, vol. 29, no. 6, pp. 141–
142, 2012.

[40] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale
optimization,” Mathematical programming, vol. 45, no. 1-3, pp. 503–528, 1989.

[41] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

https://doi.org/10.1103/PhysRevE.66.016121
https://doi.org/10.1103/PhysRevE.66.016121
https://link.aps.org/doi/10.1103/PhysRevE.66.016121
https://link.aps.org/doi/10.1103/PhysRevE.66.016121

A
APPENDIX

The appendix includes the submitted conference paper about information leakage analy-
sis and the corresponding attack in decentralized federated learning.

47

Privacy Analysis of Decentralized Federated Learning

Wenrui Yu∗

Delft University of Technology
w.yu-6@student.tudelft.nl

Qiongxiu Li∗
Tsinghua University

qiongxiuli@mail.tsinghua.edu.cn

Milan Lopuhaä-Zwakenberg
University of Twente

m.a.lopuhaa@utwente.nl

Mads GræsbChristensen
Aalborg University
mgc@es.aau.dk

Richard Heusdens
Netherlands Defence Academy and Delft University of Technology

r.heusdens@tudelft.nl
∗

Abstract

In this paper we demonstrate that decentralized federated learning (FL) outperforms
centralized FL when privacy is concerned. Recently, privacy issues in FL have
received a lot of attention. Most of the existing work focuses on centralized FL
where it is assumed that a central server is available. As for the decentralized
case where no central server is required, little research has been done as it is
generally difficult to analytically track information loss over iterations. In this
paper, we take a first step to perform a theoretical privacy analysis of decentralized
FL. By analyzing the information exchange in the decentralized network, we derive
an upper bound on privacy leakage and show information-theoretically that the
privacy loss in decentralized FL is less than or equal to the loss in centralized
FL. Unlike centralized FL, where local gradients of individual participants are
shared, differences of local gradients over successive iterations are revealed in
decentralized FL. Traditional gradient inversion attacks can still be applied to
decentralized FL to reconstruct the input data, but the reconstruction performance
is severely degraded. One reason is that in centralized FL the label information
can often be computed analytically from the gradients, while this is not possible in
decentralized FL. Numerical simulations support our theoretical findings.

1 Introduction

Federated Learning (FL) performs collaborative training between multiple participants/nodes/clients
without directly sharing each node’s raw data [1]. FL can be implemented using a centralized/star
topology or a decentralized topology, as shown in Figure 1[2]. The centralized topology, which is
the predominant topology in FL, has a central server which communicates with each and every node
individually. In such a setting, the main procedure of FL can be summarized into three steps: 1) all

∗∗ Equal contribution

Preprint. Under review.

Figure 1: Two topologies in federated learning

nodes first train local models based on their own private dataset and send the local model updates,
such as gradients, to the server; 2) the server aggregates the local models and determines a global
model and returns this model to all nodes; 3) all nodes update the local models based on the updated
global model and send the model updates back to the server, after which step 2 and 3 are repeated until
convergence. In practice a centralized server might not be available as it requires high communication
bandwidth and the server must be trusted by all clients. In addition, centralized topologies have a
single point of failure and are therefore vulnerable to attacks aiming to bring down the entire network.
Decentralized processing offers an alternative as information is only exchanged between (locally)
connected nodes, thereby eliminating the need for a central server for model aggregation.

Decentralized FL protocols fall into two main categories. The first category contains average-
consensus based protocols. With these protocols, nodes still train their local model, but instead of
sending model parameters to a central server, the data aggregation is done in a distributed manner.
Examples of these protocols are the empirical methods where the data aggregation is done using
average consensus techniques such as gossiping SGD [3], D-PSGD [4] and variations thereof [5, 6].
However, as shown in [7], these methods do not perform well in the case that the data at the nodes
are not independent and identically distributed (non-IID). The second category contains protocols
that are based on distributed optimization. These (iterative) methods formulate the underlying
problem as a constrained optimization problem and solve the optimization problem using distributed
solvers like ADMM [8, 9, 10] or PDMM [11, 12, 13]. The constraints are formulated in such a way
that, after convergence, the learned models at all nodes are identical. Hence, there is no explicit
separation between updating local models and the update of the global model, i.e., the three steps in
centralized FL mentioned before are executed simultaneously. As shown in [13], these methods have
the advantage that they also work well for non-IID data.

Although the data is not exchanged directly with a server or neighboring nodes, FL is known to be
vulnerable to privacy attacks as the exchanged information, such as gradients or weights, still poses a
risk for privacy leakage. Most of the existing work on privacy leakage focuses on the centralized
case. One example is the gradient inversion attack [14, 15, 16, 17, 18, 19, 20, 21, 22, 23], which is an
iterative method for finding input data that produce a gradient similar to the gradient generated by the
private data. Such attacks are based on the assumption that similar gradients are produced by similar
datasets. To recover inputs, knowing label information helps accelerate the optimization process and
improves the reconstructing performance. It is shown in [15] that for a neural network (NN) trained
with cross-entropy loss, label information can be analytically computed from the gradients of the last
layer. For that reason, the label information is usually assumed to be known in existing work [16].

In [24] it is shown that average-consensus based decentralized FL protocols do not offer privacy
advantages over centralized FL, as the traditional gradient inversion attack can still be applied to
these protocols. The privacy loss of optimization-based decentralized FL protocols, on the other hand,
has, to the best of our knowledge, been rarely investigated. Analyzing privacy leakage in distributed
algorithms is generally a challenging task as it is difficult to track information leakage over several
iterations. In this paper, we take a first step to perform a theoretical privacy analysis of decentralized
FL by analyzing the information flow in the network. Our main contributions are summarized below:

• By analyzing the gradient information shared in optimization-based decentralized FL, we
derive an upper bound on the privacy loss which is the difference of local gradients over
successive iterations, and show that from an information theoretical point of view the privacy
loss in decentralized FL is less than or equal to the loss in centralized FL where local
gradients are revealed. To the best of our knowledge, this is the first theoretical privacy
analysis in this context.

2

• We show that, in the case of optimization-based decentralized FL, a series of homogeneous
gradient inversion attacks can still be applied to reconstruct the original input data, but that
the reconstruction performance is significantly degraded compared to centralized FL as there
is less information available to the adversary. In addition, analytical label recovery [15] is
no longer possible. Consequently, optimization-based decentralized FL is less vulnerable to
privacy attacks than centralized FL.

In the following a theoretical privacy analysis is given for optimization-based decentralized FL and
numerical verifications are provided to support our theoretical findings.

2 Preliminaries

2.1 Decentralized problem formulation

We will model the network of nodes/agents by a graph G = (V, E), where V is the set of vertices
representing the nodes and E is the set of undirected edges representing the communication links
in the network. We use Ni = {j ∈ V : (i, j) ∈ E} to denote the set of neighbors of node i and
di = |Ni| is the degree of node i. Each node i has a local dataset {(xik, ℓik) : k = 1, . . . , ni},
where xik ∈ Rv is an input sample, ℓik ∈ R is the associated label and ni is the number of input
samples. The dimension v of the data samples is application-dependent. Collecting the xiks and
ℓiks, we define xi = (x⊺

i1, . . . ,x
⊺
ini

)⊺ and ℓi = (ℓi1, . . . , ℓini
)⊺, where the superscript (·)⊺ denotes

matrix transposition. Let fi(wi, (xi, ℓi)) denote the cost function of node i where wi ∈ Ru is the
model weight to be learned from the input dataset (xi, ℓi), whose dimension, again, depends on
the application. In the remainder of the paper we will omit the (xi, ℓi) dependency for notational
convenience when it is clear from the context and simply write fi(wi).

The goal of optimization-based decentralized FL is to collaboratively learn a global model, given the
local datasets {(xi, ℓi) : i ∈ V}, without any centralized coordination. The underlying problem can
be posed as a constrained optimization problem given by

min
{wi : i∈V}

∑
i∈V

fi(wi),

subject to ∀(i, j) ∈ E : Bi|jwi +Bj|iwj = 0,
(1)

where Bi|j ∈ Ru×u is used to guarantee consensus after convergence, i.e., ∀i ∈ V,∀j ∈ V : wi = wj .
Hence, Bi|j = −Bj|i = ±Iu, where Iu is the u× u identity matrix. In the following we will use
the following convention:

∀ (i, j) ∈ E : Bi|j =

{
Iu, if i < j,

−Iu, if i > j.
(2)

2.2 Threat model

We consider two widely-used adversary models: the eavesdropping and the passive (or honest-but-
curious) adversary model. The passive adversary consists of a number of colluding nodes, referred to
as corrupt nodes, which will follow the algorithm instructions but will use received information to
infer the input data of the other, non-corrupt nodes. We will refer to the latter as honest nodes. To this
end, the adversaries have the following information at their disposal: (a) all messages communicated
through non-encrypted channels, and (b) all information collected by the corrupt nodes.

3 Decentralized FL using ADMM/PDMM

The optimization problem (1) can be solved using distributed solvers like ADMM [25] and PDMM
[11, 12]. ADMM is guaranteed to converge to the optimal solution for arbitrary convex, closed and
proper (CCP) objective functions fi, whereas PDMM will converge in the case of differentiable and
strongly convex functions [12]. Recently, it has been shown that these solvers are also effective when
applied to non-convex problems like training deep neural networks (DNNs) [13]. From a monotone
operator theory perspective [26, 12], ADMM is a 1

2 -averaged version of PDMM and can, therefore,
be analyzed in the same framework. Due to the averaging, ADMM is generally slower than PDMM,

3

assuming it converges. ADMM/PDMM solves the optimization problem (1) iteratively, where the
update equations for node i are given by [27]

w
(t+1)
i = argmin

wi

(
fi(wi) +

∑
j∈Ni

z
(t)⊺
i|j Bi|jwi +

ρdi
2

w2
i

)
, (3)

∀j ∈ Ni : z
(t+1)
j|i = (1− θ)z

(t)
j|i + θ

(
z
(t)
i|j + 2ρBi|jw

(t+1)
i

)
, (4)

where ρ is a constant controlling the rate of convergence. The parameter θ ∈ (0, 1] controls the
operator averaging, where θ = 1

2 (Peaceman-Rachford splitting) results in ADMM and θ = 1
(Douglas-Rachford splitting) yields PDMM. Equation (3) updates the local variables (weights) wi,
whereas (4) represents the exchange of auxiliary variables in the network. The optimality condition
for (3) is given by2

0 = ∇fi(w(t+1)
i) +

∑
j∈Ni

B⊺
i|jz

(t)
i|j + ρdiw

(t+1)
i . (5)

Since the adversary can eavesdrop all communication channels, by inspection of (5), transmitting
the auxiliary variables zj|i would reveal ∇fi(w(t)

i), as w(t)
i can be determined from (4). Encrypting

zj|i at every iteration would solve the problem but is computationally too demanding. To overcome
this problem, only initial values z

(0)
j|i are securely transmitted and ∆z

(t+1)
j|i = z

(t+1)
j|i − z

(t)
j|i are

transmitted (without any encryption) during subsequent iterations [27, 28]. Thus, upon receiving
∆z

(t+1)
j|i , the auxiliary variable z

(t+1)
j|i can be constructed as

z
(t+1)
j|i = z

(t)
j|i +∆z

(t+1)
j|i =

t+1∑
τ=1

∆z
(τ)
j|i + z

(0)
j|i . (6)

Hence, z(t+1)
j|i can only be determined whenever z(0)

j|i is known, so that eavesdropping only reveals
{
∆z

(t)
j|i : t ≥ 1, (i, j) ∈ E

}
. (7)

Details of decentralized FL based on distributed optimization are summarized in Algorithm 1.
Although exact solutions of (3) are usually unavailable, convergence analysis of inexact updates
has been extensively investigated. It is shown in [13] that, using quadratic approximations, PDMM
achieves good performance for non-convex tasks such as training DNNs. Also, [29] gives convergence
guarantees in the case of transmitting quantized variables.

4 Privacy bound

In this section, we derive an upper bound on the privacy loss of Algorithm 1. For simplicity, we will
consider θ = 1, i.e., PDMM, but the results can be easily generalized to arbitrary θ ∈ (0, 1]. We have
the following result.
Theorem 1. Assume there is at least one corrupt node in the network, then for each honest node i

the adversary can learn {w(t)
i : t ≥ 1} as well as

∇fi
(
w

(t)
i

)
−∇fi

(
w

(t+2)
i

)
, t ≥ 1. (8)

Proof. We first prove that all {w(t)
i : t ≥ 1} are known to the adversary. Using (4) we have

∆z
(t+1)
j|i −∆z

(t)
i|j = z

(t+1)
j|i − z

(t)
j|i −

(
z
(t)
i|j − z

(t−1)
i|j

)

= 2ρBi|jw
(t+1)
i − 2ρBi|jw

(t)
i = 2ρBi|j(w

(t+1)
i −w

(t)
i). (9)

By collecting all ∆z
(t+1)
j|i s, the adversary has knowledge of w(t+1)

i −w(t)
i at every iteration. Moreover,

since w
(t)
i → w∗ for all i ∈ V , the adversary can infer the individual w(t)

i s.

2Note that ADMM can also be applied to non-differentiable problems where the optimality condition can be
expressed in terms of subdifferentials: 0 ∈ ∂fi(w

(t+1)
i) +

∑
j∈Ni

B⊺
i|jz

(t)

i|j + ρdiw
(t+1)
i .

4

Algorithm 1 Decentralized FL using differential ADMM/PDMM

Initialization of z(0) ▷ Initialization
for t = 0, 1, ... do

for each node i ∈ V in parallel do ▷ Update nodes
w

(t+1)
i = argminwi

(
fi (wi) +

∑
j∈Ni

z
(t)⊤
i|j Bi|jwi +

ρdi

2 w2
i

)

for each j ∈ Ni do
z
(t+1)
j|i = (1− θ)z

(t)
j|i + θ

(
z
(t)
i|j + 2ρBi|jw

(t+1)
i

)

∆z
(t+1)
j|i = z

(t+1)
j|i − z

(t)
j|i

end for
end for
for each i ∈ V , j ∈ Ni do ▷ Data exchange (unicast)

Nodej ← Nodei(∆z
(t+1)
j|i)

end for
for each i ∈ V , j ∈ Ni do ▷ Secondary Update

z
(t+1)
j|i = z

(t)
j|i +∆z

(t+1)
j|i

end for
end for

To prove (8), consider two successive z-updates (4). We have

z
(t+1)
i|j − z

(t−1)
i|j = 2ρBi|j

(
w

(t)
i −w

(t+1)
j

)
. (10)

By combining (10) and the optimality condition (3) at iteration t and t+ 2, we obtain

∇fi
(
w

(t)
i

)
−∇fi

(
w

(t+2)
i

)
=
∑

j∈Ni

B⊺
i|j

(
z
(t+1)
i|j − z

(t−1)
i|j

)
+ ρdi

(
w

(t+2)
i −w

(t)
i

)

= ρdi
(
w

(t)
i +w

(t+2)
i

)
− 2ρ

∑
j∈Ni

w
(t+1)
j . (11)

Since all terms on the RHS are known to the adversary, thus (8) is known, which completes the
proof.

Some remarks are in place here. First of all, in any practical situation we stop the algorithm after
a finite number of iterations, say tmax. As a consequence, the adversary only knows w∗ up to an
error and can therefore only estimate the individual w(t)

i s up to a certain accuracy. To quantify
this error, let ϵ(tmax)

i = ŵ
(tmax)
i − w

(tmax)
i be the adversary’s estimation error in w

(tmax)
i . Since

w
(t)
i = w

(tmax)
i −∑tmax−1

τ=t

(
w

(τ+1)
i −w

(τ)
i

)
and the adversary has knowledge of w(t+1)

i −w
(t)
i at

every iteration, we conclude that

ŵ
(t)
i = w

(t)
i + ϵ

(tmax)
i , 1 ≤ t ≤ tmax, (12)

so that the adversary can only estimate (8) up to a certain accuracy determined by ϵ
(tmax)
i .

Secondly, in some applications, such as training neural networks, (3) is only solved approximately.
That is, at every iteration t we work with approximations of w(t)

i and as a consequence, the optimality
condition (3) holds approximately. That is, we have

∇fi(w(t+1)
i) +

∑
j∈Ni

B⊺
i|jz

(t)
i|j + ρdiw

(t+1)
i = ε

(t+1)
i ,

where εi denotes an approximation error. Since (9) and (10) still hold, the RHS of (11) in this case
gets an additional term ε

(t)
i −ε

(t+2)
i . In certain cases, however, we exactly know what the error terms

are. As an example, consider the case where we use single gradient-descent step to solve (3). We
then have

w
(t+1)
i = w

(t)
i − µ(∇fi(w(t)

i) +
∑

j∈Ni

B⊺
i|jz

(t)
i|j + ρdiw

(t)
i), (13)

5

where µ denotes the step size, so that ε(t)i = µ−1(w
(t)
i − w

(t+1)
i). Assuming µ is known, the

adversary still knows (8). Overall, we conclude that (8) is an upper bound of privacy loss.

The following corollary shows that the result of Theorem 1 implies that the privacy leakage of
decentralized FL is less than or equal to that of centralized FL.

Corollary 1. For each honest node i, let Xi and∇fi
(
W

(t)
i

)
be random variables having realizations

xi and ∇fi
(
w

(t)
i

)
, respectively. Moreover, let Ac = {∇fi

(
W

(t)
i

)
: t ≥ 1} denote the set of

information collected by the adversary in centralized FL. Similarly, let Ad = {∇fi
(
W

(t)
i

)
−

∇fi
(
W

(t+2)
i

)
: t ≥ 1} denote the set of information collected by the adversary in decentralized FL.

We then have
I(Xi;Ac) ≥ I(Xi;Ad), (14)

where I(· ; ·) denotes mutual information [30].

Proof. Let Ae = {∇fi
(
W

(1)
i

)
,∇fi

(
W

(2)
i

)
}. Then

I(Xi;Ac)− I(Xi;Ad)
(a)
= I(Xi;Ae,Ad)− I(Xi;Ad)

(b)
= I(Xi;Ae|Ad) ≥ 0,

where (a) holds since Ac can be constructed from Ad ∪ Ae, and (b) follows from the chain rule for
mutual information.

Note that I(Xi;Ae|Ad) > 0 for any meaningful learning process. As a consequence, we will have
strict inequality in any practical case, showing that decentralized FL outperforms centralized FL
when privacy is concerned.

5 Reconstruction of input data

Given the knowledge of gradient differences, traditional gradient inversion attacks as commonly
used in centralized FL can, after some modifications, also be applied to reconstruct the input data in
decentralized Fl. In what follows we will first briefly discuss how traditional attacks work and then
explain how to apply them in the decentralized setting and point out the main differences.

5.1 Gradient inversion attack in centralized FL

In centralized FL, individual nodes will exchange local gradients∇fi(w(t)
i) with the server. For each

node’s local dataset (xi, ℓi), the adversary can (partially) recover the input data (xi, ℓi) as [14]

(x′∗
i , ℓ

′∗
i) = argmin

x′
i,ℓ

′
i

∥∇fi(wi, (x
′
i, ℓ

′
i))−∇fi(wi, (xi, ℓi))∥2 , (15)

or variants thereof [16]. In fact, the gradient inversion attack iteratively finds input data that produce
a gradient similar to the gradient generated by the (private) input data.

It has been shown recently that the label information ℓi does not need to be optimized as it can be
analytically inferred from the shared gradients at the early iterations of model training [15, 31]. The
reason for this is the following. Consider a classification task where the neural network has L layers
and is trained with cross-entropy loss. For simplicity assume ni = 1 (one data sample at each node).
Let y = (y1, . . . , yC) denote the outputs (logits), where yi is the score (confidence) predicted for the
ith class. With this, the cross-entropy loss over one-hot labels is given by

fi(wi) = − log
(eyℓi∑

j e
yj

)
= log

(∑
j e

yj

)
− yℓi , (16)

where log(·) denotes the natural logarithm. Let wi,L,c denote the weights in the output layer L
corresponding to output yc. The gradient of fi(wi) with respect to wi,L,c can then be expressed as
[15]:

∇′fi(wi,L,c) ≜
∂fi(wi)

∂wi,L,c
=

∂fi(wi)

∂yc

∂yc
∂wi,L,c

= gcaL−1, (17)

6

where aL−1 is the activation at layer L − 1 and gc is the gradient of the cross entropy (16) with
respect to logit c given by

gc =
eyc

∑
j e

yj
− δc,ℓi , (18)

where δc,ℓi is the Kronecker-delta. Hence, gc < 0 for c = ℓi and gc > 0 otherwise. Since the
activation aL−1 is independent of the class index c, the ground-truth label ℓi can be inferred from
the shared gradients since∇′⊺fi(wi,L,ℓi)∇′fi(wi,L,c) = gℓigc∥aL−1∥2 < 0 for c ̸= ℓi and positive
only for c = ℓi. Similar results hold for the case where ni > 1 [31].

5.2 Differential gradient attack in decentralized FL

Motivated by the gradient attack described above, we propose a differential gradient attack for
decentralized FL given by

(x′∗
i , ℓ

′∗
i) = argmin

x′
i,ℓ

′
i

∥∥∥∇fi
(
w

(t)
i , (x

′
i, ℓ

′
i)
)
−∇fi

(
w

(t+2)
i , (x′

i, ℓ
′
i)
)
−

(
∇fi

(
w

(t)
i , (xi, ℓi)

)
−∇fi

(
w

(t+2)
i , (xi, ℓi)

))∥∥∥
2

. (19)

Similar to the centralized case, standard algorithms like L-BFGS [32] can be adopted for optimization.

Although the differential gradient attack looks similar to the traditional gradient attack, there are
some important differences, in particular with respect to label recovery and the eavesdropping times.

Similar to the discussion above, we find
∇f(w(t)

i,L,c)−∇f(w
(t+2)
i,L,c) = g(t)c a

(t)
L−1 − g(t+2)

c a
(t+2)
L−1

=
(ey

(t)
c

∑
j e

y
(t)
j

− δc,ℓi
)
a
(t)
L−1 −

(ey
(t+2)
c

∑
j e

y
(t+2)
j

− δc,ℓi
)
a
(t+2)
L−1 . (20)

Hence, if c ̸= ℓi, then both g
(t)
c < 0 and g

(t+2)
c < 0 so that we cannot use the sign information of gc

to recover the correct label; the adversary needs to consider all labels to find out the best fit, which
inevitably increases the computation overhead and degrades the fidelity of the reconstructed inputs
(we will present numerical validations later in Section 6).

Note that in centralized FL, the adversary can use the gradient at early iterations to conduct the
gradient inversion attack. In decentralized FL, however, the adversary can only accurately estimate
the difference of gradients after enough iterations. That is, the smaller the error ϵ(tmax)

i is, the more
accurate the reconstruction of the input data will be. We will validate this statement in Section 6.

As for the defense strategies, a straightforward approach is to adopt noise-insertion mechanisms such
as differential privacy to achieve privacy-preservation.

6 Numerical Experiments

To validate our claims that decentralized FL protocol has privacy advantages over centralized FL,
we conduct numerical validations using two examples3. The first example is decentralized logistic
regression, the second one is learning a multi-layer perceptron.

6.1 Decentralized Logistic Regression

Consider a logistic model with model parameters wi ∈ Rv (weights) and bi ∈ R (bias) where
each node has a local dataset {(xik, ℓik) : k = 1, . . . , ni}, where xik ∈ Rv is an input sample,
ℓik ∈ {0, 1} is the associated label. In addition, let yik = wT

i xik + bi denote the output of the model
given the input xik. Note that the bias term can be included in the weight vector. Here we explicitly
separate the bias from the true network weights as it will lead to more insight into how to reconstruct
the input data from the observed gradients. With this, the loss (log-likelihood) function has the form

fi(wi, bi) = −
ni∑

k=1

(
ℓik log

1

1 + e−yik
+ (1− ℓik) log

e−yik

1 + e−yik

)
. (21)

3https://anonymous.4open.science/r/decentralized-FL-and-differential-gradient-attack-3016/

7

Hence, (11) becomes

∂fi
∂wi

(t)

− ∂fi
∂wi

(t+2)

=

ni∑

k=1

(
1

1 + e−y
(t)
ik

− 1

1 + e−y
(t+2)
ik

)
xik

= ρdi
(
w

(t)
i +w

(t+2)
i

)
− 2ρ

∑
j∈Ni

w
(t+1)
j , (22)

∂fi
∂bi

(t)

− ∂fi
∂bi

(t+2)

=

ni∑

k=1

(
1

1 + e−y
(t)
ik

− 1

1 + e−y
(t+2)
ik

)

= ρdi
(
b
(t)
i + b

(t+2)
i

)
− 2ρ

∑
j∈Ni

b
(t+1)
j . (23)

Since the adversary has the knowledge of all {(w(t)
i , b

(t)
i) : t ≥ 1}, it thus can reconstruct (22) and

(23) by collecting sufficient observations, from which the private data can be inferred. Note that in
the special case where ni = 1, (22) is just a scaled version of xik where the scaling is given by (23).

Hence, we can analytically compute xik as xik =
ρdi

(
w

(t)
i +w

(t+2)
i

)
−2ρ
∑

j∈Ni
w

(t+1)
j

ρdi

(
b
(t)
i +b

(t+2)
i

)
−2ρ
∑

j∈Ni
b
(t+1)
j

.

Experimental setup: To validate the theory presented above, we generated a connected random
geometric graph (RGG) [33] with N = 60 nodes. Each node i holds ni data samples xik ∈ R2

and binary labels ℓi ∈ {0, 1}. The two datasets were generated from random samples drawn from a
unit variance Gaussian distribution with mean µ0 = (−1,−1)⊺ (ℓik = 0) and mean µ1 = (1, 1)⊺

(ℓik = 1). PDMM was used for decentralized learning with constant ρ = 0.4 and the weight update
(3) was implemented using a single gradient descent iteration (see (13)) with fixed step-size µ = 0.1.
To obtain a fair comparison between decentralized and centralized FL, each node in the centralized
setting contained the same dataset as the one used for decentralized FL and the local model updates
were implemented by a single gradient descent iteration having the same learning rate as the rate used
in decentralized FL.

Convergence properties: Figure 2(a) shows the loss (21), averaged over all nodes, as a function of
the iteration t for both centralized FL using FedAvg [1] and decentralized FL using PDMM. The
number of data samples per node was set to ni = 1. Figure 2(a) show that PDMM converges slightly
faster than FedAvg. This is because PDMM combines the local model update and global model
aggregation and jointly optimizes them, while FedAvg updates the model in two separate steps [13].

Figure 2(b) investigates the effect of early termination of the iterations after a finite number of
iterations tmax on the reconstruction of xik. The reconstruction error is defined as the average
Euclidean distance between the reconstructed samples x̂ik and the original data samples xik given by
1
N

∑N
i=1 ∥x̂ik − xik∥2. We assume there is one corrupt node, say node j, in the network and used

ŵ
(tmax)
i = w

(tmax)
j for all honest nodes i. We can see that, as expected, the reconstruction error will

decrease as tmax increases, i.e., the longer the adversary waits, the higher the reconstruction accuracy
will be. Note that in this example we have ni = 1 so that xik can be analytically determined. Hence,
the error in the reconstruction is solely due to an inaccurate estimation of the difference of gradients.
Consequently, the adversary must continuously eavesdrop on the communication channels until the
model has converged with sufficient accuracy. With centralized FL, the reconstructed error does
not depend on the iteration number and the reconstruction accuracy is consistently better than the
accuracy for decentralized FL.

6.2 Decentralized training of a multi-layer perceptron

Experimental setup: We generated an RGG with N = 100 nodes. Two-layer perceptrons were
constructed for each node using Pytorch and we used two datasets: MNIST [34] and CIFAR-10
[35]. PDMM was used for decentralized learning with constant ρ = 0.4. Both the gradient and the
differential gradient attacks were implemented using the L-BFGS algorithm[36] where the number of
iterations was fixed to 500. The code was run on a NVIDIA RTX A6000 GPU.

Reconstructed of input data: Figure 3 and Figure 4 shows reconstruction results for both centralized
and decentralized learning. Figure 3 shows example reconstructions, one for each dataset, while

8

Figure 2: Performance comparisons of centralized and decentralized logistic regression. (a) Loss
versus number of iterations. (b) Reconstruction error as a function of the maximum iteration number.

Figure 3: Reconstructed inputs using (a) the
MNIST and (b) the CIFAR-10 dataset.

Figure 4: Comparison of the SSIM and PSNR
of reconstructed images

Figure 4 shows objective results using the structural similarity index measure (SSIM) and the peak
signal-to-noise ratio (PSNR), averaged over the complete dataset. We can see that the quality of the
reconstructed images in decentralized FL is lower than the quality in centralized FL.

Since the label cannot be analytically computed as in the centralized case, in the implementation we
traverse all possible labels to find out the optimal solution for the decentralized case. Figure 5 shows
reconstruction results for the MNIST dataset (top) and the CIFAR-10 dataset (bottom) for different
values of ni. As can be seen from the figure, unlike the case of centralized FL where most of the time
the reconstructed labels are correct, whereas with decentralized FL, the label is sometimes wrong. As
an example, for the MNIST dataset and ni = 4, the digit 0 is reconstructed while this digit was not
included in the training set. In addition, the reconstruction quality for centralized FL is clearly better
than the one for decentralized FL. We conclude that optimization-based decentralized FL is more
difficult to attack than centralized FL, thereby consolidating our claim that it has privacy advantages
over centralized FL.

7 Conclusions

In this paper, we investigated the privacy leakage in decentralized FL. We showed that optimization-
based decentralized FL outperforms centralized FL when privacy is concerned. We analyzed the
information flow in the network over iterations and derived an upper bound on the information loss.
Using this bound, we theoretically showed that the privacy leakage in decentralized FL is less than or
equal to the leakage in centralized FL, and that analytical label recovery is generally not possible
in decentralized FL. As a consequence, with decentralized FL, the quality of reconstructed samples
is significantly lower than the quality obtained with centralized FL, especially for large batch sizes.
Experimental results confirmed our findings.

9

Figure 5: Reconstructed inputs for centralized and decentralized FL using the datasets MNIST (top)
and CIFAR-10 (bottom) for different batch size ni = 1, 2, 4, 8 ((a)-(d), respectively).

References
[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient

learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273–1282. PMLR, 2017.

[2] T. Li, A. K. Sahu, A. Talwalkar and V. Smith. Federated learning: Challenges, methods, and
future directions. IEEE Signal Process. Magazine, vol. 37, no. 3, pp. 50-60,, 2020.

[3] P. H. Jin, Q. Yuan, F. Iandola, and K. Keutzer. How to scale distributed deep learning? arXiv
preprint arXiv:1611.04581, 2016.

[4] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang and J. Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient
descent. Advances in neural information processing systems, 30, 2017.

[5] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu. D2: Decentralized training over decentralized
data. In International Conference on Machine Learning, pages 4848–4856. PMLR, 2018.

[6] C. Hu, J. Jiang, and Z. Wang. Decentralized federated learning: A segmented gossip approach.
arXiv preprint arXiv:1908.07782, 2019.

[7] H. Gao, M. Lee, G. Yu, and Z. Zhou. A graph neural network based decentralized learning
scheme. Sensors, 22(3):1030, 2022.

[8] J.F.C. Motaand J. M.F. Xavier, P. M.Q. Aguiar, and M. Püschel. D-admm: A communication-
efficient distributed algorithm for separable optimization. IEEE Transactions on Signal process-
ing, 61(10):2718–2723, 2013.

[9] W. Li, Y. Liu, Z. Tian, and Q. Ling. Communication-censored linearized admm for decentral-
ized consensus optimization. IEEE Transactions on Signal and Information Processing over
Networks, 6:18–34, 2019.

[10] H. Chen, Y. Ye, M. Xiao, M. Skoglund, and H.V. Poor. Coded stochastic admm for decentralized
consensus optimization with edge computing. IEEE Internet of Things Journal, 8(7):5360–5373,
2021.

[11] G. Zhang and R. Heusdens. Distributed optimization using the primal-dual method of multipliers.
IEEE Transactions on Signal and Information Processing over Networks, 4(1):173–187, 2017.

10

[12] T. Sherson, R. Heusdens, W. B. Kleijn. Derivation and analysis of the primal-dual method of
multipliers based on monotone operator theory. IEEE Trans. Signal Inf. Process. Netw., vol. 5,
no. 2, pp 334-347, 2018.

[13] K. Niwa, N. Harada, G. Zhang, and W.B. Kleijn. Edge-consensus learning: Deep learning
on p2p networks with nonhomogeneous data. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 668–678, 2020.

[14] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. Advances in neural information
processing systems, 32, 2019.

[15] B. Zhao, KR Mopuri, and H. Bilen. iDLG: Improved deep leakage from gradients. arXiv
preprint arXiv:2001.02610, 2020.

[16] J. Geiping. H. Bauermeister, H. Dröge and M. Moeller. Inverting gradients-how easy is it to
break privacy in federated learning? NeurIPS, 33:16937–16947, 2020.

[17] H. Yin, A. Mallya, A. Vahdat, JM Alvarez, J. Kautz, and P. Molchanov. See through gradients:
Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16337–16346, 2021.

[18] F. Boenisch, A. Dziedzic, R. Schuster, AS. Shamsabadi, I. Shumailov, and N. Papernot. When
the curious abandon honesty: Federated learning is not private. arXiv preprint arXiv:2112.02918,
2021.

[19] J. Geng, Y. Mou, Q. Li, F. Li, O. Beyan, S. Decker, and C. Rong. Improved gradient inversion
attacks and defenses in federated learning. IEEE Transactions on Big Data, 2023.

[20] L. Fowl, J. Geiping, W. Czaja, M. Goldblum, and T. Goldstein. Robbing the fed: Directly obtain-
ing private data in federated learning with modified models. arXiv preprint arXiv:2110.13057,
2021.

[21] J. Zhu and M. Blaschko. R-gap: Recursive gradient attack on privacy. arXiv preprint
arXiv:2010.07733, 2020.

[22] W. Wei, L. Liu, M. Loper, Ka-Ho Chow, ME Gursoy, S. Truex, and Y. Wu. A framework for
evaluating gradient leakage attacks in federated learning. arXiv preprint arXiv:2004.10397,
2020.

[23] H. Yang, M. Ge, K. Xiang, and J. Li. Using highly compressed gradients in federated learning
for data reconstruction attacks. IEEE Transactions on Information Forensics and Security,
18:818–830, 2022.

[24] D. Pasquini, M. Raynal, and C. Troncoso. On the privacy of decentralized machine learning.
arXiv preprint arXiv:2205.08443, 2022.

[25] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in Machine
learning, vol. 3, no. 1, pp. 1–122, 2011.

[26] E. Ryu, S. P. Boyd. Primer on monotone operator methods. Appl. Comput. Math., vol. 15, no. 1,
pp. 3-43,, 2016.

[27] Q. Li, R. Heusdens and M. G. Christensen. Communication efficient privacy-preserving
distributed optimization using adaptive differential quantization. Signal Process., 2022.

[28] Q. Li, R. Heusdens and M. G. Christensen. Privacy-preserving distributed optimization via
subspace perturbation: A general framework. In IEEE Trans. Signal Process., vol. 68, pp. 5983
- 5996, 2020.

[29] J. A. G. Jonkman, T. Sherson, and R. Heusdens. Quantisation effects in distributed optimisation.
In Proc. Int. Conf. Acoust., Speech, Signal Process., pp. 3649–3653, 2018.

[30] T. M. Cover and J. A. Tomas. Elements of information theory. John Wiley & Sons, 2012.

11

[31] A. Wainakh, F. Ventola, T. Müßig, J. Keim, C. G. Cordero, E. Zimmer, T. Grube, K. Kersting,
and M. Mühlhäuser. User label leakage from gradients in federated learning. arXiv preprint
arXiv:2105.09369, 2021.

[32] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on mathematical software
(TOMS), 23(4):550–560, 1997.

[33] J. Dall and M. Christensen. Random geometric graphs. Physical review E, vol. 66, no. 1, pp.
016121, 2002.

[34] L. Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[35] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[36] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

12

	Abstract
	Preface
	List of Figures
	Introduction
	Preliminaries
	Problem Statement
	ADMM/PDMM
	Privacy
	Threat Model
	Subspace-based Privacy Preservation
	Privacy Bound in Distributed Setting

	Setup
	Topology
	Case study
	Distributed Logistic Regression
	Distributed Multi-layer Perceptron

	Distributed Optimization via Inexact PDMM
	Iteration Method
	Quadratic Approximation
	Experiments

	Gradient Information-based Attack in Federated Learning
	Information Leakage
	Gradient Leakage
	Difference of Gradients Leakage

	Attack
	Label Inference Attack
	Gradient Information Inversion Attack

	Comparison
	Experiments

	Defense Strategy
	Noise and Perturbations
	Defense Strategies
	Experiments

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Appendix

