

Delft University of Technology

TypeEvalPy
A Micro-benchmarking Framework for Python Type Inference Tools
Venkatesh, Ashwin Prasad S.; Sabu, Samkutty; Wang, Jiawei; Mir, Amir M.; Li, Li; Bodden, Eric

DOI
10.1145/3639478.3640033
Publication date
2024
Document Version
Final published version
Published in
Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering

Citation (APA)
Venkatesh, A. P. S., Sabu, S., Wang, J., Mir, A. M., Li, L., & Bodden, E. (2024). TypeEvalPy: A Micro-
benchmarking Framework for Python Type Inference Tools. In Proceedings - 2024 ACM/IEEE 46th
International Conference on Software Engineering: Companion, ICSE-Companion 2024 (pp. 49-53).
(Proceedings - International Conference on Software Engineering). IEEE.
https://doi.org/10.1145/3639478.3640033
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3639478.3640033
https://doi.org/10.1145/3639478.3640033

TypeEvalPy: A Micro-benchmarking Framework for
Python Type Inference Tools

Ashwin Prasad S. Venkatesh
§
, Samkutty Sabu

¶
, Jiawei Wang

†
, Amir M. Mir

‡
, Li Li

*
, Eric Bodden

**

§ashwin.prasad@upb.de, Heinz Nixdorf Institut, Paderborn University, Paderborn, Germany

¶samkutty@mail.uni-paderborn.de, Paderborn University, Paderborn, Germany

†jiawei.wang1@monash.edu, Faculty of Information Technology, Monash University, Melbourne, Australia

‡s.a.m.mir@tudelft.nl, Delft University of Technology, Delft, The Netherlands

*lilicoding@ieee.org, School of Software, Beihang University, Beijing, China
**eric.bodden@upb.de, Heinz Nixdorf Institut & Fraunhofer IEM, Paderborn University, Paderborn, Germany

ABSTRACT
In light of the growing interest in type inference research for

Python, both researchers and practitioners require a standardized

process to assess the performance of various type inference tech-

niques. This paper introduces TypeEvalPy, a comprehensive micro-

benchmarking framework for evaluating type inference tools. Type-

EvalPy contains 154 code snippets with 845 type annotations across

18 categories that target various Python features. The framework

manages the execution of containerized tools, transforms inferred

types into a standardized format, and produces meaningful metrics

for assessment. Through our analysis, we compare the performance

of six type inference tools, highlighting their strengths and limita-

tions. Our findings provide a foundation for further research and

optimization in the domain of Python type inference.

ACM Reference Format:
Ashwin Prasad S. Venkatesh

§
, Samkutty Sabu

¶
, JiaweiWang

†
, AmirM.Mir

‡
,

Li Li
*
, Eric Bodden

**
. 2024. TypeEvalPy: A Micro-benchmarking Framework

for Python Type Inference Tools. In 2024 IEEE/ACM 46th International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion
’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3639478.3640033

1 INTRODUCTION
Type inference refers to the process of automatically determining

the data type of an expression within a programming language. In

Python, which is dynamically typed, this determination takes place

at runtime. To address potential ambiguities, developers can utilize

type annotations, which explicitly specifies the expected data types

of variables or function returns. As the complexity of software

projects increases, programmers find it increasingly challenging to

maintain consistent data types. In response to this challenge, both

industry and academia have developed type inference tools and

static type checkers. Examples from industry include Pyright [1] and
Pytype [3], while academic contributions feature Type4Py [7] and

HiTyper [8]. The topic of type inference in Python is a growing area

of research and tool development within the software engineering

This work licensed under Creative Commons Attribution 4.0 License.
https://creativecommons.org/licenses/by/4.0/
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3640033

community. Current efforts focus on understanding the advantages

of enforcing type annotations, and on finding ways to infer types

in Python code that lacks type annotations.

In recent years, many solutions for type inference have been

proposed. However, a unified and comprehensive evaluation frame-

work for these tools is still lacking. Current literature primarily

assesses the performance of such type inference tools based on

large-scale real-world benchmark datasets, notably Type4Py, Hi-
Typer, and Typilus [4]. On the contrary, open-sourced solutions only
rely on specifically-designed test cases. This evaluation approach,

nonetheless, presents several limitations: (1) Different studies might

report findings based on different datasets, complicating a direct

comparison and understanding of the relative merits and drawbacks

of each tool. (2) Type annotations in real-world datasets are some-

times erroneous. (3) Evaluations often provide a broad-brush score,

overlooking nuanced insights into specific technical challenges,

including the treatment of diverse language constructs.

In this paper, we introduce TypeEvalPy, a type inference evalu-

ation framework for Python bundled with a micro-benchmark that

covers all the Python language constructs of Python 3.10.

Our primary objective with TypeEvalPy is to provide insights

into the recent advances in type inference tooling for Python pro-

grams. When presented with an executable type inference tool,

TypeEvalPy processes the tool with input from the built-in micro-

benchmark and outputs the inferred type information in a standard

format for further analysis. Then, TypeEvalPy analyzes the output

of each tool and reports the comparative analysis using a set of

metrics such as exact match rate, precision, etc (c.f. section 2.3).

We demonstrate TypeEvalPy’s utility by evaluating six state-

of-the-art type inference tools, including two ML-based and four

static analysis-based approaches. For ML-based approaches, we

extend our analysis to incorporate top-𝑛 predictions. Our empir-

ical findings reveal that the performance of type inference can

be significantly enhanced by integrating external user-annotated

type stubs and combining static analysis with ML techniques. The

state-of-the-art hybrid strategy in HiTyper, outperforms its purely

static analysis based counterpart. However, the underlying static

analysis technique that HiTyper uses, performs poorly compared to

the other pure static analysis-based alternatives, indicating that the

performance of HiTyper can be improved. Moreover, we posit that

researchers should place greater emphasis on function parameter

annotations, particularly since the majority of tools generate only

a limited number of these annotations. Nevertheless, achieving

49

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3639478.3640033
https://doi.org/10.1145/3639478.3640033
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3640033&domain=pdf&date_stamp=2024-05-23

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Venkatesh et al.

soundness in type inference remains a challenge, with even the

top-performing tools achieving a soundness rate of only 44%.

The paper is organized as follows: The technical design is detailed

in section 2 followed by experimental results being reported in

section 3. After a brief discussion about the results in section 4, the

paper is summarized in section 5.

Availability.TypeEvalPy is published onGitHub as open-source
software: https://github.com/secure-software-engineering/TypeEvalPy

2 TYPEEVALPY FRAMEWORK
The primary goal of TypeEvalPy is to offer a comprehensive, stan-

dardized, and reproducible benchmarking system for evaluating

type inference tools in Python. To this end, TypeEvalPy contains a

diverse set of 154 code snippets with 845 type annotations across 18

categories that capture the nuances of various Python features. For

a tool to be benchmarked using TypeEvalPy, it must be adapted

into a containerized format that aligns with TypeEvalPy’s specifica-

tions. To simplify this adaptation process, we are sharing a template.

For reference, TypeEvalPy already includes containerized versions

of six type inference tools: HeaderGen [10], Jedi [2], pyright [1],
Scalpel [6], HiTyper [8], and Type4Py [7].

The TypeEvalPy framework is organized into three main mod-

ules: Runner, Translator, and Result Analyzer. First, the runner
module manages the initiation and execution of containerized tools,

specifically running type inference on the micro-benchmark. Fol-

lowing this, the translatormodule takes on the role of transform-

ing the inferred types into a standardized format, making them suit-

able for comparison. Lastly, the analyzer compiles the results from

all the tools and provides meaningful metrics for assessment. Im-

portantly, the modules realize a high degree of automation, thereby

ensuring the reproducibility of results in the academic context.

2.1 Micro-benchmark
The micro-benchmark of TypeEvalPy comprises of 154 program

snippets containing 845 type annotations. To ensure a comprehen-

sive coverage of Python’s language features, snippets are subdi-

vided into 18 categories, each representing a specific feature. This

categorization is based on PyCG’s [9] call graph benchmark and

we extend it to address gaps in the coverage of language features.

Our strategy for enhancing the benchmark involved inspecting

the Python manual to ensure all language features are adequately

represented. Furthermore, we categorized test cases from existing

inference tools, ensuring the comprehensiveness of our benchmark.

Additionally, the micro-benchmark’s modular design allows for

easy extensions. The micro-benchmark consists of the following

categories: args (8), assignments (8), builtins (7), classes (26), decora-
tors (8), dicts (15), direct_calls (6), dynamic (3), exceptions (2), external
(7), functions (9), generators (6), imports (14), kwargs (4), lambdas (6),
lists (10), mro (7), returns (8).

Type annotation format is based on the Scalpel framework [6]

and are stored as JSON files with the code snippets. They contain

the following: (1) file: denotes the filename, (2) line_number: specific
line in the file. (3) col_offset: represents the indentation. (4) type:
list of types. (5) function: function name, if the annotation is within

one. (6) variable: specifies the variable’s name being annotated.

(7) parameter: captures the name of a function argument, if relevant.

Type annotations are categorized into three categories: (1) Func-

tion return (FR) type, (2) Function parameter (FP) type, and (3) Local

variable (LV) type. In total, the micro-benchmark consists of 239

FR, 88 FP, and 518 LV type annotations. To construct the ground

truth, the first two authors manually inspected each code snippet

and, where required, used a debugger to verify the run-time type

of each Python element. To further mitigate potential errors, each

file was reviewed consecutively by both authors.

During the development of the ground truth, we made several

design decisions: (1) Type annotations for generics are not con-

cretized, for instance, a list of integers is annotated as List instead

of List[Int]. (2) FPs are annotated based on their usage. In cases

where a function can return multiple types, special care was taken

to ensure that the function is called with parameters of all types the

function supports. (3) FR types and local variables defined inside

a function are context-insensitive, i.e., if a variable defined inside

a function can take on multiple types based on different calling

contexts, each variable is annotated with all possible types it can

have during runtime. (4) More generally, types assigned to entities

were chosen to reflect all the possible runtime types in the given
program, and we chose the most specific type possible. Therefore,

none of the type annotations are marked as “Any”.

2.2 Runner and Translator
The primary responsibility of the runner module is to orchestrate

the execution of containerized type inference tools on the micro-

benchmark. For each type inference tool, the runnermodule creates

an instance of the Docker container, the micro-benchmark is copied

into the running instance and runs the type inference inside it. Then,

the runnermodule uses the translator to convert results into the
TypeEvalPy format. Once each tool finishes running, the runner
module calls the result analyser module.

2.3 Result Analyzer
The analyzer module produces detailed statistics for comparing

the effectiveness of different tools as listed below:

• Exactmatches: The number of inferred types that exactly match

the ground truth. This metric is used widely used in the literature

to evaluate type inference tools [4, 7, 8].

• Precision:The fraction of reported types that are exactly inferred
according to the ground truth.

• Recall: The number of actual types that are exactly reported by

the type inference tool.

• Soundness: Whether the type inference tool identifies all possi-

ble types specified in the Python code to ensure none are omitted.

Reported as a boolean per code snippet in the micro-benchmark.

• Completeness: Whether the tool accurately reports only the

types that are present, avoiding any incorrect or extraneous types.

Reported as a boolean per code snippet in the micro-benchmark.

• Top-𝑛 prediction comparison: The accuracy comparison of

probabilistic tools when considering their top-𝑛 inferred types.

This metric is widely used to evaluate ML predictors [5, 7, 8].

• Report of missing types: List of types that are present in the

ground truth but are unreported by the tools.

50

https://github.com/secure-software-engineering/TypeEvalPy

TypeEvalPy: A Micro-benchmarking Framework for Python Type Inference Tools ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

• Report of mismatched types: List of types reported by the

tools that do not align exactly with the ground truth.

3 EXPERIMENTS
We used the TypeEvalPy framework to evaluate the most recent

versions of the following tools: HiTyper [8] and Type4Py [7] as

examples of machine learning tools, Jedi [2] and Pyright [1] were

chosen as open-source tools, while HeaderGen [10] and Scalpel [6]

were picked as representations of academic tools.

HiTyper is a hybrid analysis approach that employs both static

analysis andML to infer types. It also has an option to only use static

analysis for type inference, which is based on PyCG. We evaluated

HiTyper in both modes. In discussions, the static-analysis method

is referred to as “HiTyper," while the hybrid method is referred to

as “HiTyper-Dl”, which integrates Type4Py.

Results. Table 1 shows the exact matches of the selected tools

for each type categories: (1) Function return (FR) type , (2) Function

parameter (FP) type, and (3) Local variables (LV). The tools are ar-

ranged in the table according to their performance from left to right.

HeaderGen performed the best with highest overall performance

in all categories except in builtins and external categories. In

these specific categories, both Jedi and Pyright performed the best.

This suggests that Jedi and Pyright are more adept at integrating

user-specified type hints, commonly referred to as typestubs. On the
contrary, Jedi and Pyright fail to infer types of FPs. Both the tools

are designed to infer function parameters as “Any” in most cases,

except for cases where a function is passed as a parameter. This

strategy, while congruent with Python’s duck typing paradigm,

limits the applicability of the inferred types in a wider context.

Among the ML tools, HiTyper-DL outperforms Type4Py with

369 exact matches, while Type4Py had 157 matches. Additionally,

HiTyper-DL shows a notably improved performance compared to

HiTyper, which relies solely on static analysis.

Soundness and Completeness. Table 1 lists the soundness and
completeness values at the bottom. HeaderGen is sound in 68 of the

154 cases, i.e., it did not miss any types in these cases. HeaderGen

is complete in 55 of the 154 cases, i.e., it did not falsely identify

types in these cases. HeaderGen demonstrated the most balanced

performance compared to all other tools. HiTyper has a low score

of 3 in soundness, HiTyper-DL improves this score to 18. While

this score is a modest increase, it is notably better than HiTyper. In

the assessment of HiTyper, while its completeness score appears

promising, it is noteworthy that the tool did not produce predictions

for 34 out of the 154 cases. Furthermore, HiTyper often failed to

infer types, as indicated by its soundness and exact matches.

top-𝑛 Matches. Table 2 shows top-𝑛 results of ML tools and

its comparison with HeaderGen. HiTyper-DL shows significant

improvement considering top-5 predictions with 441 exact matches

which is 78.2% of HeaderGen’s score. However, the difference be-

tween top-𝑛 values of 3 and 5 are small, indicating that the majority

of correct predictions by HiTyper-DL fall within the top-3 types.

Type4Py benefits immensely when top-2 and top-3 are taken into

account, the exact matches nearly doubled the score from top-1 to

top-3. However, similar to HiTyper-DL, the majority of the correct

predictions are within the top-3 types. Overall, while ML-based

tools demonstrate promise, they still trail behind the performance

of HeaderGen when considering the top-1 predictions.

4 DISCUSSION
In this section, we highlight the outcomes for each tool, encapsu-

lating their strengths and weaknesses as observed by TypeEvalPy:

HeaderGen. The analysis revealed that HeaderGen performed

consistently across all categories. With flow-sensitive analysis built

on top of PyCG, HeaderGen is able to infer types of Python elements

accurately. However, it showed limitations in the builtins and

external categories, highlighting the lack of support for analyzing
external source code. The support for utilizing typestubs in analysis

is limited, such as, support for typestubs with overriding definitions

for the same function based on FP types is not implemented.

Jedi. The open-source community driven tool Jedi has been en-

hanced to address diverse challenges and to provide broad analysis

capabilities. Specifically, its ability to reason about external source

code in the builtins and external categories is vital for analyzing
real-world code. However, Jedi’s design choice to omit the output

of types for FPs hinders its overall result. Furthermore, our analysis

of the mismatch reports from TypeEvalPy highlighted an inconsis-

tency. When a function is passed as reference in an argument to a

function call, both Jedi and Pyright incorrectly infer the variable

type as the return type of that function. In reality, the correct type

should be callable, since the function is not actually called. In

TypeEvalPy, Pyright and Jedi exhibited this behavior in 57 and 18

instances, respectively, highlighting the potential for improvement.

Pyright. Microsoft’s Pyright demonstrated strong performance

in the builtins and external categories. It also performed slightly

better in the FP and LV categories than Jedi. It is also pertinent to

mention that, Pyright, developed in TypeScript, lacks interfaces to

access its internal analysis structures. This limitationmakes general-

purpose analysis difficult. To address this, we created a language

server protocol (LSP) client in Python, allowing TypeEvalPy to

query results for each element. The static analysis community can

benefit from such an interface if its built into Pyright.

Scalpel. Scalpel exhibited strong performance in aspects related

to functions. However, it does not currently support the output

of LV types, which significantly impacted its overall ranking and

needs improvement in this area. For instance, it can annotate up

to 155 function return types and 32 function parameters, ranking

second among all pure static analysis tools for the two categories.

Regarding LV, Scalpel only provides six annotations at the second

last position. Furthermore, it does not handle external library calls,

which are common in real-world projects.

Type4Py. Type4Py uses a deep similarity learning-based tech-

nique, meaning that it can only infer types that were seen during

the training phase. Therefore, Type4Py performs poorly compared

to static approaches such as HeaderGen and Pyright. Also, Type4Py

only learns from identifiers in the method signature and also the

usage of FPs and LVs inside the method body. This may also explain

why Type4Py fails to infer types for some of the categories in the

microbenchmark, i.e., classes, dynamic, and exceptions. It is also

worth mentioning that Type4Py is mostly trained on local variables

data and hence it performs relatively better on LV types compared

to FR and FP types. For better performance, top-5 suggestions from

51

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Venkatesh et al.

Table 1: Comparison of exact matches, sound, and complete values of type inference tools for micro-benchmark categories

FR: Function return type, FP: Function parameter type, LV: Local variable type, 845: Total type annotations, 154: Total test cases

Category HeaderGen Jedi Pyright HiTyper-DL HiTyper Scalpel Type4Py

FR FP LV FR FP LV FR FP LV FR FP LV FR FP LV FR FP LV FR FP LV

args 17 9 12 12 0 9 8 1 8 12 0 6 8 0 0 8 7 0 11 2 6

assignments 15 1 33 20 0 21 20 0 25 21 4 9 20 0 5 20 2 1 0 2 5

builtins 0 0 26 0 0 21 1 0 45 1 2 18 1 0 17 0 0 0 1 2 8

classes 39 7 67 0 0 57 1 0 46 27 2 41 24 0 23 25 0 0 0 0 17

decorators 11 6 2 10 0 8 7 0 3 8 0 3 7 0 0 16 3 0 7 0 3

dicts 23 3 60 21 0 34 19 2 50 20 3 22 20 2 16 19 2 1 2 3 18

direct_calls 10 3 8 6 0 7 3 0 6 3 2 4 2 0 0 5 1 0 2 2 4

dynamic 1 0 2 1 0 2 1 0 2 1 0 5 1 0 2 1 0 0 0 0 5

exceptions 0 0 2 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

external 0 0 3 0 0 8 0 0 2 1 0 4 0 0 2 0 1 0 1 0 1

functions 8 9 12 5 0 14 5 2 13 5 5 5 3 2 1 6 5 1 1 3 4

generators 9 4 17 5 0 23 4 3 18 10 5 11 10 3 11 6 1 3 1 1 3

imports 3 0 11 1 0 16 3 0 20 3 0 11 3 0 0 3 0 0 3 0 10

kwargs 8 5 5 7 0 4 4 0 5 7 0 0 4 0 0 4 4 0 3 0 0

lambdas 3 7 4 6 0 11 2 0 1 3 0 7 3 0 5 2 4 0 0 0 2

lists 14 1 26 17 0 27 13 0 25 16 3 16 13 0 13 16 1 0 2 3 4

mro 14 0 16 0 0 13 0 0 14 15 0 11 13 0 6 13 0 0 0 0 4

returns 11 1 16 11 0 17 9 0 13 10 1 5 9 0 0 11 1 0 5 1 5

Total 186 56 322 122 0 293 100 8 297 163 27 179 141 7 102 155 32 6 39 19 99

564/845 415/845 405/845 369/845 250/845 193/845 157/845

Sound 68/154 24/154 21/154 18/154 3/154 0/154 5/154
Complete 55/154 30/154 91/154 32/154 135/154 81/154 11/154

Table 2: top-𝑛 exact matches comparison with ML tools

Tool top-𝑛 FR FP LV Total
HeaderGen 1 186 56 322 564

HiTyper-DL 1 163 27 179 369

3 173 37 225 435

5 175 37 229 441

Type4Py 1 39 19 99 157

3 103 31 167 301

5 109 31 174 314

Type4Py should be considered, providing that it performs 𝑘-nearest

neighbor search to find possible type annotations for a given query.

HiTyper & HiTyper-DL. HiTyper is a hybrid type inference

approach, which combines a deep learning model, i.e., Type4Py

with static analysis. As expected, it performs better than Type4Py, a

pure ML-based approach. In general, HiTyper’s static inference part

seems to be quite imprecise as it is very unsound but more complete

than the other baselines. On the other hand, HiTyper-DL is more

sound but incomplete. This can be explained by the fact that it uses

type rejection rules to be more precise. However, HiTyper-DL can

be expensive to run for large projects considering its hybrid nature.

Though showing promising results, the hybrid paradigm does

not showmany advances in soundness. Only 15 of 154 sound results

are brought by the deep learning model, which, however, largely

reduces the completeness by 103 code snippets.

Outlook. In our study, we found that HeaderGen performs reli-

ably in several complex scenarios. Yet, for code that depends signif-

icantly on external libraries and has dependable user-defined type

stubs, Pyright and Jedi seem more suitable due to their enhanced

integration with type stubs. Additionally, the hybrid HiTyper-DL

approach shows potential. Future research can explore how Header-

Gen might be combined with HiTyper-DL to improve outcomes.

5 CONCLUSION
In this paper, we presented TypeEvalPy, a micro-benchmarking

framework designed for assessing Python type inference tools. Our

comprehensive analysis covered a diverse array of six type infer-

ence tools including static analysis based approaches, ML-based

approaches, and hybrid approaches. Notably, HeaderGen performed

the best in terms of exact matches, soundness, and completeness.

Jedi and Pyright followed close to each other, ranking second and

third, respectively. Moreover, HiTyper-DL, a hybrid type inference

tool, demonstrated potential advantages over solely ML-based al-

ternatives, securing the fourth position. The comparative insights

from TypeEvalPy highlights the differences between these tools

and sets the stage for future research and optimization endeavors.

Overall, the challenge of type inference in Python remains unre-

solved, presenting opportunities for advancement in terms of both

soundness and completeness.

ACKNOWLEDGMENTS
Funding for this study was provided by the Ministry of Culture

and Science of the State of North Rhine-Westphalia under the SAIL

project with the grand no NW21-059D.

52

TypeEvalPy: A Micro-benchmarking Framework for Python Type Inference Tools ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] [n. d.]. GitHub - microsoft/pyright: Static type checker for Python — github.com.

https://github.com/microsoft/pyright.

[2] [n. d.]. Jedi - an awesome autocompletion, static analysis and refactoring library

for Python. https://jedi.readthedocs.io/en/latest/.

[3] 2023. pytype: A type analyzer by Google. https://github.com/google/pytype

[4] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus:

Neural Type Hints (PLDI 2020). Association for Computing Machinery, New York,

NY, USA, 91–105. https://doi.org/10.1145/3385412.3385997

[5] Siwei Cui, Gang Zhao, Zeyu Dai, LuochaoWang, Ruihong Huang, and Jeff Huang.

2021. PYInfer: Deep Learning Semantic Type Inference for Python Variables.

CoRR abs/2106.14316 (2021). arXiv:2106.14316 https://arxiv.org/abs/2106.14316

[6] Li Li, Jiawei Wang, and Haowei Quan. 2022. Scalpel: The Python Static Analysis

Framework. https://doi.org/10.48550/ARXIV.2202.11840

[7] Amir M. Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios.

2022. Type4Py: Practical Deep Similarity Learning-Based Type Inference for

Python. In Proceedings of the 44th International Conference on Software Engineering
(Pittsburgh, Pennsylvania) (ICSE ’22). Association for ComputingMachinery, New

York, NY, USA, 2241–2252. https://doi.org/10.1145/3510003.3510124

[8] Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and

Michael Lyu. 2022. Static Inference Meets Deep Learning: A Hybrid Type In-

ference Approach for Python. In Proceedings of the 44th International Confer-
ence on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). 2019–2030.
https://doi.org/10.1145/3510003.3510038

[9] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and

Dimitris Mitropoulos. 2021. PyCG: Practical Call Graph Generation in Python. In

Proceedings of the 43rd International Conference on Software Engineering (Madrid,

Spain) (ICSE ’21). 1646–1657. https://doi.org/10.1109/ICSE43902.2021.00146

[10] Ashwin Prasad Shivarpatna Venkatesh, Jiawei Wang, Li Li, and Eric Bodden. 2023.

Enhancing Comprehension and Navigation in Jupyter Notebooks with Static

Analysis. IEEE Computer Society, 391–401. https://doi.org/10.1109/SANER56733.

2023.00044

53

https://github.com/microsoft/pyright
https://jedi.readthedocs.io/en/latest/
https://github.com/google/pytype
https://doi.org/10.1145/3385412.3385997
https://arxiv.org/abs/2106.14316
https://arxiv.org/abs/2106.14316
https://doi.org/10.48550/ARXIV.2202.11840
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1109/ICSE43902.2021.00146
https://doi.org/10.1109/SANER56733.2023.00044
https://doi.org/10.1109/SANER56733.2023.00044

