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Abstract—Computation-In-Memory (CIM) using emerging
memristive devices offers a promising solution to implementing
energy efficient Artificial Intelligence (AI) hardware accelerators.
Though, the non-idealities characterizing memristive devices cause
a negative impact on the performance of CIM-based micro-
architectures. We propose a two-step fault tolerance strategy to
address the impact of Stack-at Faults (SAFs) and conductance
variation of RRAM crossbar arrays, composed of a fault tolerant
activation function and a retraining method. Evaluation results on
Binary Neural Network (BNNs) architectures trained with MNIST,
Fashion-MNIST, and CIFAR-10 datasets demonstrate that the
proposed techniques can restore the classification accuracy by up
to 20%, 40% and 80%, respectively.

Index Terms—CIM, RRAM, Fault Tolerance, Reliability, BNNs

I. INTRODUCTION

Computation-In-Memory (CIM) is a computing paradigm
that integrates computation and storage at the same physical
location [1]. Implemented with emerging memristive non-
volatile devices, such as Resistive Random Access Memory
(RRAM), memristor-based CIM architectures can circumvent
the costly data movement of Von-Neumann systems, thus,
improving significantly energy efficiency and latency while of-
fering superior performance [2]. The structure of CIM crossbar
arrays makes them ideal for Multiply & Accumulate (MAC)
operations, which are fundamental in Artificial Intelligence
(AI) algorithms, like Deep Neural Networks (DNNs).

Albeit the numerous advantages of memristor-based CIM
architectures, among which zero leakage, non-volatility, high
density, etc., their practical implementation often suffers from
non-idealities and manufacturing defects, such as conductance
drift, read disturb, and Stack-At Faults (SAFs) [3]. Hence, to
ensure a reliable employment of memristive devices, addressing
these issues is of utmost importance.

In the effort to mitigating the impact of memristor non-
idealities, several software-based [4], [5], [6], [7] and hardware-
based [8], [9] fault tolerance mechanisms have been proposed.
Software-based solutions focus on finding an optimal mapping
of the weights on the memristive crossbar in order to accom-
modate for SAFs [4], [5]. Another technique is to construct a
failure map indicating the locations of the defective devices and
then use it to retrain the network on-chip, so that it can learn
around [6], [7]. In hardware-based solutions on the other hand,
it is common to rely on redundancy schemes to improve fault
tolerance. In [8], a re-configurable crossbar array is proposed

Fig. 1: The structure and operation of a RRAM device [10].

using redundant columns, while the work in [9] proposes a
modified four-transistor-one-resistor (4T1R) cell structure.

In this work we propose an efficient two-step fault tolerance
strategy to address the impact of SAFs and conductance varia-
tion on the performance of Binary Neural Networks (BNNs)
mapped to RRAM-based CIM AI hardware accelerators. An
impact analysis is performed first to evaluate the sensitivity of
different BNN architectures to SAFs and conductance variation.
Then, the first part of the fault tolerance strategy investigates
the role of different activation functions on suppressing this
impact and selects a fault tolerant activation function to help
restore the classification accuracy. Finally, a retraining method
is applied to accommodate for the performance degradation
caused by the defective RRAM devices.

The rest of the article is structured as follows. Sec. II
introduces the principles of RRAM-based CIM. Sec. III presents
the defect modelling of RRAM devices, which is then used
in Sec. IV to perform an impact analysis. Sec. V presents the
proposed fault tolerance techniques to minimize the impact
of RRAM defects and showcases the derived results. Finally,
Sec. VI concludes the paper.

II. CIM WITH RRAM CROSSBAR ARRAYS

The structure and operation of a RRAM device is shown
in Fig. 1. As shown in Fig. 1a, a RRAM has a metallic
oxide layer, e.g., HfOx, or TiOx, sandwiched between Top
Electrode (TE) and Bottom Electrode (BE) [10]. To program
the device, a sufficiently high voltage is applied on the two
electrodes, which, depending on the polarity, forms or dissolves
the Conductive Filament (CF) (blue dots in Fig. 1a) and the
device is set to the Low or High Resistance State (LRS,
HRS), respectively. Furthermore, RRAM devices can be set to
intermediate resistance states as well, i.e., multi-level operation,
by applying appropriate write pulses. Then, to read the device’s
state, a small voltage is applied and the current through the979-8-3503-6312-8/24/$31.00 ©2024 IEEE
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Fig. 2: The RRAM crossbar array.

device is sensed [11]. The applied read voltage needs to be
small enough in order not to alter the state of the cell.

RRAM devices are non-volatile and can support high
integration density, which makes them appealing to a plethora of
applications, such as non-volatile memories [12], programmable
logic [13], and neuromorphic computing [14]. To efficiently
design RRAM-based CIM architectures, cells are stacked in a
M ×N crossbar array, as shown in Fig. 2, where M and N
are the numbers of wordlines and bitlines, respectively.

The input voltages V1, V2, ..., VM are applied on the corre-
sponding wordlines and are shared by all cells at the same row.
The current Iij passing through cell cij , that connects row i to
column j, is the product of the input voltage Vi and the cell’s
conductivity Gij , or Iij = ViGij . According to Kirchhoff’s
law, the total output current emerging bitline j is equal to the
sum of all cell currents across the column, or Ij =

∑
i ViGij .

At the end of each bitline, an Analog-to-Digital Converter
(ADC) or a Sense Amplifier (SE) converts the resulted currents
to digital values.

This operation is equivalent to the dot product of the input
voltage vector V and the conductance vector Gj at column
j, or Ij = V × Gj . Extending to the whole array, N dot
products are calculated simultaneously, performing a Matrix-
Vector Multiplication (MVM) in a single step. When used with
a DNN, each column of the crossbar array holds the synaptic
weights of a neuron, which are then multiplied with the inputs.

Given a BNN, the synaptic weight Wij ∈ {−1, 1} needs to
be mapped to a conductance value Gij ∈ {0, 1}, as we use
a 1T1R cell structure [15] that we operate in two states, i.e.,
LRS (logic ’1’) or HRS (logic ’0’). To do so, the mapping
function of Eq. 1 is employed and the total current Ij at the
end of bitline j is given by Eq. 2:

Wij = 2Gij − 1 (1)

Ij =

M∑
i

WijVi = 2

M∑
i

GijVi −
M∑
i

Vi (2)

where
∑M

i Vi is common for all columns and is calculated
once by an added extra unit column with conductance values
Gunit all set to LRS [16], as shown in Fig. 2 with red color.

III. DEFECT MODELING OF RRAM DEVICES

Despite the key role of memristors in enabling energy-
efficient and highly-parallel CIM architectures, the non-
idealities characterizing them, hinder their actual operation.

TABLE I: The BNN architectures and their performance.

Architecture Dataset Accuracy (%)
n-layer FC BNN,
n ∈ {2, 3, 4} MNIST 95.3, 97.1, 97.8

4-layer FC BNN Fashion-MNIST 88.6

VGG BNN CIFAR-10 90.1

Same applies for RRAM devices, which frequently suffer from
various reliability and variability problems. These problems
are classified in two main categories, namely, the time-zero
and time-dependent non-idealities [3].

Time zero refers to the moment of fabrication of the device
and includes non-idealities such as conductance variation, wire
parasitics, and over-forming, caused by fabrication imperfec-
tions and the stochastic nature of the underlying physics. Time-
dependent non-idealities regard the limited endurance of these
devices, degradation due to stress and ageing, conductance
drift, and read disturb, causing the stored value to change
state. Most of these defects present a transient effect on the
operation of RRAM devices, while some others can cause a
permanent damage. For example, the accumulated effect of
large numbers of read/write operations leading to significant
conductance drift [17], or the over-forming caused by excessive
process variations, make the defective RRAM devices to get
stack at LRS (stack-at-1, SA1) or HRS (stack-at-0, SA0).

In this work, we focus on the impact of SAFs and conduc-
tance variation. First, SA0 and SA1 faults are injected randomly
into the crossbar array and their impact is evaluated. In case
that the original weight value matches the one of the SAF,
then the injected fault has no effect. Moreover, the impact of
conductance variation is assessed next, which can aggregate
the impact and characteristics of other non-idealities, such as
conductance drift, read disturb etc. Conductance variation is
modeled as a normal distribution (µ± 3σ) of the conductance
of RRAM devices.

IV. RRAM DEFECTS IMPACT ANALYSIS

For a corroborated analysis, we examine three case studies
based on the MNIST, Fashion-MNIST, and CIFAR-10 datasets.
First, a Fully Connected (FC) BNN architecture varying from
2 to 4 layers with 784 neurons in each hidden layer is trained
on the MNIST dataset. The same 4-layer BNN is also used
with the Fashion-MNIST dataset. The VGG BNN, composed
of 6 convolutional layers with 3 max-pooling layers in-between
them and 3 fully connected layers at the end, is trained on
the CIFAR-10 dataset. Table I summarizes the selected case
studies and their baseline performance.

A. Stuck-at fault impact

First, we analyze the impact of SAFs on the 2-, 3-, and 4-
layer BNN architectures and the results are presented in Fig. 3a.
As shown, the deeper architectures tend to be more sensitive,
mainly, due to the increased number of neurons, which results
in a larger absolute number of simultaneously injected faults.
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(a) Impact on n-layer MNIST BNNs.
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(b) Layer-wise impact on MNIST BNN.
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(c) Impact on different BNN architectures.

Fig. 3: SAF impact evaluated for different (a) architecture depth, (b) layers, and (c) architectures.
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Fig. 4: Conductance variation impact.

Next, we assess the impact of SAFs layer-wise for the 4-
layer BNN architecture. Fig. 3b shows the mean accuracy drop
when SAFs are injected to each layer of the network, targeting
one layer at a time. We observe that the impact is larger for
the first layer, while being less severe for the upcoming layers.
The reason behind this is mainly the fact that the effects of a
fault occurring early in the network are propagated to the rest
of the layers and thus are magnified. Additionally, the output
layer consists of a relatively small number of neurons (10),
therefore the absolute number of injected faults is very small.

Finally, Fig. 3c presents the impact of SAFs on networks
trained with different datasets. The results agree with the
previous ones, showcasing that the shallower architectures
trained on the MNIST dataset are less sensitive compared to
the deeper ones required by the Fashion-MNIST and CIFAR-10
datasets.

B. Conductance variation impact

Regarding conductance variation, it inserts a minor impact
of no more than 5% drop of the classification accuracy, even
for large variations up to 30% of the nominal conductance
values, as shown in Figs. 4a and 4b for the 2-layer MNIST
BNN and the Fashion-MNIST BNN, respectively. Therefore,
conductance variation has a significantly less severe impact on
the classification accuracy compared to SAFs for all network
architectures.

V. FAULT TOLERANCE TECHNIQUES

The impact analysis of RRAM defects of Sec. IV highlights
the importance of a fault tolerance strategy to mitigate the
effects of non-idealities existing in RRAM devices and help in
harnessing the full potential of RRAM-based AI accelerators.
The proposed fault tolerance strategy is presented in Fig. 5 and
consists of two parts, namely, a fault tolerant activation function
and a retraining method. The techniques are orthogonal to each

Fig. 5: The fault tolerance flow for a trained BNN.

other, meaning that they can be applied independently and lead
to higher improvements if combined.

A. Fault tolerant activation function

The first part of the fault tolerance flow shown in Fig. 5a,
is to choose the proper activation function. To do so, different
network instances are created for the selected BNN architecture,
one with each activation function, namely, sigmoid, ReLU ,
and tanh. Then, each BNN instance is trained and mapped
on a faulty RRAM crossbar array to assess its fault tolerance
capabilities for different fault injection experiments. Finally,
the best-performing network instance is selected.

As shown in Figs. 6a and 6b, the BNNs using the ReLU
activation function achieve the least classification accuracy
drop when SAFs are injected in the crossbar array. Notably,
for 10-25% of SAFs, ReLU scores a 5-10% improvement in
the classification accuracy over tanh and even further over
sigmoid. This is mainly the case because ReLU activates a
neuron only for positive values, thus, resulting in a sparser
neuron activity across the network, whereas sigmoid and tanh
neurons are not threshold based, and can be active for wide
range of weighted input values. This sparser neuron activity
helps neurons with ReLU activation function in reducing the
propagation of faults to the subsequent layers, as it limits the
activation of faulty neurons.

Fig. 6c shows the fault tolerance capability of the 2-layer
MNIST BNN with ReLU in the presence of 15% SAFs and
conductance variation. Similarly to the results of Sec. IV-B,
the impact of conductance variation is rather minimal. For
small conductance variation of 5-15% the additional drop in
the classification accuracy is negligible, while we notice a drop
of approximately no more than 3% even for high conductance
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(a) 2-layer MNIST BNN
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Fig. 6: SAF and conductance variation impact for different activation functions.

TABLE II: SAF-aware training results.

2-layer BNN
(MNIST)

4-layer BNN
(Fashion-MNIST)

VGG
(CIFAR-10)

SAF
(%)

Classification Accuracy (%)
Baseline Retrained Baseline Retrained Baseline Retrained

0 97.3 - 88.2 - 90.1 -

5 96.0 97.3 84.0 87.1 65.0 89.9

10 95.4 97.0 71.0 88.0 10.0 89.7

15 93.0 97.2 62.0 87.9 10.0 89.6

20 89.0 97.1 53.0 88.0 9.0 89.0

25 84.0 97.2 40.0 87.8 8.0 88.7

30 71.0 96.8 22.0 88.5 8.0 89.0

variation. Therefore, ReLU can effectively tolerate this defect.
Overall, using ReLU instead of tanh or sigmoid can lead to
improvements in the classification accuracy of around 10%.

B. SAF-aware retraining

Performing a fault-aware retraining of a network can enhance
its fault tolerance capabilities by learning around the faulty
components. To further boost the classification accuracy, our
strategy combines the proposed retraining method with the fault
tolerant activation function technique described previously.

First, the retraining method identifies the fault distribution
across the crossbar array, so that the faulty locations are
excluded from the training algorithm and focus on retraining
only the weights mapped on fault-free RRAM devices. To
achieve this, the gradient mask of Eq. 3 is applied in order to
prevent updating the weights corresponding to faulty cells:

Mij =

{
0, if cij has SAF
1, otherwise

(3)

where Mij is the mask element for cell cij at the junction
of the wordline i and the bitline j. Using the gradient mask
allows the retraining of the network to converge faster, as the
number of weights to be updated is reduced.

Table II presents the classification accuracy improvement
of the proposed retraining method using the ReLU activation
function for the different BNN architectures. As shown in Table
II, SAF-aware retraining is able to almost fully recover the
classification accuracy back to the (fault-free) baseline, i.e., 0%
SAFs, for all networks and SAF percentages. More precisely,

the recovered accuracy, i.e., the ratio between the restored and
baseline accuracy, can reach up to 99.8%.

VI. CONCLUSIONS

Memristor-based CIM is a promising solution to overcome
the limitations of conventional computing and deliver energy-
efficient architectures for emerging data-intensive application
segments. However, memristive devices, such as RRAM, suffer
from variability and manufacturing defects. This work investi-
gates the impact of RRAM non-idealities on the recognition
capabilities of BNNs and proposes a two-step fault tolerance
strategy to alleviate their impact. Results show that the proposed
techniques can recover the classification accuracy by 99.8%.
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