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Summary Migraine GWAS Healthy brain gene expression
Migraine isa common brain disorder, with a her|tab|||ty of GWAS data1 from T akak Gene expression data3 from the A”en
50%. Genome-wide association studies have identified sev- 23,285 migraine patients - 95,425 controls. Human Brain Atlas. (()) ALLEN INSTITUTE
eral loci, but interpretation remains challenging. We integrat- N9/ BRAIN SCIENCE

_— . . . Calculate p-values per gene with GATES*:

ed migraine GWAS data with spatial gene expression data of P , PEr9 L ,

dult braine £ o Al oA dontif - LD and gene size corrected. Expression in 3702 samples from six
adult brains from the Allen Human Brain Atlas, to identity - SNPs within 15 kb flanks. healthy human donors, covering most
specific brain regions and molecular pathways involved in of the brain.
migraine. | .
We used two complementary methods. First, we clustered all Define migraine genes: p-value ,!)ergene Use these samples to calculate spatial

. . . . -“High confidence genes”  With GATES co-expression between genes.

genes into co-expression modules and identified those asso- .

. T Bonferroni corrected p < 0.05
ciated with migraine. Second, we constructed local co-ex- -“Candidate genes” If genes are co-expressed, they share a
pression networks around high-confidence migraine genes. uncorrected p < 0.05 spatial expression pattern.
Both approaches converge on functions and anatomy.
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Approach 1 Approach 2
Using co-expression data from the healthy brains, we We selected the 14 “high confidence migraine
clustered all genes into 18 co-expression modules. genes”to serve as seeds in local co-expres- FHLS

sion networks.
All modules were tested for enrichment in migraine croigs |
“candidate genes”. Five modules of interest were iden- Each of these genes was connected to its W £
tified (A - E). most co-expressed genes in the healthy
brains. sugpi
These modules are involved in: )
- Neurotransmission, protein catabolism and The network shows considerable overlap with T i
n = @m%vgzcs
mitochondria in the cortex. modules A, B and D of Approach 1. It also =
- Transcription regulation in the cortex and points to the same anatomical regions and
cerebellum. biological functions.
- Oligodendrocytes and mitochondria in subcortical - /
\
areas. |
Limbic lobe Parietal lobe Cerebral nuclei ~ Midbrain Pons WM
Frontal lobe Occipital lobe Temporal lobe Diencephalon Cerebellum Medulla obl.
1,556 genes / 205 candidate genes
p = 9.22x10-4
< LD corrected p = 5.47x10* .
2 g Function EASE LI
= '/ Integration of energy metabolism 3.84 (HUFL1
-8 v \ Mod.-dep. protein catabolic process 2.61 .
E s Proteasome 2.57
{ Synapse 2.09
Voltage-gated cation channel activity 2.08 OASTNZ
© (©CTorf10
®FHL5
1,595 genes / 198 candidate genes v I () MBOAT4
p =0.015 :
o LD corrected p = 7.18x10
2 Function EASE ©OMEF2D
= Nuclear lumen 16.46 .
-8 Zinc finger transcription factor 13.85 * DCLRE1C
E Transcription 13.19 S
Zinc ion binding 9.18 EPROTLA LRP1G)
Chromatin modification 8.02
E (ONAB2 .
497 genes / 67 candidate genes  ©SUV39H2
p = 0.020 :
'S LD corrected p = 7.77x10°® . ©TRPMS ——
2 Function EASE . PRDM16()
= Membrane fraction 3.21 ’ STAT®
-g Mod.-dep. protein catabolic process 3.13 e
E Purine ribonucleotide binding 2.61 ’
Cerebellar cortex formation 1.71 :
Regulation of synaptic plasticity 1.70
I B
1,984 genes / 240 candidate genes (I) ; 1|0 1I5 g § %g %
p =0.024 -log, (gene p-value) B30
0 LD corrected p = 5.82x10° Expression Slice Enrichment S g
z-score location P-value 'rfbr =
2 Function EASE 0 f . »
=) Mitochondrial part 4,26 %_5 1.2. 3. 16.07 References:
-g Mitochondrion 3.76 a:g Wl N 1. Anttila et al. 2013
E Actin filament-based process 3.68 04 fr‘ N\ 1e-05 -Anttilg et al.
Apoptosis 3.44 -0.4 _ ;
Ensheathment of neurons 2.97 08 & —~ 2221 2.Lietal 2011
5° ) 3. Hawrylycz et al. 2012
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