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ABSTRACT

We have analyzed the far-field approximation of the
Green’s function representation for seismic interferometry.
By writing each of the Green’s functions involved in the cor-
relation process as a superposition of a direct wave and a scat-
tered wave, the Green’s function representation is rewritten
as a superposition of four terms. When the scattered waves
are modeled with the Born approximation, it appears that a
three-term approximation of the Green’s function representa-
tion �omitting the term containing the crosscorrelation of the
scattered waves� yields a nearly exact retrieval, whereas the
full four-term expression leads to a significant nonphysical
event. This is because the Born approximation does not con-
serve energy and therefore is an insufficient model to explain
all aspects of seismic interferometry. We use the full four-
term expression of the Green’s function representation to de-
rive the generalized optical theorem. Unlike other recent der-
ivations, which use stationary phase analysis, our derivation
uses reciprocity theory. From the generalized optical theo-
rem, we derive the nonlinear scattering matrix of a point scat-
terer. This nonlinear model accounts for primary and multiple
scattering at the point scatterer and conforms with well-es-
tablished scattering theory of classical waves. The model is
essential to explain fully the results of seismic interferome-
try, even when it is applied to the response of a single point
scatterer. The nonlinear scattering matrix also has implica-
tions for modeling, inversion, and migration.

INTRODUCTION

The aim of this paper is to discuss links between the theory of seis-
ic interferometry, the generalized optical theorem, and the scatter-

ng matrix of a point scatterer. Seismic interferometry is the method-
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logy by which new seismic responses are created by crosscorrelat-
ng existing responses from controlled transient sources or from ran-
om noise sources. For a review, refer to Larose et al. �2006�,
chuster �2009�, Snieder et al. �2009a�, and references therein. The
istory of the optical theorem starts in the late nineteenth century
hen Rayleigh and others formulated the relation between the opti-

al refraction index of a scattering medium and its forward scattering
mplitude. During World War II, Heisenberg �1943� derived a more
eneral theorem for the scattering matrix �i.e., the angle-dependent
cattering amplitude� from quantum mechanics, known as the gener-
lized optical theorem. For a review, refer to Newton �1976� and
arston �2001�.
Recently, researchers have recognized that the Green’s function

epresentation used in seismic interferometry resembles the general-
zed optical theorem �Snieder et al., 2008�. We show that the general-
zed optical theorem can be obtained as a special case from the
reen’s function representation for interferometry. The derivation is

imilar to that by Snieder et al. �2008� and Halliday and Curtis
2009a� in the sense that we substitute far-field expressions for direct
nd scattered waves in the Green’s function representation. Howev-
r, instead of using stationary phase analysis, we use reciprocity the-
ry to analyze this representation, term by term. By comparing the
nal result with the original Green’s function representation, the
eneralized optical theorem follows straightforwardly.

Next, we use the optical theorem to derive the scattering matrix of
point scatterer. We obtain an expansion for which the different

erms account for primary and multiple scattering at the point scat-
erer �van Rossum and Nieuwenhuizen, 1999�. We close the circle by
nalyzing seismic interferometry for the response of a point scatter-
r. This analysis shows that even for the simple situation of a single
oint scatterer, the Born approximation does not suffice; the nonlin-
ar scattering matrix is required to completely explain the seismic
nterferometric result. We conclude with a brief discussion of the im-
lications of the nonlinear scattering aspect of point scatterers for
odeling, inversion, and migration.
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SA28 Wapenaar et al.
REVIEW OF GREEN’S FUNCTION
REPRESENTATION FOR SEISMIC

INTERFEROMETRY

We briefly review the derivation of the Green’s function represen-
ation for seismic interferometry. Our starting point is the acoustic
eciprocity theorem of the correlation type in the space-frequency
x,�� domain for an arbitrary spatial domain D enclosed by bound-
ry �D with outward-pointing normal vector n� �n1,n2,n3� �Morse
nd Feshbach, 1953; Bojarski, 1983; de Hoop, 1988; Fokkema and
an den Berg, 1993�:

�
�D

1

�
�p̂

A
*��ip̂B�� ��ip̂A

*�p̂B�nid
2x��

D
�ŝ

A
*p̂B� p̂

A
*ŝB�d3x .

�1�

ere, p̂�x,�� denotes the acoustic pressure and ŝ�x,�� is a source
istribution; the asterisk denotes complex conjugation. The cir-
umflex above a variable denotes the Fourier transform of the
orresponding time-dependent variable, according to p̂�x,���
exp��j�t�p�x,t�dt �j is the imaginary unit�. Subscripts A and B
istinguish two independent acoustic states in one and the same arbi-
rary inhomogeneous lossless medium, with mass density ��x� and
ropagation velocity c�x�.

If we choose point sources ŝA�x,���� �x�xA� and ŝB�x,��
� �x�xB�, the corresponding acoustic pressure fields in states A

nd B are Green’s functions; hence, p̂A�x,��� Ĝ�x,xA,�� and
ˆ B�x,��� Ĝ�x,xB,��, respectively �see Table 1�. Substituting into
quation 1, assuming xA and xB are both situated in D, and using
ource-receiver reciprocity gives

�
�D

1

��x�
�Ĝ*�x,xA,���iĜ�x,xB,��

� ��iĜ*�x,xA,���Ĝ�x,xB,���nid
2x� Ĝ�xB,xA,��

� Ĝ*�xB,xA,���2jI�Ĝ�xB,xA,���, �2�

here I denotes the imaginary part.
This exact Green’s function representation is the basis for seismic

nterferometry �van Manen et al., 2005; Wapenaar et al., 2005�. The
ight-hand side of equation 2 is the Fourier transform of G�xB,xA,t�

G�xB,xA,�t�, which is the Green’s function of a source at xA and a
eceiver at xB, minus its time-reversed version. The products under
he integral on the left-hand side correspond to crosscorrelations in
he time domain. The left-hand side can be simplified further for a
istribution of uncorrelated noise sources on �D, but this is beyond
he scope of our paper. Note that in previous work we use a slightly
ifferently defined Green’s function, leading to a representation of

able 1. Acoustic states used for the derivation of
epresentation 2.

State A State B

avefields p̂A�x,��� Ĝ�x,xA,�� p̂B�x,��� Ĝ�x,xB,��
edium parameters ��x�, c�x� ��x�, c�x�

ource functions ŝA�x,���� �x�xA� ŝB�x,���� �x�xB�
Downloaded 28 Sep 2012 to 131.180.130.198. Redistribution subject to 
he real part instead of the imaginary part. Representations for the
eal or imaginary part are equivalent �Wapenaar and Fokkema,
006�. Here we choose for the form of equation 2 to make the link
ith the generalized optical theorem more transparent. Equation 2 is

lso used in the literature on optical holography �Porter, 1970� and
nverse scattering �Oristaglio, 1989�; see Thorbecke and Wapenaar
2007� for a further discussion.

For the special case of coinciding sources in both states, i.e., for
A�xB�x0, equation 2 formulates energy conservation according
o

�
�D

1

��x�
I�Ĝ�x,x0,���iĜ*�x,x0,���nid

2x�

�I�Ĝ�x0,x0,��� . �3�

ee Snieder et al. �2009b� for a further discussion.

FAR-FIELD APPROXIMATION

We consider a scattering domain with compact support around the
rigin, embedded in an otherwise homogeneous medium with mass
ensity �̄ and propagation velocity c̄ �Figure 1�. We write for the
reen’s function

Ĝ�x,xA,��� Ĝ̄�x,xA,��� Ĝs�x,xA,��, �4�

here Ĝ̄�x,xA,�� and Ĝs�x,xA,�� are the direct and scattered wave-
elds, respectively. The direct wavefield in the embedding is given
y

Ĝ̄�x,xA,���
�̄

4�

exp�� jk�x�xA��
�x�xA�

, �5�

ith k�� / c̄.Assuming xA and x are far from the scattering domain,
he scattered wavefield can be written as

Ĝs�x,xA,��� Ĝ̄�x,0,���̂ �k,�kA�Ĝ̄�0,xA,��, �6�

here �̂ �k,�kA� is the complex-valued scattering matrix for an in-
ident wave in the �kA direction, scattered in the k direction, with

A

A

xx

k�k

igure 1. Configuration for far-field expressions — a scattering do-
ain with compact support around the origin, embedded in an other-
ise homogeneous medium.
SEG license or copyright; see Terms of Use at http://segdl.org/
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Interferometry and the optical theorem SA29
A�kxA / �xA� and k�kx / �x� �Figure 1�. Note that the scattering
atrix �̂ �k,�kA� accounts for primary and multiple scattering in

he scattering domain. Source-receiver reciprocity of the Green’s
unction, i.e., Ĝs�x,xA,��� Ĝs�xA,x,��, implies �̂ �k,�kA��
ˆ �kA,�k�.

To facilitate the link with the generalized optical theorem
Glauber and Schomaker, 1953; Newton, 1976�, equation 6 can be
ritten alternatively as

Ĝs�x,xA,���
4�

�̄
Ĝ̄�x,0,��f�k,�kA�Ĝ̄�0,xA,��, �7�

ith f � � �̄ /4���̂ . The factor 4� / �̄ in equation 7 compensates for

/4� in Ĝ̄�x,0,��.
Substituting equation 4 and similar expressions for the other

reen’s functions into the left-hand side of equation 2 gives

L�ĜA,ĜB��L�Ĝ̄A,Ĝ̄B��L�Ĝ̄A,ĜB
s ��L�ĜA

s ,Ĝ̄B�

�L�ĜA
s ,ĜB

s �, �8�

here ĜA stands for Ĝ�x,xA,��, etc., and L�ĜA,ĜB� stands for

L�ĜA,ĜB��
1

�̄
�

�D
�Ĝ*�x,xA,���iĜ�x,xB,��

� ��iĜ*�x,xA,���Ĝ�x,xB,���nid
2x, �9�

tc. In the time domain, these expressions become

L�GA,GB��L�ḠA,ḠB��L�ḠA,GB
s ��L�GA

s ,ḠB�

�L�GA
s ,GB

s �, �10�

ith

L�GA,GB��
1

�̄
�

�D
�G�x,xA,� t���iG�x,xB,t�

��iG�x,xA,� t��G�x,xB,t��nid
2x, �11�

tc., where the asterisk denotes temporal convolution.
Before we analyze equation 8 further, we illustrate the different

erms in equation 10 with a numerical example.

NUMERICAL EXAMPLE 1: POINT SCATTERER
IN BORN APPROXIMATION

Figure 2 shows the configuration for a 2D numerical experiment;
20 sources are distributed equally along a circle with a radius of
00 m and its center at the origin. The receiver coordinates are xA

�0,�150� and xB� �200, 0�. The propagation velocity of the ho-
ogeneous embedding is c̄�1500 m /s, and the mass density �̄
1000 kg /m3. The star at the origin denotes a point scatterer.
Using source-receiver reciprocity, we write for the Green’s func-

ions

Ĝ�xA,x,��� Ĝ̄�xA,x,��� Ĝs�xA,x,��, �12�
Downloaded 28 Sep 2012 to 131.180.130.198. Redistribution subject to 
ith

Ĝs�xA,x,��� Ĝ̄�xA,0,���̂ ���Ĝ̄�0,x,�� �13�

and similar expressions for the other Green’s functions�, where
ˆ ��� is the angle-independent scattering matrix. The scatterer is

odeled as a contrast in compressibility, according to ���x�
��0� �x� with ��0 � 0, whereas the density is kept constant. In

he Born approximation, the scattering matrix is thus given by
ˆ �����2��0. In the numerical example, we choose ��0�6

10�9 m3 Pa�1.
The evaluation of the first term in the right-hand side of equation

0, L�ḠA,ḠB�, is illustrated in Figure 3. Figure 3a shows the inte-
rand. Each trace is the result of a crosscorrelation of direct waves

¯ �xA,x,t� and Ḡ�xB,x,t� for one specific source position x at the sur-
ace �D. The source coordinate is represented by the angle 
 �con-
orming with its definition in Figure 2�. The Green’s functions have
een convolved with a Ricker wavelet with a central frequency of
0 Hz. Figure 3b shows the result of the integration over the sources.
he main contributions come from the Fresnel zones around the sta-

ionary points a and b in Figures 2 and 3a. The two events in Figure
b correspond to the direct wave Ḡ�xB,xA,t� and its time-reversed
ersion �Ḡ�xB,xA,�t�. The arrival times are �tAB, with tAB� �xB

xA� / c̄�0.167 s.
Figure 4a represents the integrand of L�ḠA,GB

s �, i.e., the second
erm in the right-hand side of equation 10. The first stationary point,
enoted by c, occurs at 
 ��90°. For this source, the Green’s func-
ions Ḡ�xA,x,t� and Gs�xB,x,t� have the path from x to xA in common.
ence, in the crosscorrelation process, the traveltime from x to xA is

ubtracted from that of the scattered Green’s function Gs�xB,x,t�.
he remaining traveltime is tA� tB� ��xA�� �xB�� / c̄�0.233 s,

he traveltime of the arrival in the scattered Green’s function
s�xB,xA,t�. Hence, the arrival at 0.233 s in Figure 4b represents
s�xB,xA,t�. The second stationary point in Figure 4a, denoted by d,
ccurs at 
 ��90°. For this source, the traveltime of the correla-
ion result is tB�tA� ��xB�� �xA�� / c̄�0.033 s. The arrival at
.033 s in Figure 4b has no physical meaning.

Figure 5a represents the integrand of the third term in the right-
and side of equation 10, L�GA

s ,ḠB�.At the stationary point, denoted
y e, the Green’s functions Gs�xA,x,t� and Ḡ�xB,x,t� have the path

�

o
90�

oo 1800

o
90

1x

3x

c

a

f e

b

d

A

B

x

x

�D

igure 2. Single point scatterer in a homogeneous embedding. The
eceivers are at xA and xB. The numerical integration is carried out
long the sources at surface �D. The main contributions come from
tationary points a, b, c, and e.
SEG license or copyright; see Terms of Use at http://segdl.org/
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SA30 Wapenaar et al.
rom x to xB in common. The traveltime of the correlation result is
�tA� tB���0.233 s. The arrival at this traveltime in Figure 5b

epresents the time-reversed scattered Green’s function �Gs�xB,xA,
t�. The stationary point denoted by f contributes to the nonphysi-

al arrival at 0.033 s in Figure 5b. Note that this arrival is opposite in
ign compared with the arrival at 0.033 s in Figure 4b.

We now superpose the results of L�ḠA,ḠB�, L�ḠA,GB
s �, and

�GA
s ,ḠB�. Figure 6 shows the sum of the results in Figures 3–5.

n this and subsequent displays, the amplitudes of L�ḠA,ḠB�
Ḡ�xB,xA,t�� Ḡ�xB,xA,�t� �Figure 3� are divided by a factor of 20

o avoid clipping. The events in Figure 6b are Ḡ�xB,xA,t�� Ḡ�xB,xA,
t��Gs�xB,xA,t��Gs�xB,xA,�t�. Note that the nonphysical ar-

ivals at 0.033 s cancel each other. Hence, the result in Figure 6b rep-
esents the complete Green’s function between xA and xB, minus its
ime-reversed version, i.e., G�xB,xA,t��G�xB,xA,�t�. Figure 7
hows the result of Figure 6b, together with the directly modeled
reen’s function between xA and xB. The match is nearly perfect.
Finally, we evaluate the last term on the right-hand side of equa-

ion 10, L�GA
s ,GB

s �. The scattered Green’s functions Gs�xA,x,t� and
s�xB,x,t� have the path from x to the point scatterer in common for

ll x. Hence, the traveltime of the correlation result is equal to tB

tA� ��xB�� �xA�� / c̄�0.033 s for all x �Figure 8a�. The integra-
ion result is shown in Figure 8b. Following equation 10, we add this
o the other three terms and compare it again with the modeled
reen’s function �Figure 9�. Note the artifact at 0.033 s; the arrival

ime of this event has no physical meaning. The amplitude is propor-
ional to the energy scattered by the point scatterer.

b
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igure 3. �a� The integrand of L�ḠA,ḠB�. �b� The sum of all traces in
a�. These events represent the direct wave Ḡ�xB,xA,t� and its time-
eversed version �Ḡ�xB,xA,�t�.
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igure 4. �a� The integrand of L�ḠA,GB
s �. �b� The sum of all traces in

a�. The event at 0.233 s represents the scattered Green’s function
s�x ,x ,t�; the event at 0.033 s has no physical meaning.
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BORN APPROXIMATION AND BEYOND

From the numerical example, it appears that taking only three of
he four terms of equation 10 into account leads to a better retrieval
f the Green’s function �Figure 7� than when all terms are taken into
ccount, as prescribed by the theory �Figure 9�. In most practical sit-
ations, it is not possible to apply the crosscorrelation term by term;
hen the full responses are crosscorrelated, the fourth term is in-

luded automatically.Apart from this practical issue, a more intrigu-
ng question is how it is possible that the three-term approximation
eads to a better result than the full four-term expression.

The answer is that we use the Born approximation to model the
oint scatterer. The Born approximation does not conserve energy
Born and Wolf, 1965; Rodberg and Thaler, 1967; Butkov, 1968�, so
quation 3 and the more general equation 2 are violated. The Born
pproximation involves only first-order scattering; so to apply equa-
ion 2 consistently, we should only consider terms up to first-order
cattering �Wapenaar et al., 2005; Halliday and Curtis, 2009b�. The
rst three terms on the right-hand side of equation 10 obey this con-
ition, but the fourth term, L�GA

s ,GB
s �, describes the crosscorrelation

f two scattered Green’s functions. Therefore, this term is propor-
ional to second-order scattering and should be omitted to remain
onsistent with the Born approximation. Apparently, we should go
eyond first-order Born modeling if we want a consistent result

–50 0 50 100 150 200 250
�

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4
(s)
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–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4
t (s)

) b)
e

f

igure 5. �a� The integrand of L�GA
s ,ḠB�. �b� The sum of all traces in

a�. The event at �0.233 s represents the time-reversed scattered
reen’s function �Gs�xB,xA,�t�; the event at 0.033 s has no physi-

al meaning.
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) b)

igure 6. �a� Superposition of Figures 3a, 4a, and 5a. �b� The sum of
ll traces in �a�. This represents the complete Green’s function be-
ween xA and xB, minus its time-reversed version, i.e., G�xB,xA,t�

G�xB,xA,�t�. In this and subsequent displays, the amplitudes of
he direct waves, Ḡ�xB,xA,t��Ḡ�xB,xA,�t�, are divided by 20 to
void clipping.
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hen all four terms of equation 8 or 10 are taken into account. Al-
hough they do not mention this aspect explicitly, van Manen et al.
2006� recognize this and use a nonlinear point-scatterer model in
heir interferometric modeling method.

Snieder et al. �2008� analyze the four terms in the right-hand side
f equation 8 by the method of stationary phase for a situation of an
rbitrary scattering domain with compact support around the origin.
hey show that the nonphysical events resulting from the last three

erms cancel each other on account of the generalized optical theo-
em �Glauber and Schomaker, 1953� and thus confirm the consisten-
y of equation 2. Halliday and Curtis �2009a� turn the argument
round: Because the Green’s function representation 2 is correct, the
onphysical events on the right-hand side of equation 8 must cancel
ach other and, hence, the generalized optical theorem follows from
quation 2. They use this approach to derive a generalized optical
heorem for surface waves in layered elastic media.

In the next section, we follow the second route, except that instead
f using the method of stationary phase to analyze the integrals, we
se the correlation reciprocity theorem �equation 1� to evaluate the
ifferent terms on the right-hand side of equation 8. This approach is
ore straightforward but does not circumvent the approximations

nherent to the stationary phase method.

–0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4
t (s)

igure 7. Three-term approximation of equation 10 �i.e., the result of
igure 6b, here denoted by the solid line�, compared with the directly
odeled Green’s function between xA and xB �denoted by the plus

igns�.
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0.3

0.4
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igure 8. �a� The integrand of L�GA
s ,GB

s �. �b� The sum of all traces in
a�.
Downloaded 28 Sep 2012 to 131.180.130.198. Redistribution subject to 
DERIVATION OF GENERALIZED OPTICAL
THEOREM FROM GREEN’S FUNCTION

REPRESENTATION

We derive the generalized optical theorem from Green’s function
epresentation 2 for the configuration of Figure 1, with Ĝ�x,xA,��
efined by equations 4, 5, and 7. For the boundary �D, we choose a
phere with its center at the origin, encompassing xA and xB. We ana-
yze the four terms on the right-hand side of equation 8, constituting
he integral in equation 2.

The first term on the right-hand side of equation 8 has the same
orm as L�ĜA,ĜB� but with the full Green’s functions replaced by
reen’s functions in the homogeneous embedding. These Green’s

unctions and the medium parameters of the embedding are summa-
ized in Table 2. Substitution into equation 1 gives, analogous to
quation 2,

L�Ĝ̄A,Ĝ̄B�� Ĝ̄�xB,xA,��� Ĝ̄*�xB,xA,��

�2jI�Ĝ̄�xB,xA,��� . �14�

or the analysis of the second term on the right-hand side of equation

, i.e., L� Ĝ̄A,ĜB
s �, we again use equation 1.

First, observe that Ĝ̄A is the response of a point source at xA in the
omogeneous embedding. Hence, for ŝA and p̂A, we have ŝA�x,��

� �x�xA� and p̂A�x,��� Ĝ̄�x,xA,��, respectively �see Table 3,
tate A�. Note that p̂B�x,��� Ĝs�x,xB,�� is the scattered response of
he actual medium. However, we can only use equation 1 when p̂A

–0.4 –0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4
t (s)

igure 9. All four terms of equation 10 �i.e., the result of Figure 7,
ith the event of Figure 8b added to it�, compared with the directly
odeled Green’s function between xA and xB �denoted by the plus

igns�.

able 2. Acoustic states used for the evaluation of L„ Ĝ̄A,Ĝ̄B….

State A State B

avefields p̂A�x,��� Ĝ̄�x,xA,�� p̂B�x,��� Ĝ̄�x,xB,��
edium parameters �̄, c̄ �̄, c̄

ource functions ŝA�x,���� �x�xA� ŝB�x,���� �x�xB�
SEG license or copyright; see Terms of Use at http://segdl.org/



a
t

n

c

t
t
c
s
H
p

F
	

s
u

t
s
o
�
t

I
e

e
i

n
�

S
g

I
t

N

b
2
s
t

F

w

T

W

M

S

SA32 Wapenaar et al.
nd p̂B are defined in the same medium. Therefore, we rewrite p̂B as
he response of an equivalent source distribution in the homoge-

eous embedding. Thus, p̂B�x,��� Ĝ̄�x,0,��s̆B�k,�� where, ac-

ording to equation 7, s̆B�k,��� �4� / �̄�f�k,�kB�Ĝ̄�0,xB,��. Note

hat Ĝ̄�x,0,��s̆B�k,�� can be interpreted as the far-field response in
he homogeneous embedding of a source distribution ŝB�x,�� with
ompact support around the origin, assuming that s̆B�k,�� is the 3D
patial Fourier transform of ŝB�x,�� �Fraunhofer approximation�.
ence, the equivalent source distribution ŝB�x,�� generating

ˆ B�x,�� in the homogeneous embedding is defined as the inverse

ourier transform of s̆B�k,��, i.e., ŝB�x,��� �4� / �̄�Ĝ̄�0,xB,��
�1 /2��3� exp��jk ·x�f�k,�kB�d3k �see Table 3, state B�.
We have now defined all of the terms appearing on the right-hand

ide of equation 1. Because ŝB�x,�� has compact support, the prod-
ct p̂

A
*ŝB is evaluated for small x only. This justifies the approxima-

ion p̂A�x,��� Ĝ̄�x,xA,���exp� jkA ·x�Ĝ̄�0,xA,�� �see Table 3,
tate A�. Making the appropriate substitutions on the right-hand side
f equation 1, interchanging the integrals over k and x, using
exp��j�k�kA� ·x�d3x� �2��3� �k�kA� and the sifting-proper-

y of the delta function, gives

L�Ĝ̄A,ĜB
s �� Ĝs�xB,xA,��

�
4�

�̄
Ĝ̄*�0,xA,��Ĝ̄�0,xB,��f��kA,�kB� .

�15�

n a similar way, we find the third term on the right-hand side of
quation 8:

L�ĜA
s ,Ĝ̄B���Ĝs,*�xB,xA,��

�
4�

�̄
Ĝ̄*�0,xA,��Ĝ̄�0,xB,��f*��kB,�kA� .

�16�

For the analysis of the fourth term in the right-hand side of
quation 8, we substitute equation 7 and a similar express-
on for Ĝs�x,xB,�� into the right-hand side of equation 9. Using

i�iĜ�x,0,����jkĜ�x,0,�� and �4� / �̄�2� Ĝ̄�x,0,���2d2x�d2x /
x�2�d� , this gives

able 3. Acoustic states used for evaluating L„ Ĝ̄A,ĜB
s
….

State A

avefields p̂A�x,��� Ĝ̄�x,xA,���exp� jkA ·x�Ḡ
edium parameters �̄, c̄

ource functions ŝA�x,���� �x�xA�
Downloaded 28 Sep 2012 to 131.180.130.198. Redistribution subject to 
L�ĜA
s ,ĜB

s ���
2jk

�̄
Ĝ̄*�0,xA,��Ĝ̄�0,xB,��

	� f*�k,�kA�f�k,�kB�d� �17�

ubstituting equations 14–17 into the right-hand side of equation 8
ives

�
�D

1

�̄�x�
�Ĝ*�x,xA,���iĜ�x,xB,��

� ��iĜ*�x,xA,���Ĝ�x,xB,���nid
2x

�2jI�Ĝ�xB,xA,����
8� j

�̄
Ĝ̄*�0,xA,��Ĝ̄�0,xB,��

		 1

2j
�f��kA,�kB�� f*��kB,�kA��

�
k

4�
� f*�k,�kA�f�k,�kB�d�
 . �18�

n comparison with equation 2, the right-hand side contains an extra
erm that must equal zero �or equation 2 is violated�. Hence,

�1

2j
�f�kA,kB�� f*�kB,kA���

k

4�
� f*�k,kA�f�k,kB�d� .

�19�

ote that we have renamed �kA and �kB as kA and kB, respectively.
Equation 19 is known as the generalized optical theorem �Heisen-

erg, 1943; Glauber and Schomaker, 1953; Newton, 1976; Marston,
001�. The first minus sign on the left-hand side is usually absent; it
tems from our definition of the temporal Fourier transform. The op-
ical theorem follows by taking kA�kB�k0; hence,

�I�f�k0,k0���
k

4�
��f�k,k0��2d� . �20�

or an isotropic scatterer, this reduces to

�I�f��k�f �2, �21�

ith f � f���.

State B

,�� p̂B�x,��� Ĝs�x,xB,��� Ĝ̄�x,0,��s̆B�k,��
�̄, c̄

ŝB�x,��� � 1
2� �3

� exp�� jk ·x�s̆B�k,��d3k,

s̆B�k,���
4�

�̄
f�k,�kB�Ĝ̄�0,xB,��
ˆ �0,xA
SEG license or copyright; see Terms of Use at http://segdl.org/
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DERIVATION OF SCATTERING MATRIX OF A
POINT SCATTERER FROM OPTICAL THEOREM

We use the optical theorem to derive an explicit expression for the
ull scattering matrix of a nonlinear point scatterer. Here, “nonlin-
ar” refers to the fact that the scattered field is nonlinear in terms of
he parameter contrast �but it is linear in terms of the incident wave-
eld�. The field scattered by a point scatterer at x�0 is given by

Ĝs�x,xA,��� Ĝ̄�x,0,���̂ ���Ĝ̄�0,xA,��, �22�

ith �̂ ���� �4� / �̄�f���. We rewrite the optical theorem for an iso-
ropic scatterer �equation 21� as

�I��̂ ��
k�̄

4�
��̂ �2. �23�

or a compressibility contrast, we had for the first-order Born ap-
roximation �̂ 1��2��0, with ��0 � 0. We use equation 23 to de-
ive the imaginary part of the second-order Born approximation �̂ 2:

�̂ 2���� �̂ 1���� j
k�̄

4�
�̂ 1

2��� . �24�

ompare this with the following expression of van Rossum and
ieuwenhuizen �1999�

�̂ 2���� �̂ 1���� �̂ 1���Ĝ̄reg�0,0,���̂ 1���, �25�

here Ĝ̄reg�0,0,�� is a regularized version of the return Green’s

unction Ĝ̄�0,0,��. The real part of Ĝ̄�0,0,�� diverges, but van Ros-
um and Nieuwenhuizen �1999� argue that “in reality these diver-
ences are cut off by the physical size of the scatterer, so they play no
ole for weak scattering.” Therefore, they only keep the imaginary
art; thus �using equation 5�,

Ĝ̄reg�0,0,��� lim
�x�→0

jI�Ĝ̄�x,0,�����j
�̄

4�
lim

�x�→0

sin�k�x��
�x�

��j
k�̄

4�
. �26�

With this expression for the regularized Green’s function, our sec-
nd-order Born approximation derived from the optical theorem
equation 24� is identical with equation 25. Analogous to an expres-
ion for nonlinear 1D scattering derived by Snieder �1999�, we ac-
ount for higher-order scattering at the point scatterer as

�̂ ���� �̂ 1� �̂ 1Ĝ̄0
reg�̂ 1� �̂ 1Ĝ̄0

reg�̂ 1Ĝ̄0
reg�̂ 1� ¯ , �27�

here Ĝ̄0
reg stands for Ĝ̄reg�0,0,��. This expansion for primary and

ultiple scattering is illustrated in Figure 10. Each term corresponds
o a causal operation in the time domain, so the expansion is causal as
ell.

Equation 27 converges for � �̂ 1Ĝ̄0
reg�� � �̄��0 /4� c̄��3 � 1, i.e.,

or small contrasts and finite frequencies. It can be written in closed
orm as
Downloaded 28 Sep 2012 to 131.180.130.198. Redistribution subject to 
�̂ �
�̂ 1

1� �̂ 1Ĝ̄0
reg

for ��̂ 1Ĝ̄0
reg��

�̄��0

4� c̄
�3�1. �28�

his expression for the scattering matrix �̂ , with Ĝ̄0
reg defined by

quation 26, obeys the optical theorem �equation 23�. Van Rossum
nd Nieuwenhuizen �1999� discuss equation 28 further for the situa-

ion when Ĝ̄0
reg is the regularized return Green’s function for a scatter-

r with finite size.

NUMERICAL EXAMPLE 2: NONLINEAR
POINT SCATTERER

We repeat the numerical experiments, this time using a nonlinear
catterer model. Because we consider a 2D configuration, equations
3 and 28 need to be replaced by their 2D counterparts

�I��̂ ��sgn���
�̄

4
��̂ �2 �29�

nd

�̂ �
�̂ 1

1� j�̂ 1 sgn���
�̄

4

for
�̄��0

4
�2�1, �30�

espectively, with �̂ 1�����2��0. Figure 11 shows the result of
he first three terms of equation 10, i.e., L�ḠA,ḠB��L�ḠA,GB

s �
L�GA

s ,ḠB�. Note that the nonphysical arrivals at tB� tA�0.033 s
esulting from L�ḠA,GB

s � and L�GA
s ,ḠB� do not cancel. Unlike in Fig-

res 4 and 5, where these events showed a zero-phase behavior, here
hey are not zero phase as a result of the complex-valued scattering

atrix �̂ . Hence, they do not cancel completely but leave a residue
roportional to �̂ � �̂ *.
The arrival time of this residue has no physical meaning, but its

mplitude has. According to equation 29, it is proportional to the en-
rgy scattered by the point scatterer �Carney et al., 2004; Vasconce-
os et al., 2009; Curtis and Halliday, 2010�. By adding the fourth
erm of equation 10, L�GA

s ,GB
s �, resulting from the crosscorrelation

f the scattered Green’s functions, the residual event at tB� tA

0.033 s is canceled, as shown in Figure 12.

DISCUSSION

Our theory and examples clearly show that seismic interferometry
pplied to scattered wavefields cannot be explained with the first-or-

igure 10. Diagram of the nonlinear scattering matrix �after Snieder,
999�. The single line denotes the regularized return Green’s func-

ion Ĝ̄reg�0,0,��. The open circle denotes the linearized scattering
atrix �̂ 1���, and the black circle stands for the nonlinear scattering
atrix �̂ ���.
SEG license or copyright; see Terms of Use at http://segdl.org/
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er Born approximation. Even for a single point scatterer, interfer-
metry includes the crosscorrelation of two scattered responses,
hich is proportional to second- �and higher� order scattering. This
onlinear term can be handled consistently only when the contribut-
ng responses contain the proper nonlinear scattering effects.

Although the example we discuss is simple, it shows the relevance
f taking nonlinear scattering at point scatterers into account. This
oes not only apply to applications in seismic interferometry. For ex-
mple, Groenenboom and Snieder �1995� analyze the transmission
f waves through a distribution of point scatterers. With numerical
odeling experiments, they show it is essential that not only multi-

le scattering between the scatterers be taken into account but also
hat each scatterer be treated nonlinearly. Hence, accounting for the
ocal nonlinearity of scatterers is essential in modeling �Groenen-
oom and Snieder, 1995�, nonlinear inversion �Weglein et al., 2003�,
nd interferometry of responses of scattering media �van Manen et
l., 2006�.

Also for the analysis of seismic migration, which is usually con-
idered a linear process, the nonlinearity of point scatterers may be
elevant. The resolution properties of seismic migration for a specif-
c acquisition configuration are often expressed in terms of the point-
pread function �or spatial resolution function�, which is defined as

–50 0 50 100 150 200 250
�
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–0.2

–0.1

0.0

0.1

0.2

0.3

0.4
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) b)

igure 11. �a� Three-term approximation of equation 10, as in Figure
a, but this time for the nonlinear scatterer model of equation 30. �b�
he sum of all traces in �a�. The nonphysical arrivals at tB� tA

0.033 s do not cancel but leave a residue with an amplitude pro-
ortional to the energy scattered by the point scatterer.

–0.4 – 0.3 –0.2 –0.1 0.0 0.1 0.2 0.3 0.4
t (s)

igure 12. All four terms of equation 10, as in Figure 9, but this time
or the nonlinear scatterer model of equation 30. The fourth term
ancels the residual event of Figure 11b.
Downloaded 28 Sep 2012 to 131.180.130.198. Redistribution subject to 
he migration result of the response of a single point scatterer �Miller
t al., 1987; Schuster and Hu, 2000; Gelius et al., 2002; Lecomte,
008�. Moreover, the point-spread function is sometimes used in mi-
ration deconvolution to improve spatial resolution �Hu et al., 2001;
u et al., 2006�. In both approaches, the linearized point scatterer
odel could be replaced by the nonlinear model of equation 28 to

btain a more accurate point-spread function. A caveat for the appli-
ation in migration deconvolution is that the amplitude as well as the
hase of the nonlinear model depend on the local contrast parameter.

CONCLUSIONS

Starting with the Green’s function representation for seismic in-
erferometry, we have derived the generalized optical theorem and,
ubsequently, the nonlinear scattering matrix of a point scatterer. We
ave closed the loop by analyzing seismic interferometry for the re-
ponse of a point scatterer. None of the theories discussed is new, but
ome of the derivations are new and the relations between the theo-
ies are insightful. One main conclusion is that the Born approxima-
ion is an insufficient model to explain all aspects of seismic interfer-
metry, even for a single point scatterer. This conclusion makes
ense if one bears in mind that the Born approximation does not con-
erve energy, whereas the interferometric Green’s function repre-
entation is a generalization of the energy conservation law. Last but
ot least, we have indicated the relevance of the nonlinear scattering
atrix of a point scatterer for modeling, inversion, and migration.
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