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Abstract

This thesis investigates the applicability of the Probabilistic Inference for Learning COntrol (PILCO) algorithm
to large systems and systems with time varying measurement noise. PILCO is a state-of-the-art model-learning
Reinforcement Learning (RL) algorithm that uses a Gaussian Process (GP) model to average over uncertainties
during learning. Simulated case studies on a second-order system and a cart-pole system show that both
the Radial Basis Function (RBF) controller and the GP controller find good solutions when the number of
basis functions is chosen correctly. However, when a high number of basis functions is selected, the RBF
controller fails completely, while the GP controller is able find a suboptimal solution. In order to reduce the
computational time for large systems is the identification of the GP model parallelized. For a four dimensional
model the parallelization results in a 20 to 40 percent reduction of the identification computational time.
A simulated case study of a cart-pole system shows a strong decrease in performance when increasing the
measurement noise variance or kurtosis. The controller is robust for changing skewness of the measurement
noise. Furthermore is the variance of the measurement noise an important parameter, because it has to
be selected as a fixed parameter of the GP controller prior to learning. Therefore Adaptive-Probabilistic
Inference for Learning COntrol (A-PILCO) is proposed. This is a framework that initiates a new learning
process when the measurement noise variance exceeds its confidence bounds. By reducing the computational
time significantly for large and/or complex systems and by implementing the A-PILCO framework the PILCO
algorithm becomes applicable larger set of systems.
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Chapter 1

Introduction

Reinforcement Learning (RL) is a control method which learns an (sub)optimal control strategy automatically.
This is realized by trying out different control inputs – called actions – and evaluating the performance of these
actions. Some actions improve the performance, others deteriorate it. By implementing the actions that lead
to an improvement of the performance, the controller learns from its mistakes and successes. This framework
is similar to the way organisms learn. Organisms learn by interacting with their environment. Every action
leads to a reward. Lewis and Vrabie (2009) have shown that organisms improve their reward by adjusting
their actions. For instance, humans are capable of learning complex tasks such as, riding a bike, playing chess,
and surfing by trial and error.
Controllers that exploit RL have certain advantages when compared to conventional (hand programmed)
controllers. Especially when dynamical systems are made of cheap hardware with inaccurate dynamics to
reduce costs, RL controllers become a promising alternative to conventional controllers. Because, individual
tuning is not required for different systems that have similar but non-identical dynamics. Furthermore, RL
controllers are able to solve complex tasks. Tasks that are very hard or even impossible to solve with hand
coded solutions. Robotic walking motion is such a complex tasks. Kohl and Stone (2004) present a RL
controller that out performs hand-coded solutions for fast forward motion of a four-legged robot (quadruped
trot gait). RL algorithms can be found in many different fields such as playing Backgammon (Tesauro, 1994),
driving a bike (Randløv and Alstrøm, 1998), truckload scheduling (Simão et al., 2009), aerobatic maneuvering
helicopters (Abbeel et al., 2007), extreme autonomous car driving (Kolter et al., 2010), drug treatment for
HIV infected patients (Ernst et al., 2006) or modeling the basal ganglia functioning (Joel et al., 2002).

When system dynamics (model) and reward function are known a priori, the automatic learning process of a
controller is often called model-based RL. Where classical techniques of control require restrictive assumptions
on the model such as linearity and determinism, the models used in model-based RL methods are generally
nonlinear and stochastic. Furthermore, model-based RL methods do not require an analytical model but can
use a sample model instead. The advantage of a sample model is that they are often easier to construct than
deriving an analytical model, especially when the behavior is stochastic.
The system dynamics and reward function –environment– are often unknown in practice. Model-free RL
techniques are developed to directly learn the optimal policy from interacting with the environment. Popular
methods are Watkins Q-learning (Watkins, 1989; Watkins and Dayan, 1992), SARSA (Rummery and Niranjan,
1994; Sutton and Barto, 1998)1 and actor-critic methods. See (Grondman et al., 2012) for an overview of
actor-critic RL. Model-free RL typically needs many interactions with the environment. Interacting with a
real system can be costly and time consuming. In order to decrease the required interaction time with the real
system during learning, which is the measure of data efficiency, algorithms can use models.
Combining model-based RL with unknown environments results in an algorithm that iterates between a system
identification and a policy learning step. (1) Starting with no knowledge about the system dynamics, input-
output data of an initial trial with the real system is used to find a model. (2) The model is used to find an

1Rummery uses the name Modified Q-Learning instead of SARSA

Master of Science Thesis K. van Witteveen



2 Introduction

(sub)optimal controller, which is applied to the real system to collect new input-output data.
With this extra information the model can be improved and a possible better controller can be found using
this new model. These steps are repeated till the solution converges. This kind of algorithms are called
model-learning RL algorithms. Note, that there are three types of learning: model-free RL, model-learning RL
and model-based RL. Kuvayev and Sutton (1996) and Atkeson and Santamaria (1997) compared model-free
with model-learning methods and found that model-learning RL is more data efficient than model-free RL.
Furthermore, the model-learning framework finds better long term plans, policies and handles changing goals
more efficiently

1-1 Recent development in model-learning RL

Model-learning methods are scarce, because by iteratively learning a model and a policy, model mismatch
arises, called model-bias. A totally wrong control policy can be learned when the model does not cover the
important system dynamics. This problem is encountered frequently in literature as the key disadvantage of
model-learning methods (Schaal, 1997; Atkeson and Schaal, 1997; Atkeson and Santamaria, 1997). Deisenroth
and Rasmussen (2011) show that model-bias is especially an issue when no useful prior knowledge and only
few data samples are available.
The research of Daw et al. (2005) shows that humans use models to learn a specific task when only a moderate
amount of experience is available. Furthermore, Körding and Wolpert (2004, 2006) and Miall and Wolpert
(1996) conclude that humans use models for planning by averaging over uncertainties when predicting or making
decisions. Furthermore, Schneider (1997) presents that by incorporating uncertainties in models and averaging
over these uncertainties model-bias can be taken into account. Inspired from the promising results of Schneider
(1997), Deisenroth and Rasmussen (2011) developed the Probabilistic Inference for Learning COntrol (PILCO)
algorithm. This model-learning RL algorithm shows that by using a Gaussian Process (GP) model model-bias
can be taken into account by averaging over uncertainties and the interaction time is decreased significantly.
Due to the nonparametric GP model and learning a single nonlinear controller from scratch, PILCO is a
state-of-the-art algorithm has the potential to become a general tool.

1-2 Research objective

Before the PILCO algorithm can become a general tool the applicability of the algorithm has to be enlarged.
The choice to use this algorithm is motivated by: (1) the strong decrease of required interaction time during
learning, (2) that a GP model can simulate a wide range of nonlinear systems, and (3) that a single nonlinear
controller can be learned.

The goal of the thesis is to increase the applicability of the PILCO algorithm for a larger set
of systems. The thesis focuses on large systems and systems with time varying measurement
noise.

The following sub-objectives have been formulated in order to reach this goal:

1. Identify if the GP controller has learning advantages over the Radial Basis Function (RBF) controller.

2. Reduce the computational time of the algorithm by parallel computing.

3. Identify the influence of different measurement noise characteristics to gain insight in the robustness of
the algorithm.

4. Develop an framework that can cope with time varying measurement noise.

1-3 Outline of the thesis

The contents of the chapters of this thesis are:

K. van Witteveen Master of Science Thesis



1-3 Outline of the thesis 3

Chapter 2: Gaussian Process method for regression Before the conducted research is presented
some background knowledge is given about regression and the PILCO algorithm. In this chapter regression
using a GP is explained, this chapter concludes with a system identification example and motivation why
Gaussian Process regression is used in PILCO in Section 2-3.

Chapter 3: The PILCO algorithm In this chapter a detailed explanation on the PILCO algorithm is
given. The detailed description of the algorithm ends with an overview of the algorithm in Section 3-4 followed
by a discussion on the method.

Chapter 4: Controller choice A performance comparison with respect to the convergence during learn-
ing using the GP or RBF controller is presented in this chapter. From this comparison the decision is made
which controller to use in the remaining of the thesis.

Chapter 5: Reducing the computational time To make the algorithm usable for a large systems,
parallel programming is used to reduce the computational time. This chapter proposes a parallel implementa-
tion of the GP training.

Chapter 6: Robustness analyses The robustness of the algorithm is investigated by determining the
influence of different characteristics of the measurement distribution on the performance. This chapter gives
insight in which moment of the measurement noise distribution is the most important.

Chapter 7: The A-PILCO algorithm This chapter uses the insights of the previous chapter to pro-
pose an extension to the algorithm for time varying measurement noise, Adaptive-Probabilistic Inference for
Learning COntrol (A-PILCO). This extension holds a variance tracker and decision maker, which initiate a
new learning process if the variance exceeds its confidence bounds.

Chapter 8: Conclusions and recommendations The thesis concludes in this chapter with a small
summary of the thesis and the conclusions on the research objective. Furthermore, some recommendations for
future research are given.
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Chapter 2

Gaussian Process regression

The results presented by Deisenroth and Rasmussen (2011) are promising because: (1) the strong decrease
of required interaction time during learning, (2) that a Gaussian Process (GP) model can simulate a wide
range of nonlinear systems, and (3) that a single nonlinear controller can be learned. Before further research
can be presented, the knowledge about the mathematics and methods behind the Probabilistic Inference for
Learning COntrol (PILCO) algorithm is required. In the PILCO algorithm Gaussian regression is used for the
simulation of system dynamics. Regression is often used in financial fields because it concerns the prediction
of continue quantities, for instance the price of a commodity as function of the interest rates (Rasmussen
and Williams, 2006). How Gaussian random variables can be used to model system dynamics is presented in
(Rasmussen and Williams, 2006, Section 2.2) with the functions-space view. In this chapter a brief summary
of the Gaussian regression for uncertain inputs is given. The chapter concludes with an discussion on GP
regression for system identification using a comparison with a parametric gradient based Output Error (OE)
system identification method.

2-1 The Gaussian Process model

The goal of GP regression is to find a model that simulates system dynamics as Gaussian distributed random
variables. The formal definition of a GP is given in Definition 2-1.1 (Rasmussen and Williams, 2006).

Definition 2-1.1. A GP is a collection of random variables, any finite number of which have a joint Gaussian
distribution.

A Gaussian random variable is completely described by its mean and covariance. Identically, a collection of
Gaussian random variables is completely specified by its mean vector and joint covariance matrix. Consider the
function y = f(x), the function values of this function can be described by Gaussian variables. The collection
of these variables result in a Gaussian random vector. Hence, the goal of Gaussian regression is to find a GP
model that fits the Gaussian random vector. The mean vector and covariance matrix of this GP model can be
described by the mean function m(x) and covariance function k(x, x′). Hence, a GP is described by

f(x) ∼ GP(m(x), k(x, x′)), (2-1a)
m(x) = E[f(x)], (2-1b)

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]. (2-1c)

By fitting the mean and covariance function on the observed data a GP model, Eq. (2-1), is obtained. When
data is observed from a dynamic system, the GP model will represent these dynamics. The marginalization
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6 Gaussian Process regression

property of a GP implies that an examination of a larger set of data does not change the distribution of the
smaller set, i.e. if (y1, y2) ∼ N (µ,Σ) than (y1) ∼ N (µ1,Σ11), in which Σ11 is the relevant submatrix of Σ
(Rasmussen and Williams, 2006). The marginalization property is also known as the consistency requirement.
This property makes it possible to add new data to the identification process without interfering with the
already found system dynamics. Often the mean function is chosen to be zero. A suitable covariance function
is the Squared Exponential (SE) covariance function:

cov [f(xp), f(xq)] = k(xp, xq) = exp
(
−1

2 |xp − xq|
2
)
. (2-2)

Note, that the covariance of the function values f(xp), f(xq) depends on the function inputs xp, xq, see Eq. (2-
1c). For inputs close to each other this function will reach unity, while for inputs further apart the function
will approach zero. A Bayesian linear regression model with infinite basis functions or a linear combination of
infinite number of Gaussian-shaped basis functions corresponds to the Squared Exponential (SE) covariance
function (Rasmussen and Williams, 2006).
The informal definition of the characteristic length-scale, `, is roughly the distance to move in input space to
significantly change the output. The characteristic length-scale and overall variance of the latent function σ2

f ,
can be adjusted by positive factors in the following manner:

cov [f(xp), f(xq)] = k(xp, xq) = σ2
f exp

(
−1

2
|xp − xq|2

`2

)
. (2-3)

To evaluate the covariance function test inputs are needed. The distinction between training inputs and test
inputs is made. Training inputs are used to train the model, i.e. fit the most suitable hyper-parameters (σ2

f , `
in this case), see Section 2-2-3. Test inputs are used to test the found model Normally, the test inputs are
different from the training inputs. With test inputs X∗ =

[
x∗1 , · · · x∗n

]T , the covariance matrix can be
found as

K(X∗, X∗) =

k(x∗1, x∗1) · · · k(x∗1, x∗n)
...

. . .
...

k(x∗n, x∗1) · · · k(x∗n, x∗n)

 . (2-4)

2-1-1 Sampling from the prior distribution

By using an example the concept of regression and the mathematics will be explained. The goal of the example
is to find a model that accurately models the function of the unknown dynamics, f(x). Choosing the prior
mean function equal to zero m(x) = 0, ∀x and the prior covariance function as Eq. (2-2) a prior distribution
can be found. This prior distribution represents the first guess of the latent function. In order to evaluate the
prior distribution a number of test inputs, X∗, must be chosen. By computing the mean vector as m(x∗) = 0
∀x∗ and covariance matrix at the test inputs as K(X∗, X∗), (Eq. (2-4)) the prior distribution can be found:

f∗ ∼ N (0,K(X∗, X∗)). (2-5)

Realizations of a Gaussian Process

The realizations of a GP is a Gaussian random vector with all entries sampled from the corresponding Gaussian
distribution y ∼ N (µ,Σ). For an arbitrary mean µ and covariance matrix Σ the Gaussian random vector can
be found as

y = µ+ Lu. (2-6)

The covariance matrix, which is symmetric and positive definite, holds Σ = LLT . Using the Cholesky de-
composition the lower triangular matrix L can be found. The entries of the input column vector u are also
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2-1 The Gaussian Process model 7

Gaussian distributed, ui = N (0, I). Because of the independence of the input u, the realization has the desired
distribution with mean µ and covariance matrix Σ. Hence, var [y] = LE[uuT ]LT = LLT = Σ. By adding a
small fraction, εI, to the covariance matrix, the Cholesky decomposition can be numerically stabilized. The
effect of this stabilization can be considered as adding independent noise with variance ε. However, ε can be
chosen in such way that the effect is insignificant (Rasmussen and Williams, 2006). By plotting the generated
values as function of the test inputs, possible functions – realizations – within the prior distribution are found,
see Figure 2-1a.

2-1-2 Predictions using noise free observations

Observations from the dynamic system can be used to decrease the uncertainty of the GP model (Rasmussen
and Williams, 2006). With X as the vector of training inputs and f the corresponding noise free observations,
{(xi, fi)|i = 1, ..., n}, the prior joint distribution of the training outputs, f , and the test outputs f∗ are[

f
f∗

]
∼ N

(
0,
[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2-7)

Where the covariance matrices K(X,X), K(X,X∗) and K(X∗, X) are found by following Eq. (2-4). The
posterior distribution can be imagined as all the possible functions from the prior distribution while rejecting
the ones that are in conflict with the observations. This can mathematically be done by conditioning the joint
Gaussian prior distribution on the observations. Let x and y by the joint Gaussian distribution[

x
y

]
∼ N

([
µx
µy

]
,

[
A C
CT B

])
, (2-8)

the conditional distribution of y given x becomes

y|x ∼ N
(
µy + CTA−1(x− µx), B − CTA−1C

)
. (2-9)

Hence, in order to find the function values corresponding to the test inputs, f∗, the joint distribution has to
be conditioned on the the observations f . Following Eq. (2-9) the posterior distribution Eq. (2-10), is found.
Note, that the prior means are zero, µy = µx = 0:

f∗|X∗, X, f ∼ N
(
f̄∗, cov [f∗]

)
, (2-10a)

f̄∗ = K(X∗, X)K(X,X)−1f , (2-10b)
cov [f∗] = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗). (2-10c)

Similar as the prior distribution, samples can be taken from the posterior distribution and plotted as function
of the test input, X∗, see Figure 2-1b. These found functions are approximations of the unknown dynamics
f(x).

2-1-3 Predictions using noisy observations

When the observations are contaminated with independent and identically distributed (iid) Gaussian noise
ε ∼ N (0, σ2

ε ),

y = f(x) + ε, (2-11)

the prior covariance function becomes

cov [yp, yq] = k(xp, xq) + σ2
ε δpq or cov [y] = K(X,X) + σ2

ε I. (2-12)
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8 Gaussian Process regression

(a) Sampling from the prior distribution
Eq. (2-5).

(b) Sampling from the posterior distribution
Eq. (2-10).

Figure 2-1: GP modeling: sampling from prior and posterior distribution using noise free ob-
servations. The black solid line is the mean of the distribution and the shaded area is the 95%
confidence interval (±2σ). The red dotted lines are generated points. The other lines are drawn
by interpolating between evaluated points. Figure 2-1a shows three functions drawn from the GP
prior distribution. Figure 2-1b gives three functions drawn from the posterior distribution. The
posterior distribution is obtained by conditioning the prior distribution on the five noise free obser-
vations (black crosses). Note, that the uncertianty increases further away from the observation,
however the maximum uncertainty is equal to the prior uncertianty.

The δpq is the Kronecker delta, which is one iff p = q and zero otherwise. The addition of the diagonal noise
matrix to the results of the noise free case is followed by the assumption of independent noise. Using the
results from Eq. (2-7), the prior joint distribution is[

y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

ε I K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (2-13)

Computing the posterior distribution is similar to Eq. (2-10):

f∗|X∗, X,y ∼ N
(
f̄∗, cov [f∗]

)
, (2-14a)

f̄∗ = K(X∗, X)[K(X,X) + σ2
ε I]−1y, (2-14b)

cov [f∗] = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
ε I]−1K(X,X∗). (2-14c)

Note, that the predictive mean function Eq. (2-14b) is a linear combination of the observations y. This is often
referred to as a linear predictor . A function of two arguments that maps a input pair, x, x′ ∈ X into R is called
a kernel function. The kernel is symmetric k(x′, x) = k(x, x′), note that symmetry is a property of a covariance
matrix. For n training inputs X ∈ Rn and m test inputs X∗ ∈ Rm, the covariance matrix of the training
inputs can be defined as K = K(X,X), the covariances matrix of the test input and the training inputs as
K∗ = K(X,X∗), and the covariance matrix of the test inputs as K∗∗ = K(X∗,K∗). Hence, Eq. (2-14b) and
(2-14c) can be written more compact:

f̄∗ = K∗(K + σ2
ε I)−1y, (2-15)

cov [f∗] = K∗∗ −KT
∗ (K + σ2

ε I)−1K∗. (2-16)

Rasmussen and Williams (2006) present that the predictive mean function can also be written as a weighted
linear combination of n kernel functions, centered on n training inputs:
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2-2 Finding the (sub)optimal hyper-parameters 9

f̄(x∗) =
n∑
i=1

βik(xi, x∗), (2-17)

where β = (K + σ2
ε I)−1y.

2-2 Finding the (sub)optimal hyper-parameters

The covariance function is defined by its hyper-parameters, e.g. {`1, ..., `D}, σ2
f and σ2

ε for the SE covariance
function with noise. The selection of these hyper-parameters determines if the model is a good representation
of the latent function. The selection of the hyper-parameters is often called training of a GP model. Consider
the SE covariance function with iid Gaussian noise

k(xp, xq) = σ2
f exp

(
−1

2(xp − xq)TΛ−1(xp − xq)
)

+ σ2
ε δpq, (2-18)

with x ∈ RD, y ∈ RE and where Λ = diag
(
{`21, ..., `2D}

)
. Other choices for the matrix Λ are possible, see

(Rasmussen and Williams, 2006, Section 5.1). The vector θ = [{`1, ..., `D}, σ2
f , σ

2
ε ]T is the hyper-parameter

vector, where `i denotes the characteristic length-scales. In simplified terms, the characteristic length-scales
give a measure of the distance one need to move along a particular axis in input space, before the function
values become uncorrelated. By inverting these values a relevant weighting matrix is obtained (selecting inputs
that are uncorrelated). This property is called automatic relevance determination.

2-2-1 Change in the hyper-parameters

In order to illustrate the influence of change in the hyper-parameters vector θ, the characteristic length-scale
is varied for an one-dimensional example. The covariance function as given in (2-18). Note, that by taking
the noise into account the covariance function is for the noisy targets y and not for the latent function f(x).
Selecting the variance of latent function as σ2

f = 1 and variance of the noise as σ2
ε = 0.1. The hyper-parameter

vector is θ = [` 1 0.1]T , where ` is varied.
For ` = 1 we find Figure 2-2a. In this figure the uncertainty increases (to a maximum equal to the prior
uncertainty) when the test inputs are ’further away’ from the training data. In Figure 2-2b, where the
characteristic length-scale is increased to ` = 3, the flexibility of the posterior distribution is decreases. In
contrast to Figure 2-2c, where the characteristic length-scale is decreased to ` = 0.3, resulting in a highly
flexible function. Because of this flexibility, the mean and covariance functions return rapidly to their prior
values, m(x) = 0 and σ2

f = 1.
In this section the variance of the latent function and the additive noise are remained constant. By using
evidence maximization (Section 2-2-3) the most suitable variances and characteristic length-scales can be
found. Typically, the noise variance will decrease for a smaller characteristic length-scale, and visa versa,
(Rasmussen and Williams, 2006). This implies that a stiff model – the characteristic length-scale is large –
considered the training data as noisy and averages between them by selecting a higher noise variance. For
flexible models the noise level will decrease and training data will considered as the true function values. Note,
the risk of over fitting exist in the latter case. In this one-dimensional example it is rather easy to select the
suitable parameters by hand. However, in multi-dimensional cases it is not that trivial.

2-2-2 Bayesian inference

To find the most suitable hyper-parameters (θ) values, Bayesian inference techniques are used. With this
method the posterior distribution of the hyper-parameters can be found. Two levels of inference are needed.
In the first level the posterior distribution of the latent function is found. With the second level the posterior
distribution of the hyper-parameters is obtained (Deisenroth, 2010).
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10 Gaussian Process regression

(a) ` = 1.

(b) ` = 3 (c) ` = 0.3

Figure 2-2: GP modeling: sampling from posterior distributions using the same training data and
hyper-parameter vector θ = [` 1 0.1]T , but different characteristic length-scales `. The black solid
line is the mean of the posterior distribution and the gray shade is the 95% confidence interval
(±2σ). The black crosses are the training data. The red dotted lines are generated points. The
other lines are drawn by interpolating between evaluated points. Figure 2-2a shows the posterior
distribution using a GP model with ` = 1. Figure 2-2b shows the posterior distribution using
` = 3, and Figure 2-2c shows the posterior distribution using ` = 0.3.

Level-1 inference

The posterior distribution of the function is found as

p(f |X,y, θ) = p(y|X, f, θ)p(f |θ)
p(y|X, θ) , (2-19)

where p(y|X, θ) is the prior distribution of the function f(x) and p(y|X, f, θ) is the likelihood of the function
f(x). Assuming that the observations yi are conditionally independent given the inputs X, the likelihood can
be written as

p(y|X, f, θ) =
n∏
i=1

p(yi|f(xi), θ) =
n∏
i=1

N (yi|f(xi), σ2
ε ) = N (y|f(X), σ2

ε I). (2-20)

The normalizing constant of Eq. (2-19) also called marginal likelihood or evidence is
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2-2 Finding the (sub)optimal hyper-parameters 11

p(y|X, θ) =
∫
p(y|X, f, θ)p(f |θ)df. (2-21)

This evidence is the likelihood of the hyper-parameters given the data.

Level-2 inference

The posterior on the hyper-parameters is

p(θ|X,y) = p(y|X, θ)p(θ)
p(y|X) , (2-22)

where the prior distribution of the hyper-parameters p(θ) is independent of the training inputs X, hence
p(θ|X) = p(θ). The distribution of the training targets given the training inputs is

p(y|X) =
∫∫

p(y|X, f, θ)p(f |θ)p(θ)dfdθ =
∫
p(y|X, θ)p(θ)dθ. (2-23)

Computing the distribution p(y|X) is analytical intractable in most interesting cases, because p(y|X, θ) is a
nasty function of θ

log p(y|X, θ) = −1
2y

TK−1
θ y− 1

2 log |Kθ| −
D

2 log 2π. (2-24)

D is the dimension of the input space and Kθ is the (n×n) covariance matrix of the training inputs and noise,
Kθ,ij = k(Xi, Xj) + δijσ

2
ε , where δ is the Kronecker delta. Markov chain Monte Carlo methods exists to find

these posterior distributions without deriving the integrals analytically (Ninness and Henriksen, 2010). These
methods are computationally demanding and therefore not used in the PILCO algorithm (Deisenroth, 2010).
Instead, the marginal likelihood of Eq. (2-21) is used to find a point estimate of the hyper-parameters, θ̂, using
evidence maximization.

2-2-3 Evidence Maximization

To find a point estimate of the hyper-parameter vector θ̂ a ’flat’ hyper-prior p(θ) is selected. In this way none
of the possible parameters are excluded. Furthermore, an additional computational advantage is obtained.
The marginal likelihood Eq. (2-21) becomes proportional to the posterior distribution of the hyper-parameter
Eq. (2-22), so p(θ|X,y) ∝ p(y|X, θ). This implies that the hyper-parameters which maximize the marginal
likelihood, will also maximize the posterior distribution of the hyper-parameters. Hence, finding the posterior
distribution of the hyper-parameters – which is computational demanding – is done with a less demanding
maximization of the marginal likelihood Eq. (2-21). Rasmussen and Williams (2006) show that be taking the
log-marginal likelihood the hyper-parameters can be found:

log p(y|X, θ) = −1
2yTK−1

θ y− 1
2 log |Kθ| −

D

2 log 2π, (2-25)

θ̂ ∈ arg max
θ

log p(y|X, θ). (2-26)

Finding the hyper-parameters by maximizing the log marginal likelihood is called evidence maximization. To
be more precise the type II maximum likelihood (ML-II) estimates of the hyper-parameters is used.1 To find
the maximum the following partial derivative is needed:

1To find the point estimate of the hyper-parameters using ML-II estimate gpml-software is used, which is
publicly available at http://www.gaussianprocess.org.
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12 Gaussian Process regression

∂

∂θj
log(y|X, θ) = 1

2yTK−1
θ

∂Kθ

∂θj
K−1
θ y− 1

2 tr
(
K−1
θ

∂Kθ

∂θj

)
= 1

2 tr
((
K−1
θ yyTK−1

θ −K
−1
θ

) ∂Kθ

∂θj

)
.

(2-27)

Where tr (·) is the trace of the argument. The computational load of the partial derivative is dominated by the
inversion of matrixKθ, O(n3) for an square positive definite symmetric n×nmatrix. Once the inverse is known,
the time to calculate the derivatives is O(n2) per hyper-parameter (Rasmussen and Williams, 2006). This is
obtained by first computing the vectors times matrices. For the trace only the diagonal entries are computed.
This holds for all targets y ∈ RE . Hence, the computational load for Kθ is O(En3). The computational load
for the remaining computations of the derivative are O(En2) per hyper-parameter.

2-3 Simulations using a Gaussian Process model

To illustrate the principle of the presented theory an example will be given. The ’real’ dynamics are given by
the first order system:

ẋt = −xt + ut, (2-28)
yt = xt + εt, (2-29)

where εt is iid Gaussian measurement noise εt ∼ N (0, 0.1). With this system training data (X̃,y) is generated
with a random input u = N (0, 4). For t = 0 : n the training inputs2 X̃ is the vector of the input tuples
x̃t = (xt, ut). The training targets are the corresponding outputs yt collected in the vector y:

X̃ =

 x0 u0
...

...
xn−1 un−1

 , y =

y1
...
yn

 . (2-30)

In order to find a GP model that maps the current state into the next, xt → xt+1, the zero mean function
and the SE covariance function are selected. The (sub)optimal hyper-parameters can be found using Evidence
Maximization Section 2-2-3, which determines the GP model. In the following two sections this Gaussian
Process model will be used to simulate the ’real’ dynamics. A step response will be used to compare the
GP with the ’real’ dynamics. In the firs part the simulation will assume deterministic input states, i.e. the
uncertainty of the GP will not be passed on to the next state. Note, that even when using a deterministic
input an uncertain output will be obtained. Subsequently, the uncertainty will be taken into account in the
second section.

2-3-1 Simulating using deterministic inputs

The system dynamics can be simulated by cascading one-step predictions of the GP model, starting from
initial state x0 ∼ N (0, 0.12). The control input in this experiment is set to one (u = 1, ∀x), in order to
compare the results with the ’real’ step response. Hence, the test input pair becomes: x̃t = [xt 1]. By ignoring
the uncertainty, the model mismatch is ignored. Model mismatch – model bias – is typically caused by poor
training data and/or noise. The one-step predictions of the GP model, using deterministic test inputs, can be
found using

2All variables written with a tilde ·̃, refer to state-action tuple variables.
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2-3 Simulations using a Gaussian Process model 13

(a) GP predictions when the simulation
space is far from training data.

(b) GP predictions when the simulation
space is close to training data.

(c) GP predictions when using the same
input for training and simulation.

(d) Step response of the ’real’ system
dynamics.

Figure 2-3: GP modeling: step response simulations of the first-order system G = 1
(1+s) , using

models trained with different training data. The training data given by the black crosses is
disturbed with iid measurement noise εt ∼ N (0, 0.1). The black solid line is the mean prediction
of the state and the gray area is the 95% confidence interval (±2σ). In Figure 2-3a the simulation
space is ’far away’ from the training data. In Figure 2-3b the improvement can be seen when the
simulation space is closer to the training targets. In Figure 2-3c the same control input (ut = 1∀t)
is used for the training data and prediction. Note, the near perfect step response. Figure 2-3d
shows the step response of the ’real’ system dynamics. The black solid line is the ouput of the
’real’ sytem without mearurement noise and the blue dotted line is with added measurement noise.
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14 Gaussian Process regression

p(xt+1|x̃t) ∼ N (µt+1,Σt+1), (2-31a)
µt+1 = E[xt+1|x̃t], (2-31b)
Σt+1 = var [xt+1|x̃t] . (2-31c)

Note, that the estimation of the next state is the mean of the approximated Gaussian output of the GP
model, E[xt+1], see Eq. (2-15) and Eq. (2-17). Hence, the state one-step update rule, dependent of the current
state-action pair x̃t becomes

µt+1 = E[xt+1|x̃t] = K(X̃, x̃t)(K + σ2
ε I)−1y = K(X̃, x̃t)β =

n∑
i=1

βik(x̃i, x̃∗), (2-32)

where K(X̃, x̃t) is a vector containing the covariance between the training inputs and the single test input.
The test input is the tuple of the current state and control input x̃t = [xt ut]. Hence,

K(X̃, x̃t) =
[
k([x0, u0], x̃t) . . . k([xn, un], x̃t)

]
, (2-33)

and K is the covariance matrix of the training inputs,

K =

k([x0, u0], [x0, u0]) · · · k([x0, u0], [xn, un])
...

. . .
...

k([xn, un], [x0, u0]) · · · k([xn, un], [xn, un])

 . (2-34)

The uncertainty of the posterior distribution is represented as the 95% conficence interval (µt+1 ± 2√σt+1)
in Figure 2-3. In order to find the uncertainty the variance σt+1 of the next state (in this example a scaler,
but generaly represented with a covariance matrix) is required. Using Eq. (2-16) the variance one-step update
rule, dependent of the current state-action pair x̃t is

Σt+1 = var [xt+1|x̃t] = K(x̃t, x̃t)−K(X̃, x̃t)T (K + σ2
ε I)−1K(X̃, x̃t). (2-35)

Because only one test input is considered, the covariance ’matrix’ K(x̃t, x̃t) is the scaler k(x̃t, x̃t). By forming
the next test input as x̃t+1 = [xt+1 ut+1] the one-step predictions can be cascaded and used as a simulation of
the ’real’ dynamics.
In Figure 2-3 the results of the step response simulations of the first-order system G(s) = 1

1+s are given for
models trained with different training data. The training data is contaminated with iid normal distributed
measurement noise, εt ∼ N (0, 0.1). The true and noisy output of the ’real’ system is shown in Figure 2-3d.
The accuracy of the GP model depends on the training data. When the training data is ’further away’ from
the simulation domain, the important dynamics are not captured by the training data. Hence, the accuracy
of the estimates decreases, see Figure 2-3a. When the workspace of the simulation is close to the training
targets, the model approximates the output more accurate, see Figure 2-3b. Using the same control input for
obtaining the training data and simulation a near perfect response is found, see Figure 2-3c. This emphasizes
the importance of the chosen control input of the training data generating trials. Preferably, an input is chosen
in order to reach the entire relevant workspace.

2-3-2 Simulating using uncertain inputs

Even when the input is deterministic the output of the GP is an approximation of the next state given by a
Gaussian distribution, xt+1 ∼ N (µt+1,Σt+1). By inserting this state uncertainty into the next prediction the
uncertainty of the model is taken into account. In order to implement the uncertainty of the current state in
the computations for the next, the mean vector and covariance matrix of the input pair have to be determined.
The control input signal ut is generally dependent on the states, ut = π(xt). If so, the cross-covariance of
the state and the input has to be computed, see Section 3-3-1. However in this example, the ’controller’ is
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2-3 Simulations using a Gaussian Process model 15

independent of the state and time index t, (u = 1, ∀x, t), resulting in the following mean vector and covariance
matrix:

µ̃t =
[
µt
ūt

]
, Σ̃t =

[
Σt 0
0 0

]
. (2-36)

The exact predictive distribution for an Gaussian distributed input, x̃t = N (µ̃t, Σ̃t), mapped through a GP
model is

p(xt+1|µ̃t, Σ̃t) =
∫
p(xt+1|x̃t)p(x̃t)dx̃t. (2-37)

In the exact predictive distribution, Eq. (2-37), the dependence on the training data, X̃,y and the posterior
hyper-parameters θ̂ is omitted for easy reading. Generally this predictive distribution is not Gaussian and
unimodal, because mapping a Gaussian distribution through a nonlinear function of a GP leads to an non-
Gaussian predictive distribution. Therefore the predictive distribution can not be computed analytical, and is
approximated as a Gaussian distribution using Moment Matching (Deisenroth, 2010). This implies that the
mean and covariance of the exact prediction distribution is computed and used to approximate the prediction
distribution as a Gaussian, see Figure 2-6 for a visualization. In order to compute the mean the next state,
the uncertainty is incorporated into Eq. (2-32) resulting in the following update rule:

µt+1 = E[xt+1|µ̃t, Σ̃t] = σ2
f |Σ̃tΛ−1 + I|−

1
2 exp

(
−1

2(X̃ − µ̃t)T (Σ̃t + Λ)−1(X̃ − µ̃t)
)

(X̃ + σ2
ε I)−1y

= βTq.
(2-38)

Note, that Eq. (2-38) is related to Eq. (2-32) and that q is K(X, x̃t) infiltrated with the covariance of x̃t. When
setting Σ̃t to zero the expression of Eq. (2-32) is found again. Note, that for deterministic test inputs the
mean update Eq. (2-32) and covariance update Eq. (2-35) are written dependent of the state-action pair, ·|x̃t.
When an uncertain Gaussian distributed test input is used the expressions are written dependent of the mean
and covariance of the state-action pair, ·|µ̃t, Σ̃t. The variance of the prediction distribution for an uncertain
input is found as

Σt+1 = var
[
xt+1|µ̃t, Σ̃t

]
= E[var [xt+1|x̃t]︸ ︷︷ ︸

Eq. (2−35)

|µ̃t, Σ̃t] + var[E[xt+1|x̃t]︸ ︷︷ ︸
Eq. (2−32)

|µ̃t, Σ̃t]

= E[var [xt+1|x̃t] |µ̃t, Σ̃t] +
(
E[E[xt+1|x̃t]2|µ̃t, Σ̃t]− E[E[xt+1|x̃t]|µ̃t, Σ̃t]2

)
,

(2-39)

where E[xt+1|x̃t] and var [xt+1|x̃t] are the deterministic mean and variance updates, Eq. (2-32) and Eq. (2-35)
respectively. Hence, Eq. (2-39) can be written as

Σt+1 =
∫
K(x̃t, x̃t)−K(x̃t, X̃)(K + σ2

ε I)−1K(X̃, x̃t)p(x̃t)dx̃t

+
∫
K(x̃t, X̃)ββTK(X̃, x̃t)p(x̃t)dx̃t − (βTq)2

= σ2
f − tr

(
(K + σ2

ε I)−1
∫
K(X̃, x̃t)K(x̃t, X̃)p(x̃t)dx̃t

)
+ βT

∫
K(X̃, x̃t)K(x̃t, X̃)p(x̃t)dx̃t︸ ︷︷ ︸

:=Q̂

β − (βT q)2.

(2-40)

Which can be rewritten compactly as

Master of Science Thesis K. van Witteveen



16 Gaussian Process regression

Σt+1 = σ2
f − tr

(
(K + σ2

ε I)−1Q̂
)︸ ︷︷ ︸

E[var[xt+1|x̃t]|µt,Σt]

+ βT Q̂β − µ2
t+1︸ ︷︷ ︸

var[E[xt+1|x̃t]|µt,Σt]

, (2-41)

where the entries of Q̂ are3

Q̂ij = K(X̃i, µ̃t)K(X̃j , µ̃t)√
|2Σ̃tΛ−1 + I|

exp
(

(zij − µ̃t)T (Σ̃t + 1
2Λ)−1Σ̃tΛ−1(zij − µ̃t)

)
, (2-42)

with zij = 1
2 (X̃i+X̃j). Using a GP model all possible models that fit the training data, prior mean function and

covariance function are taken into consideration. By cascading the uncertainty of the model from the current
state to the next, the model is more uncertain than by using the predicted mean as a deterministic state, see
Figure 2-4. Incorporating the uncertainties in the long term planning is key to the PILCO algorithm, because
it takes model bias into account. Model bias is the main disadvantage for using model-learning algorithms.

(a) GP model predictions for deterministic
input pairs.

(b) GP model predictions for uncertain input
pairs.

Figure 2-4: GP modeling: comparison of the simulations of the step response of the first-order
system G = 1

(1+s) . The training data (black crosses) are disturbed with iid Gaussian measurement
noise εt ∼ N (0, 0.1). The black solid line is the mean prediction of the state and the gray area is
the 95% confidence interval (±2σ). Figure 2-4a presents the simulated response for deterministic
input pairs and Figure 2-4b for uncertain input pairs p(x̃t) = N (µ̃t, Σ̃t).

2-4 Discussion and conclusion

To evaluate and discuss the performance of the GP model, the model will be compared with a parametric OE
model. The GP model is found as described in Section 2-3. The parametric OE model is found using the
gradient based identification algorithm of the Matlab toolbox UNIT (Ninness et al., 2013). The parametric
model is found by selecting the following OE structure and polynomials:

y(t) = B(q)
A(q)xt + εt, A(q) = 1 + a1q

−1, B(q) = b0 + b1q
−1. (2-43)

The gradient based search method is used to find the parameters, (a1, b0, b1). A performance comparison of
the two models is shown in Figure 2-5. Both models are found using the same input-output data obtained

3Q̂ is written with a ’hat’ because for the predictions of state vectors the expression of Q̂ changes, see
Eq. (3-14). In order to indicate this Q̂ and Q are used.
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2-4 Discussion and conclusion 17

using a single trial with a random control input. As presented in Figure 2-5a is the performance of the two
methods similar. However, in Figure 2-5b the prediction of the GP model is inaccurate. This shows again the
importance of the training data for the GP model to come up with accurate approximations. Although the
poor approximations in Figure 2-5b, the GP system identification methods is not weak. However, one has to
be carefully when selecting the control input for training. Furthermore, the GP model is capable of modeling
high non-linear systems including their uncertainties.
The model found by the parametric system identification claims the output with full confidence, however
model mismatch is common. This unrecognized model-bias can lead to big errors in the policy during learning
of the controller (Atkeson and Santamaria, 1997). This problem is known as the model-bias problem. The
model-bias problem can be reduced by averaging over the model uncertainties (Schneider, 1997). Because:
(1) GP modeling is based on well understood approximation principles, and (2) is capable of modeling a wide
spread of nonlinear systems including their uncertainties, this method is used in the PILCO algorithm.

(a) Comparison of the GP model predictions
and parametric OE model predictions, when
training data is rich enough.

(b) Comparison of the GP model predictions
and parametric OE model predictions, when
training data is poor.

Figure 2-5: GP modeling: comparison of the GP model (the black solid line is the mean prediction
with the shaded 95% confidence interval) and the parametric OE model predictions (blue dotted
line), the black crosses are training data, disturbed with iid Gaussian measurement noise εt ∼
N (0, 0.1). In Figure 2-5a the training data is rich enough to find a accurate GP model. While in
Figure 2-5b the training data is insufficient to find an accurate GP model. In both situations the
gradient based parametric OE model is capable of finding an accurate prediction.
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18 Gaussian Process regression

Figure 2-6: The visualization of the approximation of the next state given an uncertain input using
Moment Matching, edited from (Deisenroth and Rasmussen, 2009). The input (blue distribution
bottom right figure) is fed through the GP model (top right figure). The resulting exact predictive
distribution p(xt+1) is given as the green shaded area in the top left figure. The mean and
covariance can be computed with Eq. (2-38) and Eq. (2-41), which are used to approximate the
predictive distribution p(xt+1) with a Gaussian, the blue distribution in top left figure.
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Chapter 3

The PILCO algorithm

Gaussian Process (GP) models as presented in the previous chapter are used in the Probabilistic Inference
for Learning COntrol (PILCO) algorithm because: (1) GP models are capable of modeling a wide spread of
nonlinear systems including their uncertainties, and (2) GP modeling is based on well understood approxima-
tion principles. The PILCO algorithm consists of two main parts: GP system identification and model-based
Reinforcement Learning (RL). The second part of the algorithm learns a single nonlinear controller using a
gradient based policy search. This chapter gives insight in the PILCO algorithm, as presented in (Deisenroth
and Rasmussen, 2009; Deisenroth, 2010; Deisenroth and Rasmussen, 2011). In this chapter first the essence of
the algorithm is presented. Subsequently, the PILCO algorithm is explained in detail using the devision of the
two parts and the pseudo code of the complete algorithm is given. The chapter concludes with a discussion on
the PILCO algorithm.

3-1 The core of the PILCO algorithm

Although, modeling of the GP model, is described in detail in Chapter 2, a difference should be emphasized.
The training targets used in the PILCO algorithm are the increments of the state updates instead of the state
updates itself. As will be explained in Section 3-2 this implies a different one-step update rule for simulation
of the model. The unknown function that describes the dynamics of the real set-up can be written as:

xt = f(xt−1, ut−1), (3-1)
yt = xt + εt, (3-2)

where x defines the state and u the input. The goal of the first part is to find a GP model that approximates
this function f(x) accurately. The goal of the second part is to find (learn) a deterministic control strategy
(policy), that successfully achieves a certain task using model based RL. This is done by minimizing the
expected return

Jπ(xt, ψ) =
T∑
t=0

E[c(xt)], x0 ∼ N (µ0,Σ0), (3-3)

where c(x) is a cost function as defined in Section 3-3-3. After convergence the (sub)optimal policy is used for
a trial on the real system, and the in- and output data is collected. The received data from all the trials (the
just received new data and the old data are combined) is used to find a new GP model. This new model is
used for a model-based policy search. This process repeats itself till the task is learned.
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20 The PILCO algorithm

3-2 Part 1: GP System Identification
During the learning process the algorithm uses all recorded data at that moment. So assuming trials of 2.5
seconds the first model will be found using the initial trial data of the first trial. After the second trial – this
is the first trial with an optimized controller – both data sets are used. This implies 5 seconds of in-output
data. After the third trial, 7.5 seconds and so on. Although the algorithm learns a GP model using Evidence
Maximization as in Chapter 2-2-3, there is an important difference. The PILCO algorithm uses the increments
of the state update as training targets,

∆t = xt − xt−1 + εt, (3-4)

where εt is the assumed independent and identically distributed (iid) measurement noise with the distribution
εt ∼ N (0,Σε), Σε = diag (σε1 , ..., σεD ). In Section 3-5-1 a motivation for using state increments as training
targets is given. The GP model requires state-action tuples, x̃ = (x, u), as inputs with x ∈ RD and u ∈ RF .
Define the training inputs as the vector of tuples X̃i = (xi, ui) ∈ RD+F , X̃ = [X̃1, ..., X̃n]T . The corresponding
training targets are the increments of the state updates y = [∆i, ...,∆n]T ∈ Rn×E as presented in Eq. (3-4).
Note that the dimension of the training inputs and targets do not need to be the same, see Section 4-2-2. In
the PILCO algorithm the prior mean function is chosen to be zero and the prior covariance function is the
Squared Exponential (SE) covariance function:

m(x̃) ≡ 0, (3-5)

k(x̃, x̃′) = σ2
f exp

(
−1

2 [x̃− x̃′]TΛ−1[x̃− x̃′]
)

+ δpqσ
2
ε . (3-6)

The δpq is the Kronecker delta for time indices p and q, which is unity when p = q and zero otherwise.
This follows from the assumption that the measurements noise is independent. The variance of the latent
function f is given as σ2

f . The matrix Λ = diag
(
`21, ..., `

2
D+F

)
, which is dependent of the different character-

istic length-scales `i, is a weighting matrix. In order to fit the model on the data the most suitable hyper-
parameters, [`1, ..., `D+F σf σε]T , for every target dimension (E) should be found. The found (sub)optimal
hyper-parameters are combined in the hyper-parameter vector θ ∈ RE∗(D+F+2)×1. The hyper-parameters can
be found in the same manner as in Section 2-2-3, using Evidence Maximization. Because, the GP model predict
the increment of the state update, instead of the state update, the one-step update expressions of Eq. (2-31)
will change. The mean of the next state is found by adding the prediction to the current state. The same
holds for the variance of the prediction. However, note the following property,

var [X + Y ] = var [X] + var [Y ] + cov [X,Y ] + cov [Y,X] . (3-7)

For deterministic inputs the cov [∆t, xt] = 0. Hence, the GP model one-step update equations for a deterministic
state-action pair (test input) x̃t+1 = (xt, ut), becomes

p(xt+1|x̃t) ∼ N (µt+1,Σt+1), (3-8a)
µt+1 = xt + E[∆t+1], (3-8b)
Σt+1 = cov [∆t+1] . (3-8c)

The model is completely determined by its mean µt+1 and covariance Σt+1. This implies that the model is
determined by the hyper-parameter vector θ. Note, that similar to Section 2-3-2 the output of the GP model is
Gaussian distributed, even for deterministic inputs. In order to use these uncertainties, the GPmodel must be
able to pass these uncertainties through the model. The one-step update equations for an uncertain state-action
pair (test input) x̃t ∼ N (µ̃t, Σ̃t), becomes

p(xt+1|µ̃t, Σ̃t) ∼ N (µt+1,Σt+1), (3-9a)
µt+1 = xt + E[∆t+1], (3-9b)
Σt+1 = Σt + cov [∆t+1] + cov [∆t+1, xt] + cov [xt,∆t+1] . (3-9c)
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3-2 Part 1: GP System Identification 21

The update rule for the covariance matrix, Eq. (3-9c), can be found using Eq. (3-7). In the next section the
computations will be presented which are necessary to find µt+1 and Σt+1 from µ̃t and Σ̃t.

3-2-1 Multivariate predictions of the state increments

By propagating the uncertain state-action (test) input p(xt, ut) through the GP model the predictive distri-
bution p(∆t+1) = N (E[∆t+1], cov [∆t+1]) can be found, see (Deisenroth, 2010). Assume for now that the
distribution of the state-action pair is known, see Section 3-3 how to find this distribution. The predictive
distribution is approximated using moment matching, see Figure 2-6. The state dimension is generally larger
than one, D > 1, which implies multivariate predictions.

Mean prediction E[∆t+1]

The predictive mean vector consists of E independent predictive means of Eq. (2-38):

E[∆t+1] =
[
βT1 q1, ..., β

T
EqE

]T
. (3-10)

For every dimension a = 1 : E holds:

βa = (Ka + σ2
ε,aI)−1y, (3-11)

qa = [q1
a, ..., q

n
a ]T , (3-12)

qia = σ2
f,a|Σ̃tΛ−1

a + I|
1
2 exp

(
−1

2(X̃i − µ̃t)T (Σ̃t + Λa)−1(X̃i − µ̃t)
)
. (3-13)

Covariance matrix of the prediction cov [∆t+1]

The covariance matrix of the predictive distribution is given by:

cov [∆t+1]ab = cov
[
∆a
t+1,∆b

t+1
]

=


βTa Qβb − E[∆a

t+1]E[∆b
t+1], a 6= b

βTa Qβa − E[∆a
t+1]2︸ ︷︷ ︸

cov
[
E[∆a

t+1,∆
b
t+1|x̃t]|µ̃t,Σ̃t

]+σ2
f,a − tr

(
(Ka + σ2

ε,aI)−1Q
)︸ ︷︷ ︸

E
[
cov
[
∆a
t+1,∆

b
t+1|x̃t

]
|µ̃t,Σ̃t

] , a = b,
(3-14)

where the Q entries for multivariate predictions are

Qij = Ka(X̃i, µ̃t)Kb(X̃j , µ̃t)√
|R|

exp
(1

2z
T
ijR
−1Σ̃tzij

)
. (3-15)

Which can be rewritten for a numerical stable implementation as

Qij =
exp
(
n2
ij

)√
|R|

, (3-16)

n2
ij = 2(log(σf,a) + log(σf,b))−

ζTi Λ−1
a ζi + ζTj Λ−1

b ζj − zTijR−1zij

2 , (3-17)

where the following is defined:
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22 The PILCO algorithm

R = Σ̃t(Λ−1
a + Λ−1

b ) + I, ζi = (X̃i − µ̃t), zij = Λ−1
a ζi + Λ−1

b ζj . (3-18)

Note, that for equal target dimensions, (a = b), the expression Q of Eq. (3-14) is equal to Q̂ of Eq. (2-
42). However for unequal target dimension (a 6= b), E

[
cov
[
∆a
t+1,∆b

t+1|x̃t
]
|µ̃t, Σ̃t

]
is zero, because of the

assumption that the target dimensions are conditionally independent given the input.

Covariance of the current state and target cov [xt,∆t+1]

The covariance matrix of the input x̃t and target ∆t+1 is given in (Deisenroth, 2010, Sec. 2.3.3). However,
for the computations of the next state in Eq. (3-9c) the covariance of the current state, xt, and the target,
cov [xt,∆t+1], is required. This covariance matrix can be found by ’slicing out’ the correct dimensions of the
covariance matrix of the input and target cov [x̃t,∆t+1]. The expression for the covariance between the input
and target is

cov [x̃t,∆t+1] = E[x̃t∆T
t+1]− E[x̃t]E[∆t+1]T . (3-19)

The left part of the right hand side of Eq. (3-19) can be computed for every dimension of the target space,
a = 1, .., E, as

E[x̃t∆a
t+1|µ̃tΣ̃t] = E[x̃t E[∆a

t+1|x̃t]︸ ︷︷ ︸
=Eq. (2−32)

|µ̃tΣ̃t] =
∫
x̃t

(
n∑
i=1

βa,ika(x̃t, X̃i)

)
p(x̃t)dx̃t (3-20)

=
n∑
i=1

βa,i

∫
x̃t c1N (X̃i,Λa)︸ ︷︷ ︸

ka(x̃t,X̃i)

N (µ̃t, Σ̃t)︸ ︷︷ ︸
p(x̃t)

dx̃t, (3-21)

where the normalizing constant for ka(x̃t, X̃i) is c−1
1 = σ−2

f (2π)−
D+F

2 |Λa|−
1
2 . The product of the two Gaussian

distributions in Eq. (3-21) can be found as the Gaussian c−1
2 N (ω,Ω):

c−1
2 = (2π)−

D+F
2 exp

(
−1

2(X̃i − µ̃t)T (Λa + Σ̃t)−1(X̃i − µ̃t)
)
, (3-22)

Ω = (Λ−1
a + Σ̃−1

t )−1, (3-23)
ωi = Ω(Λ−1

a X̃i + Σ̃−1
t µ̃t). (3-24)

Which results in:

E[x̃t∆a
t+1|µ̃tΣ̃t] =

n∑
i=1

c1c
−1
2 βa,iωi, a = 1, ..., E. (3-25)

Note, that c1c−1
2 = qia, see Eq. (3-13), ωi can be rewritten as ωi = Σ̃t(Σ̃t + Λa)−1X̃i + Λ(Λ + Σ̃t)−1µ̃t and

E[∆a
t+1] = βTa qa. Hence, the covariance matrix can be written as

cov [x̃t,∆t+1] =
n∑
i=1

βa,iqa,i(Σ̃t(Σ̃t + Λa)−1X̃i + (Λa(Σ̃t + Λa)−1 − I)µ̃t)

=
n∑
i=1

βa,iqa,i(Σ̃t(Σ̃t + Λa)−1(X̃i − µ̃t) + (Λa(Σ̃t + Λa)−1 + Σ̃t(Σ̃t + Λa)−1 − I)µ̃t).

(3-26)
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3-3 Part 2: Model-based Reinforcement Learning 23

Using.

(Λa(Σ̃t + Λa)−1 + Σ̃t(Σ̃t + Λa)−1 − I) = (Λa + Σ̃t)(Λa + Σ̃t)−1 − I = 0, (3-27)

the compact notation for the covariance becomes

cov [x̃t,∆t+1] =
n∑
i=1

βa,iqa,i(Σ̃t(Σ̃t + Λa)−1(X̃i − µ̃t)). (3-28)

By slicing out the correct dimensions the covariance between the current state and the prediction can be found:

cov [xt,∆t+1] ⊂ cov [x̃t,∆t+1] . (3-29)

With the mean E[∆t+1] Eq. (3-10) and covariance cov [∆t+1] Eq. (3-14) of the predictive distribution p(∆t+1),
and the covariation between the current state and predicted target cov [xt,∆t+1] Eq. (3-29), the GP model is
defined. Using Eq. (3-9), the distribution of the next state p(xt+1) = N (µt+1,Σt+1) can be approximated.

3-3 Part 2: Model-based Reinforcement Learning

The GP model is used to find the policy that performs the task successfully. Hence, the (sub)optimal controller
parameters ψ that minimize Eq. (3-3) need to be found. During the optimization the model is used to simulate
the dynamics of the real system by cascading one-step predictions. Note, that the even with starting from
a deterministic initial condition the successive state will be Gaussian distributed. This implies that the GP
model should map Gaussian distributed states to targets:

︸ ︷︷ ︸
Section 3-3-1

p(xt)→

Section 3-3-2︷ ︸︸ ︷
p(πt)→ p(ut)→ ︸ ︷︷ ︸

GP one-step prediction Eq. (3-9)

p(xt, ut)→ p(∆t+1)→ p(xt+1). (3-30)

In Section 3-3-2 the control input is saturated using a saturation function, ut = S(πt). Hence, the required
joint distribution of the state-action pair is

p(xt, ut) = N
([

µxt
µut

]
,

[
Σxt Σxt,ut

ΣTxt,ut Σut

])
, (3-31)

where p(xt) is known at the current time step and by using Eq. (3-9b) and (3-9c) the next state can be
approximated as a Gaussian xt+1 ∼ N (µt+1,Σt+1). However, there is an unknown distribution p(ut), the
saturated control input. The next section presents how to feed the uncertain state (xt ∼ N (µt,Σt)) through
the controller πt = π(xt) to find the unsaturated control input distribution p(πt).

3-3-1 Controllers

Different controllers can be used in the algorithm. By pushing the uncertainties of the state through the
controller, the joint distribution of the states and the controller can be found:

p(xt, πt) = N
([

µxt
µπt

]
,

[
Σxt Σxt,πt

ΣTxt,πt Σπt

])
. (3-32)

In absence of a saturation function the joint distribution of the state and unsaturated control input is used
in the GP one step prediction, p(xt, πt) = p(xt, ut). The joint distribution of the state and the control input
is depended on the kind of controller, and will be explained in detail. The linear controller , Radial Basis
Function (RBF) controller and GP controller will be discussed.
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24 The PILCO algorithm

Linear controller

The linear controller, or to be mathematically correct affine controller is given by

πt = π(xt, ψ) = wxt + b. (3-33)

Where w is a matrix of weights, b an vector of offsets and ψ = [w b] ∈ RD+1 the parameter vector. So for every
control dimensions the control input is a linear combination of the states plus an offset. In this example is the
control dimension one, so w is a row vector and b a scalar. The controller input has to be determined for an
uncertain input xt = N (µt,Σt). This can be done by propagating the uncertain state trough the controller:

E[πt|µt,Σt] = E[π(xt, ψ)|µt,Σt] = E[wxt + b|µt,Σt] = wµt + b. (3-34)

Because of the uncertainty in the state, the control input has a variance:

var [πt|µt,Σt] = E[(π(xt, ψ)− E[π(xt, ψ)|µt,Σt])2 |µt,Σt] (3-35)

= wE[(xt − µ)(xt − µ)T |µt,Σt]wT = wΣtwT . (3-36)

As preparation to approximate the joint distribution of the state-action pair which is needed as input for the
GP model, see Eq. (3-30), the covariance between state and control input can be computed as

cov [xt, πt|µt,Σt] = E[xtπTt |µt,Σt]− E[xt|µt,Σt]E[πt|µt,Σt]T (3-37)

=
∫
xtπ(xt, ψ)p(xt)dxt − E[xt|µt,Σt]E[πt|µt,Σt]T (3-38)

=
∫
xt(wxt + b)T p(xt)dxt − µt(wµt + b)T (3-39)

= E[(xtxTt − µtµTt )wT + (xt − µt)bT |µt,Σt] (3-40)

= E[(xtxTt − µtµTt )|µt,Σt]wT = ΣtwT . (3-41)

This controller is suitable for stabilizing a system in an equilibrium point. For more advanced tasks different
controllers should be chosen.

Radial basis functions controller

The RBF controller is more flexible than the linear controller, which implies that harder task can be performed.
This controller is a summation of Gaussian functions and is very similar to the GP model:

πt = π(xt, ψ) =
n∑
i=1

wiφi(xt) = wTφ, (3-42)

φi(xt) = exp
(
−1

2(xπ,i − xt)TΛ−1(xπ,i − xt)
)
. (3-43)

The centers of the basis functions are given as xπ,i, the weighting vector as w and Λ is a matrix containing the
length-scales. The dimension of the hyper-parameters for n basis functions and xt ∈ RD results in w ∈ Rn,
xπ ∈ RD∗n and Λ ∈ RD. Where Λ = diag

(
`21, ..., `

2
D

)
. So the hyper-parameter vector ψ of the controller has

dimension ψ = {w, `1, ..., `D, xπ} ∈ RD+n(D+1). By varying the centers xπ,i, characteristic length-scales `i
and the weighting factor wi for i = 1 : D the controller that minimizes the expected return, Eq. (3-3), can be
found. When feeding an uncertain state, xt = N (µt,Σt), through the controller the uncertain output of the
controller can be found as a Gaussian distribution with the mean

K. van Witteveen Master of Science Thesis



3-3 Part 2: Model-based Reinforcement Learning 25

E[πt|µt,Σt] = E[πt|µt,Σt] = E[π(xt)|µt,Σt] = E[wTφ|µt,Σt]

=
n∑
i=1

wi|ΣtΛ−1 + I|
1
2 exp

(
−1

2(xπ,i − µt)T (Σt + Λ)−1(xπ,i − µt)
)
.

(3-44)

Due to uncertainties in the state the controller has a variance. By following Eq. (2-39) the variance can be
found as

var [πt|µt,Σt] = var [πt|µt,Σt] = E[var [πt|xt]︸ ︷︷ ︸
=0

|µt,Σt] + var [E[πt|xt]|µt,Σt]

= wTQw− E[πt|µt,Σt]2.
(3-45)

Q is as defined in Eq. (3-16). Because the RBF controller is a deterministic controller, the variance for
a deterministic input is zero var [πt|xt]. Similar to the input-output covariance matrix of the GP model
prediction of Eq. (3-28), the covariance between the state and action is found as

cov [xt, πt|µt,Σt] =
n∑
i=1

wi|ΣtΛ−1 +I|−
1
2 exp

(
−1

2(xπ,i − µt)T (Σt + Λ)−1(xπ,i − µt)
)

Σt(Σt+Λ)−1(xπ,i−µt).

(3-46)

Gaussian Process controller

The mean prediction of the GP model and the RBF controller are rather similar. The w is the β in Eq. (2-38)
and remaining part of the equation is equal to q in Eq. (2-38) with σ2

f = 1 and instead of the centers of the
RBF’s the training inputs X:

πt = π(xt, ψ) =
n∑
i=1

βπ,ik(xπ, xt) = βTπK(Xπ, xt), (3-47)

k(xπ, xt) = σ2
f,π exp

(
−1

2(xπ,i − xt)TΛ−1(xπ,i − xt)
)
, (3-48)

βπ = (Kπ(Xπ, Xπ) + σ2
ε,πI)−1yπ, (3-49)

where σ2
f,π is fixed to one and σ2

ε,π is the measurement noise variance. The hyper-parameters for this con-
troller are the training inputs1 Xπ ∈ Rn∗D, training targets yπ ∈ Rn and the length scales of Λ ∈ RD,
Λ = diag

(
`21, ..., `

2
D

)
. This gives the dimension of the hyper-parameters, ψ = {yπ, `1, ..., `D, Xπ σ2

ε,π} ∈
RD+1+n(D+1). The matrix Kπ(Xπ, Xπ) + σ2

ε,πI has full rank, if σ2
ε,π 6= 0. Hence, The prediction of the GP

model is functionally equivalent as the RBF network if σ2
f = 1 and σ2

ε,π 6= 0.
The implementation of the noise variance σ2

ε,π in the indirect description could lead to smoothing of the cost
function of the gradient based policy search (Section 3-3-3). In Chapter 4 the convergence of the RBF and GP
controllers are compared in order to investigate the possible advantage of the smoothing. The mean, variance
and the covariance between the state and action of the GP controller due to the uncertainty of the input can
be found similar to Eq. (2-38), (3-45) and (3-46) as:

E[πt|µt,Σt] = βTπ qπ, (3-50)

var [πt|µt,Σt] = βTπQβπ − (βTπ qπ)2, (3-51)

cov [xt, πt|µt,Σt] =
n∑
i=1

βπ,iqπ,iΣt(Σt + Λ)−1(xπ,i − µt). (3-52)

1Note, that the training inputs for the GP controller do not include the inputs ut. Therefore, Xπ is written
without a tilde.
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3-3-2 Saturation of the controller

When designing a controller for a real set-up, the physical boundaries have to be taken into account. For these
reasons the control input has to be limited on a certain interval, [−umax, umax]. The saturation function, that
limits the control input, has to be on a finite interval, such that a maximum and minimum are obtained for
finite function inputs. Furthermore, is a monotonically increasing function required. The derivative and second
derivative of the saturation function have to be zero at the boundary points to require stationary points at this
boundaries. Consider the third-order Fourier series expansion of a trapezoidal wave (Deisenroth et al., 2013b),
see Figure 3-1. Given the boundary conditions and by normalizing the function to the maximum control input
interval [−umax, umax] the saturation function is found as

S(x) = umax
(9 sin(x) + sin(3x))

8 . (3-53)

If the function is considered on the domain, [−π2 ,
π
2 ] the function is monotonically increasing, see Figure 3-1b.
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(a) Normalized third-order Fourier series
expansion of a trapezoidal function.
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Figure 3-1: Visualization of the saturation function of the control input. In Figure 3-1a is the
third-order Fourier series expansion is given. In Figure 3-1b the third-order Fourier series expansion
is given for the monotonically increasing domain [−π2 ,

π
2 ].

For the uncertain state an uncertain control input is found, see Section 3-3-1,

p(π(xt, ψ) = N (µπt ,Σπt ) = N (E[π(xt, ψ)|µt,Σt], var [π(xt, ψ)|µt,Σt]). (3-54)

This control input has to be squeezed by the saturation function to find the squeezed control input which is
applied to the system, ut = S(p(π(x, ψ)). This implies that the uncertainty has to pass through the saturation
function. Consider the scaler control input πt ∼ N (µπt ,Σπt ) that has to be squeezed by the saturation function.
A helpful joint distribution for the upcoming equations can be formed,

p(πt, 3πt) = N
([

µπt
3µπt

]
,

[
Σπt 3Σπt
3Σπt 9Σπt

])
. (3-55)

Using this joint distribution the mean of the saturation function can be found as
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E[S(πt)|µπt ,Σπt ] = umax

9

Eq. (A−4)︷ ︸︸ ︷
E[sin(πt)|µπt ,Σπt ] +

Eq. (A−4)︷ ︸︸ ︷
E[sin(3πt)|3µπt , 9Σπt ]


8 (3-56)

= umax

(
9 exp

(
−Σπt

2

)
sin(µπt ) + exp

(
− 9Σπt

2

)
sin(3µπt )

)
8 . (3-57)

The variance is found using the property, Eq. (3-7), the variance of the saturation function becomes

var [S(πt)|µπt ,Σπt ] = var
[
umax

(9 sin(πt) + sin(3πt))
8 |µπt ,Σπt , 3µπt , 9Σπt

]
(3-58)

= var
[
umax

9 sin(πt)
8 |µπt ,Σπt

]
+ var

[
umax

sin(3πt)
8 |3µπt , 9Σπt

]
(3-59)

+ cov
[
umax

9 sin(πt)
8 , umax

sin(3πt)
8 |µπt ,Σπt , 3µπt , 9Σπt

]
(3-60)

+ cov
[
umax

sin(3πt)
8 , umax

9 sin(πt)
8 |3µπt , 9Σπt , µπt ,Σπt

]
. (3-61)

Where the variances in Eq. (3-59) can be solved by using Eq. (A-6). The covariances of Eq. (3-60) and (3-61)
can be computed with

cov [sin(πt), sin(3πt)|µt,Σt, 3µt, 9Σt] =
E[sin(πt) sin(πt)|µt,Σt, 3µt, 9Σt]− E[sin(πt)|µt,Σt]E[sin(3πt)|3µt, 9Σt]. (3-62)

This can be solved by using

sin(θ) sin(φ) = cos(θ − φ)− cos(θ + φ)
2 and 5Σπt = Σπ + 9Σπt

2 . (3-63)

The left hand side of the covariance of Eq. (3-62) can be computed with

E[sin(x) sin(x)|µt,Σt, 3µt, 9Σt] =

u2
max

9
128 (exp (−(5Σπt − 3Σπt )) cos(µπt − 3µπt )− exp (−(5Σπt + 3Σπt )) cos(µπt + 3µπt )) . (3-64)

With the covariance found, the distribution of the squeezed control input p(ut) = p(S(πt)) is completely
determined. However to be able to use this control input for simulation, the joint distribution of the control
input and the states has to be computed. Known is the joint distribution of the unsqueezed controller and
the states, p(xt, πt), see Eq. (3-32). The required joint distribution is the distribution of the states and the
squeezed control input, p(xt, ut), with ut = S(πt), which is given in Eq. (3-31). The missing link is the
covariance of the state vector and the squeezed control input ut. Using the known distribution of p(xt, πt) and
p(xt) = N (µt,Σt) the covariance becomes:

cov [xt, ut|µt,Σt] = cov [xt, πt|µt,Σt]︸ ︷︷ ︸
see Section 3-3-1

cov [πt, ut|µt,Σt] , (3-65)

where,

cov [πt, ut|µt,Σt] = umax
9E[cos(π)|µπt ,Σπt ]

8 + 3umax
E[cos(3π)|3µπt , 9Σπt ]

8 . (3-66)

Which defines the joint distribution of the states and the control input in presence of the saturation function.
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28 The PILCO algorithm

3-3-3 Gradient-based policy search

The goal of the second part of the algorithm is to find the policy π(xt) that minimizes the expected return
Jπ(xt, ψ) Eq. (3-3). This can be done by adjusting the hyper-parameters of the policy ψ such that it minimizes
the total expected costs:

ψ∗ = arg min Jπ(xt, ψ) =
T∑
t=0

E[c(xt)], x0 ∼ N (µ0,Σ0). (3-67)

For every evaluation of the current policy the GP model is used to simulate the dynamics of the system.
From this virtual trial the expected total cost and the derivatives of the expected total cost with respect to
the hyper-parameters of the controller is computed. Using the gradient the search direction is selected. The
search is typically non-convex, hence non-convex search methods are required. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm of the gpml toolbox (Rasmussen and Williams, 2006) is the used gradient based
search method. But also the Conjugate Gradient (CG) method can be used (Deisenroth, 2010; Deisenroth and
Rasmussen, 2011). Both methods require the gradient for determining the search direction.

Cost function

The cost function gives a measure for how good it is to be in a certain state and is related to the Euclidean
distance between the current state and a so called target state, i.e. goal. The immediate cost is given as

c(xt) = 1− exp
(
−d(xt − xtarget)2

2σ2
c

)
∈ [0, 1], (3-68)

where d(·) is the Euclidean distance of its argument and σc the width of the valley. As an example the target
state for the cart-pole problem would be the inverted position of the pendulum in the center of the track.
With x as the difference between the cart position and the center of the track x = xcart − xtarget and ϕ the
difference between the angle with the target angle ϕ = ϕpendulum − ϕtarget and l the length of the pendulum
the Euclidean distance becomes,

d(xt, xtarget)2 = x2 + 2x2l sin(ϕ) + 2l2 + 2l2 cos(ϕ). (3-69)

The state vector for the cart-pole problem is typically xt = [xt, ẋt, ϕ̇t, ϕt]T Measuring the angle of the pendulum
anti-clockwise from hanging down, the target state (inverted position of the pendulum in the middle of the
track) can be described by the vector xtarget = [0, ∗, ∗, π]T .2 To ease the implementation of the cost function
the state is augmented with the complex values of the angle, zt = [xt, ẋt, ϕ̇, ϕt, sin(ϕ), cos(ϕ)]T and the
corresponding target ztarget = [0, ∗, ∗, ∗, 0,−1]T is used. Note that for this new, full state, the uncertainties
has to be pushed through the sin(·) and cos(·) functions. This is presented in Appendix A-1. With the full
state and target defined the cost function is given as

c(zt) = 1− exp
(
−1

2(zt − ztarget)TT−1(zt − ztarget)
)
∈ [0, 1]. (3-70)

With T−1, such that it can be used for vector matrix multiplication to obtain the Euclidean distance of
Eq. (3-69) divided by the width of the cost function,

T−1 = σ−2
c


1 0 0 0 l 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
l 0 0 0 l2 0
0 0 0 0 0 l2

 . (3-71)

2Velocities are not taking into account when computing the cost.
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For the uncertain state p(zt) = N (µzt ,Σzt ) the immediate cost function becomes

E [c(zt)] =
∫
c(zt)p(zt)dzt (3-72)

= 1− |I + ΣztT−1|−
1
2 exp

(
−1

2(µzt − ztarget)TT−1(I + ΣztT−1)−1(µzt − ztarget)
)
. (3-73)

Gradient of the cost function

To find the parameter vector ψ∗ that minimizes the expected return, Jπ(xt, ψ), the search direction, in form
of the gradient, has to be determined. An expression of the gradient can be found with the chain rule

dE [c(xt)]
dψ

= dE [c(xt)]
dp(xt)

dp(xt)
dψ

= ∂E [c(xt)]
∂µt

dµt
dψ

+ ∂E [c(xt)]
∂Σt

dΣt
dψ

. (3-74)

The first are:

∂E[c(xt)]
µt

= −2E[c(xt)](µt − xtarget)TT−1(I + ΣtT−1)−1, (3-75)

∂E[c(xt)]
Σt

= E[c(xt)](T−1(I + ΣtT−1)−1(µt − xtarget)(µt − xtarget)T − I)T−1(I + ΣtT−1)−1. (3-76)

The second derivatives are:

dµt
dψ

= ∂µt
∂µt−1

dµt−1

dψ
+ ∂µt
∂Σt−1

dΣt−1

dψ
+ ∂µt
∂ψ

, (3-77)

dΣt
dψ

= ∂Σt
∂µt−1

dµt−1

dψ
+ ∂Σt
∂Σt−1

dΣt−1

dψ
+ ∂Σt

∂ψ
. (3-78)

The derivatives ∂µt−1
∂ψ

and ∂Σt−1
∂ψ

are both computed in the previous time step. Note, that µt = µt−1 + E[∆t]
and Σt = Σt−1 + cov [∆t] + cov [∆t, xt−1] + cov [xt−1,∆t]. Also notice that E[∆t], cov [∆t], cov [∆t, xt−1] and
cov [xt−1,∆t] are dependent of the control input. So this implies that the derivatives vary with the choice of
controller. For a more detailed description of the gradient see (Deisenroth, 2010, Sec. 3.6.2).

3-4 Pseudo code of the Probabilistic Inference for Learning COn-
trol algorithm

In Algorithm (3.1) an overview of the algorithm is given. Note, that the GP system identification and model-
based RL steps are alternated till the (sub)optimal solution is found. Note, that with every iteration the
observed input-output data from trials is added to the old data. Hence, these data matrices are growing with
every iteration. In this way the GP model gathers more information about the system with every iteration,
which result in a more accurate model.
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Algorithm 3.1: PILCO
For a system with unknown dynamics xt+1 = f(xt, ut), with x ∈ RD and u ∈ RF .
Define for N input-output data samples, the training inputs as X̃ = [X̃0...X̃N−1] ∈ R(D+F )×N , with
X̃i =

[
xi ui

]T and the corresponding training targets as y = [∆1...∆N ]T ∈ RN×E , with
∆i = xi − xi−1 ∈ RE , target dimension E might be different than state dimension D.
Initialize: Controller parameters ψ, for Nc Gaussian basis functions: Xπ ∈ RNc×D ∼ N (µ0,Σ0),

yπ ∈ RNc×F ∼ N (0, I) and ` = 1D,Nc .
1 Apply control input ut ∼ U(−umax, umax), save training inputs and targets (X̃,y) from data
repeat

2 Learn probabilistic (GP) dynamic model (find the hyper-parameters θ∗ ∈ RD+F+2×E) using X̃, y.
Initialize: GP hyper-parameters ∀ RE : ` = var

[
X̃
]
, σf = var [y], σε = var [y/10] .

Λ = diag
(
{`21, ..., `2D}

)
Kij = σ2

f exp
(
− 1

2 (X̃i − X̃j)TΛ−1(X̃i − X̃j)
)

+ σ2
ε δij

For e = 1 : E :
θ∗ = arg maxθ log p(ye|X̃, θ) using BFGS or CG method

log p(ye|X̃, θ) = −1
2yTeK−1ye −

1
2 log |K| − D

2 log 2π

∂

∂θj
log(ye|X̃, θ) = 1

2 tr
((
K−1yeyTeK−1 −K−1) ∂K

∂θj

)
for j = 1 : D + F + 2

end
3 Gradient-based policy search, find ψ∗ = arg minψ Jπ(xt, ψ), using BFGS or CG.

For t=0:T :
Step 1 Compute p(x̃t) = p(xt, ut), ∂µt∂ψ

and ∂Σt
∂ψ

with p(ut) = p(S(π∗(xt))), where S(·) is a
saturation function, see Section 3-3-2, and π∗(xt) the current optimal policy.
Step 2 Compute the next state, using Eq. (3-9):

p(xt+1|µ̃t, Σ̃t) ∼ N (µt+1,Σt+1)
µt+1 = xt + E[∆t+1]
Σt+1 = Σt + cov [∆t+1] + cov [∆t+1, xt] + cov [xt,∆t+1]

With E[∆t+1] =
[
βT1 q1, ..., β

T
EqE

]T as found in Eq. (3-10)–(3-13), and
cov [xt,∆t+1] ⊂ cov [x̃t,∆t+1] using Eq. (3-28):
For e = 1 : E :

βe = (Ke + σ2
ε,eI)−1y

qe = [q1
e , ..., q

Nc
e ]T

qie = σ2
f,e|Σ̃tΛ−1

e + I|
1
2 exp

(
−1

2(X̃i − µ̃t)T (Σ̃t + Λe)−1(X̃i − µ̃t)
)

cov [x̃t,∆e
t+1] =

n∑
i=1

βe,iqe,i(Σ̃t(Σ̃t + Λe)−1(X̃i − µ̃t))

find ∂E[∆i
t+1]

∂Σt
and For d = 1 : D :

∂ cov
[
xit,∆t+1

]
∂Σt

end

end

Find ∂E[∆t+1]
∂µt

and ∂ cov [xt,∆t+1]
∂µt

And with cov [∆t+1] as follows, Eq. (3-14):
For e = 1 : E :

For b = 1 : e :

Qij =
exp
(
n2
ij

)√
|R|

with n and R as defined in Eq. (3-17) and (3-18)

cov [∆t+1]eb =

{
βTe Qβb − E[∆e

t+1]E[∆b
t+1], e 6= b

βTe Qβe − E[∆e
t+1]2 + σ2

f,e − tr
(
(Ke + σ2

ε,eI)−1Q
)
, e = b

cov [∆t+1]eb = cov [∆t+1]be

end

find
∂ cov

[
∆i
t+1
]

∂µt
, using ∂ cov [xt,∆t+1]

∂µt
and For d = 1 : D :

∂ cov
[
∆i
t+1
]

∂Σt
end, using ∂ cov [xt,∆t+1]

∂Σt

end
Step 3 Compute the gradient dJπ(xt, ψ)/dψ using Eq. (3-74) – (3-78).

end
4 Update controller parameters: set π∗ ← π(ψ∗)

Apply ut = S(π∗(xt)) to the system (single trial) and record data X̃new, ynew
Combine old and new data: X̃ =

[
X̃ X̃new

]
and y =

[
y ynew

]
until Task learned
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3-5 Discussion on the PILCO algorithm

This discussion on the algorithm is divided in three section. The motivation of using the increments as targets
will be given before the computational load – a major disadvantage – and its current solution are discussed.

3-5-1 Motivation for using state increments as targets

By learning the difference rather than the state updates itself has a few advantages. Because differences vary
less than the absolute values, the underlaying function that describes these differences varies less. Hence
learning is easier, which implies that less data is needed to find an accurate model (Deisenroth, 2010).
In practice robotic dynamics are typical relative to the current state and do not depend on the absolute
values (Deisenroth et al., 2013b). Predicting outside the training space can lead to poor results. However, by
learning difference dynamics the model generalizes better across different parts of the state space, see for an
example Figure 3-2. In this example of the first order system G = 1

(1+s) the black crosses are the input-output
data disturbed with iid Gaussian noise εt ∼ N (0, 0.1). In order to test the model outside the training data
a constant input of one is used. The expected response is a steady state output of one, the step response.
A better approximation of the step response is found by using the state increments as targets. Note, that
the model that learns in-output dynamics directly, has a steady state of 0.5. Mathematically learning the
differences means that the prior mean function is given as

m(x̃t) = xt. (3-79)

This can be derived from Eq. (3-9b), the prior mean function of the prediction, ∆t+1, is m(x̃t) ≡ 0. So
E[∆t+1] = 0 when test inputs are leaving the training set. Hence, the prior mean function for the increments
Eq. (3-79) is obtained. This implies that when the predictions leave the trainings set the prediction will not
fall back to zero but remain constant.
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(a) Prediction when using increment targets for
training.
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(b) Prediction when using state updates for
training.

Figure 3-2: GP modeling: comparison of the simulations of the step-response of the first-order
system G = 1

(1+s) . The black solid line is the mean prediction of the state and the gray area
the 95% confidence interval (±2σ). In both cases the same input-output data (black crosses)
disturbed with iid Gaussian noise εt ∼ N (0, 0.1) of the ’real’ system is used. However, Figure 3-2a
uses the increments of the state updates for training and Figure 3-2b state updates itself.

3-5-2 Computational Complexity

Because the algorithm uses a GP model to learn the (sub)optimal policy, only a moderate amount of data
is required. Hence, the algorithm is data efficient. The cost of the data efficiency is a high computational
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load, which is a major disadvantage of this algorithm. The computational load is depending on the number
of training data, which is growing after every iteration. So for every iteration new data is found and the
computational load increases. The dominating computational factors are:

• The computational load of training a GP using gradient-based evidence maximization is dominated by
the inversion of the matrix Kθ, see Section 2-2-3. This requires O(En3) operations for a n size training
set and a target dimension of E. The remaining part of the derivative computations require O(En2)
per hyper-parameter.

• The most demanding task for predicting the posterior distribution from uncertain inputs is computing
the (n×n) Q matrix Eq. (3-16) for the predictive covariance matrix. This requires a D+F dimensional
scalar product per entry, D + F is the dimension of the training inputs, see Section 3-2. Furthermore,
Q has to be computed for each entry of the (E ×E) predictive covariance matrix Eq. (3-14). Resulting
in the dominating factor for making predictions of O((D + F )E2n2) operations. The predictive mean
is less demanding with O(En).

Because n � D ≥ E, the depending variable of the computational load is the length n of the training data.
Note, that the training data is growing after each trial. Sparse approximations are implemented in (Deisenroth,
2010; Deisenroth et al., 2013b) to fix the number of data pairs.

3-5-3 Sparse approximations

The sparse approximation is used to limit the computation load of the predictions and derivatives during policy
learning, by limiting the number of training data to 300 data pairs. This can be done by selecting a subset of
the training data, called pseudo training data. In order to prevent over- or underfitting of the sparse GP model,
a full GP is trained first. The obtained hyper-parameters of the full GP are used as the hyper-parameters of
the pseudo training data of the sparse GP. In order to omit problem of sequential data – a lot of similar data
samples of the begin and end states give more weight to these areas – the locations of the pseudo training
data are optimized after every trail. The least important data pair of the current sparse GP is substituted
with a data pair of the full GP. If the performance of the sparse GP improves the data pair is included in the
sparse GP, otherwise the original sparse GP is used. Every training data pair of the full GP is evaluated in
this manner, see (Deisenroth, 2010, Section 3.9.1). The log marginal likelihood of the sparse implementation
is used as performance measure, see for a detailed description of the evaluation (Deisenroth and Rasmussen,
2009, Section 2.4).

3-6 Conclusion

A major disadvantage of model learning RL is the risk of identifying inaccurate models. Which could lead
to learning wrong (sub)optimal policies or even to complete failure. By modeling uncertainties of the model
and averaging over them, model-bias can be taken into account (Schneider, 1997). Which reduces the risk of
catastrophic failure during learning. Therefore, is in the PILCO algorithm a probabilistic dynamic model used,
this implies that a distribution over all plausible models that fit the observed data is found. These uncertainties
are implemented in the long term predictions and decision making, see Section 3-2-1. The averaging is done
according to the posterior distribution, hence over all plausible dynamic models. A GP model is used because:
(1) GP models are capable of modeling a wide spread of nonlinear systems including their uncertainties, and
(2) GP modeling is based on well understood approximation principles.
The aim of this thesis is to investigates the applicability of the algorithm for large systems and systems with
time varying measurement noise. The first step in reaching that goal is investigating the convergence of the
RBF controller and GP controller, which will be the discussed of the next chapter.
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Chapter 4

Controller choice

The Probabilistic Inference for Learning COntrol (PILCO) algorithm, as presented in the previous chapter, is
mainly used with the Radial Basis Function (RBF) controllers or Gaussian Process (GP) controller (Deisenroth
and Rasmussen, 2011; Deisenroth et al., 2013a,b). Although the two controllers mathematically describe the
same function, no performance comparison it terms of convergence can be found in literature. The GP
controller is proposed in (Deisenroth, 2010), because it could benefit from smoothing effect, which are not
present in the RBF controller. Furthermore, is the implementations relatively easy because a GP is already
used for prediction. This chapter compares the convergence performance of the GP controller and the RBF
controller. This chapter concludes with a motivation – based on the results – to use one of the two controllers.

4-1 RBF controller and GP controller
After fixing σ2

f,π = 1 the GP controller is over-parametrized with one parameter compared with the RBF
controller. The dependence on the inverse of kernel matrix Kπ + Iσ2

ε,π could lead to numerical instabilities.
However, by selecting σ2

ε,π = σ2
ε = 0.012, the GP is as algebraically expressive RBF controller because,

K+Iσ2
ε has full rank. Remember, Xπ = [xπ,i, ..., xπ,i]. For easy comparison an overview of the two controllers

is presented below:

RBF controller GP controller

π(xt, ψ) =
n∑
i=1

wiφi(xt) π(xt, ψ) =
n∑
i=1

βπ,ik(xπ, xt)

φi(xt) = exp
(
−1

2(xπ,i − xt)TΛ−1(xπ,i − xt)
)

k(xπ, xt) = σ2
f,π exp

(
−1

2(xπ,i − xt)TΛ−1(xπ,i − xt)
)

βπ = (Kπ(Xπ, Xπ) + σ2
ε,πI)−1yπ.

The initial controller parameters are selected as

w = N (0, 0.12), Xπ = N (µ0,Σ0), and yπ = N (0, 0.12). (4-1)

The hyper-parameter vector of the RBF controller is ψ = {w, `1, ..., `D, Xπ} ∈ RD+n(D+1), for the GP
controller the hyper-parameter vector is ψ = {yπ, `1, ..., `D, Xπ σ2

ε,π} ∈ RD+1+n(D+1). For characteristic
length-scales that correspond with original states are chosen to be 1. For the characteristic length-scales that
correspond with the augmented states (see Appendix A-1) are set to 0.7. The random control input for the
initial trial ut ∼ U(−umax, umax). System states and control input can be controlled at 10Hz.
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4-2 Simulations set-up

To evaluate the algorithm two scenario’s are selected: (1) a second order system and (2) the cart-pole system.
For both systems the width of the cost function is set to σc = 1

4 .

4-2-1 1: The second order system

The ’real’ dynamics of the second order system are chosen as

G(s) = 1
s2 + s+ 1 . (4-2)

For the state vector
[
x
ẋ

]
, the state space description becomes

[
ẋ
ẍ

]
=
[

0 1
−1 −1

][
x
ẋ

]
+
[

0
1

]
u, (4-3)

where the initial state is drawn from the normal distribution

[
x0
ẋ0

]
∼ N

([
0
0

]
,

[
0.12 0

0 0.12

])
. (4-4)

The states for GP training are defined as follows:

xtraining input =

[
x
ẋ
u

]
, and ytraining targets =

[
∆x

∆ẋ

]
. (4-5)

For easy understanding of the results the goal is chosen as a steady state solution at one. Hence, the goal state
is defined as

xtarget =
[

1
0

]
. (4-6)

4-2-2 2: The cart-pole system

The task of the second case is to learn the swing-up and stabilization of a pendulum in the cart-pole set-up,
a benchmark problem in Reinforcement Learning (RL). This cart-pole system is used throughout the thesis.
The unknown dynamics are described by the following equations of motion:

(m1 +m2)ẍ1 + 1
2m2lϕ̈ cosϕ− 1

2m2lϕ̇
2 sinϕ = u− bẋ1, (4-7)

2lϕ̈+ 3ẍ1 cosϕ+ 3g sinϕ = 0, (4-8)

where x is the position on the cart and ϕ the angle of the pendulum measured anti-clockwise from hanging
down. The gravitation acceleration is given as g = 9.82 m/s2, the constants m1 = 0.5 kg and m2 = 0.5 kg are
the masses of the cart and the pendulum respectively, l = 0.5 m is the length of the pendulum and b = 0.1
N/m/s the friction between the cart and the rails, see Figure 4-1. Note, that when using the PILCO algorithm
the dynamics are assumed to be unknown.

The state used to simulate the dynamics of the ’real’ system is
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4-2 Simulations set-up 35

Figure 4-1: Schematic overview of the cart-pole system, edited from (Deisenroth and Rasmussen,
2009). In the left figure the initial state is given, where the green cross is the target state. In
the right figure the goal is presented, stabilizing the pendulum upright in the center of the track,
after swing-up.

x =

xẋϕ̇
ϕ

 . (4-9)

Because, there is a angle in the state description this angle is given by its complex parts, sin(ϕ) and cos(ϕ).
This ease the GP training problem because of some linearizations. The computations for the augmented state
given in Appendix A-1. The augmented and full states are:

xaugm =
[

sin(ϕ)
cos(ϕ)

]
, and xfull =


x
ẋ
ϕ̇
ϕ

sin(ϕ)
cos(ϕ)

 . (4-10)

However, instead of using the full state to learn the dynamics, the angle is omitted from the full state for
the training input. The corresponding training targets, which are the increments, are represent with ’original’
state which is also used for simulating the dynamics. Augmenting the training inputs with the control input
results in the training data states:

xtraining input =


x
ẋ
ϕ̇

sin(ϕ)
cos(ϕ)
u

 , and ytraining targets =

∆x

∆ẋ

∆ϕ̇

∆ϕ

 . (4-11)

Note, that the input state for the one-step update predictions has to be the same as the training input state.
The cost function uses the full state representation. The target state, the inverted position of the pendulum
in the middle of the track, is given as
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xtarget =


0
∗
∗
∗
0
−1

 . (4-12)

Note, that this target state correspond to xtarget =
[
0 ∗ ∗ π + 2kπ

]T in the original state representation.
See Section 3-3-3 for detailed explanation of the cost function.

4-3 Simulation results

For the second order system both controllers are initialized with five basis functions. The trial length is four
seconds and one initial trial is made with a random input ut ∼ U(−umax, umax). Both controller give similar
results, which are presented in Figure 4-2. The left side is the RBF controller and the right the GP controller.
The controller corresponding to the trial with the lowest total cost is considered as the best solution. This
is 3.43 and 3.28 for the RBF controller and GP controller respectively. The GP controller is more aggressive
as it has large differences in two consecutive control inputs. Furthermore, a larger range of the control input
domain ([−10 10]) is used. From the results the smoother RBF controller is the more feasible solution, and
therefor better to implement in a real system. On the other hand the flexibility and aggressive behavior of the
GP controller can result in better policies for complex tasks.
For the simulation of the cart-pole system the trial lengths are set to 2.5 seconds an using two trials with
a random control input to initialize the model ut ∼ U(−umax, umax). Ten basis functions are used for both
controllers. In Figure 4-3 is presented that both controller are able to solve the task. The trajectories of the
states are shown, the position (solid black), cart velocity (blue dotted) and angular velocity of the pendulum
(green dot dashed) should all go to zero. The angle of the pendulum (red striped) should go to π+ 2kπ, for k
as an integer. The best trial of the GP controller is trial eight and has a cost of 6.65, which is similar to the
best trial of the RBF controller 6.52.
To increase the convergence difficulty of the learning process the basis functions of the RBF and GP controller
are increased to fifty, see Figure 4-4. Although, the RBF controller is not able to find a solution, the GP
controller is able to stabilize the pendulum. However, this suboptimal solution swings the pendulum one
complete circle before stabilization, see Figure 4-4d. Hence, the algorithm got stuck in a local minimum.
Although, sparse implementations exists to limit the computational complexity, the computational load is
high. Chapter 5 will address this issue. A key assumption of the PILCO algorithm is that the uncertainties
are Gaussian distributed. However, measurement noise could have many different distributions. An interesting
question is to test the generality of the algorithm by testing the performance of the algorithm subjected to
different measurement noise distributions. This study is presented in Chapter 6. The RBF controller is
nonlinear flexible controller which is able to learn complex tasks. The suggestion to use a GP controller is
mainly driven by the ease of implementation. However, the performance of the GP controller is not verified
or compared with the RBF controller. The next chapter presents a case study on the performance of the GP
controller.

4-4 Conclusion

The GP controller has one parameter more the initialize, σε,π, which is set to the measurement noise standard
deviation. This parameter should be chosen unequal to zero. Firstly, to prevent that the matrix K + Iσε,π
becomes singular. Secondly, it causes the matrix to be full rank which makes it as algebraically expressive as
the RBF controller.
The algorithm is able to find an (sub)optimal controller automatically. However, the choice of controller and
controller structure are of great importance. The number of basis functions in the RBF and GP controllers
can be a deciding factor for failure or success. Both controllers find good solutions for the tasks provided, if
the number of basis function is chosen correctly. Too few, could result in a controller which is not able to solve
the problem. Too many, could cause the optimization problem to end up in a local minimum.
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4-4 Conclusion 37

By increasing the number of basis functions of the controller, the applicability of the controller for larger
and more complex systems and/or tasks is investigated. A convergence difference between the two controllers
is found when the number of basis functions is increased to fifty. The algorithm seems to profit from the
indirect chosen weighting factors of the GP controller. The small uncertainty factor σε,π smooths the function,
which ease the optimization. Although, both controllers were not able to find the global optimal policy, the
algorithm with the GP controller converges slightly easier than with the RBF controller. Because of the higher
convergence rate, the GP controller is better suited for the algorithm and is used in the remainder of this
thesis.
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Figure 4-2: Controller choice 2nd order system: comparison of the GP and RBF controller
controller using 5 basis functions. The left figures are the results of the RBF controller and the
right figures of the GP controller. The top figures give the total cost per trial. Note, that the
first bar is the initial trial with the random controller. The middle two figures present the state
trajectories of the best trials, i.e total lowest cost, which is trial one for the RBF controller and
trial five for the GP controller. The blue solid line is the state x and the striped green line the
state ẋ. The corresponding control input of the best trial is given in the bottom two figures.
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Figure 4-3: Controller choice cart-pole system: comparison of the GP and RBF controller using
10 basis functions. The left figures are the results of the RBF controller and the right figures of
the GP controller. The top figures give the total cost per trial. Note, that the first bar is the
initial trial with the random controller. The middle two figures present the state trajectories of
the best trials, i.e. total lowest cost, which is trial eight for both controllers. The black solid line
is the position of the cart (x). The blue dotted line is the carts velocity (ẋ), the dot-stripped
red line is the angle of the pendulum (ϕ) and the green striped line is the angular velocity of the
pendulum (ϕ̇). The bottom two figures give the control input corresponding to the best trial of
the middle figures.
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Figure 4-4: Controller choice cart-pole system: comparison of the GP and RBF controller using
50 basis functions. The left figures are the results of the RBF controller and the right figures of
the GP controller. The top figures give the total cost per trial. Note, that the first bar is the
initial trial with the random controller. The middle two figures present the state trajectories of
the best trials, i.e. total lowest cost, which are trial two for the RBF controller and six for the GP
controller. The black solid line is the position of the cart (x). The blue dotted line is the carts
velocity (ẋ), the dot-stripped red line is the angle of the pendulum (ϕ) and the green striped
line is the angular velocity of the pendulum (ϕ̇). The bottom two figures give the control input
corresponding to the best trial of the middle figures.
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Chapter 5

Reducing the computational time

The Probabilistic Inference for Learning COntrol (PILCO) algorithm using the Gaussian Process (GP) con-
troller – as found in the previous chapter – is a promising algorithm because: (1) the GP model is capable of
modeling a wide spread of nonlinear systems including their uncertainties, and (2) the GP controller shows good
convergence properties. These good convergence properties are necessary for implementation of the algorithm
on large systems. Although, a fast converging controller is found the computational load of the algorithm is
high. Between the trials the algorithm requires approximately 10 minutes on an average computer to find the
(sub)optimal controller for the cart-pole task, (Deisenroth and Rasmussen, 2009). This computational load is
a major disadvantage, especially for large systems. Before presenting the proposed parallelized implementa-
tion, this chapter starts with a review of the most demanding computations and how they are implemented
in the toolbox of (Deisenroth et al., 2013b). The algorithm is divided in two parts to analyze the Matlab
implementation: (1) GP system identification and (2) model-based RL. Throughout this chapter the cart-pole
system used. Conclusions on the results to the extend of large systems will finalize the chapter.

5-1 Part 1: GP system identification

For the training of the GP the gpml toolbox of Rasmussen and Williams (2006) is used. The training of the
GP during the eight iterations of 2.5 seconds took only approximately 1.0 percent of the total computing time.
This seems unnecessary, but for more complex systems larger data sets are necessary. For more than 300 data
pairs (n = 300) the sparse GP model is used, see Section 3-5-3. Although, training of the GP evaluates all data
pairs, the computations of the policy learning step are limited to 300 data pairs. For example, the GP training
time for the cart-pole system with 1000 data pairs and is approximately 33 percent of the total time. Hence,
reducing the computational time for GP training is rewarding for highly complex systems. For convenience
the equations for GP training (Section 2-2-3) are repeated here:

θ̂ ∈ arg max
θ

log p(y|X̃, θ), (5-1)

log p(y|X̃, θ) = −1
2yTK−1

θ y− 1
2 log |Kθ| −

D

2 log 2π. (5-2)

The gradient of the marginal likelihood with respect to the hyper-parameters is

∂

∂θj
log(y|x, θ) = 1

2 tr
((
K−1
θ yyTK−1

θ −K
−1
θ

) ∂Kθ

∂θj

)
. (5-3)
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The dominating computation for the finding the (sub)optimal hyper-parameters is the inverse of the covariance
matrixKθ,ij = K(Xi, Xj)+σ2

ε I. For the target dimension E finding the inverse of a positive definite symmetric
(n by n) matrix using Gaussian elimination require O(En3) operations, the overhead of the calculation of the
derivatives is O(En2) per hyper-parameter. The gpml toolbox uses an c implementation of the Cholesky
inverse. The Cholesky factorization of a positive definite matrix is given as

A = LLT = RTR, (5-4)

where L is a lower triangular matrix and R an upper triangular matrix, and LT = R holds. An inverse of the
positive definite matrix A can be found as

A−1 = R−1L−1 = L−TL−1. (5-5)

This can be implemented as solving the system Ax = b. Take b equal to the identity matrix of appropriate
dimensions,

A−1 = LT \(L\I). (5-6)

5-1-1 Parallel implementation of the GP system identification

Because training of the GP means training E independent Gaussian Processes, the architecture of the training
is ideal for parallel computing, see for the simplified implementation Appendix B-1. As Amahdahl’s law
suggest is it assumed that the computation time, Tcomp, will consist of a constant non parallelizable factor
(minor computations and initializations), α and a parallelizable part. The parallelizable part is dominated by
a matrix inverse. Hence, a simplified approximation of the computational time is given as τn3, where n (n is
number of data samples) and time constant τ is time required per data sample for the target dimensions E.
Note, that the target dimension is integrated in the time constant τ ,

Tcomp = α+ τn3. (5-7)

By fitting on data, the constant α is set to one and τ to 5.2 · 10−8. Because, the predictive distribution has
a four dimensions in the cart-pole setup, the maximum useful cores is four. The idealistic assumption is that
the parallelizing has a linear effect on the second part of the computation time equation Eq. (5-7). Neglecting
the additional overhead time introduced by the parallel implementation and with N the number of cores the
prediction of the computational time becomes

Tcomp = α+ τn3

N
. (5-8)

The fitted approximation and the prediction of the time decrease when using two and four cores is presented
in Figure 5-1, the measured data (yellow solid with 95 percent confidence interval) of the original algorithm is
fitted with the solid black approximation. The assumed ideal linear time reductions are presented in dot dashed
blue for two cores and dotted red for four cores. In this ideal scenario a clear decrease of the computational
time is predicted, when using multiple cores. The expectation is that the real time decrease is less severe.
In Figure 5-2a the results can be found of twenty training runs for ten to thousand training samples on a desktop
computer with a Intel(R) Core(TM) i7 CPU 860 @2.80GHz. The black solid line is the original algorithm
(labeled synchronous) using all computational power available and normal Matlab commands. The green
dotted line is the parallel implementation however, only one core is available. Hence, the computations are
done synchronously. The time increase is caused by the overhead time of parallel computing and the lack of
parallel options in the build in Matlab commands. Although less then predicted, a significant time decrease
is found for the parallel implementation using two (blue dotted) or four (red dotted) cores.
In Figure 5-2b the percentage of time decrease can be found for the two (blue dot solid) and four (red dotted)
core parallel implementation. A optimal value for 100 data pairs is found of 53 percent for the two core and
68 percent for the four core implementations. Note, that the target dimension is four in the cart-pole system.
So, using more than four cores will not further decrease the computational time.
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Figure 5-1: Computational time reduction: predicted time decrease for parallel GP training. The
time duration of the original algorithm is measured for 20 GP learning optimizations sessions,
and presented (solid yellow line) with the mean and 95% confidence interval (±2σ). This data
is fitted with the approximation (solid black line) of Eq. (5-8). The linear (ideal) time decrease
when using two or four cores are given in the blue dot dashed and red dotted lines respectively.
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Figure 5-2: Computational time reduction: realized time decrease for parallel GP training.
Value’s are presented by their mean and 95% confidence intervals (±2σ), required with 20 GP
training sessions, using a Intel(R) Core(TM) i7 CPU 860 @2.80GHz CPU. In Figure 5-2a the
time duration of the original (synchronous) training (black solid line) is compared with the one
(green dotted line), two (blue dotted line) and four (red dotted line) core parallel implementation.
In Figure 5-2b the time reduction in percentage of the sychronous training is given for the one
(green solid), two (blue dot dashed) and four (red dotted) core parellel training.

For more than 100 data pairs the advantage of the parallel implementation degrades. For 1000 data pairs the
reduction of the computational time decreases to 11 and 39 percent for the two and four core implementations
respectively. The advantage degrades because the overhead time increases with the number of data pairs.
Note, it needs to store bigger matrices. The slope of the four core implementation is flatter than the slope
of the two core implementation, because the four core implementation breaks the matrices is smaller pieces.
Hence, the overhead time has a smaller negative influence. For around 100 data pairs the highest decrease in
percentage is found. However, for large amount of data pairs the absolute time reduce is the highest.

Master of Science Thesis K. van Witteveen



44 Reducing the computational time

5-2 Part 2: Model-based Reinforcement Learning

Learning the control policy for the cart-pole set-up in 8 iterations with 2.5 seconds trials requires ±96.5
percent of the total computing time 1. The most demanding computation during learning of the policy is
computing the predictive distribution with, ± 53 percent of the total learning time. Computing the control
input u takes ±30 percent (GP controller). Note, this is determined by the controller choice, the Radial Basis
Function (RBF) controller or linear controller will be computational less demanding. The most demanding
computations are the predictive distribution and the derivatives for prediction. Note, that the control policy
is a deterministic GP model as well. Hence, the most demanding computations are the same, so the solution
will be applicable to the GP controller as well. For finding the predictive distribution of the model the most
demanding computation is with, ±37 percent of the prediction computation time, computing the so called
Q matrix. Which is necessary to compute the predicting covariance matrix, see Section 3-2-1. The second
most demanding computation involves finding the derivative of the input output covariance with respect to the
covariance matrix, which takes ±14 percent of the prediction time. For convenience the equations for finding
the Q matrix are given bellow

cov
[
∆a
t+1,∆b

t+1
]

=

{
βTa Qβb − E[∆a

t+1]E[∆b
t+1], a 6= b

βTa Qβa − E[∆a
t+1]2 + σ2

f,a − tr
(
(Ka + σ2

ε,aI)−1Q
)
, a = b

, (5-9)

where Q is

Qij = Ka(X̃i, µ̃t)Kb(X̃j , µ̃t)√
|R|

exp
(1

2z
T
ijR
−1Σ̃tzij

)
. (5-10)

Which can be rewritten for a numerical stable implementation as

Qij =
exp
(
n2
ij

)√
|R|

, (5-11)

n2
ij = 2(log(σf,a) + log(σf,b))−

ζTi Λ−1
a ζi + ζTj Λ−1

b ζj − zTijR−1zij

2 , (5-12)

where the following is defined R = Σ̃t(Λ−1
a + Λ−1

b ) + I, ζi = X̃i − µ̃t, and zij = Λ−1
a ζi + Λ−1

b ζj .

5-2-1 Parallel implementation of the model-based RL

The gradient based optimization involves one optimization. Because, the prediction of a GP can be com-
putational demanding and involves computing E independent Gaussian means, covariances and the cross-
covariances of the inputs and the prediction, is it possible to parallelize these. However, parallelizing a loop
results in extra overhead. This is the results of sending the data to the different processors and adding the
results back together. Hence, to have advantage of a parallel loop the computations in the loop have to be
demanding enough to justify this extra computing time. The simulation to learn the swing up and balance
of the pendulum for the cart-pole system, was performed with trials of 2.5 seconds and eight iterations of the
learning process. A total of 56275 calls were made to the computations for the predictive distribution and the
derivatives which took a total of 984.983 seconds to compute. Clearly these computations, with an average of
0.0175 seconds, are not demanding enough to find a successful parallel loop in Matlab. Even if the training
data is taken for 60 seconds (600 data pairs) the computational time for computing the predictive distribution
and the derivatives takes 0.16 seconds. Furthermore, the number of loop iterations – the prediction dimension
E – is small.
In the prediction step the mean and the covariance prediction (both including derivatives and some extra

1The total computing time for Policy learning and the training of the GP is not 100 percent because of
other requirements e.g., simulations of the ’real’ dynamics.
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computations) are separated in two for loops, see Algorithm (3.1). Both loops are parallelized separately to
investigated the influence of both loops. In the simulations the number of function evaluations and line searches
are limited too one. In this way a fair comparison can be made. The expectation that the computations are
slowed down by the parallelization are met, see Figure 5-3. The computation time of the parallelized and non
parallelized learning of the policy is presented. The parallel function for the predictive mean is presented with
the label ’par E[∆t+1]’ (green dot dashed line), the covariance is labeled as ’par cov [∆t+1]’ (red dotted line).
In order to find the speed increase or decrease of these separate loops, the parallel implementation of these
loops is done for one at a time.
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Figure 5-3: Computational time reduction: realized time increase for parallel policy learning.
The figure presents the time duration of one line search of the policy learning optimization. The
original policy learning is presented in solid black, the green dot dashed line is the parallel mean
prediction and the red dotted line is the parallel covariance prediction.

5-3 Conclusion

The parallelization of the gradient based learning is impractical. Only a single optimization is required and the
internal computations are not demanding enough to overcome the extra overhead created by separating and
combining the matrices, resulting in an increasing of the computational time when parallelized. The paral-
lelization of the GP training reduced the computational time for more than 100 data pairs. From 300 data pairs
onwards a reductions in computational time for two and four cores is around 20 and 40 percent respectively.
Hence, for the cart-pole system with 1000 data pairs a 13 percent reduction of the total computation time can
be found. For systems with a higher prediction dimension E the computational time reduction will be higher.
Hence, this parallel implementation increases the applicability of the PILCO algorithm for large systems.
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Chapter 6

Robustness analyses

The work of the two previous chapters increased the applicability of the Probabilistic Inference for Learning
COntrol (PILCO) algorithm for large systems, the first part of the main research objective. This chapter
presents the investigation of the influence of different measurement noise characteristics on the performance.
This work is conducted to gain insight in the robustness of the algorithm. The aim is to use this knowledge
to make the PILCO algorithm applicable for systems with time varying measurement noise, the second part
of the main research objective.
In this chapter all distributions used to identify the influence of the moments on the performance, are zero
mean and can approximate the Gaussian distribution. Most of the distributions are chosen such that a single
parameter changes one certain property. Before the influence of the measurement noise variance, skewness
and kurtosis are presented, the simulation experiments are explained in detail. Subsequently, the influence of
increasing ’extreme’ – large absolute – values, while keeping a constant variance is presented. This chapter
concludes with a discussion of the results.

6-1 Influence of different measurement noise characteristics on the
performance

To identify the influence of: (1) variance, (2) skewness, (3) kurtosis, and (4) extreme values the impact of the
measurement noise on the system has to be identified. A nonlinear real system with can be written as:

xt+1 = f(xt, ut), (6-1)
yt = xt + εt, (6-2)

where the true system dynamics of Eq. (6-1) are unknown and the measurement noise is assumed to be zero
mean Gaussian independent and identically distributed (iid). For x ∈ RD the measurement noise distribution
is

εt ∼ N


0
...
0

 ,
σ

2
ε,1 . . . 0
...

. . .
...

0 . . . σ2
ε,D


 . (6-3)

The system interaction – where the observations are disturbed with measurement noise – is shown in Figure 6-
1. Note, that the the states are partly observable, resulting in a Partially Observable Markov Decision Process
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(POMDP). Furthermore, the disturbance is fed to the system via the controller. In order to investigate the
robustness of the algorithm for measurement noise the cart-pole system of Section 4-2-2 is used. This is a well
known benchmark problem for Reinforcement Learning (RL) algorithms. The controller is learned using trails
of four seconds and ten learning iterations. The measurement noise is independent and identically distributed
Gaussian distributed per state, N (0, 0.012). The influence of the different measurement noise moments on the
performance of the learned controller is investigated by applying different noise distributions on the system.
Note, that the system itself does not change, only the measurement noise εt. Hence, a change in environment
in this chapter means a change in the probability distribution from which the measurement noise is sampled.
The results are given for 100 trials of four seconds per parameter change. In order to compare the performance
a reference of again 100 trials of the original system is used. So, the system was perturbed with a independent
identically distributed zero mean Gaussian measurement noise of N (0, 0.012) per state. The mean of the total
cost – used as performance measure in this chapter – of these hundred trials is 6.92.

Figure 6-1: Schematics of the Partially Observable Markov Decision Process (POMDP). The
observations (yt) of the states (xt) are disturbed with measurement noise εt. Hence, the obser-
vations and not the real states are available for control. The measurement noise is passed on via
the control input ut by the controller C to the next state (xt+1).
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(b) Total cost for increasing standard deviation
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Figure 6-2: Robustness analyzes: the influence of measurement noise variance on the cost.
In Figure 6-2a the zero mean Gaussian probability distribution is given for different standard
deviations (σ). In Figure 6-2b the performance of three controllers is presented. The controllers
are learned for different Gaussian measurement noise: blue solid line for σε,π = 0.01, the green
dot dashed line for σε,π = 0.04 and the dotted red line for σε,π = 0.06.
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6-1 Influence of different measurement noise characteristics on the performance 49

6-1-1 1: Measurement noise variance

Using the normal distribution the influence of the variance can be tested. By changing the variance, the mean,
skewness, and kurtosis are kept equal to zero. In Figure 6-2a the influence on the probability distribution is
shown. By increasing the noise variance, larger absolute values are chosen with a higher probability. Hence,
worse performance is expected.
In Figure 6-2b the performance of three learned controllers are shown as the mean of the total cost of 100
trials. The blue line the is the learned controller for σε,π = 0.01, the green dot dashed line is the controller
for σε,π = 0.04 and the dotted red line for the σε,π = 0.06 case. All controllers are tested with 100 trials per
case for the cart-pole system with a zero mean iid Gaussian measurement noise with a variance from 0.0012

to 0.12.
The expectation is that the controller will be optimal for there own environment and will be less optimal for
other environments. The general perception is that a controller learned for an environment with large noise
components will be conservative in an environment with small noise compared with a controller developed for
that specific case.
Therefor, is it remarkable that the σε,π = 0.04 controller has a similar performance as the σε,π = 0.01 controller
– total cost of 7.42 compared with 7.44 respectively – for a variance of 0.012. Section 6-2 will elaborate on this
finding. For the σε,π = 0.06 controller the expected behavior is found. The controller is less aggressive than
the σε,π = 0.01 and 0.04 controllers. Resulting in a poor performance for small measurement noise variances.
For measurement noise variances larger than 0.062 this controller performs significantly better than the other
two controllers. The performance of the σε,π = 0.01 is (reasonable) stable for standard deviations between
0.001-0.016, fluctuating between 6.986 and 8.088. For standard deviations larger than 0.016, the total cost
increases. For 0.02 (a 100% increase of standard deviation) a 21% increase in total cost is found. However,
0.03 standard deviation (200% increase) shows a 121% increase.
The results of the total cost of the σε,π = 0.01 controller are coherent with the found Root Mean Square (RMS)
errors, see Figure 6-3. These RMS errors are found using 100 trials. The solid black line is the ’control’
experiment. It shows the RMS error of 100 trials using the same measurement noise as during learning,
N (0, 0.012). The RMS errors seem to be high even for variances where the total cost is low. This is caused
by a few trials that completely fail. More important is that the error increases for bigger variances. Note,
that the experiments of the reference and α = 0.01 (dotted blue line) have the same conditions. However, the
results differ. This is because the control has one complete failure within the 100 trials oppose to four for the
trials of α = 0.01.

6-1-2 2: Measurement noise skewness

The influence of the skewness of the measurement noise on the performance of the algorithm is tested with the
Skew normal distribution. This distribution gives the opportunity to change the skewness, with the parameter,
α. For a higher value of the parameter α, a higher skewness is obtained. However, the skewness lies on the
interval of [−1 1]. For an infinite skewness parameter the skewness is 1. In Figure 6-4a the skew normal
distribution is given for α = −10, 0, 10. For a negative value for α a left skewed distribution is obtained and
for a positive visa versa. Selecting zero gives the normal distribution. Normally, the mean and variance of the
distribution will drift for different values of α. However, with the following relations the mean and variance
can be kept constant:

µ = ξ + ωδ

√
2
π
, and σ2 = ω2

(
1− 2δ2

π

)
, (6-4)

where

δ = α√
1 + α2

, (6-5)

and ξ is the location and ω is the scale of the distribution. Note, ξ and ω can be chosen such that the variance
and the mean are kept constant.
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Figure 6-3: Robustness analyzes: the influence of measurement noise variance on the RMS error
of 100 trials and the preset predictions of a trial after learning. The used model and controller are
learned for Gaussian measurement noise of εt ∼ N (0, 0.012). The reference – the RMS error of
100 trials using the same measurement noise as during learning – is given in solid black. The other
trials where disturbed with zero mean Gaussian measurement noise with a standard deviation of
0.01 (dotted dark blue), 0.02 (dotted green), 0.03 (dotted red), 0.04 (dotted light blue).
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Figure 6-4: Robustness analyzes: the influence of measurement noise skewness on the cost. In
Figure 6-4a the zero mean Skew normal probability distribution is given for different skewness
parameter, α. For α equal to zero the original Gaussian distribution is obtained (N (0, 0.012)).
In Figure 6-4b the mean of the total cost of 100 trials disturbed with zero mean Skewed normal
measurement noise is shown. The skewness parameter is varied from -10 to 10. The used
controller is learned for Gaussian measurement noise of εt ∼ N (0, 0.012)
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In Figure 6-4b the total cost for the different skewness parameters is shown. The mean of the total cost does
not show any correlation with the different parameters. The values are all between 6.7 en 8.5 which imply good
behavior. Note, that for α = 0 the Skew normal distribution is equal to the original Gaussian distribution
N (0, 0.012) The higher value of the total cost for a particular parameter is caused by the number of complete
failures. Complete failures are a result of stochasticity (them measurement noise) of the system. However,
with this data no trend can be found between the stochasticity and the total cost. In order to illustrate the
independence of the parameter on the behavior only parameters where the total cost is between 6.7 and 6.8
are selected. The parameter vector is α =

[
−9.8 −6 −4.6 −4.2 8.6

]
, which is an arbitrary selection of

parameters.
The same analysis applies to Figure 6-5, where the RMS errors of 100 trials per skewness are given. The results
for the extremes of α, the parameter responsible for the best (α = −9.8) and the worst (α = −4) performance
and the value α = 0 for which the distribution is equal to the original distribution is enlarged. The RMS error
are coherent with the total cost found in Figure 6-4b. The RMS error of α = −9.8 shows the least errors on
the cart position and pendulum angle. The error of α = −4 gives the highest errors for all states at the end
time and for the whole trajectory for the pendulum angle and angular velocity. Note, that the trajectories
of the velocity errors are similar. During the swing-up phase (0-1.1 seconds) the errors of the different trials
are similar and follow the same trajectory. The trajectory can be explained as follows. At 1.1 seconds the
pendulum is standing upright. However, the pendulum overshoots from 1.1 seconds till 1.7 seconds. This
behavior results in the small error of the pendulum angle and cart position while having a peak in the error of
the velocities. The second peak in the velocities is caused by the overshoot in the other direction. From 2 to
4 seconds the pendulum has minor oscillations resulting in different errors.
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Figure 6-5: Robustness analyzes: the influence of measurement noise skewness on the RMS error
of 100 trials and the preset predictions of a trial after learning. The used model and controller are
learned for Gaussian measurement noise of εt ∼ N (0, 0.012). The reference – the RMS error of
100 trials using the same measurement noise as during learning – is given in solid black. The other
trials where disturbed with zero mean Skew normal measurement noise with a standard deviation
of 0.01 and skewness parameter α of: -10 (dotted dark blue), -4 (dotted green), 0 (dotted red),
10 (dotted light blue).
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6-1-3 3: Measurement noise excess kurtosis

The excess kurtosis of a distribution is the normalized fourth standardized moment. Hence, the excess kurtosis
of the normal distribution equals zero1. In this research the terms excess kurtosis and kurtosis are used
interchangeably for simplicity reasons, and refer to the following equation

β2 = E[(X − µ)4]
E[(X − µ)2]2 − 3. (6-6)

The kurtosis is normalized to ensure that the kurtosis of the normal distribution is equal to zero, hence the
’minus 3’ in Eq. (6-6). With the Student-T distribution the kurtosis of the distribution can be adjusted by
selecting the degree of freedom, α, see Figure 6-6a. For infinite degrees of freedom the distribution is equal
to the Gaussian distribution. For values going to zero the kurtosis increases, which means that the change
on extreme values increases. The kurtosis can not independently change from the variance as the following
relations show:

σ2 =

{
∞ for 1 < α ≤ 2
α

α− 2 for α > 2
, (6-7)

β2 =

 ∞ for 2 < α ≤ 4
6

α− 4 for α > 4
. (6-8)

Note, that the variance and kurtosis are only defined for certain domains. The total cost per degree of freedom
of the Student-T distributed measurement noise is given in Figure 6-6b. The total cost converges to the total
cost found by a the original Gaussian measurement noise distribution. From 3 degrees of freedom the total cost
stays between 7 and 9. Which is high compared with the σε,π = 0.01 controller of the Gaussian distribution of
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Figure 6-6: Robustness analyzes: the influence of measurement noise kurtosis on the cost. In
Figure 6-6a the zero mean Student-T probability distribution is given for different degrees of
freedom, α. For α equal to infinity the original Gaussian distribution is obtained (N (0, 0.012)).
In Figure 6-6b the mean of the total cost of 100 trials disturbed with zero mean Student-T
measurement noise is shown. The degrees of freedom are varied from 0.1 to 8. The used
controller is learned for Gaussian measurement noise of ε ∼ N (0, 0.012).

1The kurtosis first published by Pearson (1905) is equal to three for the normal distribution β2 = 3
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Figure 6-2b, where the converged values are between 7 and 8. This is the result of the higher kurtosis, which
mean that extreme values are likelier to happen. Hence, bigger disturbances which could lead to total failure
are likelier to happen. The best performance is found for 6.2 degrees of freedom with a total cost of 7.01.
In Figure 6-7 the RMS errors of the states are shown. In order to illustrate the influence of the degrees
of freedom the following values are selected: α =

[
1.9 3.2 6.2 8

]
. For higher degrees of freedom the

distribution has lower change of extreme values and approximates the Gaussian distribution better. Hence,
the expectation is that for higher degrees of freedom a lower total cost is found. Therefore, is it remarkable
that the errors for α = 8 are bigger than the errors of α = 3.2 or 6.2. However, in Figure 6-6b the expectation
is met with a clear convergence for increasing degrees of freedom. The total cost which is related to the RMS
errors of Figure 6-7 show a perturbed line. These perturbations are the result of the stochasticity of the
measurement noise. This stochastic behavior is responsible for the RMS errors and cause that for α = 8 larger
errors are found than for α = 6.2. Furthermore, for α = 6.2 the best performance is found with a total cost
of 7.01 while for α = 6.3 a total cost of 8.74 is found. Note, that in the velocity plots of Figure 6-7 similar
trajectories for all degrees of freedom is found till completion of the swing-up (1.1 seconds).
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Figure 6-7: Robustness analyzes: the influence of measurement noise kurtosis on the RMS error
of 100 trials and the preset predictions of a trial after learning. The used model and controller
are learned for Gaussian measurement noise of εt ∼ N (0, 0.012). The reference – the RMS
error of 100 trials using the same measurement noise as during learning – is given in solid black.
The other trials where disturbed with zero mean Student-T measurement noise with degrees of
freedom α of: 1.9 (dotted dark blue), 3.2 (dotted green), 6.2 (dotted red), 8 (dotted light blue).
The variance of the Student-T distribution is 0.012 if α =∞.
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6-1-4 4: Measurement noise extreme values

To investigate the influence of extreme values of the measurement noise independently of the variance the Salt
& Pepper distribution is used. In Figure 6-8a the Salt & Pepper probability distribution is given for different
values α, which are the locations of the distribution. In order to maintain a constant variance (σ2

ε = 0.012) a
third location is introduced at zero. The variance is kept constant using

σ2
ε =

n∑
i=1

pi(xi − µ)2. (6-9)

For three locations, αmin, α0, αplus, a zero mean distribution and α2
min = α2

plus = α2 holds: p(αmin) =
p(αplus) = p and p0 = p(α0) = 1− 2p. The probability p is found by rewriting Eq. (6-9) to

p = σ2
ε

2α2 . (6-10)

The growing probability p0 and decreasing probability p for increasing absolute locations of the Salt & Pepper
distribution can be seen in Figure 6-8a. Note, that this only hold for locations equal or larger than the standard
deviation α ≥ σε. In Figure 6-8b three controllers, learned with different Gaussian measurement distributions,
are given for increasing absolute locations of the Salt & Pepper distribution. The σε,π = 0.01 controller is given
in solid blue, the σε,π = 0.04 in dot dashed green and the σε,π = 0.06 in dotted red. The good performance
of the σε,π = 0.01 for all locations of the Salt & Pepper distribution is not strange. By keeping variance
constant and increasing the absolute distance of the locations, the probability on a extreme value becomes
low. Therefore, a aggressive controller performs well for these distributions. Although, for a absolute locations
smaller than ±0.0352 the σε,π = 0.04 controller gives a more stable performance.
However, the decrease in the performance of the σε,π = 0.04 controller is remarkable. The increase of total
cost is caused by the cautiousness of the controller, because it considers more measurement noise than present.
Note, that the change on a non zero value decreases with increasing locations e.g., for ±0.05 as the change on
either a locations is 2 percent, for ±0.1 the change is 0.5 percent. Resulting in less optimal control input. For
the ±0.1 locations this implies in practice that over 100 trials 144 times a non zero noise entry is given. Hence,
144 of the (40 time steps times 4 states times 100 trials) 16000 data points. This is equal to 0.9 percent, which
correspond with the probability distribution. That a non zero noise value occurs does not imply that the
consequences are critical. The influence on the performance system of a non zero noise value on the velocity
states are less than for the angle of the pendulum. A non zero noise value on the angle of the pendulum only
happened 30 times (0.2%). Therefor, is the σε,π = 0.04 controller is to conservative and gives the σε,π = 0.01
controller a better overall perforamnce.
The results of Figure 6-8b and Figure 6-2b show similar behavior for σε,π = 0.04 for small absolute locations
and variances respectively. The σε,π = 0.06 controller shows the similar behavior as the σε,π = 0.04 controller,
it is to conservative for small measurement noise variances, resulting in a higher total cost. This total cost is
similar to the total cost found in Figure 6-2b for variances up to 0.062.

6-2 Discussion

In Figure 6-2b the – more conservative – σε,π = 0.04 controller performs better than the σε,π = 0.01 for large
noise variance, which is expected. However against expectations, controllers perform evenly well for small
measurement noise variances. From this result one would suggest that optimizing the controller for a slightly
higher variance can result in a more robust controller without having to compromise on performance. However,
this is task and system dependent and not true in general.

Sensitivity vs Robustness

Stabilizing a pendulum implies controlling a system to the vertical upward equilibrium and maintaining the
system in that state. Stabilizing a system in an equilibrium is an easier task in general than tracking a reference.
In a tracking task, a certain reference has to be followed by the system. A fast reacting controller will perform
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Figure 6-8: Robustness analyzes: the influence of extreme values of the measurement noise on
the cost. In Figure 6-8a the zero mean Salt & Pepper probability distribution is shown for different
locations α, 0.01 in red, 0.03 in blue and 0.05 in green. In Figure 6-8b the performance of three
with Gaussian distributed measurement noise learned controllers is given. The solid black line is
the σε,π = 0.01 controller, the green dot dashed line is the σε,π = 0.04 controller and dotted red
line is the σε,π = 0.06 controller.

Figure 6-9: Basic feedback control system. The reference is denoted as R(s), the error as E(s),
U(s) the control input, Y (s) the output, V (s) the measurement noise, C(s) the controller and
P (s) the plant.

better than a more conservative one. The drawback is that a more aggressive controller is also more sensitive
to noise. In order to illustrate the trade-off between performance and robustness a linear example of the a
basic feedback system is given in Figure 6-9. The output Y (s) and error E(s) are given as:

Y (s) = P (s)C(s)
1 + P (s)C(s)R(s)− P (s)C(s)

1 + P (s)C(s)V (s), (6-11)

E(s) = R(s)− Y (s) = 1
1 + P (s)C(s)R(s) + P (s)C(s)

1 + P (s)C(s)V (s), (6-12)

where the reference is denoted as R(s), U(s) the control input, V (s) the measurement noise, C(s) the controller
and P (s) the system (plant). The goal is generally to minimize the error E(s). Hence, the sensitivity function
S(s) = 1

1+P (s)C(s) and complementary sensitivity function T (s) = P (s)C(s)
1+P (s)C(s) have to be small to track the

reference and attenuate the measurement noise. However this is a conflicting property, because

1
1 + P (s)C(s) + P (s)C(s)

1 + P (s)C(s) = 1. (6-13)

Which implies that if one function is small the other function has to be large large. Hence, the error can not
be zero if measurement noise is present2. Note, that P (s)C(s)

1+P (s)C(s) = 1 is preferred for reference tracking, but it

2When different requirements need to hold for different frequency bands, good solutions can be found.
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also increases the influence of the measurement noise on the error. Although it is hard to see from the results
– because of the specific task and system used – the same trade-off between performance and robustness holds
for the cart-pole system.

6-3 Conclusions

Although, the skewness of the distribution as tested in the above configurations has no significant influence on
the performance of the algorithm, the performance decreases significantly for an increasing variance and/or
kurtosis. When a kurtosis is selected of less than four degrees of freedom are selected for the Student-T
distribution the performance decreases. However, for more than four degrees of freedom the algorithm performs
well. Hence, the performance of the algorithm for the cart-pole set-up is robust for finite kurtosis values, see
Eq. (6-7).
Similar performance is found for a variance increase from 0.01 to 0.016, further increase of the variance result in
a decrease of the performance measure of the algorithm. This shows that the algorithm is sensible for extreme
measurement noise values, while being robust for one sided values (positive or negative skewness). For both
increasing kurtosis and variance holds that extreme values are more likely to occur. Because the ’tails’ of a
probability distribution of with a high kurtosis are long, the probability on an extreme value increases slower
for increasing kurtosis than for increasing variance. Although, these slopes are different the conclusion is the
same, the extreme values cause the controller to fail.
The results of the Salt & Pepper measurement noise distribution verify this. The extreme values of the
measurement noise are increased, while keeping a constant variance of 0.012. Although, the σε,π = 0.04
controller performs optimal and stable if the locations are absolute smaller than 0.03 (α < |0.03|), the more
aggressive σε,π = 0.01 controller performs better overall. This shows that correct information of the variance
of the measurement noise leads to better performance of the controller.
Concluding these results: (1) the extreme values of the disturbance cause the controller to fail, (2) correct
information of the variance of the measurement noise leads to better performance of the controller. Many
systems wear and tear during their lifetime, this wear and tear introduces different uncertainties over time.
Hence, tracking the variance of the measurement noise and reacting on changes can lead to a better overall
performance. The next chapter elaborates this theory.
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Chapter 7

A-PILCO

The work presented in the previous chapter found that: (1) the extreme values of the disturbance cause the
controller to fail, (2) correct information of the variance of the measurement noise leads to better performance
of the controller. Important to realize is that the variance of the noise is used as a fixed parameter, σ2

ε,π, for
the Gaussian Process (GP) controller, see Eq. (3-49).
Wear and tear can change the system dynamics during their lifetime (Banta, 1988). These changes in sys-
tem dynamics can be modeled as changing uncertainties, resulting in a less optimal controller. Hence, time
varying uncertainties will decrease the performance of the controller. Therefore, tacking the variance of the
measurement noise and reacting on changes can lead to a better performance. This chapter proposes the
Adaptive-Probabilistic Inference for Learning COntrol (A-PILCO) framework an extension to Probabilistic
Inference for Learning COntrol (PILCO) to track the variance and decide when to relearn the model and
controller parameters.

7-1 The A-PILCO algorithm

Over time the measurement noise characteristics can change. In order to make the algorithm robust for changes
of the measurement noise some additions tot he algorithm are needed, see for a simplified implementation
Appendix B-2. In this research the change of the distribution is limited to change of the variance of the
zero mean independent and identically distributed (iid) Gaussian measurement noise. The cart-pole system
of Section 4-2-2 is used throughout this chapter. During control of a system, the model is not used. However,
the model is available and can be utilized to find an approximation of the variance of the measurement noise.
This is of importance because the controller needs this variance as a fixed parameter, see Eq. (3-49). The GP
model, models these dynamics as Eq. (3-9), and can be written for the discrete case as:

x̂t+1 = µt+1 = x̂t + E[∆t+1], (7-1)
ŷt+1 = x̂t+1. (7-2)

Assuming that the model simulates the true system dynamics with high accuracy (x̂t ∼ xt) the measurement
noise error can be isolated,

ε̂t = yt − ŷt. (7-3)

The error ε̂t is assumed to be zero mean. So for N data samples holds (ε̂i ∼ N (0, Σ̂ε), for i = 1 : N). From
these data samples the variance can be computed. The number, N of data used to find the variance determines
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the quality of the approximation of the measurement noise variance. More data result in a better estimate of
the variance. However, if a large N is selected the changes in measurement noise are noticed slowly. Which
results in a long reaction time. Selecting a small N makes the algorithm to adjust fast. A major disadvantage
of a fast responding algorithm is that it is sensitive for one or two extreme values. Hence, there is a trade-off
between accuracy and the reaction time of the algorithm.
In Figure 7-1a the tracking of the standard deviation of the cart-pole system is shown for N = 20 and
ω =

[
1/3 1/3 0 1/3

]
, see Eq. (7-5). The measurement noise standard deviation is varied in time. At fifty

seconds the controller reacts to aggressive and the pendulum falls down, which can be seen as the peak in the
cost function in Figure 7-1b. The pendulum is immediately swung back up again by the controller. However,
in this short period the variance estimation is inaccurate, this can be prevented by choosing a larger value of
N . In order to prevent that the algorithm starts the whole learning process because of a few extreme data
points a threshold must be derived. Because the εt for t = 1 : N is a sampling from a normal distribution, the
χ2-test is used to test how likely it is, that the approximated variance per state, Σ̂ε, is the original variance of
Eq. (6-3) (Levine et al., 2007). The χ2-test per state for N data samples is given as
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Figure 7-1: Tracking and decision making: tracking the standard deviation for time varying
measurement noise. In Figure 7-1a the standard deviation is tracked using 20 data points (N =
20) per estimation. The black dotted line is the true standard deviation of the measurement noise,
the green solid line is the approximated standard deviation. Figure 7-1b shows the corresponding
total cost of the trial.

χ2
N−1 = (N − 1)σ̂2

ε

σ2
ε,π

. (7-4)

Note, that the variance in the denominator σ2
ε,π is a parameter of the controller which is fixed for learning,

see Eq. (3-49). The confidence intervals of the χ2 distribution are well known and can be found in tables. In
the cart-pole application the 99% confidence interval is used1. The variance of the measurement noise, σ2

ε is
found per state from N time steps of εt = yt − ŷt. For different systems the noise has different influence per
state. In the cart-pole system 30 time steps are used to approximate the variance, N = 30.
The approximated variance using the data of the angular velocity has a offset, see Figure 7-2a. Due to this
offset the variance computation of the angular velocity exceeds its bounds regularly. Therefore, this state
is excluded from the decision making and variance approximation. In Figure 7-2 the standard deviation is
changed from 0.01 to 0.02 at 10 seconds. In both figures an initialization phase can be distinguished. During
this initialization the approximation of the standard deviation is inaccurate. Therefore, the decision making
is only valid from the number of time steps chosen to approximate the standard deviation N .
In Figure 7-2b shows that the χ2 values for the three states exceed there bounds in a small time period after
the variance changes. Therefore, the algorithm will learn a new model and controller if the all three states
exceed there bounds.

1See for a table of χ2 confidence intervals Appendix A-2
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Approximating the measurement noise variance

If the χ2 values cross their bound the A-PILCO will start an variance approximation trial. This trial is
designed to accurately approximate the variance of the system. The trial takes 50 seconds and the control
input is zero. Because, without any actuation all the fluctuations ’measured’ are caused by noise. The variance
is approximated from the three states by

σ̂2
ε = w var [εi] , i = 1 : N, (7-5)

where ω =
[
1/3 1/3 0 1/3

]
are the weights of the states. Hence, equal weights for the states are used.

Using Eq. (7-5) the variance for a change from σ2
ε = 0.012 → 0.022 is approximated over all time steps as

σ̂2
ε = 0.02032. Note, that for different systems different weights of the states, total number of data N and

confidence intervals are appropriate.
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Figure 7-2: Tracking and decision making: tracking the standard deviation and the corresponding
χ2 values. The standard deviation increase from 0.01 to 0.02 at ten seconds. In Figure 7-2a
tracking of the standard deviation per state of the cart-pole system with N = 30 is presented
(solid lines). The true standard deviation of the measurement noise is shown in dotted black. In
Figure 7-2b the tracking of the χ2 values per state (solid lines) are given. The 99% confidence
interval is shown with the dotted black lines.

7-2 Validation of the GP model

The A-PILCO algorithm assumes that the model simulates the system dynamics accurate, such that Eq. (7-3)
holds. However, the angular velocity of in Figure 7-2a does not approximate the standard deviation well and
suggests a model error. This is the also the argument to omit the angular velocity from the decision making
and variance approximation, see Section 7-1 and 7-1. Therefor, the model has to be verified. The GP model
approximates the non linear dynamics of the system. In case of a model error the approximation can be written
as:

x̂t+1 = f̂(xt, ut) + g(xt, ut), (7-6)
ŷt = x̂t. (7-7)

If the approximation is perfect g(xt, ut) = 0 and yt − ŷt = εt, and εt has the same characteristics as the
measurement noise. From Figure 7-2a it seems that the angular velocity estimate has an error, i.e. g(xt, ut) 6= 0.
For further analyzes of the model error, the relative increase of the measured standard deviation is computed.
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In Figure 7-3 the mean value of the standard deviation per state is shown as the solid lines. The trial takes 20
seconds and at 10 seconds the variance of the iid Gaussian measurement noise increases from 0.012 to 0.022.
These values are computed using the all data except the data from the initialization phase of the standard
deviation approximation (t < N at t = 0 and t = 100). The found values for the two cases are extrapolated
to show a clear image of the increase of the estimates. The relative differences are given in Table 7-1. For the
results of the first two rows (variance increases up to 0.032) the approximations of the relative differences are
accurate. This implies that the error in the angular velocity (remember Figure 7-2a) is a constant, g(xt, ut) = c.
For larger increases of the variances the estimates of the velocity states blow up. These results indicates that
for changes up to 0.032 the model is able to approximate all the states accurate except the angular velocity.
The angular velocity estimates have a constant modeling error. The model is verified using two methods: (1)
the Variance Accounted For (VAF) and (2) the residual test.

Table 7-1: Relative difference of the approximated standard deviation per state, for increased
measurement noise variance. For a trial of 20 seconds the original σε,π = 0.01 controller is
used. However, the variance of the iid Gaussian measurement noise is increased at 10 seconds as
indicated in the first column.

σ2
ε cart position cart velocity angle of the pendulum angular velocity

[m] [m/s] [rad] [rad/s]
0.012 → 0.022 0.0092 0.0092 0.0099 0.0106
0.012 → 0.032 0.0172 0.0214 0.0216 0.0266
0.012 → 0.042 0.0329 0.1399 0.0417 0.3230
0.012 → 0.052 0.0472 0.0832 0.0489 0.1772
0.012 → 0.062 0.0632 1.1538 0.1049 1.2797
0.012 → 0.072 0.0604 0.1456 0.0667 0.3294
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Figure 7-3: Model validation: the relative difference of the approximated standard deviation per
state, for increased measurement noise variance. The dotted lines are the tracked values of the
standard deviations. The solid lines are mean of the approximated values per case: σε = 0.01 for
t < 10 and σε = 0.02 for t > 10. Equal colours for the dotted and solid lines correspond to the
same state: blue is the cart position , green the cart velocity, red the angle of the pendulum and
light blue the angular velocity of the pendulum.
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7-2-1 1: Variance Accounted For

To analyze the accuracy of the model the VAF is used (Verhaegen and Verdult, 2007). The VAF indicates
how well the model fits the true data. The VAF is computed as

VAF =
(

1− var [y − ŷ]
var [y]

)
× 100%. (7-8)

In Table 7-2 the VAF values per state are given for a cart-pole trial of 100 seconds (1000 data points). Note,
that the model is tested with different data than it is learned, cross-validation. The influence different variances
of the iid Gaussian measurement noise, σ2

ε on the VAF is investigated by increasing the measurement noise,
while the controller is kept the same. The values of Table 7-2 indicated that the model simulates the true
system dynamics accurate, and the model error can be neglected. This is in conflict with the measurements
of the standard deviation, remember Figure 7-2a.

Table 7-2: Model validation: VAF per state of the cart-pole system. Trials of 100 seconds (1000
input-output pairs) of the σε,π = 0.01 controller for different measurement noise variances σ2

ε are
used to compute the VAF.

σ2
ε cart position [%] cart velocity [%] angle of the pendulum [%] angular velocity [%]

0.012 92.3344 99.8145 99.8103 99.9433
0.022 85.6107 99.7021 99.3682 99.9310
0.032 99.9999 99.7713 99.9908 99.5042
0.042 99.9991 81.3672 99.9999 98.3155
0.062 99.9992 87.6440 99.9999 98.6248

7-2-2 2: Residual test

Another method to verify the accuracy of the model is to check the distribution of the error, the residual
test. If the model is accurate the error is given as Eq. (7-3), which should be equal to the measurement
noise. A histogram of the error vector should match the measurement noise distribution. In Figure 7-4 the
histogram per state and the probability distribution of the original Gaussian measurement noise (N (0, 0.012))
is shown for the trials used to compute the VAF (1000 data points). The distribution of the angular velocity
does not resembles the original distribution, however the VAF is high (99.94% see Table 7-2). In Figure 7-5
this difference in results is even more clear. The distributions are given for the trial where the variance is
equal to 0.042, while maintaining the original σε,π = 0.01 controller. Note, that the same trial is used to
compute the VAF with 0.042 measurement noise variance. The model estimate of the cart position is stil
acurate, however the pendulum angle and velocities are not. The error distribution of the pendulum angle is
left skewed and looks like a Skew normal distribution. The error distributions of the velocities looks like a
Student-T distribution with a high kurtosis, i.e. long tails. Remarkable is the minor decrease in VAF for the
pendulum angle and the velocities, while the residual test shows a model mismatch.

7-2-3 Conclusions

The minor decrease of the VAF, while increasing the variance of the measurement noise are the result of the
relative small variance of the measurement noise compared to the values of the states. The large difference in
values for the states result in a big variance of the output. Which result in a high VAF, see Eq. (7-8). Therefore,
the VAF values can not verify the model, however the residual test can, remember Figure 7-4. Although, it
is found using the residual test that the angular velocity estimates are not accurate, – hence, Eq. (7-3) does
not hold for the angular velocity – the model can be used for learning in the (A-)PILCO algorithm. Note,
that for the decision making and approximations of the variance the angular velocity has to be omitted or the
model error has to be filtered out. Note, that this conclusion is system and task dependent. For other systems
different values for N
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Figure 7-4: Model validation: the probability distribution of residual error of the cart-pole system
disturbed with N (0, 0.012) measurement noise per state. The probability distribution of the error
per state ε̃t is presented with the blue bars, the green solid line is the probability distribution of
the true error p(εt) = N (0, 0.012).

7-3 Results

Expected is that correct information of the variance of the measurement noise leads to the optimal controller.
Remember, that the controller variance is set a priori before learning the other controller parameters. Figure 7-
6 shows that these expectations are met. The blue line is the original PILCO algorithm, which implies that
the controller is learned for the original measurement distribution of N (0, 0.012). The dotted red line is the
performance of A-PILCO, where controller noise variance is set equal to the measurement noise variance,
σε,π = σε. The results of A-PILCO are dependent on the convergence of the learning algorithm. Due to
stochasticity and the non-convex optimization problem the learned controller parameters are not equal after
separate learning sessions. Hence, the performance can vary for separate learning session. However, Figure 7-
6 shows that the performance of A-PILCO is significantly better than the performance of PILCO for time
varying measurement noise. Note, that during learning of the new controller knowledge of the old controller
is still available. This knowledge can be used to increase the learning convergence of the new controller.

Implementing knowledge

When the three χ2 values – corresponding to the angle of the pendulum, position and velocity of the cart –
exceeds the bound the algorithm re-learns the model and controller. However, the controller corresponding
with the previous measurement noise variance is known. This controller can be used for initial trials. Hence,
instead of trials with a random control input – ut = U(−umax, umax) – the algorithm can use trials with the
old controller.
In Figure 7-7 the variance of the iid Gaussian measurement noise is changed from 0.012 to 0.042. The learning
session with no implemented knowledge is presented as the blue solid line The red dotted line presents the
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Figure 7-5: Model validation: the probability distribution of residual error of the cart-pole system
disturbed with N (0, 0.042) measurement noise per state. The probability distribution of the error
per state ε̃t is presented with the blue bars, the green solid line is the probability distribution of
the true error p(εt) = N (0, 0.042).

learning session when one trial with the old σε,π = 0.01 controller is used. The learning session with two
trials of the old controller is presented with the green dashed line. The new controller is learned after each
trial, commencing after the second initialization trial. Using the old controller more diverse and usable data
of the system dynamics is obtained, resulting in a more complete model. Because of the better model, better
solutions can be found. Note, that the algorithm needs less iterations to find a good solution, when more
knowledge is implemented. Furthermore, is the convergence more stable. Suggesting a deeper valley of the
solution space is found for these controllers. Note, that for both cases the solution converses to the same value.
The policy search is non-convex and every optimization can lead to a different solution. By implementing
knowledge – using the old controller – more important system dynamics can be captured within the data.
Better knowledge of the system dynamics could lead to faster convergence and a better policy.

7-4 Conclusions

In the previous chapter is found that: (1) the extreme values of the disturbance cause the controller to fail, (2)
correct information of the variance of the measurement noise leads to better performance of the controller. This
information is used to develop A-PILCO, an framework to handle time varying measurement noise. A-PILCO
initiates a new learning session if the measurement noise variance exceeds its bounds. By defining the 99%
confidence interval of the χ2 distribution, a threshold is derived for the desicion making. The performance of
A-PILCO shows a significant inprovement for environments with time varying measurment noise. Furthermore,
implementing knowledge a priori – the old controller is used for an initial learning trial – could lead to faster
convergence and better policies.
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Figure 7-6: A-PILCO: performance comparison of PILCO and A-PILCO for increasing measure-
ment noise variances. The mean of the total cost of 100 trials is given for measurement noise
variance from σ2

ε = 0.012 to 0.12 . The blue solid line is the performance of PILCO optimized
for σ2

ε = 0.012. The red dotted line is the performance of A-PILCO.
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Figure 7-7: A-PILCO: convergence comparison of policy learning with and without prior knowl-
edge. The learning iteration sequences of the σε,π = 0.04 controller for the cart-pole system with
iid zero mean Gaussian measurement noise with a variance of 0.042 is presented. The first two
trials are initialization trials. The case where both initial trials are with a random control input
ut = U(−umax, umax) – without prior knowledge – is given in solid blue. The case where the
first trial is with the old σε,π = 0.01 controller – including prior knowledge – is presented with
the red dotted line. The green dashed case uses the old controller for both initialization trials.
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Chapter 8

Conclusions and recommendations

The Probabilistic Inference for Learning COntrol (PILCO) algorithm has been made applicable for a larger set
of systems. By reducing the computational time of the identification process the algorithm is made applicable
for large systems, i.e. systems with a higher state dimension. Furthermore is Adaptive-Probabilistic Inference
for Learning COntrol (A-PILCO) developed. A-PILCO is an adaptive extension to PILCO to cope with time
varying measurement noise by initiating a new learning process if the measurement noise variance exceeds its
bounds. In this chapter the conclusions will be presented first. The recommendations for further research will
be presented in Section 8-2.

8-1 Conclusions

The conclusions will be presented according to the four sub-objectives presented in Section 1-2.

1. Identify if the Gaussian Process (GP) controller has learning advantages over the Radial Basis Function
(RBF) controller.

2. Reduce the computational time of the algorithm by parallel computing.

3. Identify the influence of different measurement noise characteristics to gain insight in the robustness of
the algorithm.

4. Develop an framework that can cope with time varying measurement noise.

8-1-1 Sub-objective 1: Identify if the GP controller has learning advantages over
the RBF controller.

In Chapter 4 this sub-objective is addressed. When the correct number of basis functions is chosen, both
controllers find good policies for a second order system and the cart pole system. However if the difficulty
of the optimization process is increased by increasing the number of basis functions, the GP controller shows
advantages. The algorithm using the RBF controller did not find any solution. Although the algorithm was
not able to find the optimal solution, using the GP controller a reasonable suboptimal solution was found.
The indirect representation of the weighting factors have a smoothening effect on the optimization function,
this effect eases the optimization. Hence, the GP controller has better convergence properties than the RBF
controller.
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8-1-2 Sub-objective 2: Reduce the computational time of the algorithm by par-
allel computing.

Chapter 5 elaborates on sub-objective 2. The gradient based learning of the controller parameters implies one
optimization. The computations in the optimization are not demanding enough to justify the extra overhead
time introduced by the parallel implementation. However, the framework of the GP training is ideal for parallel
computing, because the computations of the GP training involve E independent optimizations, where E is
the target dimension. Although the GP learning is less time demanding than the policy learning part of the
PILCO algorithm, the time decrease of the GP training itself can be decreased up to 40 percent for a four
dimensional system. For small systems the GP training part is negligible, 1% of the total coputation time is
used to train the GP models for the cart-pole system for eigth iterations of 2.5 seoconds (total of 20 seconds).
However, if the number of training data is increased to 1000 the GP training takes 33% of the total computation
time. Hence, for large and/or complex systems the parallelization can reduce the total computational time
significantly.

8-1-3 Sub-objective 3: Identify the influence of different measurement noise
characteristics to gain insight in the robustness of the algorithm.

Sub-objective 3 is presented in Chapter 6. The performance of the algorithm is hardly influenced by the
skewness of the measurement noise distribution. The kurtosis and variance have a clear effect on the perfor-
mance. Note, that the kurtosis was not tested separately from the variance. The algorithm shows a decrease
in performance for increasing variance or kurtosis. This implies that extreme values of the measurement noise
decrease the performance of the algorithm. Furthermore, the performance of the algorithm remains equal
when the measurement noise extremes are increased while keeping a constant variance. This can be explained
by the rapid decreasing probability of the extreme values. A measure for the probability of an extreme value
is the variance. Note, that the measurement noise variance is directly used by the GP controller as a fixed
parameter.

8-1-4 Sub-objective 4: Develop an framework that can cope with time varying
measurement noise.

In Chapter 7 sub-objective 4 is presented. From the investigation of the influence of different moments on
the distribution show a decrease in performance for increasing measurement noise variance. Furthermore, the
measurement noise variance is used as a fixed parameter in the GP controller. It is important for an optimal
behavior that used variance of the controller corresponds with the true measurement noise variance. Therefore,
an extension is made for the algorithm, A-PILCO. This extension tracks the variance of the measurement
noise and initiate a new learning process if the measurement noise variance of the individual states exceeds
their confidence bounds. Assuming an accurate model, the residual error of the true system minus the model
is Gaussian distributed. Therefore, the confidence bounds are found using the χ2 distribution. By choosing
the number of data samples and the confidence interval wisely, the number of false relearn initiations can be
limited. In this way the (negative) influence of time varying measurement noise on the performance can be
minimized.

8-2 Recommendations

The recommendations are split in two categories: real experiment recommendations, and extensions and
improvements.

8-2-1 Further research – real life implementations

In this thesis the performance evaluations of the algorithms are limited to simulations of a second-order system
and a cart-pole system. Real life experiments should verify and extend these results.
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1. Identify to which extend the PILCO algorithm with parallel implementation for the GP training is
applicable for large systems by real life experiments.

2. The performance of A-PILCO should be verified on a real life system with time varying measurement
noise.

8-2-2 Further research – extensions and improvements

The PILCO algorithm uses batches of data to find the (sub)optimal controller. Hence, the interaction with
the system is interrupted by the algorithm with computational demanding learning processes. An algorithm
that can learn while interacting with the system (online learning) is more ideal. It is not realistic that PILCO
can be made online with minor improvements, because of the high computational load. Recommendations to
reduce the computation load and an possible online solution are given below:

1. To reduce the computational load of the controller learning process, the trade off between accuracy and
computational load has to be further investigated. In the algorithm the prediction of the next state
using moment matching is the most computational demanding. However, an accurate prediction is vital
for learning. In the recent to publish paper (Deisenroth et al., 2013a) a linear estimator is compared
with moment matching. Although the linear estimator is computational less expensive (4-5 times), the
performance is poor. After 15 to 20 seconds of experience (6 to 8 learning iterations) with the cart-pole
system, only 83% of the trials where succesful with the linear estimator compared with 95% when using
moment matching. Therefore, more learning iterations are required which decrease the advantage of
the computational speed. The linear estimator finds a smaller variance for its predictions than moment
matching does. Making the prediction more certain, which increases the probability of failure due to
mode-bias.
Good estimations are important to the algorithm. Therefore, an investigation to multimodal prediction
methods, such as the Gaussian sum estimators (Anderson and Moore, 2005), the Expectation Correction
(Barber and Chickering, 2006) or the recent developed Multi-Modal Filter (M-MF) (Kamthe et al.,
2013) are interesting. The methods are using a sum of Gaussian approximations to find an estimate
the posterior. Where, Expectation Correction is developed for switching linear systems and involves a
forward (filtering) and backward (smoothing) pass. These methods and possibly computational more
expensive. However, if it reduces the number of necessary learning iterations it could reduce the total
computational time.

2. In further research the computational load of the sparse GP training can be reduce using the single
step global sparse implementation. The sparse implementation of the GP training requires a full GP
training first, followed by selecting the m1 best Gaussian kernels. Hence, two synchronous optimizations
are performed. This two step GP learning approach is more computational intensive than using a single
sparse approximation, however it solves the problem of over- or underfitting and sequential data. This
sequential data problem can be avoided when global basis functions are used. Lázaro-Gredilla et al.
(2010) show promising results with their global Sparse Spectrum Gaussian Process (SSGP) algorithm
using trigonometric basis functions.

3. Develop an online PILCO framework that interacts with the system, trains a GP model, and learns
a controller in parallel. Hester and Stone (2012) proposes and shows good results for controlling an
autonomous vehicle using Real-Time Model-Based Reinforcement Architecture (RTMBA) . Which is
– as the name suggests – a model-learning architecture which is able to run in real time, because of a
parallel framework. There is no prior knowledge available to the algorithm and a Random Forest model
was used (Hester and Stone, 2010). Like the PILCO, this algorithm takes the uncertainty of the model
into account.

1m << N , where N is the number of training data
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Appendix A

Mathematical Tools

In this appendix two tools are given: (1) the method to augment angular states with the complex values, and
(2) the χ2 confidence intervals.

A-1 2: Augmented states

To improve the accuracy of the Gaussian Process (GP) model angles can be represented by there complex
values during learning, i.e. there sin(·) and cos(·) values. The full state is augmented with theaugmented state:

x =
[
x1
θ

]
, xaugm =

[
sin(θ)
cos(θ)

]
, xfull =

 x1
θ

sin(θ)
cos(θ)

 . (A-1)

During learning only the complex expressions of the angle, and not the angle itself, are used for the training
inputs. The ’original’ expression is used for the training targets. Note, that when using the complex notation
the state dimension of the training inputs will increase by one. Following the same example, with ut as control
input, the training inputs, X̃, and targets, y, will consist of the following vectors:

X̃ =

 x1
sin(θ)
cos(θ)
u

 , y =
[
x1
θ

]
. (A-2)

This augmented state can also be helpful in other calculations, such as the cost of the current state. In order
to to use this augmented state the distribution of the state p(xt) ∼ N (µt,Σt) must be pushed through the
trigonometric functions. The distribution of the augmented state can be found using these properties. The
distribution of the augmented state, p(xaugmt ) = N (µaugmt ,Σaugmt ), can than be found as

p(xaugmt ) = N
([

E[sin(θ)|µt,Σt]
E[cos(θ)|µt,Σt]

]
,

[
var [sin(θ)|µt,Σt] cov [sin(θ), cos(θ)|µt,Σt]

cov [sin(θ), cos(θ)|µt,Σt]T var [cos(θ)|µt,Σt]

]
.

)
(A-3)

The mean of can be found as:
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E[sin(θ)|µt,Σt] =
∫

sin(θ)p(θ)ds = exp
(
−Σt

2

)
sin(µt), (A-4)

E[cos(θ)|µt,Σt] =
∫

cos(θ)p(θ)ds = exp
(
−Σt

2

)
cos(µt). (A-5)

For the covariance matrix of the augmented state, the variance of the sinus and cosines, and the covariance
between them are required. The expression required for the covariance matrix of the augmented state can be
found as:

var [sin(θ)|µt,Σt] = E[sin(θ)2|µt,Σt]− E[sin(θ)|µt,Σt]2, (A-6)
var [cos(θ)|µt,Σt] = E[cos(θ)2|µt,Σt]− E[cos(θ)|µt,Σt]2, (A-7)

cov [sin(θ), cos(θ)|µt,Σt] = E[sin(θ) cos(θ)|µt,Σt]− E[sin(θ)|µt,Σt]E[cos(θ)|µt,Σt]. (A-8)

Using

E[sin(θ)2|µt,Σt] =
∫

sin(θ)2p(θ)ds = 1
2(1− exp (−2Σt) cos(2µt)), (A-9)

E[cos(θ)2|µt,Σt] =
∫

cos(θ)2p(θ)ds = 1
2(1 + exp (−2Σt) cos(2µt)), (A-10)

E[sin(θ) cos(θ)|µt,Σt] =
∫

sin(θ) cos(θ)p(θ)ds =
∫

1
2 sin(2θ)p(θ)ds, (A-11)

= 1
2 exp (−2Σt) sin(2µt), (A-12)

the expression of the distribution of the full state becomes

p(xfullt ) = N
([

µt
µaugmt

]
,

[
Σt cov [xt, xaugmt |µt,Σt]

cov [xt, xaugmt |µt,Σt]T Σaugmt

]
.

)
(A-13)

Though, cov [xt, xaugmt |µt,Σt] is still unknown. This covariance between the (original) state and the augmented
state can be seen is the covariance between the augmented state the the corresponding angle of the state:

cov [xt, xaugmt |µt,Σt] = cov [xt, θ|µt,Σt] cov [θ, xaugmt |µt,Σt] , (A-14)

cov [θ, xaugmt |µt,Σt] =
[
E[cos(x)|µt,Σt] E[sin(x)|µt,Σt].

]
(A-15)

Because of the independence of the other variables, in the state with the augmented state, only the covariance
values corresponding to the original angle (including covariances of this angle and the states) and the augmented
state will be non zero. To select the covariance values of the angle, the corresponding column vector can be
sliced out. Or multiply the state covariance matrix with with an sparse matrix where only the covariance
values of the angle with the augmented complex angle in the bottom row:

cov [xt, xaugmt |µt,Σt] = Σt
[

∅ ∅
E[cos(x)|µt,Σt] −E[sin(x)|µt,Σt]].

]
(A-16)

A-2 2: Chi-Square confidence interval table
The Chi2 confidence intervals are required for decision making of Adaptive-Probabilistic Inference for Learning
COntrol (A-PILCO). If the states exceed their confidence intervals an new learning session is initiated. Below
are the confidence intervals given up to 30 degrees of freedom. The confidence intervals for higher degrees of
freedom can be found, for instance at http://www.medcalc.org/manual/chi-square-table.php.
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Table A-1: Tracking and decision making: χ2 confidence intervals for up to 30 degrees of
freedom.

P 0.995 0.975 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.002 0.001
DF
1 0.0000393 0.000982 1.642 2.706 3.841 5.024 5.412 6.635 7.879 9.550 10.828
2 0.0100 0.0506 3.219 4.605 5.991 7.378 7.824 9.210 10.597 12.429 13.816
3 0.0717 0.216 4.642 6.251 7.815 9.348 9.837 11.345 12.838 14.796 16.266
4 0.207 0.484 5.989 7.779 9.488 11.143 11.668 13.277 14.860 16.924 18.467
5 0.412 0.831 7.289 9.236 11.070 12.833 13.388 15.086 16.750 18.907 20.515
6 0.676 1.237 8.558 10.645 12.592 14.449 15.033 16.812 18.548 20.791 22.458
7 0.989 1.690 9.803 12.017 14.067 16.013 16.622 18.475 20.278 22.601 24.322
8 1.344 2.180 11.030 13.362 15.507 17.535 18.168 20.090 21.955 24.352 26.124
9 1.735 2.700 12.242 14.684 16.919 19.023 19.679 21.666 23.589 26.056 27.877

10 2.156 3.247 13.442 15.987 18.307 20.483 21.161 23.209 25.188 27.722 29.588
11 2.603 3.816 14.631 17.275 19.675 21.920 22.618 24.725 26.757 29.354 31.264
12 3.074 4.404 15.812 18.549 21.026 23.337 24.054 26.217 28.300 30.957 32.909
13 3.565 5.009 16.985 19.812 22.362 24.736 25.472 27.688 29.819 32.535 34.528
14 4.075 5.629 18.151 21.064 23.685 26.119 26.873 29.141 31.319 34.091 36.123
15 4.601 6.262 19.311 22.307 24.996 27.488 28.259 30.578 32.801 35.628 37.697
16 5.142 6.908 20.465 23.542 26.296 28.845 29.633 32.000 34.267 37.146 39.252
17 5.697 7.564 21.615 24.769 27.587 30.191 30.995 33.409 35.718 38.648 40.790
18 6.265 8.231 22.760 25.989 28.869 31.526 32.346 34.805 37.156 40.136 42.312
19 6.844 8.907 23.900 27.204 30.144 32.852 33.687 36.191 38.582 41.610 43.820
20 7.434 9.591 25.038 28.412 31.410 34.170 35.020 37.566 39.997 43.072 45.315
21 8.034 10.283 26.171 29.615 32.671 35.479 36.343 38.932 41.401 44.522 46.797
22 8.643 10.982 27.301 30.813 33.924 36.781 37.659 40.289 42.796 45.962 48.268
23 9.260 11.689 28.429 32.007 35.172 38.076 38.968 41.638 44.181 47.391 49.728
24 9.886 12.401 29.553 33.196 36.415 39.364 40.270 2.980 45.559 48.812 51.179
25 10.520 13.120 30.675 34.382 37.652 40.646 41.566 44.314 46.928 50.223 52.620
26 11.160 13.844 31.795 35.563 38.885 41.923 42.856 45.642 48.290 51.627 54.052
27 11.808 14.573 32.912 36.741 40.113 43.195 44.140 46.963 49.645 53.023 55.476
28 12.461 15.308 34.027 37.916 41.337 44.461 45.419 48.278 50.993 54.411 56.892
29 13.121 16.047 35.139 39.087 42.557 45.722 46.693 49.588 52.336 55.792 58.301
30 13.787 16.791 36.250 40.256 43.773 46.979 47.962 50.892 53.672 57.167 59.703
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Appendix B

Matlab code

The simulations result presented in this theses are acquired using Matlab. For the PILCO and A-PILCO
simulations the pilcoV0.9 toolbox is used (Deisenroth et al., 2013b). The code was modified if needed. Two
functions will be presented below: (1) the parallel implementation of the GP training, and (2) the tracking
and decision making of the A-PILCO algorithm.

B-1 1: Parallel implementation of the GP training

1 %% train.m
2 % *Summary:* Parallel training of a full GP model with SE covariance
3 % function (ARD). Modified from the PILCO toolbox pilcoV0.9 of Deisenroth
4 % et al., 2013. Which is publicly available at
5 % http://mloss.org/software/view/508/.
6 %
7 % function [gpmodel nlml] = train(gpmodel , dump, iter)
8 %
9 % *Input arguments:*

10 %
11 % gpmodel GP structure
12 % inputs GP training inputs
13 % targets GP training targets
14 % hyp (optional) GP log-hyper -parameters
15 % induce (optional) pseudo inputs for sparse GP
16 % dump not needed for this code, but required
17 % for compatibility reasons
18 % iter optimization iterations for training
19 % [full GP, sparse GP]
20 %
21 % *Output arguments:*
22 %
23 % gpmodel updated GP structure
24 % nlml negative log-marginal likelihood
25 %
26 % Last modification: 2014-01-13
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27 % by: Koen van Witteveen
28 %%
29
30 function [ gpmodel nlml ] = train ( gpmodel , dump , iter )
31
32 % 1. Initialization
33
34 % 2. Parallel train full GP
35 fprintf ( ’Parallel train hyper -parameters of full GP ...\n’ ) ;
36
37 iter = iter (1 ) ; hyptemp = gpmodel . hyp ;
38 inputstemp = gpmodel . inputs ; targetstemp = gpmodel . targets ;
39
40 parfor i = 1 : E % train each GP separately
41 fprintf ( ’GP %i/%i\n’ , i , E ) ;
42 [ hyptemp ( : , i ) , v ] = minimize ( lh ( : , i ) , @hypCurb , iter , covfunc , . . .
43 inputstemp , targetstemp ( : , i ) , curb ) ;
44 nlml ( i ) = v ( end ) ;
45 end
46 gpmodel . hyp = hyptemp ;
47 end % function

B-2 2: The A-PILCO implementation

1 %% rollout.m
2 % *Summary:* Simplified code to demonstrate A-PILCO. The code is written
3 % to fit PILCO toolbox pilcoV0.9 of Deisenroth et al., 2013. Which is
4 % publicly available at http://mloss.org/software/view/508/.
5
6 % The trajectory is computed using the system dynamics and using the
7 % GP model. The standard deviation and correpsonding chi-squared values
8 % are tracked. The interaction with the system is aborts if the
9 % chi-squared values exceeds there bounds. The bounds , chi-squard

10 % confidence intervals , are inputs of this function.
11 %
12 % function [x y L latent adaptout] = rollout(start , policy , H,...
13 % plant , cost, adaptin)
14 %
15 % *Input arguments:*
16 %
17 % start vector containing initial states (without controls)
18 % policy policy structure
19 % .fcn policy function
20 % .p parameter structure (if empty: use random actions)
21 % .maxU vector of control input saturation values
22 % H rollout horizon in steps
23 % plant the dynamical system structure
24 % .subplant (opt) additional discrete -time dynamics
25 % .augment (opt) augment state using a known mapping
26 % .constraint (opt) stop rollout if violated
27 % .poli indices for states passed to the policy
28 % .dyno indices for states passed to cost
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29 % .odei indices for states passed to the ode solver
30 % .subi (opt) indices for states passed to subplant function
31 % .augi (opt) indices for states passed to augment function
32 % cost cost structure
33 % adaptin adaptive inputs structure
34 % .Nb number of data samples for variance approxiamtion
35 % .w state weights for st. dev approximation
36 % .bound chi-square bounds
37 % .GPmodel GP model
38 %
39 % *Output arguments:*
40 %
41 % x matrix of observed states
42 % y matrix of corresponding observed successor states
43 % L cost incurred at each time step
44 % latent matrix of latent states
45 % adaptout adaptive outputs structure
46 % .yhat GP model prediction
47 % .stdev approximated standard deviation
48 % .STdev true standard deviation of the noise
49 % .sigma_contr standard devaiation of the controller
50 % .T chi-squared values
51 %
52 % Last modification: 2014-01-13
53 % by: Koen van Witteveen
54 %%
55
56 function [ x , y , yhat , L , latent , stdev , STdev , sigma_contr , T ] = . . .
57 rollout_adaptive ( start , policy , H , plant , cost ,

adaptin )
58
59 % 0. initializations
60
61 for i = 1 : H % generate trajectory
62
63 % 1. Apply policy
64 u (i , : ) = policy . fcn ( policy , x (i , 1 : D ) , zeros ( length ( D ) ) ) ;
65
66 % 2. Simulate dynamics using ’real’ dynamics
67 next = simulate ( state ( 1 : E ) , u (i , : ) , plant ) ;
68
69 % 2.1 Predict next state using GP model
70 adaptout . yhat ( i +1 , :) = propagate_adaptive ( state ( 1 : D ) ’ , 0∗eye ( D ) , . . .
71 plant , adaptin . GPmodel , u (i , : ) ) ;
72
73 % 3. Update state and add measurement noise
74 state = next ;
75 x ( i +1 , :) = state + plant . noisefcn ( 1 : E , plant ) ;
76
77 % 5. Compute Cost
78 if nargout > 2
79 L ( i ) = cost . fcn ( cost , state ( 1 : full ) ’ , zeros ( length ( full ) ) ) ;
80 end

Master of Science Thesis K. van Witteveen



76 Matlab code

81
82 % 6. Compute the variance of the residual error
83 if i > Nb % number of data samples used for approximation
84 vartest (i , : ) = var ( x (i−Nb+2:i+1,simi ) − adaptout . yhat (i−Nb+2:i +1 , :) ) ;
85 else
86 vartest (i , : ) = var ( x ( 1 : i+1,simi ) − adaptout . yhat ( 1 : i +1 , :) ) ;
87 end
88
89 % 7. Chi-squared value Eq. (7-4)
90 adaptout . T (i , : ) = ( ( adaptin . Nb−1)∗vartest (i , : ) ) /( policy . sigma_contr ^2) ;
91
92 % 8. Tracking the standard deviation
93 adaptout . stdev (i , 1 ) = sqrt ( adaptin . w∗vartest (i , : ) ’ ) ; % Eq. (7-5)
94 adaptout . STdev (i , 1 ) = plant . sigma ;
95 adaptout . sigma_contr (i , 1 ) = policy . sigma_contr ;
96
97 % 9. Stop if the variance of the residual error exceeds bounds
98 if i > Nb && sum ( adaptout . T (i , [ 1 2 4 ] ) > adaptin . bound ( 1 , 1 ) )==0
99 disp ( ’Control variance is off - Define new variance’ )

100 break
101 elseif i > Nb && sum ( adaptout . T (i , [ 1 2 4 ] ) < adaptin . bound ( 1 , 2 ) )==0
102 disp ( ’Control variance is off - Define new variance’ )
103 break
104 end
105
106 end % time steps
107
108 %10. Set ouputs
109
110 end % function
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Glossary

List of Acronyms

RL Reinforcement Learning
POMDP Partially Observable Markov Decision Process
RBF Radial Basis Function
GP Gaussian Process
PILCO Probabilistic Inference for Learning COntrol
SE Squared Exponential
RTMBA Real-Time Model-Based Reinforcement Architecture
CPU Controller Processor Unit
RMS Root Mean Square
A-PILCO Adaptive-Probabilistic Inference for Learning COntrol
VAF Variance Accounted For
ML-II type II maximum likelihood
OE Output Error
CG Conjugate Gradient
pdf probability density function
BFGS Broyden-Fletcher-Goldfarb-Shanno
iid independent and identically distributed
SSGP Sparse Spectrum Gaussian Process
M-MF Multi-Modal Filter

List of Symbols
(A)-PILCO Symbols
y training targets matrix y = [∆1, ...,∆n]T
χ2
i Chi-squared value for i degrees of freedom

∆ target ∆t = xt − xt−1 + εt ∈ RE
δpq Kronecker delta for time indices p and q
` characteristic-length scale
εt measurement noise
Λ relevance determination matrix Λ = diag

(
`2i , ..., `

2
D+F

)
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82 Glossary

µt mean of the state
πt unsaturated control input πt = π(xt) ∈ RF
§(xt) saturation function
σ2
f variance of the latent function f(x)
σ2
ε,π variance of the GP controller
σ2
ε variance of the noise
σ2
c Width of the cost function
θ hyper-parameter vector
·̃ all variables with a tilde are constructed of the tuple (xt, ut) ∈ RD+F

X̃ training input matrix X̃ = [X̃1, ..., X̃n]
X̃i training input vector X̃i = (xi, ui)
x̃t test input tuple x̃t = (xt, ut)
Jπ(·) expected return using the current policy
K covariance matrix from the covariance function Kij = k(xi, xj)
k(xi, xj) covariance function
m(x) mean function
n number of training data
ut ∈ RF saturated control input ut = S(π(xt))
umax maximum control input
xt ∈ RD state
yt ∈ RE observation of a system

GP Controller Symbols
yπ ∈ Rn training targets
` width of the characteristic-length scale
Λ relevance determination matrix Λ = diag

(
`2i , ..., `

2
D

)
π(xt, ψ) GP controller
ψ hyper-parameter vector
σ2
ε,π controller variance, ideally equal to the measurement noise
σ2
f,π ’variance function’ has to be set to one σ2

f,π = 1
n number of training data
Xπ ∈ Rn∗D training inputs

RBF Controller Symbols
` width of the characteristic-length scale
Λ relevance determination matrix Λ = diag

(
`2i , ..., `

2
D

)
π(xt, ψ) RBF controller
ψ hyper-parameter vector
n number of training data
w ∈ Rn weighting vector
xπ ∈ RD ∗ n centers of basis functions

Cart-Pole System Symbols
ϕ̇ [rad/s] angular velocity of the pendulum
ẋ [m/s] cart velocity
ϕ [rad] angle of the pendulum measured anti-clockwise from hanging down
b [N/m/s] friction coefficient between the cart and ground
g [m/s2] acceleration of gravity
l [m] length of the pendulum
M [kg] mass of cart
m [kg] mass of pendulum
x [m] cart position
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Gaussian Process (GP) controller, 23
type II maximum likelihood (ML-II), 11
Radial Basis Function (RBF) controller, 23
Variance Accounted For (VAF), 60, 61
Squared Exponential, 6

A-PILCO, 57
automatic relevance determination, 9

characteristic length-scale, 6
characteristic length-scales, 9
complementary sensitivity function, 55
computational load, 32
covariance function, 5
cross-validation, 61
current state, 22

deterministic state-action pair, 20
deterministic test inputs, 12

evidence, 10
evidence maximization, 11

full state, 28
functions-space view, 5

increments, 19, 20
independent, 42, 44

kernel function, 8

likelihood, 10
linear controller, 23
linear predictor, 8

marginal likelihood, 10
mean function, 5

one-step update equations, 20

parallel computing, 42, 44
posterior distribution, 7

prior distribution, 6
probabilistic dynamic model, 32
pseudo training data, 32

regression, 5
residual test, 60, 61

saturation function, 26
sensitivity function, 55

test inputs, 6
tracking, 58
training, 9
training inputs, 6
training targets, 19

uncertain state-action pair, 20
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