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A B S T R A C T

The Geometry-Independent Field approximaTion (GIFT) technique, an extension of isogeometric analysis (IGA),
allows for separate spaces to parameterize the computational domain and approximate solution field. Based on
the GIFT approach, this paper proposes a novel IGA methodology that incorporates toric surface patches for
multi-sided geometry representation, while utilizing B-spline or truncated hierarchical B-spline (THB-spline)
basis for analysis. By creating an appropriate bijection between the parametric domains of distinct bases for
modeling and approximation, our method ensures smoothness within the computational domain and combines
the compact support of B-splines or the local refinement potential of THB-splines, resulting in more efficient
and precise solutions. To enhance the quality of parameterization and consequently boost the accuracy of
downstream analysis, we suggest optimizing the composite toric parameterization. Numerical examples validate
the effectiveness and superiority of our suggested approach.
1. Introduction

Isogeometric analysis (IGA) [1,2] is a computational methodology
designed to establish a direct connection between Computer-Aided
Design (CAD) and Finite Element Analysis (FEA). The fundamental
concept of IGA involves using the same spline-based representations,
such as non-uniform rational B-splines (NURBS), for both geometry
representation and simulation analysis. With the extensive use of spline
tools in CAD systems, IGA based on this approach has consequently
gained significant traction [3–5].

Although NURBS are effective in representing 4-sided domains, their
use in parameterizing multi-sided computational domains may result in
a loss of smoothness or even bijectivity, due to the inherent limitations
of their tensor product definition [6]. To tackle this issue, one solution
is to utilize a multi-patch configuration [7–9]. Wang et al. [10] propose
a deep learning framework, named IGA-Reuse-Net, for efficient reuse
of numerical simulations on topology-consistent models. Furthermore,
Pan et al. introduce subdivision-based IGA methods for complex sur-
faces [11,12]. In the realm of volumetric modeling, two interpolatory
Catmull–Clark volumetric subdivision methods are proposed [13]. Xu
et al. propose a 𝑟-refinement framework by using Winslow’s mapping
and monitor function approach [14]. Another solution is to adopt multi-
sided geometry modeling tools with single-patch structures [15,16].

∗ Corresponding author at: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China.
E-mail addresses: wmyyy@mail.dlut.edu.cn (M.-Y. Wang), Y.Ji-1@tudelft.nl (Y. Ji), ll-watcher@mail.dlut.edu.cn (L. Lan), cgzhu@dlut.edu.cn (C.-G. Zhu).

Toric surface patches, introduced by Krasauskas [17] as a generaliza-
tion of rational Bézier surfaces, offer a solution to this challenge. By
employing a specific definition over arbitrary convex polygonal integer
lattice sets, toric surfaces have been widely investigated [18,19] where
showcase their potential in constructing suitable parameterizations for
IGA, resulting in impressive performance [20].

Refinement is a powerful technique for enhancing numerical accu-
racy by increasing degrees-of-freedom (DOFs). To accomplish this, geo-
metric algorithms are commonly adopted, such as ℎ-refinement through
knot insertion, 𝑝-refinement via degree elevation, and 𝑘-refinement
combining both methods. However, the refinement strategies for toric
surface patches exhibit certain limitations. Li et al. [21] introduce a
𝑝-refinement for toric surface patches that spans the entire domain,
resulting in a dense stiffness matrix. Moreover, the potential rapid
increase in the stiffness matrix’s condition number adversely impacts
the numerical stability of the IGA solution. In contrast, the ℎ-refinement
for toric surface patches proposed by Ji et al. [15] addresses this issue
and offers a more stable numerical solution, but at the expense of di-
minished high-order continuity. These limitations present considerable
obstacles for IGA using toric surface patches.

Geometry-Independent Field approximaTion (GIFT) is a powerful
and versatile generalization of IGA [22,23]. The primary concept be-
hind GIFT is to facilitate the utilization of distinct and separate spaces
vailable online 21 May 2024
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Fig. 1. Schematic illustration of our Multi-Sided Geometry-Independent Field approximaTion (MS-GIFT) method.
for parameterizing the computational domain and approximating the
solution field. This decoupling offers several key benefits. Firstly, it
enables the use of basis functions specifically tailored to the require-
ments of the problem, leading to improved accuracy in the solution
approximation. Secondly, it allows for greater adaptivity in the numer-
ical solution process, as the refinement strategies can be independently
tailored to both the geometry and solution field. This can lead to
a more accurate approximation of the solution with fewer degrees
of freedom, ultimately resulting in faster computations and reduced
memory requirements.

Building upon the GIFT approach, we incorporate toric surface
patches to represent multi-sided computational domains and utilize B-
spline or truncated hierarchical B-spline (THB-spline) basis functions
as the solution basis for analysis, and then propose the multi-sided
GIFT (MS-GIFT) method for IGA. This method not only preserves the
exact geometry representation and smoothness within the polygonal
computational domain but also capitalizes on the local support of B-
splines or the local refinement capabilities of THB-splines, leading to
more efficient and accurate solutions.

Achieving this, however, is not a straightforward task. Fig. 1 shows
the graphical overview of our proposed MS-GIFT method. The primary
challenge arises from the fact that the parametric domains of bivariate
B-spline and THB-spline are typically rectangular (for simplicity, cho-
sen as the unit square in this paper), while the parametric domains
of toric surface patches are polygonal. Consequently, it is crucial to
establish an appropriate bijection 𝜎 between these two parametric
domains. Additionally, the quality of the parameterization plays a vital
role in the accuracy and efficiency of the subsequent analysis. To tackle
this issue, we optimize the composite toric parameterization ◦𝜎−1
by making adjustments to the inner control points and weights as
required. This optimization process aims to enhance the performance
of our method in various applications. Numerical examples validate the
effectiveness of our approach, as they show that it achieves high accu-
racy and excellent continuity within the resulting numerical solutions.
These results highlight the potential of this method in a wide range of
applications, particularly in scenarios where traditional methods may
fall short.
2

Our main contributions are summarized as follows:

(1) We establish an appropriate bijection between polygonal and
square parametric domains, along with two methods for calculat-
ing its inverse mapping. This mapping is then utilized to create
a connection between the geometric basis and the solution basis,
facilitating the integration of different spaces.

(2) We introduce the concept of composite parameterization opti-
mization, which significantly mitigates the deformation issues
arising from the mapping between parametric domains, ensuring
a higher-quality geometric representation and analysis.

(3) By modeling multi-sided surfaces and utilizing basis functions
with local support or local refinement capabilities, we avoid
the destabilization problems caused by the 𝑝-refinement of toric
methods in IGA. This approach introduces locality to multi-sided
surface methods, enhancing the overall efficiency and accuracy
of the computational process.

2. Preliminaries

This section offers a succinct introduction to toric surface patches, B-
splines, truncated hierarchical B-splines (THB-splines), and Wachspress
barycentric coordinates, primarily to fix the relevant notations. For
further details, interested readers may refer to [17,24–26].

2.1. Toric surface patches

Let  ⊂ Z2 denote a set of integer lattice points with an 𝑁-sided
polygonal convex hull, represented as 𝛥. It can be defined as

𝛥 = {(𝑢, 𝑣) ∈ R2 ∣ 𝐿𝑖(𝑢, 𝑣) ≥ 0, 𝑖 = 1, 2,… , 𝑁},

where 𝐿𝑖(𝑢, 𝑣) = 𝑎𝑖𝑢+𝑏𝑖𝑣+𝑐𝑖 is the equation of the 𝑖th edge 𝛤𝑖 of 𝛥, and
𝑎𝑖, 𝑏𝑖, 𝑐𝑖 are coprime integers. Then we have the following definition of
toric surface patches:
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Fig. 2. An example of toric surface patch.
Definition 1 ([17]). Given a finite set of lattice points , let its 𝑁-sided
polygonal convex hull be denoted as 𝛥. A toric surface patch is then
defined as the image of the rational mapping:  ∶ 𝛥 → R3

(𝑢, 𝑣) =
∑

𝐚∈ 𝜔𝐚𝐏𝐚𝛽𝐚(𝑢, 𝑣)
∑

𝐚∈ 𝜔𝐚𝛽𝐚(𝑢, 𝑣)
, (𝑢, 𝑣) ∈ 𝛥, (1)

where 𝐏𝐚 ∈ R3 is the control point, 𝜔𝐚 > 0 is the weight corresponding
to the control point 𝐏𝐚, 𝛥 is referred to as the parametric domain, and

𝛽𝐚(𝑢, 𝑣) = 𝑐𝐚
𝑁
∏

𝑖=1
𝐿𝑖(𝑢, 𝑣)𝐿𝑖(𝐚)

is the toric-Bernstein basis function for the lattice point 𝐚, where 𝑐𝐚 > 0
is a coefficient.

For instance, a set of lattice points and its corresponding octagonal
convex hull are illustrated in Fig. 2(a). Additionally, an octagonal toric
surface patch is defined within this parametric domain, as depicted in
Fig. 2(b).

2.2. B-splines and truncated hierarchical B-splines

B-splines, piecewise-defined polynomial functions, exhibit desir-
able properties such as local support, smoothness, and computational
efficiency. They are frequently employed in curve and surface ap-
proximation for computer-aided geometric design (CAGD), computer
graphics, and a variety of engineering applications.

An univariate B-spline basis function of degree 𝑝 is defined over a
non-decreasing knot vector 𝜩 = {𝜉𝑖}𝑚𝑖=0. The B-spline basis functions
are determined using the recursive Cox-de Boor formula:

�̂�𝑝
𝑖 (𝜉) =

𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

�̂�𝑝−1
𝑖 (𝜉) +

𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖+1

�̂�𝑝−1
𝑖+1 (𝜉), (2)

starting from

�̂�0
𝑖 (𝜉) =

{

1, if 𝜉 ∈ [𝜉𝑖, 𝜉𝑖+1),
0, otherwise,

where ratios of the form 0∕0 are defined as zero.
Extending to bivariate B-spline basis functions is straightforward.

Given two knot vectors 𝜩 and  in the 𝜉- and 𝜂-directions, respectively,
bivariate B-spline basis functions are computed using the product of the
univariate B-spline basis functions:

𝑁𝑝,𝑞
𝑖,𝑗 (𝜉, 𝜂) = 𝑁𝑝

𝑖 (𝜉)𝑁
𝑞
𝑗 (𝜂). (3)

THB-splines are a generalization of B-splines that offer an efficient
approach for local refinement of basis functions. Given a sequence of
nested domains �̂�0 ⊇ �̂�1 ⊇ … ⊇ �̂�𝑀 , each domain �̂�𝑘 comprises
axis-aligned meshes, as illustrated in Fig. 3(a), the hierarchical B-spline
(HB-spline) basis functions Ĥ are then defined as:

Ĥ =
⋃

𝑙=0,1,…,𝑀−1
{ 𝑁𝑝,𝑞

𝑖,𝑗 ∈ B̂𝑙 ∶

supp
(

𝑁𝑝,𝑞
)

⊂ �̂�𝑙 ∧ supp
(

𝑁𝑝,𝑞
)

⊄ �̂�𝑙+1 } ,
(4)
3

𝑖,𝑗 𝑖,𝑗
where B̂𝑙 represents the B-spline space spanned by B-spline basis
functions at level 𝑙, and supp

(

𝑁𝑝,𝑞
𝑖,𝑗

)

denotes the intersection of the
support of 𝑁𝑝,𝑞

𝑖,𝑗 with �̂�0.
However, the HB-spline basis functions lack the property of par-

tition of unity. To address this issue, THB-spline basis functions are
defined by iteratively applying the truncation operator to all basis
functions in Ĥ:

T̂ =
{

Trunc𝑙+1
(

𝑁𝑝,𝑞
𝑖,𝑗

)

∶ 𝑁𝑝,𝑞
𝑖,𝑗 ∈ Ĥ

⋂

B̂𝑙
}

∪
{

𝑁𝑝,𝑞
𝑖,𝑗 ∈ B̂𝑙+1 ∶ 𝑠𝑢𝑝𝑝

(

𝑁𝑝,𝑞
𝑖,𝑗

)

⊂ �̂�𝑙+1
}

,
(5)

where Trunc𝑙 ∶= trunc𝑀−1 (trunc𝑀−2 ⋯
(

trunc𝑙+1𝛽
)

⋯
)

, and trunc𝑙+1𝛽 ∶=
∑

𝛽∈B̂𝑙+1 ,𝑠𝑢𝑝𝑝(𝛽)⊄�̂�𝑙+1 𝑐𝑙+1𝛽 𝛽. Fig. 3(b) illustrates bivariate THB-spline basis
functions defined over nested domains in Fig. 3(a).

2.3. Wachspress barycentric coordinates

Wachspress barycentric coordinates [26] are a type of general-
ized barycentric coordinates used for interpolating values over convex
polygons. An alternative expression can be found in [27].

Definition 2 ([27]). Given an 𝑁-sided convex polygonal domain 
with vertices denoted as 𝐯1, 𝐯2,… , 𝐯𝑁 (𝑁 ≥ 4). For each side 𝛤𝑖 = 𝐯𝑖−1𝐯𝑖,
let the outward unit normal be 𝐧𝑖 = (𝑛𝑖1, 𝑛

𝑖
2)

T. Define 𝑔⊥𝑖 (𝒖) as the
perpendicular distance of 𝒖 to the edge 𝛤𝑖:

𝑔⊥𝑖 (𝒖) = (𝐯𝑖 − 𝒖) ⋅ 𝐧𝑖, ∀𝒖 = (𝑢, 𝑣)T ∈  .

Wachspress barycentric coordinates can be represented as follows:

𝜆𝑖(𝒖) =
𝑤𝑖(𝒖)

∑𝑁
𝑗=1 𝑤𝑗 (𝒖)

, 𝑖 = 1, 2,… , 𝑁, (6)

where

𝑤𝑖(𝒖) ∶=
𝐧𝑖−1 × 𝐧𝑖

𝑔⊥𝑖−1(𝒖)𝑔
⊥
𝑖 (𝒖)

,

and 𝐧𝑖−1×𝐧𝑖 = 𝑛𝑖−11 𝑛𝑖2−𝑛𝑖−12 𝑛𝑖1. For indices exceeding the specified range,
we impose the conditions: 𝐯0 = 𝐯𝑛, 𝑔⊥0 (𝒖) = 𝑔⊥𝑛 (𝒖) and 𝐧0 = 𝐧𝑛.

The gradients of Wachspress barycentric coordinates (6) can be
calculated by

∇𝒖𝜆𝑖 = 𝜆𝑖(𝐑𝑖 −
𝑛
∑

𝑗=1
𝜆𝑗𝐑𝑗 ), (7)

where ∇𝒖 = ( 𝜕
𝜕𝑢 ,

𝜕
𝜕𝑣 )

T, and

𝐑𝑖(𝐱) =
𝐧𝑖−1
⊥ +

𝐧𝑖
⊥ .
𝑔𝑖−1(𝐱) 𝑔𝑖 (𝐱)



Computer-Aided Design 173 (2024) 103731M.-Y. Wang et al.
Fig. 3. A sequence of nested domains for the construction of the spline hierarchy and its corresponding THB-spline basis functions.
3. Composite toric parameterization

Constructing analysis-suitable parameterizations from the bound-
ary representation (B-Rep) of a physical domain 𝛺 is an essential
preprocessing step in the IGA pipeline. Within this context, ‘‘analysis-
suitable’’ parameterizations are characterized by bijective mappings
that exhibit good orthogonality and uniformity. The quality of such
parameterizations is known to profoundly influence the numerical
stability and accuracy of subsequent analyses, as pointed out in the
literature [6,28,29].

However, unlike traditional IGA and GIFT approaches that rely
on quadrilateral parametric domains, our MS-GIFT scheme employs
polygonal parametric domains using toric surface patches, as shown in
Fig. 1. That way, the quality of the composite toric parameterization
◦𝜎−1 becomes crucial. Consequently, a bijection between a polygonal
domain (the parametric domain of a toric surface patch) and a square
domain (the parametric domain of a B-spline basis) is mandatory. To
address this, we first consider the bijective mapping between paramet-
ric domains in Section 3.1 and subsequently enhance the quality of the
composite toric parameterization in Section 3.2.

3.1. Bijective mapping between geometric and analysis parametric domains

As mentioned in Section 2.1, the parametric domain 𝛥 =  of
a toric surface patch is an 𝑁-sided polygon, whereas the parame-
terization  corresponds to a unit square. Consequently, the initial
step entails establishing a bijective mapping 𝜎 between the parametric
domain  of the toric surface patch and the parametric domain  of a
B-spline surface patch as shown in Fig. 4. To achieve this goal, we first
introduce the definition of convex combination mapping and Theorem
4.1 from [30].

Definition 3 ([30]). Consider a mapping 𝜎𝑉 ∶ 𝑉 → R2 that transforms
the vertices 𝐯 ∈ 𝐕 of a triangulation  into points in R2. The mapping
𝜎𝑉 is termed a convex combination mapping if, for every interior
vertex 𝐯, its image 𝜎𝑉 (𝐯) is a convex combination of the images of its
neighboring vertices. That is

𝜎𝑉 (𝐯) =
∑

𝐰∈𝐯

𝜆𝐯𝐰𝜎𝑉 (𝐰) (8)

where 𝐯 denotes the set of neighbors of 𝐯, and all the weights 𝜆𝐯𝐰 are
positive and satisfy
∑

𝐰∈𝐯

𝜆𝐯𝐰 = 1.

Theorem 1 ([30]). Suppose  is a strongly connected triangulation and
that 𝜎𝑉 ∶ 𝑉 → R2 is a convex combination mapping which maps 𝜕𝐷
homeomorphically into the boundary 𝜕 of some (closed) convex region
 ⊂ R2. Then 𝜎 is one-to-one.
4

𝑉

Várady et al. devised a local parameterization scheme for the Gen-
eralized Bézier surface, as detailed in their study [31]. Building on this
foundation, we define the mapping function 𝜎 in the ensuing discussion.

Theorem 2. Let 𝜆𝑖 (𝑖 = 1, 2,… , 𝑁) represent the Wachspress barycentric
coordinates of an 𝑁-sided convex polygonal domain  , and let  denote a
unit square. Then, for all 𝑖 = 1, 2,… , 𝑁 , the mapping 𝜎 ∶  → 

⎧

⎪

⎨

⎪

⎩

𝜉𝑖 =
𝜆𝑖(𝑢, 𝑣)

𝜆𝑖−1(𝑢, 𝑣) + 𝜆𝑖(𝑢, 𝑣)
,

𝜂𝑖 = 1 − 𝜆𝑖−1(𝑢, 𝑣) − 𝜆𝑖(𝑢, 𝑣),
(9)

is bijective. Here, we set 𝜆0 = 𝜆𝑁 .

Proof. As observed from the properties of Wachspress barycentric coor-
dinates, 𝜉𝑖 ranges from 0 to 1 on side 𝛤𝑖, with 𝜂𝑖 equaling 0. 𝜂𝑖 increases
linearly from 0 to 1 on sides 𝛤𝑖−1 and 𝛤𝑖+1, while the corresponding
values of 𝜉𝑖 are 0 and 1, respectively. Moreover, for points on edges 𝛤𝑗
not immediately adjacent to 𝛤𝑖 (specifically, where 𝑗 ∉ {𝑖−1, 𝑖, 𝑖+1}), 𝜂𝑖
equals 1. It ensures that the mapping 𝜎 systematically places vertices 𝐯𝑖
of  onto the boundary of the quadrilateral domain , preserving their
ordering.

Without loss of generality, consider the triangulation  (𝑉0) of  as
shown in Fig. 4, where 𝑉0 = {𝜎(𝐯1),… , 𝜎(𝐯𝑁 )}. Let 𝒖𝑘 = (𝑢, 𝑣)T ∈ 
and 𝝃𝑘 = (𝜉𝑘𝑖 , 𝜂

𝑘
𝑖 )

T = 𝜎(𝒖𝑘) = 𝜎𝑉1 (𝒖𝑘) ∈ , and 𝑘 = 1, 2. We construct a
triangulation for 𝑉1 = {𝜎(𝐯1),… , 𝜎(𝐯𝑁 ), 𝝃1, 𝝃2} such that 𝜎𝑉1 = 𝜎|𝑉1 is a
convex combination mapping on  (𝑉1). The positions of 𝝃1 and 𝝃2 can
be categorized into the following cases:

(1) Fig. 5(a): Both 𝝃1 and 𝝃2 on the boundaries of triangular ele-
ments. In this case, both 𝝃1 and 𝝃2 can be expressed as convex
combinations of their two adjacent vertices.

(2) Fig. 5(b): One on the boundary and one inside a triangular
element. Suppose 𝝃1 is on the boundary and 𝝃2 is inside a
triangular element. Connecting 𝝃2 to the vertices of its element
allows both 𝝃1 and 𝝃2 to be represented using linear or triangular
coordinates.

(3) Fig. 5(c): Different triangular elements. If 𝝃1 and 𝝃2 are in
different triangular elements, connect them to the vertices of
their respective elements. They can then be expressed using the
triangular barycentric coordinates in (8).

(4) Fig. 5(d): Same boundary triangle. If 𝝃1 and 𝝃2 are within the
same boundary triangle, divide them into two new triangles
using a line through a vertex. This facilitates their representation
using (8).

(5) Fig. 5(e): Same interior triangle and collinear case. If 𝝃1 and 𝝃2
are in the same interior triangle and collinear with 𝜎(𝐯𝑖−1), they
can be represented using linear or triangular coordinates.

(6) Fig. 5(f): Same interior triangle and non-collinear case. If 𝝃1
and 𝝃 are within the same interior triangle but not collinear
2
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Fig. 4. Schematic illustration of the bijective mapping 𝜎.
Fig. 5. All possible triangulations in the proof of Theorem 2.
with 𝜎(𝐯𝑖−1), divide them into two new triangles using a line
through 𝜎(𝐯𝑖−1). They can be represented using (8) with two new
triangles.

All the possible triangulations mentioned above satisfy Theorem 1,
ensuring that 𝜎𝑉1 is one-to-one. Therefore, if 𝝃1 ≠ 𝝃2, then 𝒖1 ≠ 𝒖2
proving that 𝜎 is injective.

For surjectivity, consider that the continuity of the Wachspress
coordinates ensures that 𝜉𝑖 spans the interval [0, 1] across the side 𝛤𝑖,
with 𝜂𝑖 ranging from 0 to 1 along its adjoining sides 𝛤𝑖−1 and 𝛤𝑖+1. The
continuity of 𝜎 implies its surjectivity. □

Remark 1. According to Theorem 2, for each vertex 𝐯𝑖, 𝑖 = 1, 2,… , 𝑁 ,
there exists a corresponding mapping 𝜎. As Fig. 4 shows, under the
action of mapping 𝜎, sides 𝛤𝑖−1, 𝛤𝑖, 𝛤𝑖+1 of  are mapped to 3 sides of
, respectively, while the remaining sides of  are mapped to the other
side of  (marked with orange lines). It is necessary to flexibly choose
the appropriate mapping for different problems.
5

3.2. Parameterization quality improvement of composite toric parameteri-
zation

Given a lattice points set , control points 𝐏 and weights 𝝎, the
polygonal domain 𝛺 is parameterized by (1), e.g.

(𝑥, 𝑦) = (𝑢, 𝑣),∀(𝑢, 𝑣) ∈ 𝛥, (10)

and  refers to the parameterization of 𝛺. For isotropic parameter-
izations that are independent of the governing equations, based on
injectivity, optimal uniformity and orthogonality are required. How-
ever, in MS-GIFT, the parametric domain of the geometry differs from
that of the solution. As a result, it is more practical to optimize the
composite toric parameterization ◦𝜎−1.

Similar to the method in [32], we utilize a three-step parame-
terization approach to construct an analysis-suitable composite toric
parameterization, effectively addressing the aforementioned issue.
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Fig. 6. Different composite toric parameterizations ◦𝜎−1 may affect the absolute error in MS-GIFT. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
(1) Initialization. Given a set of lattice points, boundary control
points and weights. For each inner lattice point, connect the
boundary control points corresponding to the boundary lattice
points of the same column and row, the intersection of the
resulting two lines is set as an inner control point. The inner
weight is taken as the product of the boundary weights whose
lattice points are located in the same column or row as the
corresponding inner lattice point.

(2) Foldover Elimination. Let  ◦𝜎−1 represent the Jacobian of the
composite toric parameterization ◦𝜎−1. The foldovers can then
be eliminated by solving the subsequent optimization problem:

arg min
𝐏𝐚 ,𝐚∈inner()∫

max{0, 𝛿 − | ◦𝜎−1 |}d, (11)

where 𝛿 is a user-specified parameter. We set 𝛿 to 0.05 ∗ 𝑎𝑟𝑒𝑎(𝛺)
in our experiments.

(3) Parameterization quality improvement. For further enhance-
ment of the resulting parameterization quality, we take into
account both the corrected Winslow energy functional

CW(𝐏𝐚;𝜔𝐚) = ∫

trace
(

 T
◦𝜎−1

 ◦𝜎−1
)

max{0, | ◦𝜎−1 |} + 𝜀
d, (12)

and the uniformity energy functional

Unif .(𝐏𝐚;𝜔𝐚) = ∫

(

|

|

 ◦𝜎−1
|

|

area(𝛺)
− 1

)2

d, (13)

where 𝜀 is a small positive threshold to prevent division by
zero. Subsequently, we solve the following two unconstrained
optimization problems alternately:

arg min
𝐏𝐚 ,𝐚∈inner()

CW(𝐏𝐚, 𝜔𝐚) + 𝜆Unif ., (14)

and

arg min
𝜔𝐚 ,𝐚∈inner()

CW(𝐏𝐚, 𝜔𝐚) + 𝜆Unif ., (15)

with a positive parameter 𝜆 for equilibrium between CW and
Unif ..

Fig. 6(a) displays an initial composite toric parameterization, con-
structed by keeping control points identical to the lattice points, except
for the bevel edge, which is adjusted to recover the circular arc.
Noticeably, some non-uniform elements emerge near the upper-right
corner. A Poisson problem with homogeneous boundary conditions,
solved using this initial parameterization, yields a large absolute error
in the affected region, as depicted on the right. The parameterization
optimized through the aforementioned three-step approach, illustrated
in Fig. 6(b), shows amelioration of the non-uniform elements. The
corresponding absolute error colormap on the right indicates that the
optimized composite toric parameterization ◦𝜎−1 effectively reduces
the numerical error.
6

4. Formalism for Multi-sided Geometry-Independent Field approx-
imaTion (MS-GIFT)

In this section, we demonstrate our proposed MS-GIFT method for
solving Poisson’s equation and linear elasticity problem. The gradients
of the shape functions, which are essential for the subsequent analysis,
are calculated in Section 4.1. Subsequently, the weak forms and error
estimates for these two problems are deduced in Sections 4.2 and
4.3, respectively. Based on these, we formulate Algorithm 1, which
summarizes the overall workflow.

4.1. Gradient computation for shape functions

Upon obtaining the multi-sided composite toric parameterization,
we next compute the gradient formulations of the shape function
𝑁𝑝◦𝜎◦−1. To simplify the notations, let 𝒖 = (𝑢, 𝑣)T ∈  , 𝝃 = (𝜉, 𝜂)T ∈ ,
and 𝒙 = (𝑥, 𝑦)T ∈ 𝛺 denote the parameters for toric surface patches, the
parameters for B-splines or THB-splines, and the physical coordinates,
respectively.

Based on the gradient formula of Wachspress barycentric coordi-
nates (7) and the chain rule, we obtain

∇𝒖𝜉 =
𝜆𝑖−1∇𝒖𝜆𝑖 − 𝜆𝑖∇𝒖𝜆𝑖−1

(𝜆𝑖−1 + 𝜆𝑖)2
,

∇𝒖𝜂 = −∇𝒖𝜆𝑖−1 − ∇𝒖𝜆𝑖,
(16)

then yields the Jacobian matrix  𝜎 of the one-to-one mapping 𝜎

 𝜎 = (∇𝒖𝜉,∇𝒖𝜂)T. (17)

The Jacobian matrix   of the toric parameterization  can be
computed by

  =

( 𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦
𝜕𝑢

𝜕𝑦
𝜕𝑣

)

= 1
(
∑

𝐚∈ 𝜔𝐚𝛽𝐚
)2

((

∑

𝐚∈
𝜔𝐚𝐏𝐚∇T

𝒖𝛽𝐚

)(

∑

𝐚∈
𝜔𝐚𝛽𝐚

)

−

(

∑

𝐚∈
𝜔𝐚𝐏𝐚𝛽𝐚

)(

∑

𝐚∈
𝜔𝐚∇T

𝒖𝛽𝐚

))

.

(18)

Therefore, the Jacobian matrix of the inverse mapping 𝜎◦−1 for the
composite toric parameterization can be calculated using the following
formulas:

 𝜎◦−1 =
⎛

⎜

⎜

⎝

𝜕𝜉
𝜕𝑥

𝜕𝜉
𝜕𝑦

𝜕𝜂
𝜕𝑥

𝜕𝜂
𝜕𝑦

⎞

⎟

⎟

⎠

=

( 𝜕𝜉
𝜕𝑢

𝜕𝜉
𝜕𝑣

𝜕𝜂
𝜕𝑢

𝜕𝜂
𝜕𝑣

)

⎛

⎜

⎜

⎝

𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦

⎞

⎟

⎟

⎠

=  𝜎 −1
 .

(19)

Applying the chain rule of derivatives, again, the gradients of the
shape function 𝑁 ◦𝜎◦−1 concerning the physical coordinates 𝒙 can
𝑝
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be determined as follows:

∇𝒙𝑁𝑝 =
⎛

⎜

⎜

⎝

𝜕𝑁𝑝
𝜕𝑥
𝜕𝑁𝑝
𝜕𝑦

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝜕𝜉
𝜕𝑥

𝜕𝜂
𝜕𝑥

𝜕𝜉
𝜕𝑦

𝜕𝜂
𝜕𝑦

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝜕𝑁𝑝
𝜕𝜉
𝜕𝑁𝑝
𝜕𝜂

⎞

⎟

⎟

⎠

= ( 𝜎◦−1 )T∇𝝃𝑁𝑝.

(20)

4.2. Poisson’s equation

As an illustration, we consider Poisson’s equation with homoge-
neous Dirichlet boundary conditions

−∇2𝒰(𝒙) = 𝑓 (𝒙), 𝒙 ∈ 𝛺

𝒰(𝒙) = 0, 𝒙 ∈ 𝜕𝛺,
(21)

here 𝒰(𝒙) is the unknown solution, 𝑓 is a given source term, and 𝜕𝛺
s the boundary of the computational domain 𝛺.

Following the principle of GIFT, the solution can be expressed as
linear combination of B-spline or THB-spline basis functions (collec-

ively denoted as 𝑁𝑞) using MS-GIFT method in this paper:

h =
ndofs
∑

𝑞=1
𝒰𝑞𝑁𝑞(𝝃), (22)

here 𝒰𝑞 are the unknown control variable, ndofs is the number of
egrees-of-freedom (DOFs).

The weak form for the above Poisson’s Eq. (21) is given by

(𝒰 ,𝒱 ) = ∫𝛺
∇𝒰∇𝒱 d𝛺, 𝓁(𝒱 ) = ∫𝛺

𝑓𝒱 d𝛺. (23)

y substituting the toric geometry (10) and the (TH)B-spline solution
22) into the weak form (23), we obtain
(ndofs

∑

𝑞=1
𝒰𝑞𝑁𝑞(𝒙), 𝑁𝑝(𝒙)

)

=
ndofs
∑

𝑞=1
𝒰𝑞𝑎(𝑁𝑞(𝒙), 𝑁𝑝(𝒙)),

𝓁(𝑁𝑝(𝒙)) = ∫𝛺
𝑓 (𝒙)𝑁𝑝(𝒙)d𝛺

here 𝑝 = 1, 2,… , ndofs.
Denote

𝑝,𝑞 = 𝑎(𝑁𝑞(𝒙), 𝑁𝑝(𝒙))

= ∫𝛺
∇𝒙𝑁𝑞(𝒙)∇𝒙𝑁𝑝(𝒙)d𝛺,

𝐟𝑝 = 𝓁(𝑁𝑝(𝒙)) = ∫𝛺
𝑓 (𝒙)𝑁𝑝(𝒙)d𝛺

(24)

o reveal the following linear system
dofs
∑

𝑞=1
𝐊𝑝,𝑞𝒰𝑞 = 𝐟𝑝, 𝑝 = 1, 2,… , ndofs

hose matrix form is

(𝒰𝑞) = 𝐟 , (𝒰𝑞) ∈ Rndofs. (25)

he stiffness matrix 𝐊 and the force vector 𝐟 are defined by (24).
The error between the exact solution 𝒰exact and the numerical

olution 𝒰h is measured by the following relative 𝐿2 error

=

√

∫𝛺(𝒰exact −𝒰h)2 d𝛺
∫𝛺(𝒰exact )2 d𝛺

. (26)

.3. Linear elasticity problem

To demonstrate the robustness of the proposed method, we con-
ider a more complex linear elasticity problem which takes into ac-
ount displacements in two directions, denoted by 𝒰𝒰𝒰 ∶= (𝒰 ,𝒰 )T.
7

1 2 T
Given Young’s modulus 𝐸 and Poisson’s coefficient 𝜈, stresses can be
represented by

𝝈 =

⎛

⎜

⎜

⎜

⎝

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎞

⎟

⎟

⎟

⎠

= 𝐃𝜺 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐸
1−𝜈2

𝜈𝐸
1−𝜈2 0

𝜈𝐸
1−𝜈2

𝐸
1−𝜈2 0

0 0 𝐸
2(1+𝜈)

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎞

⎟

⎟

⎟

⎠

,

here strains 𝜺 are defined by

=

⎛

⎜

⎜

⎜

⎝

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜕
𝜕𝑥 0

0 𝜕
𝜕𝑦

𝜕
𝜕𝑦

𝜕
𝜕𝑥

⎞

⎟

⎟

⎟

⎟

⎠

(

𝒰1

𝒰2

)

.

Analogously, the numerical solution of displacements is written as

𝒰h
1 =

𝑛
∑

𝑞=1
𝒰1,𝑞𝑁𝑞(𝝃), 𝒰h

2 =
𝑛
∑

𝑞=1
𝒰2,𝑞𝑁𝑞(𝝃)

which also yields a matrix notation

𝒰ℎ =
(

𝑁1 0 𝑁2 0 … 𝑁𝑛 0
0 𝑁1 0 𝑁2 … 0 𝑁𝑛

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝒰1,1

𝒰2,1

𝒰1,2

𝒰2,2

⋮

𝒰1,𝑛

𝒰2,𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(27)

with ndofs = 2𝑛.
The weak form of the linear elasticity problem is given by

𝑎(𝒰𝒰𝒰 ,𝒱 ) = ∫𝛺
𝜺(𝒰𝒰𝒰)T𝐃𝜺(𝒱 )d𝛺,

𝓁(𝒱 ) = ∫𝛺
𝑓𝒱 d𝛺 + ∫𝜕𝛺𝑁

𝑡𝒱 d𝛤 ,
(28)

where 𝑓 is the given body forces, 𝑡 is the given traction prescribed
on 𝜕𝛺𝑁 . Substituting the toric geometry (10) and the (TH)B-spline
solution (27) into (28), we obtain

𝑎(𝒰𝒰𝒰ℎ, 𝑁𝑝(𝒙)) = ∫𝛺
𝜺(𝒰𝒰𝒰ℎ)T𝐃𝜺(𝑁𝑝(𝒙))d𝛺

=
𝑛
∑

𝑞=1

(

𝒰1,𝑞

𝒰2,𝑞

)T

∫𝛺

⎛

⎜

⎜

⎝

𝜕𝑁𝑞
𝜕𝑥 0 𝜕𝑁𝑞

𝜕𝑦

0 𝜕𝑁𝑞
𝜕𝑦

𝜕𝑁𝑞
𝜕𝑥

⎞

⎟

⎟

⎠

𝐃

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑁𝑝
𝜕𝑥 0

0 𝜕𝑁𝑝
𝜕𝑦

𝜕𝑁𝑝
𝜕𝑦

𝜕𝑁𝑝
𝜕𝑥

⎞

⎟

⎟

⎟

⎟

⎠

d𝛺

=
𝑛
∑

𝑞=1

(

𝒰1,𝑞

𝒰2,𝑞

)T

∫𝛺
𝑩T

𝑞𝐃𝑩𝑝d𝛺

nd

(𝑁𝑝(𝒙)) = ∫𝛺
𝑓 (𝒙)𝑁𝑝(𝒙)d𝛺 + ∫𝜕𝛺𝑁

𝑡(𝒙)𝑁𝑝(𝒙)d𝛤 .

hus, the components of the stiffness matrix and force vector are
enoted as

𝑝,𝑞 = ∫𝛺
𝑩T

𝑞𝐃𝑩𝑝d𝛺, 𝐟𝑝 = 𝓁(𝑁𝑝(𝒙)) (29)

hich form the following linear system
𝑛
∑

𝑞
𝐊𝑝,𝑞

(

𝒰1,𝑞
𝒰2,𝑞

)

= 𝐟𝑝, 𝑝 = 1, 2,… , 𝑛, (30)

otice that the sizes of 𝐊𝑝,𝑞 and 𝐟𝑝 are 2 × 2 and 2 × 1, respectively.

he errors are measured by displacement norm error and energy norm
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𝑒disp =

√

∫𝛺
(𝒰𝒰𝒰exact −𝒰𝒰𝒰h)T(𝒰𝒰𝒰exact −𝒰𝒰𝒰h) d𝛺,

𝑒energy =

√

∫𝛺
(𝜺exact − 𝜺h)T(𝝈exact − 𝝈ℎ) d𝛺,

(31)

where 𝒰𝒰𝒰exact , 𝝈exact and 𝜺exact are the exact displacement, stress, and
strain, and 𝒰𝒰𝒰h, 𝝈ℎ, and 𝜺h denote the numerical displacement, stress,
and strain, respectively.

4.4. Overview of multi-sided geometry-Independent Field approximaTion
approach

In summary, we obtain an algorithm for isogeometric analysis using
MS-GIFT as described in Algorithm 1.

Algorithm 1: MS-GIFT: Multi-Sided Geometry-Independent Field
approximaTion approach for isogeometric analysis
Input:𝑼 : quadrature points set;

// Toric geometry
: lattice points set; 𝐏: control points set;
𝝎: weights set;
// B-spline basis
𝜩, : knot vectors; 𝑝, 𝑞: degrees.

Output: 𝒰ℎ: IGA solution.
1 Get 𝑛 = #(); // Number of toric control points

// Calculate parameter transformation
symbolically

2 Compute the one-to-one mapping 𝜎 between parametric
domains;

3 Compute its inverse mapping 𝜎−1;
4 Compute  𝜎 in (17);

// Calculate gradient information of toric
parameterization

5 for 𝒖 ∈ 𝑼 do
6 Compute toric basis functions and their derivatives at 𝒖;
7 Compute   at 𝒖 according to (18);

// Form the linear system and solve
8 Compute B-spline basis functions and their derivatives at 𝒖;
9 Compute points 𝒙 = (𝒖) of the computational domain;
0 Compute ∇𝒙𝑁𝑘 at 𝒖 according to (20);
1 end
2 Compute 𝐊𝑝,𝑞 and 𝐟𝑝 in (24) or (29);
3 Assemble the stiffness matrix 𝐊 and the force vector 𝐟 ;
4 Impose Dirichlet boundary conditions;
5 Solving the linear system (25) or (30) to obtain the IGA

solution 𝒰ℎ.
6 return 𝒰ℎ

Remark 2. In contrast to general refinement methods employed to
ncrease DOFs in IGA, MS-GIFT simply requires the input of refined
not vectors and degrees for each step to refine.

.5. Adaptive refinement by using THB-splines

Algorithm 1 outlines the process of employing B-spline basis for
nalysis. Fundamentally, the classical refinement strategies of B-spline
asis suffer from a lack of locality, as each step propagates over a large
lement, resulting in a high number of redundant DOFs. To address
his issue, THB-spline has been employed, as it enables efficient local
efinement. Furthermore, THB-spline allows for the allocation of more
8

DOFs in areas where the numerical solution error is significant, thereby
significantly reducing the error.

The numerical solutions approximated by THB splines are based on
the following adaptive loop [33]:

(1) Solve. Solve the Poisson’s Eq. (21) through MS-GIFT method
with the current THB-spline basis. Denote the solution as 𝒰ℎ.

(2) Estimate. We employ the element-based error indicator [33]

𝜀𝑄 = 𝑑𝑖𝑎𝑚(◦𝜎−1(𝑄))(∫◦𝜎−1(𝑄)
|𝑓 + 𝛥𝒰ℎ

|

2)
1
2 (32)

for each active element 𝑄 in parametric domain  and the cor-
responding active element ◦𝜎−1(𝑄) in computational domain
𝛺.

(3) Mark. Find the active elements 𝑄𝑀 that satisfies

𝜀𝑄𝑀
≥ 𝜃max 𝜀𝑄, (33)

where 𝜃 = 0.5.
(4) Refine. Refine the marked elements 𝑄𝑀 and repeat the process

above until the error (26) is less than a given tolerance.

. Numerical experiments

To showcase the efficacy and superiority of our proposed MS-GIFT
ethod, a comparison with traditional IGA method is available in

his section. The importance of improving the composite toric pa-
ameterization quality is effectively illustrated by the error history
lots provided for each example. These plots clearly differentiate the
utcomes achieved with the initial toric parameterization, referred to
s MS-GIFT (initial), from those obtained after optimization, denoted
s MS-GIFT (optimal).

Specifically, in Section 5.1, we juxtapose MS-GIFT against NURBS
-refinement and toric 𝑝-refinement methods. Additionally, in Sec-
ion 5.2, MS-GIFT is also compared with the adaptive THB method. In
rder to ensure fairness, we maintain consistency in the degrees and
efinement strategy of shape functions employed in MS-GIFT, NURBS,
nd THB methods. The degree specifics of the spline configurations
mployed for analysis in each example have been listed in Appendix B.

Furthermore, we present two methodologies for determining the
nverse mapping 𝜎−1 between the 𝑁−sided polygon and unit square.
n instances where 𝑁 < 7, we adopted the MATLAB Symbolic Math
oolbox to solve 𝜎 inversely. Conversely, for scenarios with 𝑁 ≥ 7, 𝜎−1

s obtained by solving the following optimization problem:

arg min(𝑢,𝑣)
‖

‖

(𝜉𝑖, 𝜂𝑖) − 𝜎(𝑢, 𝑣)‖
‖

,

s.t. 𝐿𝑖(𝑢, 𝑣) ≥ 0.
(34)

n our experiments, the choice of the mapping 𝜎 is selected by the
ollowing two considerations:

(1) Boundary conditions. In scenarios with distinct boundary con-
ditions on each boundary, such as Dirichlet and Neumann
boundary conditions, our approach avoids conflating boundaries
with differing boundary conditions onto a single side of the
quadrilateral domain ;

(2) Mapping simplicity. For the polygon vertex with an internal
angle of 90 degrees, the inverse mapping associated with 𝜎
is notably simpler. We thus recommend this mapping form to
avoid additional computational complexity, ensuring efficiency
without sacrificing computational accuracy.

Furthermore, a reference implementation is currently under devel-
pment utilizing the open-source C++ library, Geometry + Simulation
odules [34,35].
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Fig. 7. Strawberry: a hexagonal computational domain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Different choices of 𝜎 and their corresponding error colormaps.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 9. Strawberry: convergence curve of error and the condition number of the stiffness matrices during refinement.
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Fig. 10. Bottle: an octagonal computational domain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Bottle: convergence curve of error and the condition number of the stiffness matrices during refinement.
5.1. Poisson’s equation solved by uniform refinement

Consider Poisson’s Eq. (21) defined over a hexagonal computational
domain. The exact solution is depicted in Fig. 7(a), whose expression
can be found in Appendix A.

The parameterizations represented by a toric surface patch and a
NURBS surface are displayed in Fig. 7(b) and Fig. 7(c), respectively.
In this example, Fig. 7(b) is constructed using the mapping 𝜎𝑎, as
shown in Fig. 8(a). All subsequent comparisons with other methods are
based on this same mapping, 𝜎𝑎. A distinctive feature of the NURBS
parameterization is its division into 5 patches, which only exhibit 𝐶0

continuity along the interfaces. Through the ℎ-refinement process, the
absolute error colormaps corresponding to each parameterization are
illustrated in Fig. 7(d) and Fig. 7(e), respectively. Thanks to the smooth
parameterization, our method achieves superior numerical solution
accuracy.

Since the choice of 𝜎 affects the quality of the composite parameter-
ization, it directly influences the accuracy of the subsequent analysis.
To illustrate the impact of different 𝜎 selections, we present the pa-
rameterizations and the corresponding error colormaps for various
𝜎 mappings in Fig. 8. It can be seen that higher-quality composite
parameterizations, with more uniform element size, yield more precise
numerical results.
10
Fig. 9 presents the evolution of errors and condition numbers
for stiffness matrices acquired during refinement using the MS-GIFT,
NURBS, and toric 𝑝-refinement method [21]. While the toric 𝑝-
refinement method displays smaller errors under some DOFs, the
condition number rapidly increases as the degree of test functions rises,
resulting in non-converging errors. In contrast, our method exhibits
enhanced stability and a condition number for the stiffness matrix
comparable to that of the NURBS method.

Next, we present an example with an octagonal parametric domain
as shown in Fig. 10. The representation and colormap of the exact
solution are shown in appendix and Fig. 10(a), respectively Employing
the parameterization technique introduced in Section 3.2, the result-
ing composite toric and NURBS parameterization are displayed in
Fig. 10(b) and Fig. 10(c), respectively. To ensure a fair comparison and
achieve a more uniform element size across the computational domain,
the NURBS parameterization has been segmented into 14 patches, as
depicted in Fig. 10(c).

After six levels of ℎ-refinement, the absolute error colormaps are
displayed in Figs. 10(d)–10(e). It is evident that the proposed method
achieves comparable performance while utilizing only two-thirds of the
DOFs employed by the NURBS method. Fig. 11 illustrates the evolution
of error and condition number of the stiffness matrix solved by the three
methods. As the degree of the solution bases is consistent with the one
used in the NURBS method, a uniform convergence order is obtained
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Fig. 12. Crown: a pentagonal computational domain.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
following the same ℎ-refinement strategy. The MS-GIFT method is
capable of producing numerical solutions with higher continuity and
reduced errors.

5.2. Poisson’s equation solved by using adaptive refinement

A significant advantage of GIFT is that it simplifies local adaptivity.
In this section, we examine MS-GIFT with adaptive refinement strategy
in Section 4.5 using THB-splines. The second derivatives involved in
(32) are computed numerically in MS-GIFT.

Consider Poisson’s Eq. (21) over a pentagonal crown-like compu-
tational domain, with the exact solution depicted in Fig. 12(a) and
appendix. The initial coarse parameterizations are represented by toric
(Fig. 12(b)) and NURBS (Fig. 12(e)) surfaces. Following a series of local
refinements guided by function-based error indicators, the adaptive
meshes and corresponding absolute error colormaps obtained by MS-
GIFT and adaptive isogeometric methods are displayed in the last
two columns of Fig. 12. Fig. 14(a) presents the error history of the
two adaptive methods. Due to the 𝐶0 continuity within the NURBS
parameterization, the resulting error colormap also distinctly reveals
the division into two patches in the middle.

Fig. 13 showcases the adaptive meshes and error colormaps of the
proposed method at steps 6, 10, and 13. The meshes primarily become
denser in areas where the exact solution undergoes significant changes
during the refinement process, effectively reducing the error.

Furthermore, we investigate a computational domain shaped as a
pentagon, modeling the complex geometry of a female rotor from a
twin-screw compressor. The exact solution for this scenario is approx-
imated by a hat function, which diminishes towards the boundaries
of the domain and is illustrated in Fig. 15(a). We implement lo-
cal refinements on a single-patch toric parameterization, as shown in
Fig. 15(b), in contrast to the four-patch NURBS parameterization shown
in Fig. 15(e). Figs. 15(c) and 15(d) present the respective adaptive
meshes derived from these refinements. The convergence behavior
11
throughout this refinement is displayed in the error history plots of
Fig. 14(b).

Although a bijection between arbitrary convex polyhedra and reg-
ular hexahedra has not yet been established, the proposed method
remains valid for specific 3D computational domains with parametric
domains resembling straight prisms, i.e., 2.5-D geometry. As an illus-
tration, we consider Poisson’s Eq. (21) over a pentagonal prism, with
the exact solution and boundaries depicted in Fig. 16(a). Based on
the adaptive meshes provided in Figs. 16(b)–16(c), the absolute error
colormaps obtained by the proposed method and the adaptive THB
method are displayed in Figs. 16(d)–16(e). Fig. 17 presents the error
history during refinement. This example yields conclusions similar to
those above, demonstrating the feasibility of extending our method to
three dimensions.

5.3. Linear elasticity problem

As mentioned in Remark 1, 𝜎 may map different sides of  to the
same side of . When solving the boundary value problem, if sides
with distinct boundary conditions are mapped onto the same side, the
corresponding boundary conditions will be inaccurately imposed. It is
crucial to select an appropriate mapping 𝜎.

To demonstrate the capabilities of the proposed method, we con-
sider the linear elasticity problem, as illustrated in Fig. 18(a). The pen-
tagonal computational domain in this example represents a flattened
cross-section of an iron, with a downward traction uniformly applied to
the top boundary while the bottom boundary is fixed. Fig. 18(b) depicts
the bijective transformation between the parametric domains used in
the MS-GIFT, where 𝜕𝑁 and 𝜕𝑁 denote the corresponding bound-
aries of 𝜕𝛺𝑁 in the parametric domains. Figs. 18(c)–18(d) display the
toric and NURBS parameterizations divided into 3 patches.

Since the linear elasticity problem is a more complex vector-valued
field problem, finding an exact solution is challenging. Instead, we
use the NURBS solutions with abundant DOFs as a reference. Fig. 19
presents a comparison of the numerical solutions obtained by the
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Fig. 13. Adaptive meshes (top) at steps 6, 10, 13 and corresponding absolute error colormaps (bottom) with DOFs 130, 346, 1369 by MS-GIFT (from left to right). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Error history during adaptive refinement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Female rotor: a pentagonal computational domain.

Fig. 16. Pentagonal prism: a 2.5-D domain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Pentagonal prism: Error history during refinement.

Fig. 18. Iron: a pentagonal computational domain.

Fig. 19. The first column: NURBS over-killed solution (DOFs = 69432); the second column: MS-GIFT solution (DOFs = 760); the last column: MS-GIFT solution (DOFs = 4760)
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N

Fig. 20. Iron: error history of displacement norm error (left) and energy norm error (right)
URBS over-killed method (DOFs = 69432) and the proposed method
(DOFs = 760, 4760). As the DOFs increase, we observe that the numeri-
cal solutions become closer to the over-killed solutions. Fig. 20 provides
the error history of displacement norm and energy norm, illustrating
the superiority of our method.

6. Conclusions and future work

In this paper, we present a novel extension of IGA based on GIFT,
named MS-GIFT, that employs toric surface patches to represent multi-
sided geometry while utilizing B-spline or THB-spline basis functions
for analysis. The MS-GIFT method ensures smoothness within the
polygonal computational domain and incorporates locality in the solu-
tion basis, resulting in more efficient and accurate solutions. Moreover,
we propose the optimization of composite toric parameterization to
tackle the issue of non-uniform elements arising from the bijective map-
ping between the parametric domains of toric geometry and analysis
basis functions. Numerical examples showcase that our method is better
suited for IGA involving multi-sided geometries.

We anticipate addressing the following potential improvements in
future work:

(1) Addressing computational domains of increased complexity: A
notable constraint of the MS-GIFT approach is its applicabil-
ity predominantly to convex, multi-sided geometrical domains.
Incorporating the harmonic functions and utilizing advanced
multi-patch configurations can be a promising extension of the
proposed method. This enhancement would facilitate the MS-
GIFT approach on domains with concave corners as well as those
including higher-genus topologies.

(2) Developing three-dimensional composite toric parameterization
for convex polyhedra. Although Wachspress barycentric coordi-
nates have been extended to three dimensions [36], building a
bijective mapping between the unit cube and convex polyhedra
still presents a significant challenge.

(3) Examining the boundaries of toric surface patches as NURBS
curves. In practical applications, NURBS-based representations
offer more flexibility and are more common. Consequently, de-
veloping a MS-GIFT method based on NURBS-based B-Rep is
interesting.
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Appendix A. Manufactured solutions for numerical examples

For the numerical examples in Section 5, the boundaries and the
manufactured solutions are as follows:

• Strawberry (Fig. 7).

1 =(𝑥 − 𝑦 + 19)2 − 4𝑦 + 56,

2 =𝑥 + 𝑦 + 2(𝑥
4
+

𝑦
2
− 23

4
)2 − 9,

3 =𝑥 − 𝑦 − 2(𝑥
4
−

𝑦
2
+ 23

4
)2 + 9,

4 =𝑥
5
+

2𝑦
5

− ( 𝑥
10

−
3𝑦
10

+ 47
10

)2 − 28
5
,

5 =1728𝑥3 + 2160𝑥2𝑦 − 15552𝑥2 + 900𝑥𝑦2−

12960𝑥𝑦 + 125𝑦3 − 7884𝑦2 + 62208,

6 = − 1728𝑥3 + 2160𝑥2𝑦 − 15552𝑥2 − 900𝑥𝑦2+

12960𝑥𝑦 + 125𝑦3 − 7884𝑦2 + 62208𝑦.

(A.1)

The manufactured solution in Fig. 7 is

𝒰exact = −10−16
6
∏

𝑖. (A.2)

𝑖=1
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• Bottle (Fig. 10).

1 = (3
4
𝑥 + 1

4
𝑦 − 1)2 − (𝑥 − 𝑦),

2 = (𝑥 −
𝑥 + 𝑦 − 5

4
− 1)2 − (𝑥 + 𝑦 − 5),

3 = 𝑥, 4 = 𝑦 − 1, 5 = 𝑦 − 4,

6 = 𝑦, 7 = 𝑦 − 5, 8 = 𝑥 − 10.

(A.3)

The manufactured solution in Fig. 10 is

𝒰exact = 10−4
8
∏

𝑖=1
𝑖. (A.4)

• Crown (Fig. 12).

1 = sin(3𝑥 + 𝑦 + 6), 2 = sin(3𝑥 − 𝑦 − 6),

3 = (𝑥 + 2)2 + (𝑦 − 2)2 − 4,

4 = (𝑥 − 2)2 + (𝑦 − 2)2 − 4,

5 = sin(𝑦 + 3).

(A.5)

The manufactured solution in Fig. 12 is

𝒰exact = 10−3
5
∏

𝑖=1
𝑖. (A.6)

• Female rotor (Fig. 15).
The manufactured solution in Fig. 15 is

𝒰exact = 𝑒−10
5((𝑥−0.09)2+𝑦2). (A.7)

• Pentagonal prism (Fig. 16)

1 = 𝑥, 2 = 𝑦, 3 = 𝑧, 4 = 2 − 𝑥,

5 = 2 − 𝑦, 6 = 1 − 𝑧, 7 = 3 − 𝑥 − 𝑦.
(A.8)

The manufactured solution in Fig. 16 is

𝒰exact =
7
∏

𝑖=1
 𝑖. (A.9)

Appendix B. Degree specifics of the spline configurations em-
ployed for analysis

Example Degree
Strawberry (Fig. 7) (3, 3)
Bottle (Fig. 10) (2, 2)
Crown (Fig. 12) (2, 2)
Female rotor (Fig. 15) (2, 2)
Pentagonal prism (Fig. 16) (3, 3, 3)
Iron (Fig. 18) (4, 4)
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