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Abstract
The rupture of an atherosclerotic plaque cap overlying a lipid pool and/or necrotic core can lead to thrombotic cardiovascular 
events. In essence, the rupture of the plaque cap is a mechanical event, which occurs when the local stress exceeds the local 
tissue strength. However, due to inter- and intra-cap heterogeneity, the resulting ultimate cap strength varies, causing proper 
assessment of the plaque at risk of rupture to be lacking. Important players involved in tissue strength include the load-
bearing collagenous matrix, macrophages, as major promoters of extracellular matrix degradation, and microcalcifications, 
deposits that can exacerbate local stress, increasing tissue propensity for rupture. This review summarizes the role of these 
components individually in tissue mechanics, along with the interplay between them. We argue that to be able to improve 
risk assessment, a better understanding of the effect of these individual components, as well as their reciprocal relationships 
on cap mechanics, is required. Finally, we discuss potential future steps, including a holistic multidisciplinary approach, 
multifactorial 3D in vitro model systems, and advancements in imaging techniques. The obtained knowledge will ultimately 
serve as input to help diagnose, prevent, and treat atherosclerotic cap rupture.
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Introduction—atherosclerotic plaque cap 
rupture risk

Failure of an atherosclerotic plaque is the culprit of many, 
often disabling or lethal, cardiovascular events, including 
myocardial infarction and stroke [15, 99, 144]. These acute 
events are associated with vascular biomechanics, and the 
cellular composition and matrix architecture of a plaque. 
The most common cause of failure of the atherosclerotic 
plaque is rupture, accounting for approximately 60% of 
events. Plaque erosion (35% of events) and calcified nodules 
(up to 5% of events) can also cause thrombi, however less 
frequently [249]. The probability of rupture is dependent 
on the stage of the atherosclerotic lesion. Virmani and col-
leagues proposed a lesion classification scheme, based on 
histopathological evaluation, starting with intimal thickening 
and progressing to intimal xanthoma, pathological intimal 
thickening, fibroatheroma and finally the vulnerable thin-
cap fibroatheroma [268]. This last phenotype is considered 
as the main lesion with potential for rupture and is, there-
fore, named vulnerable plaque. These vulnerable plaques 
are characterized by a thin collagenous cap (i.e., the fibrous 
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cap), which is often inflamed, calcified, and depleted from 
smooth muscle cells (SMCs) [17, 18, 81, 119, 252]. This 
cap is overlying a large lipid and/or necrotic core which is 
accompanied by inflammation and intraplaque hemorrhage 
[72]. Although great advancements in clinical imaging have 
been made to accurately image those features associated 
with vulnerability [58, 66], like cap thickness [108], the size 
of the lipid and/or necrotic core [181], inflammatory cells 
[85], calcifications [254], and intraplaque hemorrhages [51], 
phenotypic identification of the vulnerable phenotype is still 
found to have suboptimal predictive power for future clinical 
events [68, 176, 259]. Traditionally, a cap thickness of less 
than 65 μm is accepted to define a rupture-prone coronary 
plaque, while for carotid plaques, this threshold is set to 200 
μm [36, 201]. However, clinical studies have shown that 
physical activity can trigger atherosclerotic plaque rupture, 
even in coronary plaques with a thickness of 70–140 μm 
[127]. Furthermore, carotid plaques have also been show to 
rupture at thicknesses up to 500 μm [201]. As such, guide-
lines to identify vulnerable plaques continue to be revised, 
with various phenotypic features of atherosclerotic plaques 
playing a role in creating a rupture-prone phenotype.

Years of extensive research have exposed various bio-
chemical processes that precede and initiate plaque failure, 
as excellently reviewed by others [17, 20, 89, 152]. Rupture 
itself is a mechanical event that generally occurs at the cap 
when local stress levels exceed local tissue strength, which 
underlines the importance of understanding cap mechanics 
to prevent and foresee plaque failure [9, 204]. The stress 
distribution within the cap depends on the cap geometry, 
the mechanical properties of the cap constituents, and the 
external loading conditions (e.g., blood pressure). Neverthe-
less, due to the inter- and intra-cap heterogeneity, the stress 
distributions, as well as ultimate strength values, and fail-
ure mechanisms are substantially different. A wide range in 
ultimate tensile cap strength values have been reported (158 
kPa [234] to 870 kPa [111]). Importantly, geometry, com-
position, and resulting cap stress and strength will change 
in a spatiotemporal manner due to the iterative interplay 
between the cellular populations and environmental cues, 
including matrix properties and mechanical loading [96, 
195, 207, 260].

To improve risk assessment, it is a requisite to highlight 
the importance of cap mechanics in plaque biology and cap 
failure. This review would like to create awareness for this 
topic by evaluating current knowledge on the role of cap 
constituents in plaque cap mechanical (de)stabilization. 
We hereby focus on the end-stage, vulnerable thin cap, and 
assess the role of three components present in this phase. 
The first constituent included is collagen, which is the main 
load-bearing component of the cap [101] and often scarcely 
renewed in vulnerable caps due to SMC depletion and poten-
tial senescence [17, 18, 81, 252]. Second, macrophages 

are discussed as major cell population correlated with an 
enhanced rupture risk [225] by directly initiating extracellu-
lar matrix (ECM) degradation via the secretion of degrading 
compounds like MMPs [175]. Third, the role of microcal-
cifications is emphasized, as being the most abundant type 
of calcification present in the vulnerable plaque cap [116]. 
Microcalcifications are included in this review due to their 
increasingly named role as local stress concentrators, pos-
sibly being a cause of cap rupture [42, 52, 116, 257]. We will 
elaborate on the contribution of these three constituents to 
cap mechanics directly, their biological interplay and discuss 
future work that could enhance our biomechanical under-
standing to better identify the cap at risk of rupture.

Cap components: macrophages, collagen, 
and microcalcification

Macrophages

Atherosclerosis is a lipoprotein-induced chronic inflam-
matory disorder [263]. Upon endothelial dysfunction, low-
density lipoprotein (LDL) accumulate within the intima 
and oxidize, after which monocytes are recruited [49, 62, 
147]. Inside the vessel intima, monocytes mature into 
macrophages, behaving as either more pro-inflammatory 
(i.e., M1) or anti-inflammatory (i.e., M2), depending on 
their activated intracellular signaling pathways and the 
cellular microenvironment [26, 231]. Although lesional 
macrophages are heterogeneous and can differentiate into 
various phenotypes, it is generally accepted that the M1/
M2 ratio is high in vulnerable caps [76], with more pro-
inflammatory-like macrophages in the shoulder regions and 
lipid core, while fibrous mid-cap sections generally contain 
both phenotypes [76, 228]. Many of the macrophages within 
the plaque can phagocyte lipids [146] and remove apoptotic 
cells and other cellular debris [217]. However, due to their 
inability to digest oxidized LDL, these macrophages become 
oversaturated with lipids and transform into foam cells, con-
tributing to formation of a lipid pool and/or necrotic core 
[143].

In line with plaque heterogeneity, the macrophages that 
reside in the plaque are considered to be highly versatile and 
plastic [24, 54, 110, 149]. The generally proposed M1/M2 
macrophage diversity is oversimplified, and various other 
phenotypes have been proposed to exist (i.e., M2a, M2b, 
and M2c). Recently, athero-specific subsets (M4, M(Hb), 
and Mhem) were observed in human plaques [24, 32, 54, 
110, 149, 228, 262], but although they are considered to be 
either proatherogenic (M4) or atheroprotective ((M(Hb) and 
Mhem) [26], how these subsets affect their nearby microen-
vironment and alter cap mechanical properties is still largely 
unknown.
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Of note, besides macrophages, various other immune 
cells play a role in the initiation and progression of athero-
sclerosis. In thin fibrous caps specifically, large numbers of 
macrophages and T cells were found to correlate with an 
enhanced rupture risk [225]. Herein macrophages are known 
as the principal cell actively secreting degrading compounds, 
including matrix metalloproteinases (MMPs) [182], whereas 
T cells predominantly have an instructing role stimulating 
macrophages to release MMPs [174]. Therefore, the mac-
rophage is chosen as the focus of this review.

Collagen

Soluble factors produced by inflammatory cells that reside 
within the plaque induce the migration and proliferation of 
vascular smooth muscle cells (SMCs) toward the intima. It 
is generally assumed that they undergo a transition from a 
quiescent, contractile phenotype to a proliferative, synthetic 
phenotype. SMCs synthesize ECM molecules, including col-
lagen, elastin, as well as glycosaminoglycans (GAGs) and 
proteoglycans. These ECM components induce thickening of 
the intima layer and contribute to the formation of a fibrous 
plaque cap [144]. The composition of ECM components 
changes during atherogenesis. In advanced plaques, col-
lagen is the major constituent of the ECM accounting for 
up to 60% of the total protein content [14, 82, 114, 203, 
218], while in healthy arteries, the majority of protein is 
elastin [82]. Moreover, the ECM of fibrous caps of advanced 
plaques is subjected to aging as a consequence of reduced 
SMC proliferation and increased SMC death and senes-
cence, while the growing core extends outwards, resulting 
in further thinning of the fibrous cap [17, 18, 81, 252]. The 
main collagen types in the fibrous cap of advanced plaques 
are the load-bearing fibrillar collagens type I and III [14, 
114, 193, 218]. Both types are diffusely (co)distributed in 
plaques, with their local content and relative proportions 
varying both within and between plaques [114, 165]. The 
tensile strength and torsional stability of these collagens pri-
marily regulate cap structural integrity [14, 114, 218]. Other 
collagen types regularly detected in atherosclerotic lesions 
include collagen type IV, V, VI, and VIII [114, 193, 250], 
with varying primary locations and functions.

Intermolecular covalent cross-links are formed between 
the collagen molecules, catalyzed by enzymes such as lysyl 
oxidase (LOX) [151, 161], and proteoglycan-rich matrix 
is deposited between fibrils that together affect collagen 
mechanical performance [230]. Furthermore, collagens in 
atherosclerotic plaques are exposed to extracellular gly-
cation- or oxidation-induced cross-linking, also called 
advanced glycation end products (AGEs)-related cross-link-
ing, impairing functional interaction of collagen with cells 
and stiffening the matrix [87, 210, 242]. AGEs in human 
plaques have been found predominantly in inflammatory 

atheromatous lesions that are often classified as rupture-
prone plaques [92].

Microcalcification

It is currently widely accepted that vascular calcification 
is an active, cell-mediated process [40, 139], instead of a 
passive accumulation of calcium. Crystalline hydroxyapatite 
(HAP) is the main component of calcifications [166, 171]. 
In addition, precursors of HAP, such as amorphous calcium 
phosphate, octacalcium phosphate, and dicalcium phosphate 
dehydrate, have been reported in atherosclerotic lesions [88, 
133, 191, 205, 270].

Multiple mechanisms for the formation of calcification 
have been suggested. One of these is the release of SMC- or 
macrophage-derived [115] calcifying extracellular vesicles 
(EVs), where calcium crystals nucleate on the EV surface 
and mature over time into HAP [105, 191]. Another potential 
pathway is osteochondrogenic trans-differentiation of vascu-
lar SMCs. Several lines of evidence showed that atheroscle-
rotic calcification shares features with bone formation [148, 
183, 219]. Apoptosis of vascular SMCs and macrophages 
also seems to play a substantial role in the onset of calcifi-
cation, as calcium deposits are often located near or in the 
necrotic core and in close proximity to apoptotic cells [110, 
164]. Moreover, loss of calcification inhibitors is known to 
influence calcification formation. All these mechanisms have 
been extensively reviewed [31, 40, 124, 134, 183, 209].

Different categories of calcifications can be observed in 
the cap, categorized by their size. Macrocalcifications can be 
divided into three types: speckled, spotty calcifications (~ 50 
µm), sheet-like fragments (> 2 mm) and diffuse segments 
of calcifications (> 5 mm) [15]. Various studies have shown 
that macrocalcifications can lower overall stresses in the cap, 
due to their load-bearing capacity [150, 264]. Where macro-
calcifications are, thus, often seen as a cap-stabilizing com-
ponent, computational studies show that microcalcifications 
(< 50 µm) might act as local stress concentrators. Microc-
alcifications are distributed heterogeneously throughout the 
necrotic core, where they are believed to be not mechanically 
relevant, and in the cap [156], where they can contribute to 
rupture [42, 52, 116, 257]. Since it has been shown with 
high-resolution µCT that microcalcifications are the most 
abundant type of calcification in the vulnerable plaque cap 
[116], we have chosen to focus on the role of microcalcifica-
tions on cap mechanics in this review.

Cap components: role in cap mechanics

Where the impact of mechanics is extensively studied in 
atherogenesis [95], its role in cap rupture is evident but less 
well understood. Plaques are exposed to various mechanical 
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forces (Fig. 1A) that can induce peculiar mechanical behav-
iors that vary with plaque geometry, location, and composi-
tion [9, 101]. Thin caps of vulnerable plaques must possess 
sufficient strength to endure the force-driven stresses to 
which they are exposed (Fig. 1B). The most influential stress 
experienced by the cap is the circumferential stress induced 
by the blood pressure, acting perpendicular to the arterial 
wall, leading to deformations within the cap. The effect 
of blood-flow-induced shear stress on cap deformation is 
believed to not be substantial as circumferential stresses are 
orders of magnitude higher. Their influence on cap rupture 
can, however, not be neglected as shear stress is believed to 
affect cap erosion as well as endothelial function and thereby 
cap biological composition [84, 160]. Axial tensile stress, 
as a consequence of among others hemodynamic loading, 

differences in vessel geometry and plaque morphology, is 
believed to predominantly affect the rupture events upstream 
of the plaque where these stresses are highest [223].

As cap constituent material properties affect the stress 
distribution throughout the cap and determine the strength 
of the cap, this section specifically elaborates on the vari-
ations in collagenous matrix properties, macrophages, and 
microcalcification seen within human atherosclerotic plaque 
caps (Fig. 1C) and the impact thereof on cap mechanics and 
stability (Fig. 1D). Cap mechanics and stability are hereby 
described on the mesoscale by terms such as tissue stiffness 
and strength as defined in Table 1. For an in-depth descrip-
tion of the complexity of plaque biomechanics, nano- and 
micro-scale mechanics of the collagenous matrix, as well as 
the effect of collagenous matrix properties on SMC-driven 

Fig. 1   Graphical representation of a vulnerable plaque and cap with 
its most important mechanical stressors, cap components, and their 
influence on tissue mechanics. A A simplified graphical representa-
tion of a longitudinal section of an atherosclerotic plaque with the 
primary forces acting on it. B Zoom-in of the cap region with the pri-
mary stressors locally initiating tissue stress. C Graphic of a trans-

verse section of a vulnerable plaque with a fibrous cap, showing the 
shoulder (i) and mid-cap (ii) regions. D The cap compositional char-
acteristics which influence tissue mechanics, being collagen, mac-
rophages, and microcalcifications, and their effect through various 
individual characteristics on cap mechanics and consequent cap rup-
ture. Created with BioRender.com
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matrix formation and degradation, we refer the reader to the 
following literature [9, 39, 80, 84, 193, 203, 223, 255, 265].

Role of collagen on cap mechanics

The plaque cap resistance to rupture largely depends on the 
load-bearing collagenous network [8, 100, 103]. This aspect 
in turn depends upon the balance between collagen synthesis 
and degradation, the latter being significantly affected by 
macrophages that secrete proteases [145] as discussed in 
“Interplay between macrophages and collagen”. Although 
increasing collagen amount has been correlated with incre-
ments in stiffness and strength for human plaques and their 
fibrous caps [43, 59, 135], correlations were not always con-
vincing. This can be explained by the knowledge that not 
solely amount but the cumulative effect of nano- to macro-
scale collagen properties determine its mechanical behav-
ior [80]. Variations in molecular structure and intracellular 
and extracellular processing can reflect in the collagen type, 
alignment as well as its cross-linking. This section focuses 
on those studies that explored the effect of these properties 
on cap mechanics.

The primary contributors to the mechanical strength of 
tissue in the cap are the fibrillar collagens [14, 230]. Since 
collagen type I is believed to be profibrotic and modulate 
tensile strength, and collagen type III is associated with tis-
sue elasticity [193, 222], the relative presence of both types 
is expected to affect mesoscale cap mechanical behavior. 
To assess this impact, Burleigh et al. compared the collagen 
type I and III proportion with the ultimate tensile strength 
for ulcerated and non-ulcerated human aortic plaque caps 
and adjacent intima. Where the strength of the collagen in 
the caps appeared to be lower when compared to the col-
lagen of adjacent intima, the proportion of collagen type I 
to III was not related to the ultimate tensile strength [37]. 
Although not directly related to atherosclerosis, several 

studies in tendons did demonstrate an impact of varying 
proportions of collagen type on tissue stiffness. These stud-
ies showed that the quantity of collagen type III is inversely 
correlated to the elastic modulus [12, 34]. These variances 
in tissue stiffness are believed to be related to the differences 
in protein structure, and fiber and fibril diameter [3, 23]. 
The presence of fibrillar collagen type V, as well as the non-
fibrillar collagen types IV, VI, and VIII in atherosclerotic 
plaques potentially influences the tissue mechanical stiff-
ness and strength via affecting either collagen type I fiber 
diameter (type V) [3], SMC activation (type IV) [14] or the 
interaction with other ECM components (type VI/VIII) [21, 
193], though their direct effect on plaque tissue mechan-
ics remains to be explored.

In addition to collagen type, several studies have dem-
onstrated that less dispersed alignment of collagen fibers 
into the load direction correlates with greater tissue strength 
and/or stiffness for both healthy arteries [214] as well as 
atherosclerotic plaque caps [111]. However, where colla-
gen fibers in healthy arteries have a distinct oriented col-
lagen network, intra- and inter-plaque fiber orientation vary 
substantially [8]. Within human coronary plaques, shoulder 
regions (Fig. 1A) were defined by Douglas et al. as more dis-
persed and less aligned when compared to the mid-cap [64], 
while Tornifoglio et al. showed that the rate of disorganiza-
tion and microstructural arrangements varied considerably 
between human plaque caps [238]. Mechanically, the more 
disorganized samples appeared to be weaker in comparison 
to the samples with a more predominant circumferential 
orientation, when exposed to uniaxial tensile testing in the 
circumferential direction [238]. These findings suggest that 
collagen fiber alignment might be a relevant parameter for 
rupture risk assessment.

Finally, cross-linking of collagen is known to impact local 
and global mechanical properties. Enzymatic cross-linking 
of collagen, a process controlled by enzymes such as LOX, 

Table 1   Mechanics terminology

*Various definitions possible, however aimed at simple definitions for non-expert in the field

Descriptor Description*

Strength The maximum capacity to withstand a load, expressed as a stress threshold value
Ultimate tensile strength/stress The maximum stress that can be withstand while being exposed to tensile loads
Stress Force per unit area
Peak circumferential stress The highest stress value in the circumferential direction (the direction that undergoes 

(highly likely) the largest deformation in vivo)
Strain Deformation measure
Uniaxial extension Stretch in only one direction
Stiffness Measure of the material’s resistance to elastic deformation
Elasticity The ability to return to its original shape after undergoing deformation
Elastic (Young’s) modulus Measure of the material’s resistance to elastic deformation, assuming a linear response
Tensile testing A test wherein a sample is subjected to a controlled tensile load, often until failure
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is believed to be essential for collagen fibril structure and 
integrity, which directly influences the tissue strength [198, 
224]. In human plaques, LOX presence was associated with 
a more stable plaque phenotype and LOX expression cor-
related negatively with markers of immune activation and 
the incidence of myocardial infarction (MI) [185], suggest-
ing a protective mechanism. Mechanically, LOX deficiency 
has been shown to cause serious collagen network weak-
ening [154] and, although related to human heart valves, 
enzymatic cross-links were shown to play a dominant role 
over collagen content affecting valve biomechanical tissue 
behavior [13].

As the cross-linking of collagen reduces its sensitivity 
to proteolytic degradation [159], one could suggest that 
cross-linking enhances cap mechanical strength. However, 
a reduced sensitivity to proteolytic degradation also contrib-
utes to impaired matrix remodeling, as tissues with a slow 
turnover are more susceptible for irreversible AGE-driven 
cross-linking [79]. AGEs are related to enhanced tissue stiff-
ness [69, 224], due to limited sliding between fibers and 
fibrils [79].

In conclusion, it is the sum of all collagen properties, 
such as type, orientation, and cross-linking, that determines 
its mechanical strength and stiffness.

Role of macrophages on cap mechanics

Macrophages play an important role in the onset and pro-
gression of atherosclerosis, as well as the process of plaque 
cap rupture [11]. More pro-inflammatory macrophages are 
present in the shoulder region [228], where 65% of ruptures 
occur [153]. One of the first studies which demonstrated 
that caps of ruptured plaques have higher amounts of mac-
rophages compared with intact caps was performed by Len-
don et al. [136]. In this study, strips of plaque cap tissue 
underwent uniaxial extension and ruptured caps were com-
pared to intact caps. Higher macrophage accumulation was 
associated with a lower ultimate tensile stress [136], sup-
porting the hypothesis that macrophage infiltration increases 
rupture risk. By combining immunostaining of macrophages 
and the onset of events in patients, a positive correlation was 
found between macrophage infiltration and the occurrence 
of cerebral ischemic events [104] and acute coronary symp-
toms [163]. Similarly, the analysis of cellular characteris-
tics in rupture sites of thrombosed arteries extracted from 
MI patients revealed macrophages to be the dominant cell 
type at the site of rupture, suggesting an active inflammatory 
reaction [251]. Kolodgie et al. demonstrated extensive apop-
tosis of macrophages at the rupture site by staining lesions of 
sudden coronary death, suggesting a potential destabilizing 
role of apoptotic macrophages in plaque caps [120]. How-
ever, it should be noted that analysis of caps post-rupture 

cannot be used to conclude that macrophages were the pri-
mary cause of rupture.

To be able to assess the role of macrophages on local 
tissue mechanical properties, intravascular elastography 
was performed [122, 212], and local high-strain spots were 
correlated with the presence of macrophages [122]. Uni-
axial tensile tests with notched fibrous cap tissues were per-
formed to characterize rupture behavior, where caps with 
higher macrophage density were found to rupture at lower 
stresses [59]. Potential correlations between macrophage 
presence and rupture behavior could be explained by the 
indirect role that macrophages play in the degradation of the 
matrix, which will be elaborated on in “Interplay between 
macrophages and collagen”.

The experimental results discussed above were validated 
by computational modeling using a patient-specific set of 3D 
computational models [232]. To be able to reflect inflamma-
tion in the model, material stiffness in the cap was reduced to 
reflect cap weakening due to inflammatory processes. This 
weakening led to large cap strain conditions when combined 
with a thin cap and hypertension. Furthermore, the lower 
stiffness led to lower cap stress [232].

Macrophages and inflammatory processes, thus, seem to 
affect cap mechanics and rupture. However, the number of 
experimental studies is limited.

Role of microcalcification on cap mechanics

Microcalcifications are prevalent in atherosclerotic caps 
and non-uniformly distributed in the shoulder and mid-cap 
regions [157]. These calcified deposits are believed, based 
on ex vivo histopathological observations combined with 
computational simulations, to influence cap rupture [204].

Microcalcifications can amplify the stresses in the cap 
[25, 41, 200, 245, 246] and transfer the peak cap stress 
(PCS) to their location in the cap [257]. Moreover, microc-
alcifications have the most detrimental effect depending on 
their location [257]. Specifically in regions of high stress 
[245] or thin caps [245, 246], microcalcifications can induce 
high mechanical stress to promote cap rupture.

Aside from location, morphological characteristics of the 
microcalcification, such as the size and shape, can influence 
the fibrous cap stress. A critical microcalcification diameter 
is described by Kelly-Arnold et al. from 5 to 65 μm. Outside 
this range, microcalcifications are thought to be less harm-
ful [116, 155]. This critical size is, however, also depend-
ent on their localization, as microcalcifications located 
in a thin cap were shown to compromise the mechanical 
stability of the cap the most [56]. It is currently, however, 
not known in what way the ratio of the microcalcification 
size and cap thickness influence each other. Distinct from 
the spherical microcalcifications, elongated microcalcifica-
tions substantially increase the cap stress [41, 52, 245]. In 
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addition, higher volume fraction of microcalcifications also 
increases the fibrous cap stresses [257], and interparticle 
spacing has been shown to be a principal determinant of 
rupture risk [155]. Cardoso et al. showed that local stress 
levels are increased by a factor of five for closely spaced 
microcalcifications [41, 116, 157]. In the fibrous cap, most 
microcalcifications are situated together in clusters [109], 
which could, thus, increase the stress accumulation even 
more than a single microcalcification. Furthermore, their 
alignment with the tensile axis can significantly increase cap 
stress [41, 52, 116]. Notably, these findings are almost all 
based on numerical studies.

Experimentally, the effect of micro-beads, representing 
microcalcifications with varying diameters and concentra-
tions, within a silicone-based material has been investigated 
[55]. Larger beads (diameter > 80 μm) reduced the ultimate 
tensile stress significantly, while smaller beads (diameter 
6 μm) only were of effect in thin (100 μm) experimental 
samples. Furthermore, higher concentrations of particles 
correlated with lower stresses at rupture[55], endorsing the 
results from numerical models.

Microcalcifications are, thus, assumed to act as local 
stress amplifiers in the fibrous atherosclerotic cap, with 
microcalcification size, shape, spacing, and alignment with 
the tensile axis as key determinants in the resulting stress.

The interplay 
between collagen, macrophages, and 
microcalcification

While collagen, macrophages, and microcalcifications each 
distinctively affect cap mechanics, as discussed in “Cap 
components: role in cap mechanics”, they cannot be consid-
ered as independent contributors. Their continuous interplay 
affects plaque cap development and ultimate rupture risk 
(Fig. 2). This section sets forth on the current knowledge 
regarding their interplay. Other cellular players that are gen-
erally accepted to be involved in fibrous cap destabilization, 
like T cells and SMCs, are occasionally mentioned. Figure 2 
provides an overview of the most important reviews describ-
ing their interplay with the three compositional parameters 
elaborated on in this review.

Interplay between macrophages and collagen

Regarding collagen-dependent cap strength, macrophages 
play a dual role, presenting a matrix-degrading or a matrix-
preserving role. Each role is accompanied by the secretion 
of a specific set of active compounds that cumulatively affect 
cap (in)stability. This section focusses on how macrophages 
degrade or preserve their surrounding collagens, by secret-
ing (i) proteases, (ii) cytokines, (iii) ROS, and (iv) ECM 

components, and ends with the reciprocal effect of the col-
lagenous matrix itself on macrophage biology.

The most underlined contribution of the macrophage to 
plaque rupture involves the secretion of proteases, including 
metalloproteases (MMPs), cysteine (e.g., cathepsins), and 
serine proteases [63, 126, 175, 247]. There is compelling 
evidence that human atherosclerotic plaques are associated 
with the presence of macrophages and proteases, and this 
presence was linked to thin fibrous caps, and even cap rup-
ture [1, 63, 229]. While an excess of degrading proteolytic 
enzymes over their inhibitors contributes to collagen remod-
eling and cap destabilization [175, 266], it is worth noting 
that the type and amount of protease and their inhibitors 
secreted by macrophages can vary based on their differentia-
tion state and the stimuli they perceive [175, 186].

The load-bearing fibrillar collagens type I and III are 
resistant to most proteases and can only be cleaved by cer-
tain MMP collagenases, including MMP-1, -8, -13, and -14 
(MT1-MMP) [70, 71] that can be secreted by macrophages 
in copious amounts [173, 175]. These collagenases cleave 
collagen I–III into fragments that quickly denature into gela-
tin, which can be further degraded by MMP-2 and -9 [4].

Although MMP-2 and -9 are classified as gelatinases, 
they also possess collagenolytic activities that affect fibril-
lar collagens [7, 22, 189]. Of the cathepsin family, cathepsin 
K has been identified as the most potent cathepsin affecting 
tissue strength, by cleaving proteoglycan-GAG interfibrillar 
bridges as well as fibrillar collagens [73, 142, 187].

Of note, proteases not only actively degrade collagen; 
MMP-2, -4, and -9 are known stimulators of SMC prolifera-
tion and migration [172], suggesting a possible matrix-pre-
serving and stimulatory role for these macrophage-secreted 
proteases.

Besides proteases, macrophages secrete various active 
compounds. Frequently observed ones to be present in vul-
nerable atherosclerotic plaques include the inflammatory 
cytokines IFN-ϒ [30], TNF-α [188], as well as ROS [179] 
that all have been described to increase protease secretion 
and activity [199, 229, 266], contributing to collagen degra-
dation. Moreover, they have been shown to also destabilize 
the collagenous matrix by either being involved in SMC 
apoptosis, inhibiting SMC proliferation, reducing collagen 
production or inhibiting LOX expression in vascular human 
or animal SMCs [10, 33, 93, 184, 226], increasing plaque 
vulnerability.

Cytokines that are generally thought to be on the matrix-
preserving side include platelet-derived growth factor 
(PDGF) and transforming growth factor-β (TGFβ). PDGF 
has been found within macrophages in all phases of ath-
erosclerotic plaque development [206] and is known for its 
mitogenic potential stimulating SMC migration and prolif-
eration, inducing intimal growth [159]. TGF-β is secreted 
by the more anti-inflammatory activated macrophages [26] 
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and has a well-established role in ECM synthesis, enhanc-
ing collagen deposition [208, 237]. While both factors have 
been correlated to tissue stabilization, their protective role 
regarding cap rupture must be interpreted with caution as 
some studies show correlations to cellular apoptosis [202], 
calcification [220], and cap rupture [28].

Macrophages are furthermore a source of AGEs, that are 
formed in conditions of hyperglycemia or oxidative stress, 
which are seen in aging, diabetes, and settings of inflamma-
tion and hypoxia [242]. AGEs have been shown to promote 
vascular damage and accelerate atherosclerotic plaque pro-
gression, partly through a direct mechanism of altering ECM 
molecules, including collagen. AGE products are known to 

form protein adducts or cross-links, and accumulate for 
years, contributing to an irreversible, highly cross-linked 
collagenous matrix and a stiff fibrous cap [79, 121, 242]. 
It was discovered that macrophages can synthesize ECM 
components, including collagen, themselves [123, 215, 256]. 
Studies showed that macrophages express all collagens and 
collagen-related mRNAs and were able to secrete collagen 
type VI and VIII considerably in vitro [215, 256] and in 
human atherosclerotic plaque conditions [256].

Finally, the collagenous matrix itself plays an important 
role in regulating various processes of macrophage biol-
ogy, including monocyte-to-macrophage differentiation, 
lipid uptake [258], metabolism [244], polarization [131], 

Fig. 2   The interplay between the main cap components: collagen, 
macrophages, and microcalcifications and essential reviews discuss-
ing the influence of SMC’s and T cells on these components [16, 65, 
74, 118, 137, 231, 243, 269].   A Macrophages influence the colla-
genous matrix by secretion of cytokines, ECM components, AGEs, 
and proteases. Furthermore, integrins detect matrix properties and 
regulate processes of macrophage biology, by which the collagen-
ous matrix properties, thus, modulate cell functionality. B Collagen 
serves as a scaffold for microcalcification formation and collagen 

type, cross-linking and degradation can affect the formation of micro-
calcifications. Furthermore, microcalcifications themselves affect 
collagen architecture. C Macrophages release cytokines, osteogenic 
factors, proteases, and EVs that can alter calcification formation. In 
addition, macrophage apoptosis contributes to microcalcification for-
mation. Microcalcifications, in turn, modulate macrophage function-
ality by promoting release of pro- or anti-inflammatory factors. Cre-
ated with BioRender.com
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migration mode [86] as well as their ability to secrete 
proteases [138, 258]. It has been shown in vitro that mac-
rophages increase their MMP-9 secretion when cultured on 
monomeric type I collagen, in comparison to when they 
were exposed to the polymerized variant [138]. Lastly, 
AGEs are known to affect cells via its interaction with the 
key receptor for AGE (RAGE), which is present in almost 
all cells that reside in a plaque, including macrophages, and 
induces the subsequent secretion of pro-inflammatory com-
pounds, including ROS [242].

In conclusion, macrophages secrete a plethora of mul-
tifaceted active compounds that cumulatively determine 
collagenous matrix properties and rupture risk. In turn, 
macrophage biology is affected by collagen. Therefore, mac-
rophage and collagen continuous crosstalk can contribute to 
changes in the local microenvironment that promote plaque 
rupture.

Interplay between collagen and microcalcification

Collagen plays a complex and multifactorial role in micro-
calcification formation, and many of the underlying mecha-
nisms are currently being studied. Collagen characteristics 
that are named to influence microcalcification formation 
include (i) amount, (ii) integrity, (iii) type, (iv) alignment, 
and (v) cross-linking.

Hutcheson et al. found an inverse relationship between 
collagen amount and calcification, with microcalcifications 
forming in regions of collagen fiber degradation [105], 
as disrupted or fragmented collagen fibers may serve as 
nucleation points for microcalcification formation [5]. By 
aggregation of EVs in between the collagen fibers, calci-
fying structures were formed [105]. Collagen was shown 
to act as a scaffold for microcalcification formation, where 
collagen alignment directly influences microcalcification 
shape, by modulating calcification EV aggregation to gain 
an elongated morphology [105]. Thus, local collagen organi-
zation can influence calcification development and create a 
multitude of calcification-fibrous tissue interactions, with 
varying effects on tissue mechanics [15]. Calcifying EVs 
locate in proximity to collagen fibrils [113, 213] and inter-
estingly, EVs isolated from vascular SMCs were only capa-
ble of inducing calcification along collagen type I fibrils 
[47]. Type I collagen was also shown to promote calcifica-
tion of vascular SMCs, by stimulating their differentiation 
into osteoblast-like cells [102, 112, 177] or increasing min-
eralization parameters such as calcium incorporation and 
mineral formation [255]. Type IV collagen, on the contrary, 
inhibited these processes [255]. The overall matrix stiffness 
is also a known contributor to vascular calcification [177]. 
Matrix stiffness can be detected by matrix-binding cell sur-
face receptors such as discoidin domain receptor tyrosine 
kinases (DDRs) and integrins, present on vascular SMC 

[4]. DDR-1 has been shown to act as a mechanical sensor 
altering matrix deposition [125, 255], activating MMPs [29], 
promoting the secretion of EVs [125, 255] and regulating 
osteogenic differentiation of SMC [178], ultimate processes 
that contribute to calcification. Matrix stiffening, as a result 
of AGE-dependent cross-linking, was found to hinder colla-
genase-mediated degradation, subsequently promoting SMC 
differentiation into adapting the osteogenic phenotype [235]. 
In addition, LOX-dependent cross-linking was linked to vas-
cular calcification [112].

Taken together, various collagen characteristics affect 
microcalcification formation, but there is a paucity of infor-
mation on reciprocal effect of microcalcifications on col-
lagen properties. In view of tissue mechanics, one could 
speculate that microcalcifications can affect collagen remod-
eling processes, while microcalcification-induced stress 
accumulations might locally affect collagen integrity. Fur-
thermore, microcalcifications can merge to form macrocal-
cifications, causing altered interactions with the collagenous 
matrix. Advanced macrocalcifications can be also formed 
when collagen fibers themselves calcify [15, 98], but osteoid 
metaplasia resembling bone structure is relatively rare event. 
Gijsen et al. showed that four distinct fiber patterns around 
macrocalcifications can be recognized: attached, pushed-
aside, encircling, and random [83]. Only in the first pattern, 
the fiber structure was still visible inside the calcifications, 
indicating that this type of calcification might develop due to 
fiber mineralization, while the others are formed due to the 
agglomeration of EVs in between the collagen fibers [83].

Interplay between macrophages 
and microcalcification

The hypothesis that macrophages and microcalcifications 
are involved in a complex interaction first originated from 
studies where arterial inflammation was found to be corre-
lated with the localization of calcifications [2, 35, 44, 169]. 
Microcalcifications were shown to induce M1 macrophage 
polarization [162], in comparison to macrocalcification, that 
was associated to a M2 phenotype instead [130, 132, 227].

The reciprocal effect of inflammation on microcalcifica-
tion formation has been described at various interconnected 
levels: (i) the release of calcifying EVs; (ii) through the pro-
duction of proteases; (iii) through the release of cytokines 
and osteogenic factors; and finally (iv) through the induction 
of apoptosis.

First, the release of calcifying EVs plays a role in the 
formation of microcalcifications. Cells present in the ath-
erosclerotic cap, such as vascular SMCs and macrophages, 
secrete EVs that are loaded with mineralization inducing 
factors, including tissue non-specific alkaline phosphatase 
(TNAP), thus serving as a nucleating point for calcification 
[105, 106]. Hutcheson et al. demonstrated that aggregation 
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of multiple calcifying EVs causes the formation of micro-
calcifications in atherosclerotic lesions [105]. In addition, 
it has been demonstrated that macrophage-derived EVs, 
enriched with S100A9 and Annexin V, accelerate microcal-
cification formation in chronic kidney disease and diabetes 
mellitus [115, 171]. Taken together, vascular cell-derived 
EVs can be seen as active contributors and building blocks 
of microcalcifications.

The second pathway by which macrophages affect calci-
fication is through collagen degradation, as discussed above, 
resulting in nucleation loci for calcification [5, 141, 170]. 
Various MMPs, mainly produced by activated macrophages, 
have been associated with calcification. MMP-9 and MMP-
10 enhance both inflammatory and calcifying processes [48, 
197], and MMP-1 levels are found to be higher in calcified 
plaques compared to non-calcified lesions [194].

Besides these proteases, there are also factors released 
by macrophages such as cytokine TNF-α, that trigger osteo-
blastic activity in vascular SMCs, consequently promoting 
calcification [6, 107, 219]. Not only do macrophages trig-
ger osteoblastic activity in vascular SMCs, they also release 
osteogenic factors directly. In the tumor microenvironment, 
macrophages have been shown to tune microcalcification 
formation by the release of osteogenic factors (e.g., BMP-2 
[253]) and inhibiting factors (e.g., osteopontin [50, 180]). In 
line with the secretion of osteogenic factors, several studies 
suggested that macrophages themselves can contribute to an 
osteoblast-like or osteoclast-like phenotype, aggravating or 
resorbing vascular calcification [38, 75, 140].

Apoptosis of macrophages (and macrophage-induced 
apoptosis of SMCs [33]) might be yet another pathway 
resulting in the onset of calcification. Various lines of 
research have suggested that calcification initiates within 
cell debris, and that necrosis and apoptosis might, there-
fore, induce calcification by serving as nucleation sites [53, 
67, 196]. Microcalcifications often form around the necrotic 
core [209], within a dense population of macrophages and 
apoptotic debris [120]. When phagocytic clearance of apop-
totic bodies (i.e., efferocytosis) is compromised, apopto-
sis will transition into secondary necrosis, increasing the 
amount of calcification [236].

Not only do inflammatory processes affect calcification, 
but vice versa in a procalcified environment with elevated 
phosphate levels, macrophages shift to a M2 phenotype 
[248]. Within this in vitro study, macrophages showed anti-
calcifying activity, which may protect the tissue from further 
calcification [248]. M2 macrophages phagocytize necrotic 
fragments and apoptotic cells [117], limiting nucleation sites 
for calcification. Macrophages also encapsulate, internalize, 
and resorb deposits of calcium [129, 168, 190] such as HAP 
particles or related precursors that have been shown to dis-
tinctly induce pro- [46, 168, 190], anti- [267] or ‘hybrid’ 
macrophage phenotypes in vitro, a process that depends 

on microcalcification size and shape [132, 167, 227]. 
Whether these observations can be translated to the plaque 
itself remain to be examined. Deep phenotyping studies of 
plaque macrophages in proximity to calcification would help 
explaining the interaction between calcification and mac-
rophages. Resent histological evaluation of human carotid 
plaques showed that CD163 and CD86 positive cells corre-
lated with macrocalcifications, while plaques with microc-
alcifications had a high presence of M1 macrophages [162]. 
On the contrary, another study showed that CD163 + M(Hb) 
macrophages can restrain vascular calcification in vitro and 
demonstrated an inverse correlation between CD163 + mac-
rophages and vascular calcification in human atherosclerotic 
plaques [211].

Overall, these observations insinuate that microcalcifica-
tions are not merely a passive result of persistent inflamma-
tion but also initiate a feed-back loop controlling inflamma-
tion, and consequently contribute to the disease progression 
and cap rupture risk. Nevertheless, many reciprocal relation-
ships between macrophages and calcification remain to be 
exposed.

Outlook

Throughout this review, we emphasized that the presence, 
characteristics, and iterative interplay of collagen, microc-
alcification, and macrophages have clear implications for 
tissue mechanics and consequently the risk of rupture. We 
believe that enhanced mechanistic insight into how biologi-
cal processes change cap mechanical properties is a prereq-
uisite for identifying the cap at risk of rupture.

In view of cap mechanics and the interplay between col-
lagen, macrophages, and microcalcification, it can be con-
cluded that much is still largely unknown (Fig. 3). Regard-
ing collagen, emerging studies focus on the mechanical 
properties of collagen using a bottom-up approach studying 
nanoscale collagen mechanics [80], to be able to link this 
to mesoscale. In addition, increasing attention is being paid 
to the differences in global and local mechanical behavior 
[57, 241]. With respect to microcalcification, in-depth his-
tological or micro-CT analyses of patient material, assess-
ing microcalcification clustering, particle shape and density, 
are lacking. In addition, there is limited knowledge about 
microcalcification surface topography, which might greatly 
influence macrophage functionality [132] and consequently 
the collagenous matrix. Concerning macrophage heterogene-
ity, more athero-specific subsets are found to exist, mainly 
due to advances in single cell analysis [60], that provides 
a plethora of compounds affecting plaque properties and 
preventing rupture risk. The generally accepted statement 
that primarily pro-inflammatory macrophages are involved 
in rupture is obsolete as more atheroprotective subsets have 
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been correlated with plaque vulnerability [19, 211]. A bet-
ter distinction regarding macrophage phenotype and func-
tion should be made in relation to the environment to better 
understand macrophage-driven cap weakening. Further-
more, the impact of other ECM components (e.g., elastin, 
GAGs) [221, 230], or immune cells (non-macrophages) [61] 
needs to be assessed.

To fill the knowledge gaps, a holistic multidisciplinary 
approach is needed where the  fields of immunopathol-
ogy, vascular biology, biomechanics, tissue engineering, 
and biomedical engineering are combined. Many of the 
experimental studies discussed utilize animal, 2D in vitro 
or numerical models. Although informative and required, 
tissue content and mechanics are known to substantially 
diverge between animals and humans [97] and direct transla-
tion of 2D in vitro or numerical work to human cap mechan-
ics is complex. To improve translatability and to validate 

computational approaches, more sophisticated 3D in vitro 
platforms are required that increasingly resemble pathophys-
iology, wherein human cells are exposed to various environ-
mental factors simultaneously in a controlled manner (i.e., 
a multifactorial 3D in vitro model) [128]. Examples of such 
models include the collagen hydrogel that was utilized by 
Hutcheson et al. to mimic structural features of the athero-
sclerotic plaque to study microcalcification formation [106]. 
In addition, Mallone et al. bioengineered atherosclerotic 
plaques to investigate etiopathogenesis [158]. Our group 
recently made use of tissue engineering concepts to scruti-
nize relationships between tissue composition, the presence 
of microcalcifications, and mesoscale mechanical properties 
[109, 261]. Similar model systems can also be used to study 
patient variation [45, 121], as differences in age, sex, and 
co-morbidity are likely to affect tissue mechanics [91, 121]. 
Moreover, computational approaches combining models that 

Fig. 3   Overview of the knowledge that is currently still lacking 
and what is needed to improve cap rupture prediction. (1) For the 
understanding of ECM mechanics, collagen properties need to be 
assessed from nano-to-meso-scale as well as more in-depth analysis 
of other ECM components. (2) Microcalcifications need to be struc-
turally investigated in experimental studies regarding size, shape, 
and spacing. (3) A better understanding of macrophage heterogene-

ity is needed. (4) A multidisciplinary approach is desired combining 
fields such as vascular biology and engineering. (5) Multifactorial 3D 
model systems are required to study more complex processes. (6) To 
be able to stratify findings to patients, advancements in imaging tech-
niques are mandated. (7) Mechanobiology, the effect of cardiovascu-
lar mechanics on cellular behavior, should be the topic of research. 
Created with BioRender.com
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describe blood flow and plaque deformation simultaneously 
could potentially provide new insights in the role of biome-
chanical factors in atherosclerosis [216].

To ultimately confirm findings and stratify them to 
patients, advanced imaging techniques are needed. Non-
invasive imaging modalities including CT and MRI are cur-
rently the most widely used diagnostic tools in the clinic. 
However, invasive imaging techniques such as optical 
coherence tomography (OCT) and intravascular ultrasound 
(IVUS) can achieve higher resolution, and fusing these 
invasive techniques provides even further advancements 
for biomechanical modeling [90]. Recent hybrid imaging 
systems, such as PET–CT or PET–MRI can facilitate the 
detection of microcalcification and inflammation, to be able 
to create patient-specific modeling approaches and evalu-
ate local mechanical properties [233]. Furthermore, specific 
tracers or diffusion tensor imaging can be used to visualize 
cap components, such as collagen type, maturity [192], and 
alignment [8, 239, 240].

Where this review elaborates on how cap compositional 
parameters affect mechanics, it is important to also obtain 
better mechanistic insight in how cell functionality and 
matrix properties are determined by the physical cues in 
their environment (i.e., the mechanobiology). It was shown 
that hemodynamic loading can determine macrophage phe-
notype [94] (add ref) and matrix content [27], among others 
by changing collagen’s susceptibility to degradation [77, 78]. 
It is, thus, likely that hemodynamic loading also influences 
other cap components such as microcalcifications, possibly 
altering their shape, size or topography.

Taken together, the creation of more complex, multifacto-
rial 3D in vitro model systems as well as advancements in 
imaging techniques are required to better assess the impact 
of individual cap components as well as their reciprocal 
interplay on cap strength and vice versa. Obtained knowl-
edge will ultimately serve as input to help in the diagnosis, 
prevention, treatment, and design of new therapies against 
atherosclerotic cap rupture.
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