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Summary

Nonlinear Finite Element (FE) analysis receives growing attention in industrial and
research applications. Modern computer facilities together with state of the art
commercial finite element programs allow large and complicated analysis to be per-
formed. The nonlinearities of the structural behavior are more and more often
taken into account. However, the repeated solution in time of large nonlinear sys-
tems of equations stemming from a FE discretization to reproduce the static and
dynamic behavior of a general structure is still a computationally intensive task.
In the present thesis methods are presented that reduce the number degrees of
freedom so that the computational cost is significantly reduced, while a sufficient
accuracy of the analysis result is retained. Slender and thin-walled structures con-
stitute main structural components in various engineering areas since they feature
a high strength-to-weight and stiffness-to-weight ratio. These structures are prone
to function at high displacement levels when subjected to operational loads, while
staying in the material linear elastic range. The subject of this thesis is therefore
confined to slender and thin-walled structures subjected to static and dynamic loads
that trigger geometrical nonlinearities only.

Perturbation methods constitute powerful tools for a simplified analysis of nonlinear
problems. They are based on a series expansion of the sought solution that generates
a sequence of linear problems. The solutions of these linear problems yield the
higher order terms of the expansion. Perturbation methods have received a lot of
attention in semi-analytical contexts. However, they can also be successfully applied
in a finite element framework. In this way the generality of the FE approach is
combined with the possibility of substantially reducing the size of the problem at
hand. This thesis focuses on the application of perturbation methods in a general
finite element framework for relevant nonlinear structural problems. Three main
areas of application have been addressed, namely:

1. Initial post-buckling analysis of general structures (including imperfections),

2. Nonlinear free vibrations of general structures,

3. Transient analysis of general structures.

with a special emphasis on beam and shell structures.

The well-known Koiter’s perturbation method for the initial post-buckling analy-
sis is first presented and discussed. The method leads to a compact description of



the behavior of the structure after buckling has occurred. The stability character-
istics of the considered structure are described through coefficients stemming from
the perturbation approach. The effect of geometrical imperfections can be added
with a negligible computational cost after the properties of the perfect structure
are calculated once for all. The Koiter’s analysis has been implemented in FE by
previous researchers. They relied on specially addressed element formulations to
avoid locking phenomena. In this thesis, a simple formulation of two-dimensional
beam element and a three-dimensional triangular shell element is presented. The
formulation avoids complicated ad-hoc treatments of the locking problem and yields
good convergence properties. Several examples are shown to prove the formulation
and to show the capabilities of Koiter’s analysis.

A similar framework has been used for the analysis of nonlinear free vibrations. In
this case, the obtained coefficients describe the curvature of the frequency-amplitude
relation. The same FE implementation presented for static post-buckling analysis
is here successfully employed. Good agreements with available analytical results for
beams, plates and cylindrical shells show are obtained.

The framework proposed by Koiter can be extended to study buckling under dy-
namic loads. This method can lead to closed form relations between the static and
dynamic buckling load for simple time-histories of the applied load. A careful in-
vestigation of the limitation of the method for more complicated cases furnishes
useful guidelines for an efficient reduction method for nonlinear transient analysis.
An essential ingredient for the perturbation methods are the second order displace-
ment fields. They constitute the second order terms in the Taylor’s expansion of
the displacement vector and they model the effect of geometrical nonlinearity when
the amplitude of displacements becomes finite. These modes have been used as in-
dependent degrees of freedom to be added to a reduction basis formed by vibration
modes extracted at a certain equilibrium configurations. The resulting reduction
basis proves to be a suitable subspace to project the dynamic equations governing
a FE nonlinear transient analysis. Examples of plates and curved panels show the
benefits for the approach.

In case of applied dynamic loads that can lead to buckling of the structure, the
reduction basis has been formed by considering vibration modes and corresponding
second order fields at two different static equilibrium configurations, typically the
initial configuration and the buckled configuration. Two examples of a short can-
tilever c-section beam and a beam frame show the effectiveness of the approach and
the essential contribution of the modal content at the deformed level to the accuracy
of the solution.



Samenvatting

Niet-lineaire Eindige Elementen analyse krijgt een groeiende aandacht in onder-
zoek en in industriële toepassingen. Moderne computerfaciliteiten in combinatie
met ’state-of-the-art’ commerciële Eindige Elementen programma’s maken het mo-
gelijk grote en gecompliceerde problemen te analyseren. De niet-lineariteiten van het
gedrag van de constructie worden steeds vaker in beschouwing genomen. De her-
haalde berekeningen met grote stelsels vergelijkingen, voortkomend uit een Eindige
Elementen discretisatie, om het statisch en dynamisch gedrag van een algemene con-
structie te simuleren kosten nog steeds zeer veel rekentijd. In dit proefschrift worden
methoden gepresenteerd die het aantal graden van vrijheid drastisch reduceren zodat
de rekentijd aanzienlijk wordt verminderd, terwijl een voldoende nauwkeurigheid van
het analyseresultaat wordt behouden. Slanke en dunwandige constructies vormen de
belangrijke constructiecomponenten in verschillende gebieden van de techniek van-
wege hun hoge sterkte-gewicht en stijfheid-gewicht verhouding. Deze constructies
ondergaan in hun functie grote verplaatsingen door de erop werkende belastingen,
maar blijven vaak in het elastische gebied. Dit proefschrift richt zich daarom op
slanke en dunwandige constructies onderworpen aan statische en dynamische be-
lastingen die enkel geometrische niet-lineariteit veroorzaken.

Storingsmethoden vormen een krachtig gereedschap om een benaderingsoplossing te
vinden van niet-lineaire problemen. Deze methoden zijn gebaseerd op een reekson-
twikkeling van de gezochte oplossing die resulteert in opeenvolgende lineaire prob-
lemen. De oplossingen hiervan bepalen de hogere orde termen van de ontwikkeling.
Storingsmethoden hebben veel aandacht gekregen binnen een semi-analytische con-
text. Deze methoden kunnen echter ook toegepast worden binnen een Eindige Ele-
menten omgeving. Op deze manier wordt de algemeenheid van de Eindige Elementen
aanpak gecombineerd met de mogelijkheid om de grootte van het probleem aanzien-
lijk te reduceren. Dit proefschrift richt zich op de toepassing van storingsmethoden
in een algemeen Eindige Elementen raamwerk voor relevante niet-lineaire construc-
tieproblemen. Drie belangrijke toepassingsgebieden zijn in beschouwing genomen,
namelijk

1. Initiële naknik analyse van algemene constructies (inclusief vormonzuiverhe-
den),

2. Niet-lineaire vrije trillingen van algemene constructies,

3. Transiënte analyse van algemene constructies,

met een speciale nadruk op balk- en schaalconstructies.



x

De bekende storingsmethode van Koiter voor het initiële naknikgedrag wordt eerst
gepresenteerd and bediscussiëerd. De methode leidt tot een compacte beschrijv-
ing van het gedrag van de constructie nadat knik is opgetreden. De stabiliteit-
seigenschappen van de beschouwde constructie worden beschreven door coëfficiënten
verkregen via de storingsmethode. Het effect van geometrische vormonzuiverheden
kan worden meegenomen met verwaarloosbare extra rekenkosten nadat de eigen-
schappen van de perfecte constructie voor eens en altijd zijn berekend. Koiter’s
analyse is eerder binnen Eindige Elementen gëımplementeerd door verschillende on-
derzoekers, die speciale elementformuleringen gebruikten om ’locking’ verschijnselen
te omzeilen. In dit proefschrift wordt een eenvoudige formulering van een tweed-
imensionaal balkelement en een driedimensionaal driehoekig schaalelement gepre-
senteerd. De formulering vermijdt gecompliceerde ’ad hoc’ behandelingen voor het
’locking’ probleem en heeft goede convergentie-eigenschappen. Verschillende voor-
beelden worden getoond om de formulering te verifiëren en de mogelijkheden die de
methode van Koiter biedt aan te tonen.

Een soortgelijk raamwerk kan worden gebruikt voor de analyse van niet-lineaire
vrije trillingen. In dit geval beschrijven de verkregen coëfficiënten de kromming
van de frequentie-amplitude relatie. Een implementatie, overeenkomstig met die in
het geval van statische naknik, is met succes toegepast. Er is een goede overeen-
stemming verkregen met beschikbare analytische resultaten voor balken, platen en
cilinderschalen.

De aanpak voorgesteld door Koiter kan worden uitgebreid naar het bestuderen
van knik onder dynamische belastingen. Deze methode leidt voor eenvoudige ti-
jdsafhankelijkheden van de toegepaste belasting tot relaties in een gesloten vorm
tussen de statische en de dynamische kniklast. Een zorgvuldig onderzoek van de
beperkingen van de methode voor gecompliceerdere gevallen geeft nuttige richtlij-
nen voor een efficiënte reductiemethode voor niet-lineaire transiënte analyse.

Een essentiële ingrediënt voor de storingsmethoden vormen de tweede orde verplaats-
ingsvelden. Deze komen overeen met de tweede orde termen in de Taylor-reeks van
het verplaatsingsveld en zij modelleren het effect van geometrische niet-lineariteit in
het geval dat de amplitude van de verplaatsingen eindig wordt. Deze velden kunnen
worden gebruikt als onafhankelijke graden van vrijheid die worden toegevoegd aan
een gereduceerde basis gevormd door trillingsvormen berekend voor een bepaalde
evenwichtsconfiguratie. Aangetoond wordt dat de resulterende gereduceerde basis
een geschikte subruimte is waarop de dynamische vergelijkingen in het geval van
niet-lineaire transiente Eindige Elementen analyse kunnen worden geprojecteerd.
Voorbeelden voor platen en schalen tonen de voordelen van de aanpak. In het
geval van toegepaste dynamische belastingen die kunnen leiden tot knik van de
constructie kan de gereduceerde basis worden gevormd door trillingsvormen en de



xi

corresponderende tweede orde velden te beschouwen in twee verschillende statische
evenwichtsconfiguraties, typisch de initiële, onvervormde configuratie en de geknikte
configuratie. Twee voorbeelden van een korte vrijdragende balk met een c-vormige
doorsnede en van een balk-raamwerk tonen de effectiviteit van de aanpak en het
belang van het meenemen van trillingsvormen in de vervormde configuratie voor de
nauwkeurigheid van de oplossing.
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Chapter 1

Introduction

1.1 Background and motivation

The size of finite element (FE) structural models that are nowadays used in in-
dustrial and research applications is steadily growing. Stringent requirements set by
customers and certifying agencies boost the need of detailed FE models and complex
analysis. Also fueled by the increasing computational power of modern computers
and the maturity of commercial general purpose FE programs that are available to
the users, nonlinear analysis plays a steadily growing role. The nonlinearities of the
structural behavior are increasingly taken into account even in the early stages of
the design. However, the repeated solution in time of large nonlinear systems of
equations stemming from a FE discretization to reproduce the static and dynamic
behavior of a general structure is still a computationally heavy task. The need of
reducing the number degrees of freedom of a given model is thus of great importance.
The request for efficient reduced order models is of utmost importance in the early
design phase when the designer is typically faced with “what if” questions during
analysis or when, in some cases, optimization routines are used to generate the best
design.

Few decades ago, the craftwork of conceiving reduced order models that could grasp
the essential behavior of the structure at hand was a welcomed skill for any good
engineer. Nowadays, although the physical understanding of the structural phe-
nomenon remains to be a “must” for the skilled analyst, there is a tendency to rely
on fine mesh discretization that could serve as a computational model for different
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Chapter 1

analysis types. It is quite typical, for instance, that the same car model is used
for static stress analysis, frequency analysis, crash, etc.. Still, a quick evaluation of
the essential characteristics is prohibitive if the number of degrees of freedom is too
large.

A question clearly arises: is it possible to maintain the generality and the flexibility
of the finite element method and still generate reduced order models that are able to
reproduce the essential nonlinear behavior in a prompt way? The answer is positive.
Perturbation methods have been applied to several engineering branches to treat
nonlinear problems in a reduced setting. They assume an expansion of the sought
solution in a Taylor series expansion. Once the approximated solution is inserted
to the governing equations, the method yields a sequence of linear problems. The
solution of these linear problems gives the different terms of the expansion of the
solution.

Their applications have received great attention especially in analytical and semi-
analytical contexts. However, they can be successfully applied to finite element
schemes to unify the advantage of a general geometrical and structural description
with a compact representation of the essential nonlinearities.

In this work, special emphasis is given to thin-walled structures, which are char-
acterized by high strength-to-weight and stiffness-to-weight ratios. They constitute
main structural components in various engineering fields, as aerospace, automotive,
biomedical, civil, etc.. Their structural characteristics highlight the importance of
geometrical nonlinearities, i.e. nonlinearities stemming from the redirection of in-
ternal stresses due to finite deformations. It is often the case that the structure will
remain in the elastic range if subjected to the operational loads while undergoing
displacement magnitudes that trigger geometrical nonlinearities. This thesis will
therefore focus on this structural typology and only geometrical nonlinearities will
be considered.

Three main areas of application have been highlighted in this thesis, namely

1. Initial post-buckling analysis of general (imperfect) structures,

2. Nonlinear free vibrations of general structures,

3. Transient analysis of general structures.

The analysis of the problems listed above can largely benefit from a perturbation
approach combined with a general finite element scheme. The main goal of this thesis

2
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is to show the applicability of such methods for the solution of relevant engineering
problems. In the remainder of this chapter first a review of the relevant literature
will be presented followed by a more detailed description of the content of the thesis.

1.2 Literature review

This section presents an overview on the relevant literature of interest for this the-
sis work. The three main topics outlined in the introduction, namely initial post-
buckling analysis, nonlinear vibrations and transient nonlinear dynamics are briefly
surveyed with an highlight to perturbation and reduction techniques. Special at-
tention is given to the aspects involved in a finite element implementation of such
methods.

1.2.1 Initial post-buckling analysis

Thin-walled structures for structural applications are characterized by high strength-
to-weight ratio that often makes the buckling strength the key design criterion.
Moreover, some structural configurations lead to sensitivity of the response to geo-
metrical or load imperfections. The structure is said to be ”imperfection-sensitive”
and the post-buckling behavior exhibits an unstable path. This can result in a rel-
evant reduction of the maximum load carrying capacity for the imperfect structure
with respect to the perfect one.

An optimized design often leads to clustering of buckling loads and results in the
interaction between different buckling modes in the post-buckling path. This can
render the structure extremely imperfection sensitive, and often local and global
modes strongly interact. The numerical prediction of the nonlinear response of a
general thin-walled structure often relies on non-linear finite element analysis. Com-
plicated post-buckling paths can be tracked by the use of path-following techniques
[65]. These methodologies are quite computationally expensive and not practical in
a design stage when several analysis are required. In presence of mode interactions,
path-following methods require sometimes special tuning to handle such situations.

Perturbation methods constitute an important alternative tool in the analysis of
structures in the post-buckling range. The founding theoretical framework of such
approach can be found in the work of Koiter [43]. The main idea is to expand
the displacement field in Taylor series around a certain configuration, typically the

3
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bifurcation point. The terms of the expansion are then found via subsequent lin-
ear problems. The above mentioned expansion leads to a closed form of the load-
displacement curve of the structure. The coefficients of this nonlinear function, often
named post-buckling coefficients, are a property of the structure and give a prompt
indication on the stability characteristics. These features are directly related to the
imperfection sensitivity, i.e. the dependence of the maximum sustainable load on
the presence of a deviation of the nominal geometry. Once the perfect (imperfection
free) structure has been analyzed, the contribution of the imperfections is just added
to the load-displacement function. Many different imperfection shapes and magni-
tudes can therefore be analyzed at negligible extra computing cost. The method
was originally proposed as mono-modal, i.e. the post-buckling behavior considers
one mode and its relative higher order correction. The method can be extended
[24, 30], to take into account the relevant case of modal interaction in the case of
clustered buckling loads. The outcome of the analysis method is a reduced set of
non-linear equations that trace trajectories in the load vs. mode amplitudes space.

The kinematical description, i.e. the relation between displacements and strains,
has a big impact on the accuracy of the calculation of the post-buckling coefficients.
In the usual structural analysis practice, simplified kinematical assumptions (often
called technical) are used. They are based on ad hoc assumptions that neglect
kinematical terms regarded as small. These models neither enjoy the accuracy of
generality nor the analytical simplicity of the linear theory. A first highlight on
the difficulties in transferring the procedure into a computational framework was
pointed out, among others, by the work of Pignataro and Di Carlo [51]. They refer
to nonlinear beam models with respect to asymptotic analysis. The main outcome
of their work is the need of using exact kinematical models when implementing
asymptotic approach. They show how all the technical theories fail to predict the
post-buckling behavior even for the most standard problems.

For plate and shell analysis, it is not easy to rely on exact kinematical models. These
are often too cumbersome to derive and computationally intensive. A compromise
has to be reached by selectively retain some nonlinear terms of the Green-Lagrange
strain tensor to preserve a reasonable accuracy for the post-buckling coefficients
and avoid issues in the case of statically determined structures. This aspect is
tackled by di Lanzo and Garcea [48]. They show that technically accurate results
can be achieved with approximate kinematical models since the redistribution of
stresses often occurring after buckling for plate-like structures mitigates the issues
encountered for beam frame problems.

The Koiter’s method framework can be directly cast into dynamic buckling anal-
ysis, i.e. instability occurring under transient loads, as shown in the early work
by Budiansky [14]. This work presents an elegant and simple way to compute dy-
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namic buckling estimates by taking into account all the information gathered from a
previous Koiter’s analysis. The inertia terms are added to the reduced equilibrium
equation(s) and the resulting ordinary differential equations are solved. Different
examples considering the single and multimode approaches are presented and the
differences between the static and dynamic buckling critical load for a given structure
are presented.

An application of the aforementioned contribution can be found in the work by
Schokker et al. [66]. This study considers the problem of the dynamic behavior of a
composite shell under dynamic pressure loading and compression. In particular, the
Koiter’s asymptotic procedure is used in conjunction with a p-version finite element.
A step load with infinite duration is considered, and only the lowest buckling mode
is used in the analysis, assumed equal to the vibration mode. Their work involves
also a convergence study of the frequency with different meshes and p-refinements.
Following the idea of [14], an ordinary differential equation is obtained and solved
numerically. As proposed by Budiansky and Roth [15], the shell is considered ”dy-
namically buckled” when the amplitude of vibrations increases indefinitely). All the
configurations studied show a reduction in the dynamic buckling with respect to the
static. Some comments on the assumption of considering the buckling mode equal
to the vibration modes are given.

1.2.2 Finite Element Implementation

For many years the work of Koiter’s has been regarded as a powerful tool to frame
the stability behavior of structures of academic interest, but unsuitable for a general
FE implementation. As a matter of fact, if standard compatible finite element
formulation is used in the Koiter’s framework, the predicted post-buckling behavior
exhibits, in most of the cases, gross discrepancies with the real behavior. Great
research efforts have been addressed to a proper implementation of the Koiter’s
method into a FE context.

An implementation of the multi-mode method within a numerical context can be
found in Erp and Menken [32, 33]. They present a finite-strip method based upon B3

spline interpolation to analyze thin walled structures composed by plate assemblies.
They assume spline interpolation of displacements in the longitudinal direction and
polynomial interpolation in the transversal direction for each strip. This approach,
compared to the classical finite strip based on Fourier series interpolation, can bet-
ter deal with localized non periodic buckling modes and avoid the need of time
consuming reanalysis to find the appropriate Fourier expansion. The ability of this
method to well represent local buckling is particularly useful in case of mode interac-
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tion in the post-buckling range. The numerical example shown (a simply supported
T beam loaded by a transverse concentrated force) nicely shows this property. In
Menken et al. [54] the same procedure is compared with laboratory experiments.
This work shows the correctness of the idea to follow the post-buckling behavior
with few relevant modes.

Other researchers have focused on the poor reproduction of the post-buckling be-
havior when the Koiter’s method is employed together with finite elements. A major
issue in the implementation is the poor convergence of the post-buckling coefficients
with respect to mesh refinement when standard compatible finite elements are em-
ployed. Good contributions to this field can be found in the works by Olesen and
Byskov [40] and Poulsen and Damkilde [57]. The computation of the second or-
der fields involves element strain and stresses from the fundamental solution and
the first order fields. These quantities, though accurate in average, can show a
mismatch between the membrane and the bending components. In a nonlinear kine-
matical model, the membrane strains do not only involve in-plane displacements but
also out-of-plane components. Due to the different interpolation of the in-plane and
out-of-plane displacements in a compatible finite element formulation, the conver-
gence to the correct strains is possible only with an exceedingly large number of
elements. The paper by Olesen and Byskov [40] proposes an a posteriori correction
to the post-buckling strains that preserves the finite element formulation employed.
The faster convergence is shown for a two beam frame (the so-called Roorda’s frame)
for two different load cases, for which the analytical solution is available. The work
reported in [57] follows a different approach. While realizing the same reason for the
poor convergence of the post-buckling coefficients, they propose to add a stress field
resulting from the internal forces redistribution in the buckled configuration. This
is shown explicitly for a two nodes compatible beam model and leads to a selective
enrichment of the internal nodes of the element, selective meaning that the num-
ber of extra nodes is different for the in-plane and out-of-plane components of the
displacements. The out-of-plane correction is necessary in the determination of the
first post-buckling coefficient and raises the order of the out-of-plane displacements
to 5th, while the in-plane refinement is used in the calculation of the curvature for
the post-buckling behavior. The order of the in-plane displacement interpolation
within an element is 5th. The accuracy of the approach is shown via three examples,
namely a simply supported column, a the Roorda’s frame and a shallow arch. The
results of generalization of the method to plate elements are also presented.

Following the idea exposed by [51], research has been done also on the finite element
implementation of elements based upon refined kinematical assumptions. Relevant
contributions for beam theory can be found in [16, 17, 34]. Salerno and di Lanzo
[34] remark the importance of a consistent (geometrically exact) kinematical model
for the correct reproduction of the post-buckling behavior. The paper deals with
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two-dimensional beam structures. The solution proposed in this paper tackles the
problem directly at the continuum level by defining some strain measures constant
through the element. The 2D finite element developed is based upon a consistent
kinematical model proposed by Antman [8] and relies on special shape functions,
chosen equal to the solution of the buckling problem. This choice shows an extremely
fast convergence in the determination of the initial post-buckling coefficients. The
element is tested with classical examples also involving mode interaction, and the
solution is compared with a path-following technique.

The work by Salerno and di Lanzo [34] can be considered as an extension of the work
by Pacoste and Eriksson [16]. Their paper first presents a brief classification of crit-
ical points and their properties. Then different finite element models are developed
on Antman’s [8] kinematical model. As in [34], the element deformation is divided
in four modes dependent on the nodal quantities (axial extension, rigid rotation, one
and two waves bending). The in- and out-of-plane displacements are interpolated
linearly, while the elastic rotation is interpolated quadratically, as usual. The devel-
oped elements are based upon different truncation level of a series expansion of the
function of the elastic rotation present in the potential energy of the element. The
locking phenomena is solved with the same technique later proposed in [34]. The
test results involve not only perturbation analysis but also path-following techniques
to assess the validity of the proposed elements in a broader context.

On the same research line Pacoste and Eriksson investigated the possibility of using
co-rotational formulation [17]. The need for a highly nonlinear strain measure can
be thought as a consequence of the choice of a total lagrangian formulation. The use
of a co-rotational formulation could then allow for a low-order nonlinear theory to
be used. This apparent simplification, however, is counteracted by the introduction
of nonlinear terms in the transformations of coordinate systems. This works deals
with a co-rotational formulation for 3D beam elements based upon the so called
”rotational vector”. This leads to symmetric stiffness matrices and avoids a special
procedure for the updating of the rotational variables.

Different solutions to the locking problem have been proposed, namely by adding spe-
cial bubble functions to the local solutions [47, 48] or relying on a mixed formulation,[35]
with consequent direct interpolation of the strains. Both these two approaches solve
the locking problem at the element level.

Another type of locking phenomenon has been found and solved by G. Garcea et al.
[30, 35, 12, 36] when using compatible formulations. The locking they are dealing
with is of extrapolating nature, i.e. directly dependent on the choice of the chosen
primary variable. The extrapolation locking is not the same locking as addressed
by [57, 40], and it is caused by the interaction between small pre-critical rotations
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and high axial/flexural stiffness ratio. This can be avoided by (i) ignoring the pre-
critical rotations (frozen formulation) or (ii) employing a mixed formulation. The
first solution, although leading to appreciable results, is of course limiting in the
(relevant) case of markedly nonlinear pre-buckling response. The mixed formulation,
on the other hand has some computational advantages. The coefficients of the second
order expansion are now dependent only on the out-of-plane displacements, and not
on a mixed axial-flexural form as in a compatible formulation. This fact avoids
also the so-called interpolation locking (as discussed before) caused by the inherent
difference in interpolation of axial and flexural terms.

1.2.3 Nonlinear free vibrations

Perturbation methods can also be applied in the study of vibration of imperfect
structures subjected to static preloading, as in the work of Wedel-Heinen [70]. This
paper presents a perturbation approach to estimate the effect of imperfections and
static load on the vibration frequency of a general (thin-walled) structure. The dy-
namic contribution to the displacement field is expanded in Taylor series accounting
for the imperfections and the static response of the imperfect structure. The linear
system of equations for the static and dynamic correction fields are then derived by
considering different order contributions. Since it is expected that the sensitivity
of the vibration frequency to an imperfection in the vibration mode represents the
most important case, the further assumption of equal buckling and vibration modes
is made. Interaction between vibration and/or buckling modes as well as second
order terms are then neglected. Three examples are presented, namely a simple sup-
ported beam loaded in the axial direction, a flat plate compressed on two opposite
sides and a compressed conical shell. The first two are solved analytically, while the
third one is solved via a finite differences program. The results show the importance
of considering the presence of imperfection in the computation of the vibration fre-
quency. The discrepancy with the ideal (perfect structure) case is evident in the
proximity of the critical load. The frequency, instead of tend to zero, exhibits a
minimum for loads smaller than the critical load and increase again afterward.

The works by Rehfield address the problem of free [63] and forced [64] finite ampli-
tude vibrations using a perturbation approach. A single mode analysis is considered,
i.e. only one vibration mode is associated to a certain frequency of vibration. This
work presents strong similarities with the Koiter’s static analysis of [14]. The re-
lation between the frequency and the amplitude of vibration is formally equivalent
to the one that relates the load to the buckling mode amplitude in [14]. A general
functional description of the theory is given. Two analytical examples are presented,
namely a hinged straight beam and a simply supported rectangular plate. For the
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forced vibration case, the frequency-amplitude relation is simply extended with a
forcing term that accounts for the projection of the applied load on the considered
vibration mode.

The application of perturbation methods in nonlinear vibrations has received great
attention in the semi-analytical context. The work of Jansen [41], for example,
presents studies of anisotropic cylindrical shells. Both nonlinear free vibrations and
forced vibrations under different loading conditions are considered by different lev-
els of modeling approximations. This work constitutes an important reference for
benchmark cases.

1.2.4 Model reduction for non-linear transient analysis

The need of efficient reduction techniques is even more pronounced for nonlinear dy-
namic analysis. In order to avoid time consuming development of specially addressed
FE models and significantly reduce the computational cost in dynamic analysis,
considerable efforts have been made in developing model reduction techniques. The
general idea is to project the large vector of the nodal variables onto a suitable much
smaller subset of basis vectors. The discretized system of equation of motion in time
are thus reduced in size, and can be integrated via usual time integration schemes.
The main difficulty in this approach is to find a basis that keeps the accuracy of the
solution while reducing the number of equations as much as possible.

The modal reduction technique is a well-established procedure in linear dynamic
analysis. The subspace employed is usually a set of vibration eigenmodes, the se-
lection of which is made by comparing the frequency content of the structure with
the frequency content of the forcing load. In absence of damping, this procedure
decouples the equation of motion. The contribution of the neglected higher order
modes can be recovered into the solution to improve the accuracy. Because of their
high frequencies, their response to the forcing load can be thought as quasi-static
and can be included as a correction to the displacements. This procedure has been
originally proposed bt Rayleigh [62] and it is also known as mode acceleration.

The modal reduction technique exhibits a useful side effect. In a FE discretization
the high frequency response of the structure is, in fact, non physical and it is due
to the fine mesh discretization. An explicit algorithm would benefit from a modal
reduction technique by a considerable increase in the critical time step. When us-
ing the implicit time integrator, the size of the repeatedly solved system of linear
equation is drastically reduced.
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The modal superposition technique has already been applied in nonlinear dynamic
analysis by following the actual tangent spectrum and updating the modal basis
at every time step [55]. The effectiveness of this approach is questionable due to
the excessive effort in the solution of the tangent eigenproblem at a every time
interval. Moreover, the projection of the old basis to the the new one introduces a
time-dependent constraint that can affect the accuracy of the solution.

A keystone in the research of modal reduction methods for nonlinear dynamics can
be found in the works of Idelsohn and Cardona [37, 38]. They show how the tangent
basis updating procedure introduces an increasing error when the old basis has to be
projected on the new one. Their basic thought is that the modal subspace is prone to
change in presence of structural nonlinearities. This basis can therefore be enriched
with some modal derivatives that indicate the way the spectrum is changing. The
modal derivatives can be found by differentiating the linear eigenvalue problem with
respect to the modal amplitudes. They show through an example of a cantilever
beam excited with a sinusoidal load how a limited number of eigenmodes together
with some modal derivatives lead to an accurate solution (also in the high-frequency
response) without the need to change the basis through the time integration. Some
comments on the proper selection of the modal derivatives are given in [38]. It is
suggested that the eigenmodes with the highest load participation factors would also
develop large values in the associated derivatives. The same authors suggest in [37]
the use of a particular sequence of orthogonal Ritz vectors as proposed by Wilson [71]
in place of tangent vibration modes, again enriched with suitable modal derivatives.
This proposed basis has the advantage that its generation does not involve a solution
of large eigenvalue problems. It also has the advantage of accounting for the spatial
distribution of the load at the basis generation.

Following the work of Idelsohn and Cardona, the paper by Slaats [67] contributes in
the techniques of calculating the derivatives of the eigenmodes. They present three
different approaches: an exact analytical approach, which stems from the differen-
tiation of the eigenvalue problem, a simplified analytical approach, where the mass
contribution is neglected, and a numerical approach, where the modal derivatives
are computed via a finite difference scheme after solving two different eigenvalue
problems, for the reference and the perturbed configuration respectively. All the
three techniques are shown to lead to comparable results. Together with the modal
derivatives, these authors suggest the use of some static modes as an enrichment
of the solution. This static correction, however, does not prove to have greater in-
fluence in improving the accuracy of the solution than the modal derivatives. The
authors clearly show the large improvement when accounting for a limited nuumber
of eigenmodes and some modal derivatives against a large number of eigenmodes via
two-dimensional truss structures excited with a step load.
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Another efficient reduction technique was proposed by Leu and Tsou [50]. The basis
idea behind this work is the extension of reduction methods for design reanalysis
techniques to nonlinear dynamic analysis. The numerical solution of a nonlinear
system of equation involves the repetitive solution of linear systems that change in
times. Therefore, from the point of view of solving system of equation, a nonlinear
dynamic problem is not different from a an optimal design problem, in that the
system of equations changes for both type of problems. The authors refer to the
procedure described by Kirsch [42] to form the basis vectors. These basis vectors,
together with a Gram-Schimdt ortho-normalization procedure, lead to an uncoupled
system of equation. The solution of this system leads to the modal amplitudes. The
number of the required basis vectors to be computed is based on a low-computational
cost accuracy estimator. This reduction technique is applied to three examples
in which both the mass and the stiffness matrix of the model change during the
simulation. The results show high accuracy. A detailed analysis of the computational
cost of the method is also presented. An interesting modification of this reduction
method, previously proposed by Leu and Huang [49], allows the solution of static
problems beyond stability points. The method is tested with a tri-dimensional truss
dome by comparing the results with the FE commercial program ABAQUS.

The idea of using static modes is also proposed by McEvan [53]. In this work, the
linear eigenvectors functions as a basis for a projection of a number of static non-
linear cases. The external loads applied in the static nonlinear analysis are chosen
as a linear combination of mode shapes. The resulting set of displacements is pro-
jected on the eigenmodes subspace. The nonlinear force-displacement relation is
then approximated with a polynomial function and a least-square technique is used
to calculate the coefficients. A method to eliminate terms that bring little contribu-
tion to the overall response is also presented. This method has also the advantage
of giving direct insight to the behavior of the structure by a direct inspection of the
fitting coefficients. The proposed method is tested on a homogeneous two dimen-
sional beam with harmonic excitation. The results are compared with a nonlinear
analysis with ABAQUS.

A different approach is followed in the work of Krysl [46]. The proposed procedure
makes use of the proper orthogonal decomposition method (POD) to reduce the size
of the system of equations. The dynamic response of the full system is sampled for
different time instants. The sampled vectors, also known as empirical eigenvectors,
form a basis which is then projected on a reduced subspace extracted by the eigen-
vectors of the covariance matrix of the sampled response. This procedure maximizes
the accuracy of the solution. The authors give a physical interpretation of the em-
pirical eigenvectors by associating the sampled vectors with point masses. From this
perspective, the optimal projection basis is the one that minimizes the moment of
inertia of the samples about the eigenvector. The methodology is applied to fairly
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large models which include both geometrical and material nonlinearities. The pro-
posed procedure has the major drawback that a full analysis has to be completed
before forming the basis. Moreover, the generated basis is no longer optimal when it
is applied to a slightly different model. It is shown however, that the same reduced
basis can capture the dynamic response when the changes in the system preserves
the overall response of the structure.

1.3 Thesis layout

This thesis is organized as follows. Chapter 1 presents the background and motiva-
tion of the present research together with a literature survey for the selected areas
of application. Particular attention is given to the finite element implementation
issues.

In chapter 2, the perturbation method for initial post-buckling analysis is presented.
The analysis, also known as Koiter’s method, describes the stability characteristics
through so-called post-buckling coefficients. These coefficients are given at a com-
putational cost comparable to a linear buckling analysis and the solution of a linear
problem. The perturbation method can be easily extended to account for the rele-
vant case of interacting buckling modes when the critical loads are closely spaced.
The effect of geometrical imperfections can be easily taken into account and results
in a forcing term that can be added to (the already formed) reduced system for the
perfect structure.

The effects of different choices of kinematic models are briefly summarized. It is
shown that the inaccuracy of the so-called technical models is somewhat mitigated
in the case of redundantly constrained structures, while special attention needs to
be paid to statically determinate cases. In general, the inaccuracy is caused by some
negligible terms of the Green-Lagrange strain tensor. It is shown that neglecting
these terms alleviates the problem without greatly affecting the correctness of the
results.

A simple finite element implementation of Koiter’s method that avoids interpolation
locking is presented. Instead of relying on complicated ad hoc formulation, a simple
averaging technique is here proposed and applied to a two-node 2D beam element
and a triangular three-node 3D shell element. The presented examples show the
good convergence properties of the proposed method together with the main advan-
tages of the method as compared with full nonlinear analysis. Several examples are
discussed to show the correctness and the accuracy of the proposed finite element
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implementation as well as the main features of the method.

A similar theoretical setting can be established to study the effect of the amplitude
of vibration on the eigenfrequency of a given structure. The method is described
in chapter 3 and it is implemented into FE using a similar approach described for
the Koiter’s analysis. The results are compared with analytical and semi-analytical
solutions available in literature.

Chapter 4 presents the extension of Koiter’s analysis for the study of buckling occur-
ring for the application of a dynamic load. The static reduced equilibrium equation
is completed with the inertial term associated to the buckling mode. The theory
yields close form relations that link the static limit load to the dynamic buckling
load for certain load histories. The possibility of the method to handle more com-
plicated load cases is investigated through an example. A careful examination of
the limits of the proposed theory leads to useful guidelines for the development of a
more general reduction method for transient analysis. In particular, the dependency
of the inertial term on the load level is approximated and highlighted.

Chapter 5 deals with reduction techniques for nonlinear transient analysis. The
dynamic equations of motion resulting from the FE discretization are projected
on a suitable modal basis to reduce the number of degrees of freedom. In line
with classical linear modal reduction, the basis of the retained vibration modes
is enriched with second order fields generated via a perturbation approach. The
interaction between the vibration modes is taken into account and it proves to be
a fundamental contribution for more complicated cases. The generation of second
order fields is based on a perturbation technique equivalent to the one presented
in chapter 3. However, a simplification that reduces the computational cost has
been made. The inertial term in the calculation of the second order fields can be
neglected. For problems involving a dynamic load magnitude high enough to trigger
strong nonlinearities such as the occurrence of dynamic buckling, the aforementioned
reduction basis could not be sufficient for a correct approximation of the solution.
Instead of updating the basis as the time integration proceeds, the reduction basis
constituted by vibration modes and second order fields pertaining to the initial
configuration can be enriched by the same quantities calculated at another static
equilibrium configuration, for example at the buckling point. This strategy greatly
improves the accuracy of the reduced system. A special class of problems in which the
vibration modes change smoothly as the static load level increases can be addressed
with a further sophistication of the method. Instead of considering the vibration
modes at the two load levels as independent degrees of freedom, a single time-
dependent vibration modes basis can be formed via a linear interpolation of the
vibration modes calculated at the two load levels directly through the dynamic load
magnitude. The reduced FE equations have been rewritten to account for this time
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dependence of the basis.

The conclusions and the accomplishments of the thesis are summarized in chapter
6.
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Chapter 2

Koiter’s analysis for initial
post-buckling

2.1 Introduction

Thin-walled structures constitute main structural components for many engineering
fields. Their favorable strength-to-weight ratio and their slenderness often render
buckling the critical design criterion. After buckling occurs, the structure can either
still sustain the applied load or collapse. It the latter case, the presence of small
initial geometrical imperfections can dramatically reduce the maximum sustainable
load. The knowledge of the structural behavior after the onset of buckling is there-
fore of paramount importance, especially for safety reasons. Moreover, is it often
likely that optimized configurations exhibit a clustering of the buckling loads. This
situation can amplify the imperfection sensitivity and further reduce the maximum
sustainable load.

Linearized buckling analysis gives a first indication of the load-carrying capability
of the structure at hand. When applied to finite elements, the buckling analysis
leads to a linear algebraic eigenvalue problem. The accuracy of buckling analysis,
however, does not yield any information regarding the stability characteristics at the
buckling point. Path-following static analysis is a powerful method for the study of
an arbitrary nonlinear behavior of a general structure. However, its computational
cost is still considerable [60, 65]. Moreover, if the analyst is interested in the influence
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of different imperfection patterns on the load-carrying capability, the full analysis
needs to be repeated form the beginning for each imperfection.

A perturbation method constitutes a valid alternative. This analysis technique, also
known as Koiter’s method [43], presents the main advantage of a compact descrip-
tion of the initial behavior of the structure after buckling has set. The stability
characteristics of the structure are described by so-called post-buckling coefficients,
resulting from the perturbation expansion. These coefficients are obtained at a com-
putational cost comparable to a linear buckling analysis and the solution of a linear
problem. The perturbation method can also be extended to account for the relevant
case of interacting buckling modes when the critical loads are closely spaced. In this
case, the procedure leads to a reduced nonlinear algebraic system of equations which
unknown are the amplitudes of the retained buckling modes and the load level. The
effect of geometrical imperfections can easily be taken into account and results in a
forcing term that can be added to the already formed reduced system for the perfect
structure.

The kinematical model employed in the analysis can have a negative effect on the
accuracy of the post-buckling coefficients [34, 51]. This problem is particularly
relevant if the structure is not redundantly constrained [48]. In general, the problem
is caused by some negligible terms of the Green-Lagrange strain tensor. It is shown
that the omission of these terms alleviate the problem without greatly affecting the
accuracy of the results.

The FE implementation of Koiter’s analysis has been considered in the past by
few researchers. A careless implementation of the discussed technique can generate
important convergence problems for the post-buckling coefficients. The problem is
caused by the mismatch of interpolation degree between in-plane and out-of-plane
displacements within and element. This problem is also known as locking. Instead
of relying on complicated ad hoc formulation, a simple averaging technique is here
proposed and applied to a two-noded 2D beam element and a triangular three-noded
3D shell element. The presented examples show the good convergence properties of
the proposed method together with the main advantages of the method as compared
with full nonlinear analysis.

This chapter is organized as follows. First, the Koiter’s analysis for a single mode
case is presented using a functional notation. The extension to multimode analysis is
then presented. The issues in using different kinematical models are then discussed.
A simple finite element implementation of the method for a 2D beam element and
a 3D triangular shell element is proposed. Several examples are shown to highlight
the characteristic of the method and the accuracy of the proposed finite element
implementation.
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2.2 Single mode analysis

We use in this section the notation introduced by Budiansky et al. in [14]. This
notation is extremely compact and could be applied to either continuous or discrete
problems. The equivalent finite element notation is presented in section 2.5.3. We
denote with u, εεε, and σσσ generalized displacements, strains and the associated stress
fields respectively. Each symbol can be thought as a vectorial entity, its specific
dimension depending on the particular problem at hand. The strain-displacement
relation is assumed quadratic, as

εεε = L1(u) +
1
2
L2(u) (2.1)

where L1 and L2 are linear and quadratic operators respectively. The stress-strain
relation is

σσσ = H(εεε) (2.2)

where H is a linear operator. The structure is loaded by a distributed load q and
the static equilibrium is governed by the principle of virtual work

σσσ · δεεε = q · δu. (2.3)

In equation 2.3 the ”dot” operation is a shorthand notation that, in term a · b,
means the virtual work of stresses (or loads) a through the strains (or displacements)
b, integrated over the whole structure. Equation 2.3 must hold for all possible
admissible variations δu for the equilibrium of the structure, i.e. variations consistent
with the kinematic boundary conditions. Here δεεε is the first order strain variation
generated by δu. A bilinear functional operator L11 is defined as

L2(u + v) = L2(u) + L11(u,v) + L2(v)

then the variation δεεε resulting from δu is written as

δεεε = δe + L11(u, δu) (2.4)
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where e ≡ L1(u). Note that L11(u,v) = L11(v,u) and L11(u,u) = L2(u).

It is further assumed that the reciprocal relation

H(εεε1) · εεε2 = H(εεε2) · εεε1 (2.5)

holds for all εεε1 and εεε2. We consider in this study loads proportional to a parameter
λ, i.e. q = λq0. The load pattern q does not depend on the displacement u.

2.2.1 Linear pre-buckling equilibrium

The pre-buckling path of many practical applications can be approximated as lin-
ear. The displacement, stress and strain fields that the structure attains after the
application of the static pre-load q = λq0 is considered linear, namely:

⎧⎨⎩
u
εεε
σσσ

⎫⎬⎭ = λ

⎧⎨⎩
u0

εεε0

σσσ0

⎫⎬⎭ (2.6)

We further assume here that

L11(u0,v) = 0 (2.7)

for all v. It will be clarified later that this hypothesis leads to the omission of the pre-
buckling rotations in evaluating the buckling load and the post-buckling coefficients.
We thus have

εεε0 = L1(u0) = e0

σσσ0 = H(εεε0).
(2.8)

The linear equilibrium is therefore governed by

σσσ0 · δe = q0 · δu. (2.9)

18



Koiter’s analysis for initial post-buckling

2.2.2 Buckling problem

To explore the possibility of bifurcation at a certain load multiplier λC , the funda-
mental linear solution 2.6 is perturbed around the critical point

⎧⎨⎩
u
εεε
σσσ

⎫⎬⎭ = λC

⎧⎨⎩
u0

εεε0

σσσ0

⎫⎬⎭+ ξ

⎧⎨⎩
u1

εεε1

σσσ1

⎫⎬⎭ (2.10)

in which

εεε1 = e1 + ξλCL11(u0,u1) = e1

σσσ1 = H(εεε1) = H(e1) (2.11)

The variational strain becomes

δεεε = δe + ξL11(u1, δu) (2.12)

By substituting 2.11 and 2.12 in the equilibrium equation 2.3 and taking into account
the linear solution 2.6 the equation governing buckling is obtained by letting ξ −→ 0

λCσσσ0 · L11(u1, δu) + σσσ1 · δe = 0 (2.13)

The solution of the problem 2.13 yields the critical load λC and the buckling mode
u1.

2.2.3 Initial post-buckling path

A secondary equilibrium branch intersect the fundamental path in the critical point.
We are now interested in a compact representation of the initial post-buckling be-
havior. The buckled solution is expanded as
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⎧⎨⎩
u
εεε
σσσ

⎫⎬⎭ = λ

⎧⎨⎩
u0

εεε0

σσσ0

⎫⎬⎭+ ξ

⎧⎨⎩
u1

εεε1

σσσ1

⎫⎬⎭+ ξ2

⎧⎨⎩
u2

εεε2

σσσ2

⎫⎬⎭+ ξ3

⎧⎨⎩
u3

εεε3

σσσ3

⎫⎬⎭+ · · · (2.14)

where u1 has been normalized in some fashion and ξ is a scalar parameter. The
displacement fields u2,u3, . . . are orthogonalized with respect to the buckling mode
u1 in the following way

σσσ0 · L11(u1,un) = 0, n = 2, 3, . . . (2.15)

The strains εεε2, εεε3, . . . are obtained by substituting the displacement expansion 2.14
in the strain function 2.1 and collecting terms of the same order in ξ

εεε1 = e1

εεε2 = e2 +
1
2
L2(u1)

εεε3 = e3 + L11(u1,u2) (2.16)

The following relations are useful for the subsequent derivation

σσσ2 · εεε1 = σσσ1 · εεε2 =
1
2
σσσ1 · L2(u1)

σσσ3 · εεε1 = σσσ1 · εεε2 = σσσ1 · L11(u1,u2) (2.17)

The equilibrium equation in a slightly buckled configuration is obtained by substi-
tuting 2.14 and 2.16 in the equilibrium equation 2.3. By posing δu = u1 and after
simplifying using the buckling problem 2.13 one obtains

λ

λC
= 1 + aSξ + bSξ2 + · · · (2.18)

where
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aS =
3
2

σσσ1 · L2(u1)
σ1σ1σ1 · εεε1

bS =
2σσσ1 · L11(u1,u2) + σ2σ2σ2 · L2(u1)

σ1σ1σ1 · εεε1
(2.19)

The second order field u2 necessary for the calculation of the second order coefficient
bS is obtained by the solution of the linear problem

σ2 · δe + λσ0 · L11(u2, δu) + σ1 · L11(u1, δu) = 0 (2.20)

The problem 2.20 is obtained by equating the terms in ξ2 in the expanded equilibrium
equation to zero. Three relevant cases can be outlined:

1. aS = 0, bS > 0

2. aS = 0, bS < 0

3. aS �= 0

ξ

λ
C

λ

λ
S

(a) aS �= 0

ξ

λ
C

λ

(b) bS > 0

λ
S

ξ

λ
C

λ

λ
S

(c) bS < 0

Figure 2.1: Koiter’s analysis: load-deflection curves. (a) non-symmetric struc-
ture (b) symmetric stable (c) symmetric unstable

When aS = 0, the structure is said to be symmetric, i.e. the direction at which the
buckling occurs does not affect the postbuckling response. If bS > 0 the structure
is able to sustain the applied load after buckling as occurred. This is considered to
be a safe situation. If bS < 0, the structural response is characterized by a limit
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load which is a function of the actual imperfection. The actual limit load could be
remarkably lower than the theoretical buckling load of the perfect structure. The
bS coefficient is in this case a first indication of the imperfection sensitivity of the
structure at hand. In case aS �= 0, the structure is non-symmetric. In this case,
the ability of the structure to sustain or not a further increment in the applied load
depends on the direction at which buckling occurs. The actual imperfection pattern
triggers either one behavior or the other. The structure for which aS �= 0 is also
referred as quadratic. Likewise, the case of aS = 0, bS �= 0 is referred as cubic.

2.2.4 The slightly imperfect structure

The described theory yields an asymptotic description of the secondary path branch-
ing from a critical point. This behavior physically pertains to perfect structures, i.e.
structures for which the geometry and the loading condition do not deviate from
the nominal configuration. The presence of a small geometric or load deviation (im-
perfection) usually shifts the response of the structure from a bifurcation type to a
smooth nonlinear path. If the imperfection magnitude is small, all the information
gathered by the asymptotic analysis of the perfect case still conserve the essential
structural behavior and can be completed with the contribution of the imperfection
in a later stage. In presence of a stress-free initial geometrical imperfection ū, the
kinematic function 2.1 modifies as follows

εεε = [L1(u+ū)+
1
2
L2(u+ū)]−[L1(ū)+

1
2
L2(ū)] = L1(u)+

1
2
L2(u)+L11(u, ū) (2.21)

in which the strain associated to the imperfection pattern ū is subtracted to the
total strain to satisfy the stress-free condition. The variational strain becomes

δεεε = δe + L11(u, δu) + L11(ū, δu) (2.22)

A deviation q̄ of the applied load can be treated by posing the load term in the form

q = λ(q0 + q̄) (2.23)

The substitution of 2.22 and 2.23 in the equilibrium equation 2.3 generate extra
terms in the final single mode postbuckling equation 2.18, which becomes
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(
1 − λ

λC

)
ξ + aSξ2 + bSξ3 = −σσσ · L11(ū,u1)

σ1σ1σ1 · εεε1
− λq̄ · u1

σ1σ1σ1 · εεε1
(2.24)

The term on the right-hand side of 2.24 can be thought as a loading term. If one
assumes the geometric imperfection to be affine to the buckling mode shape, i.e.

ū = ξ̄u1 (2.25)

by retaining only the lower order term in ξ the imperfection term assumes the simple
form

−σσσ · L11(ū,u1)
σ1σ1σ1 · εεε1

= − ξ̄σσσ · L2(u1)
σ1σ1σ1 · εεε1

=
−ξ̄σσσ · L2(u1)

−λCσ0σ0σ0 · L2(u1)
=

λ

λC
ξ̄ (2.26)

where we made use of the buckling problem 2.13 and the fundamental solution 2.6.

2.2.5 Effect of pre-buckling rotations

In the previous section, we made the hypothesis (2.7) before proceeding into the
derivation of the buckling problem. The L11(u,v) operator essentially involves mul-
tiplications of the rotations associated to the displacement fields u and v. The
requirement (2.7) therefore essentially represents the omission of the contribution of
the pre-buckling rotations in the calculation of the critical point. In other words,
the redirection of stresses due to the pre-buckling displacements is neglected. This
approximation is often accurate for structures characterized by a pre-buckling state
with negligible out-of-plane deformations. In the case if this hypothesis is relaxed,
Cohen [23] and Fitch [31] and later Arbocz and Hol [9] derived the modification
to the buckling problem (2.13) and the modified post-buckling coefficients (2.19) as
follows:

λC [σσσ0 · L11(u1, δu) + σσσ1 · L11(u0, δu)] + σσσ1 · δe = 0 (2.27)

and the post-buckling coefficients ãS and b̃S for the single-mode case read as:
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ãS =
3σσσ1 · L2(u1)

2λc [2σσσ1 · L11(u0,u1) + σσσ0 · L2(u1)]
(2.28)

b̃S = {2σσσ1 · L11(u1,u2) + +σσσ2 · L2(u1) +
asλC [σσσ1 · L11(u2,u0) + σσσ2 · L11(u0,u1) +
σσσ0 · L11(u1,u2)]}/λc [2σσσ1 · L11(u0,u1) + σσσ0 · L2(u1)] (2.29)

For the case of symmetric structures (ãS = 0), the b̃S coefficient is simplified as

b̃S =
2σσσ1 · L11(u1,u2) + +σσσ2 · L2(u1)

λc [2σσσ1 · L11(u0,u1) + σσσ0 · L2(u1)]
(2.30)

2.2.6 Sligthly nonlinear pre-buckling state

The asymptotic single equation 2.24 is based on a perfectly linear pre-buckling solu-
tion. While this hypothesis is often met, practical examples often exhibits a slightly
nonlinear fundamental path before incurring into instability. The right hand side
of equation 2.24 can in this case be augmented by a so-called implicit imperfection
term µ.

ξµ = −ξλ2σσσ0 · L11(u0,u1)
σ1σ1σ1 · εεε1

(2.31)

The governing equation for the case of a slightly nonlinear pre-buckling path is
therefore

(
1 − λ

λC

)
ξ + aSξ2 + bSξ3 =

λ

λC
ξ̄ + ξµ (2.32)
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2.3 Multimode postbuckling analysis

So far we have assumed that the considered structure is characterized by a single
buckling mode. This is to say that the buckling loads extracted from the eigenvalue
problem 2.13 are well separated so as to justify a single mode approach. Many rele-
vant cases exhibits clustering of the buckling loads. This behavior is often observed
in optimized structural components. In these cases, a single mode approach is no
longer sufficient to capture the complex mode interaction of the clustered modes.
An asymptotic analysis, however, is still a valuable analysis tool as compared to a
complete nonlinear analysis. An outline of the asymptotic analysis in the case of
multiple modes is presented in the following section. A complete derivation can be
found in [24].

The pre-buckling path is determined as presented in section 2.2.1. Instead of extract-
ing only the first buckling mode by solving the eigenvalue problem 2.13, multiple
modes are calculated. The analyst retains M significant modes ui, i = 1, 2, . . . , M ,
the choice being based on an inspection of the relative magnitude of the buckling
loads λi. The buckling modes ui are mutually orthogonal in the following sense

σσσ0 · L11(uI ,uJ) = 0, (I, J) = [1, M ], I �= J (2.33)

where M are all the relevant buckling modes that are believed to be important in
the structural response. If the buckling loads are well separated, the first buckling
mode will be sufficient. If, however, the buckling loads are clustered, interaction
phenomena can become important. It is therefore worthwhile to include more buck-
ling modes in the reduced basis. The displacement field 2.10 is then expanded in
the following fashion:

u = λu0 + ξiui + ξiξjuij + · · · (2.34)

where uij can be considered as second order displacement fields that take into ac-
count the interaction of buckling modes ui and uj . These correction fields are the
solution of the variational problem

λσ0 · L11(uJK , δu) + σJK · δe = −1
2
[σJ · L11(uK , δu) + σK · L11(uJ , δu)] (2.35)
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In order to make the expansion unique, the second order correction fields uij are
required to be orthogonal to all buckling modes

σ0 · L11(uJ ,uKL) = 0, (J, K, L) = [1, M ] (2.36)

The strains and the stresses 2.10 are then expanded accordingly

εεε = λεεε0 + ξiεεεi + ξiξjεεεij + · · · (2.37)
σ = λσ0 + ξiσi + ξiξjσij + · · · (2.38)

where the second order strains and stresses are defined as follows

εεεij = L1(uij) +
1
2
L11(ui,uj) (2.39)

σσσij = H(εεεij) (2.40)

As it can be noticed from equation (2.35) the second order correction fields uij

depend on λ. A typical choice for this parameter is the minimum buckling load
λ1 or an average of the retained buckling loads. By substituting the displacement
expansion (2.34) into the equilibrium equation (2.3), after some manipulations the
following system of reduced M nonlinear algebraic equilibrium equation is found

ξI

(
1 − λ

λI

)
+ ξiξjaSijI + ξiξjξkbSijkI

=
λ

λI
ξ̄I (2.41)

where a general imperfection pattern ū is reproduced by a linear combination of the
relevant M buckling modes included in the reduction basis, namely

ū = ξ̄iui, i = 1, 2, . . . , M (2.42)

The system of equations (3.35) can be solved with a standard path-following tech-
nique. The formulas for the postbuckling coefficients aSijI and bSijkI

are written
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below. The first order coefficients aSijI depend only on the pre-buckling solution u0

and the buckling modes ui. The calculation of the second order coefficients bSijkI

requires also the correction fields uij .

aSijI =
σσσI · L11(ui,uj) + 2σσσi · L11(uj ,uI)

σσσI · εεεI
(2.43)

bSijkI
= [σσσIi · L11(uj ,uk) +

σσσij · L11(uk,uI) +
σσσI · L11(ui,ujk) +
σσσi · L11(uI ,ujk) +
2σσσi · L11(uj ,ukI)]/σσσI · εεεI (2.44)

2.4 Kinematic issues

The actual value of the post-buckling coefficients strongly depends on the kinematical
model adopted. It will be shown in this paragraph how the so-called technical
kinematical assumption can fail to yield correct results in some cases.

Let us first refer to a two-dimensional framework via an example. Let us consider a
straight column hinged on one side and free to move axially at the other tip. The
column is loaded axially at the movable extremity with a concentrated force. This
problem is also known as the Euler column and has been thoroughly discussed by
Pignataro [51]. Only the final results of his work are here summarized. A sketch of
the problem is shown in figure 2.2.

Figure 2.2: The Euler column problem

The buckling load λC is found to be
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λC =
π2EI

FL2
(2.45)

By using an exact kinematical model, the correct post-buckling coefficient bS is found
to be

bS =
1
8
λC (2.46)

if the buckling mode is normalized to have a unit rotation at the tips. The post-
buckling slope aS is zero because of the symmetry of the structure and the applied
load (see [8] and [51] for details).

Let us consider two different quadratric kinematical models. The first one is based
on the Green-Lagrange strain tensor. The axial strain ε and the curvature χ are
expressed as a function of the axial and transversal displacement u and w as

⎧⎪⎨⎪⎩
ε = u,x +

1
2
(
u,2x +w,2x

)
χ = w,xx

(2.47)

The linear and quadratic operators L1 and L2 introduced in section 2.2 are easily
recognizable. This model correctly reproduces rigid body rotations without intro-
ducing spurious strains. The analytical solution of the Koiter’s analysis using this
kinematical model leads to the following result for the post-buckling curvature co-
efficient

bS = −3
8
λC (2.48)

This results is clearly incorrect since it even yields a negative post-buckling curvature
for a structure that is actually stable. An extensively used kinematical model is the
so-called technical beam theory, or Von-Karman kinematical model. It consist of a
simplification of 2.47 by the neglection of the small term u,2x with respect to u,x in
the definition of the axial strain ε. The axial strain and the curvature are defined as
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⎧⎪⎨⎪⎩
ε = u,x +

1
2
w,2x

χ = w,xx

(2.49)

In this case we obtain for the post-buckling curvature

bS = 0 (2.50)

This result is still not correct but better than the previous case 2.48 that predicts an
unstable structure. It is worth mentioning that 2.49 introduces spurious strains in
case of rigid body rotations. This disagreement with the exact solution of the results
obtained with quadratic models is due to the fact that the calculation of the post-
buckling curvature bS requires the calculation of 4th order terms. The kinematical
models 2.47 and 2.49 are in fact only 3rd order accurate.

The limited discussion of the Euler column example shows that exact, or at least
4th order accurate kinematical models are needed for a correct calculation of the
post-buckling curvature bS. Exact kinematical models have been developed, see for
example [8], and successfully applied to Koiter analysis of planar beam structures [30,
34]. However, the development of such models for plates is extremely cumbersome.
In this case, it is better to deal with simplified kinematical models provided that
they are accurate enough for the application at hand. It has been shown by Lanzo
and Garcea [48] that, if the post-buckling deformation implies a redistribution of the
stresses, the problems concerning the utilization of 3rd order accurate kinematical
models are greatly alleviated. This is often the case for plate and shell structures
where the redundant boundary conditions indeed cause a redistribution of the stress
pattern after buckling has occurred.

The results for the Euler column example suggest the use of the Von-Karman model
for plates

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx = u,x +
1
2
w,2x

εy = v,y +
1
2
w,2y

εxy = 1
2 (u,y +v,x ) +

1
2

(w,x w,y )

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χxx = w,xx

χyy = w,yy

χxy = w,xy

(2.51)
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in which the terms u,2x, v,2y are assumed to be negligible. This model completely
neglects the nonlinear in-plane rotation terms. These terms might be negligible
for flat plate situations but they indeed play a major role in structures consisting
of assembly of flat plates or curved shells. A way to derive a suitable model that
accounts for nonlinear in-plane effects is to consider the full Green-Lagrange strain
tensor for plates

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx = u,x +
1
2
(
u,2x +v,2x +w,2x

)
εy = v,y +

1
2
(
u,2y +v,2y +w,2y

)
εxy =

1
2

(u,y +v,x ) +
1
2

(u,x u,y +v,x v,y +w,x w,y )

(2.52)

the curvatures being already defined in 2.52. The presence of the terms u,2x, v,2y
and u,x u,y +v,x v,y, however, yields to the same accuracy issues discussed for the
beam example. As previously stated, a simple way to alleviate the shortcoming is to
neglect the aforementioned terms and refer to the simplified Green-Lagrange strain
tensor

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx = u,x +
1
2
(
v,2x +w,2x

)
εy = v,y +

1
2
(
u,2y +w,2y

)
εxy =

1
2

(u,y +v,x ) +
1
2

(w,x w,y )

(2.53)

This model provide rather accurate results without producing erroneous results in
the case of iso-static problems for which the stress redistribution after buckling does
not occur. The simplified Green-Lagrange strain models (2.49) and (2.53) will be
adopted in all the following numerical examples.
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2.5 Finite element implementation

The classical notation by Budiansky [14] presented in section 2.2 and 2.3 is in this
section translated into finite element matrix notation. The following table summa-
rizes the relationships between the two notations. We indicate arbitrary generalized
displacement vector with the symbol q and p. These vectors have to be intended as
element quantities unless differently specified.

Displacement field:
u,v ⇔ q,p

Linear operator:
L1(u) ⇔ Bq

Quadratic operator:
L11(u,v) ⇔ C(q)p
Applied external load:

q ⇔ F

Table 2.1: Relation between functional notation and finite element notation

The kinematical relation (2.1) is now written as

εεε = Bq +
1
2
C(q)q (2.54)

and the stress-strain function can be written as

σσσ = Am εεε (2.55)

Where Am is the material tensor. The specific definition of the matrix B and C is
reported is the following sections.

2.5.1 Element formulation

The implementation of Koiter’s analysis into a finite element framework requires spe-
cial care. The determination of the post-buckling coefficient presents convergence
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difficulties when compatible formulations are employed. This is essentially due to the
fact that the in-plane displacement components are interpolated to a lower degree
than the out-of-plane components. This causes a numerical problem usually referred
as locking that results in an extremely slow convergence of the post-buckling curva-
ture bS. This problem has been addressed in the past by other researchers. Olesen
and Byskov [40] proposed an a posteriori correction to the post-buckling strains
that preserve the finite element formulation employed. Poulsen and Damkilde [57]
presented a correction of the second order strain fields at the element level by adding
additional nodes to the elements. In both these two works the results are presented
for two-dimensional beam examples modelled with a compatible two-noded planar
beam element.

The works by Lanzo [47, 48] concern the application of finite elements on the Koiter’s
analysis of plate problems [47] and structures made of assembly of flat plates [48].
Lanzo uses the so-called High-Continuity (HC) formulation proposed in [10]. This
approach ensures a C1 continuity with a low number of interpolation parameters
but can only be applied to flat rectangular elements.

We present here a simple approach that leads to accurate numerical results with
reasonable mesh sizes. The main idea is to rely upon already existing compatible
finite elements and alleviate the locking problem by enforcing constant quantities
within the element. We consider here a two-noded 6 degrees of freedom planar beam
element and a triangular three-noded 18 degrees of freedom flat shell element. Shear
effects are neglected and only isotropic linear constitutive models are considered
for the material. The extension to shear flexibility and orthotropic material does
not affect the general procedure. The kinematical models considered are the ones
described in section 2.4 as simplified lagrangian strain tensor. For beams and shells
they write, respectively:

⎧⎪⎪⎨⎪⎪⎩
ε =

1
L

∫ L

0

(
u,x + 1

2w,2x
)
dx

χ =
1
L

∫ L

0
w,xx dx

(2.56)

and
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx =
1
A

∫
A

[
u,x + 1

2

(
v,2x +w,2x

)]
dA

εy =
1
A

∫
A

[
v,y + 1

2

(
u,2y +w,2y

)]
dA

εxy =
1
A

∫
A

[
1
2 (u,y +y,x ) + 1

2 (w,x w,y )
]
dA

,

χxx =
1
A

∫
A

w,xx dA

χyy =
1
A

∫
A w,yy dA

χxy =
1
A

∫
A w,xy dA

(2.57)

It can be noticed that all the quantities are averaged over the element length L (for
the beam) and the element area A, for the shell element.

Planar beam element

We describe here the isoparametric formulation of the two-noded planar beam ele-
ment. The beam element is represented in figure 2.3 .

Figure 2.3: Two-node beam element

The Von Karman kinematic model (2.49) is employed, and the strain quantities are
averaged through the element domain as in (2.56).

We use the compact notation

εεε = [ε χ]T (2.58)
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to denote the strain vector εεε that contains the axial strain ε and the curvature χ.
The element nodal displacement vector is written as

q = [u1 w1 θ1 u2 w2 θ2]
T (2.59)

An isoparametric coordinate system is used. The link between the isoparametric
and the cartesian coordinate system is simply

ξ =
2
L

x − 1 (2.60)

so that the derivatives in the isoparametric and cartesian coordinate systems are
related as

d

dξ
=

2
L

d

dx
(2.61)

The in-plane and out-of-plane displacement components u and w are interpolated
as

[
u(ξ)
w(ξ)

]
=
[

Nu1 0 0 Nu2 0 0
0 Nw1 Nθ1 0 Nw2 Nθ2

]
q (2.62)

in a compact form, we can write

[
u(ξ)
w(ξ)

]
=
[

Nu

Nw

]
q (2.63)

where the shape functions are defined as
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Nu1 =
1
2
(1 − ξ) (2.64)

Nu2 =
1
2
(1 + ξ) (2.65)

Nw1 =
1
4
(1 − ξ)2(2 + ξ) (2.66)

Nθ1 =
1
8
L(1 − ξ)2(1 + ξ) (2.67)

Nw2 =
1
4
(1 + ξ)2(2 − ξ) (2.68)

Nθ2 = −1
8
L(1 + ξ)2(1 − ξ) (2.69)

According to (2.56), the B and C matrix are obtained by averaging the strain
functions and are thus constant. The linear matrix B of the general form (2.54) is
calculated as

B =

⎡⎢⎢⎣
2
L

∫ 1

−1
Nu,ξdξ

4
L2

∫ 1

−1 Nw,ξξ
dξ

⎤⎥⎥⎦ (2.70)

which leads to

B =
1
L

⎡⎢⎣ −1 0 0 1 0 0

0 0 −1 0 0 1

⎤⎥⎦ (2.71)

The quadratic matrix C(q) can be conveniently written as

C(q) =

⎡⎢⎣ qTKxx

01×6

⎤⎥⎦ (2.72)

where Kxx is obtained as
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Kxx =
4
L2

∫ 1

−1

NT
w,ξ

Nw,ξdξ (2.73)

which yields

Kxx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0
6

5L2

1
10L

0 − 6
5L2

1
10L

0
1

10L

2
15

0 − 1
10L

− 1
30

0 0 0 0 0 0

0 − 6
5L2

− 1
10L

0
6

5L2
− 1

10L

0
1

10L
− 1

30
0 − 1

10L

2
15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.74)

The material matrix Am that relates stresses and strains is written, for an isotropic
beam, as simply

Am =
[

EA 0
0 EI

]
(2.75)

where E is the elastic modulus of the material, A is the cross-section area and I is
the bending moment of inertia.

Triangular flat shell element

We describe in this section a triangular three-noded flat shell element with six de-
grees of freedom per node, three displacement components and three rotations. An
isotropic material model is considered. The element can be thought of as the com-
bination of a membrane element and a bending element. The degrees of freedom of
the two contributions are summarized in figure 2.4.
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Figure 2.4: The 3-node triangle flat shell element: membrane (left) and bending
(right) degrees of freedom. The drilling rotation is directly intro-
duced in the formulation.

The material stiffness matrix for the membrane and bending element have been
formulated by Allman in [3] and [1] respectively. We report here the calculation of
the entities necessary for the perturbation analysis.

The element degrees of freedom are organized in a vector form as follows

q =
[

q1 q2 q3

]T (2.76)

where

qi =
[

ui vi wi θxi θyi θzi

]
(2.77)

with i = 1, 2, 3.

The following geometric quantities associated to the local vertex coordinates (x1, y1),
(x2, y2), (x3, y3) are defined:

xij = xi − xj

yij = yi − yj i, j = 1, 2, 3 (2.78)

the element area is denoted by A and it is obtained as
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A =
y21x13 − x21y13

2
(2.79)

A triangular coordinate system (ζ1, ζ2, ζ3) is used, where the following relation holds:

ζ1 + ζ2 + ζ3 = 1

The isoparametric coordinates can be linked to the cartesian coordinates through
the following transformation

⎡⎣ 1
x
y

⎤⎦ =

⎡⎣ 1 1 1
x1 x2 x3

y1 y2 y3

⎤⎦⎡⎣ ζ1

ζ2

ζ3

⎤⎦ (2.80)

From (2.80) we obtain the link between the partial derivatives in the cartesian co-
ordinates and those in the isoparametric coordinates as

⎡⎢⎢⎢⎢⎣
∂

∂x

∂

∂y

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Tx

Ty

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

∂

∂ζ1

∂

∂ζ2

⎤⎥⎥⎥⎥⎦ (2.81)

where

Tx =
1

2A

[
y23 y31 y12

]
(2.82)

Ty =
1

2A

[
x32 x13 x21

]
(2.83)

Only the in-plane components of the strain model (2.53) contain quadratic contri-
butions. We express these components as

εεε =
[

εx εy εxy

]T (2.84)
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where εεε contains the in-plane strain components only. The B matrix is formed
according to the formulation by Felippa [29]. The final result is reported here:

B = [B1 B2 B3] (2.85)

where

B1 =

⎡⎢⎢⎢⎢⎣
y23 0 x32

0 x32

[
0
]
3×3

y23

y23 (y13 − y21)
6

x32 (x31 − x12)
6

(x31y13 − x12y21)
3

⎤⎥⎥⎥⎥⎦ (2.86)

B2 =

⎡⎢⎢⎢⎢⎣
y31 0 x13

0 x13

[
0
]
3×3

y31

y31 (y21 − y32)
6

x13 (x12 − x23)
6

(x12y21 − x23y32)
3

⎤⎥⎥⎥⎥⎦ (2.87)

B3 =

⎡⎢⎢⎢⎢⎣
y12 0 x21

0 x21

[
0
]
3×3

y12

y12 (y32 − y13)
6

x21 (x23 − x31)
6

(x23y32 − x31y13)
3

⎤⎥⎥⎥⎥⎦ (2.88)

In order to form the C matrix, the displacement components u, v and w are approx-
imated with simple linear shape functions, as:

⎡⎣ u
v
w

⎤⎦ =

⎡⎣ ζ1 0 0 ζ2 0 0 ζ3 0 0
0 ζ1 0

[
0
]
3×3

0 ζ2 0
[
0
]
3×3

0 ζ3 0
[
0
]
3×3

0 0 ζ1 0 0 ζ2 0 0 ζ3

⎤⎦
(2.89)
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This approach yields constant entities. The C(q) is written as

C =

⎡⎣ qTKxx

qT Kyy

qT Kxy

⎤⎦ (2.90)

where constant matrices Kxx, Kyy and Kxy are found as

Kxx = BT
wTT

x TxBw + BT
v TT

x TxBv (2.91)

Kyy = BT
wTT

x TxBw + BT
uTT

x TxBu (2.92)

Kxy = BT
w

(
TT

x Ty + TT
y Tx

)
Bu (2.93)

The matrices Bu, Bv and Bw are expansion matrices to assign the derivatives to
the corresponding degrees of freedom. They are defined as

Bw =

⎡⎣ 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎤⎦ (2.94)

Bu =

⎡⎣ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

⎤⎦ (2.95)

Bv =

⎡⎣ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤⎦ (2.96)

The isotropic material matrix Am for the in-plane stress-strain relation is written
as
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Am =
Eh

1 − ν2

⎡⎢⎢⎢⎢⎢⎣
1 ν 0

ν 1 0

0 0
1 − ν

2

⎤⎥⎥⎥⎥⎥⎦ (2.97)

2.5.2 Finite element inplementation of Koiter’s analysis

It is convenient to define other quantities to make the notation more compact. We
define the linear stresses n0 associated to the pre-buckling displacement q0:

n0 = AmBq0 (2.98)

the linear stresses ni associated to the displacement mode qi:

ni = AmBqi (2.99)

and the quadratic stresses nij associated to the second order fields qij :

nij = AmBqij +
1
2
AmCiqj (2.100)

All the quantities presented so far are associated to the element level. In the next
section the overall Koiter’s analysis translated into finite element formulation is
presented. The global entities necessary for the analysis are obtained by summation
of the contribution of all the elements. The element quantities are denoted by a
superscript e.

2.5.3 Finite element general procedure

Once translated to a finite element framework, the Koiter’s analysis involves a lim-
ited number of steps. Namely, it consists of a linear problem for the pre-buckling
solution, an algebraic eigenvalue problem for the buckling modes and a series of
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linear problems for the second order fields. The calculation of the post-buckling
coefficients involves only integration at the element level. We distinguish here the
element quantities with a superscript e.

Pre-buckling state

The equivalent FE element form of the linear problem (2.9) is the well known system
of equation

K0q0 = F (2.101)

where K0 is the material stiffness matrix, F is the external force vector and q0 is
the linear static solution.

Buckling state

The M buckling modes qi and the buckling loads λi, with i = 1, 2, . . . , M , are
obtained by solving the eigenvalue problem

[K0 − λiKG]qi = 0 (2.102)

The geometric stiffness matrix KG is formed as follows

KG =
∑

e

Lene
0K

e
xx (2.103)

for the beam element and

KG =
∑

e

Ae
(
ne

01
Ke

xx + ne
02

Ke
yy + ne

03
Ke

xy

)
(2.104)

for the shell element, where n01 , n02 , n03 are the three components of the internal
force vector n0. The element summation is carried out in the standard way. The
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element quantities are first rotated into the global coordinate system, then scattered
to the pertaining global degrees of freedom. This procedure is performed for each
element and the results are summed. The details are here omitted and can be found,
for example, in [11].

Calculation of post-buckling slopes

The calculation of the post-buckling slope coefficients aSijk
involves the calculation

of scalar quantities at the element level that are functions of the buckling modes
only. The contribution of the elements is summed over the whole structure:

aSijk
=

∑
e AeneT

k Ce
iq

e
j + 2AeneT

i Ce
jq

e
k

2qT
k K0qk

(2.105)

The notation employed is general and can be applied to both the beam and the shell
element. The element area Ae has to be substituted by the length Le in the case of
the two-dimensional beam element.

Initial post-buckling state

The second order displacement fields qij are obtained by the solution of the linear
problems

[K0 − λKG]qij = g(qi,qj) (2.106)

together with the orthogonality condition (2.36):

qT
k KGqij = 0 ∀i, j, k (2.107)

The right-hand-sides of the problem (2.106) are obtained as:

g(qi,qj) = −1
2

∑
e

Ae
(
neT

i Ce
j + neT

j Ce
i + qeT

j CeT

i Ae
mBe

L

)T

(2.108)
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Calculations of post-buckling curvatures

As for the aSijk
coefficients, the calculation of the post-buckling curvatures bSijkm

involves scalar quantities at the element level. The calculation requires also the
contribution of the second order fields qij .

bSijkm
=

∑
e Ae

(
neT

miC
e
jq

e
k + neT

ij Ce
kq

e
m + neT

m Ce
iq

e
jk + neT

i Ce
mqe

jk + 2neT
iCe

jq
e
km

)
2qT

k K0qk

(2.109)

As previously stated, the element area Ae has to be substituted by the element
length Le for the beam element.

2.5.4 Modification for pre-buckling rotations

If the pre-buckling rotations are not neglected as discussed in section 2.2.5, The
geometric stiffness matrix and the post-buckling coefficients are modified. The geo-
metric stiffness matrix for the shell element is now written as:

KG =
∑

e

Ae
(
ne

01
Ke

xx + ne
02

Ke
yy + ne

03
Ke

xy + CT
0 AmBL + BT

LAmC0

)
(2.110)

the last two terms account for the re-direction of stresses due to the pre-buckling de-
formations. We report here the formulas the finite element form of the post-buckling
curvature for the case of symmetric structures, i.e. ãS = 0. The b̃S coefficients is
written as:

b̃S =

∑
e Ae

[
2nT

1 C1q11 + nT
2 C1q1 + 1/2qT

1 CT
1 AmCq1

]
2λC

∑
e Ae

[
2nT

1 C0q1 + nT
0 C1q1

] (2.111)

We will show a comparison between the two formulations (pre-buckling rotations
neglected and included) in the case of a cylindrical shell loaded with uniform external
pressure.
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2.6 Numerical examples

We present here some examples to show the effectiveness of the proposed finite
element formulation and the capabilities of the method. The finite element imple-
mentation of the Koiter’s analysis as well as a path-following technique based on the
normal flow algorithm as in [60] has been carried out in MATLAB.

2.6.1 Roorda’s frame

The accuracy of the proposed finite element implementation is demonstrated via the
classical example of the Roorda’s frame. The analytical solution is originally given
by Koiter [43] and reprised in [13, 57, 40]. The structure consists of two beams of
equal length connected at a 90 degrees angle and hinged at both tips. A vertical load
is applied at the joint to compress the vertical member. A sketch of the structure is
shown in figure 2.5.

Figure 2.5: The Roorda’s frame

The analytical solution relies on the hypothesis of infinite axial rigidity, i.e. the ratio
between axial and bending stiffness is assumed to be small
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EI

EAL2
� 1

The following properties are chosen:

• L = 100 mm

• EA = 1.05 · 105 N

• EI = 2.1875 · 103 Nmm2

The analytical solution yields the following values for the buckling load λC and the
post-buckling coefficients aS and bS respectively:

• λC = 3.0375 N

• aS = 0.380520

• bS = 0.142137

The buckling mode is normalized as to have a unit rotation at the node where the
load is applied. The structure is characterized by a non-zero aS coefficient. The
maximum sustainable load thus depends on the sign of the deformation. The linear
pre-buckling solution q0, the buckling mode q1 and the second order field q11 are
shown in figure 2.6 for a finite element mesh of 20 elements for each member.

(a) q0 (b) q1 (c) q11

Figure 2.6: Roorda’s frame: pre-buckling solution, buckling mode and second
order field. Note the non-uniform axial displacement of the vertical
member in the second order field q11.
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The finite element results are reported in table 2.2. It can be noticed that the
conventional beam element exhibits an extremely slow convergence for the bS coef-
ficient. The element based on the averaged kinematic model yields accurate results
for a small number of elements.

No. of el. λC aS aS averaged bS bS averaged
2 3.0682 -0.37812 -0.37801 91.0544 0.140644
4 3.0340 -0.38044 -0.38037 23.5570 0.142009
8 3.0377 -0.38053 -0.38052 6.7444 0.142129
16 3.0376 -0.38052 -0.38052 1.8404 0.142137
32 3.0375 -0.38052 -0.38052 0.5698 0.142137
64 3.0375 -0.38052 -0.38052 0.2493 0.142137

Table 2.2: Roorda’s frame: convergence results for Koiter’s analysis. The con-
ventional beam element yields an extremely slow convergence of the
bS coefficient.

Some comparisons with full nonlinear path-following analysis carried out with the
commercial finite element program ABAQUS are shown in figure 2.7. The geomet-
rical imperfection is imposed as the normalized buckling mode with different magni-
tudes ξ̄. The sign of the imposed imperfection is such that the structure exhibits an
unstable post-buckling behavior. The limit load and the initial post-buckling path
are fairly accurately reproduced.
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Figure 2.7: The Roorda’s frame: Koiter’s vs full nonlinear analysis
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2.6.2 Three beam frame

The following example is characterized by the possibility of having clustering of
buckling loads. The structure is constituted by three straight beams connected in a
reversed ”Y” fashion. The cross section of the members is circular, with a diameter
of d1 and d2 for the top beam and the lower beams, respectively. The lower tips of
the lower beams are pinned, while the upper extremity of the top vertical member
is constrained in the horizontal direction. A unity vertical load is applied at the top
to compress the structure. A sketch of the frame with the geometrical properties,
applied load and boundary conditions is shown in figure 2.8. The length L is 30 mm
and the elastic modulus E is 210000 N/mm2. The diameter d1 of the cross section
of vertical member is set to 3 mm.

Figure 2.8: The three-beam frame

The structure is modeled with 7 beam elements for the vertical beam and 10 beam
elements for the base beams. If the ratio between the cross section diameters is
varied, the value of the first two buckling loads tends to approach unity. The values
of λ1 and λ2 together with their ratio is shown in table 2.3. The clustering of the
buckling loads potentially leads to modal interaction. A Koiter’s analysis of the
frame has been performed by taking into account the first two buckling modes. The
linear solution q0, the buckling modes q1 and q2 and the corresponding second order
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fields q11, q12 and q22 are shown in figures 2.9 and 2.10 for d2/d1 = 0.3.

d2

d1
0.3 0.45 0.6 0.75 0.9

λ1 106.4 522.0 1516.9 3168.4 5397.1
λ2 107.3 543.2 1716.9 4191.9 8693
λ2

λ1
1.01 1.04 1.13 1.32 1.61

Table 2.3: Three beam frames: first two buckling loads for different cross section
diameter ratios. The ratio of the first two buckling loads approaches
one as the ratio of the two cross section diameters decreases.

(a) q0 (b) q1 (c) q2

Figure 2.9: Three beam frame: pre-buckling solution and first two buckling
modes, d2/d1 = 0.3.

(a) q11 (b) q12 (c) q22

Figure 2.10: Three beam frame: second order fields, d2/d1 = 0.3.

The buckling modes are normalized to have a unit rotation at the bottom tip. The
outcome of Koiter’s analysis for a particular imperfection pattern is shown in figures
2.11 and 2.12. The structure exhibits a limit point behavior. As the ratio of the first
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two buckling loads approach unity through a tuning of the cross section diameters
of the members, the reduction in limit load with respect to the first buckling load
becomes more pronounced. Some results are shown in figure 2.13, where the ratio
of the maximum sustainable load λmax and the first buckling load λ1 is plotted
as a function of the diameter ratio and the buckling loads ratio, for two different
imperfection patterns. The reduction of the limit load value is evident as the two
buckling loads tend to coincide.

−1 0 1 2 3
0

20

40

60

80

100
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λ

ξ
1

ξ
2

Figure 2.11: Three beam frame: modal response of Koiter’s analysis, ξ̂1 = 0.05,
ξ̂2 = −0.05, d2/d1 = 0.3
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Figure 2.12: Three beam frame: nonlinear static responses at relevant nodes,
ξ̂1 = 0.05, ξ̂2 = −0.05, d2/d1 = 0.3
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Figure 2.13: Three beam frame: maximum sustainable load as function of cross
section diameter ratio (left) and first two critical loads ratio (right).
The ratio between the limit load and the first buckling load decreases
as the first two buckling loads tend to coincide.
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2.6.3 Rectangular plates

The proposed shell element formulation is tested on rectangular plates of different
aspect ratios loaded in compression and shear. Different boundary conditions are
considered. These test were presented by Lanzo et al. in [47] where High Continuity
(HC) rectangular flat elements where used. The different boundary conditions and
load configurations are sketched in figures 2.14 and 2.15. The first set of tests (A1
to A4) refers to plates uniformly compressed in the longitudinal direction by a (1×
λ) load distribution along the transversal edge. Different boundary conditions are
considered for the out-of-plane displacement of the edges, while free edges conditions
are assumed for the in-plane displacements. Test C1 and C2 consider a uniform shear
load applied at the the edges. For all the presented cases, the following properties
have been considered: E = 2.1 × 106, ν = 0.25, h = 1.

In-plane loaded plates are symmetric structures, i.e. the post-buckling behavior is
symmetric with respect to the sign of the deformation. Therefore, the static post-
buckling slope coefficient aS is zero.

The numerical results are reported in tables 2.4 and 2.5. Analytical results are
available for the test case A1, A2 and A3 for the buckling load from [13]. They are
reported in parentheses by the obtained numerical values. In spite of the relative
simplicity of the proposed finite element (linear shape functions for the quadratic
terms in the kinematical model), these is a good agreement for the critical loads for
relative coarse meshes. The agreement of the bS factor with the results of [47] is also
reasonably good.
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a
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(a) test A1

a

b

(b) test A2

a

b

(c) test A3

a

b

(d) test A4

Figure 2.14: Rectangular plates: compression case studies

a

b

(a) test C1

a

b

(b) test C2

Figure 2.15: Rectangular plates: shear case studies
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Case Mesh λ1 ·
(

π2

b2
Eh3

12(1−ν2)

)−1

Lanzo et al.[47] bS Lanzo et al.[47]

Test A1 10 x 10 4.03883 0.19188
a/b=1 15 x 15 4.01714 0.19172

20 x 20 4.00962 4.00263 0.18563 0.18244
25 x 25 4.00615 (4) (25x25) 0.18608 (25x25)

Test A2 10 x 10 8.04340 0.22300
a/b=1 15 x 15 7.84367 0.20535

20 x 20 7.77608 7.71346 0.19847 0.19575
25 x 25 7.74526 (≈ 7.69) (33x33) 0.19954 (33x33)

Test A3 20 x 10 1.38580 0.01217
a/b=2 30 x 15 1.38604 1.38808 0.01055 0.00880

40 x 20 1.38611 (≈ 1.38) (33x17) 0.00980 (33x17)
Test A4 20 x 10 4.94684 0.26322
a/b=2 30 x 15 4.89094 4.85495 0.26562 0.26082

40 x 20 4.87168 (49x21) 0.26209 (49x21)

Table 2.4: Rectangular plates: compression results

Case Mesh λ1 ·
(

π2

b2
Eh3

12(1−ν2)

)−1

Lanzo et al.[47] bS Lanzo et al.[47]

Test C1 10 x 10 9.41626 0.11609
a/b=1 15 x 15 9.37709 0.11697

20 x 20 9.35176 9.35185 0.11521 0.11452
25 x 25 9.34227 (25x25) 0.11564 (25x25)

a/b=2 10 x 20 6.68204 0.07360
15 x 30 6.59422 6.56822 0.07381 0.07170
20 x 40 6.58086 (23 x 45) 0.07235 (23 x 45)

a/b=3 10 x 30 5.94313 5.8846 0.08367 0.07992
15 x 45 5.88626 (15x45) 0.08120 (33x17)

Test C2 10 x 10 15.48724 0.11050
a/b=1 15 x 15 15.00922 0.11643

20 x 20 14.84668 14.7822 0.11532 0.11685
25 x 25 14.77238 (25x25) 0.11681 (25x25)

a/b=2 10 x 20 10.67048 0.13773
15 x 30 10.43364 10.34334 0.13162 0.13282
20 x 40 10.35193 (23 x 45) 0.13275 (23 x 45)

a/b=3 10 x 30 9.89650 9.74613 0.08624 0.08650
15 x 45 9.69401 (15x45) 0.08744 (15x45)

Table 2.5: Rectangular plates: shear results
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(a) test C1, a/b = 2, q1 (b) test C1, a/b = 2, q11

(c) test C2, a/b = 2, q1 (d) test C2, a/b = 2, q11

Figure 2.16: Rectangular plates: test C1 and C2, buckling modes and second
order fields. The buckling modes and the second order fields feature
out-of-plane and in-plane displacements, respectively.

56



Koiter’s analysis for initial post-buckling

2.6.4 Rectangular flat plate with nearly coincident modes

The actual imperfection pattern present in a structure can trigger different post-
buckling behaviors. This phenomenon is well illustrated by the following example.
We consider here a rectangular flat plate. The boundary and load conditions are
equivalent to the test A1 described in the previous section.

The sides are a = 140 mm and b = 100 mm long, respectively, and the thickness is 1
mm. The elastic material properties are E = 70000 N/mm2 and ν = 0.3. The plate
is meshed with 616 triangular shell elements.

The aspect ratio of the plate is chosen such that the plate exhibits two almost
coincident buckling modes with buckling loads of 362 N and 368 N respectively. The
first two buckling modes are shown in figure 2.17 while the second order fields are
shown in figure 2.18.

(a) q1, λ1 = 354.09 N (b) q2, λ2= 360.01 N

Figure 2.17: Rectangular plate: buckling modes

The imperfection pattern superimposed to the plate can trigger either the first or the
second buckling mode in the post-buckling range. A multi-mode analysis including
the first two buckling modes is therefore essential in this case. The buckling modes
are normalized so that the maximum out of plane displacement is equal to the
thickness of the plate. Due to the symmetry of the structure and the applied load,
the aSijk

coefficients are all zero. The bSijkl
coefficients are reported in table 2.6.

Two different imperfection patterns as a combination of the two retained buckling
modes are applied, [ξ̄1 ξ̄2] = [0.01 0.0058] and [ξ̄1 ξ̄2] = [0.01 0.006] respectively. The
modal response for these two imperfection combinations is shown in figure 2.19.
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(a) q11 (b) q12

(c) q22

Figure 2.18: Rectangular plate: second order fields

b1111 b1112 b1121 b1122 b1211 b1212 b1221 b1222

0.1353 0 0 0.0663 0 0.0675 0.2747 0
b2111 b2112 b2121 b2122 b2211 b2212 b2221 b2222

0 0.0663 0.2796 0 0.2747 0 0 0.2221

Table 2.6: Rectangular plate: bSijkl
coefficients

It can be noticed that the amplitudes of the two included modes grow in the initial
post-buckling stage, then the first mode prevails in the first case, while the sec-
ond mode is predominant for the second imperfection combination. The location
of the monitored nodes are shown in figure 2.20. The out-of-plane displacement of
the considered nodes is shown in figure 2.21 for the two considered imperfections.
The comparison with full nonlinear path-following analysis is very good. The re-
duced method is able to accurately capture the different post-buckling behavior for
different imperfection patterns imposed to the structure. The comparison of the
computational time involved in the Koiter and full nonlinear analysis are summa-
rized in table 2.7. The remarkable time saving possible with the Koiter’s analysis is
evident.
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Figure 2.19: Rectangular plate: post-buckling modal responses. Depending on
the different imperfection patterns, the first or the second mode
prevails and the other vanishes.
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Figure 2.20: Rectangular plate: monitored nodes
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Figure 2.21: Rectangular plate: Koiter vs. full nonlinear analysis, nodal re-
sponses.

Koiter Full nonlinear
pre-buckling state q0 0.4 N.A.
buckling modes qi 3.9 N.A.
post-buckling slopes aSijk

3.2 N.A.
second order modes qij 2.5 N.A.
post-buckling curvature bSijkm

4.0 N.A.
load-displacement curve 18.1 909.0
total time (sec) 32.1 909.0

Table 2.7: Rectangular plate: comparison of computational times
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2.6.5 Rectangular Plate with cutouts

The analysis of a compressed rectangular plate with circular cutouts is presented in
this section. This example shows the capability of the Koiter’s analysis to repro-
duce mode-jumping phenomena (i.e. a marked change in the deformation pattern)
occurring at load levels rather far from the first bifurcation load.

A sketch of the structure with the relevant geometric parameters, the applied load
and the boundary conditions is shown in figure 2.22.

x,u
y,v

z,w

d

L

H

d

a

v,w=0

v,w=0

w=0

w=0

A

B

Figure 2.22: Rectangular plate with cutouts

The following geometrical and material properties are considered:

• L = 120 mm

• H = 60 mm

• d = 15 mm

• t = 0.5 mm

• a = 30 mm

• E = 70000 N/mm2

• n = 0.33
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The load is applied uniformly at the short edges. The four edges of the plate are
constrained with respect to the out-of-plane displacement component w. The v
displacement component of the unloaded edges is constrained as well. The plate is
meshed with 704 elements for a total of 2388 degrees of freedom.

A buckling analysis was performed and the first 5 buckling modes were considered.
The eigenvalue analysis reveals two rather close buckling loads corresponding to a
one half wave and two half waves mode respectively. The third, fourth and fifth
modes correspond to buckling loads far from the first critical load and they feature
a three, four and five half waves buckling pattern respectively.

Three Koiter’s analyses were carried out by retaining the first two, three and five
modes respectively. An imperfection pattern constituted by the first two buckling
modes is considered. The imperfection amplitudes are [ξ̄1 ξ̄2] = [0.005 0.02], the
modes being normalized to have the maximum w displacement equal to the thickness
of the plate. The second order fields qij are shown in figure 2.24. As for the previous
examples, they contain only in-plane displacement components. The ovalization of
the circular cutouts to account for the effect of shortening is evident.

A careful inspection of the modal responses reported in figure 2.25 reveals the mode
jumping phenomenon. For the two modes analysis, the first mode initially prevails
but the amplitude of the second mode soon increases while the first mode practically
disappears. In this case, the mode-switching occurs with a limited drop in the applied
load. A three mode analysis renders a more realistic picture. After buckling has
onset, the first mode prevails and the amplitude of the second mode gently fades.
However, also because of the effect of the cutouts, the post-buckling deformation
assumes a saddle-like shape. This deformation cannot be achieved by a combination
of the first two buckling modes only. The three-half waves third buckling mode
starts to appear in the deformation well before its corresponding critical load value
is reached. The transition manifests at a load level of about 67 N. After a rather
complicated behavior characterized by a remarkable drop of the applied load, the
first and the third modes vanish and the second mode prevails. The same qualitative
behavior is captured by the five mode analysis as well. It can be noticed, however,
that the transition phase from the first to the second buckling mode is rather different
from the previous case. Mode 4 and 5 contributes to the jumping before returning to
zero. Their contribution is essential to correctly describe the complicated transition
between the first and the second buckling mode.

The out-of-plane displacement w of point A and B are shown in figure 2.26. It is
evident how all the three reduced analysis can predict the mode jumping behavior.
However, only the 5 modes reduced analysis is able to accurately follow the transition
phase. The plate behavior is clarified in the sequence of deformation snapshots
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reported in figure 2.27. The comparison of the computational time required for the
Koiter’s analysis with 5 retained modes and the full analysis is reported in table 2.8.

It can be concluded that buckling modes associated with critical loads higher than
the lowest buckling mode can play and important role in the approximation of the
post-buckling deformation in case of mode jumping and must therefore be included
in the analysis. This example furthermore highlights the insight in the physical
behavior that can be gained with a modal based reduction method.

Koiter (5 modes) Full nonlinear
pre-buckling state q0 0.4 N.A.
buckling modes qi 3.6 N.A.
post-buckling slopes aSijk

14.3 N.A.
second order modes qij 7.4 N.A.
post-buckling curvature bSijkm

35.7 N.A.
load-displacement curve 83.5 3062
total time (sec) 144.9 3062

Table 2.8: Rectangular plate with cutouts: comparison of computational times
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(a) q1, λ1 = 23.56 N (b) q2, λ2 = 28.09 N

(c) q3, λ3 = 45.47 N (d) q4, λ4 = 58.47 N

(e) q5, λ5 = 81.85 N

Figure 2.23: Rectangular plate with cutouts: first five buckling modes. The buck-
ling analysis reveals two almost coincident first buckling loads. The
3rd, 4th and 5th buckling loads are far from the two first values.
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(a) q11 (b) q12 (c) q13

(d) q14 (e) q15 (f) q22

(g) q23 (h) q24 (i) q25

(j) q33 (k) q34 (l) q35

(m) q44 (n) q45 (o) q55

Figure 2.24: Rectangular plate with cutouts: second order fields. They contain
in-plane displacement components only.
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Figure 2.25: Rectangular plate with cutouts: Koiter’s multimode analyses,
[ξ̄1 ξ̄2] = [0.005 0.02]. The 2 mode analysis captures the jump-
ing from the first to the second buckling mode. The 3 and 5 mode
analysis reproduce the same phenomenon but the transition phase
is more realistically reproduced. Note the response of the third mode
before the limit load that contributes to the saddle-like post-buckling
deformation.
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Figure 2.26: Rectangular plate with cutouts: node response comparison. The
five modes analysis is able to correctly capture the complicated tran-
sition phase of the mode jumping.
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(a) λ = 24.08 N (b) λ = 32.82 N (c) λ = 58.46 N

(d) λ = 66.33 N (e) λ = 61.63 N (f) λ = 57.59 N

(g) λ = 55.63 N (h) λ = 43.52 N (i) λ = 29.03 N

(j) λ = 28.66 N (k) λ = 38.76 N (l) λ = 90.23 N

Figure 2.27: Rectangular plate with cutouts: static deformation sequence (de-
formation scale factor 20). After the limit load of λ = 66.33 N is
reached, the deformation loses symmetry and the transition to the
two half-wave deformation begins.

67



Chapter 2

2.6.6 T-section beam

This example highlights the importance of a proper kinematical model discussed in
2.4. We consider here a simply supported beam with a T-shaped cross section. The
geometry and boundary conditions are reported in figure 2.28. The beam is bent
by a vertical force applied at the midspan. The following geometrical and material
properties are considered:

• L = 450 mm

• H = 65 mm

• W = 38 mm

• t = 1 mm

• E = 70960 N/mm2

• ν = 0.321

The structure is meshed with the triangular element presented in section 2.5. We
refer as a mesh density parameter n the number of nodes on the half-edge of the
tip of horizontal flange. The geometric properties are chosen to have the first two
buckling loads almost coincident. The corresponding buckling modes feature both
global displacement and local wrinkling of the flanges. The isometric and top view
of the first two buckling modes are shown in figure 2.29.

It can be noticed that the second buckling mode is characterized by in-plane bending
of the top flange. This situation makes the presence of in-plane rotational terms in
the kinematical model of paramount importance. The buckling loads have been
calculated by using the Von Karman kinematical model (VK) (2.51), which neglects
in-plane rotations, and the simplified lagrangian model (SL) (2.53) for a mesh size
n = 3. The results are summarized in table 2.9. There is no noticeable difference
in the buckling modes calculated with the two different kinematic models. While
the agreement for the first buckling load is rather good, the second buckling load
exhibits a difference of about 10%. The limitations of the Von Karman model
(2.51) are even more evident if the post-buckling behavior is examined. A two-mode
Koiter’s analysis has been carried out using the two considered kinematical models.
The second order fields are shown in figure 2.30. The modal amplitudes for the two
cases can be seen in figure 2.31. While the VK model yields a stable post-buckling
behavior, the more accurate SL model predicts an unstable path. The effect of
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A

B

Figure 2.28: T-section beam

the in-plane rotations are therefore critical to determine the correct post-buckling
behavior.

The convergence of the post-buckling coefficients has been also investigated. The
absolute values of the bSijkl

coefficients are reported in figure 2.33 for increasing
values of the parameter n. A mesh density of at least n = 5 is needed for a reasonable
accuracy.

Von Karman model (2.51) Simplified Lagrangian model (2.53)
λ1 2823 N 2816 N
λ2 3302 N 3072 N

Table 2.9: T-section beam: comparison of critical loads. Note the difference of
the second buckling load predicted by the two different kinematical
models. The Von Karman model (2.51) neglects the in-plane rota-
tional terms and yields a buckling load about 10% higher.
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(a) q1, isometric view (b) q2, isometric view

(c) q1, top view (d) q2, top view

Figure 2.29: T-section beam: first two buckling modes. The second mode q2

features a substantial in-plane shear deformation that needs to be
accounted for in the kineamatical model.

A 2-modes Koiter’s analysis has been performed and the results were compared with
a full nonlinear path-following analysis using ABAQUS. A mesh density parameter
n = 5 has been used. The ABAQUS model has been meshed with the same density
using the 4-nodes quadrilateral shell element S4R. An imperfection in the shape of
the first mode of an amplitude of 0.1 has been imposed to the structure, the buckling
modes being normalized such to have a unity maximum displacement. The reduced
analysis is able to capture the limit point and the initial unstable post-buckling
behavior.
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(a) q11 (b) q12 (c) q22

Figure 2.30: T-section beam: second order fields
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Figure 2.31: T-section beam: Koiter’s analysis with the Von Karman (2.51) and
the simplified lagrangian (2.53) kinematical model. The omission
of the in-plane rotational terms results in an erroneous stable post-
buckling behavior.
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Figure 2.32: T-section beam: Koiter vs full nonlinear analysis
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2.6.7 Cylindrical shell under external pressure

A cylindrical shell is here considered to demonstrate the accuracy of the proposed
finite element implementation for curved structures. The geometrical properties and
the applied load are sketched in figure 2.34.

Figure 2.34: Cylindrical shell

The edges are restrained in the radial and circumferential directions, v and w re-
spectively. The shell is loaded with a uniform external pressure. Only 1/8 of the
structure is modeled, i.e. three planes of symmetry have been considered: one nor-
mal to the longitudinal axis of the shell and the other two normal to each other
cutting the shell in the longitudinal direction.

The following properties are considered:

• L = 5.08 in.

• R = 10.16 in.

• h = 0.01179 in.

• E = 0.1048 · 108 lb/in2.

• ν = 0.30

One buckling mode with 16 half-waves in the circumferential direction is considered.
The pre-buckling solution q0 is reported in figure 2.35. while the considered buckling
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mode q1 and the corresponding second order field q2 are shown in figure 2.36. It can
be noticed that the buckling mode does not contain any axisymmetric component.
The second order field results in twice the number of circumferential waves of the
buckling mode. In addition, an axisymmetric contraction in also present. These
shapes coincide which those predicted by the semi-analytical approach with assumed
buckling mode shapes [39]. This constitutes a further confirmation of the correctness
of the approach. We compare here the values of the buckling load and the post-
buckling curvature obtained by neglecting and including the pre-buckling rotations,
as discussed in section2.2.5, with values obtained by a semi-analytical approach using
assumed mode shapes [39] and Donnell’s shell theory. The results are shown in table
2.10. The buckling mode has been normalized to feature a maximum out-of-plane
displacement of one thickness of the shell. The grid size reported in the first column
refers to the number of nodes in the longitudinal and the circumferential direction
of the mesh, respectively. The finite element calculation including the effect of
pre-buckling rotation converges to the analytical results, while the omission of the
pre-buckling deformation results in a slightly higher buckling load. The values of
the post-buckling coefficients show negligible difference.

Mesh λC λ̃C bS b̃S

20 × 126 1.3689 1.3509 -0.1662 -0.1775
25 × 158 1.3665 1.3488 -0.1736 -0.1852
30 × 189 1.3652 1.3476 -0.1769 -0.1803
35 × 220 1.3644 1.3469 -0.1784 -0.1899
40 × 252 1.3639 1.3465 -0.1777 -0.1891
45 × 283 1.3635 1.3462 -0.1798 -0.1861
From [41] 1.3448 -0.1809

Table 2.10: A-8 cylindrical shell: numerical results
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Figure 2.35: A-8 cylindrical shell: pre-buckling solution q0

(a) q1, isometric view (b) q1, top view

(c) q11, isometric view (d) q11, top view

Figure 2.36: A-8 cylindrical shell: buckling mode and second order field
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2.7 Conclusions

The Koiter’s initial post-buckling analysis has been presented in a general func-
tional notation. Both single mode and multi-mode analysis have been considered.
Accuracy issues rising from the employed kinematical models are discussed. Is has
been shown that some quadratic terms in the Green-Lagrange kinematical tensor
are responsible for the uncorrect values of the post-buckling curvature coefficient.
The problem arises when the structure is statically determined, i.e. there is no
stress-redistribution after buckling has occurred. For shell analysis, the in-plane ro-
tational terms of the kinematical model must be conserved. A simple finite element
implementation using constant strain quantities to avoid locking is proposed. A 2D
beam element and a 3D triangular shell element is presented. Several examples are
presented to show the capability of the method as well as the performance of the pro-
posed FE implementation. Good convergence properties of the presented elements
has been achieved. The Koiter’s method allows a substantial gain in computing time
with respect to full nonlinear analysis while retaining good accuracy in the vicinity
of the critical point. Complicated mode interaction and mode jumping phenomena
occurring at load levels remarkably higher than the critical load has been successfully
captured with the reduced analysis.
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Perturbation analysis for
nonlinear vibrations

3.1 Introduction

Another powerful application of perturbation methods lies in the analysis of nonlin-
ear vibration of structures. A linear free vibration analysis leads to an eigenvalue
problem that provides vibration modes and the corresponding frequencies. The
underlying hypothesis is the infinitesimality of the displacements. However, when
the deformations become finite, geometric effects introduce a dependency of the fre-
quency on the amplitude of vibration. This results in a softening or hardening effect,
whether the frequency decreases or increases with respect of an amplitude parameter,
respectively. Following the same line of the initial post-buckling analysis presented
in chapter 2, a perturbation method directly yields a curvature coefficient for the
frequency-amplitude relation that accounts for the most important nonlinear effect.
The calculation of this coefficient is based on second order displacement fields re-
sulting from the second order terms of the perturbed equations. These second order
modes constitute the main displacement correction to the linear vibration mode to
account for the geometric nonlinearity and furnish a prompt physical interpretation
of such effect.

As discussed in chapter 2, the framework can be extended for the case of multiple
modes with coincident frequencies. In this case, the modes can interact and are

79



Chapter 3

likely to modify the frequency-amplitude relation.

In this chapter, we present the perturbation method for nonlinear vibrations out-
lining the similarities and the differences with respect to the treatment of initial
postbuckling. The presented method is implemented into a finite element frame-
work and applied to simple 2-D beam structures as well as 3-D cylindrical shells.
The results of all the presented examples were compared to analytical and semi-
analytical solutions available in the literature.

3.2 The perturbation method

We denote with u, εεε, and σσσ a generalized displacement, strain and stress field. Each
symbol can be thought of as a vectorial entity, its specific dimension depending
on the particular problem at hand. The strain-displacement relation is assumed
quadratic, as

εεε = L1(u) +
1
2
L2(u) (3.1)

where L1 and L2 are linear and quadratic functional respectively. The stress-strain
relation is

σσσ = H(εεε) (3.2)

The reciprocity relation

H(εεε1) · εεε2 = H(εεε2) · εεε1 (3.3)

holds for any field u1 and u2.

The dynamics of the system under periodic motion is governed by Hamilton’s prin-
ciple, that can be written as:

∫ 2π/ω

0

[(
1
2
M

(
∂u
∂t

)
· ∂u

∂t

)
− σσσ · δε

]
dt = 0 (3.4)
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The ”dot” operation implies the inner multiplication of variables and the integration
over the entire domain. The mass operator M( ) is assumed homogeneous and linear
with the following symmetric property

M(u) · v = M(v) · u, ∀u,v (3.5)

By introducing the new time variable τ = ωt, equation (3.4) can be rewritten as

∫ 2π

0

ω2

[
δ

(
1
2
M (u̇) · u̇

)
− σσσ · δε

]
dτ = 0 (3.6)

where the ˙( ) operator is intended as stands for ∂( )/∂τ . By integrating by parts we
obtain

ω2M(u̇) · δu
∣∣∣2π

0
−
∫ 2π

0

(σ · δε + M(ü) · δu)dτ = 0 (3.7)

The first term vanishes for periodicity condition and we are left with

∫ 2π

0

(σ · δε + M(ü) · δu)dτ = 0 (3.8)

If a bilinear functional operator L11 is defined as

L2(u + v) = L2(u) + L11(u,v) + L2(v)

then the variation δεεε resulting from δu is written as

δεεε = δe + L11(u, δu) (3.9)

where e ≡ L1(u).

We assume the vibration mode and the resulting strain and stresses as:
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u = ξu1

εεε = ξεεε1

σσσ = ξσσσ1 (3.10)

where ξ is an amplitude parameter associated with mode u1. If the proposed form
(3.10) is substituted in equation (3.7) and only linear terms are retained, the follow-
ing linear equation is obtained

∫ 2π

0

(ω2
0M(ü1) · δu + σ1 · δe)dτ = 0 (3.11)

By letting δu = u1 and δe = e1, the expression for the natural frequency ω0 is
found:

ω2
0 =

∫ 2π

0 σ1 · e1dτ∫ 2π

0
M(u̇1) · u̇1dτ

(3.12)

We assume for now that only one mode u1 is associated to the frequency ω0. To
find how the structure behaves when the amplitude of vibration becomes finite we
expand the solution as

u = ξu1 + ξ2u2 + +ξ3u3 · · ·
εεε = ξe1 + ξ2εεε2 + ξ3εεε3 + · · ·
σσσ = ξσ1 + ξ2σσσ2 + ξ3σσσ3 · · · (3.13)

where

ε2ε2ε2 = L1(u2) +
1
2
L2(u1)

ε3ε3ε3 = L1(u3) + L11(u1,u2)
· · ·
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and

σσσ2 = H(ε2ε2ε2)
σσσ3 = H(ε3ε3ε3)

· · ·

In order to make the expansion unique, the higher order fields u2, u3,. . . are orthog-
onalized to u1 with respect to the inertial operator:

M(u̇1) · u̇k = M(ü1) · uk = 0 , k �= 1 (3.14)

This property together with the reciprocal relation (3.3) implies also that

σ1σ1σ1 · ek = 0, k �= 1 (3.15)

and

H(ek) · e1 = 0, k �= 1 (3.16)

By substituting the expansion(3.13) in the equilibrium equation (3.8) we obtain

∫ 2π

0
[ ξ

(
ω2M(ü1) · δu + σ1σ1σ1 · δe

)
+

ξ2
(
ω2M(ü2) · δu + σ2σ2σ2 · δe + σ1σ1σ1 · L11(u1, δu)

)
+

ξ3
(
ω2M(ü3) · δu + σ3σ3σ3 · δe + σ1σ1σ1 · L11(u2, δu) + σ2σ2σ2 · L11(u1, δu)

)
+ · · · ] dτ = 0

(3.17)

and letting δu = u1 and accordingly δe = e1 and introducing the expression for ω0

(3.12) we obtain the following equation
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∫ 2π

0 [ ξ

(
1 − ω2

ω2
0

)
σ1σ1σ1 · e1+

ξ2 (σ2σ2σ2 · e1 + σ1σ1σ1 · L2(u1)) +

ξ3 (σ3σ3σ3 · e1 + σ1σ1σ1 · L11(u1,u2) + σ2σ2σ2 · L2(u1)) + · · · ] dτ = 0

(3.18)

The reciprocity relation (3.3) allows further simplifications

σ2σ2σ2 · e1 = σ1σ1σ1 · ε2ε2ε2 = σ1σ1σ1 ·
(
e2 +

1
2
L2(u1)

)
=

1
2
σ1σ1σ1 · L2(u1) (3.19)

and

σ3σ3σ3 · e1 = σ1σ1σ1 · ε3ε3ε3 = σ1σ1σ1 · (e3 + L11(u1,u2)) = σ1σ1σ1 · L11(u1,u2) (3.20)

The governing equation is simplified as

∫ 2π

0 [ ξ

(
1 − ω2

ω2
0

)
σ1σ1σ1 · e1+

ξ2 3
2
σ1σ1σ1 · L2(u1)+

ξ3 (2σ1σ1σ1 · L11(u1,u2) + σ2σ2σ2 · L2(u1)) + · · · ] dτ = 0

(3.21)

A relation between the frequency ω and the amplitude ξ is found

ω2

ω2
0

= 1 + aDξ + bDξ2 + · · · (3.22)

where

aD =

∫ 2π

0
3
2σ1σ1σ1 · L2(u1)dτ∫ 2π

0
M(u̇1) · u̇1dτ

(3.23)
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and

bD =

∫ 2π

0
(2σ1σ1σ1 · L11(u1,u2) + σ2σ2σ2 · L2(u1))dτ∫ 2π

0 M(u̇1) · u̇1dτ
(3.24)

Equation (3.22) is a compact representation of the effect of the amplitude of vibration
on the frequency. The calculation of the second order coefficient bD requires the
calculation of the second order field u2. This is obtained by equating the term
multiplying ξ2 in equation (3.21) to obtain:

ω2M(ü2) · δu + σ2 · δe + σ1 · L11(u1, δu) = 0 (3.25)

The second order field u2 is time dependent and it is actually constituted by two
parts. In order to obtain the two contributions we have to explicitly write the time
dependency of the vibration mode u1 as

u1 = û1 sin τ

e1 = ê1 sin τ

σσσ1 = σ̂σσ1 sin τ (3.26)

where the hatted quantities are spatial shapes multiplied by an harmonic time re-
sponse. By substituting (3.26) into the second order problem (3.25) we obtain

ω2M(ü2) · δu + σ2 · δe = −1
2
(1 + cos 2τ)σ̂σσ1 · L11(û1, δu) (3.27)

It can be noticed that the right hand side of (3.27) is formed by a constant forcing
term and a harmonic term respectively. The solution can therefore be split into two
parts:

u2 = û21 + û22 cos 2τ (3.28)

which are the solution of the two problems
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σ̂21 · δe = −1
2
σ̂σσ1 · L11(û1, δu)

−4ω2M(û22) · δu + σ̂22 · δe = −1
2
σ̂σσ1 · L11(û1, δu) (3.29)

where the mass operator of the first problem has been dropped since û21 does not
depend on time.

By accounting for the two different contributions of the second order field u2 and
carrying on the time integrations the aD and bD coefficients assume the form

aD = 0 (3.30)

bD = [ 2σσσ1 · L11(û1, û21) +

σσσ1 · L11(û1, û22) +

H (L1(û21)) · L2(û1) + (3.31)

1
2
H (L1(û22)) · L2(û1) +

3
8
H (L2(û1)) · L2(û1) ] /M(û1) · û1

Unlike the case for initial post-buckling, the dynamic aD coefficient is always zero
also for non-symmetric structures. A positive bD coefficient represents a harden-
ing behavior, i.e. the frequency of vibration increases with increasing amplitude.
Conversely, a negative bD coefficient indicates a softening behavior.

3.3 Coincident modes

An important case is constituted by multiple vibration modes associated with the
same frequency. The vibration modes can interact and modify the frequency-amplitude
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curve. This situation can be treated by assuming the displacement field as a linear
combination of the M coincident modes ui enriched by the quadratic contribution
of the second order interaction modes uij , as

u = ξiui + ξiξjuij + · · · (3.32)

with the corresponding strain and stress fields

εεε = ξiεεεi + ξiξjεεεij + · · · (3.33)
σσσ = ξiσσσi + ξiξjσσσij + · · · (3.34)

The derivation is much in the same line as the multi-mode analysis for initial
post-buckling. Only the main results are reported here. The nonlinear frequency-
amplitude relations are obtained in the following form:

ξI

(
1 − ω2

ω2
0I

)
+ ξiξjaijI + ξiξjξkbijkI = 0, I = 1, 2, · · · , M (3.35)

The aD and bD coefficients are found as

aDijI =
1

ω2
0I

∆I

∫ 2π

0

[σIσIσI · L11(ui,uj) + 2σiσiσi · L11(uj ,uI)] dτ (3.36)

bDijkI
=

1
ω2

0I
∆I

∫ 2π

0

1
2

[ σIiσIiσIi · L11(uj ,uk) + σijσijσij · L11(uk,uI) +

σIσIσI · L11(ui,ujk) + σiσiσi · L11(uI ,ujk) + 2σiσiσi · L11(uj ,ukI) ] dτ (3.37)

where

∆I =
∫ 2π

0

M(uI) · uIdτ (3.38)
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The second order fields uJK are the solution of the second order problem

ω2M(üJK) · δu + σJK · δe = −1
2
[σJ · L11(uK , δu) + σK · L11(uJ , δu)] (3.39)

3.4 Finite element implementation

The method has been applied to finite elements using the beam and shell elements
discussed in chapter 2. The implementation is analogous to the one presented in
2.5.3. The same notation is used here. A lumped mass matrix formulation accord-
ing to the HRZ procedure [25] is used. For the first order vibration mode q1 the
eigenvalue problem is written as:

[−ω2M + K0

]
q1 = 0 (3.40)

where K0 is the material stiffness matrix and M is the mass matrix. The linear
problem for the second order fields q2 is

[−ω2M + K0

]
q2 = g(q1) (3.41)

with the orthogonality condition

qT
1 Mq2 = 0 (3.42)

The forcing term g(q1) is formed through an assembly operation of contribution
calculated at element level and it is analogous to the right-hand-side vector for the
calculation of the second order fields for the Koiter’s analysis, as presented in section
2.5.3.

3.5 Numerical results

We present here some numerical results. The obtained finite element solutions have
been compared to available analytical results [63] and semi-analytical treatments
[41].
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3.5.1 Simply supported beam

The calculation of the bD coefficient for a simply supported straight beam is pre-
sented here. The ends of the beam are immovable and free to rotate. A von-Karman
kinematical model is considered. Analytical results are available in [63]. The analyt-
ical solution yields the same second order field for the constant and double harmonic
contribution. This is due to the fact that the axial inertia is completely neglected
in the theoretical treatment together with the fact that the second order fields are
rigorously in-plane. The in-plane inertia is taken into account in the finite element
solution, but the ratio between the flexural and axial inertia makes the influence
of the mass matrix in the calculation of the double harmonic second order field
practically negligible. The analytical solution predicts a frequency of vibration of

ω0th
=

√
π4EI

ρAL4
(3.43)

and a coefficient bDth
as

bDth
=

3π

16
(3.44)

the out-of-plane displacement W of the beam is non-dimensionalized in the following
way

w =
W√
π

I

A

The following numerical values have been used for this calculation:

• L = 1 m

• A = 1.0 · 10−4 m2

• I = 8.333 · 10−10 m4

• E = 7.0 · 1010 N/m2
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• ρ = 2700 Kg/m3

The comparison between finite element results and the theoretical investigation by
[63] are reported in Table 3.1. The obtained results are in excellent agreement with
the theoretical values.

Number of elements ω % err. bD % err.
10 145.06961 0.000042 0.60808 3.232146
20 145.06955 0.000002 0.59387 0.818785
40 145.06954 0.000000 0.59025 0.205335
80 145.06954 0.000000 0.58935 0.051335
160 145.06954 0.000000 0.58912 0.012795
320 145.06954 0.000000 0.58906 0.003156
640 145.06954 0.000000 0.58905 0.000073

Analytical [63] 145.06954 0.58904

Table 3.1: Simply supported beam: convergence of ω and bD

3.5.2 Rectangular plates

We consider here a generic isotropic rectangular plate. The analytical treatment
of this example has been carried out by Rehfield [63]. Only the final result is here
reported. The plates are assumed to be simply supported , i.e. the out-of-plane
displacement of all the edges are restrained while the rotations are free. The relative
in-plane motion of the edges is prevented. The kinematic model is based on the von
Karman equations as discussed in 2.4. The considered vibration mode has one half-
wave in both directions for all the considered aspect ratios µ = H/L where H and
L are the two dimensions of the rectangular plate. The vibration mode is specified
in the theoretical treatment [63] in the form

w(x, y, t) = sin(ωt) sin(
π

H
x) sin(

π

L
y) (3.45)

where w(x, y, t) is the out-of-plane displacement field and x and y the in-plane
coordinates. The theoretical frequency of vibration ω0th

is found to be

ω0th
=

Dπ4

ρh

(
H2 + L2

H2L2

)2

(3.46)
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where h is the thickness of the plate and D is the bending stiffness,

D =
Eh3

12 (1 − ν2)
(3.47)

If the vibration mode is normalized to have a maximum out-of-plane displacement
of one thickness, the theoretical bth coefficient assumes the form

bth =
3

32(µ2 + 1)2

[
µ4 + 2νµ2 + 1

(1 − ν2)
+

1
2
(µ4 + 1)

]
(3.48)

where ν is the Poisson’s ratio. For reasons similar to the ones discussed for the
beam example, the 0th and the 2nd harmonic second order fields are identical and
they consist of in-plane displacements only. The numerical results for different mesh
sizes and different aspect ratios are reported in Table 3.2, 3.3 and 3.4. Figure 3.1,
3.2 and 3.3 show the vibration mode and the second order field for different aspect
ratios. The finite element calculations of the frequency of vibration and the bD

coefficient show a good convergence to the theoretical values for all the considered
cases. It should be noted that the selected vibration mode (one half-wave in both the
longitudinal and lateral directions) is the one with the lowest associated frequency
for all the considered cases.

µ = 1
Mesh size ω0 % err. bD % err.
10 x 10 96.9836 0.2172 0.09249 0.9641
20 x 20 97.1419 0.0544 0.09321 0.1801
30 x 30 97.1712 0.0241 0.09333 0.0729
40 x 40 97.1815 0.0136 0.09336 0.0402

Analytical [63] 97.1948 0.09340

Table 3.2: Flat plates: ω and bD for µ = 1
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µ = 2
Mesh size ω0 % err. bD % err.
10 x 20 60.6924 0.1235 0.11294 1.3826
20 x 40 60.7331 0.0565 0.11414 0.335
30 x 60 60.7407 0.0441 0.1143 0.148
40 x 80 60.7433 0.0397 0.1144 0.083

Analytical [63] 60.7675 0.11452

Table 3.3: Flat plates: ω and bD for µ = 2

µ = 3
Mesh size ω0 % err. bD % err.
10 x 30 53.9717 0.0470 0.12877 1.69711
20 x 60 53.9906 0.0119 0.1304 0.42355
30 x 90 53.9942 0.0053 0.13071 0.18909
40 x 120 53.9955 0.0030 0.1308 0.10800

Analytical [63] 53.9971 0.13096

Table 3.4: Flat plates: ω and bD for µ = 3

(a) û1 (b) û21 = û22

Figure 3.1: Flat plate: vibration modes and second order field µ = 1

92



Perturbation analysis for nonlinear vibrations

(a) û1 (b) û21 = û22

Figure 3.2: Flat plate: vibration modes and second order field µ = 2

(a) û1 (b) û21 = û22

Figure 3.3: Flat plate: vibration modes and second order field µ = 3
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3.5.3 Cylindrical shells

We consider here the nonlinear vibration of various cylindrical shells. The obtained
FE results have been compared with semi-analytical results reported by Jansen [41].
In this work, all the considered cases were treated with Donnell’s equations extended
to dynamic analysis. This approach poses some limitations in the accuracy of the
available theoretical results. It is a well known fact that the Donnell’s equations lose
accuracy in buckling problems when the buckling mode presents a low number of
circumferential waves, say n ≤ 5 [44]. Likewise, the accuracy of Donnell equations
for linear vibration analysis is high when the number of circumferential waves n is
high. It should be noted, however, that the maximum error does not necessarily
occurs for the minimum wave number n [61]. The semi-analytical treatment with
the Donnell’s equations differs from the present approach essentially for two aspects:

• the in-plane inertia is neglected in the Donnell’s equations. This leads to an
error for the frequency of the order 1/n2 for high n. The rotatory inertia is
neglected as well. Both of these two effect are accounted for in the presented
approach.

• the Donnell’s equations neglect the derivatives of the circumferential displace-
ment with respect to the in-plane coordinates in the calculation of the shell
curvature.

For all the considered shells, the edges are restrained in the radial direction and
free to move in the axial one. These boundary conditions are referred as SS-3 by
[41]. The finite element model considers the symmetry of the shells with respect
to the mid-plane perpendicular to the axis of the shell. Only half shell is therefore
modeled. This avoids the singularity that the SS-3 boundary condition would imply
in the axial direction. The geometric and material properties of the considered shell
are here reported.

• Chen’s shell [21]: R=4 in., t=0.01 in., L=8 in., E = 0.103 ·108 lb/in2., ν=0.31,
ρ = 0.26178 · 10−3 lb/in3. The vibration mode considered has n=6 full waves
in the circumferential direction and one half wave in the longitudinal direction.

• Olson’s shell [56]: R=8 in., t=0.0044 in., L=15 3
8 in., E = 0.16 · 108 lb/in2.,

ν=0.30, ρ = 0.833 · 10−3 lb/in3. The vibration mode considered has n=10 full
waves in the circumferential direction and one half wave in the longitudinal
direction.
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• A-8 shell [39]: R=10.16 in., t=0.01179 in., L=5.08 in., ν=0.30, E=0.1048·108

lb/in2., ρ = 0.26 · 10−3 lb/in3. The vibration mode considered has n=16 full
waves in the circumferential direction and one half wave in the longitudinal
direction.

• ES2 shell [27]: R=250 in., t=1 in., L=1570.8 in., E = 1 · 107 lb/in2., ν=0.30,
ρ = 0.26 · 10−3 lb/in3. The vibration mode considered has n=5 full waves in
the circumferential direction and one half wave in the longitudinal direction.

The results, in terms of frequency of vibration and b coefficient, are reported in table
3.5, 3.6, 3.7 and 3.8 for different mesh sizes. The vibration mode is normalized to
have a maximum radial displacement of one thickness.

Mesh size ω0 % err. bD % err.
100 x 19 545.862 1.864 −6.4276 · 10−3 13.425
150 x 28 545.759 1.882 −6.5323 · 10−3 12.014
180 x 33 545.715 1.890 −6.5734 · 10−3 11.461

Semi-analytical [41] 556.230 −7.4243 · 10−3

Table 3.5: Chen’s shell [21] (n = 6)

Mesh size ω0 % err. bD % err.
180 x 33 535.129 0.7859 −4.8172 · 10−3 -4.541
210 x 38 535.094 0.7923 −4.7290 · 10−3 -2.628

Semi-analytical [41] 539.367 −4.608 · 10−3

Table 3.6: Olson’s shell [56] (n = 10)

Mesh size ω0 % err. bD % err.
300 x 15 532.078 -0.009 -0.1117 -4.001
400 x 19 531.311 0.135 -0.1099 -1.394

Semi-analytical [41] 532.03 -0.1075

Table 3.7: A-8 shell [39] (n = 16)

The mesh size refers to the number of nodes in the circumferential and in half of
the height of the shell respectively. The vibration modes and the corresponding
second order fields for the considered are shown in figures 3.4, 3.5, 3.6 and 3.7.
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Mesh size ω0 % err. bD % err.
80 x 48 23.8316 5.4486 −1.7944 · 10−3 30.3718
150 x 88 23.9056 5.1552 −2.7457 · 10−3 6.5406

semi-analytical [41] 25.205 −2.5772 · 10−3

Table 3.8: ES2 shell [27] (n = 5)

The vibration modes show a periodic radial displacement field that has a zero mean
value around the undeformed configuration. The tangential displacement field is also
periodic and features an expansion of the inward radial half wave and a contraction
of the outward one. The theoretical values of the frequencies of vibration is slightly
higher that the one calculated with the FE discretization for all the considered shells.
This is in line with the hypothesis of neglecting in-plane and rotational inertia that
results in higher frequencies values. There is a general increase in the mismatch of the
frequency results when the number of circumferential waves decreases. Nevertheless,
the obtained finite element results are in good agreement with the semi-analytical
treatment.

All the second order fields are constituted by a periodic contribution with 2n circum-
ferential waves and an axisymmetric deformation, as predicted by the semi-analytical
results by [41]. All the bD coefficients are negative, thus showing a softening behav-
ior. The results for the A-8 shell are in very good agreement with [41]. This is due
to the fact that the considered vibration mode presents a relative high number of
circumferential waves (n = 16). The error introduced in the Donnell’s equations by
neglecting in-plane displacements in the expressions for the rotations is in this case
negligible. The agreement for the other cases is relatively good. The trend for the
accuracy is the same as observed for the frequency. The cases more in the region of
validity of the Donnell’s equations show a better agreement of the bD coefficients.

3.6 Conclusions

A perturbation approach for the influence of the deflection of the vibration to the
frequency of vibration has been presented. The analytical treatment shares a lot of
similarities with the initial post-buckling analysis presented in chapter 2. The main
difference is the fact that the second order field is now constituted by two different
contribution in time, namely constant term and a double-harmonic one. The the-
ory can be extended to multi-modal analysis for the case of coincident frequencies.
The same FE implementation used for the post-buckling analysis is here employed.
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(a) û1, isometric view (b) û1, top view

(c) û21 , isometric view (d) û21 , top view

(e) û22 , isometric view (f) û22 , top view

Figure 3.4: Chen shell [21]: vibration modes and second order fields
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(a) û1, isometric view (b) û1, top view

(c) û21 , isometric view (d) û21 , top view

(e) û22 , isometric view (f) û22 , top view

Figure 3.5: Olson shell [56]: vibration modes and second order fields
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(a) û1, isometric view (b) û1, top view

(c) û21 isometric view (d) û21 , top view

(e) û22 , isometric view (f) û22 , top view

Figure 3.6: A8 shell [39]: vibration modes and second order fields
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(a) û1, isometric view (b) û1, top view

(c) û21 , top view (d) û21 , top view

(e) û22 , top view (f) û22 , top view

Figure 3.7: ES2 shell [27]: vibration modes and second order fields
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Good agreement with the analytical and semi-analytical reference results are ob-
tained. The beam and flat plate examples show excellent match with the theoretical
results. The cylindrical shells show overall a fair agreement with the semi-analytical
results obtained by [41] by numerically integrating the Donnell’s equations in the
longitudinal direction and assuming a periodic mode shape in the circumferential
direction. When the shell geometry and considered mode shape are closer to the
range of validity of the Donnell’s equations, the agreement of the results is improved.
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Chapter 4

From static analysis to
dynamic analysis

4.1 Introduction

In chapter 2, the Koiter’s initial post-buckling has been presented and discussed.
The main outcome of the method are the post-buckling coefficients aS and bS that
allow a quick evaluation of the stability of the structure. The same framework can be
extended to handle the case of dynamically applied loads. This study is relevant since
the dynamic instability can occur for load levels lower than the load level that causes
the static instability. The dynamic buckling load is defined as the load magnitude of
the dynamically applied load at which a marked raise of some displacement measure
is found [15]. A straightforward adaptation of Koiter’s analysis to dynamics has
been carried out by [14]. We briefly recall the main features of this treatment and
explore the possibility of this framework to handle more general cases. A careful
examination of an example furnishes useful guidelines for a more general reduction
method for nonlinear transient analysis.
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4.2 Dynamic buckling

The procedure presented in 2.2 has been modified by [14] to account for the possi-
bility of dynamic buckling. The outline of the derivation is here presented. We now
assume a dynamic load q(t) = λf(t)q0, where f(t) is an arbitrary time history. The
virtual work equation (2.3) is modified to represent dynamic equilibrium:

σσσ · δεεε = q · δu − M(ü) · δu. (4.1)

where M(u) is the linear inertial operator and the dots indicate the derivation with
respect to time. One can assume that the response of the structure is still dominated
by the buckling mode by writing

u = λf(t)u0 + ξ(t)u1 + ξ2(t)u2 (4.2)

in which the pre-buckling contribution u0 is still assumed to respond statically. By
repeating the same procedure as for the static buckling expansion we obtain an
ordinary differential equation in time, namely

1
ω2

b

ξ̈ + ξ

(
1 − λf(t)

λC

)
+ ξ2aS + ξ3bS =

λf(t)
λC

ξ (4.3)

where ω2
b is defined as:

ω2
b =

σ1σ1σ1 · ε1ε1ε1
M(u1) · u1

(4.4)

ω2
b is the Rayleigh quotient associated to the buckling mode u1. If mode u1 happens

to be the vibration mode of the structure, ω1 is the natural frequency associated
to that mode. Equation (4.3) can be integrated in time to study the approximate
dynamic behavior of the system.

The complete derivation can be found in [14]. It can be reminded here that, for
simple load cases as a step load or a square finite impulse, it is possible to relate
the static limit load λS obtained with Koiter’s analysis to the dynamic buckling
load λD for structures characterized by the same imperfection ξ. For example, for a
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Figure 4.1: From λS to λD: dynamic buckling estimate - quadratic structure

cubic structure, i.e structures characterized by aS = 0, bS < 0 and a step load, this
relation is found to be

[
1 − (λD/λS) (λS/λC)

1 − (λS/λC)

] 3
2

=
√

2
λD

λS
(4.5)

whereas for a quadratic structure (aSξ < 0) this relation is

[
1 − (λD/λS) (λS/λC)

1 − (λS/λC)

]2
=

4
3

λD

λS
(4.6)

The concept is illustrated in figure 4.1 for the quadratic structure case. An imper-
fection level ξ causes the structure to reach a limit load λS which is a fraction of the
theoretical buckling load λC . Once the static limit load has been found, a dynamic
buckling estimate λD can be calculated through (4.5). The important feature of
this approach is that no integration in time of the dynamic nonlinear equation is
required but the dynamic buckling estimate is found through an analytical formula.

An example is here considered. Equation (4.3) is integrated in time for the case of
the Roorda’s frame presented in 2.6.1. The density of the material is 7800 Kg/m3.
The structure has been discretized with 20 elements per member. An imperfection in
the shape of the first buckling load to cause the junction between the two members
to rotate 0.01 radians is applied. The maximum displacement resulting from the
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integration in time of (4.3) for the case of a step load of increasing magnitudes has
been monitored. The results are compared with full dynamic nonlinear analysis
carried out with the commercial finite element program ABAQUS. The comparison
is shown in figure 4.2. It can be seen that (4.3) is able to accurately predict the
dynamic buckling load for a step load case. In the next section, the ability of the
presented framework to approximate the transient dynamic response is investigated.
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Figure 4.2: Roorda frame: maximum dynamic response under step load. Com-
parison with full nonlinear analysis. The single reduced equation
(4.3) is able to capture the dynamic instability under step load.

4.3 Transient response

The extension of the single mode static Koiter’s analysis to the dynamic buckling
case furnishes a very compact estimate of the dynamic buckling load. We are here
interested in the ability of this reduced equation to accurately reproduce the tran-
sient response of a structure under a more general load history. We investigate this
matter through the same example of the Roorda’s frame. Equation (4.3) has been
integrated in time with an applied dynamic load of the form

f(t) =
1
2
(1 + sin ωt) (4.7)
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The frequency ω is scaled to the frequency of the buckling mode omegab defined
by (4.4). The comparison with full nonlinear dynamic analysis performed with
ABAQUS is shown in figure 4.3. The rotation of the corner at which the load is
applied is monitored.
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(a) λ = 0.2λC , ω = 0.1ωb
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(b) λ = 0.4λC , ω = 0.1ωb
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(i) λ = 0.6λC , ω = 1.0ωb

Figure 4.3: Roorda’s frame: transient analysis comparisons. The solutions of
the reduced equation show a shorter period with repsect to the full
model nonlinear analysis.

The results generally show a fair agreement with the full nonlinear analysis solution.
A delay of the ABAQUS solution with respect of the reduced solution can be noticed.
This is probably due to the slight discrepancy between the first vibration frequency
of the structure ωv = 0.73 rad/s and the Rayleigh quotient associated to the first
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buckling mode ωb = 0.82 rad/s. A comparison of the two modes is shown in figure
4.4. It can be noticed that the two modes, although similar, differ in the relative
bending of the horizontal member.

vibration mode, ω
v
=0.73915 rad/sec buckling mode, ω

b
=0.82044 rad/sec

Figure 4.4: Roorda’s frame: first vibration and buckling mode. The slightly dif-
ferent mode shape results in a different value of the associated fre-
quency.

In the resonant case ω = ωb the discrepancy is more evident also in terms of am-
plitudes, since the frequency of the excitation is closer to the“frequency” of the
reduced model than to the one of the full model. This inaccuracy of the period of
the response seems to be slightly more pronounced for relatively low load levels. For
this situation, we can argue that the dynamics of the structure is dominated by the
vibration mode of the unloaded structure rather than the buckling mode. For higher
load level, the buckling modes seem to be a more appropriate basis. This reasoning
intuitively leads to an improvement of the inertial term. The idea is to make the
inertial term to“adapt” to the load level thus yielding the correct frequency content
in all the cases. We can assume a dependency of the inertial coefficient ω2

1 on λf(t)
in the following fashion

1
ω2

(λf(t)) =
(

1 − λ

λC
f(t)
)

1
ω2

v

+
λ

λC
f(t)

1
ω2

b

(4.8)

The same load cases were run with the suggested improvement of the inertial term.
The period discrepancy is drastically reduced. The results are collected in figure 4.5.

A single degree of freedom equation as (4.3) is of course not able to accurately
approximate the dynamic response of a structure when the dynamic load excites
more that one mode. The presented example furnishes anyway guidelines for a
more general reduction technique to handle cases in which the dynamic load can
cause the structure to approach a dynamic buckling situation. They main fact to
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(d) λ = 0.2λC , ω = 0.3ωb
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(f) λ = 0.6λC , ω = 0.3ωb
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(g) λ = 0.2λC , ω = 1.0ωb
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(h) λ = 0.4λC , ω = 1.0ωb
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(i) λ = 0.6λC , ω = 1.0ωb

Figure 4.5: Roorda’s frame: transient analysis comparisons - load dependent
inertial forces. The adapted inertial term (4.8) is able to sustantially
reduce the inaccuracy of the period of oscillation.

be underlined here is the dependence of the frequency on the applied load level.
The interpolation of the frequency through the load level has greatly improved the
accuracy of the response for various load cases. More generally, a good reduction
strategy has to account for the dependency of the vibration modes on the load level.
The features highlighted by the presented example are more generally exploited in
the next chapter where a general reduction method is presented and discussed.
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Chapter 5

Modal reduction for
nonlinear transient analysis

5.1 Introduction

The projection of the dynamic equations on a subset of vibration modes is a suc-
cessful technique that is widely used in linear dynamic analysis. Vibration modes
have two main advantages. First, their selection for the proper reduction basis is
based on simple criteria that involve the comparison of the frequency content of the
excitation and the eigenspectrum and the examination of the shape of the modes
and the applied load. Second, the projection of the linear system on the vibration
modes decouples the equations.

The classical technique of modal reduction has received attention for extension in
nonlinear analysis. In principle, few vibration modes can be extracted at a certain
dynamic equilibrium state and used to project the dynamic set of equations to reduce
the number of degrees of freedom. This approach bears the drawback of recomputing
the modal basis too frequently during the analysis to preserve accuracy, and the
effectiveness of the method is often lost. Past contributions [37, 38] have outlined
the potentials of including modal derivatives to enrich the modal basis and avoid
expensive recomputing of the modal basis. Although promising and relatively easy
to be implemented, these methods are not incorporated into present commercial
finite element programs. The commercial finite element program ABAQUS, for
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example, offers a module for nonlinear reduction. The nonlinear internal force vector
is computed using the approximation of the displacements given by a basis formed
by some vibration modes. However, it is not possible to calculate and include higher
order fields based on a perturbation technique.

A perturbation method for the nonlinear free vibration of general structures has been
presented in chapter 3. The aim of the approach was to calculate the curvature of
the frequency-amplitude relation relative to a certain vibration mode. The main
effect of the nonlinearity was captured by the second order mode stemming from
the expansion of the displacement field. In this chapter, we present a reduction
technique for nonlinear transient analysis based on the utilization of second order
fields to augment the reduction basis formed by a selection of vibration modes. The
second order fields are therefore additional generalized coordinates for the reduced
system of equations.

When the degree of geometrical nonlinearity becomes severe, the proposed reduc-
tion basis might not be sufficient for an accurate solution. Typical situations are
structures that undergo dynamic buckling. This behavior is usually characterized
by a marked change in the deformation pattern that cannot be captured by a basis
calculated at the undeformed state.

A simple and effective way to tackle these problems is to form the reduction basis
made of vibration modes and second order modes at two different load levels, typi-
cally at the initial configuration and at the buckling load level. In this chapter, we
will demonstrate the simplicity and the effectiveness of this approach through some
representative examples.

5.2 The reduced set of equations

A finite element spatial discretization of a given structure leads to a discrete system
of N nonlinear dynamic equilibrium equations:

Mü + G(u) = F(u, t) (5.1)

where M is the mass matrix, G(u) is the displacement-dependent internal force
vector, u is the N × 1 generalized displacement vector and F is the external force
vector. The“dot” operator represents differentiation with respect to time, i.e. ˙( ) =
d/dt. F can in principle depend on the displacement vector u. The internal force G
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can include both geometrical and material nonlinearities. We limit ourselves here to
geometric nonlinearities and to external forces that are only time-dependent.

The displacement field can be approximated by a combination of linearly indepen-
dent mode shapes:

u(t) = Ψq(t) (5.2)

where q is a vector of R generalized time dependent modal coordinates where R � N
and Ψ is the N × R reduction matrix. The original set of equations (5.1) can be
now projected on the reduction basis Ψ to obtain a reduced system of R equations
in time. By substituting equation (5.2) into (5.1) and pre-multiplying by ΨT , we
obtain

ΨTMΨq̈ + ΨTG(Ψq) = ΨTF(Ψq, t) (5.3)

or, in a more compact form:

M̃q̈ + G̃(Ψq) = F̃(Ψq, t) (5.4)

where

M̃ = ΨTMΨ, G̃ = ΨTG, F̃ = ΨTF (5.5)

The time dependence of q has been dropped for clarity. The reduction matrix Ψ has
been assumed as constant in time. We address the implication of a time dependent
reduction matrix in the next section.

5.3 A load dependence of the projection basis

In nonlinear dynamic analysis, the eigenspectrum of the structure changes with
respect to time, since the vibration modes depend on the equilibrium configuration.
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In general, the projection (5.2) of the N ×1 displacement vector u(t) can be written
with an explicit time depencence

u(t) = Ψ(t)q(t) (5.6)

The columns of the N × R matrix Ψ(t), where R � N, are the selected time de-
pendent base vectors on which the total displacement vector is projected. The new
unknowns of the system are then R components of the time dependent vector q(t).
We derive here the governing reduced dynamic equations in the case of a general
time dipencence of the reduction basis. To derive the equations of motion for the
reduced system, we make use of the Lagrangian equations. In order to do that, we
define the kinetic energy of the full system as

T =
1
2
u̇T Mu̇ (5.7)

The internal energy U of the system is generally indicated as

U = U(u) (5.8)

while the potential V of the external load is written as:

V = λuTF (5.9)

where λ is a time dependent load multiplier and F is the vector of the generalized
external forces. By substituting equation 5.6 into 5.7, the kinetic energy assumes
the form

T =
1
2
q̇T ΨTMΨq̇ + q̇T ΨTMΨ̇q +

1
2
qT Ψ̇TMΨ̇q (5.10)

while the internal energy is simply

U = U(Ψq) (5.11)
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and the external load contribution is expressed as

V = λqT ΨTF (5.12)

The kinetic energy is now a function not only of modal velocities q̇ but also of modal
displacements q. The Lagrange equations are written as, excluding damping effects

d

dt

∂T

∂q̇
− ∂T

∂q
+

∂U

∂q
=

∂V

∂q
(5.13)

By substituting the reduced form 5.10, 5.11, and 5.12 in the Lagrange equations
5.13, we obtain the following first order nonlinear ordinary system of 2R equations
in time

⎧⎪⎪⎨⎪⎪⎩
ṗ = Ψ̇TMΨq̇ + Ψ̇TMΨ̇q + ΨT ∂U

∂u
− λΨTF

q̇ =
(
ΨTMΨ

)−1
(
p − ΨTMΨ̇q

) (5.14)

where p is defined as

∂T

∂q̇
= p = ΨTMΨq̇ + ΨTMΨ̇q (5.15)

The contribution of the internal energy is obtained via the chain rule, as follows

∂U

∂q
=
(

∂u
∂q

)T
∂U

∂u
= ΨT ∂U

∂u
(5.16)

This contribution can be interpreted as the projection of the internal force vector
∂U

∂q
on the reduction basis ΨT .

If the reduction basis is constant, then the time dependence is dropped (Ψ̇ = 0)
and the reduced system of equations becomes the more familiar second order system
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in time presented in section 5.2. The next question to address is how to form the
reduction matrix Ψ and how to approximate its time dependence.

In the next sections we outline the perturbation method used to generate vibration
modes and second order fields, both for single mode and multimode cases. Then a
proper selection of the reduction basis is discussed.

5.4 The perturbation method

The perturbation methods presented in chapter 2 and 3 are here generalized to study
the nonlinear vibrations of a structure subjected to a static pre-load. This section
presents the derivation for single mode analysis. The extension to the multi-mode
case is outlined in the next section. We use in our exposition the notation introduced
by Budiansky [14]. The general kinematic relation is assumed to be quadratic, as

εεε = L1(u) +
1
2
L2(u) (5.17)

where L1(u) and L2(u) are linear and quadratic operators respectively and u is the
generalized displacement field. We define the bilinear operator L11(u,v) as follows

L2(u + v) = L2(u) + L11(u,v) + L2(v)

An admissible strain variation becomes:

δε = L1(δu) + L11(u, δu) = δe + L11(u, δu) (5.18)

where the notation e = L1(u) has been introduced. We write the constitutive
equation for a linear elastic material as

σσσ = H(εεε) (5.19)

The variational equilibrium equation, including inertial and pre-load effects, writes:
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σσσ · δεεε = λq0 · δu − M(ü) · δu (5.20)

where M(u) is the linear inertial operator and the dots indicate the scalar product
between two vectorial quantities, integrated over the domain of the entire structure.
The strains ε(u) and stresses σ(u) have to be intended as general vectorial quantities.

The field u that the structure attains after the application of the static pre-load
q = λq0 is considered linear, namely:

u = λu0

εεε = λεεε0

σσσ = λσσσ0

(5.21)

We assume a periodic motion of unknown frequency ω, and by assuming a new time
variable τ = ωt, the equation of motion is integrated over the period and becomes:

∫ 2π

0

[σσσ · δεεε + M(ü) · δu− λq0 · δu]dτ = 0 (5.22)

The vibration mode u1 is found by assuming

u = λu0 + ξu1

εεε = λεεε0 + ξεεε1

σσσ = λσσσ0 + ξσσσ1

(5.23)

By substituting the above linear expansion into the equilibrium equation for the
loaded structure, eq. 5.20 the following eigenvalue problem is found:

∫ 2π

0

[−ω2
0M(ü1) · δu +λσσσ0 ·L11(u1, δu)+ ηλσσσ1 ·L11(u0, δu)+σσσ1 · δe]dτ = 0 (5.24)

where η assumes the value of 0 or 1 whether the contribution of the pre-load rotations
is considered or not, as discussed in 2.2.5.

By letting δu = u1, the expression for the natural frequency ω0 is given by:
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ω2
0 =

∫ 2π

0
[λσσσ0 · L2(u1) + ηλσσσ1 · L11(u0,u1) + σ1 · e1]dτ∫ 2π

0 M(u̇1) · u̇1dτ
(5.25)

To find how the vibration mode u1 changes because of finite deflection amplitudes,
we extend the expansion of the displacement field to the second order:

u = λu0 + ξu1 + ξ2u2 + · · ·
εεε = λεεε0 + ξεεε1 + ξ2εεε2 + · · ·
σσσ = λσσσ0 + ξσσσ1 + ξ2σσσ2 + · · ·

(5.26)

where

εεε2 = L1(u2) +
1
2
L2(u1) (5.27)

and

σσσ2 = H(εεε2) (5.28)

In order to make the expansion unique, the higher order field u2, u3,. . . is orthogo-
nalized through u1 with respect to the inertial operator:

M(u̇1) · u̇k = M(ü1) · uk = 0 , k �= 1 (5.29)

By substituting the expansion 5.26 in the equilibrium equation 5.22 and letting δu be
orthogonal to u1 in the sense of equation 5.29, the second order field u2 is obtained
from the solution of the linear problem

−ω2M(ü2) ·δu+σσσ2 ·δe+λσσσ0 ·L11(u2, δu)+ηλσσσ2 ·L11(u0, δu)+σσσ1 ·L11(u1, δu) = 0
(5.30)
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It can be noticed that, by setting ω = 0 and letting λ as unknown, the presented
procedure leads to the determination of the buckling load and mode and the asso-
ciated second order displacement field. In general the buckling modes are nothing
else but vibration modes with a zero frequency associated to it.

The described procedure is so far equivalent to the one presented in chapter 3 for the
determination of the frequency-amplitude relation. The second order fields are in
that case ”ingredients” for the determination of the amplitude-frequency curvature
coefficient bD. We are now interested in considering these modes as independent
modes to enrich the basis constituted by vibration modes only. It has been shown
in section 5.4 how the second order field associated to a vibration mode is actually
constituted by two parts: a constant in time contribution and a double-harmonic
contribution. This splitting is essential for the correct calculation of the bD coeffi-
cient. However, these second order modes are spatially very similar and qualitatively
reproduce the same effect. This observation leads to some possible simplifications
if one is interested in suitable fields to form a reduction basis. Moreover, another
observation can be made. For slender structures, the vibration modes have mainly
out-of-plane bending contribution. The non-linear bending-stretching coupling is
reflected in the second order fields, that are mainly constituted by in-plane defor-
mations. The inertia associated to in-plane modes is much higher that the inertia
of out-of-plane-modes.

The problem 5.30 can thus be simplified by neglecting the inertia terms. we can
rewrite it as:

σσσ2 · δe + λσσσ0 · L11(u2, δu) + ηλσσσ2 · L11(u0, δu) + σσσ1 · L11(u1, δu) = 0 (5.31)

This simplification has two main advantages when the implementation in a finite
element framework is of concern. First, the matrix of coefficients for the calculation
of the second order fields is constituted by the tangent stiffness matrix only and
thus it is factorized once for all for all the considered vibration modes. Second, the
omission of the mass matrix avoids possible singularities in case the double harmonic
2ω is an eigenfrequency of the structure.
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5.5 Multimode analysis

The procedure described in the previous section can be generalized to consider also
the interaction between modes. In a similar fashion, the case of clustered buckling
modes in a post-buckling asymptotic analysis requires a multi-mode approach. The
displacement expansion is written as follows

u = λu0 + ξiu1i + ξiξju2ij + · · · (5.32)

where u2ij can be considered as second order displacement fields that take into
account the interaction of vibration modes u1i and u1j . A symmetry with respect
to indeces holds, i.e. u2ij = u2ji . The second order fields u2ij are found by solving
the linear problem

λσ0 · L11(u2ij , δu) + ηλσσσ2ij · L11(u0, δu) + σσσ2ij · δe = − 1
2
[σσσ1i · L11(u1j , δu)

+ σσσ1j · L11(u1i , δu)] (5.33)

where the orthogonality condition is:

M(ui) · ujk = M(ui) · u2jk
= 0 , ∀i, j, k (5.34)

In line of the reasoning discussed in the previous section, the inertial term is neglected
in the second order problem 5.33.

5.6 Finite element implementation

The finite implementation of the described procedure is analogous to the one pre-
sented in the previous chapter. We indicate with q a generalized displacement vector.
The vibration modes q1i

are obtained by solving the eigenvalue problem
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[−ω2
i M + K0 − λKG

]
q1i

= 0 (5.35)

while the second order modes stem from the solution of the linear problems

[K0 − λKG]q2ij
= g(q1i

,q1j
) (5.36)

together with the orthogonality condition

qT
1i

Mq2jk
= 0 (5.37)

where the second order problem (5.36) has been simplified as discussed in the pre-
vious section.

5.7 Selection of the reduction basis

The most popular reduction technique in linear analysis is the projection of the
dynamic equations on a carefully chosen subset of vibration modes. The selection
of the proper basis considers two aspects, namely

1. a comparison of the frequency content of the applied load with the frequency
of the selected vibration modes,

2. the spatial representation of the applied load in terms of the retained vibration
modes. In other words, the work done by the applied load on the retained
modes should not be negligible.

The modal vibration reduction leads to diagonal reduced mass and stiffness matrices
that decouple the equations of motion.

As discussed in the previous chapter, the geometrical nonlinearities lead to a depen-
dence of the frequency of vibration on the amplitude of the vibration mode. When
the nonlinear equations of motion are projected onto a basis formed with vibration
modes only, the geometrical nonlinear effects are not correctly reproduced. We will
show this phenomenon through some examples in the next section.
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The second order fields stemming from the perturbation technique presented in sec-
tion 5.4 represent the main effect of the geometrical nonlinearity when the structure
deforms as a vibration mode. Their use as independent generalized coordinates to
enrich the basis formed by vibration modes is therefore promising in order to capture
the nonlinearity in a reduced setting. We will show through some examples that this
approach greatly improves the accuracy of the reduced solution. In other words, a
basis formed by vibration modes that ensure the desired accuracy for the linear dy-
namic problem constitute a starting point for the calculation of the corresponding
second order fields. Once the second order fields are calculated, the complete basis
is formed and used to project the dynamic equations. The entire procedure is here
summarized.

1. Extract few vibration modes

2. Select an optimal basis q1 of vibration modes that guarantees sufficient accu-
racy for the linear dynamic problem

3. Extract the base q2 of second order fields corresponding to the retained vibra-
tion mode basis q1

4. Form the reduction basis

Ψ = [q1 q2]

5. Project the full system on equations on Ψ

6. Integrate the reduced system in time

In some cases the structure is characterized by a marked change in the deformation
pattern in the static response. Typical examples involve buckling or a limit point
behavior. If the load is applied dynamically with a magnitude high enough to trigger
such effects, a reduction basis formed by using vibration modes and second order
fields calculated at the rest configuration might not be sufficient to capture the
behavior. This is due to the fact that the vibration modes change with respect to
the different equilibrium configurations, and so do second order fields. One approach
would be to recompute the basis as the time integration proceeds. Some sort of error
measure can be monitored and the basis can be recomputed if an error tolerance is
not met anymore. This approach, though effective, can result in a very expensive
procedure that eventually loses the benefit of the reduction in terms of reduced
computational time. We propose a different technique.

122



Modal reduction for nonlinear transient analysis

The system of dynamic equations can be effectively reduced by computing the reduc-
tion basis (vibration modes and corresponding second order fields) at the equilibrium
configurations of two different load levels. This method is particularly effective for
problems characterized by loads that can lead to a buckled state of the structure.
It will be shown in the following examples that a natural choice of the two configu-
rations at which the basis is computed is the rest configuration and the equilibrium
configuration at the load level corresponding to the buckling load of the structure.
It can be easily shown that the buckling modes are vibration modes characterized
by a zero frequency. The reduction basis is in this case formed by vibration modes
and second order fields at the static equilibrium configuration corresponding to two
different load levels. It can be indicated as

Ψ = [q1 q2 qL
1 qL

2 ]

where the superscript L refers to a generic loaded configuration. The second order
fields are orthogonal with respect to the vibration modes by definition. However,
when the reduction basis is formed with vectors calculated at two different config-
urations, the orthogonality of the whole basis in no more guaranteed. Numerical
problems might occur in the time integration of the reduced system if the reduction
basis contains almost parallel vectors. In this case, the formed basis can be anyway
orthogonalized by projecting the eigenvalue problem on the reduced basis ΨN×R

and solving the resulting R × R reduced order eigenvalue problem.

ΨT
R×N

[−ω2M + K0 − λKG

]
N×N

Ψ
N×R

y
R×R

= 0 (5.38)

The obtained matrix yR×R is a transformation matrix that acts on the reduction
basis Ψ. A new basis Ψ̃N×R can be formed by simply :

Ψ̃ = Ψy (5.39)

This procedure avoids bad conditioning when reduction basis is formed by contribu-
tions at two different load levels.

In simple cases, the smoothness of the vibration modes with respect to the load
level allows an approximation of their time dependency. It will be shown through an
example that the time dependency of the vibration modes can be effectively approx-
imated with a linear interpolation directly through the load level. This approach
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will further reduce the number of degrees of freedom and it will be illustrated in the
last section of this chapter.

5.8 Numerical examples

Some practical examples are here presented. The proposed method to calculate
vibration modes and second order fields has been implemented into finite element
following the same lines discussed in the previous chapters. A lumped mass matrix
formulation according to the HRZ procedure [25] is used. The dynamic equilibrium
equations are integrated in time using an explicit scheme based on the central differ-
ence approximation. A fixed time step is used through the whole time integration.

5.8.1 Flat plate with central bending loading

A flat square plate is here considered. The three components of the edges of the
plate are constrained. The plate is made of isotropic elastic material with the fol-
lowing properties: E = 70000 N/mm2, ν = 0.33, ρ = 2700 · 10−9 Kg/mm3. The
thickness of the plate is 1 mm and the sides are 100 mm long. The plate is loaded
with a concentrated force applied in the center of the plate normal to the surface.
The structure is discretized with 840 elements and 2772 degrees of freedom. The
hardening behavior of the nonlinear static response of the center node is obtained
with a path-following analysis using the normal flow algorithm presented by Ragon
[60]. The result is depicted in figure 5.1.

The applied load is then imposed dynamically with a sinusoidal load in the form

F = λ/2 · (1 + sinωt)

where λ = 80 N and ω = 0.8 · ω1 = 75.8 rad/sec. symmetry reasons, only vibration
modes 1, 5 and 6 are considered in the reduction basis. This set of vibration modes
are sufficient for an accurate reduced solution of the linear problem. This retained
set of vibration modes generates 6 second order fields. The retained vibration modes
and the corresponding second order modes are shown in figures 5.2 and 5.3.

Due of the simple geometry of the structure, the vibration modes only involve
transversal displacements. The bending-stretching coupling of the nonlinear kine-
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Figure 5.1: Square plate: static response

(a) q11
, ω1 = 94.7 rad/sec (b) q15

, ω5 = 473.6 rad/sec (c) q16
, ω6 = 473.6 rad/sec

Figure 5.2: Square plate: vibration modes
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(a) q211
(b) q255

(c) q266

(d) q215
(e) q216

(f) q256

Figure 5.3: Square plate: second order modes

matic relation appears in the second order modes which contain only in-plane dis-
placements. In other words, the second order modes allow the plate to ”stretch”
to accommodate for the bending action of the vibration modes. Figure 5.4 shows
the comparison between the dynamic response of the full system and some reduced
solution obtained with different choices of the reduction basis, namely:

1. vibration modes only:

Ψ =
[
q11

q15
q16

]
2. vibration modes and second order fields neglecting interaction terms:

Ψ =
[
q11

q15
q16

q211
q255

q266

]
3. vibration modes and all second order fields:

Ψ =
[
q11

q15
q16

q211
q255

q266
q215

q216
q256

]
It is evident that the inclusion of the second order fields greatly improves the ac-
curacy of the solution. The inclusion of the interaction second terms, however, do
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Figure 5.4: Square plate: dynamic response

not add any useful information to the reduction basis. We shall see in the following
examples that the interaction terms are important for an accurate reproduction of
the solution for more complicated geometries.

5.9 Curved panel with central loading

We consider here a cylindrical panel supported at its straight edges. The panel
is loaded in the center with a concentrated force acting normal to the surface and
toward the center of the panel. For symmetry reasons, only a quarter of the structure
is modeled. The geometric and material properties are reported in figure 5.5.

The structure is discretized with 200 triangular elements and 726 degrees of freedom.
Figure 5.6 shows the nonlinear static response of the center node of the panel. The
initial softening behavior is followed by an hardening curve until the load reaches its
limit value, around 560 N.
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Figure 5.5: Curved panel
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Figure 5.6: Curved panel: nonlinear static response

As in the previous example, we apply a dynamic periodic load in the form

F =
λ

2
· (1 + sin ωt)
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where ω = 0.8 · ω1 = 294 rad/sec and λ is the actual load magnitude. Vibration
modes are extracted at the initial equilibrium configuration. The first 15 vibration
modes are sufficient for a reasonable accuracy of the linear problem. They are shown
in figure 5.7. This reduced set q1 generates a second order set q2 of 120 vectors.
A stable time step of ∆t = 1 × 10−5 is used for all the time integrations. The
full nonlinear solution is compared with the reduced solution obtained with three
different basis, namely

1. first 15 vibration modes:
Ψ = [q1(15)]

2. first 135 vibration modes:
Ψ = [q1(135)]

3. first 15 vibration modes and corresponding 120 second order modes:

Ψ = [q1(15) q2(120)]

The results are shown in figures from 5.8 to 5.13 for increasing values of λ. It
is clear that the reduction basis formed with the vibration modes only does not
capture the correct behavior, even with many modes included (135). The basis
containing the first vibration modes and all the corresponding second order fields
yields an accurate solution even at a load level causing the structure to snap, see
figure 5.13. The computational time required for the analysis is reported in table
5.1. A moderate time saving of about 25% is achieved. However, it must be noted
that all the time integrations have been carried out using the same time step of
∆t = 1 × 10−5. This value was close to the critical time step for the full nonlinear
analysis, but a bigger value can be used for the reduced analysis. This is due to the
fact that the highest frequency contanined in the reduced basis is smaller that the
highstet frequency of the complete model. No thorough investigation has been done,
but some tests revealed a critical time step for the reduced solution about four times
larger than the one employed for the full analysis. The resulting computational time
of the reduced system can be therefore divided by the same factor.

Full Ψ = [q1(15)] Ψ = [q1(135)] Ψ = [q1(15) q2(120)]
1448.8 496.7 1073.9 1084.5

Table 5.1: Curved panel: comparison of computational times (sec)

An attempt on the selection of the most important second order fields out of the
complete basis is carried out. Different choices have been made and applied to the
case of periodic load with an amplitude of 154 N. The notation
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(a) q11
, ω = 367.7 rad/sec (b) q12

, ω = 801.5 rad/sec (c) q13
, ω = 1062.3 rad/sec

(d) q14
, ω = 1267.2rad/sec (e) q15

, ω = 1509.7rad/sec (f) q16
, ω = 1565.1 rad/sec

(g) q17
, ω = 1608.3 rad/sec (h) q18

, ω = 1672.5 rad/sec (i) q19
, ω = 1933.9 rad/sec

(j) q110
, ω = 2139.0 rad/sec (k) q111

, ω = 1178.8 rad/sec (l) q112
, ω = 2280.3 rad/sec

(m) q113
, ω = 2341.1 rad/sec (n) q114

, ω = 2775.6 rad/sec (o) q115
, ω = 2872.5 rad/sec

Figure 5.7: Curved panel: retained vibration modes
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Figure 5.8: Curved panel: dynamic response, periodic load, λ = 309 N
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Figure 5.9: Curved panel: dynamic response, periodic load, λ = 412 N
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Figure 5.10: Curved panel: dynamic response, periodic load, λ = 515 N
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Figure 5.11: Curved panel: dynamic response, periodic load, λ = 618 N
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Figure 5.12: Curved panel: dynamic response, periodic load, λ = 721 N
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Figure 5.13: Curved panel: dynamic response, periodic load, λ = 824 N
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Figure 5.14: Curved panel: dynamic response, some comparisons, λ = 154 N.
The omission of the interaction terms in the second order fields
(thin dashed line) does not lead to a good reduction basis. A second
order set formed by all the interaction terms generated by the first
few vibration modes does not yield to a good accuracy.
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Figure 5.15: Curved panel: dynamic response, some comparisons, λ = 154 N.
The second order fields obtained via the interaction of the first
vibration modes and all the retained modes provide a good reduction
basis.
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Figure 5.16: Curved panel: dynamic response, step load, 154 N
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Figure 5.17: Curved panel: dynamic response, periodic load, 618 N
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q2(1 : P ; 1 : M)

indicates the set of second order fields generated by the interaction of the first P
vibration modes with the first M ones. The comparisons are shown in figures 5.14
and 5.15. The solution obtained without considering all the interaction second order
fields is shown in figure hardly follows the full system solution. The other solutions
refer to the second order set formed by taking all the second order fields, including
interaction terms, generated by the first 2,3 and 4 vibration modes respectively. This
choice criterion does not seem to select the most important second order fields. The
results obtained by following another strategy are summarized in figure 5.15. The
second order contribution is formed by taking into account the interaction of the
first two, three and four vibration modes, with all the 15 retained vibration modes.
It can be noticed that the interaction terms between the first modes and the higher
modes are fundamental for a correct reproduction of the solution.

Another load case is considered. We kept the same load distribution applied with
a step function in time at two different load amplitudes, namely 30% ans 120% of
the static limit load (154 N and 618 N respectively). The same three reduction
basis discussed before are used here. The results are compared with full nonlinear
analysis in figure 5.16 and 5.17. It is evident that the basis formed with vibration
modes only results in an overly stiff behavior in both cases. For the higher load
magnitude the panel does not oscillate but it dynamically snaps. The reduction
basis formed with the inclusion of second order fields also, although calculated at
the rest configuration, is able to reproduce this behavior.

5.10 Short cantilever beam with tip load

The purpose of the following example is to show the benefit of including vibration
modes and second order fields calculated at two different equilibrium configurations.
We consider a short cantilever with a C-shaped cross section. The structure with its
geometrical and material properties is depicted in figure 5.18. The short cantilever
is loaded at one corner of the free end to induce torsion and bending. The structure
is discretized with 420 triangular shell elements and 1440 degrees of freedom.

First, we perform a linear buckling analysis to have a first indication of possible
instabilities of the structure. The first buckling load is found to be λC = 262 N.
Subsequently, a nonlinear static analysis is carried out. The structure exhibits a
linear behavior until the horizontal flange on the side of the applied load buckles in
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E = 70000 N/mm2

ν = 0.33
ρ = 2700 10-9 Kg/mm3

L = 300 mm
H  = 152.4 mm
W = 50.8 mm
t = 1.27 mm

t

L
W

H

Clamped

x, u

y, v

z, w

Figure 5.18: Short C-Channel cantilever

the proximity of the constraint. The load level at which buckling occurs is close to
the computed linear buckling load. The subsequent post-buckling path is stable. The
three displacement components of the node where the load is applied are depicted in
figure 5.19 . The dynamic load is applied as a periodic function F = λ/2 ·(1+sinωt),
where ω = 1.5 · ω1 = 35.25 rad/sec and λ = 1.5λC . Vibration modes are then
calculated at the initial undeformed configuration. We selected the ten vibration
modes with the largest participation factor, namely mode 1, 2, 3, 4, 5, 6, 8, 9, 12
and 17. The correctness of the selected basis has been checked with a comparison
between a modal linear analysis and a full system linear analysis. All the 55 second
order fields associated to the chosen basis are generated. We form then a second
set of basis vectors comprising vibration modes and associated second order fields
at the buckling load level. The retained vibration modes calculated at the initial
configuration and in the proximity of the buckling load are shown in figures 5.20
and 5.21. The asymmetry caused by the static pre-load is evident for the modes
calculated at the buckled configuration. The chosen order of vibration modes at the
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loaded configuration is kept the same as for the unloaded configuration.
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Figure 5.19: Short C-channel cantilever: static response
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The results for the transient nonlinear analysis are shown in figure 5.22. The solid
thick line is the reference solution of the full system of equations. The dotted thin line
represents the solution of the reduced system when only the vibration modes at the
two considered equilibrium positions, q1 and qL

1 , are kept to form the reduction basis.
This attempt of neglecting the second order fields is performed since the structure
exhibits an almost linear response up the the buckling load. However, the reduced
solution shows a poor accuracy. The dashed line reproduces the solution obtained
by adding the second order fields q2L

associated to the vibration modes of the
loaded configuration. As expected, we notice a major improvement. The complete
set of reduction vectors, including also the second order fields q2 associated to the
unloaded vibration modes q1, yields a very accurate response. The dash-dotted thick
line represents this last case. The compu∆t = 2 × 10−5 has been used for all the
cases. A 40% reduction in computational cost is achievable without increasing the
time step. However, a preliminary attempts have shown that a three fold increase
in the critical time step is possible when the dynamic equations are projected onto
the reduced basis.
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Figure 5.22: Short C-channel cantilever: dynamic response
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Full Ψ = [q1 qL
1 ] Ψ = [q1 qL

1 qL
2 ] Ψ = [q1 qL

1 q2 qL
2 ]

1009.7 479.3 566.5 599.4

Table 5.2: Short C channel cantilever: comparison of computational times (sec).
The time integration has been performed with a stable time step for
the full analysis. However, a three fold increase in the critical time
step can be achieved in the case of the reduced equations.

5.11 Interpolation of vibration modes

In the previous section we showed the benefits of the inclusion of reduction vectors
calculated at two different load levels. In some relatively simple cases, the change
of the vibration modes with respect to the load level is relatively smooth and some
simplifications can be made. We already showed in chapter 4 how a simple linear
interpolation of the inertial term with respect to the applied load magnitude sub-
stantially improved the response of a nonlinear single degree of freedom equation
derived from Koiter’s analysis. We present here the same example of the Roorda’s
frame to show a generalization of that concept.

The material and geometric properties are here summarized, and the structure is
sketched again in figure 5.23.

Figure 5.23: The Roorda frame.

The frame is made of two 100 mm long constant section beams, hinged at the tips.
The beam cross section is rectangular, 0.5 mm thick and 1 mm wide. The material
is steel, with a Young modulus of 210 GPa and a density of 7800 kg/m3. The
load is applied vertically to the corner to compress the vertical beam. We modeled
the structure with 40 beam elements, 20 for each beam. An imperfection in the
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shape of the first buckling mode is added to the structure so that the intersection
of the two members of the frame is rotated counterclockwise by 0.005 radians. The
applied imperfection triggers the deformation to grow in the ”unstable” side, i.e.
the structure exhibits a limit load. The actual static limit load is lower than the
theoretical buckling load, about 91% the first buckling load. The static response of
the structure computed with the normal flow algorithm [60] is shown in figure 5.24.
The highly nonlinear response is evident.
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Figure 5.24: Roorda frame: Static response

As in the previous examples, the dynamic load is applied in the form

F = α
λC

2
(1 + sin(βωbt))

where α is the load factor and β is a factor that multiplies the Raleigh quotient ωb

associated to the first buckling mode. This parameter assumes the value of 25.94
rad/sec for the example at hand. The study performed in chapter 4 revealed that the
change of the vibration mode with respect to the load magnitude can largely affect
the solution. The simple one degree of freedom model previously discussed in chapter
4 contains the main effect of the nonlinearity in the aS and bS coefficients based on
the buckling mode. However, the inertial term needs to account for the change in
vibration mode for the equation to yield reasonable results. We showed that a linear
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interpolation of the inertial term between the Raleigh quotient of the vibration and
buckling mode with respect to the load magnitude greatly improved the accuracy
of the time response. However, for general load cases, a multi-degree of freedom
approach is needed. We already showed that in general vibration modes and second
order fields can be included in a reduction basis as independent degrees of freedom.
For simple structures like the one presented here, the concept of interpolated inertial
term can be generalized to the interpolation of the vibration modes with respect to
the load level. This approach is physically justified with the observation that the
vibration modes varies smoothly with the static pre-load. we propose here a simple
linear interpolation:

q1i
=
(

1 − λ(t)
λci

)
qv

1i
+

λ(t)
λci

qb
1i

(5.40)

Each vibration mode qv
1i

is ”morphed” to the corresponding buckling mode qb
1i

through the corresponding critical load. The first two vibration and buckling modes
are shown in figures 5.25 and 5.26.

ω
1
 =23.37 rad/sec ω

2
 =36.51 rad/sec

Figure 5.25: Roorda’s frame: first two vibration modes

The second order fields are still an essential part of the reduction basis, and should
therefore be included. We run some cases with different frequencies and magnitudes
of the applied load with a basis formed as follows

Ψ =
[
q1 qv

211
qv

222
qb

211
qb

222

]
(5.41)

No interaction terms have been considered for the second order contribution. The
second order fields included pertains to the first two vibration modes and the first
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λ
1
 =3.037 N λ

2
 =9.765 N

Figure 5.26: Roorda’s frame: first two buckling modes

two buckling modes. Since the reduction basis is now time-dependent, the reduced
system of equations as the form of equation (5.14). The results of the dynamic anal-
ysis with the described reduction basis are compared to the full nonlinear solution
obtained with ABAQUS in figure 5.27. The rotation of the bottom tip of the frame
is monitored. A good agreement is obtained for all the presented cases.

In order to give an impression of the importance of considering both vibration and
buckling modes, as well as second order fields, let us consider the case of α = 0.6,
β = 1.0. We consider three cases for the projection basis: one formed with vibra-
tion modes and corresponding second order fields only, one with buckling modes
and corresponding second order fields only, and one with vibration modes ”mor-
phed” to buckling modes and all the corresponding second order fields (vibration
and buckling). The results are shown in figure 5.28. It is evident that only the inclu-
sion of contributions from the vibration and the buckling modes is able to correctly
approximate the solution.

The dynamic behavior is not captured by only including vibration modes or buck-
ling modes and corresponding second order corrections. This is due to the strong
dependence of the eigenbasis on the load level. The best basis consist therefore in
6 modes, two ”morphed” first order fields as is equation (5.40) and 4 corresponding
second order fields.

A note must be drawn. The interpolation between vibration modes at two different
load levels implicitly implies that it is possible to establish a clear correspondence
between the modes. However, this is not always trivial. In cases when frequency
drifting and mode crossing occur as the load parameter increases, it is important to
associate the modes correctly. In other words, a generic nth vibration mode could
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Figure 5.27: Roorda’s frame: dynamic responses. A reduction basis with 2 in-
terpolated vibration modes and second order fields yields a good
accuracy of the reduced solution.
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Figure 5.28: Roorda’s frame, dynamic response, α = 0.6, β = 1.0 1. vibration
contribution only 2. buckling contribution only 3. vibration and
buckling contribution

morph to the mth buckling mode, with n �= m. The problem can occur especially in
the case of structures exhibiting clustering of vibration modes when the frequencies
are close to each other. Fortunately, mode tracking algorithms are available in
literature, for example in [26].

5.12 Conclusions

A reduction method for the geometrical nonlinear finite element dynamics analysis
of general structures has been proposed. The dynamic equations of motion resulting
form the spatial FE discretization are projected on a reduced set of displacement
vectors. The reduction basis is formed with a combination of vibration modes and
second order fields generated by a perturbation approach. The method appears as a
natural extension of the classical modal analysis. The vibration modes are chosen to
yield good accuracy for the solution for the linearized problem. Once the vibration
modes are calculated, the second order fields are systematically generated via the
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solution of linear problems. The contribution of inertial effect can be neglected in
the calculation of the second order fields. This leads to a simplification of the second
order problem. In a FE discretization, the matrix of coefficients is the tangential
stiffness matrix that can be factorized once for all. The right-hand-side vector is a
function of the vibration modes. The omission of the inertial term avoids potential
singularities if the double harmonic 2ω is a frequency of the structure. The problem
can be easily generalized to account for modal interactions. The interaction second
order fields are in general important for more complicated examples and must be
included in the analysis. For problems involving the possibility of buckling during
the transient response, an extension of the method have been proposed. Instead of
recomputing the basis during the time integration, the reduction basis can formed
by vibration modes and corresponding second order fields calculated at two different
load levels. Typically, the first level is the load configuration and the second is the
buckled configuration. The applicability of this strategy has been demonstrated via
examples that exhibit a marked change in the structural response after buckling
occurred. The inclusion of vibration modes and second order fields at the loaded
(buckled configuration) is crucial for an accurate solution. The transition between
vibration modes and buckling modes can be approximated with a linear interpo-
lation through the load multiplier. In this case, the reduced equations need to be
reformulated to account for the time-dependence of the basis. This approach could
result in a moderate reduction of the number of degrees of freedom. For more com-
plicated cases, in which the vibration modes drift with respect to the load parameter,
it is necessary to track the specific modes under consideration. For this purpose,
mode tracking algorithms can be used [26]. The effectiveness of such method for
more complicated case has not been tested. Attempts have been made to select the
best set of second order fields in order to further reduce the number of degrees of
freedom. If the linear vibration modes basis is constituted by N vectors, it is in
principle possible to generate N · (N +1)/2 second order fields. The inclusion of the
complete set of second order fields yields a remarkable reduction of the number of
degrees of freedom. However, future research should address to a criterion to select
the most important second order fields for a more efficient reduction.
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Conclusions

Nonlinear finite element (FE) structural analysis is a steadily growing practice in
research and industrial application. In spite of the maturity of commercial FE
computer programs, a full model nonlinear analysis can still be a computationally
expensive task. This is especially true in an early design stage when an insight on
the behavior is of importance. This thesis dealt with FE based reduction methods
for nonlinear static and dynamic analysis to effectively reduce the number of degrees
of freedom of a general model while retaining a good accuracy of the solution.

In chapter 1 the main areas of investigation were stated, namely

1. Initial post-buckling analysis of (imperfect) structures

2. Nonlinear free vibrations of general structures

3. Transient analysis of general structures

An extensive literature review on these three main topics has been presented.

Koiter’s initial post-buckling analysis has been presented and discussed in chapter
2. Koiter’s analysis is a perturbation technique that allows a compact description
of the initial post-buckling analysis of a general structure. The main advantage of
this technique is the description of the stability characteristic of a given structure
through so-called post-buckling coefficients that give the initial slope and curvature
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of the secondary path. This allows a quick evaluation of the initial post-buckling
behavior of the structure at hand. Once the coefficients are calculated for the perfect
structure, the effect of small geometrical imperfections can be added to the reduced
equation as a forcing term. The computational cost is largely reduced as compared
to a full nonlinear analysis. The Koiter’s analysis requires the linear solution for
the pre-buckling state, the solution of an eigenvalue problem for the buckling state
and a solution of a singular linear problem for the second order field. The post-
buckling coefficients are found through an integration at the element level, summed
over the whole structure. In the case of interacting buckling modes, the approach
can be extended to consider a multimode approach. In this case, the method yields
to a reduced nonlinear algebraic system of equations where the unknowns are the
amplitudes of the retained buckling modes. The coefficient for the nonlinear terms
are calculated once for all for the perfect structure. The Koiter’s analysis can pro-
vide physical insight to the behavior of the structure. Some care needs to be taken
in the choice of the kinematical model. It has been shown by [51, 34] that it is a
better practice to rely on a simplified Green-Lagrange strain tensor to avoid largely
incorrect results if the structure is not overly constrained. A finite element imple-
mentation has been proposed. Instead of relying on complicated ad hoc formulations,
[12, 33, 57], a simple averaging of the strain quantities has been performed. This
avoids locking problems caused by the different order of interpolation between in-
plane and out-of-plane displacements. A 2D 2 nodes beam element and a triangular
3 nodes flat shell element based on existing elements has been proposed. Several
examples have been presented to show the capabilities of the method as well as the
good performance of the proposed FE implementation.

A similar perturbation technique can be used for the analysis of nonlinear free vi-
brations of structures. The method leads to the evaluation of the curvature of
the relation between the frequency and the amplitude of vibration. The analytical
treatment proposed by [63] has been implemented into FE using the same technique
proposed in chapter 2. Good agreement with theoretical results has been obtained.

The single mode Koiter’s post-buckling analysis can be extended to treat the case
of dynamic buckling [14]. This method can lead to an estimation of the dynamic
buckling of a structure for simple time history of the applied load once the static
post-buckling properties have been calculated. The possibility of this treatment to
handle more complicated load cases has been investigated in chapter 4. A careful
examination of an example has shown the importance of considering the effect of a
changing vibration mode as the load is applied to the structure. This observation has
served as a guideline for a general reduction method for nonlinear transient analysis
discussed in chapter 5.

The dynamic equations of motions stemming from a FE discretization can be ef-
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fectively reduced by forming a base of vibration modes enriched by corresponding
second order fields calculated with a perturbation technique as presented in chapter
2 and 3. The method is a natural extension of linear modal reduction since the
vibration modes are chosen for a good a good accuracy for the solution of the lin-
earized problem. Instead of serving as ”ingredients” for an expansion, the second
order fields are here treated as independent degrees of freedom. The omission of the
contribution of the inertial term in the calculation of the second order fields leads to
a linear problem in which the coefficient matrix coincides with the tangential stiff-
ness matrix and it is thus factorized once for all. For problems involving dynamic
load levels that could cause the occurrence of buckling or more in general character-
ized by a marked nonlinear response, the reduction basis formed by vibration modes
and second order fields can be formed at two different equilibrium configurations,
typically the initial configuration and the equilibrium configuration at the buckling
load. Examples have been shown to prove the effectiveness of the method.
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