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SUMMARY

A topological superconductor is a new state of matter that attract a lot of interest for
its potential application in quantum computers. However, there is no single material
known to host this state of matter. In this thesis, combinations of superconductors
and semiconductors are investigated experimentally with the goal to engineer such a
topological superconductor. The materials chosen combine spin-orbit interaction, su-
perconductivity and one-dimensionality. Then, under influence of a magnetic field, the
hybrid superconductor semiconductor system is predicted to become topological.

First, the theoretical background of the experiments is presented, with special atten-
tion to the superconducting quantum interference in semiconducting Josephson junc-
tions. In addition, a description of the different materials used and the fabrication of the
devices, is provided.

In the first experiment we explore hole transport through GeSi core-shell nanowires.
Electronic measurements reveal two transport channels only, which underlines the one-
dimensionality of the nanowire. On top of that, high-quality induced superconductivity
is observed in both the tunneling and open regime, and evidence for strong spin-orbit
interaction is presented.

Then, we switch materials to a two-dimensional electron and hole gas in an InAs/GaSb
double quantum well. The spin-orbit interaction is studied by measuring the difference
between the densities of electrons with opposite spin orientation. Two types of spin-
orbit interaction are identified by tuning the magnitude of one of them, with an applied
electric field.

InAs quantum wells are known to exhibit enhanced conduction at their edges. We
find supercurrent through these edges in Josephson junction devices using supercon-
ducting quantum interference measurements. The interference pattern reveals a flux
periodicity of h/e. Interestingly, while this periodicity is observed in the trivial regime, it
was considered a signature of topological superconductivity before. We argue and show
that nonlocal processes lead to the h/e effect in our devices. The correlated occurence of
enhanced edge conduction and the h/e periodicity is confirmed in Josephson junctions
made of InSb flakes.

The final experimental chapter considers a superconducting quantum interference
device, fabricated in an InAs quantum well. This geometry allows for control of the
superconducting phase difference of the Josephson junction, potentially reducing the
magnetic field needed for the device to become topological. Unfortunately, in the mea-
surements we do not observe signatures of topological superconductivity.

At last, we describe what device geometry and material combination could be used
to do reach the topological regime. In addition, we discuss ideas for future research of
the other material systems used in this thesis.

v





SAMENVATTING

Een topologische supergeleider is een nieuwe toestand van materie die veel aandacht
trekt dankzij zijn potentiële toepassingen in kwantumcomputers. Er is echter geen af-
zonderlijk materiaal bekend dat deze toestand van materie herbergt. In dit proefschrift
worden combinaties van supergeleiders en halfgeleiders experimenteel onderzocht, met
als doel een dergelijke topologische supergeleider te construeren. De gekozen materia-
len combineren spin-baaninteractie, supergeleiding en eendimensionaliteit. Door het
aanleggen van een magneetveld zou het hybride supergeleider halfgeleider systeem dan
topologisch kunnen worden.

Eerst wordt de theoretische achtergrond van de experimenten gepresenteerd, met
speciale aandacht voor supergeleidende kwantuminterferentie in halfgeleidende Joseph-
son juncties. Daarnaast is er een beschrijving van de gebruikte materialen en de fabri-
cage van de hybride systemen bijgevoegd.

In het eerste experiment onderzoeken we transport van gaten door GeSi kern-schil
nanodraden. Elektronische metingen onthullen slechts twee transportkanalen, wat de
eendimensionaliteit van de nanodraden onderstreept. Bovendien is er hoge kwaliteit
geïnduceerde supergeleiding geobserveerd in zowel het tunneling als open regime, en
bewijs voor sterke spin-baaninteractie gepresenteerd.

Vervolgens wisselen we van materiaal naar een tweedimensionaal elektronen en ga-
ten gas in een InAs/GaSb dubbele kwantumput. De spin-baaninteractie is bestudeerd
door het meten van het verschil in dichtheid van de elektronen met tegenovergestelde
spinoriëntatie. Twee types spin-baaninteractie zijn geïdentificeerd door met een aange-
legd elektrisch veld de grootte van een van de twee te veranderen.

Het is bekend dat InAs kwantumputten versterkte geleiding op hun randen laten
zien. We observeren superstroom door deze randen in Josephson juncties, gebruik ma-
kend van supergeleidende kwantuminterferentie metingen. Het interferentiepatroon
laat een flux periodiciteit van h/e zien. Interessant is dat, terwijl deze periodiciteit geob-
serveerd is in het triviale regime, zij werd beschouwd als een indicatie van topologische
supergeleiding. We beargumenteren en laten zien dat nietlokale processen in onze junc-
ties leiden tot dit h/e effect. De gecorreleerde observatie van de versterkte randgeleiding
en de h/e periodiciteit is bevestigd in Josephson juncties gemaakt van InSb schilfers.

Het laatste experimentele hoofdstuk beschouwt een supergeleidend kwantum in-
terferentie device, gefabriceerd in een InAs kwantumput. Deze geometrie maakt het
mogelijk het supergeleidende faseverschil van de Josephson junctie te controleren, wat
potentieel het magneetveld, dat nodig is om de junctie topologisch te maken, reduceert.
Helaas observeren we geen indicaties van topologische supergeleiding in de metingen.

Tenslotte beschrijven we welke geometrie en materiaalcombinatie gebruikt zouden
kunnen worden om het topologische regime te bereiken. Daarnaast bediscussiëren we
ideeën voor toekomstig onderzoek in andere materiaalsystem die in dit proefschrift ge-
bruikt zijn.
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2 1. INTRODUCTION

Early in the 20th century the physics community was puzzled by several observations
that could not be explained within the classical theory. The most famous example is the
photo-electric effect, once light with the right color shines on a certain material, elec-
trons are excited and free to move, which can be measured by a resulting current flow.
This observation brought together different ideas from Boltzmann, Planck and Einstein
about discretized energy levels and discrete energy packages. In the experiment, one
light particle, later named photon, provides the energy package needed to excite one
electron to a higher energy level. This energy package is an integer times the energy
quantum, the minimum possible amount of energy. For the effect to work, the difference
between the energy levels has to be exactly equal to the wavelength (color) of the photon
times this energy quantum. The concept of discretizing for example energy in quanta
lies at the basis of quantum mechanics.

In addition, instead of treating particles like billiard balls as in classical physics, quan-
tum mechanics describes a particle with a wavefunction. The amplitude of the wave-
function is the probability to find the particle in a certain location at a certain time. From
classical wave theory we know that waves can interfere, like waves on water surfaces
or the noise cancellation sound waves in modern day headphones. The interference is
either constructive or destructive, depending on the phase difference between the two
waves (Fig. 1.1). Analogous to classical interference, the quantum mechanical wave-
functions can interfere as well. Since a single particle is described by a wavefunction, an
intriguing consequence of this is the possibility of a particle interfering with itself. For
example, if a single electron is injected in a ring, the wavefunction will spread over the
two arms, and interferes at the opposite side of the ring. In this thesis we exploit quan-
tum interference in a ring geometry, by interfering the wavefunction of a superconductor
with itself.

constructive

destructive

& OR

Figure 1.1: Interference The phase difference sets the amplitude that comes out. In this example the phase
difference is zero for the completely constructive and π for completely destructive. Anything in between is
also possible.

Quantum interference effects are studied in the field of solid state physics, in par-
ticular in the mesoscopic regime. In this regime, the length of the effect studied is typ-
ically smaller than the length over which the phase of the wavefunction is preserved,
thus allowing for interference effects. The phase coherence length is typically a few
micrometers. On this length scale the physics is usually not well described by a top-
down macroscopic model, because for example the charge can not be considered evenly
distributed anymore. Also, a bottom up or microscopic description of this size of devices
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is computational too costly. Mesoscopic physics forms the bridge between these two and
is know for semi-classical and phenomenological explanations. Microscopic models can
in some cases be used to simulate (parts or slices of) the device. Simulating the device
however, does not directly explain the observed behavior. To obtain a more general
understanding of the physical mechanisms playing a role, it is useful to compare the
observations with the mesoscopic models.

An interesting new branch in mesoscopic physics concerns the conductance through
topologically nontrivial materials. The mathematical framework of topology is then ap-
plied to the electronic structure of the materials. The topology is characterized with a
topological invariant (a number that is an integer), where trivial means an invariant of
zero. If two materials have a different topological invariant, their interface has to be
conductive. The bulk properties of the two materials thus dictate what happens at its
boundaries, known as the bulk-boundary correspondence. A more simple example of
topology and topological invariants is found in the shape of objects. We can divide all
objects in the world based on the number of holes in them (the topological invariant).
Pinching a hole or breaking a ring shape structure is not allowed, such that the invariant
does not change. Then, topologically equivalent objects can be smoothly transformed
into each other (Fig. 1.2). Therefore, the topological invariant is stable under smooth
transformations. Returning to the topology in the electronic structure, this stability of
the topological invariant can stabilize electronic devices, since it can for example reduce
the sensitivity to noise.

Figure 1.2: Topology The double torus can be smoothly deformed into the Pythagoras mug.1

One of the promising applications of topologically non trivial materials lies in the
field of quantum computing. In a quantum computer, a quantum bit or qubit is formed
by a quantum mechanical two level system. Where a classical bit can be either 0 or 1, a
qubit can also be a superposition of 0 and 1. In Fig. 1.3 this is illustrated as a bit being
either white or black, and the qubit that can also be all gray tones in between. Therefore
the information density in a quantum computer scales exponentially (2(N−1)) instead
of quadratic (N2), as is the case for a classical computer. Together with superposition,

1If this is not trivial, you are encouraged to use your favorite search engine and learn about communicating
vessels.
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quantum mechanical entanglement is at the heart of quantum computing. A single
particle of an entangled pair can not be described independently, because the state of
that particle is correlated with the other(s). Using these properties, a quantum com-
puter can solve certain problems far more efficient than a classical computer, in example
the traveling salesman problem. Two remaining challenges in quantum computing are
reducing errors arising from operations, and increasing the timescale over which the
information is preserved. A topological qubit, a qubit based on the topology of the
electronic structure of a material, could solve both problems.

classical bit quantum bit

0 1 0 1

Figure 1.3: Bit versus qubit. A classical bit being either 0 or 1 is represented by being either white or black. The
quantum bit can take any gray between white and black, so any value between 0 and 1, as well.

Such a topological qubit could be made from particles one finds at the boundary of
a topologically nontrivial superconductor. These particles are anyons, and the two qubit
levels correspond to the parity of two anyons (even and odd). Once two of the anyons,
that live in two dimensions, are exchanged twice, their parity switches, even though the
particles returned to the same location. These exchanges, or braids, can thus used to
perform quantized qubit operations. The error in the operation that could occur, would
be an over-rotation during the exchange of the particles. However, that only impacts the
qubit state once the (accumulative) over-rotation equals one full rotation. Due to the
bulk-boundary correspondence, the quantum information of the particles is spread over
the whole topological superconductor. The information is thus stored non-locally and
therefore protected from local noise. In summary, the quantized operations and non-
local storage of quantum information could solve the modern day quantum computing
challenges.

Unfortunately, there is no material at hand that is a topological superconductor a pri-
ori. However, one could engineer it by mixing the following ingredients: a one-dimensional
semiconductor with strong spin-orbit interaction, a superconductor, and a large mag-
netic field. The experimental challenge lies in the combination, and ensuring the relative
strengths are in the right ballpark. The search and characterization of possible systems
for creating a topological superconductor is the focus of this thesis, which is divided in
the following chapters:

• In chapter 2, the basic theoretical background to the various experiments in this
thesis is presented, with a focus on superconducting quantum interference.

• The technical aspects of the materials, device fabrication and electronic measure-
ments is treated in chapter 3.

• In chapter 4, the one-dimensional hole gas in Ge-Si semiconducting nanowire is
investigated as a candidate material. The spin-orbit interaction, magnetic field
response and induced superconductivity are studied.
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• Chapter 5 focuses on different spin-orbit interaction mechanisms in InAs/GaSb
two-dimensional structures.

• The induced superconductivity in InAs 2DEG is investigated by superconducting
quantum interference in Chapter 6. An interference effect, previously related to
topological systems, is observed in a trivial system.

• In Chapter 7, Josephson junctions in a different material system, InSb flakes, are
investigated via superconducting quantum interference measurements.

• A different geometry, where the superconducting phase difference of the Joseph-
son junction is controlled, is considered in chapter 8.

• At last, an outlook is given on how to proceed to form a topological superconductor
in the investigated systems, with a focus on the Josephson junctions from chapter
8.





2
THEORY

The theoretical background for the upcoming experiments is provided in this chapter.
First, the relevant physical phenomena in a semiconducting Josephson junction are de-
scribed. Then, we focus on superconducting quantum interference (SQI) in the Josephson
junctions. The symmetries in the SQI patterns are presented, and we analyze under which
circumstances these symmetries are broken.

7
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2.1. HAMILTONIAN
A stationary quantum mechanical system is described by its wavefunctionψ(r ) that lives
in a Hilbert space characterized by the eigenvectors and eigenenergies of an Hamilto-
nian, Ĥ [1]:

Ĥψ(r ) = Eψ(r ), (2.1)

where E are the eigenenergies.
In a semiconductor, the wavefunction represents charge carriers (electrons or holes)

throughout the material. In this section, we discuss the terms in the Hamiltonian that
play a role in semiconducting Josephson junctions. On top of that, physical phenom-
ena that lie at the basis of the experiments performed in the following chapters, are
discussed.

2.1.1. KINETIC ENERGY AND CONFINEMENT
The Hamiltonian describing the kinetic energy of an electron with mass m0, and the
potential energy landscape it lives in reads [1]:

Ĥ0 = p̂2

2m0
+V (r )+V0, (2.2)

where p̂ =−iħ∇r , and h is Planck’s constant. In semiconductors, the constant potential
V0 contains the chemical potential µ. The spatial dependent part, V (r ), is caused by a
combination of potentials originating from sources inside and outside the semiconduct-
ing material.

LATTICE POTENTIAL: k ···p APPROXIMATION

In the semiconductor itself, the electrons live in a periodic potential caused by the crystal
lattice, V (r +R) = V (r ), with lattice vector R . This crystal periodicity is often used as a
basis to describe ψ(r ) in terms of Bloch wavefunctions:

ψ(r ) = e i k ···r u(r ), (2.3)

where k is the wavenumber and u are the band depending amplitudes. Using these
wavefunctions, Ĥ0(r )ψ(r ) can be rewritten to Ĥ0(k)u(r ) with:

Ĥ0(k) = 1

2m0
(p̂2 +ħ2k2 +2ħk ··· p̂)+V (k). (2.4)

Here, we consider the semiconducting bands close to the band gap (small k). For k = 0,
the wavefunctions are obtained by solving the Hamiltonian:[

p̂2

2m0
+V (k)

]
un,0(r ) = En(0)un,0(r ). (2.5)

Then, we use the wavefunctions un,0 found, and treat the k2 and k ··· p terms in eq. 2.4
as a perturbation. This approach is called k ···p theory, of which a thorough description
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can be found in Ref. 2. Here we consider the first and second order perturbations only,
resulting in [1]:

En(k) = En(0)+ ħ2k2

2m0
+ ħ2

m2
0

∑
m 6=n

| 〈um,0|k ···p|un,0〉 |2
Em(0)−En(0)

(2.6)

Substituting the perturbation terms with the effective mass, meff:

1

meff
= 1

m0
+ 1

m2
0

∑
m 6=n

| 〈um,0|k ···p|un,0〉 |2
Em(0)−En(0)

, (2.7)

leads to the following eigenenergies and Hamiltonian:

En(k) = En(0)+ ħ2k2

2meff
, (2.8)

H0(k) = ħ2k2

2meff
+V (k). (2.9)

The Hamiltonian in the semiconductor crystal thus has eigenstates (or bands) that de-
pend quadratically on k, which is known as the parabolic band approximation.

EXTERNAL POTENTIALS

If the wavefunction is confined by either the boundary of the semiconductor or external
potentials, its energy eigenvalues are quantized with an energy level difference, ε. Once
the confinement length L becomes smaller than the typical length of ψ(r ) (the Fermi
wavelength λF ), the spatial dimensionality of the Hamiltonian is reduced. Confining
the wavefunction in one, two or three spatial dimensions thus leads to a two-, one-, or
zero-dimensional (2D, 1D, 0D) systems. Several well known examples are studied in this
thesis: a two-dimensional quantum well, a nanowire, and a quantum dot.

If the quantum confinement is caused by a finite size of the semiconductor, the
electrostatic potential V is often not constant at its boundary. An offset of the chemical
potential could for example show up at an interface with another material, due the work
function difference of the materials [3]. In a two-dimensional quantum well, that could
lead to a one-dimensional potential well at its edges. We study the transport through
these edges in Chapters 6 and 7.

In a 0D structure, or quantum dot, an additional energy level splitting occurs, caused
by the Coulomb interaction. The splitting is known as the charging energy, EC, that
depends on the capacitance C of the quantum dot, following EC = e2/C , where e is the
single electron charge. Usually, EC > ε (we consider zero temperature), leading to a level
structure as represented schematically in Fig. 2.1a [4]. The charge transport through the
quantum dot depends on whether there is a level available as schematically drawn in
Fig. 2.1b. The suppression of transport due to the charging energy level splitting is known
as Coulomb blockade. Higher order processes, such as the Kondo effect [5, 6], can break
this blockade condition. The Kondo effect exploits the spin degree of freedom of the
quantum dot level. When the quantum dot has nonzero spin, a singlet spin state forms
with the spin baths of the leads. Exchanging the spin of the bath and the quantum dot
then results in charge transfer (Fig. 2.1c). Because of its spin dependence, this effect is
tunable with a magnetic field via the Zeeman effect, as will be discussed in section 2.1.3.
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Figure 2.1: Quantum dot. a Schematic energy diagram of a quantum dot (central region). The chemical
potential, µ, of the energy levels in the quantum dot are set by the energy level splitting ε and charging energy
EC. A bias voltage V applied over the leads, N1,2, shifts the Fermi levels of the leads with eV . In case an energy
level is below the energy in both leads, it is filled with an electron, otherwise it is empty. b Once an energy level
is available in the bias voltage window eV , the electrons flow as indicated by the arrows. c In case of a nonzero
spin in the quantum dot and zero bias voltage, the Kondo effect leads to electron transport. In a simplistic
picture, a spin flip process as sketched here contributes to the transport. The arrows and numbers identify the
direction and order of the tunneling events.

2.1.2. MAGNETIC FIELD ORBITAL EFFECT
Once a magnetic field, B , is applied, particles with charge q and velocity v are influenced
by the this field due to the Lorentz force

F = q(E +v ×B ), (2.10)

where E is the applied electric field. Following the classical Drude model for a 2D system,
a free particle with mass meff will follow a circular trajectory at a typical timescale of:

τc = 1

ωc
= meff

e|B | (2.11)

Depending on whether the circular trajectory is phase coherent or not (whether the
phase of ψ = |ψ|e iφ is conserved), this effect is described with classical or quantum
mechanics. In the quantum mechanical description the orbital effect is taken into ac-
count by adding the magnetic vector potential (B =∇× A) to the momentum by Peierls
substitution:

p → p +e A or k → k + 2π

Φ0
A (2.12)

where Φ0 = h/e is the flux quantum. Here, we describe the consequences of the orbital
effect in the quantum regime, considering the momentum of the charged particles only.
The orbital effect in systems where the spin and momentum are coupled is considered
in section 2.1.4.

QUANTUM HALL EFFECT

Treating the Lorentz force quantum mechanically leads to quantization of the electron
motion in accordance with the number of flux quanta penetrating its circular orbit [7].
To find the energies of the quantized levels, we consider the following Hamiltonian:

H = (p +e A)2

2meff
+V (z), (2.13)
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where the magnetic field is applied in the z-direction B = (0,0,Bz ), and the vector poten-
tial is A = (−Bz y,0,0). The Hamiltonian is separated in parts corresponding to directions
in the plane (x, y) and perpendicular (z) of a 2D electron gas, where the first becomes [7]:

Hx y = (px −eBz y)2

2meff
+

p2
y

2meff
(2.14)

This Hamiltonian can be solved using the following wavefunction ansatz: ψ(x, y) =φ(y)exp(i kx x),
which reduces the problem to a harmonic oscillator with eigenenergies:

En =ħωc

(
n + 1

2

)
with n = 0,1,2... and ωc = eBz

meff
. (2.15)

These energy levels are Landau levels and the density of states of the Hall bar is:

DOS(E ,B) = eB

h

∑
n
δ(E −En), (2.16)

where δ is the Dirac delta function. The Landau levels have a degeneracy of nLL = eB/h,
and, as a consequence, the occupation of the Landau levels changes as a function of
magnetic field. This shows up in the magnetoresistance in both the longitudinal and
transversal direction, and is known as the quantum Hall effect [8]. The Landau levels
can be broadened due to finite temperature, and quantum scattering (scattering that
dephasesψ). In the regime where the broadening is larger than the Landau level separa-
tion, the oscillations of the longitudinal resistivity (Shubnikov-deHaas oscillations) are
described by the following relation [7]:

ρx x = meff

ne2τ

[
1−2e−π/ωcτq

2π2kBT /ħωc

sinh(2π2kBT /ħωc )
cos

(
2π

hn

2eB

)]
, (2.17)

where τq is the quantum lifetime, T the temperature and kB Boltzmann’s constant. A
temperature dependent measurement of the amplitude allows one to extract τq, and
meff (via ωc ). Furthermore, the oscillation frequency is a direct measure for n, which is
used in Chapter 5.

2.1.3. ZEEMAN EFFECT
Next to the charge degree of freedom discussed so far, electrons also exhibit a spin degree
of freedom. The Zeeman effect describes the response of the spin to an applied magnetic
field B :

ĤZ = 1

2
gµBB ·σ, (2.18)

where g is the Landé g-factor, µB the Bohr magneton, and σ the Pauli spin matrices
(σx ,σy ,σz ). The spin of the electrons line up parallel or anti-parallel to the applied
magnetic field, leading to a splitting of the bands with the Zeeman energy:

EZ =±1

2
gµB |B |. (2.19)

For example, the Kondo resonance in a quantum dot splits, allowing one to extract the
g-factor (see Chapter 4). The value of the g-factor is material dependent. Additionally,
it could be anisotropic, for example due to coupling between the electron spin and its
momentum, which we discuss in the following section.
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Figure 2.2: Fermi surfaces with spin-orbit interaction. a Schematic representation of the band structure in
the Kane model [10]. Three valence bands and one conduction band are sketched, and their total angular
momentum j is indicated. Furthermore, both the band gap E0 as well as the spin-orbit gap∆0 are highlighted.
b-c The zincblende crystal structure, which is inversion asymmetric. Two different atomic species are
represented by the blue and red dots. In figure c the structure is depicted in the [001] crystal direction, where
the numbers highlight the height of the atoms in terms of the lattice constant. These images are taken from
Ref. 11.

2.1.4. SPIN-ORBIT INTERACTION
The spin and momentum of an electron can couple because the spin of an electron
moving in an electric field interacts with the effective magnetic field experienced by it.
This is described by the Pauli spin-orbit term in the non-relativistic approximation of the
relativistic Dirac equation [9]:

ĤSO =− ħ
4m2

0c2
σ · (p ×∇V

)
, (2.20)

where c is the speed of light.
In solid state crystals, electrons experience the periodic potential of the crystal as

they move through it. The SOI arising from this, can be derived by adding HSO to eq. 2.2
and solving that with Bloch wavefunctions. A k ··· p approach, taking into account the
bands around the band gap, is sufficient to describe the SOI [10]. The conduction band
has an s-type symmetric wavefunction, and therefore no angular momentum. The va-
lence band, instead, has p-type symmetry, thus an angular momentum of l = 1, and
a threefold degeneracy {X ,Y , Z }. In addition, all bands have two possible spin states
(s=−1/2,+1/2). Because the spin is coupled to the angular momentum, the total angular
moment ( j = l + s) is conserved and identify the bands as sketched in Fig. 2.2a. The
SOI term directly couples the three valence bands, splitting the bands in energy with ∆0

according to their total angular momentum. The conduction band couples through the
valence band with the same j of 1/2. This coupling is linear in momentum because of
the different symmetries of their wavefunctions, and its amplitude depends on the band
gap E0 and ∆0 (Fig. 2.2a). As long as the momentum for both spin bands is symmetric
around zero, this coupling is symmetric and will only lead to a renormalized meff and
g [7].

However, not all systems exhibit this inversion symmetry, [Es(k) = Es(−k)]. For ex-
ample, a zincblende crystal displays bulk inversion asymmetry (BIA), as is visible in the
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unit cell sketched in Fig. 2.2b-c. Also, the potential caused by the environment can
lack inversion symmetry, which is known as structural inversion asymmetry (SIA). In
the following section we present the outcomes of the k ··· p approximation of inversion
asymmetric crystals and potentials [9].

DRESSELHAUS AND RASHBA

We consider a 2D quantum well, where the electrons confined in two dimensions (x, y).
The BIA leads to a splitting of the spin degeneracy in momentum space according to
Dresselhaus [12]:

ĤSO,D =β(kxσx −kyσy )+γ(kx k2
yσx −ky k2

xσy ), (2.21)

where γ is the Dresselhaus SOI parameter and β is the linear coefficient given by γ<kz >2.
In addition, Bychkov and Rashba described the SOI resulting from SIA [13]:

ĤSO,R =α(kyσx −kxσy ), (2.22)

where α is the Rashba parameter. The Rashba parameter is strongly dependent on the
electrostatic environment, and therefore is usually split into a parts stemming from ex-
ternal electric fields, α0, and potential gradients due to material interfaces, αI [14]:

α=α0E +αI . (2.23)

In Chapter 5 we use the applied electric field to tune α, while γ stays constant. The
Rashba and Dresselhaus SOI describe an energy splitting of the bands dependent on
their spin quantum number. There are two energy scales related to this shift in k. Firstly,
the energy difference between the minimum of the band and the energy at k=0, is called
ESO. Secondly, the energy shift at the Fermi level is ∆SO, which is in example for Rashba
SOI only equal to 2αkF. The shift and spin texture at the Fermi level is sketched in
Fig. 2.3a-b for both SOI terms separately. Also, a combination of both contributions
(in case the two are not equal) is sketched in Fig. 2.3c. Experimentally, the shift due
to the SOI can be obtained by measuring the density of the two Fermi surfaces, us-
ing Shubnikov-deHaas oscillations (section 2.1.2). This measurement technique is ex-
plained in detail in Ref. 14 and used in Chapter 5 of this thesis.

DIRECT RASHBA

For a hole system with confinement in two directions another type of SOI shows up.
The wavefunctions are characterized by their total angular momentum j due to the
confinement potential [16]. These states couple via their dipole moment (if l 6= 0) under
influence of an applied electric field E . This coupling leads to a Rashba like term in the
Hamiltonian, and is therefore called direct Rashba SOI [16, 17]:

ĤSO,DR =−eE · r = eExUτxσz , (2.24)

where τ and σ are Pauli matrices, and we used E = (Ex ,0,0), and z as the direction
without confinement. This type of SOI is investigated in nanowires in Chapter 4.
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RashbaDresselhaus Rashba & Dresselhaus

a b c

Figure 2.3: Fermi surfaces with spin-orbit interaction. The spin polarization at the different k directions is
indicated with the arrows. The spin-orbit interaction terms included are noted for all three panels a,b,c. In c
the Rashba and Dresselhaus strength are unequal. This figure is adapted from Ref. 15.

MAGNETIC ORBITAL EFFECT & STRAIN

Since the SOI couples the momentum and spin degrees of freedom, the magnetic orbital
effect can also influence the spin states of the system. The effect of the momentum
shift due to the vector potential is theoretically studied in nanowires, where it strongly
impacts the effective Landé g-factors [18]. The magnitude of the effect is dependent on
the relative alignment of the electric and magnetic field. Apart from the SOI, strain in
the crystal lattice could induce a shift in the total angular momentum, as described by
Bir and Pikus [19]. The shift in total angular momentum reflects in the magnitude of the
g-factor, of which the direction is dependent on the anisotropy of the induced strain.

2.1.5. SUPERCONDUCTIVITY
In a superconductor, electrons form Cooper pairs, bosons that form a condensate . The
condensate is generally described by a complex order parameter, ∆= |∆|e iφ. The single
particle excitation spectrum has an energy gap corresponding to the pairing potential
|∆|, and can be described by the Bogoliubov de Gennes (BdG) equation using the mean
field approximation [20]:

Hs =
[

H0 ∆

∆∗ −H∗
0

]
, (2.25)

for an s-wave superconductor, where H0 is given by eq. 2.2. The excitations are quasi-

particles with the wavefunctionψ(r ) =
[
ψe (r )
ψh(r

]
[20], whereψe andψh correspond to the

electron and hole part of the excitation. Using the BdG equation results in a particle-
hole symmetric excitation spectrum. When a superconductor and semiconductor are
brought in contact with each other, superconductivity is induced in the semiconductor,
following the proximity effect [21]. The BdG equation then introduces the electron-hole
symmetry in the Hamiltonian for the semiconductor. This is usually described by using
Pauli matrices denoted by τ, as for example will be used in the model in chapter 6.
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2.2. SUPERCONDUCTING QUANTUM INTERFERENCE
In this section we first revisit the basics of a semiconducting Josephson junction, and
introduce superconducting quantum interference (SQI). Then, the impact of the geom-
etry, Zeeman effect and SOI terms on the SQI pattern are treated.

2.2.1. JOSEPHSON JUNCTION
In 1962 Brian Josephson postulated an equation that describes the current between two
superconductors separated by an insulator, the DC Josephson relation [22]:

I (φ(t )) = Ic sin(φ(t )), (2.26)

whereφ is the superconducting phase difference, the phase difference between the con-
densates of the two superconductors. The DC Josephson relation holds in the regime
where the Cooper pair transfer between the superconductors is due to tunneling. The
maximum supercurrent in the Josephson junction (JJ), also know as the critical current,
is independent on the direction of the current in this case and given by:

Ic = max
φ=0−2π

I (φ). (2.27)
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Figure 2.4: Andreev reflection a Schematic representation of Andreev reflection at a normal metal, N ,
superconductor, S, interface. The incoming electron is retroreflected as a hole, while a Cooper pair is transfered
to S. The Fermi energy, EF, and superconducting gap,∆, are indicated. b Andreev reflection in a SNS geometry
leads to an Andreev bound state with energy, ε, when the length, L, of N does not exceed half the coherence
length of the quasiparticles, lφ.

ANDREEV BOUND STATES

When, instead of an insulator, a semiconductor is contacted by two superconductors,
transport could also occur due to Andreev reflection of charge carriers in the semicon-
ductor [23]. Andreev reflection is described as follows: an electron quasiparticle in a
semiconductor that reaches a superconductor is retroreflected as a hole quasiparticle,
and at the same time a Cooper pair is transfered into the superconductor (Fig. 2.4a).
When a quasiparticle Andreev reflects at both sides of the junction, effectively a Cooper
pair is transfered through the JJ. If, in addition, the quasiparticle stays phase coherent
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during this process, an Andreev bound state (ABS) forms between the two supercon-
ductors, as sketched in Fig. 2.4b. To satisfy the phase coherence for a quasiparticle
with energy offset from the Fermi level, ε, the following resonant condition should be
met [24]:

φe =φ1 +arccos(ε/∆)+φh −φ2 +arccos(ε/∆)+2πn, (2.28)

where n = 0,1,2... , the arccos(ε/∆) is the phase shift acquired by the evanescent wave
(the tunneling term), andφ1 andφ2 are the phases of the superconducting condensates.
Note that this expression holds for the clockwise ABS in sketched in Fig. 2.4b. Including
its anti-clockwise counterpart and substituting φe −φh = 2LεvF/ħ and φ = φ1 −φ2, we
find:

εL

ξs∆
=±φ/2+arccos(ε/∆)+πm, (2.29)

where m = 0,±1,±2... , ξs = ħvF/∆ is the superconducting coherence length, and vF

is the Fermi velocity. The ABS level structure in the JJ is characterized by ξs and its
length L: when L À ξs, the junction is in the long limit, and oppositely L ¿ ξs in the
short junction limit. In a long junction, the Thouless energy (ħvFlmfp/L2) determines
the energy levels [25], where for the short junction this is ∆ [26]. In the remainder of
this section we use the short junction limit. For L ¿ ξs, the term on the left hand side of
eq. 2.29 becomes very small, and the ABS energy levels are given by:

ε(φ) =±∆cos(φ/2). (2.30)

Note that the calculated ABS energies in eq. 2.30 is obtained with unity transparency at
the super- and semiconductor interface. Using a scattering matrix formalism, the ABS
energies are derived for any transparency τ [26]:

εp (φ) =∆
√

1−τp sin2(φ/2). (2.31)

CURRENT PHASE RELATION

The function describing the dependence of the current through the JJ on the supercon-
ducting phase difference is called the current phase relation (CPR). Generally, the CPR is
derived from the Free energy, F :

I (φ) = 2e

ħ
∂F

∂φ
. (2.32)

Following this approach, Beenakker found an expression for F in the JJ in terms of the
ABS energies only [26]. Considering |∆| to be constant, the CPR reads [26]:

I (φ) = e∆2 sin(φ)

2ħ
∑
p

τp

εp (φ)
tanh

(
εp (φ)

2kBT

)
, (2.33)

where T is the temperature and which is plotted in Fig. 2.5 for different τ and T . As τ is
increased or T is decreased, the CPR changes from sinusoidal (like in eq. 2.26) to skewed.
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Figure 2.5: Current phase relation of superconducting quantum point contact. a The normalized critical
current, extracted from eq. 2.33 is plotted as function of superconducting phase difference, φ, for τ ≈ 0, and
varying T as indicated. b Same as a, with T ≈ 0, and varying τ as indicated. For both ∆= 1 meV is used.

2.2.2. SUPERCONDUCTING QUANTUM INTERFERENCE: BASIC PICTURE
In a JJ with a magnetic field applied perpendicular to the direction of supercurrent,
the magnetic vector potential couples to the superconducting phase difference in the
junction, and can cause an interference effect. We describe a basic example of this
superconducting quantum interference (SQI), using a JJ with length L and width W (see
schematic in Fig.2.6a), and a certain CPR, I (φ). Using the gauge A = (0,B x,0), we find
the gauge invariant phase, γ, for an arbitrary contour, C , connecting the two supercon-
ductors:

γ(x) =φ+ 2π

Φ0

∫
C

A dl =φ+ 2π

Φ0

∫ +L/2

−L/2
Ay dy =φ+ 2π

Φ0
B xL, (2.34)

where Φ0 = h/2e is the superconducting flux quantum. Restricting ourselves to straight
trajectories that are perpendicular to the superconducting contacts, the current through
the junction is given by:

I (γ) =
Ï

j (x, y)I (γ)dxdy =
∫ W /2

−W /2
J (x) I (φ+ 2π

Φ0
B xL)dx. (2.35)

The current density is then dependent on x only, so we use the current density distribu-
tion per unit length in y , J (x). Next, the CPR is chosen to be sinusoidal, I (φ) = Ic sin(φ),
and we obtain:

I (φ,B) =
∫ W /2

−W /2
J (x) cos

(
2π

Φ0
B xL

)
sin(φ)dx +

∫ W /2

−W /2
J (x) sin

(
2π

Φ0
B xL

)
cos(φ)dx (2.36)

Finally, we solve the integral, and compute the critical current Ic as a function of the flux
through the junction Φ = BW L for two specific expressions for J (x),. Firstly, we use a
constant J (x) = Ic/W that results in a Fraunhofer shaped SQI pattern:

Ic(Φ)/Ic(0) =
∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ . (2.37)

Secondly, for edge transport only, J (x) = Ic[δ(−W /2) + δ(+W /2)], and we obtain the
double slit analogue, or superconducting quantum interference device (SQUID) pattern:

Ic(Φ)/Ic(0) = |cos(πΦ/Φ0)| . (2.38)
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Figure 2.6: Basics of superconducting quantum interference. a Schematic of a Josephson junction with length
L and width W . The two superconducting contacts have a gap ∆ and phase difference φ. The magnetic flux,
Φ, through the junction area is considered, and an example of a contour C connecting both superconductors
is drawn. b A homogeneous current distribution, Jx , accompanied by the Fraunhofer SQI pattern, observed in
the critical current, Ic, versus normalized flux, Φ/Φ0. c The current is flowing solely through the edges of the
devices, resulting in the SQUID interference pattern.

Both current distributions and resulting SQI patterns are sketched in Fig. 2.6b-c.
Reversing this analysis, enables us to extract the current density distribution from

a SQI pattern, as shows by Dynes and Fulton [27]. For this approach to be valid, one
should be in the short junction limit for the trajectories to be straight, and the CPR
should be sinusoidal [28]. In the remainder of this section we discuss more complex
scenarios, where we consider different geometries, non-homogeneous current density
distributions, and non-sinusoidal CPRs.

GEOMETRY DEPENDENCE

The ratio of the length and width of a JJ can influence the SQI pattern. In a JJ with a
comparable L and W , a doubling of the periodicity in the SQI pattern was observed [29].
Several theoretical works described this via nonlocality of the Andreev quasiparticles,
considering their possible trajectories [30, 31]. Depending on the L/W -ratio, the quasi-
particle trajectories span only a part of the total area of the junction, leading to a reduced
flux periodicity. In Fig.2.7, the SQI patterns for several L/W -ratios are presented, where
we used the model described in Ref. 31 for a ballistic JJ. As the ratio increases, the peri-
odicity grows to a maximum of 2Φ0.

Furthermore, the geometry of the device can indirectly be influenced by its density
of states. For example, if there exists a large density at the edges of a device, the current
density distribution is represented by an homogeneous background, with enhanced cur-
rent at the edges. In Fig.2.7b we plot the resulting SQI patterns for different values of the
background current, and observe a gradual change from a Fraunhofer to SQUID pattern
(Fig. 2.6a and b, respectively). This transition is experimentally studied in Chapters 6
and 7 of this thesis.

2.2.3. SQI PATTERN FROM ABS SPECTRUM
Here we describe the effects of a non-sinusoidal CPR on the SQI pattern observed. The
CPR is obtained from the Hamiltonian of the semiconducting JJ. First we connect sym-
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Figure 2.7: Geometry effect on SQI pattern. a Normalized critical current, I /I0, as a function of normalized
flux, Φ/Φ0, for several L/W -ratios indicated. The model of Ref. 31 is used to calculate these SQI patterns, that
are offset by 0.2 for clarity. b I /I0 versusΦ/Φ0 for different current density distributions, Jx , as sketched in the
inset. The SQI pattern changes from a Fraunhofer to SQUID shape, as the current density in the bulk of the
sample decreases. A sinusoidal current phase relation is used.

metries in the Hamiltonian to symmetries the CPR, and describe how they show up in
the SQI pattern. Then we present the results of modeling the Hamiltonian, to obtain the
ABS energies, through which the CPR and SQI pattern are calculated.

SYMMETRY ANALYSIS

The symmetries of the Hamiltonian translate directly into the Free energy, which is evi-
dent from the partition function description:

F =−kBT lnTre−H/T . (2.39)

In addition, the symmetries of F dictate the symmetries of the CPR through eq. 2.32,
linking the Hamiltonian and the CPR. We revisit a thorough symmetry analysis of a 2D
Josephson junction with (Rashba and linear Dresselhaus) spin-orbit interaction, Zee-
man effect and potential asymmetries, performed in Ref. 32. The Hamiltonian of the
semiconductor reads, H = H0 +HSO +HZ, where the orbital effect is taken into account
as well. Superconductivity is included via an s-wave pairing Hamiltonian, Hs , that is
only present in the contacts to the semiconductor (see Ref. 32 for details). In table 2.1,
the unitary symmetry operators are presented, H =U H ′U †, that sustain the symmetry
in the CPR indicated. The symmetry operations are given by parity operators Px,y that
mirror the Hamiltonian in x, y = 0, respectively, the time reversal operator T , and Pauli
spin matrices σ. The symmetry breaking terms are either a potential asymmetry, Vx,y ,
in-plane magnetic field, Bx,y , or linear Rashba or Dresselhaus SOI,α,β, respectively. The
coordinate system identical to the one used in Fig.2.6a.

Inspecting the symmetry breaking terms, we see that combinations of Bx,y , and α and
β can break I and III, which we come back at in the following paragraphs. Here we
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I
I (Bz ,φ) =−I (Bz ,−φ)
PxP y Vx,y , α, β
σzPxP y Vx,y , Bx,y

σyPxT Vx ,By ,α
σxPxT Vx ,Bx ,β

II
I (Bz ,φ) = I (−Bz ,φ)

σyPx Vx , Bx , α
σxPx Vx , By , β
P yPxT Vx,y , Bx,y , α, β
σzP yPxT Vx,y

III
I (Bz ,φ) =−I (−Bz ,−φ)

T Bx,y

σzT α, β
σyP y Vy , Bx , β
σxP y Vy , By , α

Table 2.1: Symmetries of the supercurrent. Three symmetries of the supercurrent as a function of magnetic
field, Bz , and phase difference, φ, are presented. The first column represents the symmetry operations of
the Hamiltonian, and the second column the terms in the Hamiltonian that protect that symmetry. To lift
symmetries I, II or III, all corresponding Hamiltonian symmetry operations should be broken.

focus on the potential asymmetry Vx that lifts both symmetries I and II. The asymmetric
potential leads to ABS energies dependent on x. We use two ways to simulate this: by
implementing a linear dependence of the transparency on x in eq. 2.33; and by simply
including an asymmetric current distribution, where we take the CPR identical through-
out the junction. The SQI pattern is calculated by numerically solving the integral in
section 2.2.2. Note that SQI pattern contains the critical current, Ic (for every magnetic
field value). Depending on the sign of the current, Ic can have different values, so we
use Ic,+ = maxφ I (φ) and Ic,- = minφ I (φ). Breaking the symmetry I (φ) = I (−φ), thus
only shows up in the interference pattern if Ic,+ = Ic,- is broken. For clarity, we sketched
the effect of the symmetries I-III on the SQI pattern in Fig. 2.8. Figures 2.8b,c show the
calculated interference patterns while breaking Vx . Both display that only symmetry III
is maintained, as expected from the symmetry analysis. Experimental works confirm
that asymmetries of the potential V , can have a large influence on the shape of the
interference patterns [33, 34].

a b

(I
c,-
,-B

z
)

(I
c,+
,-B

z
) (I

c,+
,+B

z
)

(I
c,-
,+B

z
)

Ι

ΙΙ

ΙΙΙ

c

x0

J
x

x0

τ
x

Figure 2.8: Symmetries in the SQI pattern broken by Vx . a A Fraunhofer SQI pattern (Eq. 2.37) with influence
of the symmetries from table 2.1 sketched. b Fraunhofer SQI patterns with asymmetric transparencies, τ(x),
of the Andreev levels throughout the JJ (see inset). The green, yellow and orange lines denote the case where
τ = 0.75, 0.65 to 0.85 and 0.55 to 0.95, respectively. c Fraunhofer SQI patterns with an asymmetric current
distribution, J (x), in the JJ as indicated in the inset. Unity transparency, τ = 1, is taken. The traces in b,c are
offset by 0.1 for clarity and the CPR is calculated from eq. 2.33, using T = 50 mK and ∆= 1 meV.
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ANDREEV BOUND STATE SPECTRUM

The effect of spin-orbit interaction and in-plane magnetic fields on the symmetries in
the SQI pattern can be studied by obtaining the CPR of the JJ through its ABS energy
spectrum. We review and use an analytical model proposed by Bezuglyi et al., to obtain
the CPR [35]. Then, we calculate the SQI pattern from the CPRs, and discuss its symme-
tries.

Bezuglyi et al. study the following Hamiltonian for the semiconducting part of the
JJ [35]:

Ĥ =
(

p̂2

2m
−EF

)
τz + α

ħ (p̂ × ẑ)σ+µBB∥σ+µBBzσz , (2.40)

where σ, p̂, B∥ lie in the x-y plane (see Fig.2.6a) and the Nambu basis is used. The
Zeeman effect is included via a hyperfine interaction, to not induce a magnetic orbital
effect. For the spin-orbit interaction, only the Rashba contribution, with magnitude
α, is taken into account, . The superconductors are included by adding ∆e±iφ/2 at the
sides of the semiconductor (y > |L/2|). Solving the BdG equation in the quasi-classical
approximation (p ≈ py ), they obtain the ABS energies for the short junction limit [35]:

εp =±∆cos

(
φ

2
+σγ

)
, (2.41)

where σ=±1 and the Zeeman effect, h =µB B , and spin-orbit interaction, w = α
ħ (p̂ × ẑ),

are contained in γ as:

γ (h, w ) =arcsin

√√√√[ ∑
l=±1

1+ l n+n−
2

sin2
(

A++ l A−
2

)]
,

n± = h ±w

|h ±w | , A± = L

ξs∆
|h ±w |.

(2.42)

Note that this model only renormalizes the spin splitting. We can then calculate the
CPR following eq. 2.33, with τ = 1 and T = 50 mK, and find the SQI pattern following
section 2.2.2.

Zeeman effect Considering the Zeeman effect only (w = 0) the expression for γ re-
duces to [35]:

γ(h,0) = arcsin[sin(|h|L/ξs∆)] (2.43)

The ABS energies and CPR are thus shifted proportional to the magnetic field applied,
as presented in Fig.2.9a. Note that the orientation of the magnetic field is not important
here. We observe that for γ=π/2 the CPR frequency (inφ) is doubled, which shows up in
the SQI pattern in Fig.2.9b. Once γ=π, the CPR switched sign completely, which means
that the supercurrent in the JJ is reversed.

This effect is known as a Zeeman-induced 0−π transition, which corresponds to the
shift of the minimum in the ABS energy from 0 to π phase difference. Generally, it occurs
due to the magnetic ordering in the JJ [36–39]. The Zeeman effect induces an energy
splitting of the semiconducting bands according to their spin orientation, proportional
to the magnetic field applied. Cooper pairs with s-wave pairing in a semiconductor
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Figure 2.9: CPR and SQI pattern with Zeeman effect. a Normalized CPR, I /I0(φ), calculated with the model
from Ref. 35 at several magnetic fields, H = h(ξs∆/L), and zero spin-orbit interaction, W = w(ξs∆/L). A
schematic of the device is added including the coordinate system used. b Normalized SQI pattern for a JJ with
a homogeneous current distribution and the CPRs from a. c Schematic band structure of a 1D semiconductor
with the Zeeman effect included. The bands split according to their spin orientation (blue and red) by the
Zeeman energy, EZ. Cooper pairs that form at the Fermi level εF have a finite momentum of ±δk.

normally pairs the +k,↑ and −k,↓ electrons. However, at a finite magnetic field, pairing
the electrons results in Cooper pairs with a finite momentum ±δk (Fig. 2.9c) [40]. This
finite momentum translates to a spatial dependence of the Cooper pair wavefunction
of ∆ ∼ e+iδk ·x + e−iδk ·x = cos(δk · x). The superconducting pairing thus oscillates along
the quasiparticle trajectories with typical length of 1/δk , leading to the oscillation of the
switching current (Ic ∝|∆|).

Spin-orbit interaction & Zeeman effect Adding the spin-orbit interaction to the pic-
ture makes the CPR dependent on the direction of the Zeeman field. Therefore, we treat
the cases where the Zeeman field is parallel and perpendicular to the effective spin-orbit
field, separately. In Fig. 2.10a,b the CPRs and resulting SQI patterns are presented for the
perpendicular arrangement. We observe that the first Zeeman induced 0−π transition
occurs at a large magnetic field value compared to the Zeeman only case (Fig.2.9). To
show this more directly, we plot Ic obtained from the CPR as a function of magnetic field
H in Fig. 2.10c. The renormalization of the spin splitting (eq. 2.42), causes this distinct
behavior.

Next, we move on to the case where the Zeeman field and effective spin-orbit field are
oriented parallel. The model of Bezuglyi et al. describes a symmetric renormalization of
the spin only, by using σ=±1. However, they do not consider that the spin conservation
is broken by the spin-orbit interaction, and σ can take different values [41] as schemat-
ically shown in the Fermi surfaces in Fig. 2.11a. We heuristically add a Zeeman and SOI
dependent shift such thatσ= h·w

|h+++w |±1. This leads to a phase shift in the CPR (Fig. 2.11b),
showing up as an anomalous supercurrent, I (φ= 0) 6= 0, as recently observed[42].

The occurrence of this shift and the anomalous supercurrent is confirmed by a nu-
merical calculation by Yokoyama et al. [41]. They solve a nominally identical Hamil-
tonian, but do not use the quasi-classical approximation. The ABS energies are found
by representing the BdG equation in terms of a scattering matrix, and extracting its
transmission eigenvalues. The scattering matrix itself is obtained with a tight-binding
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Figure 2.10: SOI and Zeeman effect, aligned perpendicular. a Normalized CPR, I /I0(φ), calculated with
the model from Ref. 35 at several magnetic fields, H = h(ξs∆/L), with a constant SOI, W = w(ξs∆/L). A
schematic of the device is added including the coordinate system used. b Normalized SQI pattern for a JJ with
a homogeneous current distribution and the CPRs from a. c Normalized critical current, Ic /I0, as a function of
magnetic field H , with and without the SOI indicated.

model of the JJ [41]. We plot their numerical result for the CPR at T = 0, and τ < 1 in
Fig. 2.11c, and observe the phase shift and anomalous supercurrent.

According to the symmetry breaking terms in table 2.1, this combination of Rashba
spin-orbit interaction and By breaks symmetry I. Nevertheless, this is not reflected in the
SQI pattern, because the symmetry Ic,+ = Ic,- is retained (Fig. 2.11b,c). The shape of the
SQI pattern can however change drastically dependent on the SOI and Zeeman effect,
which is discussed in detail in Ref. 43.

a b c
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Figure 2.11: SOI and Zeeman effect, aligned parallel. a Schematic representation of the Fermi surfaces in
the junction with SOI and the Zeeman field applied. The arrows denote the spin states along the direction
of current, y . A schematic of the device is added including the coordinate system used. b Normalized CPR,
I /I0(φ), at several magnetic fields, H = h(ξs∆/L), with a constant SOI, W = w(ξs∆/L). The CPR is calculated
with the model from Ref. 35, where a shift in σ is heuristically added. c Numerically calculated supercurrent,
I , versus phase difference, φ, in a JJ with SOI as well as Zeeman fields, H , indicated. This figure is taken from
Ref. 41.
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Figure 2.12: SQI coupling a Normalized CPR, I /I0(φ), calculated at T = 50 mK and ∆ = 1 meV from eq.2.33,
for the transparencies for positive and negative φ as indicated. b Normalized SQI pattern for a JJ with a
homogeneous current distribution and the CPRs from a. The lines are offset by 0.1 for clarity. c Numerically
calculated CPR in a system with SOI and coupling between the ABSs, for different Zeeman fields. This figure is
adapted from Ref. 41.

Coupling Andreev bound states Finally, we discuss a term that does break both sym-
metries I (φ) = I (−φ) and Ic,+ = Ic,-, corresponding to breaking symmetry I in the SQI
pattern. For example, varying τ as a function of φ leads to an asymmetry in the positive
and negative CPR amplitudes we are looking for. Figure 2.12a shows such CPRs, with the
corresponding SQI patterns presented in Fig 2.12b, where Ic(+Bz ) = Ic(−Bz ) is clearly
broken. Such a φ - dependent transparency can occur due to coupling of ABSs (with dif-
ferent transparencies). Yokoyama et al. investigate this and found the CPR presented in
Fig. 2.12, where Ic,+ = Ic,- is indeed broken. Experimentally, this effect has been observed
in a few mode nanowire Josephson junction recently [44].



3
MATERIALS, FABRICATION AND

MEASUREMENTS

First, we briefly discuss the semiconducting materials that are used in this thesis. Then,
the most crucial steps in the nanofabrication processes are described. Finally, a typical
measurement setup is presented.
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3.1. MATERIALS & FABRICATION
The semiconducting materials used in this thesis can be divided in two categories. Firstly,
we consider low dimensional nanostructures that are grown individually by vapor-liquid-
solid (VLS) technique in the group of prof. Erik Bakkers at Eindhoven University of
Technology. Secondly, two-dimensional (2D) heterostructures are described, where thin
layers are grown on a substrate by molecular beam epitaxy (MBE) in the groups of Marko
Sokolich at HRL and prof. Michael Manfra at Purdue University. The standard nanofab-
rication processes used for fabricated devices from the different materials, are discussed
in Refs. 45, 46 and Ref. 47. Here we will focus only on the most crucial steps of the
fabrication.

3.1.1. LOW DIMENSIONAL NANOSTRUCTURES

GESI NANOWIRES

The germanium (Ge) Silicon (Si) core-shell nanowires, with a typical diameter of 10-
20 nm, are grown by VLS with the use of a gold catalyst particle. Because of the large
valence band offset between Ge and Si [48], a quantum well is formed that hosts a one-
dimensional hole gas (Fig. 3.1) [49]. The lattice mismatch between Ge and Si (Fig. 3.3a)
induces strain in the Ge core, which has important consequences for the electron trans-
port as we encounter in chapter 4. Recently, hole mobilities up to 4200 cm2/Vs are re-
ported for nanowires with a [110] growth direction [50].

a b

Figure 3.1: Ge-Si core-shell nanowires. a Schematic representation of Ge (red) -Si (blue) core-shell nanowire.
b Schematic energy diagram of the valence band (VB), conduction band (CB) and Fermi energy (EF) in the
nanowire. Due to the valence band offset a quantum well forms. Both are taken from Ref. 51.

INSB FLAKES

There are several techniques to grow small indium antimonide (InSb) 2D structures, all
using VLS growth starting from a gold catalyst particle. Firstly, an indium phosphide
(InP) and/or indium arsenide (InAs) stem can be grown, where after the material fluxes
in the MBE process are tuned such that the InSb growth continues in a 2D manner
[52]. This is very similar to the growth of InSb nanowires [53], and an example of such
a nanosheet is shown in Fig. 3.2a. Secondly, the growth can be performed without a
stem (Fig. 3.2b), in literature called nanosails [54]. Thirdly, flakes can be formed from
two nanowires [55]. By patterning the catalyst particles in trenches on an InP substrate,
the nanowires grow under a relative angle. Proper lateral alignment of the nanowires
then causes them to coalesce as shown in the upper panel of Fig. 3.2c. After that, the
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a b c

Figure 3.2: Growth of InSb flakes. a Scanning electron microscope (SEM) image of a nanosheet grown on top
of a stem. b SEM image of the stemless growth of nanosails. c The upper image shows two nanowires coalesce
becasue they are grown under a relative angle. The bottom image shows the final result of the growth. The
scalebar is 1µm in all panels. All images are courtesy of Stijn Balk and Sasa Gazibegovic.

growth continues in the plane spanned by the two nanowires (lower panel Fig. 3.2c). We
characterized the electronic transport in the small 2D structures from all three growth
processes and found all have a electron mobility in the range of 5.000−10.000 cm2/Vs.
The first two approaches have the disadvantage of resulting in relatively narrow rectan-
gular structures. The third approach however can be used to make larger and square
shaped structures, which offers more flexibility in device geometries and fabrication.
Therefore, we choose the flakes grown with the third process to study in chapter 7.

FABRICATION

For both the nanowires and flakes, the first crucial step in the fabrication process is to
transfer them from the growth chip on to a suitable substrate. This transfer is done with a
micromanipulator, either in the optical microscope [56] or in a scanning electron micro-
scope (SEM). The material of the substrate chosen, depends on subsequent processing
steps, and the device geometry. A common choice is a conducting Si substrate with a
SiO dielectric layer, such that the substrate can be used as a global electrostatic bottom
gate. For the Ge-Si nanowires however, we use a SiN dielectric, because of its resilience
to the buffered HF etch that is performed before depositing metallic contacts. After the
transfer, pre-patterned markers on the substrate enable us to locate the nanostructures
with a SEM, and continue fabricating the devices.

Another crucial step in the fabrication process is cleaning the surface before deposit-
ing a superconducting contact. To create these contacts to the Ge-Si nanowires, first
the SiO, present on the shell, is etched by a repeated buffered HF etch (3 times 5s dip),
with pauses of 2 min in between to oxidize the uncovered Si in air. The chip in then
transfered in water to an electron beam evaporator, where 60 nm of the superconductor
Aluminium (Al) is deposited. Finally, we anneal the chip for 150 s at 190 ◦C in a rapid
thermal annealer. The duration and temperature are chosen such that the contact re-
sistance decreases, but the Al does not diffusive all the way through the nanowire. We
shared our recipe with other groups, that then also managed to make superconducting
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Figure 3.3: Band gaps and lattice constants. a Band gap (direct or indirect) energy versus lattice constant for
the indicated materials, taken from Ref. 63. b Band gaps and band offsets for a heterostack of III/V materials
as indicated. This figure is adapted from Ref. 64.

contacts [57, 58], and reported the formation of a superconducting alloy made from Ge,
Si and Al [59].

To induce superconductivity in the InSb flakes we exploit a process that is developed
for InAs [60] and InSb [61] nanowires. The contact area is etched in a saturated am-
monium sulfide solution that is heavily diluted with water (ratio 1:200), for 30 min at a
temperature of 60◦C. The sulfur (S) solution removes the native oxides, but also replaces
the Sb atoms with S atoms in the lattice, which could lead to doping of the surface [62].
Then, the chip is transfered to an ultra high vacuum system, where a short argon plasma
cleaning step and the superconductor niobium titanium nitride (NbTiN) is deposited.

3.1.2. 2D HETEROSTRUCTURES

All 2D heterostructures used in this thesis consist of elements from column III and V in
the periodic table. The layers are grown by MBE, ideally in a single crystal without any
defects. To do so, the lattice constants of the different layers (Fig. 3.3) have to be as close
as possible to each other. In order to confine electrons in a 2D quantum well, a layer of
the material of interest is sandwiched between to insulating layers. The insulating layers
typically have a large band gap, and a band offset such that the carriers are confined in
the layer of interest (Fig. 3.3b).

INAS QUANTUM WELLS

InAs quantum wells are generally either consist of AlSb or In(Ga,Al)As barriers, grown
on a GaSb or InP substrate, respectively. In the first case, the wavefunction is predom-
inantly located in the InAs because AlSb has a large band gap, where for the latter the
wavefunction has a significant weight in the In(Ga,Al)As barriers [65]. This difference
reflects for example in the Landé g -factor, since a value of 11 is found for AlSb [66] and 4
for In(Ga,Al)As barriers [67]. In this thesis we study three different InAs quantum wells,
their layer structure is presented in Fig. 3.4. The stack in Fig. 3.4a is a double quantum
well, since both an 2D electron gas and 2D hole gas can be formed in the InAs and
GaSb layer, respectively [68]. The second heterostack (Fig. 3.4b) is very similar to the
first, but has an InAs quantum well only. The third stack is different from the other
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Figure 3.4: InAs quantum well heterostructures. The material and thickness is indicated for every layer in
a,b,c. In c there are two monolayers (ML) of GaAs grown in between the quantum well and the Al.

two because a superconducting material is included in it, a thin layer of Al is grown by
MBE on top (Fig. 3.4c). This InAs epi Al quantum well exhibits high quality induced
superconductivity, because of the oxide and defect free interface between the quantum
well and the superconductor [69, 70].

FABRICATION

a b

Figure 3.5: Etch profiles InAs epi Al. SEM images of the cross section of an InAs epi Al wafer after the mesa etch
a without and b with additional Transene-D etches during the mesa etching. The etch profile is highlighted by
the dashed line, and the scale bar equals 100 nm.

Isolating a part of the 2D electron gas (the mesa) is the first, and for us most crucial
step in the fabrication process. For the stacks with AlSb, the top barrier is etched with a
solution based on photoresist developer (MF321:H2O, 1:3) for 13 s Since this solution
does not etch InAs, it serves as an etch stop, that layer is subsequently removed by
Argon milling. For the InAs epi Al stack, first the Al is removed with a Transene-D etch
(12 s at 48.2◦C), for which the two monolayers of GaAs serve as an etch stop. Then, the
mesa is etched with a solution of citric acid, phosphoric acid and hydrogen peroxide,
diluted in water (ratio 55:3:3:220) with rate of 30 nm/min [71]. However, following this
procedure leads to an undesired etch profile, because of significant etching under the
Al layer (Fig. 3.5a). Covering such a profile with dielectric material is hard, since the
overhanging Al masks the mesa underneath. The top gate metal, deposited on top of
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Figure 3.6: Measurement setup and filtering schematics. a The device and filtering are mounted on the
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powder filter. The lower panel schematically shows the frequency range the different filters cover.

the dielectric, could then easily make unwanted contact with the mesa. We solve this
by adding two intermediate Transene-D dips (2 s) to the mesa etch process, and obtain
an etch profile without overhang (Fig. 3.5b). Furthermore, we found that depositing
dielectric material on a region with a shallow mesa etch depth of 100 nm could induce
carriers and short the device to its environment. To keep the mesa isolated, an etch
depth of 200 nm is used.

3.2. MEASUREMENT SETUP
All measurement reported in this thesis are either done in either an Oxford Triton di-
lution refrigerator or a Janis He-3 refrigerator, with base temperatures T of 30 mK and
300 mK, respectively [72]. The electronic setup for a four point current bias measure-
ment in the Oxford system is schematically presented in Fig. 3.6a. A home build IVVI
rack [73] contains the current and voltages sources and amplifiers. The measurement
apparatus used is either a Keithley (2000 or 2700) for DC signals, or a lock in amplifier
(SR830) for AC excitations on the order of 10 Hz. All DC lines in the fridge have three fil-
tering stages at T = 30 mK, RC-filters,π-filters and copper powder filters. The parameters
of the different filter stages are presented in the upper panel of Fig. 3.6d. Additionally,
in the lower panel a schematic diagram depicts which part of the frequency spectrum is
suppressed by each stage. The DC lines are shielded with copper braid in between the
filter stages and from the last filter stage to the puck (see red lines in Fig. 3.6a), which
hosts the printed circuit board with the device.



4
SPIN-ORBIT INTERACTION AND

INDUCED SUPERCONDUCTIVITY IN

A ONE-DIMENSIONAL HOLE GAS

Low dimensional semiconducting structures with strong spin-orbit interaction (SOI) and
induced superconductivity attracted much interest in the search for topological supercon-
ductors. Both the strong SOI and hard superconducting gap are directly related to the
topological protection of the predicted Majorana bound states. Here we explore the one-
dimensional hole gas in germanium silicon (Ge-Si) core-shell nanowires (NWs) as a new
material candidate for creating a topological superconductor. Fitting multiple Andreev
reflection measurements shows that the NW has two transport channels only, underlining
its one-dimensionality. Furthermore, we find anisotropy of the Landé g-factor, that, com-
bined with band structure calculations, provides us qualitative evidence for direct Rashba
SOI and a strong orbital effect of the magnetic field. Finally, a hard superconducting gap
is found in the tunneling regime, and the open regime, where we use the Kondo peak as a
new tool to gauge the quality of the superconducting gap.

This chapter has been published as, Spin-orbit interaction and induced superconductivity in a one-
dimensional hole gas, Folkert K. de Vries, Jie Shen, Rafal J. Skolasinski, Michal P. Nowak, Daniel Varjas, Lin
Wang, Joost Ridderbos, Floris Zwanenburg, Ang Li, Sebastian Koelling, Marcel A. Verheijen, Erik. P. A. M.
Bakkers and Leo P. Kouwenhoven in Nano Letters 18 (10), 6483-6488 (2018)
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4. SPIN-ORBIT INTERACTION AND INDUCED SUPERCONDUCTIVITY IN A

ONE-DIMENSIONAL HOLE GAS

4.1. INTRODUCTION
The large band offset and small dimensions of the Ge-Si core-shell nanowire (NW) lead
to the formation of a high-quality one-dimensional hole gas [49, 50]. Moreover, the direct
coupling of the two lowest-energy hole bands mediated by the electric field is predicted
to lead to a strong direct Rashba SOI (SOI) [16, 17]. The bands are coupled through the
electric dipole moments that stem from their wavefunction consisting of a mixture of
angular momentum (L) states. On top of that, the spin states of that wavefunction are
mixed due to heavy and light hole mixing. Therefore, an electric field couples via the
dipole moment to the spin states of the system and causes the SOI. This is different from
Rashba SOI, which originates from the coupling of valence and conduction bands. The
predicted strong SOI is interesting for controlling the spin in a quantum dot electrically
[74, 75]. Combining this strong SOI with superconductivity is a promising route towards
a topological superconductor [76, 77]. Signatures of Majorana bound states (MBSs) have
been found in multiple NW experiments [78, 79]. An important intermediate result is the
measurement of a hard superconducting gap [61, 80], which ensures the semiconductor
is well proximitized as is needed for obtaining MBSs.

4.2. EXPERIMENTAL SETUP
Here we study a superconducting quantum dot in a Ge-Si NW. The scanning and trans-
mission electron microscopy images of the device (Fig. 4.1a-b) show a Josephson junc-
tion of ∼170 nm length. The quantum dot is formed in between the contacts. The Ge-Si
core-shell nanowires were grown by the vapor-liquid-solid (VLS) method as discussed
in detail in the Supporting Information of Ref. 50. The NW has a Ge core with a radius
of 3 nm. The Ge crystal direction is found to be [110], in which hole mobilities up to
4600 cm2/ Vs are reported [50]. The elemental analysis in Fig. 4.1c reveals a pure Ge core
with a 1 nm Si shell and a 3 nm amorphous silicon oxide shell around the wire. Supercon-
ductivity is induced in the Ge core by aluminium (Al) leads [51], and crucially, the device
is annealed for a short time at a moderate temperature [57, 58]. We believe that the high
temperature causes the Al to diffuse in the wire, therefore enhancing the coupling to the
hole gas. Note that we do not diffuse the Al all the way through, since we pinch off the
wire (Fig. 4.S7) and there is no Al found in the elemental analysis (Fig. 4.1c). Two terminal
voltage bias measurements are performed on this device in a dilution refrigerator with
an electron temperature of ∼ 50 mK.

4.3. SUPERCONDUCTING QUANTUM DOT
To perform tunneling spectroscopy measurements the bottom gate voltage Vbg is used
to vary the barriers of the quantum dot and alter the density of the holes as well. From
a large source-drain voltage ,V , measurement (Fig. 4.S7), we estimate a charging energy
U of 12 meV, barriers’ asymmetry of Γ1/Γ2 = 0.2-0.5, where Γ1(2) is the coupling to the
left (right) lead, and a lever arm of 0.3 eV/V. In Fig. 4.1d, the differential conductance
d I /dV as a function of a V versus Vbg reveals a superconducting gap (2∆= 380µeV)
and several Andreev processes within this window. Additionally, an even-odd structure
shows up in both the superconducting state at low V and normal state at high V ,which is
related to the even or odd parity of the holes in the quantum dot. The even-odd structure
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Figure 4.1: Superconducting quantum dot device. a False colored scanning electron microscope image of
the device with the NW (yellow) with aluminum contacts (gray) on a Si/SiNx wafer (blue). The magnetic
field axes, voltage bias measurement setup, and global bottom gate are indicated. b Transmission electron
microscope (TEM) image of the cross section of the NW. c Energy dispersive X-ray spectroscopy of the area
displayed in b. The colors represent different elements, Ge is green, Si blue and oxygen (O) is red, respectively.
The Ge-Si core-shell wire is capped by a SiOx shell. d Voltage bias tunneling spectroscopy measurement of
the superconducting quantum dot as the bottom gate voltage Vbg is altered. The superconducting gap, an
Andreev level (AL) and multiple Andreev reflections appear as peaks in differential conductance (d I /dV ). The
AL,∆ and 2∆ are marked by the dashed green, yellow and white lines, respectively. The even or odd occupation
is indicated, and the kink in the observed Andreev level is highlighted by the arrows. e-f Same measurement as
d with a magnetic field, B , applied perpendicular to the substrate (x-direction) of 60 mT and 1 T, respectively. A
zero bias Kondo peak is observed as the quantum dot is occupied by an odd number of electrons. At B = 1 T, the
resonance is split due to the Zeeman effect. g Linear splitting of the Kondo peak at Vbg = -0.098 V as a function
of B . The Zeeman effect splits the spinful Kondo peak, which is indicated by the dashed green line.

persists as we suppress the superconductivity in the device by applying a small magnetic
field (60 mT) perpendicular to the substrate (Fig. 4.1e). A zero bias peak appears when
the quantum dot has odd parity. This is a signature of the Kondo effect [5, 6]. When
increasing the magnetic field to 1 T, the Kondo peak splits due to the Zeeman effect by
2gµBB . The energy splitting of the two levels is linear as shown in Fig. 4.1g, and thus can
be used to extract a Landé g-factor, g , of 1.9. In the remainder of the chapter, we will
discuss the three magnetic field regimes of Fig. 4.1d-f (0 T, 60 mT and 1T, respectively) in
more detail.
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Figure 4.2: Andreev processes in the quantum dot. a In the top panel a phase diagram of the ground state
in the superconducting quantum dot is sketched as a function of the quantum dot energy, ε0, versus the
coupling to the superconducting reservoir Γs , both normalized to the charging energy, U . Because of the large
U compared to Γs , we expect to trace the dashed line. The bottom panel shows the Andreev level (dashed gray
line) with energy EAL that is formed by Andreev Reflection (AR) at one side and Normal Reflection (NR) at the
other side of the dot. The reflection processes are different due to asymmetric barriers Γ1 and Γ2, indicated as
the barrier width. The density of states in the NW is probed by the superconductor on the left side by doing
voltage bias tunneling spectroscopy. b Tunneling spectroscopy measurement at Vbg = -0.85 V. The first- and
second-order multiple Andreev reflection are observed. A two-mode model fits the data well with∆= 190µeV.c
Measured current of b. The data is fitted with a single- and two-mode model. The latter resembles the data
better and is therefore used to extract transmission values. d Transmission of the first and second mode, T1 and
T2, extracted from the fit of multiple Andreev reflections different Vbg. The transmission increases significantly
below Vbg = -0.8 V.

4.4. ANDREEV PROCESSES

The resonance that disperses with Vbg in Fig. 4.1d is an Andreev Level (AL), which is
the energy transition from the ground to the excited state in the dot [81, 82]. The ground
state of the dot switches between singlet and doublet if the occupation in the dot changes,
as sketched in the phase diagram in the top panel of Fig. 4.2a. Since our charging energy
is large, we trace the dashed line in the phase diagram. The AL undergoes Andreev
reflection at the side of the quantum dot with large coupling (Γ2) and normal reflection
at the opposite side that has lower coupling (Γ1), as schematically drawn in bottom
panel of Fig. 4.2a. The superconducting lead with the low coupling serves as a tunneling
spectroscopy probe of the density of states. To be more precise, the coherence peak of
the superconducting gap probes the Andreev level energy, EAL. For example, if EAL = 0,
we measure it at eV = ∆, the resonance thus has an offset of ±∆ in the measurement
in Fig 4.1d. The ground state transition is visible as a kink of the resonance at V =∆ at
Vbg = -0.09 and -0.11 mV. At a more negative Vbg the coupling of the hole gas to the su-
perconducting reservoirs is strongly enhanced. This eventually leads to the observation
of both the DC and AC Josephson effects (Fig. 4.S8).

In the upper part of Fig. 4.1d, we measure multiple Andreev reflection (MAR): res-
onances at integer fractions of the superconducting gap. Fig. 4.2b presents a line trace
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at Vbg = -0.85 V that shows the gap edge and first- and second- order Andreev reflection.
Fitting the differential conductance [83, 84] (see supplementary material) allows us to
extract∆= 190µeV, close to the bulk gap of Al. We also fit the measured current to extract
the transmission of the spin degenerate longitudinal modes in the NW (Fig. 4.2c) [85, 86].
The two-mode fit resembles the data better than the single-mode fit. Also, we checked
that fitting with more than two modes results in T = 0 outcomes for the extra modes.
Therefore the first provides us with an estimate for the transmission in the two modes,
T1 and T2. We interpret the two modes as two semiconducting bands in the NW. The
MAR fitting analysis is repeated at different Vbg, and the resulting T1 and T2 are plotted
in Fig. 4.2d. The strong increase of the transmission below Vbg = -0.8 V is attributed to
the increase of the Fermi level, and Γ1 and Γ2.

4.5. LANDÉ G-FACTOR ANISOTROPY AND SPIN-ORBIT INTERAC-
TION

The Landé g-factor g is investigated further by measuring the Kondo peak splitting as a
0.9 T magnetic field is rotated from y- to z-, x- to z- and x- to y-direction as presented
in the second row of Fig. 4.3a-c. Interestingly, we find a strong anisotropy of the Kondo
peak splitting and accordingly of g at Vbg = -0.79 V and Vbg = -0.82 V; see the bottom row
Fig. 4.3a-c and Fig. 4.S10, respectively. Both directions perpendicular to the NW show a
strongly enhanced g . Similar anisotropy has been reported before in a closed quantum
dot, where g is even quenched in the z-direction [87–89]. In our experiment, the highest
g of 3.5 is found when the magnetic field is pointed perpendicular to the NW and almost
perpendicular to the substrate.

On the contrary, at a Vbg = -0.5 V we find an isotropic g (bottom row of Fig. 4.3a-c), all
of which have a value of around 2. The anisotropies at different Vbg are summarized in
Fig. 4.3d. The strong anisotropy seems to set in around Vbg = -0.7 V. This sudden transi-
tion from isotropic to anisotropic g , which has not been observed before in a quantum
dot system, is correlated with the increase in transmission in Fig. 4.2d. We speculate that
the change from isotropic to anisotropic behavior is related to the occupation of two
bands in the NW. To test this hypothesis and get an understanding of the origin of the
anisotropy, we theoretically model the band structure of our NW and focus on the two
lowest bands.

We use the model described in Ref. 16 and apply it to our experimental geometry
(see supplementary material for details). Simulating the device as an infinite wire, we
first consider the anistropy of g between the directions parallel and perpendicular to
the NW. We find that there are two contributions to the anisotropy: the Zeeman and the
orbital effect of the magnetic field [18, 90]. The anisotropy of the Zeeman component is
similar for the two lowest bands, where for the orbital part the anisotropy differs strongly.
The anisotropy of the total g therefore shows a strong difference for the two lowest bands
(Fig. 4.S2 and Fig. 4.S3). This agrees qualitatively with earlier predictions[17], but we
find additionally that strain lifts the quenching of g along the NW such that g∥/g⊥ ∼ 2,
in agreement with our measurements. From these observations, we conclude that the
observed isotropic and anisotropic g with respect to the NW-axis is due to the orbital
effect.
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Figure 4.3: Landé g-factor anisotropy and spin-orbit interaction. a-c Rotations of the magnetic field with
a 0.9 T magnitude in the y z-, xz- and x y-plane, respectively, at Vbg = -0.79 V. The upper panel shows the
schematic of the device and the magnetic field rotation performed. The differential conductance data is
plotted in the center panel, the splitting of the Kondo peak changes as the angles are swept. The sudden
changes in conductance are due to small switches in Vbg. The lower shows the extracted g of the center panel
in cyan and g at Vbg = -0.5 V in magenta. For the x y-plane the anisotropy is highlighted and calculated. d
Summary of the measured anisotropies of g at different Vbg. e Simulation result of the quantum dot. The
anisotropy of g∥ and g⊥ changes as the Fermi energy is altered. The colors represent the band from where
the quantum dot level predominantly stems. The highlighted part shows a similar behaviour in the anisotropy
values as the data in d. The inset depicts a schematic representation of the energy ordering of the quantum
dot levels originating from two bands along the NW. f Simulation as in e, now with an applied electric field of
10 V/µm. The SOI causes anisotropy with respect to the electric field direction as gx is pointed perpendicular
and g y parallel to the electric field. The anisotropy increases as the Fermi level is raised. The same range as in e
is highlighted. g Simulated spin-orbit energies for the first band (k = 0) of the infinite wire model as a function
of electric field along the x-direction. The direct Rashba term is the leading contribution.
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In addition, we include the confinement along the NW, such that a quantum dot is
formed and the energy levels are quantized in the z-direction. Besides the lowest energy
states studied before,[75, 87] we also consider a large range of higher quantum dot levels.
In the regime where two bands are occupied, we observe that the quantum dot levels
originating from the first and second band have a unique ordering as a function of Fermi
energy, this situation is sketched in the inset of Fig. 4.3e. We also find that some of the
quantum dot levels are a mixture of the two bands (Fig. 4.S5), resulting in a different
anisotropy for each quantum dot level. In the simulation results (Fig. 4.3e and Fig. 4.S6),
the anisotropy values are colored according to the band they predominantly originate
from. To compare the simulation with the measured data, we note that a more negative
Vbg in the experiment increases the Fermi level for holes E . In the simulation we observe
a regime in E (highlighted in Fig. 4.3e), where the anisotropy g⊥/ g∥ is around 1 and goes
up toward 2 as E increases. This behaviour qualitatively resembles the measurement of
gx /gz and g y /gz in Fig. 4.3d.

Now we turn to the magnetic field rotation in the x y-plane, the two directions per-
pendicular to the NW that are parallel and perpendicular to the electric field induced by
the bottom gate. The measured anisotropy is gmi n/gmax = 0.8 (Fig. 4.3c). The maximum
g of 3.5 is just offset of the y-direction, which is almost parallel to the electric field.
This anisotropy with respect to the electric field direction is a signature of SOI [87, 88].
As discussed before, the Ge-Si NWs are predicted to have both Rashba SOI and direct
Rashba SOI [17, 75]. The electric field could also cause anisotropy via the orbital effect
or geometry, due to an anisotropic wavefunction. However we can rule that out since
our simulations show that the wavefunction does not significantly change as electric
field is applied (Fig. 4.S4). In the simulation (Fig. 4.3f) with a constant electric field of
10 mV/µm, we observe anisotropy of g parallel (gx ) and perpendicular(g y ) to the electric
field. Similar to our data the anisotropy starts below 1 and goes to 1 as the Fermi level
is increased. The spread in the anisotropy values is due to the mixing of the bands for
each quantum dot level. Furthermore, we calculated the magnitude of the Rashba and
direct Rashba contribution to the SOI using the infinite wire model and find the direct
Rashba SOI is dominating in the small diameter nanowires of our study (Fig. 4.3g). This
agrees with the effective Hamiltonian derived in Ref. 17, which predicts that the direct
Rashba SOI dominates in NWs with a Ge core of 3 nm radius. To summarize, we observe
anisotropy with respect to the electric field direction that is caused by SOI, which is likely
for the largest part due to the direct Rashba SOI.

4.6. HARD SUPERCONDUCTING GAP
Finally, in Fig. 4.4, we take a detailed look at the superconducting gap as a function of
magnetic field. We find the critical magnetic field Bc for different directions: Bc,z = 220 mT
(Fig. 4.4a), Bc,y = 220 mT (Fig. 4.4b), and Bc,x = 45 mT(Fig. 4.1g and Fig. 4.S9), consistent
with an Al thin film. Future devices could be improved by using a thinner Al film to
increase the critical magnetic field [69]. In this case, the topological phase could be
reachable, with the measured g of 3.5[77]. In the tunneling regime at Vbg = -0.12 V, we
observe a clean gap closing (Fig. 4.4a). The conductance inside the gap is suppressed
by two orders of magnitude, signaling a low quasiparticle density of states in the super-
conducting gap. This large conductance suppression remains as the gap size decreases
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Figure 4.4: Hard superconducting gap. a Closing of the superconducting gap, as B is ramped up in the z-
direction. The line traces below are taken at 50 mT intervals and show the induced superconducting gap. The
vertical line trace shows the conductance at V = 0 V normalized to the conductance extracted at V = 0.5 mV.
A two orders of magnitude conductance suppression is observed. b The superconducting gap closes, and a
Kondo peak appears as the magnetic field is increased in the y-direction. The resonances within the gap stem
from Andreev processes. The line traces depict the transition from the superconducting gap to the Kondo peak,
which takes place from 170 mT to 190 mT (5 mT step). From the pink trace, a Kondo energy kB TK of 50µeV is
extracted with an Lorentzian fit.

towards Bc (bottom panel in Fig. 4.4a). In the low conductance regime, we thus measure
a hard superconducting gap persisting up to Bc in Ge-Si NWs.

The closing of the superconducting gap in a higher conductance regime is presented
in Fig. 4.4b. Since the transmission is increased, Andreev reflection processes cause a sig-
nificant conductance within the superconducting gap [91]. Therefore, the conductance
suppression in the gap becomes an ill-defined measure of the quasiparticle density of
states and with that the quality of the induced superconductivity. However, here we can
use the Kondo peak to examine the quasiparticle density of states in the superconducting
gap. The Kondo peak is formed by coupling through quasiparticle states within the
window of the Kondo energy (kB TK ). In the regime where kB TK ≤ ∆, the existence and
size of the Kondo peak is then an indication of the quasiparticle density of states inside
the superconducting gap [92, 93]. In our measurement ∆ is indeed larger than kB TK up
to a magnetic field B = 170 mT (see the blue and magenta line traces in bottom panel of
Fig. 4.4b). Since in the measurement the Kondo peak only arises once the gap is fully
closed, we have a low quasiparticle density of states within the superconducting gap.
This supports our observation of a hard superconducting gap up to Bc . It also illustrates
a new way of gauging whether the superconducting gap is hard in a high conductance
regime.
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4.7. CONCLUSION
Combining all three magnetic field regimes of Fig. 4.2-4.4, we observed Andreev levels
showing a ground state transition, SOI from the coexistence of two bands in Ge-Si core-
shell NWs, and a hard superconducting gap. The combination and correlation of these
observations is a crucial step for exploring this material system as a candidate for creat-
ing an one-dimensional topological superconductor.

4.8. SUPPLEMENTARY MATERIAL

4.8.1. CALCULATION OF MULTIPLE ANDREEV REFLECTION AND THE FITTING

PROCEDURE
The conductance and the current response of the voltage biased nanowire Josephson
junction are calculated following the scattering approach introduced by Averin and Bar-
das in Ref. [83]. The model accounts for sequential Andreev reflections of electrons and
holes accelerated by the voltage bias Vsd that propagate through the normal part of a
SNS junction. The total DC current Ith(Vsd) of a multimode junction is obtained [94] as
a sum of the currents Ii carried by individual modes of the transverse quantization

Ith(Vsd) =
N∑
i

Ii (Vsd,Ti ,∆), (4.S1)

where Ti is the transmission probability of the i ’th mode and ∆ is the superconducting
gap.

The transmission probabilities Ti and the superconducting gap ∆ of the measured
nanowire junction are inferred by fitting the numerically obtained current to the ex-
perimental one through minimization of χ = ∫

[Iexp(Vsd) − Ith(Vsd)]2dVsd. N is a free
parameter of the fitting procedure. We have checked that increase of N above 2 results
in the transmission probabilities Ti>2 = 0 evidencing the presence of only two conduct-
ing modes in the structure as described in the main text. The analogous procedure is
performed for the differential conductance traces, obtained in the numerics by differen-
tiation of the calculated current over the bias voltage.

4.8.2. NUMERICAL CALCULATIONS

DISCUSSION OF PREVIOUS RESULTS AND OVERVIEW

Our experimental data shows a g-factor with a gate-tunable anisotropy. A g-factor anisotropy
for Ge-Si core-shell nanowires with a circular cross section and in the absence of electric
fields was predicted for the lowest two subbands in Ref. 17: At kz = 0, the g-factors
for the lowest subband were computed to be gz = 0.12 and gx,y = 5.78, for the second
subband gz = 3.12 and gx,y = 5.1. Comparing to the experimentally measured values,
we observe that (i) the computed anisotropy in the lowest subband is larger than in the
second subband, whereas we observe a quenched anisotropy for lower densities, and
(ii) the experimentally measured gz never drops below 2. A later numerical simulation
including strain found for the lowest subband gz = 1.8 and gx,y = 8.3 [16], i.e. bringing
the g-factor for field parallel to the wire closer to our experimental results. However,
no results were given for the second subband there. Ref. 87 discussed the electric field
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dependence of the g-factor anisotropy for the ground state in a quantum dot in the Ge-
Si core-shell nanowire, and found that the anisotropy was quenched with increasing
electric field due to the direct Rashba SOI. Again, this is opposite to our experimental
observation that the anisotropy is quenched for small (absolute) gate voltages.

We can thus not directly interpret our results in terms of existing theory. For this
reason we apply the model described in Ref. 16 to our experimental geometry and strain
values. As we show below, strain can change g-factor values up to an order of magnitude
and even reverse anisotropies. We also find that we need to consider excited quantum
dot states to find agreement with the experimental data.

MODEL FOR NANOWIRE ALONG [110]
We use the Luttinger-Kohn Hamiltonian for holes that has been established for model-
ing Ge-Si core shell nanowires [16, 17]. Below we give this Hamiltonian in detail, the
description was adapted from Ref. 16. The bulk Hamiltonian of the Ge core is

H = HLK +HZ +Hdir +HR +HBP , (4.S2)

where HLK is the Luttinger-Kohn (LK) Hamiltonian, Hdir the coupling to the electric
field that is known to give rise to the direct Rashba spin-orbit interaction (SOI) [17],
HR is the indirect Rashba SOI due to coupling to other bands, and HBP is the Bir-Pikus
Hamiltonian describing the effects of strain. The magnetic field is included through the
Zeeman term HZ, and the orbital effect. We consider the orbital effect of the field through
kinetic momentum substitution. We include a global “−” sign in our Hamiltonian such
that hole states have a positive effective mass. In the following we take a detailed look at
each term in the Hamiltonian separately.

Luttinger-Kohn Hamiltonian We use the Luttinger-Kohn (LK) Hamiltonian [95, 96]

HLK = ħ2

2m

[(
γ1 + 5

2
γ2

)
k2 −2γ2

(
k2

x′ J
2
x′ +k2

y ′ J
2
y ′ +k2

z ′ J
2
z ′

)
−γ3

(
{kx′ ,ky ′ }{Jx ′ , Jy ′ }+c.p.

)]
(4.S3)

where γ1,2,3 are the Luttinger parameters, m is the electron mass, Ji are the spin- 3
2

matrices, k2 = k2
x′ +k2

y ′ +k2
z ′ , “c.p.” stands for cyclic permutation, and {A,B} = AB +B A

is the anticommutator.
For Ge, (γ3 −γ2)/γ1 = 10.8% and one can use the so called spherical approximation

[16]. By setting γ2 = γ3 = γs , where γs = (2γ2 + 3γ3)/5, in Eq (4.S3) the Hamiltonian
becomes spherically symmetric, and we may use a simulation coordinate system with z
being the direction along the nanowire and the cross section laying in the x y-plane.

Magnetic field We include magnetic field through the Zeeman term [9, 96]

HZ = 2κµB B · J (4.S4)

and the orbital effect by the following substitution in the Hamiltonian

k → k + 2π

φ0
A , (4.S5)
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where k = (kx ,ky ,kz ) = −i∇, A the vector potential, φ0 = h
e is the flux quantum with e

being positive elementary charge and h the Planck constant. The anisotropic Zeeman
term 2qµB B ·J [9, 96], where J i = J 3

i , is omitted as |q | << |κ| for Si and Ge [16, 97].

Electric field We include the electric field by the direct coupling [16, 17] to the electro-
static potential

Hdir =−eE · r , (4.S6)

We also consider indirect coupling originating from higher bands, excluded from the LK
Hamiltonian, in form of a standard Rashba SOI term [9]

HR =αE ·k × J , (4.S7)

where E is electric field and α is the Rashba coefficient.

Strain effect In our numerical calculations we only simulate the Ge core, and include
the presence of the Si shell through the strain that it induces in the core [17]. We model
the strain using the Bir-Pikus Hamiltonian [19]

HBP =−
(

a + 5b

4

)(
εx′x ′ +εy ′y ′ +εz ′z ′

)
+b

(
εx ′x′ J 2

x ′ +εy ′y ′ J 2
y ′ +εz ′z ′ J

2
z ′

)
+ dp

3

(
εx′y ′ {Jx ′ , Jy ′ }+c.p.

)
, (4.S8)

where a ,b ,c are the deformation potentials and εi j = ε j i are the strain tensor elements.
Similarly to the Luttinger-Kohn Hamiltonian the spherical approximation can be used
and strain may assumed to be constant in the Ge core [98]. Thus, d = p

3b, ε⊥ = εxx =
εy y , and εx y = εxz = εy z = 0. The Bir-Pikus Hamiltonian then simplifies to the spherical
symmetric form [98]

HBP = b(εzz −ε⊥)J 2
z , (4.S9)

where a global energy shift has been omitted.

Material parameters Material parameters used in the simulation are given in Table 4.S1.
We take the structure parameters for Ge from Ref. 97, the effective Rashba coefficient
from Ref. 16, the deformation potentials from Refs. 19 and 98, and the strain parameters
of the sample from Ref. 50.

Table 4.S1: Band structure parameters for Ge [16, 97] and strain parameters [19, 50]. All parameters are for
T = 0 K.

γ1 γ2 γ3 γs κ α [nm2e] b [eV] d [eV] εzz εr r

13.25 4.25 5.69 5.114 3.13 −0.4 −2.5 −5.0 −1.5 3.5
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Numerical method We perform our numerical calculations using Kwant [99]. We use
the finite difference method to discretize the Hamiltonian (4.S2) on a cubic grid with
spacing a . Depending on the geometry we use two slightly different methods.

The first approach is suitable for simulating a translation invariant infinite wire sys-
tem, by considering the Hamiltonian

H(kx =−i∂x ,ky =−i∂y ,kz ). (4.S10)

The transverse momenta kx and ky are treated as differential operators, which are dis-
cretized as finite difference operators. The Hamiltonian is then represented in a tight-
binding form, and a finite system in the x y-plane is generated that represents the wire
cross section. The cross section has either a square or hexagon shape. The momentum
along the wire, kz , remains a scalar parameter.

In the second approach we treat all momenta as differential operators:

H(kx =−i∂x ,ky =−i∂y ,kz =−i∂z ). (4.S11)

In addition to a finite cross section in the x y-plane we terminate the wire in the z-
direction, effectively obtaining a quantum dot of length L.

The Landé g -factors are extracted from the energy spectrum of the system as a split
in energies caused by the finite magnetic field

∆En = gnµB B , (4.S12)

where n is band number, µB is Bohr magneton, and B is the magnitude of the magnetic
field. For the infinite wire we use the energy split at kz = 0. We note that this numerical
approach goes beyond the effective Hamiltonian approach in Ref. 17 and also takes into
account the effects of higher states. The accuracy of our approach is controlled by the
grid spacing a.

Model geometry and verification The nanowires used in our experiment have a hexag-
onal cross-section with a corner-to-corner width of 6nm. Faithfully representing this
shape with a cubic lattice requires a rather small lattice spacing a that is computation-
ally unfavorable. Figure 4.S1 shows the comparison of the band structure between the
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Figure 4.S1: Band structure for different cross sections. Dispersion of an infinite wire with hexagon (left) and
square (middle, right) cross sections for different discretization grid spacings a = 0.1 nm (left, middle) and
a = 0.5 nm (right).

wires with hexagon (left) and square (middle) shaped cross sections calculated using
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the grid spacing a = 0.1 nm. We observe that the impact of the cross section shape on
the qualitative result is small, in agreement with what was reported for the comparison
between a circular and square cross section[16]. Hence we use a square cross section
with 6nm side length in further calculations.

This choice allows us to use a larger grid spacing (a = 0.5 nm) that significantly
reduces the computational cost of the calculation. For grid spacing a = 0.5 nm the
square cross section preserves the symmetries of the system and key features of the
dispersion of two lowest subbands, see middle and right panel on Fig. 4.S1. We also note
that the band structures we observe agree qualitatively with what was reported earlier
[16, 17], further verifying the accuracy of our approach.

Simulation code and dataset All simulation codes used in this project are available
under (simplified) BSD licence together with raw simulation data [100].

RESULTS

Infinite wire We first investigate the infinite wire system. In Fig. 4.S2 we present the
anisotropy of the g -factors when a magnetic field is included only through the Zeeman
term, only the orbital effect, and both of these contributions, respectively. The direc-
tion of magnetic field changes from along the +z axis (parallel to the wire) to the −z
axis (antiparallel to the wire). No electric field is present in the system. The results
show that the kz = 0 states behave differently in the lowest two subbands. In the lowest
state the anisotropy originates almost exclusively from the Zeeman term. On the other
hand, in the second state the Zeeman and orbital contributions both have significant
anisotropies but opposite signs, such that they partially cancel (note that the graphs
show absolute values of the g -factors). Comparing to Ref. 17 we find increased g-factor
values, such as an order-of-magnitude enhancement of gz in the lowest suband. We can
attribute this to strain, as our numerical simulations yield g-factor values comparable to
Ref. 17 in the absence of strain. Also, strain leads to gz > gx,y in the second subband,
reversing the anisotropy. Note also that our results for the lowest subband agree better
with the results of Ref. 16 with a somewhat weaker strain than in our situation.
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Figure 4.S2: Anisotropy parallel and perpendicular to the NW. Anisotropy of the g -factors of the two lowest
states in an infinite wire with square cross section. The magnetic field is included through the Zeeman term
only, the orbital contribution only, and through both on the left, middle, and right panel respectively. The
direction of the magnetic field changes from parallel to antiparallel to the wire. No electric field is present in
the system.

In Fig. 4.S3 we analyse the anisotropy as the magnetic field orientation changes with
respect to the wire from the parallel to antiparallel direction (left and middle) and around
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Figure 4.S3: All anisotropies for the infinite wire model. Anisotropy of the g -factors of the two lowest states
in an infinite wire with square cross section. The upper panels correspond to zero electric field whereas on the
lower panel a perpendicular electric field of 10V/µm is applied.

the perpendicular directions (right), in the absence and presence of electric fields. The
magnetic field is rotated from +z to −z axis through +x (left) and +y (middle). In the
right panel magnetic field changes from +y through +x to −y . The upper row corre-
sponds to systems with no electric field whereas the bottom row corresponds to systems
with perpendicular electric field Ex = 10V/µm that we estimate for our experimental
situation. Due to the fourfold rotational symmetry, g -factors are identical for x and
y directions in the absence of electric field as expected. This symmetry is in principle
broken by the applied field, but the anisotropy between x and y remains small for exper-
imentally relevant field strengths. Indeed, we observe that due to the large confinement
energy (around 80meV, see Fig. 4.S3) the effect of the electric field on the kz = 0 states in
the infinite wire is almost negligible, as demonstrated in Fig. 4.S4 (note that the shape
of these wave functions in the absence of electric fields is in agreement with previous
results [16, 17, 101]).

In summary, we find that the g-factor anisotropy of the lowest subbands is modified
considerably by strain. However, the results also do not agree with our experimental
finding of a quenched anisotropy at lower densities. For this reason, we now turn to
quantum dots.

Quantum dot As explained in the main text, the experiment accesses higher states of
the quantum dot, which originate from different subbands. In this section we show
results for a quantum dot of length L = 170 nm (with hard-wall boundary conditions),
corresponding to the experimental setup. The discretization grid has a = 0.5 nm.

Fig. 4.S5 shows the energy levels in the quantum dot as a function of
√

〈k2
z 〉 eval-

uated in the given eigenstate. The states near the bottom of the lowest subband trace
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Figure 4.S4: The wavefunction of the two lowest bands for kz = 0. On the left panel we show the calculations
done without electric field whereas on the right panel we show calculation under the electric field 10V/µm.

the infinite wire’s dispersion very accurately, confirming the particle-in-box momentum
quantization picture. When the second subband enters, the quantum dot levels signif-
icantly deviate from the infinite wire dispersion. This is a finite size effect, the result of
mixing between states from different subbands with different 〈k2

z 〉 (note that in a finite
wire kz is not a conserved quantity). For most of the energy window with two subbands
the two branches of the dispersion are clearly distinguishable, supporting the view that
consecutive quantum dot states inherit properties from different subbands.

Fig. 4.S6a,b show the g -factors and g -factor anisotropies in the finite quantum dot
respectively. At low energies, Fig. S9a reveals gx,y > gz in the absence of an electric field
(Ex ) and g y > gx in the presence of Ex . This is in qualitative agreement with previous
calculations for the ground states in Ge-Si NW quantum dots [87]. Also, g y > gx at
finite Ex has recently been observed experimentally [88]. Where the second subband
enters, the g -factor values split into two branches corresponding to the first and second
subbands, this is especially visible in the gz values. The external electric field induces
a much larger anisotropy between gx and g y in higher states compared to the lowest
one accessed at small kz , that was discussed previously in Ref. 87. Since the effect of the
electric field on the g-factor in the infinite wire case is small, we attribute the increased
anisotropy to spin-momentum locking present at nonzero kz .
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4.8.3. SUPPLEMENTARY FIGURES

Figure 4.S7: Coulomb diamonds. Large V tunneling spectroscopy measurement of the superconducting
quantum dot. The differential conductance (d I /dV ) as a function of Vbg reveals Coulomb diamonds that
are highlighted by the dashed lines. From Vbg = 0.2 V on the hole transport is pinched off. The charging energy
of 12 meV , barriers’ asymmetry of Γ1/Γ2 = 0.2-0.5 and lever arm of 0.3 eV/V are estimated from this graph.
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Figure 4.S8: AC and DC Josephson effect. a Voltage measurement as a function of current bias Isd and Vbg.
The measured voltage shows supercurrent as zero voltage plateaus. b Linetrace at Vbg = -1.3 V. A switching
current of 1.7 nA is observed. c Voltage measurement as a function of current bias at Vbg = -1.53 V while a

microwave excitation is applied with a varying power at a frequency f of 1.23 GHz. d A linetrace at
p

P = 1.46
reveals Shapiro steps with stepsize corresponding to the frequency V = f h/2e = 2.5µV .
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Figure 4.S9: Superconducting gap closing as a function of Bx . Tunneling spectroscopy measurement of
the superconducting gap as a function of Bx , a magnetic field applied perpendicular to the substrate. The
superconducting gap closes at a critical magnetic field of 45 mT. At 10 mT the gap closing seems to set in early.
This dual gap closing is seen also in a similar experiment, where it is attributed to a superconducting material
that is created during the annealing proces and that is composed of Al and Si [58].

Figure 4.S10: Measured anisotropy in a second device. Rotations of the magnetic field with a 0.9 T magnitude
in the y z-, xz- and x y-plane, respectively, at Vbg = -0.82 V. The differential conductance data is plotted in the
top row. The bottom row shows the extracted g of the center panel. The anisotropy in g has the same trend as
Fig. 3 in the main text, although the amplitude is smaller.
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SPIN-ORBIT INTERACTION IN A

DUAL GATED INAS/GASB QUANTUM

WELL

The spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using
an electric field, the quantum well can be tuned between a single-carrier regime with
exclusively electrons as carriers and a two-carrier regime where electrons and holes co-
exist. The spin-orbit interaction in both regimes manifests itself as a beating in the Shub-
nikov–de Haas oscillations. In the single-carrier regime the linear Dresselhaus strength is
characterized by β= 28.5 meV Å and the Rashba coefficient α is tuned from 75 to 53 meV Å
by changing the electric field. In the two-carrier regime a quenching of the spin splitting is
observed and attributed to a crossing of spin bands.

This chapter has been published as, Spin-orbit interaction in a dual gated InAs/GaSb quantum well, A.J.A
Beukman, F. K. de Vries, J. van Veen, R. Skolasinski, M. Wimmer, F. Qu, D. T. de Vries, B.-M. Nguyen, W. Yi,
A. A. Kiselev, M. Sokolich, M. J. Manfra, F. Nichele, C. M. Marcus and L. P. Kouwenhoven, Physical Review B 96,
241401(R) (2017).
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5.1. INTRODUCTION
The semiconductors InAs and GaSb have small band gaps together with a crystal inver-
sion asymmetry resulting from their zinc-blende structure. These materials are therefore
predicted to have strong spin-orbit interaction (SOI) [9, 102] which has been measured
experimentally [103]. Moreover, tuning of the Rashba strength by electrostatic gating
has been shown for InAs quantum wells [104, 105]. Strong and in-situ control over the
SOI is a promising route towards novel spintronic devices [102, 106, 107], and a strong
SOI together with a large g -factor and induced superconductivity are ingredients for a
topological superconducting phase [76].

Combining InAs and GaSb in a quantum well gained much interest because of the
type-II broken-gap band alignment [64]. As a result, the GaSb valence band maximum is
higher in energy than the InAs conduction band minimum, opening a range of energies
where electrons in the InAs coexist with holes in the GaSb. The spatial separation of these
electron and hole gases allows for tunability of the band alignment using an electric field.
Therefore, a rich phase diagram can be mapped out using dual gated devices [108, 109].
Although spatially separated, strong coupling between the materials allows for electron-
hole hybridization which opens a gap in the energy spectrum when the density of elec-
trons equals that of holes [110, 111], driving the band structure topologically nontriv-
ial [108].

Interestingly, the magnitude of this hybridization gap is spin dependent due to the
SOI [112–114]. Therefore, a spin-polarized state is seen at energies close to the hybridiza-
tion gap [115], and at higher energies a dip in the spin splitting is expected [116]. The
latter has yet to be observed and indicates a competition between electron-hole hy-
bridization and the spin-orbit interaction. Here, we experimentally study SOI through
the difference in density of the spin-orbit split bands of an InAs/GaSb quantum well.
This zero-field density difference (∆nZF) is extracted from magnetoresistance measure-
ments. First, the SOI is investigated in the regime where the GaSb is depleted from
carriers. Rashba and Dresselhaus SOI strengths can be extracted from measurements
of∆nZF. Second, SOI is investigated just above the hybridization gap where ∆nZF almost
vanishes, consistent with band-structure calculations.

5.2. EXPERIMENTAL SETUP
A 20-µm-wide and 80-µm-long Hall bar device is defined using chemical wet etching
techniques. A top gate is separated from the mesa by a 80-nm-thick SiNx dielectric layer.
The Hall bar is fabricated from the same wafer used in Refs. 68, 109. The quantum well
consists of 12.5 nm InAs and 5 nm GaSb between 50 nm AlSb barriers. The doped GaSb
substrate acts as a back gate. All measurements are done at 300 mK using standard lock-
in techniques with an excitation current of 50 nA.

Figure 5.1 presents the longitudinal resistance of the Hall bar device as a function
of top gate voltage Vtg and back gate voltage Vbg. The measurement is performed in
a 2 T perpendicular magnetic field and therefore shows quantum oscillations resulting
from the changing electron density. Quantum oscillations corresponding to holes are
less pronounced as the mobility of holes in this system is much lower than the mobility
of electrons [109]. For lines parallel to these oscillations, such as line I in Fig. 1(a), the
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Figure 5.1: Resistance map of the Hall bar device. Longitudinal resistance of the Hall bar device (see bottom
right inset) as a function of top gate voltage (Vtg) and back gate voltage (Vbg) at 2 T out-of-plane magnetic
field. Oscillations in resistance originate from Landau levels and denote lines of constant electron density. The
dashed green and white lines indicate regions with the Fermi level located inside an energy gap. The solid green
line separates the region with electrons as carriers (right) from a region where electrons and holes coexist (left).
Line I is situated in the electron regime and Line II in the two-carrier regime. The insets show the schematic
band alignment for both cases.

electron density is constant while the electric field changes. Regions of high resistance,
indicated by the dashed white and green lines, correspond to having the Fermi level
inside an energy gap. A detailed description of the phase diagram obtained from mea-
surements on the same wafer was reported by Qu et al. [109].

The green solid line in Fig. 5.1 divides the phase diagram into two regimes. To the
right-hand side of this line is the electron-only regime, where the GaSb is depleted. The
system effectively is an asymmetric InAs quantum well with a trivial band alignment and
a Fermi level residing in the conduction band (see the inset of Fig. 5.1). In this regime we
investigate∆nZF along line I, where the electron mobility is highest while only the lowest
subband remains occupied. The regime to the left of the green line is the two-carrier
regime where electrons and holes coexist. Line II is chosen to evaluate ∆nZF close to
the hybridization gap (highlighted by the dashed green line). Before discussing the spin-
orbit interaction in the two-carrier regime (along line II) we first study the electron-only
regime (line I).

5.3. ELECTRON REGIME

Figure 5.2a shows magnetoresistance traces for 10 points along line I. The density of
electrons is fixed (see Fig. 5.2c) while the electric field is changed. We first consider
trace 1. Clear oscillations in the longitudinal resistance Rxx are observed as a function
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extracted from Hall resistance and Shubnikov-de Haas period (right axis) together with the ∆nZF at each data
point along line I (left axis), with error bars in gray.

of perpendicular magnetic field B modulated by a beat pattern. These Shubnikov-de
Haas (SdH) oscillations appear for each single spin band and are periodic in 1/B with a
frequency that relates to the carrier density via n = e/h · f [103, 117]. The beat mod-
ulation observed in trace 1 is caused by two slightly different SdH frequencies f1, f2.
This is also evident from the fast Fourier transform (FFT) of the magnetoresistance trace
F [Rxx (1/B)] presented in the first curve of Fig. 5.2b (see Supplementary Material for
details on the Fourier procedure Sec. 5.7). These two SdH frequencies indicate two
distinct densities n1,n2. They must correspond to different spin species because their
sum n1 +n2 equals the Hall density nH (see Fig. 5.2c). Subsequently, one spin species
has a larger density than the other, n1 > n2, implying that the system favors one spin-
orbit eigenstate over to the other. The difference, ∆nZF = n2 −n1, is a measure for the

zero-field spin splitting energy, ∆EZFSS =∆nZF
(
m∗/πħ2

)−1
.
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Upon moving from point 1 to 10 along line I, two trends are observed. First, an extra
frequency peak emerges in the FFTs at ( f1 + f2)/2. This originates from the asymmetry
between adjacent beats in the SdH oscillations, visible both in amplitude and number of
oscillations of beats A and B in Fig. 5.2a and Fig. 5.S1. Second, the spacing between the
outer peaks in the FFT spectrum decreases, as is evident from the decreasing ∆nZF over
line I (Fig. 5.2c). This arises from an increasing number of oscillations in both beats A
and B (Fig. 5.S1), which also pushes the beat nodes to lower magnetic fields. Before we
extract the actual SOI strengths and show its electric field dependence, we first elucidate
the origin of the emerging center frequency peak.

The center frequency, interestingly, does not correspond to an actual density. The
sum of the densities n1 and n2 (corresponding to the outer peaks in the FFT) still equals
the Hall density. There are, however, mechanisms involving scattering between Fermi
surfaces that can result in extra frequency components. Such mechanisms are magnetic
inter subband scattering (MIS) [118, 119], magnetophonon resonances (MPR) [120, 121]
and magnetic breakdown (MB) [122–124].

We exclude MIS and MPR. By changing electron density all the frequency peak posi-
tions shift with equal strength (Fig. 5.S2). However, the oscillation frequency of MIS and
MPR is determined by the subband spacing and a specific phonon frequency, respec-
tively. Both do not depend on the electron density. In contrast, for MB the spurious peak
always appears in between f1 and f2. The MB mechanism explains this spurious central
peak as carriers tunneling between spin-polarized Fermi surfaces at spin-degeneracy
points. The interplay of Dresselhaus and Rashba SOIs in our heterostructure could lead
to such an anisotropic Fermi surface [122, 125]. In order to confirm this hypothesis, we
extract the individual Rashba and Dresselhaus contributions by comparing our data to
quantum mechanical Landau level simulations that include the MB mechanism.

5.4. LANDAU LEVEL SIMULATIONS
The quantum well in this electron-only regime is modeled by a Hamiltonian with spin-
orbit interaction in two-dimensional (2D) electron systems subject to a perpendicular
magnetic field B , as given by [9, 102]:

H =
(p̂2

x + p̂2
y )

2m∗ σ0 +α(p̂yσx − p̂xσy )/ħ+β(p̂xσx − p̂yσy )/ħ

+γ(p̂y p̂x p̂yσx − p̂x p̂y p̂xσy )/ħ3 + 1

2
gµB Bσz

(5.1)

Where pi → pi + e Ai is the canonical momentum, σi Pauli spin matrices, α,β,γ the
Rashba, linear Dresselhaus and cubic Dresselhaus coefficients, respectively, ħ the re-
duced Planck’s constant,µB the Bohr magneton. An electron effective mass m∗ of 0.04m0

is measured from the temperature dependence of the SdH oscillations (Fig. 5.S3) and a
g -factor of −11.5 is used in the calculations1 [66]. We solve for the Landau level energies
in a perpendicular magnetic field Bz and extract the resistivity as a function of magnetic
field (see Supplementary Material for details see Sec. 5.7).

1Note that this g-factor value of -11.5 is measured on a slightly different stack with an InAs layer of 11.0 nm
thick. We have checked in the simulations that changing the g-factor to -5 or -15 has negligible influence on
the SdH oscillations.
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Figure 5.3: Landau level simulations for a 2DEG with Rashba and Dresselhaus spin-orbit interactions. a and
b depict the measured trace (blue) together with the simulated magnetoresistance trace (gray) which is offset
by ten units. The values forα,β, and γ used are mentioned in the figure. In all the simulations the Landau level
broadening is set to Γ= 0.45 meV. c Fast Fourier transform of the simulated and measured magnetoresistance
at points 1-10 along line I. All simulated magnetoresistance traces can be found in the Supplementary Material
Fig. 5.S4.

The parameters α,β,γ in the model are estimated and fine tuned to match the node
positions and the number of oscillations in a beat of the measured SdH traces. Fig-
ures 5.3a and 5.3b show the measured SdH data together with the simulated data for
traces 1 and 10. Trace 1 is fitted with α1 = 75 meVÅ, β1 = 28.5 meVÅ, γ1 = 0 meVÅ3 and
trace 10 is fitted with α10 = 53 meVÅ , β10 = 28.5 meVÅ ,γ10 = 0 meVÅ3. The node po-
sitions and amplitude modulation of the simulated data agrees well with the measured
SdH oscillations.

Curiously, only good fits are obtained when setting the cubic Dresselhaus term γ to
zero. In 2D systems, β is related to γ via β= 〈k2

z 〉γ, where 〈k2
z 〉 ≈ (π/d)2 is the expectation

value of the transverse momentum [9, 102] in a quantum well of thickness d . So γ should
be non-zero. Currently we do not understand this discrepancy. A recent experimental
study on a similar material system also found that the cubic Dresselhaus term could be
neglected [126].

Now we consider all traces (1-10) and show that the two trends of Fig. 5.2 (emerging
center FFT peak and approaching outer FFT peaks) are reproduced by changing only
the Rashba SOI strength. Figure 5.3c shows the FFTs of the simulated traces where α is
linearly interpolated between α1 and α10 while fixing β = 28.5 meVÅ and γ = 0 meVÅ3.
Linear interpolation is used because the electric field changes linearly along line I, and
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Rashba SOI strength depends linearly on electric field [9, 127, 128]. All simulated FFTs
and the SdH traces (Fig. 5.S4) match the measured data very well, clearly reproducing
the emerging central peak and the approaching outer peaks.

5.5. TWO-CARRIER REGIME
In the remainder of this chapter we switch to the two-carrier regime, located left of the
solid green line in Fig. 5.1. Electrons in InAs are present alongside with holes in GaSb
(n+p). Here, we study the influence of the hybridization of electrons with holes on∆nZF

by investigating magnetoresistance traces on the points 1-13 along line II.
Before continuing with the measured magnetoresistance traces, it is insightful to

examine the expected band structures at points 1 and 13, as illustrated in Fig. 5.4b. The
first point of line II is located near the boundary between the two-carrier and single
carrier regimes. A small amount of holes with a large amount of electrons is present.
At point 13, close to the hybridization gap, the electron and hole densities are roughly
equal, hence the Fermi level E f is close to the hybridization gap. Note also that kcross

decreases from 1 to 13, since the electric field changes.
Figure 5.4a shows the magnetoresistance traces 1-13 along line II. Starting from trace

1 towards trace 13 we find series of traces with or without beating, depicted in blue and
red, respectively. For traces 1-3, at large electron density, beating is observed from which
we extract ∆nZF = 1.7 ·1014 m−2 2. Remarkably, traces 4 and 5 do not show any beating,
therefore no zero-field density difference can be extracted. For traces 6-10, the beat-
ing revives, showing strong beating. Finally, traces 11-13 show no beating. Figure 5.4c
depicts the extracted ∆nZF along line II, which shows a nonmonotonic behavior as a
function of gate voltage along line II.

In order to understand this nonmonotonic ∆nZF near the hybridization gap (points
1-10) we performed band structure calculations of our InAs/GaSb quantum well. The
∆n extracted from these calculations is plotted in Fig. 5.4d, which qualitatively agree
with the observed dip in ∆nZF at points 4 and 5 (Fig. 5.4c). In order to understand the
simulated ∆n, the band structure near the hybridization gap is depicted in the inset of
Fig. 5.4d (the zoom-in on Fig. 5.4b indicated by the red box). The blue and red lines
represent different spin bands. The bands cross at the black arrow, indicating the van-
ishing of ∆n, such as observed in the experiment. We found this feature to be robust
for different electric fields and crystal directions, see Fig. 5.S6. Interestingly, the crossing
of spin bands implies a sign change in SOI strength. Opposite signs of SOI can thus be
reached by adjusting the chemical potential. Usually, electric fields are applied to reach
such a sign change [129].

Note that only a qualitative comparison between experiment and calculations is pos-
sible as only the Fermi energy is varied in the simulation, while in the experiment the
band structure (kcross) and Fermi energy are expected to change. The fact that ∆nZF in
Fig. 5.4d does not completely vanish is because the crossing of the spin bands in the
[110] occurs at a slightly different energy than in the [100] direction.

The lack of beating of traces 11-13 is not captured with the simulation. There are

2We cannot directly extract the spin-orbit strength from this ∆n by comparing to the single-carrier case, since
the effective mass in this region is unknown.
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Figure 5.4: Spin-splitting in the two-carrier regime. a Magnetoresistance traces for points 1 to 13 along line II
indicated in Fig. 1. For each trace the Rxx (B = 0) background resistance is subtracted and afterwards the traces
are offset by 100Ω. Beating is (not) observed for (red) blue colored traces. b Schematic band structure tuning
when moving from point 1 to 13. c∆nZF extracted from the Fourier transform of magnetoresistance traces (see
Fig. 5.S5) of a. Error bars are indicated by the light blue bar. d ∆nZF extracted from band structure calculation
for our InAs/GaSb quantum well at zero electric field. The inset shows the corresponding band structure in the
[100] direction.

two possible reasons for this deviation. First, a strong asymmetry in SdH amplitudes of
the two spin species (Aup À Adown) determines the visibility of the beating pattern. The
single spin band SdH oscillation amplitude depends on effective mass m∗ and scatter-
ing time according to ASdH ∼ (eB/m∗)3 exp(−π/ωcτ) [130]. Both the effective mass and
scattering time for the two spin bands become very dissimilar when approaching the
hybridization gap (Fig. 5.S7), as a result that the beating visibility is reduced to below
the experimentally detectable visibility. Second, Nichele et al. [115] shows there is an
energy window with only one single spin band present. In such a spin-polarized state no
beating can occur. Here, we cannot discriminate between these two reasons that explain
the lack of beating in traces 11-13.
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5.6. CONCLUSION
In conclusion, we presented a study of the spin-orbit interaction in an InAs/GaSb double
quantum well. The Fermi level and band structure are altered by top and bottom gates.
In the electron-only regime we find a electric field tunable spin-orbit interaction, and
extract the individual Rashba and Dresselhaus terms. In the two-carrier regime we ob-
serve a nonmonotonic behavior of the spin splitting which we trace back to the crossing
of the spin bands due to the hybridization of electrons and holes.

5.7. SUPPLEMENTARY MATERIAL

5.7.1. FOURIER TRANSFORMS
The Fourier transforms in this manuscript are obtained using the method described
here. Starting from a magnetoresistance curve, first a magnetic field range is chosen.
The lower bound is fixed at 0.15 T. The upper bound is chosen such that the interval ends
at 40% of a beat maximum. Truncating the signal in this way causes minimal deviation
from the true frequency components. Next, the background resistance is estimated us-
ing a 6th order polynomial fit, which subsequently is subtracted from the signal. The
remaining signal is interpolated on a uniform grid in 1/B and padded with zeros on
both sides. No extra window function is applied. A fast Fourier transform converts
the signal to the frequency domain R(ω) and the power spectrum is obtained using
P (ω) = R(ω)×R∗(ω). All Fourier transforms are normalized such that the maximum is
0.8 a.u.

5.7.2. DETAILS ON THE LANDAU LEVEL SIMULATION
This section describes the calculations used to simulate the magnetoresistance traces to
extract the Rashba and Dresselhaus coefficients as shown in Fig. 3a of the main text. We
closely follow the method presented in Ref. 130 and Ch. 4 of Ref. 9.

The Hamiltonian in the momentum basis is presented in Eq. 1 of the main text, here
repeated for convenience:

H =
(p̂2

x + p̂2
y )

2m∗ σ0 +α(p̂yσx − p̂xσy )/ħ+β(p̂xσx − p̂yσy )/ħ

+γ(p̂y p̂x p̂yσx − p̂x p̂y p̂xσy )/ħ3 + 1

2
gµB Bzσz

(5.S1)

For the perpendicular magnetic field B = (0,0,Bz ), the symmetric gauge A(x, y) = Bz
2 (−y, x,0)

is used. The canonical momentum can be written as

p̂ =−iħ∇+eA. (5.S2)

Raising and lowering operators are defined as

a† = λcp
2ħ

(
p̂x + i p̂y

)
,

a = λcp
2ħ

(
p̂x − i p̂y

)
,

(5.S3)



5

58 5. SPIN-ORBIT INTERACTION IN A DUAL GATED INAS/GASB QUANTUM WELL

whereλc =
pħ/eB is the magnetic length. The raising operators act on the Landau levels,

i.e. a†|n,↑〉 =p
n +1 |n +1,↑〉. The momentum operators are rewritten in the raising and

lowering operators, which are then substituted into the Hamiltonian. We take a basis
of N = 400 Landau levels in order to capture magnetic fields & 0.1 T for the electron
density ns ' 17.6 ·1015 m−2. Solving the Hamiltonian results in the Landau level energies
at a particular magnetic field E(n,Bz ).

Following Luo et al. [130] the conductance is written as:

σxx = e2

π2ħ
∑

n,↑↓

(
n ± 1

2

)
exp

(
− (E f −En,↑↓)2

Γ2

)
. (5.S4)

We assume a fixed Fermi energy at E f = (πħ2ns )/m∗. To obtain the resistivity we use the

approximation that for quantizing magnetic fields
(
σ2

x y Àσ2
xx

)
the transverse resistivity

ρxx is given as [130]:

ρxx =σxx /(σ2
x y +σ2

xx ) ≈σxx /σ2
x y ≈σxx (Bz /ens )2 (5.S5)

5.7.3. SUPPLEMENTARY FIGURES

Figure 5.S1: Number of oscillations in a beat. Number of SdH oscillations in beat A (NA ), beat B (NB ) and the
sum (NA +NB ) for each trace in Fig. 2a of the main text. The two trends discussed in the main text are clearly
visible here. First, moving from point 1 to 10 the asymmetry r = (NA −NB )/(NA +NB ) increases. Second, the
total number of oscillations NA +NB increases.
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Figure 5.S5: Fourier transforms for the 13 points along line II in the two-carrier regime. All traces are
normalized such that the maximum is set to 0.8 a.u.
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h/e SUPERCONDUCTING QUANTUM

INTERFERENCE THROUGH TRIVIAL

EDGE STATES IN INAS

Josephson junctions defined in strong spin-orbit semiconductors are highly interesting for
the search for topological systems. However, next to topological edge states that emerge
in a sufficient magnetic field, trivial edge states can also occur. We study the trivial edge
states with superconducting quantum interference measurements on nontopological InAs
Josephson junctions. We observe a SQUID pattern, an indication of superconducting edge
transport. Also, a remarkable h/e SQUID signal is observed that, as we find, stems from
crossed Andreev states.

This chapter, except for parts of Sec. 6.1.1, has been published as, h/e Superconducting Quantum Interference
through Trivial Edges States in InAs, Folkert K. de Vries, Tom Timmerman, Viacheslav P. Ostroukh, Jasper van
Veen, Arjan J. A. Beukman, Fanming Qu, Michael Wimmer, Bin-Minh Nguyen, Andrey A. Kiselev, Wei Yi, Marko
Sokolich, Michael J. Manfra, Charles M. Marcus and Leo P. Kouwenhoven, in Physical Review Letters 120,
047702 (2018).
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6. h/e SUPERCONDUCTING QUANTUM INTERFERENCE THROUGH TRIVIAL EDGE STATES

IN INAS

6.1. INTRODUCTION
Topological systems are a hot topic in condensed matter physics [131]. This is largely
motivated by the existence of states at the interface between two topologically distinct
phases, for example helical edge states in a quantum spin Hall insulator (QSHI) [132,
133]. Inducing superconductivity in these edge states would form a topological super-
conductor [131]. Superconducting edge transport has already been found in materials
that are predicted to be QSHI [134, 135]. However, edge states can also have a non-
topological origin. Trivial edge conduction is found in InAs alongside the chiral edge
states in the QH regime [136] and recently in the proposed QSHI InAs/GaSb as well [137,
138]. To be able to discriminate between topological and trivial states it is crucial to
study transport through trivial edges also and clarify differences and similarities between
them. In this work we study the superconducting transport through trivial edge states in
nontopological InAs Josephson junctions using superconducting quantum interference
(SQI) measurements. We find supercurrent carried by these edge states and an intriguing
h/e periodic signal in a superconducting quantum interference device (SQUID) geome-
try.

6.1.1. TRIVIAL EDGE STATES

Trivial edge states arise when the Fermi level resides in the band gap in the bulk, while
being pinned in the conduction band at the surface. Then, band bending leads to elec-
tron accumulation at that surface as schematically drawn in Fig. 6.3a. The Fermi level
pinning can have several origins: truncating the Bloch functions in space [139, 140],
a work function difference [3], the built-in electric field in a heterostack [141] and the
surface termination [142]. In our 2D InAs Josephson junctions the accumulation surface
is located at the edge of the mesa that is defined by wet etching.

Experimental evidence of trivial edge conduction at these surfaces is reported by
us before [137, 138]. Since we use a very similar heterostructure here, we revisit and
discuss those results. We consider the electron regime of an InAs/GaSb double quantum
well only, where the InAs is populated with electrons and the GaSb is gapped. Two
measurement geometries are used, a Hall bar and a corbino disc (insets Fig.6.2a-b), both
have a top and bottom gate. In the first, all contacts are connected via both the bulk and
the edge of the material, where for the latter the contacts are solely connected by the
bulk. Details on the device fabrication and the measurements can be found in Ref. 138.

Local measurements, probing both the bulk and edge, and non-local measurements,
probing the edge only, are performed on the Hall bar device of 100µm long and 20µm
wide (Fig. 6.1a-b.). Fo the local measurement (Fig. 6.1c) the resistance map as a function
of top and bottom gate shows a region (I) with a large resistance, where we expect the
semiconductor band gap.1 Note that the resistance measured in region I is only a few
MΩ (see also the linetrace in Fig. 6.2a), which is low for a band gap. Region II is the
electron regime described before. The non-local resistance (RNL = VNL/I ) as plotted in
Fig. 6.1d is obtained by applying a current in one corner and measuring the voltage at the
other corner of the Hall bar (Fig. 6.1b). In region II, there is almost no resistance, there is
no current flow along the voltage measurement apparatus because the bulk conducts.

1For a more detailed description of the resistance map see chapter 5 Fig. 5.1 and Ref. 109.
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a b

c d

Figure 6.1: Local and non-local conductance in a Hall bar. a Schematic Hall bar devices are presented with the
electrical setup for a local measurement (Vxx)and b non local measurement (VNL) . c-d The colorplots show
the longitudinal and non-local resistance (Rxx and RNL) as function of top and bottom gate voltages (VTG and
VBG). A region of high (I) and low (II) resistance are indicated. This figure is adapted from Ref. [138].

In contrast, in region I a resistance of the order of 100 kΩ is measured, which could
either be due to diffusive transport through the bulk, or edge transport. The diffusive
transport is unlikely because the longitudinal resistance is only suppressed by a factor of

10−1. Theoretically a suppression of e−πS S=5−−→ 10−7 is expected, where S is the number of
squares in the geometry [143]. In case the edges of the sample conduct, the suppression
is governed by the ratio of the path lengths, which is of the order 10. Therefore we
conclude that significant edge transport is observed in region I.

In order to study the origin of the resistance in region I, a temperature dependence
measurement is performed. In Fig. 6.2b the inverse longitudinal resistance is plotted

at different temperatures. The resistance depends on temperature following e−
p

1/T ,
which is not consistent with the expected Arrhenius law of e−1/T . This temperature
dependence is found for models describing variable range hopping in one dimension
or Coulomb dominated hopping in one or two dimensions [144], consistent with one-
dimensional edge channels.

Exclusively investigating the bulk properties is done with a corbino disc, since no
edges connect the two contacts directly. This allows us to study whether the current
measured in the non local measurement is entirely edge current, or there is still a bulk
component. Two terminal measurement are performed on a corbino with inner radius
50µm and outer radius 120µm. The conductivity reaches the minimum value we could
measure in region I, on the order of 10−10Ω−1 (Fig. 6.2c). In Fig. 6.2d, the temperature de-
pendence of the conductivity fits the Arrhenius law, as expected. The bulk conductivity is
thus suppressed, suggesting that the edge conduction is dominant in the non-local Hall
bar measurement. A study of a multi-terminal corbino geometry revealed the carriers
in the edge channels are electrons [137]. In summary, edge conduction due to electron
accumulation at the physical edges of the InAs quantum well is measured.
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a
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Figure 6.2: Temperature dependence of conductance in Hall bar and corbino geometry. a,c The inverted
longitudinal resistance R−1

xx and longitudinal conductivity σxx as a function of top gate voltageVTG for the Hall
bar and corbino geometries, respectively. The devices are schematically shown in the insets and the bottom
gate voltage and temperature are indicated. b,d Temperature dependence and fit of R−1

xx and σxx with the
functional form presented at the indicated VTG. The gap extracted from the Arrhenius law in 2∆/kB = 6.2 K.
This figure is adapted from Ref. [138].

6.2. EXPERIMENTAL SETUP

The quantum well is MBE grown on a GaSb substrate serving as a global bottom gate
(Fig. 6.S4). The superconducting electrodes are made of sputtered NbTiN with a spacing
of 500 nm and a width of 4 µm. NbTiN has a bulk superconducting gap of 2 meV and
a critical temperature of 13 K. A SiNx dielectric separates the top gate from the het-
erostructure. Electrical quasi-four terminal measurements (see Fig. 6.3b) are performed
in a dilution refrigerator with an electron temperature of 60 mK unless stated otherwise.

The electron density in the InAs quantum well is altered by using the electrostatic
gates, Vtg and Vbg, located above and below the 2DEG. Decreasing the density subse-
quently increases the normal state resistance Rn and reduces the switching current Is as
shown in Fig. 6.4a. A full resistance map as a function of top and bottom gate is shown
in the Fig. 6.S5. The Josephson junction is first characterized at Vtg = 0 V and Vbg = -
1.65 V, where the largest switching current is observed. From the IV trace in Fig. 6.4a
we estimate an induced superconducting gap of 0.4 meV and, using the corrected OBTK
model [145], a transmission of T = 0.73. The junction is quasi-ballistic because the mean
free path of 2.8 µm (extracted from a Hall bar device on the same wafer (see Fig. 6.S1) is
larger than its length L of 500 nm. The large superconducting gap and high transmission
value indicate a high quality InAs Josephson junction.
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Figure 6.3: Fermi level pinning and superconducting quantum interference. a Sketch of the conduction band
minimum around the edge of a 2DEG with Fermi level pinning at W /2. The band bending leads to a roughly
triangular quantum well in the vicinity of the edge, therefore one-dimensional sub bands form of which three
are drawn, as an example. The orange dashed line indicates the Fermi level corresponding to the current
distribution in e. b False colored SEM image of the device with dimensions W = 4 µm and L = 500 nm , where
the quasi-four terminal measurement setup is added. Red is the mesa, green the NbTiN contacts, blue SiNx
dielectric and yellow the gold top gate. c Schematic representation of a Josephson junction of width W and
length L. A homogeneously distributed supercurrent Isc is running through the whole junction, resulting in
d a Fraunhofer SQI pattern. e If supercurrent only flows along the edges of the sample, f a SQUID pattern is
observed.

6.3. SUPERCONDUCTING QUANTUM INTERFERENCE
SQI measurements have successfully been used before to gather information on the su-
percurrent density profile in Josephson junctions [134, 135, 146]. This is typically done,
using Dynes-Fulton approach [27], which connects the critical current dependency on
magnetic field Ic (B) and the zero-field supercurrent density profile j (x) with a Fourier
transform. It was originally developed for tunnel junctions, but can also be applied to
transparent junctions under several assumptions. Firstly, we should have a sinusoidal
current-phase dependency, which is in accordance with the transmission value and tem-
perature in our experiment [147]. Secondly, the Andreev levels, that carry supercurrent
in the junction, may only weakly deviate from the longitudinal propagation. Our junc-
tion satisfies this constraint since the superconducting coherence length ζ = ħvF /∆ ≈
1.3 µm > L [28]. If both assumptions hold, we expect a Fraunhofer SQI pattern in the
case of homogeneous current distribution (Fig. 6.3c and 6.3d) and a SQUID pattern in
the case of current flowing along the edges (Fig. 6.3e and 6.3f).

A SQI measurement at the largest switching current reveals a Fraunhofer like pattern
as shown in Fig. 6.4b. The central lobe is twice as wide as the side lobes and the am-
plitude decreases as expected. The slight asymmetry in the amplitudes we attribute to
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Figure 6.4: Characterization of the Josephson junction. a Normal state resistance Rn and switching current
Is at the respective top gate Vtg and bottom gate Vbg voltages. The left inset depicts a seperate measurement at
the indicated gate voltages, where a smaller current bias step size is used for higher resolution. The right inset
shows an IV trace at Vtg = 0 V and Vbg = -1.65 V , where two dashed lines are added for extraction of the induced
superconducting gap∆ and the excess current. b The measured voltage as function of the applied current Ibias
and perpendicular magnetic field B at Vtg = 0 V and Vbg = -1.65 V. The inset depicts the calculated supercurrent
density along the width of the device that is indicated by the dotted lines.

breaking of the mirror symmetry of the sample in the direction along the current [32].
The effective length of the junction [λ= δBl obe /(Φ0 ·W )] of 1.2 µm is extracted from the
periodicity of the SQI pattern. Flux focusing due to the Meissner effect causes it to be
larger than the junction length (λ> L) [33]. The extracted current density profile, plotted
in Fig. 6.4b, is close to uniform. The supercurrent is thus dominated by bulk transport as
expected at these gate voltages.

The interference pattern in Fig. 6.4b deviates from the expected pattern after the
second lobe. Recently a similar distorted Fraunhofer tail was observed and discussed
in graphene [148]. The perpendicular magnetic field exerts a Lorentz force on the elec-
tron and holes suppressing the formation of Andreev bound states. The suppression
becomes relevant at a magnetic field scale of ∆/eLvF , equal to 1 mT in our case, roughly
agreeing with the observation The analysis only holds for the bulk of the junction, since
the scattering at the edges reduces the difference in the electron and hole motion in a
magnetic field.
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a b
SC

SC

InAs

Figure 6.5: Gate voltage dependence of SQI pattern. a The switching current plotted as function of
perpendicular magnetic field and b the corresponding current density along the width of the device (see inset),
assuming the validity of the Dynes-Fulton approach. The gate values used are from bottom to top: Vtg -5.4 V to
-3.6 V (0.2 V step) and Vbg -1.270 V to -1.396 V (0.014 V step). The green, blue and orange traces are Fraunhofer,
even-odd and SQUID patterns, respectively. Since the current is only swept up to 100 nA, the green traces are
not suitable for extracting a supercurrent density profile. The traces are offset by 50 nA in a and 25 nA/µm in b.

6.4. GATE DEPENDENCE

Next we study the SQI pattern as the Fermi level is decreased by tuning the top gate
to more negative values. The upper two (green) traces in Fig. 6.5a have a wide central
lobe, stemming from a Fraunhofer pattern. The side lobes however do not decrease in
amplitude as expected but seem to be constant, as for an SQUID pattern. We conclude
that we are in the transition regime from bulk to edge transport. The effective length
is λ =1.7 µm, different from before, which we believe is due to different vortex pinning
because of the larger magnetic field range of the measurement (details in Sec. 6.8.2).
In the third (first blue) trace we observe that the first nodes turn into peaks, which is
highlighted by the dashed lines. Therefore the transition to a SQUID pattern is com-
pleted. Curiously the amplitude and width of the peaks are alternating in the blue traces
in Fig. 6.5a. The even-odd pattern is composed of an h/e and h/2e periodic signal. An
even-odd pattern was observed before in Pribiag et al. [135]. In comparison, in this work
the amplitude difference in the lobes is much larger and the pattern is visible over a large
gate range. The calculated supercurrent density profiles in Fig. 6.5b have a central peak
that is physically unlikely considering the device geometry. The cause of this intriguing
interference pattern will be discussed in more detail later. Reducing Vtg further we find a
clear h/2e periodic SQUID interference pattern in the bottom two (orange) traces. This
is a strong indication of edge conduction in our device, confirmed by the edge transport
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c

a b

d

Figure 6.6: h/e SQUID pattern.a Measured voltage as a function of Ibias and magnetic field B at Vtg = -5 V
and Vbg = -1.29 V. b Switching current versus the magnetic field for different temperatures at the same gate
voltages as a. The traces are offset by 5 nA for clarity. c In the first panel, the blue line is the switching current
as a function of magnetic field as extracted from a. The gray dashed line depicts the pattern after flipping every
other node as is usually done in the Dynes-Fulton analysis [27]. The second panel shows the same pattern as a
with an offset of 11 nA subtracted, equal to a factor of 0.3 times the switching current at zero magnetic field. d
Current density profile, calculated from the SQI pattern of a. The blue trace uses equation (1), thus correcting
the vertical offset in the SQI pattern. The yellow dashed trace is extracted without this correction.

only in the extracted supercurrent density profiles in Fig. 6.5b. The transition from bulk
to edge transport as a function of gate voltage is measured in several other Josephson
junctions (Fig. 6.S6). Since we observe supercurrent through the trivial edge states of an
InAs quantum well, we conclude that a clear demonstration of superconducting edges
alone does not prove induced superconductivity in topological edge states.

6.5. EVEN-ODD PATTERN

We now return to the remarkable h/e SQUID signal to investigate its origin. Figure 6.6a
shows a more detailed measurement in this gate regime, the even-odd pattern is ob-
served over more than 25 oscillations. The envelope of the peaks is attributed to the
finite width of the edge channels. The effect is suppressed by raising the temperature
(see Fig 6.6b), for T > 850 mK a regular h/2e SQUID pattern remains. The origin cannot
lie in effects that occur beyond a certain critical magnetic field, like 0−π transitions [41],
edge effects [29, 149] and a topological state, because we observe the even-odd pattern
around zero magnetic field as well. An effect that does not rely on magnetic field and is
strongly temperature dependent is crossed Andreev reflection [150].

The lowest order crossed Andreev reflection (up to electron-hole symmetry) is schemat-
ically depicted in Fig. 6.7a. An electron travels along one edge, whereafter a hole is
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superconductor
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B

Figure 6.7: Tight binding model of the Josephson junction. a Schematic representation of two crossed
Andreev processes. The black and white lines indicate electron and hole trajectories or vice versa. The solid
lines represent a single edge Andreev state and the dotted lines a crossed Andreev state. b Detailed sketch of
one corner of junction in our tight binding mode indicating the widths Wns and We , and tunnel barrier Γ. c
Calculated SQI patterns at overall chemical potential ranging from -0.06 eV to 0.18 eV (0.04 eV step) at 0.46 K
and d at temperatures 0.4 K, 0.9 K, 1.4 K, 1.9 K, 2.3 K at a chemical potential of -0.2 eV. Traces are offset by 10 nA
for clarity. In c the color represents the type of interference pattern, green for Fraunhofer, blue for even-odd
and orange for SQUID, respectively.

retroreflected over the other edge. This process alone is independent of the flux through
the junction, but still adds to the critical current [151]. Higher order processes that
include an electron that encircles the junction completely pick up an h/e phase when
a flux quantum threads through the junction, hence the supercurrent becomes h/e peri-
odic [152, 153]. Additionally, interference processes between crossed Andreev and single
edge Andreev states could lead to a h/e contribution [154]. It is important to note that
the critical current is h/e periodic in flux trough the sample, but still 2π periodic in
superconducting phase difference.

Forming crossed Andreev states in the junction is only possible if the particles can
flow along the contacts. Electrostatic simulations indeed show a large electron density
close to the contacts at gate voltages where the bulk is already depleted (see Fig. 6.S7),
because of local screening of the top gate. Nevertheless the needed coherence length
for a crossed Andreev reflection is on the order of 10 µm, where the estimated super-
conducting coherence length (from bulk values) is 1.3 µm. The difference between these
values remains an open question.

6.6. PHENOMENOLOGICAL AND TIGHT BINDING MODEL
The phenomenological model proposed by Baxevanis et al. considers both single edge
and crossed Andreev states [151]. In our device we expect the lowest order crossed
Andreev states to contribute most because of the short coherence length. Combining
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their flux insensitive contribution to the critical current and the usual h/2e periodic
contribution from single edge Andreev bound states, the model predicts an even-odd
or h/e SQUID pattern:

Ic (Φ) = I0
∣∣cos(πΦ/Φ0)+ f

∣∣ . (6.1)

Where I0 the critical current at zero magnetic field and Φ is the applied flux. Constant
f can be arbitrarily large, it depends on the ratio Γ between the probability to Andreev
reflect on a node versus the probability to scatter to another edge and is exponentially
suppressed by the width of the sample:

f ∼ Γ−1 kB T

∆
e−2π(kB T /∆)(W /ζ). (6.2)

The predicted pattern is thus the absolute value of a vertically offsetted cosine function.
That is exactly the pattern we measured in Fig. 6.5a and 6.6a,c as both the amplitude
and width of the lobes alternate. From the data we estimate f = 0.3 (Fig. 6.6c) and,
using the other known parameters, find Γ ∼ 10−1. Taking the Fourier transform in the
Dynes-Fulton analysis, offset f leads to a non-physical current density around zero,
like we observe in the current density profiles in Fig.6.5b and the yellow dashed line
in Fig. 6.6d. Moreover, the Dynes-Fulton approach is not valid here since crossed An-
dreev reflection does not meet the second assumption of having straight trajectories
only. We can compensate the crossed Andreev contribution by subtracting the constant
offset of f · I0=11 nA. This results in a current distribution with mainly current along the
edges, as plotted in the blue trace of Fig. 6.6d. We did not take into account that I0 is
actually not constant due to the Fraunhofer envelope of the SQI pattern, so the current
density in the center of the junction is not entirely eliminated.

Even though the SQI pattern from the phenomenological model is in qualitative
agreement with our data, we also present a tight binding model of system in order to
connect it directly to experimentally accessible parameters (for details see Sec. 6.8.3).
In the microscopic model we include the superconducting gap as measured, the width
of the paths along the contacts Wns of 20 nm (extracted from the Fraunhofer envelope
in Fig.6.6a), and Fermi level pinning on the edges leading to edge current in the re-
gion We. It is crucial to also take into account a tunnel barrier Γ at the contacts that has
a magnitude consistent with the measured transmission value. This barrier enhances
normal reflection and therefore elongates the length electrons and holes travel before
Andreev reflecting (Fig 6.S8). Incorporating these experimental values we find an h/e
SQUID pattern. Emulating the experimental gating effect by changing the overall chem-
ical potential results in a crossover from even-odd to Fraunhofer (Fig. 6.7c), consistent
with the measurement in Fig. 6.5. As a check, Wns is reduced in steps to zero, which
results in a SQUID pattern (Fig. 6.S9). Additionally, in Fig. 6.7d we observe that increasing
the temperature indeed smears out the even-odd pattern and leaves us with a regular
SQUID pattern, similar to the experimental data in Fig. 6.6b. Summarizing, both the
phenomenological model and the microscopic model support our hypothesis of the h/e
SQUID originating from crossed Andreev states.
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6.7. CONCLUSION
We have experimentally shown that trivial edge states can support highly coherent su-
perconducting transport that also becomes visible in an h/e periodic SQI pattern. Both
effects have been considered as possible signatures for inducing superconductivity in
topological edge states before [134, 135]. Therefore we conclude that superconducting
edge transport and an h/e SQUID pattern only, cannot distinguish between topological
and trivial edge states, nor can it be considered a definite proof for a topological phase.

6.8. SUPPLEMENTARY MATERIAL

6.8.1. HALL BAR MEASUREMENT
A Hall bar device with length 80 µm and width 20 µm is fabricated on the same wafer.
The mobility and density as a function of top and bottom gate are shown in Fig. S3. The
following parameters are extracted and calculated at Vt g = 0 V and Vbg = 0 V, using the
effective mass of InAs m∗ = 0.04 me [109] and Lande g-factor 11.5 [66].

n = 1.1 ·1016 m−2 λMF P = ħµ/e
p

2πn = 2.8µm

µ= 1.6 ·105 cm2/(Vs) Ethouless = hvF /L = 6.3meV

vF = ħp2πn/m∗ = 7.6 ·105 m/s Ezeeman = gµB B
10mT= 0.0066meV

Vxx

Vxy

a b

Figure 6.S1: Hall bar measurement. a The density of the Hall bar device (inset) is plotted as a function of top
gate and bottom gate voltage. Each line is cut off at the point where the density became too low to measure. In
b the mobility is plotted for the same gate voltage ranges as in a.

6.8.2. FLUX FOCUSING AND VORTICES
The contact geometry causes a part of the flux to be focused in the junction due to the
Meissner effect. The NbTiN contacts have a width of 4 µm and a length of 1 µm. If there
are no vortices in the NbTiN (type II superconductor), the maximum amount of flux will
be threaded to the junction. If there are vortices, a flux quantum per vortex penetrates
the superconductor and will therefore not be focused through the junction. Experiments
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on strip geometry Nb films show that the critical field at which vortices appear in te strip
is given by Bm =Φ0/W 2 [155], in our system equal to 2 mT. We assume that the vortices
settle at the beginning of a measurement, since the magnetic field is swept relatively
fast to the starting point, whereafter it is changed in small steps before a current bias
trace is measured. Then different sweep ranges will have different periodicities, since the
number of vortices alter the flux focusing. More specifically, smaller sweep ranges will
have smaller periodicity, because there are less vortices and therefore more flux focusing.
This is what we see if we compare the flux periodicities in Fig. 2(b) and Fig. 3(a) in the
main text. To reassure this observation we show a wider range magnetic field scan of the
SQUID regime in Fig. S4. The observed periodicity is used to extract an effective length of
1.2 µm, which is the same as for the Fraunhofer pattern in Fig. 2(b) and even-odd pattern
in Fig. 4(a).

Figure 6.S2: SQUID measurement. SQI measurement at Vtg = -7 V and Vbg= -1.15 V. The observed SQUID
pattern has a period of 0.4 mT, from which an effective length of 1.2 µm is estimated.

6.8.3. TIGHT BINDING MODEL
We have taken the following Hamiltonian for tight binding simulations:

H =
(ħ2(k2

x +k2
y )

2meff
−µ(x, y)

)
τz +α(kxσy −kyσx )τz + gµBB(x)σz +∆(x)τx , (6.S1)

where σ Pauli matrices correspond to the spin degree of freedom, and τ – to the electron
and hole one. It is discretized on a square lattice with lattice constant a = 2 nm. The
normal part of a SNS junction is represented as a rectangle −L/2 ≤ x ≤ L/2 and −W /2 ≤
y ≤ W /2, the superconducting parts – as translationally invariant in x direction stripes
with −W /2 ≤ y ≤ W /2. Proximity-induced pairing potential ∆(x) is zero in a normal
part and constant in a superconducting part of the system, with a step-like transition.
The magnetic field is assumed to be fully screened by the superconductors. Its impact is
included as Zeeman term and via Peierls substitution.

At first realistic values of α= 5 ·10−12 eV ·m and g = 11.5 for the Rashba and Zeeman
term were used to verify that they do not play an important role in this parameter regime.
After we were sure that Zeeman and Rashba terms can be neglected, we have put α = 0
and g = 0 for the sake of numerical performance. This allowed to decouple spins and
decrease the dimensionality of the Hamiltonian twice, since both decoupled subblocks
contribute equally to the current.



6.8. SUPPLEMENTARY MATERIAL

6

75

1
2

TB

TB

(a)

ns

x

x

L/2

L/2

(x, 0)

x(b)

W/2 W/2
n

n+ e

y

(0, y)(c)

Figure 6.S3: Tight binding model a Schematical representation of a tight binding model. Bogolyubov-de
Gennes Hamiltonian is discretized on a square lattice. Superconducting sites of the system have a blue color,
normal – black. A tunnel barrier is created, using one row of sites with decreased chemical potential (marked
TB on the scheme). The current was calculated from Green’s function of sites, marked 1 and 2 on the scheme
(see the detailed explanation below). b Chemical potential profile for y = 0. Offset between location of
chemical potential step and superconducting region together with the tunnel barrier leads to formation of
scattering channel between edges. c Chemical potential profile for x = 0. Band bending is represented with an
increased chemical potential at the edges, leading to edge conductivity in a doped regime.

Chemical potential µ(x, y) is selected to capture primary features of the device: band
bending near the edges and screening near the NS boundaries top gate. It has the fol-
lowing form:

µ(x, y) = µnorm +δµedge(y)

2

(
tanh

x +xµ
λµ

− tanh
x −xµ
λµ

)
+

µsc

2

(
2− tanh

x +xµ
λµ

+ tanh
x −xµ
λµ

)
, (6.S2)

where
δµedge(y) = 2µee−W /2λe cosh

y

λe
(6.S3)

is the term, that introduces band bending near the edges of a normal part. µnorm and µsc

are chemical potentials in gated area (primarily normal part) and area screened by the
superconducting contacts. If normal part is governed to the insulating state with nega-
tive µnorm, the offset between L/2 and xµ leads to formation of a conducting channel on
the NS boundaries of the junction, with a width:

Wns = L/2−xµ. (6.S4)

The tunnel barrier on the NS interface was represented as a single row of sites with a
chemical potential reduced by ∆µTB.

The finite-temperature critical current of the SNS junction was calculated by max-
imizing the current-phase dependency, similarly to the approach, used in [156]. The



6

76
6. h/e SUPERCONDUCTING QUANTUM INTERFERENCE THROUGH TRIVIAL EDGE STATES

IN INAS

Green’s function was numerically calculated for several Matsubara frequencies on two
neighboring rows of the sites in the normal part of the junction, then the current was
obtained by the summation:

I = 2ekB T

ħ
Nmax∑
n=0

(ℑ tr H21G12(iωn)−ℑ tr H12G21(iωn)) . (6.S5)

Here H21 and G21 denote hopping matrix and Green’s function subblock from cells of
row 1 to row 2, indicated on Fig. 6.S3 (all the hoppings, that form a cut through the
system), and vice versa. ωn = (2n + 1)πkB T is the n-th Matsubara frequency. Value
Nmax was obtained dynamically, based on the estimated convergence rate. The Green’s
functions were calculated, using package Kwant [99].

The numerical values of parameters, used for simulations, are presented in Table 6.S1.
A lattice constant of a = 2 nm was selected small enough to capture characteristic length
scales of an edge and NS boundary current channels.

W [nm] L [nm] λe [nm] λµ [nm] xµ [nm] meff/me ∆ [eV] µsc [eV] δµe [eV]
400 200 28 1 0÷50 0.04 4 ·10−4 0.2 0.15

Table 6.S1: Numerical parameters, used for tight-binding simulations.

6.8.4. SUPPLEMENTARY FIGURES

InAs      

AlSb      

AlAsSb  

GaSb     

GaSb     

GaSb     substrate

150 nm

100 nm

12.5 nm

50 nm

3 nm

Figure 6.S4: 2DEG heterostructure stack. The
heterostructure is MBE grown and consists of the
following layers: a doped GaSb substrate; a 150 nm
GaSb bufffer; the quantum well with an AlAsSb bar-
rier of 100 nm, 12.5 nm InAs and a 50 nm AlSb top
barrier; and a 3 nm GaSb capping layer. The latter
is used to prevent oxidation of the AlSb. This stack,
especially the capping layer, leads to unintentional
doping in the InAs quantum well [141].

Figure 6.S5: Resistance map. Two terminal re-
sistance of the Josephson junction is plotted as a
function of top gate and bottom gate voltage (Vtg
and Vbg). The solid white line indicates the gate
voltages at which the superconducting quantum
interference is investigated in the main text.
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V   = 0 Vtg
V   = -2.175 Vtg

V   = -1.8 VtgV   = -1.5 Vtg

Figure 6.S6: Fraunhofer to SQUID in two other devices. SQI data at the indicated top gate voltages is shown of
two lithographically similar devices (L = 500 nm, W = 4 µm). The Fraunhofer SQI patterns are shown in a and
c, and the SQUID patterns in b and d for device 2 and 3, respectively. For all figures Vbg = 0 V. Clearly in both
devices the SQI pattern turns from Fraunhofer to SQUID by decreasing the gate voltage.
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Figure 6.S7: Simulation contact edge. Electrostatic simulations are performed using a finite element Poisson
solver. a The device geometry as used in the simulation. The SiNx dielectric is 100 nm thick and the NbTiN
120 nm, all other thicknesses can be found in Fig 6.S4. b The electron density profile is changing as the top
and bottom gate voltages are swept. The top gate voltage is indicated in the legend. In the lower gate voltage
traces the electrons in the bulk are depleted while there is still a large electron density in the vicinity of the
contacts. For clarification, the x-axis value where the NbTiN contact is on top of the InAs is indicated by the
dashed line in both a and b. The top gate is screened close to the contacts due to the triangular shape of the
top AlSb barrier. This shape is caused by isotropic wet etching of the mesa.
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Figure 6.S8: Tunnel barrier dependence in tight binding model. Tight binding calculation of the supercon-
ducting quantum interference as a function of tunnel barrier strength at the contact. Increasing the tunnel
barrier height leads to enhanced normal reflection with respect to Andreev reflection. The electrons or holes
then have a higher chance of traversing along the contact before Andreev reflecting. Forming a crossed
Andreev states requires the charge carriers to traverse around the junction fully. Therefore enhanced normal
reflection is beneficial for forming these states and the resulting even-odd SQI pattern. Here we plot the SQI
patterns for a tunnel barrier strength ranging from 0.6 eV to 1.40 eV (bottom to top) in 0.2 eV steps.

Figure 6.S9: Wns dependence in tight binding model. Tight binding calculation of the superconducting
quantum interference as a function of width of the channel along the edge. As a sanity check: if the width
is 2 nm (bottom trace), we do not see even-odd effect. Increasing the width (in 8 nm steps up to 50 nm),
increases the number of channels along the contact and the coherence length, up to the point that the 1D
channel become 2D and the even-odd effect reduces again.
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EVEN-ODD SUPERCONDUCTING

QUANTUM INTERFERENCE IN INSB

JOSEPHSON JUNCTIONS

We study superconducting quantum interference in Josephson junctions made from InSb
flakes. An even-odd effect in the amplitude and periodicity of the superconducting quan-
tum interference pattern is found. Interestingly, the occurrence of this pattern coincides
with enhanced edge conduction at both edges of the flake.We argue the even-odd effect is
due to crossed Andreev reflection, a process where the Andreev pair splits up over the two
edges.

In collaboration with Martijn Sol, Sasa Gazibegovic, Erik P. A. M. Bakkers, Leo P. Kouwenhoven and Jie Shen
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7.1. INTRODUCTION
Induced superconductivity in semiconductors with strong spin-orbit interaction attracted
much interest for its potential applications in topological quantum computation [76,
157, 158]. A semiconducting Josephson junction (JJ) offers a platform to study the in-
duced superconductivity by means of superconducting quantum interference (SQI) [21].
This technique allows one to obtain the transport regime (ballistic or diffusive) of the
JJ and reconstruct the current density distribution via the Dynes-Fulton approach [27].
Recently, induced superconductivity in edge channels in the quantum Hall regime [159]
and in a predicted two-dimensional topological insulator [134, 135] are investigated us-
ing SQI. Additionally, an h/e periodic oscillation, before connected to topological edge
states [135], is observed on top of a h/2e background in a trivial InAs quantum well [160].
Here, we observe and discuss an even-odd effect in the SQI pattern of InSb JJs, a material
known for its large g-factor[54] and strong SOI [161]. Furthermore, a purely h/e periodic
SQUID oscillation is reported at reduced gate voltages. Because of the correlation of
the even-odd pattern and enhanced edge conduction at both edges, we argue the effect
is caused by crossed Andreev reflection. The quasiparticles of a single Andreev pair
are spatially separated over the two edges, leading to a flux independent offset of the
supercurrent.

7.2. EXPERIMENTAL SETUP
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Figure 7.1: InSb Flake Josephson junction. a The top panel shows a scanning electron microscope (SEM)
image of the InSb flakes, grown from two nanowires on an InP substrate [55]. The scale bar represents 500 nm.
The bottom panel sketches the cross section of the flake, as highlighted by the dashed black line in a and
b. All facets, top, bottom and edge have a 110 crystal direction. b Schematic Josephson junction device,
where the flake (gray) is contacted by NbTiN (green), after being placed on the Si/SiO substrate (blue). The
superconducting contacts focus the perpendicular flux of the hatched area in the junction, due to the Meissner
effect. The four terminal current bias measurement setup is indicated as well as the magnetic field direction.
c Differential resistance dV /d I measurement of device I as a function of current bias Ibias at a bottom gate
voltage VBG of 2.4 V. A superconducting gap ∆ of 1.4 meV is extracted from the resonances at twice the gap
edge and the multiple Andreev reflections, as indicated by the red arrows.

A flake is a small two-dimensional (2D) nanostructure that combines the flexibility
of the nanowires in terms of fabrication and the possibility for more complex device
geometries. Earlier works referred to flakes as nanosails[54] or nanosheets[52]. The InSb
flakes are grown with the vapor-liquid-solid (VLS) technique, as described in detail in
Ref. 55. For each flake, two nanowires are grown with a relative angle to each other,
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governed by trenches in an InP substrate. Because of their perfect alignment, the two
nanowires coalesce, and the growth continues in a two-dimensional manner, forming
the flake (Fig 7.1a). The two front and back facets of the flake, have a 110 crystal orien-
tation. Additionaly, the top facets of the flake that have two planes with a 110 crystal
direction as sketched in the lower panel of Fig. 7.1a. This crystal direction is known
for having electron accumulation at its surface [162, 163], due to doping via a lack of
Sb atoms [164], what results in band bending. Considering the geometry we expect
the band bending to be stronger at the edges of the flake that have two 110 facets, as
schematically shown for device I and II in Fig. 7.2a,b.

The flakes are transfered to a Si/SiO substrate with a micromanipulator, that serves
as a global bottom gate. Then, two NbTiN contacts are deposited after treating the
surface with a sulfur solution to remove the native oxides [60, 61]. For devices I-III, the
sulfur solution leaked underneath the etch mask, as apparent in the junction area in
the scanning electron microscope (SEM) images in Fig. 7.2a,b and Fig. 7.5b. Compared
to devices IV-VII, that do not show this underetching (Fig. 7.S1), we did not observe
a notable difference in the measurements. The contact separation L, width W of all
devices are presented in Table 7.S1. The devices are measured in a four terminal current
bias setup (Fig.7.1b) at a temperatuer of 300 mK, unless stated otherwise.

The induced superconductivity is characterized with a differential resistance mea-
surement of device I as a function of current bias (Fig. 7.1c). We observe the supercon-
ducting gap (∆) and several multiple Andreev reflections within this gap, that we use
to extract a value of ∆= 1.4 meV, consistent with values found earlier for NbTiN [61]. A
transmission T of the JJ is 0.6 is estimated using the Octavio Blonder Tinkham Klapwijk
model (Fig. 7.S2) [145]. The global bottom gate allows us to pinch off the switching
current as presented for all devices in Fig. 7.S3.

7.3. EVEN-ODD SUPERCONDUCTING QUANTUM INTERFERENCE
Superconducting quantum interference (SQI) measurements are done by applying an
out-of-plane magnetic field to the JJ. In case of a homogeneous supercurrent distribu-
tion, straight trajectories of the Andreev pairs, and W /L À 1, an Fraunhofer interfer-
ence pattern is expected with a periodicity of one flux quantum (Φ0) [21]. In Fig. 7.2c,
we observe such a Fraunhofer pattern in device I at a bottom gate voltage VBG of 15 V.
However, the periodicity of 1.5Φ0 (Φ0 = h/2e) is larger than expected. Note that the
pattern is compensated already for flux focusing from the superconducting contacts,
due to the Meissner effect (hatched area in Fig. 7.1b). The Andreev pairs are traveling
mostly straight, since we estimate an induced superconducting coherence length ξs of
1.2µm at VBG = 15 V, which is of the order of L [28]. Also, the current density distribu-
tion in Fig. 7.2e, reconstructed using Dynes-Fulton approach [27, 134], is homogeneous
throughout the JJ. The JJ geometry of W = 1280 nm and L = 240 nm however, do not
satisfy its constraint. Therefore we use a model for finite size JJs proposed by Barzykin
et al. [31], where the supercurrent is calculated over all possible quasiparticle trajec-
tories for either a ballistic or diffusive JJ. The final expressions for both are included in
section 7.8.1 for convenience. We plot the ballistic model in Fig. 7.2c (dashed gray line),
since the mean free path lMF P at VBG = 15 V is similar to L (Fig. 7.3b). For the first three
lobes of the SQI pattern, the calculated SQI pattern resembles the measured pattern well,
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Figure 7.2: Superconducting quantum interference. a-b The upper panel shows a SEM image of device I
and device II, respectively. The flake (grey) is deposited on a Si/SiO substrate (blue) and contacted by NbTiN
(green). The scale bar represents 500 nm. In the bottom panel, the energy of the bottom of the conduction
band (red) is sketched along the width of the junction. Because of electron accumulation at the 110 surfaces,
the band bottom bends down at the interface, and (a) conducting edge channel(s) remains, once the Fermi
level εF is lowered appropriately. c Voltage measured over device I as a function of current bias Ibias and
normalized perpendicular magnetic flux Φ⊥/Φ0, at a bottom gate voltage VBG of 15 V. The periodicity of the
SQI pattern is highlighted by the dashed black lines. The dashed gray line is calculated following eq. 7.S3 [31],
where we used device parameters as noted in section 7.8.1. d Same measurement as c of device II. The dashed
gray line depicts the calculated SQI pattern (eq. 7.S3 [31]) with an offset f = 0.09. The gray arrow highlights
the location of the third lobe, that is absent because the offset f is larger than its amplitude. e Current density
distribution J extracted from the SQI pattern of c, using the Dynes-Fulton approach [27]. f Current density
distribution extracted from d.
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confirming the larger periodicity is due to the finite geometry of the JJ. The fourth lobe
however is not well reproduced, which could be due to scattering off the edges, described
in a recent theoretical work [149].

Interestingly, the SQI pattern of device II in Fig. 7.2d does not show the regular Fraun-
hofer pattern. The pattern displays an even-odd effect, the amplitude of the side lobes is
not monotonically decaying, but alternating. The first side lobe has a smaller amplitude
than the second, and the third side lobe amplitude is even absent. We hypothesize
there is a positive, magnetic field independent offset from the expected interference
pattern. We illustrate this argument by heuristically adding such an offset to an arbitrary
interference pattern I (Φ):

Ic (Φ) = Ic0
∣∣I (Φ)+ f

∣∣ (7.1)

Where Ic0 is the critical current at zero magnetic field and f is the offset, it increases
(decreases) the amplitude of the lobes with the same (opposite) sign. Examples of SQI
patterns with different offsets are presented in Fig. 7.4c. In Fig. 7.2d, the dashed gray line
represent a calculation using the the ballistic model (eq. 7.S3 [31]) with an offset of 0.09.
The even-odd behaviour of the SQI pattern is qualitatively reproduced, supporting our
hypothesis of a flux independent supercurrent.

The extracted current density distribution in Fig. 7.2f, reveals a large peak at the cen-
ter of the device. Note that any magnetic field independent path through the junction
would also show up at zero in the current density distribution, because the Dynes-Fulton
analysis is based on a Fourier transform [27].

Taking these considerations into account, we formulate the following potential causes
of the even-odd effect. Firstly, a current path through the center of the junction area
could cause the even-odd SQI pattern. Secondly, it could show up in a junction with
L > W , because of a restriction of the area spanned by quasiparticle paths that connect
the two superconductors, effectively reducing the area of the junction [30, 31]. However,
our device geometry is not in this regime, since the calculated SQI patterns, using our
device parameters, do not show an even-odd effect without superficially adding an offset
(Fig. 7.2). Thirdly, an Andreev pair of which one quasiparticle encircles the junction area
could cause an even-odd SQI pattern. This process, called crossed Andreev reflection
(CAR), either directly or by interference of two different CAR trajectories, results in a
flux independent supercurrent [151, 165]. To find out whether a central current path,
or crossed Andreev reflection causes the even-odd effect, we study gate dependent SQI
measurements and investigate other devices in the remainder of the chapter.

7.4. GATE DEPENDENCE
In order to obtain an understanding of the gating effect on a regular SQI pattern, we con-
sider the gate dependence of device I. The periodicity of the SQI patterns in Fig. 7.3a first
grows slightly from 1.3Φ0 to 1.5Φ0 as VBG is lowered from 30 V to 1.2 V (see dashed red
line). Note that as VBG is reduced, the mobility µ and lMF P decrease, as extracted from a
Hall bar measurement in Fig. 7.3b (for details see Fig. 7.S4). For VBG < 3 V the length L of
the device is larger than lMF P and we expect to enter the diffusive transport regime. In
Fig. 7.3c, calculated SQI traces for ballistic and diffusive transport (section 7.8.1), show
that the latter has both a smaller periodicity and lower side lobe amplitudes than the
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Figure 7.3: Gate dependence of the Fraunhofer SQI pattern. a Normalized switching current Inorm as a
function of normalized fluxΦ⊥/Φ0 for the indicated bottom gate voltages VBG. The dashed red lines highlight
an increase in periodicity as VBG is reduced. b Mean free path lMFP and mobility µ as a function of VBG,
extracted from Hall measurements (for details see Fig. 7.S4). A SEM image of the Hall bar device is provided
in the inset, with a scale bar representing 500 nm. The length L of device I is indicated by the dashed red
line for comparison. c Theoretical predictions of SQI patterns. The ballistic (Ball), diffusive (Diff) and quasi
one-dimensional (L À W ) are obtained from Ref. 31, and the one-dimensional (1D) case from Ref. 166. The
expressions and input parameters of all curves are presented in section 7.8.1.

first. To conclude, reducing the gate voltage changes the transport regime of the JJ from
ballistic to diffusive.

However, the model does not capture the strong increase of the periodicity, and sup-
pression of the side lobe amplitudes for gate voltages below VBG = 1.2 V. Such a mono-
tonically decaying switching current is reported before in case of a narrow JJ, either
diffusive [166, 167] or ballistic [168, 169]. We fabricated several devices with different
L and W , and find that an L/W ratio of 0.17 results in such a decay for a diffusive JJ
(Fig. 7.S5). The theoretical SQI patterns in the limit of L À W [31], and by considering
a one-dimensional diffusive (1D) JJ [166], are plotted in Fig. 7.3c. These patterns both
resemble the measured SQI pattern at VBG = −0.3 V well. Remember that we expect
electron accumulation at a single edge in device I, because it has crystal direction 110
(Fig. 7.2b). Therefore, we conclude that a (quasi) 1D diffusive edge channel is observed
at reduced gate voltages in device I.

The even-odd SQI pattern from device II changes drastically as a function of gate
voltage (Fig. 7.4a). The first side lobe disappears as VBG is reduced (highlighted by the red
arrows), and becomes zero at VBG = 3 V, because the amplitude of the first lobe decreases
below the offset the offset f of the SQI pattern. For the third lobe similarly, the offset it
is larger than the amplitude for all gate voltages. Then, for the bottom two traces of
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Figure 7.4: Gate dependence of even-odd SQI pattern. a Switching current Is as a function of normalized
perpendicular magnetic flux Φ⊥/Φ0 for device II at the indicated gate voltages VBG. The red arrows highlight
the first lobe, which amplitude is diminished as VBG decreases. b Normalized current density distributions
Jnorm extracted from the SQI patterns from a. The disappearance of the central peak is highlighted by the
red arrow. c,d Calculated SQI patterns with a variable offset f , in case of an ideal Fraunhofer and SQUID
pattern (section 7.8.1), respectively. Both show a change in periodicity once the offset becomes larger than the
oscillation amplitude.

Fig. 7.4a, the SQI pattern takes a cosinusoidal shape, which is know as a superconducting
quantum interference device (SQUID) pattern [21]. The smooth oscillation, without
cusps, highlight that the offset remains larger then the amplitude and the pattern. For
clarity and comparison we added examples of basic Fraunhofer and SQUID patterns
with different offsets in Fig. 7.4c-d.

The SQUID pattern translates to a current density distribution with edge conduction
only (bottom trace of Fig. 7.4b). This is in agreement with device II having two parallel
edges with crystal direction 110, where we expect electron accumulation(Fig. 7.2a). The
enhanced edge conduction at both sides of the JJ opens the possibility for CAR. For
example, the Cooper pair becomes flux independent, once its two quasiparticles travel
over a different edge [151, 160]. This suggests that CAR is causing the even-odd effect in
the JJ.

Because the offset influences not only the amplitude but also the appearance of the
side lobes, the periodicity of the SQI pattern changes as the gate voltage is reduced. The
periodicity doubles from 1.3Φ0 at VBG = 15 V to 2.7Φ0 at and below VBG = 3 V. The SQI
pattern thus becomes entirely h/e periodic in magnetic flux, the offset is larger than
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Figure 7.5: Crossed Andreev reflection. a The dashed (solid) line schematically represents a crossed (normal)
Andreev reflection. The electron (white) encircles the junction, and picks up a phase due to flux Φ, while
the hole (black) flows along the opposite edge. b Temperature dependence of the SQI pattern of device II
at VBG = 15 V. c SEM image of device III. The nanowire (grey) is depopsited on a Si/SiO substrate (blue) and
contacted by NbTiN (green). The scale bar represents 500 nm. d Voltage measured over device III as a function
of current bias (Ibias) and normalized perpendicular magnetic flux (Φ⊥/Φ0), at a bottom gate voltage (VBG)
of 15 V. The dashed grey line is a simulation following eq. 7.S3 [31] with offset f=-0.015, where we used device
parameters as noted in section 7.8.1. e Current density distribution J extracted from the SQI pattern of b, using
the Dynes-Fulton approach [27].

the amplitude of the SQUID pattern (see also Fig. 7.4d). This is different from to the
observed h/e SQUID in chapter 6, where the amplitude is larger than the offset and an
h/2e background is observed at the same time. Our observation confirms that the h/e
periodicity is not a unique signature of a topological JJ [160].

The doubling of the periodicity is also reflected in the extracted current density dis-
tributions in Fig. 7.4b. At VBG = 3 V, the current density profile is spanning half the
width of the junction only, compared to VBG = 6 V. This is an artifact of the Dynes-Fulton
approach, since the same area (and thus flux periodicity) is used for the calculation of all
traces. Apart from the reduced width, the central peak in the current density suddenly
disappears, which is very unlikely to be caused by the altered global bottom gate voltage.
Also, the offset in the SQI patterns persists, while there is no current path at the center
anymore. Therefore, we disregard a current path at the center of the JJ as an explanation
for the even-odd effect.
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7.5. TEMPERATURE DEPENDENCE
To further investigate CAR, we consider the length of the process and its dependence
on temperature. For a quasiparticle to encircle the junction and pair up again, the su-
perconducting coherence length should be in the order of the trajectory (Fig. 7.5a). We
estimate the superconducting coherence length at VBG = 15 V to 1µm, which is smaller,
but at the same order as the typical junction circumference of 2(L +W ) ∼ 2µm. Because
this circumference is smaller than L, we expect the CAR (even-odd effect) to disappear
as a function of temperature before the normal Andreev reflection (Fraunhofer pattern)
is suppressed. A temperature dependent measurement of the SQI of device II is however
ambiguous, because the the side lobes (and with that the even-odd effect) diminishes
before the switching current is suppressed (Fig. 7.5b). The length consideration and
temperature dependence neither support nor contradict the occurrence of CAR in the
JJ.

7.6. ODD-EVEN EFFECT
Two other devices (III and VI) also reveal an even-odd SQI pattern, and show enhanced
edge conduction in their parallel edges with a 110 crystal direction (Fig. 7.S6 and Fig. 7.S1).
Additionally, other devices, without parallel edges, do not show an even-odd SQI pattern
(Fig. 7.S5) For device VI, the offset f has a positive sign (Fig. 7.S6), similar to device II.
However, the SQI pattern from device III in Fig. 7.5d shows a negative offset, or odd-
even effect, where the third lobe is larger then the second lobe.1 By adding a negative
offset to the calculated SQI pattern (eq. 7.S3 [31]), we, again, find good agreement with
the measured pattern. Also, the offset leads to a small reduction of the current density
around zero in Fig. 7.5e, as we expected. Having either a positive or negative offset to the
switching current due to CAR depends on microscopic details regarding the spin mixing
in the JJ [151]. To be more precise, spin mixing with predominantly spin conserving or
spin-flip processes, refer to a positive or negative offset, respectively. In our InSb flakes,
the spin mixing is probably caused by the strong spin-orbit interaction. The observation
of a negative offset is, to our knowledge, unique to CAR [151], and therefore strongly
supports that CAR is causing the even-odd effect.

7.7. CONCLUSION
In conclusion, we observe an even-odd effect in the SQI patterns of InSb flake Josephson
junctions, that is caused by crossed Andreev reflection. The crossed Andreev reflection
exclusively takes place in samples where both edges show enhanced conduction. We
identified the crystal axis (110) of the conductive edges, and can thus in the future choose
to either study or circumvent them. Identifying the microscopic origin of sign of the
even-odd effect would be a interesting next step for theoretical and experimental study.

1Such an odd-even pattern, or negative offset, cannot be caused by a restriction of the paths through a finite
size junction [30, 31], ruling out that hypothesis for the second time.
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7.8. SUPPLEMENTARY MATERIAL

7.8.1. SQI THEORY MODELS

BASICS

The expression for a basic Fraunhofer and SQUID interference patterns are given by [21]:

Ic = Ic,0

∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ , (7.S1)

and
Ic = Ic,0 |cos(πΦ/Φ0)| , (7.S2)

where Ic(,0) is the critical current (at zero flux),Φ is the magnetic flux applied andΦ0 the
flux quantum of h/2e.

BARZYKIN et al.
The superconducting quantum interference in a JJ with a finite length L and width W
is described in the model. The final expressions for the critical current as a function of
magnetic flux pattern in a ballistic JJ (Ic,ball) and difussive JJ (Ic,diff) are [31]:

Ic,ball(Φ) = max
0≤φ≤2π

2evF

πWλFL

Ï W /2

−W /2

d x1d x2[
1+ ( x1−x2

L

)2
]3/2

∞∑
k=1

(−1)k+1 L

ξT cosθx1−x2

sink
(
πΦ

WΦ0
(x1 +x2)+φ

)
sinh kL

ξT cosθx1−x2

(7.S3)

Ic,diff(Φ) ∝ fdiff(ν) =
∞∑

l=−∞
(−1)l Sl (L/2)

d

du
Sl (u)

∣∣∣
u=L/2

(
sinπ(ν+ l )/2

π(ν+ l )/2
− (−1)l sinπ(ν− l )/2

π(ν− l )/2

)2

,

Sl (u) =
√
|u|/2π(q2

T +π2l 2/W 2)1/4K1/2

(√
u2(q2

T +π2l 2/W 2)
)

(7.S4)

where, φ the superconducting phase difference, vF and λF the Fermi velocity and wave-
length, ξT the normal metal coherence length (ħvF/2πkBT ), θx1−x2 = arctan(x2 − x1)/L
is the angle of the Andreev reflection with respect to the normal of the contact. K1/2 is a
modified Bessel equation and qT = 1/ξ̃2

T where ξ̃T is the diffusive coherence length. The
SQI pattern in the limit of L ¿W for a diffusive JJ (plotted in Fig. 7.3) is [31]:

fdiff(ν) = cos2πν/2

(1−ν2)2 . (7.S5)

The geometrical parameters used for the different devices, can be found in table 7.S1.
Furthermore, we use an effective mass of 0.02 [170] and a temperature of 300 mK (or
50 mK) to extract parameters from the Hall bar measurement (Fig. 7.S4). For the calcu-
lated SQI patterns in Fig. 7.2c,d and Fig. 7.5a, at VBG = 15 V, we find vF = 2.5 · 106 m/s,
λF= 2.3 nm, and ξT=10 µm; and for Fig. 7.3c, at VBG = 3 V, vF = 1.5 ·106 m/s, λF= 4.0 nm,
and ξT=5.9µm. Because the devices are in the crossover regime from ballistic to diffusive
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transport, we use the ballistic coherence length as diffusive coherence length, so we set
ξ̃T = ξT. With a transmission value of T ≤ 0.6 we expect to have a sinusoidal current
phase relation [147], and therefore only use k = 1 for eq. 7.S3. For eq. 7.S4 we sum up
to l = 100. For both we checked that the periodicity does not change for summing over
a larger integer. In all figures in the main text we plot the normalized critical current,
Ic(Φ)/Ic(0) or normalized functional form, fdiff(Φ)/ fdiff(0).

1D DIFFUSIVE LIMIT

For a one-dimensional system in the diffusive limit, the critical current decays mono-
tonically [166]:

Ic (Φ) ∝ f = e−0.238Φ2
, (7.S6)

which is used in Fig. 7.3.

7.8.2. DEVICE GEOMETRIES

Device I II III IV V VI VII
W (nm) 1280 770 855 1360 970 790 1150
L (nm) 240 240 185 205 465 425 670
L/W 0.19 0.31 0.22 0.15 0.48 0.54 0.58
A⊥ (µm2) 0.31 0.18 0.16 0.28 0.45 0.34 0.77
A⊥eff (µm2) 0.74 0.63 0.95 1.37 0.81 1.21 1.03

Table 7.S1: Geometry parameters for all 7 devices. The width W and length L obtained from the SEM
images. The areas A for perpendicular magnetic field, where the effective area includes flux focusing due
to the Meissner effect.

7.8.3. SUPPLEMENTARY FIGURES

a b dc

110

110 110 110

Figure 7.S1: SEM images of device IV-VII (a-f ). All images do not show underetching from the sulfur solution.
Note that device VII in c has parallel edges, both in the same crystal direction (110). The scale bar represents
500 nm.
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Figure 7.S5: SQI patterns for devices IV-VII. a Normalized switching current Inorm as a function of normalized
out-of-plane magnetic flux Φ⊥/Φ0. The SQI patterns for the 4 devices with contact separation L and length
width ratio L/W as indicated. The measurement is performed at VBG = 15V , except for device IV (VBG = 4.5V )
and VII (VBG = 25V ). All measurements are done at a temperature of 50 mK. An even-odd SQI pattern is
observed for device VI, see also Fig. 7.S6. The SQI pattern of device VII has no oscillations, but a monotonic
decay instead. b Calculated normalized SQI patterns for the diffusive, left, and ballistic, right, models of
Barzykin et al. [31]. The parameters used are presented in section 7.8.1. We observe that devices IV-VI are
best resembled by the ballistic model, with a periodicity at or below 1.5Φ0. Device VII however is diffusive,
which is in accordance with its length of 670 nm being longer than then mean free path of 250 nm .
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Figure 7.S6: Even-odd SQI pattern of device VI and enhanced edge conduction in device III. a Measured
voltage V as a function of current bias Ibias and normalized out-of-plane flux Φ⊥/Φ0 of device III. An even-
odd pattern is observed, because the second lobe is larger than the first. This measurement is performed at a
temperature of 50 mK. b Normalized current density distribution Jnorm calculated from the pattern in a. The
even-odd effect is represented in the central peak in the J . c Switching current Is of device III as a function of
normalized out-of-plane fluxΦ⊥/Φ0 at the indicated gate voltages. The bottom two traces are multiplied by 4
for visibility. d Normalized current density distribution Jnorm calculated from the patterns in a. At VBG =−1.8 V
the enhanced edge conduction shows up.





8
PHASE BIASING INAS JOSEPHSON

JUNCTIONS

A Josephson junction (JJ) made from a two-dimensional electron gas (2DEG) with strong
spin-orbit interaction is predicted to enter the topological regime once a sufficient in-
plane magnetic field is applied. The superconducting phase difference over the JJ in the
topological regime self tunes to value close to π. Controlling this phase difference enables
one to switch the junction from the topological to the trivial regime and vice versa. In
this chapter we study superconducting phase control in an InAs JJ with a planar geometry.
We measure the oscillations of a superconducting quantum interference device (SQUID)
under influence of an in-plane magnetic field, and look for 0−π-transition induced by the
Zeeman effect.

In collaboration with Eric Leerssen, Sergei Gronin, Geoff Gardner, Candice Thomas, Michael J. Manfra,
Leo P. Kouwenhoven and Srijit Goswami.
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8.1. INTRODUCTION
Two recent theoretical works describe how to reach a topological regime in a planar JJ in
a 2DEG with spin-orbit interaction [171, 172]. In the limit where the spin-orbit energy at
the Fermi level and the superconducting gap are larger than the Zeeman energy (∆SO,∆>
EZ), the JJ is trivial or topological depending on whether its free energy minimum is at 0
or at π phase difference, respectively. The superconducting phase difference can thus be
used to tune the device in and out of the topological regime. It is encouraging that the
first experimental evidence for this is reported recently [173, 174].

a
b
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 Δe / 2
 

Δe− /2
 

 

 

 

 

 

  

 

Figure 8.1: Planar Josephson junction and its phase diagram. a Schematic of a planar JJ. The two-dimensional
electron gas (2DEG) is contacted by two superconducting electrodes (dark blue) that have a superconducting
gap ∆ and phase φ. The junction has width W and length L, and the magnetic field is applied in the plane of
the junction perpendicular to the direction of the supercurrent. If the junction is in the topological regime,
Majorana’s (γ’s) show up at its edges. b Phase diagram of the JJ as a function of the ratio of Zeeman energy
EZ,J and Thouless energy ET in the junction, and the superconducting phase difference φ. The solid black line
denotes the phase boundaries for a contact transparency of τ = 1, the dashed black line for τ = 0.75, and the
solid red line for τ¿ 1, respectively. Both figures are adapted from Ref. 171.

In order to obtain a π-junction, a magnetic field is applied that induces magnetic
ordering in the system via the Zeeman effect [36, 37]. Without phase control, the junction
will equilibrate its phase difference according to the energy minimum of the Josephson
energy, and the phase diagram of the device (Fig. 8.1a) is indicated by the red solid lines
in Fig. 8.1b. The device undergoes a 0−π-transition as the Zeeman energy EZ exceeds
half of the Thouless energy ET, and the opposite transition, π to 0, at EZ /ET = 3/2,
and repeats as long as EZ < ∆ (section 2.2.3) [38, 39]. The Zeeman energy EZ = gµBB ,
where the Landé g -factor is a material constant, can be altered with the magnetic field
B [43]. The Thouless energy ET = πħvF/2L, depends on the distance L between the
superconducting contacts and the Fermi velocity vF in the semiconductor.

Additionally, the superconducting phase difference (φ) can be controlled by thread-
ing a magnetic flux through a loop geometry (section 8.7.1) [175]. In case of perfect
transparency τ of the junction, all reflections are Andreev reflections, and the phase
diagram changes into a repeated diamond shape (Fig. 8.1b). At φ = π the device enters
the topological field for smaller magnetic fields, compared to the case without control
over the superconducting phase. This is an advantage because an increased magnetic
field generally reduces the superconducting gap, and could lead to unwanted orbital or
interference effects. For imperfect SN interfaces (τ ∼0.75), the diamonds are elongated
(dashed black line in Fig. 8.1b) due to normal reflections, that make the Andreev states
less sensitive toφ. When normal reflection dominates, or τ¿ 1, the Andreev states loose
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Figure 8.2: Andreev state and current phase relation as a function of magnetic field. The top row shows the
Andreev state energy with transmission T = 1 as function of superconducting phase φ . The dashed and solid
lines indicate different parity and red and blue denote a different spin. In the bottom row the ground state
energy EGS (blue) and CPR I /2e (green) of the JJ are shown. This figure is taken from Ref. 171.

their phase dependence, resulting in the striped phase diagram, as sketched with the
solid red lines in Fig. 8.1b.

The phase diagram can be obtained by measuring the current phase relation (CPR)
of the JJ while changing the in-plane magnetic field. A calculation of the Andreev state
energies and CPR, done in Ref. 171, is presented in Fig. 8.2. They consider the narrow
junction limit (where a single Andreev bound state is present in the junction), unity
transmission and zero temperature. The ground state energy of JJ develops a local min-
imum around φ = π as the Zeeman energy is increased, which reflects as a kink in the
CPR. At the 0−π-transition (EZ,J = ET/2) the sin(φ) the switching current

[
max I /2e(φ)

]
has a minimum. In an experimental situation the transmission is imperfect due to lim-
ited transparency of the contacts. Therefore, the CPR is expected to be less skewed [147],
comparable to the effect of a non zero temperature [176, 177]. However, even in the limit
of sinusoidal CPR, the π-state should show up as a dip in the ground state energy and a
kink the CPR of the JJ [178, 179].

8.2. EXPERIMENTAL SETUP
The device consists of a DC SQUID, a superconducting loop that is intersected by two
JJs (Fig. 8.3a). The SQUID is fabricated in an InAs quantum well with 7 nm of epitaxial
aluminium (Al) on top (Fig. 8.S2). The defect and oxide free interface between the semi-
conductor and superconductor results in high quality superconducting contacts with
transparencies between 0.7 and 1.0 [69, 84]. Furthermore, InAs 2DEGs are known for
their strong SOI and large Landé g -factor [67, 103, 180, 181]. To fabricate the device we
first etch the loop mesa with two wet chemical etches, then the junctions are defined
by selectively etching the Al only. The JJs are 5 µm wide and have a length of 0.2 and
1.5 µm, for the reference and device JJ, respectively. Finally a global AlOx dielectric is
grown by atomic layer deposition, and top gates are deposited on the JJs. These top gates
can be used to pinch off the supercurrent, which allows us to study the single junctions
separately.
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Figure 8.3: DC SQUID device and magnetic field characterization. a Scanning electron microscope image of
the DC SQUID, and zoom in on one of the JJ with a scale bar of 5 µm. The false coloring represents the different
materials, gray is aluminium (Al) red is etched mesa, green uncovered mesa and gold is the top gate metal. The
four terminal current bias measurement setup is schematically drawn. The black axes indicate the magnetic
field directions of the vector magnet setup, and the red axes the directions perpendicular and parallel to the
substrate (as in Fig. 8.1a). b A magnetic field applied perpendicular to the loop reveals SQUID oscillations
(inset) on top of a Fraunhofer envelope. The SQUID oscillations are suppressed periodically (see the orange
arrows).

The DC SQUID is measured in a four terminal current bias setup (Fig. 8.3a). A vector
magnet is used to apply a field perpendicular(B⊥) and in the plane of the SQUID per-
pendicular to the current flow (B∥). The x- and y-axis of the magnet (Bx and By ) have
a roughly 30◦ and 60◦ angle to B⊥, respectively (Fig. 8.S3). A high resolution but small
range current source controls By , and with that B⊥. The magnet z-axis (Bz ) has a ∼ 1◦
offset from B∥, of which the resulting unwanted B⊥ component is compensated with Bx .
This compensation results in a magnetic field of the order of 10 mT, in-plane and parallel
to the current flow, that does not have a relevant effect on the interference pattern of the
reference junction (Fig. 8.S4).

The switching current as a function of B⊥ (Fig. 8.3b) reveals three different oscillation
periodicities. Firstly, the Fraunhofer envelope of the switching current corresponds to
an area of 2.2µm2, consistent with the sum of the area of the reference JJ and the flux
focusing due to the Meissner effect. Secondly, the SQUID oscillations on top of the
envelope have a periodicity of 27µT (inset in Fig. 8.3b), corresponding to an area of
77µm2, close to the lithographic size of the loop of ∼ 90µm2. From the SQUID pattern,
we read off the switching currents for the reference junction Is,ref = 4µA and for the
device junction Is,dev = 300 nA. Thirdly, the SQUID oscillation damps out at the points
highlighted by the orange arrows in Fig. 8.3b. This is indicative of the Fraunhofer of the
device junction, which has an estimated area is 6.7µm2, slightly less than we expect from
the geometry (7.5µm).

8.3. CURRENT PHASE RELATION MEASUREMENT PREREQUISITES
In order to measure the CPR in a DC SQUID, the superconducting phase difference
should drop entirely over the device junction. In other words, the phase difference of the
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a b

Figure 8.4: Switching current asymmetry and SQUID inductance. a The switching current Is is suppressed as
the gate voltage Vg of the reference and device junctions (magenta and black, respectively) is decreased. b Is
as function of perpendicular magnetic field for different asymmetries, induced by changing Vg,ref. The current
is swept from zero in positive or negative direction as indicated by the arrows. The solid orange line highlights
the flux shift of the oscillations due to inductance.

reference junction (φref) should be constant [175, 182]. Strictly speaking this is the case if
Ic,dev ¿ Ic,ref (see also section 8.7.1). However, for a sinusoidal CPR, Ic,ref is not changing
strongly for a small shift in φref, since a sine is flat up to the first order around π/2.
Therefore, we loosen the constraint and aim for a switching current ratio (Is,ref/Is,dev)
of 10.

Additionally, to ensure the mapping from the applied flux to the superconducting
phase is correct, we consider the inductance in the SQUID loop. We suppose the induc-
tance of the two arms to be equal because they have an identical geometry (Fig. 8.3a).
An inductance of L = ∆Φ/∆Is = 0.48 nH is extracted from the measured flux shift ΦT

as a function of switching current Is at different gate voltages Vg,ref (Fig. 8.4b). This
inductance translates to a screening parameter βL (LImax/Φ0) of 1. With this screen-
ing, the minima in the SQUID oscillation are lifted slightly (Fig. 8.S1a)[175]. Also, the
combination of a skewed CPR and a large phase shift could lead to a distortion of the
measured oscillation due to reentrant behavior of the switching current [183]. For a
switching current of 280 nA,βL decreases to 0.1 and both the lifted minima and distorted
shape are suppressed. In summary, the measured SQUID pattern represents the CPR as
long as Is,ref/Is,dev ∼ 10 and Is,ref ≤300 nA.

8.4. CPR IN AN IN-PLANE MAGNETIC FIELD

First, we consider a resistance measurement of the SQUID oscillation, which could re-
veal a global 0 to π phase shift of the CPR. Instead of sweeping the bias current, the
voltage response at a constant current bias is measured, in order to explore the magnetic
field parameter space efficiently. The voltage oscillations extend far above the switching
current (Fig. 8.5a), so the approach is viable. An in-plane versus out-of-plane magnetic
field sweep is plotted in Fig. 8.5b for a constant current bias of 250 nA, and in Fig. 8.5c
for 350 nA. At B∥ between 0 T and -0.2 T, we observe the central and first sidelobes of
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a b

c

Figure 8.5: SQUID oscillations in an in-plane magnetic field. a A current bias Ibias versus perpendicular
magnetic field B⊥ scan of the SQUID oscillations at an in-plane magnetic field B∥ of -0.3 T. The switching
current Is is oscillating with a period of 28 µT. This oscillation is resembled by the measured voltage at larger
Ibias. b A voltage measurement at a constant Ibias of 250 nA as a function of B⊥ and B∥. The central and first
lobes of the Fraunhofer pattern are observed where Ibias<Is. The SQUID oscillations show up as Ibias is larger
but close to Is. c Zoom in of b at the indicated window, here with Ibias = 350 nA.

the Fraunhofer envelope. Up to B∥ = −0.3 T the Fraunhofer lobes and SQUID oscilla-
tions have a constant slope in the graph, which is due to imperfect compensation of the
perpendicular component of Bz . However, around B∥ = −0.4 T the oscillations bend.
This bending is observed in the reference junction only, so we speculate it related to
the geometry of the reference junction or the SQUID loop itself. At larger fields, the most
prominent feature is the revival of the central Fraunhofer lobe around B∥ =−0.4 T, which
we study in more detail in section 8.5 and find to be is solely related to the reference JJ .
Focusing on the SQUID oscillations, we do not observe a robust sudden or smooth shift
of π. Also, the resistance shows a monotonic increase, what does not correspond to a
minimum in the switching current. Therefore we conclude that no global 0−π-transition
is observed.

Furthermore, to investigate the CPR itself, we measure the switching current as as
function of B⊥ for B∥ = −0.2 T to −0.5 T (Fig. 8.6). Remember the signature of the onset
of a π-junction is a kink in the CPR around π phase difference (Fig. 8.2). Note that
we satisfy the constraints for measuring the CPR in this regime, since Is,ref/Is,dev > 10
and the Is ≤ 300 nA. The CPR does not change shape for increasing B∥, there is no kink
present in any of the measured oscillations. Furthermore, the oscillation amplitude of
the switching current does not cusp but decays monotonically, confirming the behavior
of the resistance in Fig. 8.5. To investigate whether reducing ET via the Fermi velocity
results in a 0−π-transition, we measured the oscillation at a lower gate voltage for B∥ =
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Figure 8.6: Current phase relation at different in-plane magnetic fields. The six panels show switching
current measurements as a function of out plane magnetic field at different in-plane magnetic field values
indicated. At an in-plane field of −0.5 T the switching current (with +15 nA offset) at a gate voltage on the
device junction of −1 V is shown in orange.

−0.5 T (orange line in panel six of Fig. 8.6). Unfortunately, the periodicity and pattern
remain the same while the oscillation amplitude diminishes. In conclusion, we did not
find evidence for the onset of a Zeeman induced π-state in the CPR of the device JJ.

ET EZ (g = 4, B = 0.5 T) ∆SO ∆

670 µeV 116 µeV 20 meV[69] 180 µeV[84]

Table 8.1: Estimated energy scales of the device junction.

In the following, we discuss the relevant parameters in the proposal and argue why
we did not measure the 0−π-transition. The important energyscales are ET, EZ,∆SO and
∆, of which estimate values are presented in Table 8.1. An electron density of 1.8·1016m−2

(Fig. 8.S2), effective mass meff = 0.04me[67] and L = 1.5 are used. For the Zeeman effect
we take a Landé g -factor of 4 [67, 184], which is measured in a quantum well similar to
ours. The ratio EZ/ET is only 0.17 for B = 0.5 T, which limits us to a small region of phase
space in Fig. 8.1. Apart from that, we find ∆SO > EZ, where α is obtained via weak anti-
localization measurements in a similar heterostack [69]. Additionally, the transparency
plays a crucial role in the shape of the phase diagram. The dashed line in Fig. 8.1 has
a larger onset value (EZ/ET) for the topological phase at φ = π. The combination of a
small EZ/ET ratio and a lower transparency then expected could explain why the JJ did
not reach the onset of the π-state up to a magnetic field of 0.5 T.

The considerations above give us an idea what to improve experimentally and inves-
tigate theoretically. Obviously, the experiment would benefit from using a material with
a larger Landé g -factor (for example InSb), and a lower density, to increase the EZ/ET

ratio. Also, the current bias measurement limits the magnetic field range, because the
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switching current diminishes with magnetic field. To increase the switching current,
one could work in the narrow junction regime.1 Next to that, a tunneling measure-
ment of the density of states in the junction could work up to larger magnetic fields
than the current bias measurements. Recently, such tunneling measurements in the
narrow junction limit were done in an InAs quantum well [174]. The authors observe
a phase bias dependence of the superconducting gap at zero in-plane field, and a zero
bias peak emergence around a phase difference of π at finite magnetic fields. However,
the expected topological gap is not observed, even though they claim that the zero bias
peak splits because that gap decreases. Also, it is not clear whether the zero bias peak
stems from a Majorana bound state or a local Andreev bound state, that could form
due to the smooth potential of their split gate tunnel probe [185, 186]. A simultaneous
measurement at both sides of the junction could reveal which of the two bound states is
observed. This, and other experimental ideas, are discussed in more detail in chapter 9.

8.5. SWITCHING CURRENT REVIVAL IN AN IN-PLANE MAGNETIC

FIELD

a b

Figure 8.7: Switching current of the reference junction in an in-plane magnetic field. a Switching current
from 0 T to −0.25 T for Vg,ref 0 (red) to −5.4 V (purple), with a −0.6 V step. b Switching current from −0.2 T to
−0.6 T for Vg ,r e f 0 V to −5.4 V (−0.3 V step).

The revival of the switching current observed in Fig. 8.5b is further investigated by
measuring the reference junction only. The switching current as a function of the in-
plane magnetic field, measured at zero perpendicular magnetic field (Fig. 8.S4), is pre-
sented in Fig. 8.7a-b. For zero gate voltage (red line) the same behavior as in Fig. 8.5 is
observed, the switching current increases from B∥ = −0.25 T on and peaks around B∥ =
−0.4 T. Interestingly, as the gate voltage Vg,ref is decreased, the revival disappears and
from Vg,ref =−2.7V (dark green line) an overall decaying switching current remains. The
supercurrent revival is reproduced in another device with a junction length of 250 nm
(Fig. 8.S5). In a longer (500 nm) junction a monotonic decay is measured for all gate
voltages (Fig. 8.S5), comparable to other experiments [70, 187].

We hypothesize that the oscillatory behavior of the switching current is caused by

1In the narrow junction regime, the phase diagram is different because ET >∆ [171].
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an interference effect due to magnetic flux through the in-plane area of the JJ.2 The
estimated thickness d of the wavefunction is 20 nm (Fig. 8.S2)[69]. This together with
L = 200 nm corresponds to threading one flux quantum through the in-plane area at
a magnetic field of 0.5 T. In a simple picture, a Fraunhofer interference pattern would
occur, that depends on the geometry and the transport regime of the JJ. For a ballistic
junction with d/L = 0.1 a doubling of the regular Fraunhofer periodicity is expected
[29, 31], where for the 1D diffusive limit a monotonic decay of the switching current
remains [166, 188].3 This is in qualitative agreement with the oscillations for different
lengths of the junction, Fig. 8.7 and Fig. 8.S5 have ballistic and 1D diffusive patterns,
respectively.

However, the oscillation in Fig. 8.7 is not a Fraunhofer pattern because the node
spacing is different. We observe a node around −0.25 T, and not at twice that spacing
(−0.5 T), where a node is expected in a Fraunhofer. Additionally, the gate dependence
is different from what we expect. If reducing the gate voltage changes the pattern from
ballistic (red line) to diffusive (green and blue lines), the periodicity is expected to grow
before the oscillation disappears [31]. Also, a negative gate potential could squeeze the
wavefunction and decrease d , what would lead to an increased periodicity. In contrast to
both, we observe no change in the periodicity at all, only the magnitude of the oscillation
decreases. Furthermore, the fact that the oscillation changes with gate voltage, rules out
a recent suggestion that it depends on the area of the InAs covered by Al [174]. Therefore,
we move on to more complex scenario.

The Hall bar measurements indicate that at zero gate voltage two subbands are occu-
pied (Fig. 8.S2). Firstly, the supercurrent through the two modes can acquire a different
phase shift and then interfere [44]. Secondly, if the wavefunctions of the two bands are
spatially separated (i.e. one has more weight in the Al and the other in the InAs), the flux
could induce a SQUID like interference. Such interference in the area enclosed by the
Al and InAs layer is in agreement with the observed pattern, since nodes are expected at
-0.25 T and -0.75 T. Because we observe only two nodes, we can not distinguish between
the orbital or spatial interference of the modes. The gate dependence support this hy-
pothesis, since the oscillation amplitude, like the occupation of the second sub band,
decreases and then disappears. Therefore we conclude that the supercurrent revival
originates from multi-band superconducting quantum interference.

8.6. CONCLUSIONS
In conclusion, we did not observe a Zeeman induced 0 −π-transition in a InAs JJ up
to a magnetic field of 0.5 T. This is due to a combination of a high electron density, a
low Landé g -factor, and low transparency. Furthermore, we learned that the geometry
of a short semiconducting JJ could lead to unwanted switching current oscillations in a
large in-plane magnetic field, probably originating from interference of multiple bands
in the semiconductor. This effect should be taken into account in future experiments on
Zeeman induced 0−π-transitions.

2ET in this junction is much much larger than EZ , so we are not looking at a 0−π-transition.
3For a detailed description of the interference patterns for different d/L in ballistic and diffusive regimes see

chapter 7.
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8.7. SUPPLEMENTARY MATERIAL

8.7.1. CPR MEASURED WITH A DC SQUID
The current phase relation in a Josephson junction can be measured by sweeping the
superconducting phase difference in a superconducting quantum interference device
(SQUID). In such a device the junction of interest is shorted by either a superconducting
lead (RF SQUID) or another Josephson junction (DC SQUID), see Fig. 8.S1a. For a static
DC SQUID (neglecting R and C effects), the normalized current is the sum of the current
through junction 1 (i1) and junction 2 (i2) [175]:

i = i1 + i2 = (1−αI)sin(φ1)+ (1+αI)sin(φ2) (8.S1)

whereαI is the asymmetry of the critical currents (Ic,2−Ic,1)/(Ic,2+Ic,1). In the asymmet-
ric limit (αI ¿ 1), then all phase difference drops over the device junction, and its CPR
can be measured. Sweeping the phase difference is done by threading a magnetic flux
through the loop. Additionally, the current in the loop adds to the flux via the inductance
such that the total flux becomes:

ΦT =Φa +L1Ic,1 −L2Ic,2, (8.S2)

where Φa is the applied flux, L is inductance and Ic is the critical current. In the case of
zero inductance asymmetry, the phase difference is:

φ2 =φ1 +2πΦa/Φ0 +πβL

(
i1 − i2

2

)
(8.S3)

where βL = LIc /Φ0 and (i1 − i2)/2 is the circulating current. For βL ¿ 1, φ2 = φ1 +
2πΦa/Φ0, and eq. 8.S1 needs to be solved such that i is maximized. In the asymmetric
case, where I1 ¿ I2, this leads to a phase differenceφ1 close to the maximum obtainable
supercurrent at φ1 = π/2. As φ1 can be considered a constant now, φ2 only depends on
Φa . Then the CPR of junction 2 can thus be measured by sweeping the applied magnetic
field. In the experiment however, we usually do not operate in the limit where βL ¿ 1.
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Figure 8.S1: DC SQUID and node lifting due to inductance, a Schematic DC SQUID. Two junctions, 1 & 2, are
enclosed in a loop where a flux can be applied Φa that influences the superconducting phase differences φ1
and φ2. b The effect of inductance screening on the interference pattern of a symmetric DC SQUID. Figure
taken from [175].

The inductance could then have typically two effects in the measured signal, either the
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nodes are lifted (Fig. 8.S1b) or the shape could be distorted due to reentrant behavior.
[183]. These underlines the importance of being in the right regime to be able to measure
the CPR in a DC SQUID.

8.7.2. SUPPLEMENTARY FIGURES
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Figure 8.S2: Quantum well heterostack and density versus mobility measurement. a The InAs quantum
well is grown on a InP substrate with InGaAs and InAlAs barriers. The Al grown epitaxially on top serves as the
superconducting contact. All layer thicknesses are indicated. b Measurement of the electron density versus the
electron mobility in two different crystal directions. A Hall bar geometry is used with a top gate separated from
the device by 15 nm AlOx dielectric. The mobility peaks and then decreases around a density of 4 ·1011cm−2.
At zero gate voltage the density is 1.8 ·1012cm−2. Since the mobility peaks at a density far below the nominal
density, we expect to have two bands in the perpendicular direction contributing to the transport at zero gate
voltage. These measurements are done by our collaborators from Purdue University.
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Figure 8.S3: SQUID oscillations as a function of Bx and By . a Current bias versus magnetic field in the y-
direction. The switching current oscillates about 3.5 times in 100µT. b Same as a with magnetic field in the
x-direction. The switching current undergoes 1.5 oscillations. Thus the alignment of the y- and x- axis is
estimated to be 60◦ and 30◦ of the perpendicular direction, respectively.
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Figure 8.S4: Fraunhofer pattern as a function of parallel magnetic field. a and b shows the switcing current
versus B⊥ measurements as B∥ is stepped from 0 T to −0.8 T (0.05 T step). In b the switching current for every
subsequent trace is offset by 50 nA. We see the top of the central lobe decreases first and then peaks at −0.4 T.
An asymmetry in the first lobes occurs, due to the in-plane magnetic field parallel to the current [187].
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Figure 8.S5: Switching current versus parallel magnetic field in other devices. a Constant current bias as a
function of B⊥ and B∥ for a device with L = 250 nm. The voltage peaks around −0.45 T and revives after that.
b Switching current versus B∥ for a junction with L = 500 nm for the indicated gate voltages Vg. The switching
current monotonically decays, there is no oscillation visible.
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OUTLOOK

We present and discuss ideas for future research in the material systems used in this thesis.
First, the prospects of engineering a topological superconductor in Ge-Si nanowires are
described. Then, applications of InSb flakes are considered, exploiting the flexibility of
this platform. Finally, a thorough discussion on optimizing the topological gap in planar
Josephson junctions is presented. We consider a new device geometry that enhances this
gap and discuss how to measure it. Furthermore, several potential material systems are
described and compared.
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9.1. GE-SI NANOWIRES
The Ge-Si nanowires studied are a potential platform to engineer a topological super-
conductor [77, 157, 158]. Here we discuss what is needed to reach this regime, in terms
of spin-orbit interaction, Zeeman energy and induced superconductivity.

The spin-orbit interaction that stems from the direct coupling of the hole bands,
needs to be considered quantitatively to confirm that its strength is sufficient. Being in
the strong SOI regime, where ESO > EZ, is beneficial for the localization of the Majorana
bound states (MBS) [77]. The strength of the direct Rashba SOI can be tuned via the
coupling of the hole bands (occurring in 1D geometries [16]), and with applied electric
field [17]. This coupling is dependent on the confinement and on strain induced by the
Si shell. Finding the right combination of diameters for the Ge core and Si shell is thus
crucial to obtain strong coupling. Theoretically ESO of several meV can be reached in
a Ge core of 6 nm diameter and a shell of 1.2 nm thick, under influence of an applied
electric field [16]. In recent experiments encouraging results were obtained, as ESO =
2.1 meV was estimated from a quantum point contact [189], and weak anti-localization
measurements result in similar values [190].

The Zeeman energy needed to reach the topological regime is EZ >
√
∆2 +µ2, where

∆ is the superconducting gap and µ the chemical potential. Using for example alu-
minium, Al, with ∆∼ 200µV and at a sufficiently low µ, EZ is smaller than the ESO men-
tioned before. However, a new challenge arises, since EZ should become at least ∆ to
enter the topological regime. For this, a magnetic field of around 1 T is needed, consider-
ing the Landé g-factor of 3.5 measured in chapter 4. However, in the Josephson junction
of chapter 4, the induced superconductivity is already suppressed at such a magnetic
field. To overcome this issue, the g -factor might be increase by tuning the electric field
applied [87]. Another solution would be to increase the critical magnetic field of the
induced superconductivity either by geometry or material engineering. Reducing the
thickness of the Al increases its resilience against magnetic fields, which can be done by
in situ growth of the Al [191]. Annealing the nanowires after the growth would form a
transparent contact. In addition, it has been reported that the annealing could lead to
the formation of a superconducting alloy (consisting of Ge, Si, Al) with a larger critical
magnetic field than Al [59]. The improvements described make it possible to bring the
Ge-Si nanowires in the topological regime.

9.2. INSB FLAKES
The InSb flake Josephson junctions are a unique hybrid superconductor semiconductor
system, combining advantages of a 2D system, and the flexibility of transferable nanos-
tructures. The flakes offer the possibility of making multi terminal devices, in contrast to
the two terminal measurements in nanowires, while maintaining the freedom of choice
in terms of the substrate used.

In a multi terminal device with superconducting contacts, the Andreev spectrum
depends on the superconducting phase differences between the contacts. Treating the
phase differences as quasi momenta, topological effects such as Weyl singularities can
arise [192]. Using existing shadow evaporation techniques [55], such devices could be
realized in InSb flakes. Furthermore, combining superconducting and normal metal
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contacts allows for study of the spatial extent of the Andreev bound states. Additionally,
in a topological superconductor, the nonlocal properties of the MBS could be investi-
gated [193].

The flexibility in choice of substrate allows for the integration of flake Josephson
junctions in microwave quantum circuits, as done before with nanowires [194, 195].
The flakes offer a good alternative to the nanowires because of their larger Josephson
coupling. Additionally, fabricating a superconducting quantum point contact in a flake,
would lead to a tunable and quantized Josephson energy, which is interesting for qubit
applications.

9.3. ROBUST MAJORANA’S IN PLANAR JOSEPHSON JUNCTIONS
Planar Josephson junctions in semiconductors with strong SOI offer a new platform to
create a topological superconductor [171, 172]. The addition of the superconducting
phase difference as an experimental knob, leads to a reduction of the magnetic field
needed to enter the topological phase, which is favorable for maintaining the induced
superconductivity and minimizes magnetic orbital effects. In addition, the topological
phase that occurs atπ phase difference is stable as a function of chemical potential [171].
In this outlook, we first focus on maximizing the gap of the topological superconduc-
tor to obtain robust MBSs. We describe a new geometry that enhances the trivial and
topological superconducting gap. Then, we describe an experimental device that allows
for probing of the nonlocality of the MBS. Finally, we discuss possible material systems
conclude which is preferable to reach the topological regime at a minimal magnetic field.

9.3.1. TOPOLOGICAL GAP

The gap in the topological regime of a planar Josephson junctions generally depends
on the various energy scales in the system: the SOI energy at the Fermi level, ∆SO, the
Zeeman energy, EZ, the Thouless energy, ET, and the superconducting gap,∆. The phase
diagram for the short junction limit and taking ∆SO À EZ, as obtained in Ref. 171, is
presented in Fig. 9.1a, Additionaly, the phase diagram for a long junction is shown and
discussed in chapter 8. The magnitude of the topological gap in both phase diagrams at
kx = 0 is bounded by ET and ∆ for the long and short junction limit, respectively [171].

In Ref. 171 the energy gap is calculated throughout the phase diagram of a junction
with an intermediate length (Fig. 9.1b). The gap in the topological regime is largest atφ=
π and EZ,J/∆≈ 7. In terms of the Thouless energy1, the largest gap occurs once EZ,J . ET.
Furthermore, the topological phase and gap forφ=π are stable as a function of chemical
potential (Fig. 9.1c) [171]. Note that both the suppression of ∆ in the superconductor as
a function of magnetic field, and the magnetic orbital effect are not taken into account.
These effect can significantly reduce the magnitude of the gap as a function of magnetic
field [90], and therefore should be further investigated theoretically. Concerning the
experiments, this makes it even more crucial to have the transition at low magnetic
fields.

In Fig. 9.1d,f we observe that the overall gap is limited by the states at kF for both in

1Analogous to the phase diagram in the long junction (Fig. 8.1), ET equals the energy of the phase boundary at
φ= 0.
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Figure 9.1: Topological gap in a planar Josephson junction. a Phase diagram for the short junction limit.
Depending on the superconducting phase difference φ and the ratio of the Zeeman energy in the leads and
superconducting gap, EZ,L/∆, the junction is in a trivial, topological or gapless state. The boundaries between
the trivial and topological phases are given for unity (solid line) and 0.75 transparency (dashed line). The inset
shows a schematic image of the planar junction, including the coordinate system. b The magnitude of the
gap as a function of φ and Zeeman field in the junction, EZ,J, for a junction with an intermediate length. The
chemical potential, µ, used is 20∆. c The magnitude of the gap in the same geometry as b, for a varying µ at
φ=π. d-f Bandstructures for a similar device as used for b,c in the trivial regime, at the transition (closing gap),
and in the topological regime. The Fermi wavenumbers, kF, for the two Fermi surfaces, split by the Rashba SOI,
are highlighted. All figures are taken from Ref. 171, where details of the calculations can be found as well.

the trivial and topological regime. In a quasi-classical picture, the states with a large
momentum kx follow long trajectories in the semiconductor, before reflecting at the
superconductor. In terms of the Thouless energy, a long trajectory leads to a small ET,
and subsequently a smaller induced superconducting gap. Limiting the long trajectories
through the junctions could thus increase the overall magnitude of the gap. A quasi-
classical model in a trivial Josephson junction showed that introducing disorder in the
junction does indeed enhance the induced superconducting gap [196]. The scattering
events not only limit the length of the trajectory, but also couple states with different kx

(and therefore different gaps), which leads to an increase of the overall gap. Recently
it has been shown that this mechanism works analogous for the topological gap [197].
However, introducing disorder in the junction is unfavorable for the transport proper-
ties, and hard to control. Therefore, we take a different route and only limit the length of
the trajectories, by changing the geometry of the Josephson junction.

When a zigzag shape is introduced in the superconducting contacts [198] (Fig. 9.2a),
the quasi-classical (straight) trajectories can maximally be the length of a single seg-
ment. Laeven et al. performed tight binding calculations to obtain the bandstructures
for a straight and zigzag geometry, as presented in Fig. 9.2b and c, respectively. For
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Figure 9.2: Enhanced gap in zigzag geometry. a Schematic representation of a zigzag Josephson junction.
The length, L, and zigzag amplitude, zy , are indicated. b,c Result of bandstructure calculations performed by
Laeven et al., for a straight and zigzag junction, respectively [198]. All momenta are folded to the first Brioullin
zone and a junction length, L, of 200 nm is used. The blue lines represents the bands in the trivial regime
(φ= 0, B = 0 T) and the red lines in the topological regime (φ=π, B = 1 T). The following parameters are used:
∆= 1 meV, EZ = 1.5 meV (g = 26), ∆SO = 4 meV Å, ET = 2 meV (n = 1.6 ·1015). d,e Wavefunctions of Majorana
bound states in the topological regime of the straight and zigzag junction, respectively. The topological gap, E1,
and splitting of the Majorana bound states, EM, are presented, both in eV. Figures b-e are taken from Ref. 198.

both the trivial (blue lines) and topological (red lines) regimes the gap is larger for the
zigzag shaped junction. The enhancement of the topological gap is also reflected in
a shorter localization length of the MBS wavefunctions [198], as shown in Fig. 9.2d,e.
The energy scales given are the topological gap, E1, and the splitting of the MBS due to
their overlap, EM. The zigzag geometry thus increases the topological gap and reduces
the MBS overlap, which are beneficial for future applications in topological quantum
computation [199].

9.3.2. CORRELATION AND NONLOCAL MEASUREMENT

Here we implement the zigzag geometry in a device and describe an experimental setup
that allows for probing of the nonlocality of the MBS. A local density of states (LDOS)
measurement at the boundary of a topological superconductor, can reveal the MBS as a
zero bias peak in the tunneling conductance. The first observation [78] and the subse-
quent results in nanowires [79] and phase biased 2DEG Josephson junctions [173, 174],
all have in common that a single MBS (one side of the topological superconductor) is
probed. Next to that, a multi probe device revealed the appearance of a zero bias peak
at the end, and a simultaneous gap re-opening in the bulk of the topological supercon-
ductor [200]. In the device presented here, the goal is to be able to probe the entire
topological superconductor segment, including both ends.

The proposed device consists of a zigzag Josephson junction in an RF SQUID geom-
etry, with local density of states probes at its edges (Fig. 9.3). The probes are represent
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BΦ

Figure 9.3: Phase biased zigzag Josephson junction, with tunnel probes at both edges. The superconductor
is colored blue, the semiconductor is grey and the metal top gates are yellow. The zoom in reveals a split
gate geometry to allow for tunneling spectroscopy at the edge of the junction. The superconducting phase
can be adjusted with the flux, Φ, through the ring. The in-plane magnetic field, B , and predicted location of
the Majorana bound states (red dots) are indicated. Depending on the experiment, a voltage or current bias
measurement setup can be used for this three terminal device.

by a split gate here, but an semi insulating barrier or a quantum dot could also be used.
The overlap of the MBS wavefunctions, can be tuned via the chemical potential with the
global bottom gate, and should result in correlated oscillations in the measured LDOS
at both edges [201]. Comparing the two LDOS spectra as a function of magnetic field
and gate voltage, therefore could reveal whether the MBS at the two ends form a pair
[202]. Furthermore, using the two contacts from the sides as normal leads allows for
nonlocal conductance measurements. With such a measurement the size of the topo-
logical gap, and the phase transitions between the trivial and topological regimes can be
obtained [193]. Both measurements could give substantial evidence for the occurrence
of a single topological superconducting segment extended through the entire Josephson
junction. This will pave the way for future experiments that probe the predicted non-
Abelian exchange statistics of the MBSs [199, 203].

9.3.3. MATERIAL SYSTEM

Material n (1015m−2) meff (me) g ET EZ ∆SO

InAs/InGaAs 18 0.04[67] 4 [67] 0.67 0.12 10 [69]
InAs/AlSb 18 [204] 0.041 [204] 12 [66] 0.67 0.35 2.5 [204]
InSb/InAlSb 2 [170] 0.019 [170] 26 [170] 0.45 0.75 1.1 [205]
HgTe/CdTe 20 [206] 0.049 [206] 20 [207] 0.55 0.58 30 [206]

Table 9.1: 2DEG parameters and energy scales. Four different semiconductor quantum wells, denoted by the
active and barrier layer, are presented. The energy scales are calculated with values from the literature. For ET
a length of the junction of 1µm is used, and EZ is taken at 0.5 T. All energy scales are given in meV.

In chapter 8 we studied a phase biased InAs Josephson junction, but did not find
evidence for a topological phase. This was most likely due to the a misfit of the relevant
energy scales and a suboptimal contact transparency. In order to reach the topological
regime the right combination of ET, EZ and contact transparency should be found, while
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maintaining the induced superconductivity in the semiconductor with strong SOI. Apart
from InAs [174]; HgTe [173] and InSb are semiconductors that could potentially be used
for this. The relevant material parameters and estimated energy scales for these materi-
als are listed in table 9.1.

The effective mass, meff, and Landé g-factor, g , are strongly dependent on the choice
of material. In contrast, the electron density, n, depends on the doping in the quantum
well, and can be altered with an electrostatic gate. However, lowering the density usually
leads to an unwanted reduction of the supercurrent in a Josephson junction. The differ-
ence in n and meff reflect in ET ∝p

n/meff, which turn out to be relatively close to each
other for the different materials. In contrast, the g -factors and corresponding EZ differ
much more. InAs/InGaAs quantum wells, as used in chapter 8, have the lowest g -factor,
whereas the g of InSb stands out. Comparing ET and EZ, the InSb quantum well is the
best candidate to reach the optimal topological gap at a minimal magnetic field.

The spin-orbit energy, ∆SO is the largest energy scale for all materials, in accordance
with the model proposed by Pientka et al.. Nevertheless, for the InSb quantum well
∆SO ∝ EZ, a case that is considered only in the absence of a phase bias in Ref. 172.
Whether the phase diagram is altered at φ=π is unknown and needs further theoretical
investigation. Apart from its magnitude, the type of SOI also matters. Both Refs. 171 and 172
consider Rashba SOI only, even though in the materials considered above Dresselhaus
SOI could also occur [9, 204, 205]. A Dresselhaus component in combination with the
magnetic field (perpendicular to the direction of current), leads to a tilt in the bandstruc-
ture of Fig. 9.1c-e. This tilting can potentially close the gap with an increasing magnetic
field. The magnitude of the the Dresselhaus SOI and its effect on the topological gap
should thus be studied both experimentally and theoretically.

The induced gap depends on the gap of the superconductor, and its coupling to the
semiconductor. We consider two candidate superconductors, Al and niobium titanium
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Figure 9.4: Josephson junctions in InSb quantum wells. a Schematic representation and optical image of
the device made of an InSb quantum well with NbTiN contacts. An electrostatic gate is added on top of the
quantum well to alter the electron density. The quasi 4 terminal measurement setup is indicated as well as the
junction length L and width W . b Differential resistance, dV /dI , measurement as a function of current bias,
I , perpendicular magnetic field, Bz . A typical Fraunhofer superconducting quantum interference pattern is
observed, and the switching current, Is, at B = 0 T is indicated. c dV /dI as a function of I and gate voltage, Vg,
revealing that Is is tunable with the top gate.
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nitride, NbTiN. An InAs quantum well with epitaxially grown Al contacts have shown
to exhibit highly transparent contacts, with a superconducting gap of around 200 µeV
[84]. In comparison, NbTiN has a larger ∆ of around 1.5 meV, and is more challenging to
produce high transparency contacts with [61].

To conclude, a combination of an InSb 2DEG with highly transparent NbTiN con-
tacts would be the best combination of materials. We recently fabricated and measured
Josephson junctions with NbTiN contacts in high quality InSb 2DEGs [208]. The first
results are presented in Fig. 9.4, where the supercurrent is tunable with a magnetic field
and with a gate, as expected for a semiconducting Josephson junction. These measure-
ments highlight the promise of this material combination for engineering a topological
superconductor.
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