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Stellingen behorend bij ‘Estimating the extreme value index, tales of tails’

Bij de eerste twee stellingen (beide uit: P.P. DE WOLF EN R.H. RENSSEN (1996), Asymptotics and the
STSI design, research paper no. 9644, CBS, Voorburg) gaan we uit van een geneste rij eindige populaties
die als volgt wordt gedefinicerd: laat {y, }7_, een rij elementen zijn en {N, };_, een stijgende rij inte-
gers. Definieer de v-de populatie U, als de verzameling van de eerste N, elementen y1,...,yN, -

Ook beschouwen we de volgende rij steekproefontwerpen: neem per populatie U, een gestratificeerde,
enkelvoudig aselecte steekproef zonder teruglegging (aan de hand van een vast allocatieschema) ter
grootte n,. Voor h = 1,...,H, worden de strata aangegeven met U,;, hun grootte met N, ; en de al-
locatie met n,, .

Definieer de volgende grootheden: ¥, = (Zicy,, %) /Nvns %1 = (Zicv,, i = Ton)?) /Ny — 1), Wyp =
Now/Nv, Avp = (Nywny)[(Nonyp) en fop = nyp/Nyp.

Stelling 1. Naast de natuurlijke voorwaarde dat de steekproefgrootte n, naar oneindig

moet gaan, zijn in bovengenoemde situatie de voorwaarden

(a) De populaties U, moeten zodanig zijn dat Zh 1 W, ;52 %, €en eindige limiet heeft
als v — oo,

(b) De allocatie moet zodanig zijn dat er een constante [, < oo bestaat, zodanig dat
als v — oo, A, < I, voor alle h met §2, # 0.

voldoende voor de consistentie van de Horvitz-Thompson schatter van het populatie
gemiddelde, in die zin dat voor iedere £ > 0

tim P (|7, 7, > ) =0

v —yo0

waarbij Y v de Horvitz-Thompson schatter is van het populatie gemiddelde ¥, van pop-
ulatie U, .

Stelling 2. Zij n, = /1, (?v - IEf’v) Neem voor v groot genoeg aan dat voor alle A
geldtdat N, > 2,dat H, < H < ecen dat

lim 2;, 1 thth (1- ~ fon) /"vhsvh

Ve Eh 1 thvh(l_fvh) vh

Definieer

Hy
D}, =Var(n,) = 3 A,aWyn(l = f1)S2,
h=1

Dan is n,, /Dy, asymptotisch normaal verdeeld, dan en slechts dan als,

H, . i
3 An(l=fiun)* Y i—Tun)? Zlvh (I=fon)fon Y, i—Top)?
h=1 i€Cypr €Dy pe =0

H,
hz,llvh(l—fvh) Y Gi—Tn)? Zlvh(l—fvh) Y (i-Fon)?

€Uy icU,y
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als v — oo, voor alle 7 > 0, waarbij C,, en D, gegeven zijn door
Cone =14 €n Dyp.=U

vhr 1—{%; vhr 17-"’%!1

met

o1 Avi(L = fur) (Ny = 1)82,)
lvh(l - fvh)

Uppe =S i€Upp: 'yi_}_/vh' > T\/

Stelling 3 en Stelling 4 hebben betrekking op de volgende situatie: Zij {£;}., een gegeven rij scores
van een categoriale variabele £ die K categorieén heeft. Definieer de variabele X door middel van de
overgangskansen IP(X = [|¢ =k) = py; voor k,l = 1,...,K. De ‘Post Randomisation Method’ (PRAM)
bestaat dan uit het uitvoeren van een kansexperiment met genoemde overgangskansen, waardoor de scores
{X:}}_, worden verkregen. Dat kansexpetiment wordt dan volledig bepaald door de K x K Markov-matrix

P met elementen py;.

Stelling 3. In hoeverre de ‘Post Randomisation Method’ (PRAM) een bruikbare meth-
ode is voor het beveiligen van microdata tegen spontane herkenning, hangt mede af van
de statistische kennis van de gebruiker van de microdata.

Stelling 4. Zij P een Markov-matrix met overganskansen p;;. Pas met deze matrix
PRAM toe op de scores {&;}7_; om de scores {X;}7, te verkrijgen. Definieer de matrix
P* als de Markov-matrix met de elementen

puTg (k)
2ipiTe(J)
waarbij Ty de frequentietabel is van de scores van de categoriale variabele &, i.e.,
Tg (k) = Xi_y L(g—k) voor k= 1,...,K. Door met P* nogmaals PRAM toe te passen
op de scores {X;}?., worden scores {X;}"_, verkregen waarvoor geldt dat de frequen-
tietabel Ty~ van de uiteindelijk verkregen scores een zuivere schatter is voor de oor-
spronkelijke frequentietabel 7.
P.P. DE WOLF, J. GOUWELEEUW, P. KOOIMAN EN L. WILLENBORG (1997), Reflections on PRAM,
research paper no. 9742, CBS, Voorburg.

*
P =

Stelling 5. Het gebruik van een afstootcurve ongelijk aan de stapfunctie op [0, L], waar-
bij L de gemiddelde levensduur van een kapitaalgoed is, is van grotere invloed op de
berekening van kapitaalgoederenvoorraad dan menig econometrist dacht.

Stelling 6. Een uitspraak die begint met “Het is statistisch bewezen dat...” is bijna
zeker niet waar.

Stelling 7. De toestand van een kwade Schrodinger kat kan worden beschreven met een
Cauchy verdeling.
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Chapter 1

Introduction

This thesis focuses on statistical aspects of extreme value theory. In this chapter we
will provide some examples of extremes and some background information on extreme
value theory. In the last section we will briefly describe the contents of the subsequent
chapters of this thesis.

1.1 Examples of extremes

Nowadays it seems common practice to use statistics to describe or even predict the
average behaviour of many different phenomena. However, in many situations it is
not only that average behaviour that is an interesting subject of research. As a simple
illustration, consider a car tire. Under normal, average circumstances, the tire becomes
weaker due to the accumulation of many small damages (i.e., due to wear and tear). And,
eventually, it might blow and cause an accident. On the other hand, if the car hits an
unexpectedly sharp rock in the middle of the road, the tire might blow just that instance.
In the latter case, the accident is caused by one extreme damage. This simple example
shows, that it seems quite natural that one does not restrict oneself to the analysis of
the average situations alone, but that one considers extreme situations as well. Actually,
in many different areas, there is a dire need to describe extreme situations in order to
try to prevent or at least reduce severe damage, financial or otherwise. Despite the
non-average behaviour, statistics is still a useful tool.

At least as far back as the Egyptian era, people have been interested in describing ex-
treme situations. In the early ages of their reign, the Egyptians were already interested
in a more or less accurate prediction of the flooding of the river Nile, which is obvi-
ously an extreme event: it is caused by an excessively high water level. Their interest
was mainly induced by agricultural considerations: inundation of the land immediately
surrounding the river could improve the soil. Proper use of this natural fertilization,
benefitted their crop.

However, besides this positive agricultural effect, flooding can just as well have a
disastrous effect: especially if society is not prepared well enough, extensive human
and material loss might be a result of the same phenomenon.
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Over the years, the Dutch people have found themselves in such a position that they had
to deal with exactly these kind of problems. Since a major part of their country is below
mean sea level and the northern and western part is adjacent to the North Sea, it is quite
vulnerable to the behaviour of that sea during extreme weather conditions. Indeed, in
1953 a major part of The Netherlands was flooded by the North Sea, due to a severe
storm in conjunction with spring tide. This disaster caused a considerable amount of
human and material loss and initiated the so called Delta plan that had to safeguard the
country against future threats of the North Sea.

Unfortunately, as recently as in 1995, the Dutch people were threatened by yet an-
other source of flooding. In the first part of that year, very high water levels in some
major rivers gave rise to the evacuation of thousands of people in nearby villages. Fortu-
nately, this time there were no direct casualties, but it initiated a renewed discussion on
the strengthening of the river dikes that was delayed due to environmental arguments.

Flooding is obviously not the only natural phenomenon that can be studied using
extreme value theory. Other situations one could think of are e.g., extremely high or
low temperatures, extreme atmospheric pressure, excessive rainfall, droughts, etc. In
case of extreme temperatures one could think of e.g., the melt-down temperature of
nuclear plants, or of temperatures close to 0 Kelvin.

An interesting aspect in the situation of low temperatures and droughts, is the pres-
ence of a natural lower bound to the measurements. In these cases the extreme events
are the measurements extremely close to this bound. Obviously, these considerations do
not only apply to lower bounds but to upper bounds as well. As examples in which an
upper bound is present, though its value might be unknown, one could think of e.g., the
lifetime of certain species or of sports records such as in high jumping, triple jumping,
100 meter sprint, etc.

In the analysis of strength of materials, it is also desirable to predict the behaviour
of constructions like oil-platforms and large buildings under extreme conditions. Often
civil engineers use so called ‘design conditions’ based on the effect of extreme forces
and moments induced on those constructions by storms, earthquakes and similar ex-
treme processes.

Corrosion is yet another situation in which extremes are of interest. A surface with a
large number of small pits fails due to corrosion if any one of the pits penetrates through
the thickness of the surface. The depths of the pits, though initially random, increase in
time due to corrosion. Hence the deepest pit, i.e., an extreme event, causes the failure.

In economical and financial analysis, extreme value theory has become a very im-
portant issue as well. In non-life insurance, portfolios often contain claims that should
be considered extreme rather than average. Actually, the whole area of re-insurance is
a very important application of extreme value theory, since it usually has to safeguard
an insurance company against excessive claims that may endanger the solvency of that
company.

A more theoretical area in which extreme value analysis can be used, is the field of
statistical estimators itself. Even though such estimators are ideally accurate, very large
or very small realizations are likely to occur. Hence, investigation of the behaviour of
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‘extreme realizations’ of such an estimator is of considerable interest. In a sense it is a
measure for the accurateness of the estimator.

In the analysis of (pseudo) random number generators, the extreme numbers that are
generated (i.e., the numbers close to the boundaries of the interval in which the numbers
are generated) are interesting subjects for extreme value theory.

1.2 Questions concerning extreme situations

In the situations described in the previous section, some interesting questions arise,
concerning extreme events. We already mentioned the Delta plan, in which the Dutch
government had to answer a very important and quite illustrative question, in order to
find the right way to strengthen the sea shore of The Netherlands: a very high quantile
had to be estimated, on which they could base the design conditions of the new system
that should defend their country against the all-time enemy, the North Sea. More for-
mally, the strengthening had to be such that the probability of flooding was extremely
small, say e.g., 0.01% per annum. Loosely speaking that means that the new sea defense
should, on average, only be defeated once in ten thousand years.

A typical problem that arises in estimating such a very high quantile is quite apparent
in this problem: the quantile to be estimated concerned the event of flooding only once
in ten thousand years. However, the available measurements spanned a much shorter
time interval. In other words, a value had to be estimated that, with high probability,
was far out of the range of the measurements. Note however, that there is a positive
probability that an observation larger than that very high quantile was already present
in the measurements.

In the situation that a (natural) bound to the behaviour of the investigated phe-
nomenon is present, other interesting statistical questions appear. First of all, the bound
could be known beforehand, like e.g., in case of temperatures close to O Kelvin. In that
case the way in which the distribution tends to that bound is the interesting feature to
investigate. In other situations, the bound may be known to be present, even though the
exact value is not known. In that case it is not only interesting to estimate the behaviour
of the distribution function close to that bound, but estimating that value quite accu-
rately is just as interesting. The third possibility is that one does not know beforehand,
whether a bound is present or not. Obviously, detecting that possible bound might be
very important.

Actually, in the aforementioned situation of flooding, one would be tempted to say
that there is a natural bound to the high water level, even though its value is unknown.
Strictly speaking, the fact that there is only a finite amount of water on earth bounds
the extreme sea level. A less absurd bound is given by the fact that the (finite) water
depth limits the height of waves. However, whether or not it is possible to deduce the
existence of such a bound purely based on the measurements, is an interesting question
itself. Recently, statistical research did suggest the presence of a bound in the situation
of extreme wave heights.

Sometimes, the estimation of very high quantiles on its own, does not provide us
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with enough information. In certain situations, the behaviour of the probability distri-
bution of the subject of interest beyond a certain (extremely) high threshold as a whole,
is needed in further research. That part of the distribution function is usually called its
(extreme) tail. One could argue that being able to estimate an arbitrary (high) quantile
should provide us with enough information to estimate the whole tail. Unfortunately,
this is not quite right in the same sense that knowledge of the pointwise behaviour of a
function does not imply that one knows the uniform behaviour of that function as well.
Moreover, though confidence intervals of estimated quantiles do provide some infor-
mation about the tail, they do not necessarily contain enough information to construct
confidence bounds for the whole tail of that distribution.

All the questions raised in this section, tacitly assume that the (extreme) tail of a
distribution is well defined. Even though in theory it is very well possible to give a
precise definition, in practice that might be much harder. Usually it is not at all clear,
above which threshold the extreme tail starts. In this thesis we will try to shed some
more light on this fundamental question in extreme value analysis.

1.3 Some extreme value theory

In order to be able to deal with questions like the ones raised in the previous section us-
ing statistical and probabilistic methods, we will assume the considered measurements
to be realizations of independent random variables, i.e., we will consider the data to
be a realization of a sample X),...,X,, from a common distribution function F. For a
discussion on the effect of dependency between the X;'s see LEADBETTER, LINDGREN
AND ROOTZEN (1983).

Even though both theoretically and conceptually very interesting aspects arise con-
sidering higher dimensional distributions, we will only consider the one dimensional
case in this thesis.

Obviously, inference about extremely small measurements can be translated into in-
ference about extremely large measurements, using the trivial relation min(X, ..., X,) =
—max(—Xi,...,—X,). We shall therefore only be concerned with large extremes and
henceforth use the term ‘extreme events’ to indicate events concerning large extremes.

Intuitively, the distribution of the largest value(s) of a sample should provide us with
some information about extreme events. Consequently, we could consider the distribu-
tion of the maximum of the sample, i.e., the distribution of max(Xj,...,X,). However,
the limit of that distribution when the sample size n tends to infinity, is degenerate: de-
pending on the underlying distribution function F, the maximum of the sample will tend
either to infinity or to a finite constant value. In order to try to obtain a non-degenerate
limiting distribution, one could think of applying a transformation to the maximum of
the sample. Hence we arrive at the following main assumption used in this thesis: there
exist sequences of real numbers {a,} and {b,}, n € IN, with a, > 0 and b, € IR, such
that

lim F"(a,x+b,) = lim P

n—oo n—yeo

max(Xy,...,X,) — b
an

2 Sx} = G(x) (1.1
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for all x, where G is a non-degenerate distribution function'. Then F is said to be in
the domain of attraction of G, denoted by F € D(G). This assumption only induces a
restriction on the upper tail of the distribution function F. This is quite natural, since we
are interested in the region beyond the largest observation and hence we will need some
restriction on the way the distribution function could possibly continue beyond that
largest observation. Without such an assumption, inference in that region would be im-
possible: if we allow the tail of the distribution function to change in an arbitrary way,
there is no hope we could ever sensibly extrapolate beyond the largest measurement.
On the other hand, any assumption on the upper tail of a distribution limits the possible
behaviour of that tail. Fortunately, a large class of distribution functions satisfies as-
sumption (1.1), including many of the distribution functions that are commonly used in
practice, like e.g., the Normal, Uniform, Exponential, Weibull and Cauchy distribution.

1.3.1 Limiting distributions

In standard central limit theory one obtains an asymptotic normal distribution for the
sum of many independent and identically distributed random variables, regardless of
the underlying common distribution function, provided some mild conditions (e.g., ex-
istence of second moment). Moreover, in order to be able to apply the asymptotic theory,
one does not need to know the behaviour of the underlying distribution function in every
detail: e.g., knowledge about the first two moments suffices.

In extreme value theory, a similar situation occurs: the limiting distribution G in
(1.1) can only come from a limited class of distribution functions, regardless of the
underlying distribution function F. As stated before, it is only the behaviour of the tail
of the distribution that determines to which domain of attraction F belongs.

That result in extreme value theory, first discovered by FISHER AND TIPPET (1928)
and later proved in complete generality by GNEDENKO (1943), is given by the following
theorem:

Theorem 1.1
Suppose distribution function F satisfies assumption (1.1) with limiting distribution G.
Then G is the same, up to location and scale, as one of the following distributions:

Type I:  A(x) =exp(—e™) xeR
0 <0 .

N a
Typelll: Yqo(x) = { fI:Xp( (=)%) i;g with o >0

We will refer to these distributions as the extreme value distributions.

We will call this kind of convergence of a sequence of distribution functions either ‘weak conver-
gence’ (denoted by “yor ‘convergence in distribution’ (denoted by _.’L,)
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Proof of Theorem 1.1:
See e.g., GNEDENKO (1943), DE HAAN (1970) or RESNICK (1987). n

Alternatively, Type I is also known as Gumbel or double exponential, Type II as Fréchet
or heavy tailed and Type III as (reverse) Weibull type. Note that the right tail of a
Weibull distribution is of Type I and the left tail is of Type III, hence the alternative
name reverse Weibull for Type III. The terminology Type I, II and I is according to
Gumbel’s characterization in GUMBEL (1958).

The statement that the limiting distribution G in (1.1) must be the same as one of
the extreme value distributions up to location and scale, introduces some freedom in
the choice of the normalizing constants {a,} and {b,}. Actually, this is a consequence
of the following theorem, known as Khintchine’s theorem:

Theorem 1.2 (Khintchine’s theorem)
Let {F,}, n € IN, be a sequence of distribution functions and H be a non-degenerate
distribution function. Let {an} and {b,}, n € IN, with a, > 0 and b, € IR be such that

Fu(aux+ by) LA H(x)

Then, for some non-degenerate distribution function H* and sequences {a,} and {B,},
n & IN, with a, > 0 and B, € R,

Fy(anx+ ) — H*(x)
if and only if

gl'__,A and M

[ an

—B

for some A > 0 and B € IR. Moreover,

H*(x) = H(Ax+ B)

Proof:
See e.g., LEADBETTER, LINDGREN AND ROOTZEN (1983) (Theorem 1.2.3) or
RESNICK (1987) (Proposition 0.2). [ ]

An application of this theorem yields the following: using a suitable choice of the
sequences {a,} and {b,}, the three limiting types may be combined into the single
form

G,(x) =exp (——(1-+-yx)“'/7) for all x such that 1 +yx >0 (L.2)

with ¥ € IR and the convention that Gy(x) = lim,_,0 Gy (x) = exp(—e™) for x € IR.
This G, is called the Generalized Extreme Value distribution with extreme value index
v, abbreviated to GEV(y). If F € D(G,) for some y € IR, we say that the distribution
function F itself has extreme value index y as well. One of the first papers in which this
single form appeared is due to VON MISES (1936).
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Moreover, Theorem 1.2 shows that the extreme value index y as function of the distri-
bution F is well defined, in the sense that it is uniquely determined, independent of the
choice of the sequences {a,} and {b,}.
Obviously, we have the following relations between A, ®,, ¥, and G,:
A(x) = Go(x)

@y (x) =Gyp(a(x—1)) a>0

Yo(x)=G_jq(a(x+1)) a>0
Hence, the three extreme value distributions can be characterized by the sign of y: Type I

corresponds to y = 0, Type II to ¥ > 0 and Type III to ¥ < 0. In Figure 1.3.1 typical
examples of these three situations are shown.

1 1 1

0.5 0.5 0.5
5= 0 2 4 L a— 0 2 4 %3 2 4
@y=-1 ®y=0 ©r=1

Figure 1.3.1: Three Generalized Extreme Value Distributions

The two cases ¥ < 0 and y > 0 are related in the following way: Suppose that F € D(G,)
for some y < 0. Defining the upper endpoint of a distribution F by

xp=sup{x: F(x) <1} <o

and putting F(x) = F(x} — 1/x) then yields that F € D(G_,). The opposite relation
holds as well: if F € D(G,) for some y > 0 then the distribution

Flx) = F<x°1—y) yex

1 y>x°

for some x° > 0 is in the domain of attraction of G_, and has upper endpoint x°.

The following properties can easily be derived from the definitions of the three
limiting types:

L Ify <Othenxg < oo

2. If y > O then x?;, = oo,
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3. Incase y > O the integrals

/1th dG,(r)

are finite for all p < 1/y and infinite for all p > 1/y.
In case y = O these integrals are finite for all p.

These properties also hold, to some extend, for distributions F that are in the domain of
attraction of one of these extreme value distributions:

. If F € D(Gy) for some y < 0 then x§ < eo.

2'. If F € D(G,) for some y > 0 then xj = eo. If F € D(Gy) then x§ can be finite as
well as infinite.

3. If F € D(Gy) for some y > 0 the integrals

/wt" dF (1)

1

are finite for all p < 1/y and infinite forall p > 1/y.
If F € D(Gp) with x§ = oo then these integrals are finite for all p.

1.3.2 Alternative formulations of our main assumption

As mentioned before, assumption (1.1) induces a restriction on the upper tail of the
underlying distribution function F. The following equivalent form of that assumption,
cf. BALKEMA AND DE HAAN (1974), illustrates that restriction.

Let x° be the upper endpoint of F. Then F € D(G, ) if and only if, for some positive
function & (+)

}iTr}ll—Il?-(_t.;—();O)‘ﬂ=—logGy(x)=(l+yx)_1/" (1.3)
for all x > 0 with 1 + yx > 0. Intuitively this means that we relate the behaviour of F at
the more extreme quantiles ¢ + xa (¢) to its behaviour at the moderate quantiles 1.

A slightly different formulation was used by PICKANDS (1975): consider the condi-
tional probability of X not exceeding ¢ + x given it has already exceeded ¢, i.e., consider

_ F(t+x)—F()

Fi(x) 1-FQ)

x>0 (1.4)
Then the following holds for any continuous distribution function F: F € D(G,) for
some y € IR if and only if, for some positive function & (-)

lim sup |F(x)— Fgpp(x;7,a(t))| =0 (1.5)
1X° g<x<x0 —t
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where Fgpp(x;7,0) is the distribution function of a Generalized Pareto Distribution,
defined for o > 0 and y € IR as

Fopp(x;7,0) = 1—(1+yx/a)"l/y (1.6)
with x > 0 and 14 yx/o > 0 and the convention that

Fepp(%:0,0) = lim Fgpp(x;7,0) = 1 —e /7
y—0

for x > 0. Formally this means that, for a continuous distribution function F, F € D(G,)
if and only if the tail of F, normalized to be a distribution in the sense of (1.4), is
approximately a Generalized Pareto distribution. A simple calculation shows that, if F
is a Generalized Pareto distribution with parameters y and o then its tail #; is also a
Generalized Pareto distribution, but with the parameters y and (o + yt).

Another equivalent formulation of the domain of attraction assumption (1.1) is in
terms of the inverse of the distribution function, i.e., in terms of the quantile function.
Define the quantile function Q(-) as

O(s)=F'(s) =inf{x: F(x)>s} for0<s<1
Then (1.1) is equivalent to the existence of a positive function a such that

lim 0(1-sx)—Q(1-ys) _xr-1
510 a(s) 4

(1.7

for x > 0, ¥ € IR and the convention that (x~* — 1)/y = —logx for y = 0. Quite often
one will find this formulation in terms of the function U(-) defined by

Ux) = (ﬁ>_l(x) 0<x<o

Then (1.7) reads
U@x)-U(t) x' -1

li =
=R y

for x > 0, y € IR, with a(z) = a(1/t) and the convention that (x* — 1)/y = logx for
y=0.

1.3.3 The domains of attraction

Various necessary and sufficient conditions are known, that can be used to determine to
which (if any) domain of attraction a specific distribution function belongs. These con-
ditions obviously involve the ‘tail-behaviour’ of that distribution function, i.e., they are
concerned with 1 — F(x) as x increases. Rather simple but useful sufficient conditions
can be found in VON MISES (1936). These conditions apply whenever the tail of the
distribution function has a (second) derivative close to its upper endpoint.

We will state these von Mises conditions in terms of the three limiting distributions
A, Oy and Y, .
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Theorem 1.3 (The von Mises conditions)

Let F be a distribution function that is absolutely continuous in a (left) neighbourhood
of x3., with density f. Then sufficient conditions for F to belong to one of the three
possible domains of attraction are:

1. Suppose f has a negative derivative f' for all x in some interval (x1,x%), f(x) =0
Sforx > xp and

o FOO=F@®)
O

Then F € D(A).

2. Suppose f(x) > 0 for all x in some interval (xy,%) and for some a >0

1f(t)
e L= F(7)

Then F € D(®,,).

3. Suppose f(x) > 0 for all x in some interval (x1,x3), f(x) =0 for all x > x5 and
for some o >0

o G2 =0F0) _

Mg 1=F(1)
Then F € D(¥,).
Proof:

See e.g., DE HAAN (1976). ]

These sufficient conditions are actually quite close to the necessary and sufficient con-
ditions, as is shown in the next theorem:

Theorem 1.4
Necessary and sufficient conditions for a distribution function F to belong to one of the
three possible domains of attraction are:

1. F € D(A) if and only if there exists some strictly positive function g(t) such that

1-F
lim L= P xe@) _ (1.8)
g 1=F(r)
Sor all real x. Moreover, if (1.8) holds for some strictly positive function g, then it
also holds for the following choice of g:
(1= F(u))du
t) = L1 Sl \ad  hadad
g(t) T—F0)

fort < xg.
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2. F € D(Py) for some a > 0 if and only if x§. = o0 and

—a

. 1=F(tx)
lim ————~ =
e 1—F()

for each x > 0.

3. FeD(¥,) for some a > 0 if and only if x3. < e and

lim 1 — F(xy —xh) _
no 1 —F(xy—h)

for each x > 0.

Proof:
See e.g., GNEDENKO (1943). n

Moreover, the von Mises conditions are necessary and sufficient for F to belong to a
‘twice differentiable’ domain of attraction D (G), i.e, the first and second derivatives
of the distribution of the scaled maximum converge to the corresponding first and second
derivatives of the limit. More formally, F € D)(G) if

(@) (F) D (anx+bn) » GV(x)  asn—e  1=0,1,2

locally uniformly? on the support of the appropriate extreme value distribution G, where
h") denotes the I-th derivative of the function % with respect to its argument. (See
PICKANDS (1986) and SMITH (1988))

Another way to see how well the von Mises conditions describe the needed proper-
ties of distributions belonging to one of the three domains of attraction, uses the notion
of ‘tail-equivalency’: two distribution functions F| and F; are said to be tail-equivalent
if their upper endpoints coincide (i.e., xz = x§, (=: x°)) and if they satisfy

. I—Fl(t)
l -——_—_C
ILIE’ l—Fz(t)

for some C > 0.
One can show that, if F| is in one of the domains of attraction there exists a tail-

equivalent distribution F, belonging to the same domain of attraction, that satisfies the
appropriate von Mises conditions, as stated in Theorem 1.3.

2Local uniform convergence is convergence on compact subsets.
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1.3.4 Regular variation

In the previous subsection we stated necessary and sufficient conditions that charac-
terised the domains of attraction of the three extreme value distributions. These condi-
tions are closely related to the concept of regularly varying functions. Moreover, in the
analysis of the behaviour of estimators in the field of extreme value theory, properties of
regularly varying functions and so called IT-varying functions are frequently used. We
will therefore state some definitions and results concerning these two classes of func-
tions. For a more detailed treatment, we refer to SENETA (1976) and GELUK AND DE
HAAN (1987) for theory on regular variation and I-variation and to DE HAAN (1970)
for the connection between regular variation and extreme value theory. The proofs of
the theorems we will state, can be found in these references.

Regular variation is a one-sided, local and asymptotic property of an eventually
positive, measurable function. Being a local property, it is defined relative to a point:

DEFINITION 1.1
A real valued, measurable function U : [A,e0) — IR for some A > 0, is regularly
varying at infinity with index p € IR, notation U € RV, if for all x >0

Utx)
g = 9

o

Similarly, we may define a function U to be regularly varying at 0, notation U € RV?,
if the function U(1/x) is regularly varying at infinity with index —p. When p = 0, the
function U is said to be slowly varying.

Moreover, if one only assumes that the limit in (1.9) exists and is positive for all
x > 0, it can be shown that that limit is necessarily of the form x*.

It is obvious that a regularly varying function can be considered as a function whose
asymptotic behaviour near a point is that of a power function multiplied by a factor that
varies ‘more slowly’ than a power function. Indeed, U € RV if and only if it can be
written in the form U (x) = x? L(x) with L a slowly varying function.

Two basic and important theorems concerning properties of regularly varying func-
tions are the following:

Theorem 1.5 (Uniform Convergence Theorem)
IfU € RV, then for every fixed [a,b] with 0 < a < b < oo relation (1.9) holds uniformly
forx € [a,b].

Theorem 1.6 (Representation Theorem)
If U defined on [A,0), A > 0, is regularly varying at infinity with index p, then there
exist measurable functions c(-) and r(-) with

tlggc(t) =c¢o € (0,0)  and ,132 rt)=p (1.10)
and a constant B > A, such that for all x > B

r(t)
U(x) = c(x)exp / —=dt (1.11)
B

t
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Conversely, if (1.11) holds with c(-) and r(-) satisfying (1.10), then U € RV,

This representation of regularly varying functions is also known as the Karamata repre-
sentation.

The class of Il-varying functions is obtained considering a generalization of the
class of regularly varying functions. First restate the definition of regular variation as
follows: A measurable function U : [A,e) — IR} is regularly varying at infinity if there
exists a positive function a(-) such that for all x > 0 the limit limy,_,o, U (rx)/a(t) exists
and is positive. (In which case a(t) = U(r) is one possible choice.)

Then an obvious way to proceed is to consider the cases in which a measurable
function U : [A,e) — IR, is such that there exist real functions a(-) > 0 and b(-) such
that for all x > 0O the limit

. U(tx)—b(z)
T

exists and the limit function is not constant (to avoid trivialities). This being equivalent
to the existence of a non-constant limit

Ux)—-U(r

lim £ -0 @) (1.12)

)
for all x > 0, we get the following theorem:
Theorem 1.7
IfU : [A,o0) — R is measurable, a(-) is positive and (1.12) is not constant, then

. Uex)—U(t 7 —1
fim YR U0 _ x x>0 (1.13)

= af) p

for some p € IR and ¢ # 0, with the convention that the right hand side of (1.13) reads
clogx if p = 0. Moreover, we may take a(-) to be a measurable function in RV

Actually, p # 0 corresponds to classes of functions we have met before:

Theorem 1.8
Suppose the function U is such that Theorem 1.7 holds with p # 0 and ¢ > 0.3

a Ifp >0thenUeRV;’j.
b. If p <0then U(e) := tle U(z) exists and U{e0) —U(t) € RVY
Hence, the case of p = 0 in Theorem 1.7 defines a new class of functions, which is

called the class of IT-varying functions. Hence, we get the following definition:

DEFINITION 1.2
A real valued, measurable function U : [A,e) — IR for some A > 0 is [-varying at
infinity with auxiliary function a(-) > 0, notation U € [Tor U € I1(a), if for all x > 0

31t suffices to consider ¢ > 0 since replacing U by —U changes the sign of ¢.
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L U -U@)

Jim ) =logx

<

Again, it is customary to define a function U to be IT-varying at 0, notation U ¢ IT° if
U(1/x) is I1-varying at infinity.

Now we are able to reformulate the necessary and sufficient conditions of Theo-
rem 1.4 in terms of regular variation and IT-variation:

Theorem 1.9 (Reformulation of Theorem 1.4)
Necessary and sufficient conditions for a distribution function F, with its quantile func-
tion Q, to belong to one of the three possible domains of attraction are:

1. F € D(A) if and only if the function s — Q(1 — s) is II-varying at 0.

2. F e D(®,) for some o > 0 if and only if its tail function x — 1 — F(x) is regularly
varying at infinity with index —a, or equivalently, if and only if the function
s Q(1 —s) is regularly varying at 0 with index —1/a.

3. F € D(¥y) for some a > 0 if and only if x3 < co and the function x — 1 —
F(xg — 1/x) is regularly varying at infinity with index —a, or equivalently, if
and only if its quantile function has the property that Q(1) < o and the function
s Q1) — Q(1 —5) is regularly varying at 0 with index 1/ .

Note that Theorem 1.8 can be used to change the equivalent formulation (1.7) of our
main assumption (1.1) into the just stated conditions on the quantile functions.

1.4 Scope of this thesis

The formulation of the possible limiting distributions of the affinely transformed max-
imum of a sample using the Generalized Extreme Value distribution, shows that the
parameter y, i.e., the extreme value index, is an important characteristic of the distribu-
tion. In the remainder of this thesis we will mainly be concerned with the estimation of
that parameter.

The difficulty of estimating that extreme value index, can be quantified using the
concept of the minimax risk of an estimator. In Chapter 2, we will first derive lower
bounds to the rate with which that minimax risk of estimating the extreme value index
tends to zero. In the remaining part of that chapter, we will briefly discuss Pickands’
estimator (PICKANDS (1975)), 2 maximum likelihood estimator (SMITH (1987)), Hill’s
estimator (HILL (1975)), a moment estimator (DEKKERS, EINMAHL AND DE HAAN
(1989)) and a kernel type estimator (CSORGO, DEHEUVELS AND MASON (1985)). We
will state their definitions and some of the (asymptotic) results obtained in the men-
tioned references. Moreover, in case of the kernel type estimator we will present an
alternative interpretation of that estimator. Using that interpretation, some of the results
in RESNICK AND STARICA (1995) can easily be derived in an alternative way.
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As stated at the end of section 1.2, in practice it might be very difficult to decide at
which point the extreme tail of a distribution starts. Indeed, the asymptotics of the
previously mentioned estimators all depend on the value of the threshold above which
the extreme tail is defined to start. In ‘real life’ applications one often calculates and
plots the estimator using different thresholds and then uses rather subjective methods
to decide what threshold to use. In Chapter 3 we will make a first attempt to develop
a data-driven method, i.e., a method that uses (objective) information of the sample at
hand, to decide what threshold to use in the case of the kemel type estimator. To that
end we will derive a more general asymptotic result than the one in the paper by Csorgd
et al. The results of this chapter were derived jointly with Rudolf Griibel and published
in GRUBEL AND DE WOLF (1994).

In Chapter 4 we will introduce a new estimator of the extreme value index and dis-
cuss its asymptotic behaviour. For this new estimator, two parameters determine its
behaviour. At the end of Chapter 4 a small simulation study will illustrate that depen-
dence and will indicate a possible solution to the problem of choosing these parameters
appropriately.

Chapter 5 contains results concerning yet another kernel type estimator of the ex-
treme value index. Actually, a whole class of estimators will be introduced and their
consistency and asymptotic normality will be proved. These results were derived jointly
with Piet Groeneboom and Rik Lopuhai.

Finally, in Chapter 6 we will present a simulation study of some of the mentioned
estimators of the extreme value index and discuss their finite sample properties using
the results of these simulations, indicating the advantages of the methods as well as their
limitations. Moreover, we will apply the estimators to estimate the extreme value index
of the distribution of 211 measurements on water discharges at Lobith, The Netherlands,
during the period 1901-1991.
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Chapter 2

Estimation of the extreme value index

In this chapter we will derive a lower bound for the minimax risk of estimating the
extreme value index ¥, over a certain class of distribution functions.

Moreover, we will briefly describe some estimators of that extreme value index.
Some of the analytical results concerning these estimators will be stated, in particular
their asymptotic properties. At the end of this chapter we will illustrate the sharpness of
the minimax lower bounds, by showing that at least one of the in this chapter introduced
estimators achieves these bounds in convergence in distribution. A discussion of the
finite sample behaviour will be deferred to Chapter 6.

In the subsequent sections of this chapter, we will be concerned with a sample

Xi,..., X, with the X; 2 X i.i.d. with common distribution function F. We will de-
note the (ascending) order statistics of a sample by X(1) < X5 < ... < X().

2.1 Minimax lower bounds

Some attempts have been made to measure the difficulty of the estimation of the extreme
value index y. One approach was taken in HALL AND WELSH (1984). They derived
the maximum rate of convergence in probability for estimating the extreme value index
over a certain subclass of the class of all distribution functions that belong to any of the
three domains of attraction of the extreme value distributions. To be more specific, they
considered the problem of finding the fastest rate at which a sequence {a,};—, can tend
to 0 and yet satisfy
llr{rlgfx%f]P(|y,, —yl<a,) =1

for a specific class D of distribution functions with positive extreme value index.

In DREES (1995) the same approach was taken, but for a more general class of
distribution functions than the one considered by Hall and Welsh. Moreover, in Drees’
paper, a generalization to non-positive ¥ was given.

Another frequently used approach is given by calculating the minimax risk of the
estimation problem. In the setting of extreme value estimation an attempt to that end

17
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was taken in DONOHO AND LIU (1991). They derived (a lower bound to) the minimax
rate of the estimation of the extreme value index y over virtually the same class of
distribution functions Hall considéred. However, their results are rather difficult to
grasp for two reasons: these results are stated in a very implicit way and their derivations
depend on results stated in a technical report that is difficult to obtain (DONOHO AND
L1vu (1987)).

In this section we will derive a lower bound to the minimax risk over a larger class of
distribution functions than the one considered in the aforementioned papers. Moreover,
we will derive that lower bound in a rather straightforward manner. ‘

First we will briefly introduce the notion of the minimax risk in our setting of the
estimation of the extreme value index.

2.1.1 Minimax risk in the setting of the extreme value index

Let F denote some subclass of the class of all distribution functions that belong to any
of the three domains of attraction of the extreme value distributions, whose densities
with respect to the Lebesgue measure are assumed to exist. From this point onwards,
we will identify a member of the class ¥ by its density and hence refer to  as a class
of densities. \

Let I" be the functional that maps a density from that class to the corresponding
extreme value index, i.e., for all f € F define

Tf=y ifFeD(G,)

where F is the distribution function corresponding to the density f.

Let y, (n > 1) be an estimation procedure, i.e., a sequence of measurable functions
that map IR” into IR in such a way that I';, = y,(X1,X>, ..., X,) is an estimator of I" f for
sequences of i.i.d. stochastic variables X;,Xj5,... with common density f € F.

In order to say that an estimation procedure behaves well, the difference I'; — I'f
should at least be close to zero in some sense. To quantify this, define the risk of the
estimation procedure y;, evaluated at f € F by

Rl(na ynaf;r) = ]Efl(lyfl(X17X27 e ’X’l) - Ff])

where [ is a loss function, i.e., an increasing non-negative function on [0, ) with I(0) =
0. Commonly used loss functions are /(x) = x and /(x) = x2.

Obviously, the given definition of risk describes a local property of the estimation
procedure: the risk is only evaluated at one specific point of the class of densities F.
To describe the corresponding global property of the procedure, it seems reasonable to
take the maximum risk over the class of densities 7, i.e., to consider the worst possible
performance of the procedure. More formally:

MRy(n, y»;T, F) = sup Ry(n, 1, f;T)
feF
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To get a measure for the difficulty of the estimation problem, the worst performance is
minimized over all estimation procedures:

MMR(n;T, F) = infMR;(n, y; T, F) = inf sup Ry (n, v, ;)
Yn n feF

This is called the (global) minimax risk for estimating I"f based on a sample of size n,
generated by a density f € F.

If the functional is such that I" f can be estimated consistently, the minimax risk will
typically tend to zero as n tends to infinity. The rate of this convergence indicates how
difficult it is to estimate that functional: if, for n tending to infinity, MMR;(n;T, F) ~
8q(I) for some sequence of positive constants §,(/) tending to 0 as n tends to infinity,
then I"f is said to be §,—estimable with respect to the loss function /. The first objective
is usually to find a lower bound for the minimax risk of an estimation problem.

Obviously, for any subclass F, C F

MMR,(n;T, F) > MMRy(n;, %) @.1)
The right hand side of (2.1) is called the local minimax risk at f, if F, converges to the
singleton {f}.
By Jensen’s inequality and the monotonicity of a loss-function /, we have that

MMR,(n:T", F) > 1 (MMR;,(n;T, F))

where /| is the identity, i.e., [;(x) = x. In the remainder of this chapter, we will there-
fore confine ourselves to the minimax risk with loss function /; (x) = x and henceforth
suppress the subscript /; in the notation of the minimax risk.

In JONGBLOED (1995) a lower bound to the minimax risk is derived that in our case
translates to: for all sets {fo, fi} C F,

MMR(T, (o £iY) 2 3 Ifo =il (1= B (o, ) @2

where H2(fy, f|) denotes the squared Hellinger distance between the two densities, i.e.,
1n our situation

o 1) =3 [ (VAR - VA®)

Note that, since both f and f; are probability densities,

1=H o, f1) = [ VAR dx
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2.1.2 Minimax lower bound: a positive extreme value index

In this subsection we will obtain a lower bound to the minimax risk of estimating a
positive extreme value index over a specified class of distribution functions, including,
as a special case, the class considered in HALL AND WELSH (1984) and in DONOHO
AND Liu (1991).

The result is summarized in the following theorem:

Theorem 2.1

Let L(-) be a slowly varying function at infinity that is positive and eventually mono-
tone. Define F1 = F1(1,Co,€,8,L) with y,Cp, £,8 > 0 to be the class of continuous
densities f on (xg,°0) for some xy > 0 that satisfy the following conditions:

L fm =St 1)

Y
2. |C-Col <L e, y>0 and ly—nwl<e
3. [r(x)| < x P L(x)

Let g(x) = x1*2Pn (L(x”o))'2 and denote its inverse (for x large enough) by g7 '(-).
Then the following inequality on the minimax risk of estimating y holds true:

n—yoo

1/2
n
imi —— M ; >
llmmf(gl(n)) MR(n:T, F1) > k

for some constant k > 0, depending on yy, Cy and .

Note that a distribution function F corresponding to a density f € ¥ satisfies
1
1-F(x) =Cx 7(1+R(x))
with

1

1
xXr [ _1_
R(x)=—/ y 7 r(v)dy
Y Jx

Moreover, using condition 3. on the function r(-), |[R(x)| < x~# L*(x) with L*(-) slowly
varying at infinity as well.
In order to proof the theorem we will need the following lemma:

Lemma 2.1
For some Ly > 0, let L : [Lg,) — IR be a monotone function that is slowly varying
at infinity. Let M = M,, be a sequence of real numbers tending to infinity and let B be a
positive constant.

Define the sequence A = A, as:
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(a) In case L(-) is monotone non-increasing:
A =BMPLM)
(b) In case L(-) is monotone non-decreasing to a finite limit L(o0):

L(Lo)
A= 1)

(c) In case L(-) is monotone non-decreasing to infinity:

—2gMPL(M)

A =c,BM7PL(M)

for arbitrary, fixed c, € (0,1).

Then the following holds true:

yB ( 1) < M~PL(My) Yy e [%1) (2.3)

Jor M large enough.

Proof of Lemma 2.1:
Using monotonicity of L(-) and defining in case (a) (i.e., L ])

a=1 and yM(a):ﬁ

in case (b) (i.e., L 1 L(e0) < 0)

L
T (e =
and in case (c) (i.e., L 1 )
—1
ym(a) = w with & € (0,1) arbitrary

where L™!(s) = inf{y € [Lg,e0) : L(y) > s}, we have that
L(My) > aL(M) Vy € m(a), 1)

Obviously, in cases (a) and (b) yp(a) — 0 as M — oo, In case (c) the notion of rapid
variation (see SENETA (1976)) entails that

yml{a) =0 if O<ax<l

as M tends to infinity.




22 2. Estimation of the extreme value index

Using the definitions of & and yp(ea), (2.3) is satisfied for all y € [yp(x), 1) if
. (y-‘ - 1) < aMPL(M) 2.4)

holds for all y € [yp(),1). Note that, in cases (a) and (b), this implies that (2.3)
holds for all y to be considered.

The left hand side of inequality (2.4) is maximized for yma = (1 — A /8)/*,
hence we need

ANAA 2
A -f
(1 ﬁ) g5 SaM " LM) 25)

Note that, Since ymgy tends to e~/ > 0 as A tends to 0 and yy(e) tends to 0 as
M tends to infinity, ymq, will fall into the interval [yy(a),1) for M large enough.
Moreover, equation (2.5) is satisfied if we take

A =aBfMPLM) (2.6)
Since L(-) is slowly varying, this A will indeed tend to zero as M tends to infinity.
In case (c) we still have to consider the inequality on the remaining interval

[Lo/M,ym(@)). Using the fact that L(-) now is non-decreasing to infinity, we have to
consider

M (@) [om(@) ™ ~1] < Liko) @7

Since L~1(-) is also non-decreasing to infinity and L~' (¢ L(M))/M — 0 as M — oo,

logL~ (@ L(M))
logM

for M large enough. Hence, using that both L(-) and log(-) are slowly varying at
infinity,

€(0,1)

MP L(M)log M
_logL~!(aL(M))

=M"PL(M)logM |1
(M)log [ ogh

] —0
and M—PL(M) — 0 as M — o. Hence, substituting (2.6) in the left hand side of
inequality (2.7) we obtain

L‘l(aL(M))) Tapwien

_ B
(L™ (aL(M))) ( m

= (L7 (aL(M)))” [—-aﬂM‘ﬁL(M)log—————L‘l((;;(M))(1+o(1))]
= ap (L™ (aL(M)))® L(Mﬂ)ll;’gM [l~lOgL_l;(gO;;(M))](l+o(l)) 2.8)
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Moreover, taking logarithms in (2.8), we get

_logL'(aL(M)) logL(M) _ loglogM

—hlogM |1 logM BlogM  BlogM
log (1 _ logL‘l:Jgga;;‘(M)!)
Bl B logM

Since the last four terms inside the square brackets tend to 0 by the arguments fol-
lowing (2.7), this tends to —ee. Hence, (2.4) is satisfied in case (c) as well. [}

Now everything is set up to prove Theorem 2.1.

Proof of Theorem 2.1:
First note that the condition on the support of the densities is without loss of gener-
ality, since we are only interested in the right (or upper) tail of these distributions.
Secondly note that for the proof we can assume L(-) to be monotone on its entire
support.
In view of (2.2) define the densities

_1_
o) = 25! x€ [C,00) 2.9)
and
Cy -1_
el X € [M,e0)
fl(x)= y} .
G -1 I
—=x 0 xe[CP,M)
b\

with >0 and M > Cg" to be specified lateron. Since f; should be a continuous
probability density, the following conditions need to be imposed:

1 1
Sy w =Gy w (2.10)
n Y0
and
1 1
CIM T+ G(C ~M ) =1 (2.11)

To use inequality (2.2) to its full strength, the two densities should be such that the
distance between y and y; is large even though the Hellinger distance between the
two densities is small. Therefore, we will take y; = yo+ 7 and let = 7, tend to 0
with an appropriate rate as n tends to infinity and simultaneously let M = M, tend to
infinity with n.

Using condition (2.10), f; can be rewritten into

filx) = L w1y ()
4!
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with
0 X € [M, o)
r(x) = eadod
A\ Y
(M) 1 xecl,m)
Moreover, (2.10) and (2.11) can be combined into the equation

Ny -t n —\
CL=C—Mn n (1+C0 (——I)M '0> 2.12)
(0} Y
To use inequality (2.2), we will first consider the part involving the Hellinger distance

between the two densities fy and fi. Using the definitions of these functions, we
obtain

1-H(fo,fi) = [ VAW A dx
- M

=, [ Q& (/ x“i(%‘fﬁ)“dﬁM%“%/ x‘%‘ldx)
nr \J/m e

_ CoCy M—z;_l ( 291 M—;}—O +y0M2l% (Co—l _M—%)>
Yon n+n

_ . |GCry ok (Yo(Yl—Yo)M—:;—o+&MT§3>
104! Yo+n G

Substitution of (2.12) together with y; = y + 7 in the last formula then yields

1
L-H(fo, fi) = (1+1C0M%> : (1+ n COM_%>
0 210+ 7

i.e., inequality (2.2) becomes

MMR(r;T {fo, i) > 7l ~ 0l (1= H2(fo, )™

L (e e ) (14— 3 13
= - + — ] n .
4"( 0 ° ) ( +2m+n 0 ) @-13)

Taking logarithms on the right hand side and disregarding the constant 1/4, we obtain

n -1/ n -1/
logn —nlo (1+—CM "°> +2nlo (1+ CoM 70)
¢ & 0 & 2i+n

Using that we will let 7 tend to 0 and M tend to infinity, expansion yields

logn —n (leOM‘l/"’+0(n2M‘2/7°)) +
(]

n —1/7 2p1-2/1
2 M7 M2/
+ n(27o+nco +o(n )

n2
29+

=logn —Con M"/"°+0(nn2M‘2/70)
n
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Hence, the right hand side of (2.13) is, for large M, maximized taking
W\ -2
n~ (nM"rE> (2.14)

The exact conditions on the function r(-) as given in Theorem 2.1, will further restrict
the allowable behaviour of 7 and M and will yield the rate for the lower bound to the

minimax risk as mentioned in the theorem.

Obviously, fy as defined in (2.9) satisfies this extra condition, since the corre-

sponding ro(x) = 0.

To obtain that f; is in the class ) as well (for n large enough) we need to check

the following conditions:

l.n<e

x\=-i
2. |r(x)| = (M) non_ l‘ <xPL(x)
3. |C0—C1|SE

for all x € [C°, M)

The first condition is easily satisfied by the condition that 7 should tend to O as n
tends to infinity. The condition on the function r;(-) can be rephrased as follows

¥ (v —1) <M L(My)

forally € [C)'/M, 1)

in this theorem and Ly = C(’)"’. That is, in order to get that the second condition is

n~MPLM)

Now consider the condition on |Cy — C].
tend to infinity,

1-— (1 _f_l)Miroirgwi

|Co—Ci| =Cy
I Yo

Co
Yo

Co
This is small, for M large enough, if

l—g/2<M 0¥ < 14¢/2

where A =1 /(y(r+n)) > 0. Invoke Lemma 2.1 with L(-), 1, 8 and M as defined
satisfied, we have to impose that

n — /]
1—(14+—=)M b+ + 0

(2.15)

Using that we will let n tend to 0 and M

1 n -1
(1 +M_70-C0—)
()

(-t

1-—M rlo+n +o0 (M_ roirgM‘i) ’
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ie.,if

—% < —LlogM<

r(ro+n)

N | ™

However, with (2.15), i.e., n ~ M~# L(M) we have

S — logM ~ M~# L(M)log(M)

n(rn+n)

and this tends to zero, since both L(-) and log(-) are slowly varying.
Finally, combining (2.15) with (2.14) then yields

+28n 1

M (LM

Defining g(x) = x!+2# %0 (L(x0))~2 with inverse g~!(-) (for x large enough), we ob-
tain the minimax lower bound as stated in the theorem:

=
Substituting L(x) = A for some A > 0, we obtain g~!(s) = (425)!/(1+28%) and hence
the lower bound to the minimax risk yields the same rate for 7 as in HALL AND WELSH
(1984), that is,

__Pn
n~n 14+287y

Moreover, if we substitute L(x) = Alogx for some A > 0, the inverse of g(-) is
approximated by

_ A \? i
Loy 2\ T+277
0~ (=) (siogs)?) ™

and we obtain the lower bound
B
n ~n TG (logn) T

i.e., n tends to O slightly slower as in the case Hall and Welsh considered.
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2.1.3 Minimax lower bound: a negative extreme value index

In this subsection we will obtain a lower bound to the minimax risk of estimating a neg-
ative extreme value index over a specified class of distribution functions. Since distribu-
tion functions with a negative extreme value index can be transformed into distribution
functions with a positive extreme value index, a lower bound can easily be deduced as
a corollary of Theorem 2.1:

Corollary 2.1

Let L(-) be a slowly varying function at infinity that is positive and eventually monotone.
Define F2 = F2(10,Co, €,8,L) with vy <0and Cy, €, 8 > 0 to be the class of continuous
densities f on (x,,xg) for some x, € R and upper endpoint x3. > 0, that satisfy the
Jollowing conditions:

c 1
L f(X)=—7(X?—X) 7 14 r(xp - x)
2 IC~Col<e, y<O0 and |y—p|<e
3. Ir(s)| < sPL(1/s)

Let g(x) = x!=%n (L()c"’o))_2 and denote its inverse (for x large enough) by g~ (-).
Then the following inequality on the minimax risk of estimating y holds true:

n—yeo

1/2
liminf ( ? ) MMR(n;T, F>) > k
g~ '(n)
for some constant k > 0.

Proof of Corollary 2.1:
First note that, as stated before,
MMR(n;T, F,) > MMR(n; T, { f1, f>})

for all sets {fi, 2} C %. Fix two densities k| and k3 in Fi(—y,Co,¢,8,L), with
extreme value indices ¥; and constants C; and where 7 is defined in Theorem 2.1.
Define the densities f; (i = 1,2) as

1 '
filx) =4 <x°—x> (x° —x)7? forx° —Cl' <x < x°

ie., if X ~ h; then x° — 1/X ~ f;. Note that these densities f; are in the class %> with
extreme value indices —y;, upper endpoints x° and constants C;. Moreover,

inf sup E/7(X,...,Xa)~Tf = inf sup Byf3*(Vi, %) IH
v ofe{fif} 7" he{h,hy}

where

- WA , 1
Y (Yla'-'vyll):—y<x —71,...,x —7n>
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the X; i.i.d. f and the Y; i.i.d. h. Finally,

inf sup IE;|#*(Y1,...,Ya) ~Th| >inf sup IE,|§(Yy,...,Yn) —Th]

P* he{h,m} ¥ he{hyhp}
where the infimum on the right hand side is taken over all possible estimators 7. The
corollary then follows from Theorem 2.1. ]

2.2 Pickands’ estimator

The estimator introduced by J. Pickands III in PICKANDS (1975) is based on his for-
mulation of assumption (1.1): A continuous distribution F with upper endpoint x}, is in
the domain of attraction of G, for some y € R if and only if

lim sup |F(x)—Fgpp(x;y,a(2))] =0

Mg 0<x<ag—t
with Fgpp(x;7,0) a Generalized Pareto Distribution and F; the conditional probabil-
ity of X not exceeding x + ¢ given it has already exceeded ¢. Formally it means that
if the threshold ¢ is large, the conditional distribution of X, given that X > ¢ can be
approximated by a Generalized Pareto Distribution.

The quantile function of a Generalized Pareto Distribution can easily be calculated:

- (l-s)"7-1 y£0

—log(i-s)
Qcrp(s;y,0) = a/ e du=
0 —colog(l—s) y=0

fory€eRand o > 0.
Using that formula, we can express the parameters y and o in terms of the quantiles

Qcrp(3:7,0) and Qgpp(3:7,0):

Qcrp(3:7,0) — Qaro(3i7,0)
=] log2
! og( Qcrp(5:7,0) /0

and

o = (Qerp(3:7,0)) / /0 10gzexp(yu)du

Pickands proposed to estimate the parameters y and o by a simple percentile method: let
M be an integer much smaller than n and consider the excesses Xn—iv)—Xn-ami1) 1=
l,...,4M — 1, over threshold X, _43s, 1) to be an (ordered) sample from a Generalized
Pareto Distribution. Then use the sample quantiles of these excesses to estimate the
parameters, i.e.,

X, =X

(n—M+1) (n—2M+1)
7Py =1log log?2
e (X(n wm+1) ~ X(n-am+1) ) /
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and

. log2 .
G <X(n—2M+1)_X(n—4M+l)) / /0 exp(Fi pgut) du

Since we are only interested in the estimation of ¥, the definition of Pickands’ estimator
of o was stated just for reference.

Obviously, the estimators depend on the choice of the integer M. Pickands argued
that M should tend to infinity (in probability) as n tends to infinity, but M /n should
tend to O (in probability) as n increases. He provided a data adaptive way to choose
the integer M and then proved that the Generalized Pareto Distribution with estimated
parameters, using that integer M, is a consistent estimator of the tail of the underlying
distribution F in the sense that forall ¢ > 0

1= F(X(y api1)+%) e bzo
1= F(X(n-am+1))

with Fy the Generalized Pareto Distribution with estimated parameters, i.e., Fy(x) =
Fpp(x: 7 a6 4)- Specifically, he proposed to compute M in the following way: For
each/,l=1,2,...,|n/4| define

= (1= Fy(x))

oo 0<x<oo

lim IP { sup

dy= sup |Fi(x) - Fi(x)|

0<x<oo

where £j(-) is the empirical distribution function of the values Xin—it1) = X(n—ar41ys
i=1,...,41— 1 and Fj(-) is a Generalized Pareto Distribution with parameters }‘/,‘: ; and
6,{’ ;- Then choose M to be the largest integer solution of

dy = in d
M lslsmltg/‘ﬂl

In DEKKERS AND DE HAAN (1989) a deterministic sequence m is considered. In that
case it is not too involved to show weak consistency of Pickands’ estimator. For the
sake of the argument and to show the connection with an equivalent formulation of our
main assumption different from Pickands’ formulation, we will give a proof of weak

consistency, following DEKKERS AND DE HAAN (1989). To that end we need the
following lemma:

Lemma 2.2
Let Zy,...,Z, be a sample from a standard exponential distribution' and k = k, be a
sequence of integers such that k < nand k — o as n — o, Then

P
Zin—k+1) = L(n—2u41) — log2

., P . . .
as n — oo, with —» denoting convergence in probability.

'In the sequel we will denote a random variable X, having an exponential distribution with expectation
4, by X ~ E(u). In particular, £(1) denotes the standard exponential distribution.
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Proof of Lemma 2.2:
It is well known that the spacings of standard exponential variables can be regarded
as independent exponential variables with expectation depending on i:

n D E n
{Z(n—H—l) ~Z(n-i) }i:l = {TI}H

with Zigy =0 and Ey, ..., E, are i.i.d. E(1). Hence,

2k lE

Zin—k+1) = Zin-2k+1) 2 N
i=k

Note that
%1
1 1
> —,=log2+0(-)
i=k k

as k — 0. Independency of the E; then yields

%1 2 %=1 2 1] %=1
E[Y —-log2} =( Y - +2——210g22 + (log2)*
i—k ! i=k !
C
<
~k
for some C > 0 and the assertion follows by applying Chebyshev’s inequality. ]

. Now we are able to prove weak consistency of Pickands’ estimator:

Theorem 2.2

Let F be a distribution that is in the domain of attraction of an extreme value distribu-
tion G, for some y € R. Let m = my, be an integer sequence with my, — o and m, /n — 0
asn— . Then f/,fm — ¥ in probability as n — oo,

Proof of Theorem 2.2:
(cf. the proof in DEKKERS AND DE HAAN (1989)) First note that the order statis-
tics X(;) can be written in terms of the quantile function Q = F ~1, evaluated at the
corresponding order statistics of a uniform sample of size n:

(o}, 2{e(1-ewcz) ),

with the Z;) the order statistics of a sample of size n of i.i.d. (1) random variables.
Note that the condition m,/n — 0 implies exp(—Z,_yn1)) —* 0 a.s. as n — o and
hence

Q (l - e_z("-'"+1)) -0 (1 - g'z(n-ZmH))
[0} (1 - e_z('l—2m+l)) -Q (1 — e_Z(n—4m+l))

2;'rfm =
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0 (1 — e~ Zn-2m11) .e—z(n4m+l)+z(n~2m+l)) -0 (1 _e_z(n—2m+l))

0 (1 — e-Z(n—2m+l)) -9 (1 — e Ln-2mt1) .e-Z(n—4m+l)+Z(n-2m+l))
2r—-1
1-27r
in probability, as n — oo, by Lemma 2.2 and a reformulation of (1.7):
lim Ql-sx)—Q(1—-s) x7-1
si0 Q(1-sy) - Q(1-5) y7—1

locally uniformly in x,y > 0 with y # 1. Taking logarithms then yields the assertion.
]

- 2r

Strong consistency can be established under a slightly stronger restriction on the growth
of the sequence my: mp/n — 0 and m, /loglogn — oo as n — oo.

Moreover, in DEKKERS AND DE HAAN (1989) asymptotic normality is derived of
Pickands’ estimator of y. We will state these results for easy reference. The result is
given in two theorems, under different conditions on the distribution function F:

Theorem 2.3

Let F be a distribution function that is in the domain of artraction of an extreme value
distribution G, for some y € IR. Assume that its quantile function Q = F~! has positive
derivative Q' and that there exists a positive function a, such that the function t —
2777 /(1 — 1 /1) (with either choice of sign) is T-varying at infinity with auxiliary
function a. Then, for sequences m = m, — <o satisfying my = o(n/g~'(n)), where g~}
is the inverse of g(t) =t~ =1 (Q'(1 - l/t)/a(t))z,

V(3 = 7) 2 N(0,63)
2

as n — oo, with N(0, o) denoting a normal distribution with mean 0 and variance o3
given by

N U]
UP -_ —'———E
(2(2r — 1)log2)
Theorem 2.4

Let F be a distribution function that is in the domain of attraction of an extreme value
distribution G, for some y € IR. Suppose that the derivative Q' of the quantile function
Q = F~' of F exists and that, for y # 0 there exist constants p > 0 and ¢ > 0 such that
the functiont — +(t =177 Q/(1—1/t) —c?|y|7 1) (with either choice of sign) is regularly
varying at infinity with index —p |y|. Then, for sequences m = my, — oo satisfying m, =
o(n/g 1 (n)), where g~ is the inverse of

g = (@)= 1/ ).

Vm (3~ 1) 2 N(0,08)
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as n — oo, with N(0, 62) denoting a normal distribution with mean 0 and variance o2

given by

a_ e

Op="r 5
(2(2r - 1)log2)

Note that the Normal distribution satisfies the conditions of Theorem 2.3 and that the
Cauchy distribution satisfies the conditions of Theorem 2.4, but not those of Theo-
rem 2.3. The conditions of the two theorems can be unified conform Theorem 1.7 into
the following conditions: Q'(1 — 1/t) € RV;,; and, with either choice of sign,

lim () YA -1/() — T Q1= 1) =iX“’"'—1 2.16)

1 a(r) —ply|
for some p > 0 and some positive function a. Since for y = 0 the limit does not depend
on p, the case y = 0 is not present in Theorem 242

Note that the family of Generalized Pareto Distributions formally does not satisfy
condition (2.16), since the function z — r~?~1Q’(1— 1/1) is constant. However, a close
look at the proof as given in DEKKERS AND DE HAAN (1989) shows that the asymptotic
normality result still holds: in that proof, condition (2.16) is used to bound a remainder
term that in case of a Generalized Pareto Distribution equals 0. Moreover, the condition
on the sequence m, for asymptotic normality turns out to be that m, = o(n) only, in
addition to m, — oo.

The two theorems concerning the asymptotic normality of Pickands’ estimator, show
that the asymptotic distribution of the estimator has mean 0 provided the sequence m,
is chosen appropriately. The proofs of these theorems, as given in DEKKERS AND DE
HAAN (1989), reveal that if one chooses the sequence m, to be of the same order as
n/g~!(n) instead of of smaller order, the estimator will have an asymptotic bias. Hence,
the choice of the sequence m, seems to be of crucial importance. However, the right
order of the growth of that sequence is determined by properties of the (tail of the)
unknown underlying distribution function F. E.g., in case of a Normal distribution one
needs m, = o(log?n), in case of a Cauchy distribution one needs m, = o(n*/*) and
in case of a Generalized Pareto Distribution, as stated before, one needs m, = o(n) in
addition to m,, — oo,

2.3 A maximum likelihood approach

Another estimator, based on Pickands’ results on the approximation of the tail of a dis-
tribution by a Generalized Pareto Distribution, was introduced by R.L. Smith in SMITH
(1987). He proposed to use only those values of the sample that exceed a certain thresh-
old: Let Xp,...,X, be a sample with common distribution function F that is in the
domain of attraction of an extreme value distribution G, for some y € IR. Fix a (high)

Note that on the right hand side of (2.16) the absolute value of y appears, and not just y itself as
stated erraneously in DEKKERS AND DE HAAN (1989).
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threshold « and consider the excesses Y}, .., Yy, where N is the number of exceedences
over u, i.e., the number of X; larger than u, and Y; = X; — u where j is the index of the
i-th exceedence. Then, conditionally on N, the excesses are i.i.d. with distribution func-
tion F,(x) = (F(u+x) — F(u))/(1 — F(u)). Smith's proposal was to approximate that
distribution F, by a Generalized Pareto Distribution whose parameters are estimated by
a maximum likelihood method based on the excesses Y,...,Yy.

In the original paper by Smith, there is no explicit proof of consistency of the esti-
mators under the single condition of F being in the domain of attraction of an extreme
value distribution. Under some extra conditions, Smith did prove the asymptotic nor-
mality of the estimators for the three classes of extreme value distributions, provided
y > —1/2. In case y < —1, the maximum likelihood estimators do not exist: letting
o go off to infinity will continuously increase the likelihood. In case —1 <y < —1/2,
the problem becomes non-regular and other approaches are proposed, see e.g., SMITH
(1985). We will state the results concerning the maximum likelihood estimators in case
y>—1/2.

Let F be a distribution function in the domain of attraction of an extreme value
distribution G, for some y 5 0. Denote its upper endpoint by xz.. Define the function L
by
DEFINITION 2,1

1 —F(x%—-1/x) ¥ <0
L(x) =
71— F(x)) y>0

<

Conform Theorem 1.9, L is a slowly varying function (at infinity). Smith’s results can
be given using the following two conditions on that function L (‘slow variation with
remainder’):

SR1 L(xt)/L(t) =14+ 0(¢(t)),ast — e and for all x > 0
SR2 L(xt)/L(t) = 1+ chy(x)¢ (1) +0(# (1)), ast — oo and for all x > 0

where ¢ (1) >0, ¢(t) > 0ast — oo, c € {—1,0,1} and h, (x) = [fuP 1du= (1 -
x~P)/p for some p > 0.

Smith remarked that in case of SR2, excluding trivial cases, that is excluding ¢ = 0,
¢ is necessarily a regularly varying function with index —p . The results will be given
in two theorems, dealing with the cases y > 0 and —1/2 < y < 0 respectively.

Theorem 2.5
Let F be a distribution function that is in the domain of attraction of an extreme value
distribution Gy for some y > 0. Assume that the corresponding L-function satisfies SR2.

LetY),...,Yy denote the excesses over threshold uy, where N — oo and uy — oo, such
that
VNeo (u 4 —
o (un) o5 " H
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for some u € R. Then, with probability tending to 1, there exists a local maximum

(7%, 6X) of the Generalized Pareto Likelihood based on'Y,,. .. Yy, such that
&3 #(1+7)(1+2yp)
-~ 1] o 1+y(1+p)
Wy V]2 ,
e X uy(1+7)(1-p) 3
W=y I+y(1+p)
with
21+y) —(1+
g, =| 21+r) (47 2.17)

Tl -(4y) (14p)?

If L satisfies only SR1 with ¢ non-increasing, and /N¢ (uy) — 0, then the same result
holds with u = 0.

Theorem 2.6

Let F be a distribution function that is in the domain of attraction of an extreme value
distribution G, for some y € (—1/2,0). Denote the (finite) upper endpoint of F by
Xg. Assume that the corresponding L-function satisfies SR2. Let Yy,...,Yy denote the
excesses over threshold uy, where N — o and uy — x§, such that

mw(l/(x;—um)ljjp —u

for some u € IR. Then, with probability tending to 1, there exists a local maximum
( ?1‘3, 6’,5) of the Generalized Pareto Likelihood based on Yy, ... ,Yy, such that

u(1+7y)(1=2yp)

oy 1| o 1+y(1—p)
VNI Sy —un) = =
7l ) M| wrtenase) |
v 1+y(1-p)
withf as in (2.17).

If L satisfies only SRI with ¢ non-increasing, and /N¢ (1/ (x5 — un)) — 0, then the
same result holds with u = 0.

In case y = 0 a different approach is needed to obtain asymptotic normality of the
maximum likelihood estimators. In BALKEMA AND DE HAAN (1972) it was proved
that in case F is in the domain of attraction of the extreme value distribution A (.e.,
y = 0) there exists a representation

l—F(x)—c(x)exp( /X dt ) X < X} (2.18)
= (1) : '
where c(x) — 1 as x — x% < o, ¢ is a positive differentiable function and ¢'(x) — 0
as x — x. The additional conditions needed for asymptotic normality are now given

using the function ¢.
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Theorem 2.7

Let F be a distribution function that is in the domain of attraction of the extreme value
distribution Go. Denote its upper endpoint by x%. Assume that, as u — x§ and for some
K > 1, the function ¢ in the representation (2.18) satisfies

2%@ — 1 uniformly over 0 <y < —Klog|¢'(u)]|
c(u)y—1~s¢p'(u) for finite s

LetYy,...,Yy denote the excesses over threshold uy, where N — oo, uy — x§. such that
VNg'(un) = u

for some u € R. Then, with probability tending to 1, there exists a local maximum
(}715, 5,5) of the Generalized Pareto Likelihood based on'Y),...,Yy, such that

&S

N
ol - D 0 21
N ¢I(MN) —%N([ :|a|:1 1
u
)

W
There is one pratical issue concerning the use of the maximum likelihood estimators we
would like to mention. In calculating the estimators, it is essential not to try to solve
the corresponding score equations, but to use a maximization procedure on the (log-)
likelihood itself, since ¥ = 0 is always a solution to the score equations. On the other
hand, the feasable region for the parameters in the maximization procedure is bounded,
hence, near these boundaries, extra attention should be paid on the maximization pro-
cedure that is used.

2.4 Hill’s estimator

In 1975 another estimator of the extreme value index was introduced by B.M. Hill in
his paper ‘A simple general approach to inference about the tail of a distribution’ (HILL
(1975)). This estimator is based on the regular variation property in case the underlying
distribution function F is in the domain of attraction of G, with y > 0, or, as Hill stated
it, on the assumption that the tail of the distribution is of Zipf or Pareto form for large
x,i.e., 1 —F(x) ~Cx /7 as x — o for some y > 0 and C > 0. Hence, Hill’s estimator
is only applicable in case the extreme value index is known to be positive, i.e., only in
case the underlying distribution function exhibits a ‘heavy’ tail.

One way to introduce this estimator is to use a maximum likelihood approach: As-
sume that the distribution function F is of the form 1 —Cx /" for all x > u, where u is
some threshold. IL.e., assume that

1-F(x) (x)—l/r

le(u)_ - xX>u (2.19)

u

for some u € IR,
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Then it seems plausible to make inference on y using only those order statistics that
exceed the threshold . Say that there are k of those order statistics: Xy 1 X(n-kr1)-
The log-likelihood function, using only the k upper order statistics is then given by

L(y;X(n—k+l): - 1X(n)) =
y+1&
~klog(yu) + klog(1 — F(u)) — -~ > (logX(,_jsy) —logu)
i=1

Solving the corresponding score equation and substituting X(n—) for the threshold u,
then yields the Hill estimator of y:

L&
Ynk = E 2 (logX,, i+1) IOgX(n—k))

i=

—

Note that this estimator can also be written in terms of the (normalized) spacings of the
logarithms of the observations:

1
ik = 7 21 (108 Xo-1 ~ 108Xy (2.20)

I Mw-

In the original paper HILL (1975), Hill did not derive asymptotic normality results
for his estimator, nor did he prove consistency of his estimator. He discussed the ef-
fect on the maximum likelihood approach of the conditioning on the order statistics
X(n), -+ >X(n—k) and on the event that X, _; > u, both from a Bayesian and a frequen-
tists point of view.

MASON (1982a) proved weak consistency of Hill’s estimator for any sequence
k = kn, satisfying k — oo and k/n — 0 as n — . Strong consistency was proved in DE-
HEUVELS, HAEUSLER AND MASON (1988) under the condition that k/loglogn — o
and k/n — 0 as n — co. Asymptotic normality can be established under certain extra
conditions, see e.g., HAEUSLER AND TEUGELS (1985). In this section however, we
will state the asymptotic normality result that is obtained as special case of the proof in
DEKKERS, EINMAHL AND DE HAAN (1989) of asymptotic normality of their moment
estimator (see also Section 2.5 of this thesis).

Theorem 2.8

Let F be a distribution function that is in the domain of attraction of some extreme value
distribution Gy with y > 0. Let Q denote its quantile function. Assume that there exists
a positive function b, such that the function t — £t~"Q(1 — 1/t) (with either choice of
sign) is Il-varying at infinity with auxiliary function b. Then, for sequences k =k, —
satisfying k, = o(n/g~'(n)), where g1 is the inverse of g(t) =1'~2¥ (Q(1—1/1)/b(2))?,

VE (7= 7) = X(0, %)
2

asn— oo, wzth 9\[(0 O'H) denoting a normal distribution with mean 0 and variance o
given by O'H =y
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Some generalizations of Hill’s estimator were proposed in e.g., DEKKERS, EINMAHL
AND DE HAAN (1989), CSORGO, DEHEUVELS AND MASON (1985) and GR{/BEL AND
DE WOLF (1994). The asymptotic properties of these estimators yield, as a special case,
the asymptotic properties of the Hill estimator. The first two generalizations will be
discussed in the sequel of this chapter and the latter one will be discussed in Chapter 3
of this thesis.

There are a few important remarks we would like to make on the Hill estimator.
Even though the likelihood was based on the assumption that the distribution function F
satisfies property (2.19) exactly for some threshold u, it can be shown that Hill’s estimate
is still consistent under the assumption that F € D(G,) for some y > 0, provided that
the number of order statistics k that is used, tends to infinity at the right rate.

As in the case of Pickands’ estimator, the choice of the rate with which the sequence
k = ky tends to infinity, is an important issue. Indeed, not only the question of asymptotic
normality depends on that rate, but the estimator can be heavily biased, depending on
the rate of k.

A disadvantage of Hill’s estimator is the fact that even though the extreme value in-
dex is by definition translation invariant, i.e., the distributions of the variables X and
X + u have the same extreme value index, the Hill estimator is not: calculation of
the Hill estimator based on X,...,X, yields a different value as calculated based on
X, +u,...,X, +u. However, it seems quite natural to use the logarithms of the obser-
vations when studying the extreme behaviour of the underlying distribution function F
and, obviously, Hill’s estimator is invariant under translation of the logarithms of the
observations.

The short discussion in this section of Hill’s estimator, deliberately mixes up two
different approaches that are frequently used in the estimation of the extreme value
index:

1. Fix some high threshold u and use the order statistics that excess that threshold.
The number of order statistics used in the estimator then is a random number,
N say, with a Binomial distribution with parameters n and 1 — F(u), i.e., N ~
B(n,1 — F(u)).

2. Fix the number of order statistics that are used in the estimator, say. Now the
threshold can be viewed to be a random number U, whose distribution depends
on & and the underlying distribution function F. One choice of defining U could
be to take U to be equal to Xin—k)-

Often, one does not pay much attention to the effect of which procedure is used. In fact,
it often plays a minor role in the (asymptotic) properties of the estimator in question.
2.5 A moment estimator

One generalization of Hill’s estimator was introduced in DEKKERS, EINMAHL AND DE
HAAN (1989). Their main goal was to find an estimator, in some sense similar to Hill’s
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estimator, that was consistent for all y € IR. To that end, they introduced the following
two quantities:

n_Ly
M0 =2 3 (10gX(uoivty ~108Xp ) r=1,2

Note that M, () ¢ €quals Hill’s estimator. Then they proposed the following estimator of
the extreme value index:

(1)y2
M ag(1) _l _ (M )
Ynk = Mn,k +1 2 M(z)

2.21)
We will give an heuristic derivation of this moment estimator, using the following
lemma (cf. DEKKERS, EINMAHL AND DE HAAN (1989), Lemma 2.5):

Lemma 2.3
Assume that F € D(G)) for some y € R and that x3. > 0. Denote the corresponding
quantile function by Q. Then, for some positive function a,

—logx y>0
fim log Q(1 —sx) —log Q(1 —s5) _ .,
510 a(s)/0(1 —s) it S
14

forx>0.
Moreover, in case y > 0 we may take a(s)/Q(1 — s) = y and in case y < 0 we may

take a(s)/Q(1 - 5) = ~y(log &(1) — log (1 — 5)).

Note that M,(lr,)( can be viewed as a sample analogue of the expectation of (log(X /r))"
conditional on the event that X > ¢, with threshold ¢ taken to be the (n — k)-th order
statistic of the sample. Indeed,

IE((log(X /1))’

x>1) = [ togtei)) o (BRZE0)

XF ;L[ 1—F(x)
=— 1 d
[ toetxiny a (1=50)
Substitution of y = 1 — F(x) and s = 1 — F(r) then yields

| togo1 -y~ tog0(1-5))" a(3/s)

:/Ol(logQ(l—sx)—]ogQ(l—s))' dx

Denoting the last integral by M\", M,(,’,)( could be considered to be an estimate of M”
with s = k/n.
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Now use Lemma 2.3 to deduce that, in case y > 0,

I
M ~ y’/o (—logx) dx=ry" r=1,2

and in case y <0,

M) = () togoln) ~toge(1 =) [ (o)

14
r(=7)"
A=) (1~ (r= 1))
Then substitution of these expressions into the equivalent of (2.21), i.e., into

(Dy2\ ~
L (M)
y= M 41 2(1 7o

= (log O(1) —log Q(1 - ))"

r=1,2

yields, for y > 0
-1
1 y?
3 l-z(1-=— =
Vs =Y+ 5 ( 2}/2) 14

and in case y < 0

1 1 1-2y \ !
¥s = —v (log Q(1) —log O(1 —5)) 1_7“_5 (1 B 2(1—1))

Y
7 (logQ(1) —log O(1 - 5))
~Yy
for small s. Actually, the preceding arguments can be made more rigorous, yielding
consistency of the moment estimator.
Asymptotic normality of the moment estimator was derived in the same paper

DEKKERS, EINMAHL AND DE HAAN (1989). We will state the results in the following
theorem:

Theorem 2.9
Let F be a distribution function that is in the domain of attraction of an extreme value
distribution G, for some y € IR. Denote its quantile function by Q. Assume that there
exist positive functions by, by, by and by such that for all x > 0 (with either choice of
sign),
(a) in case y > O, the function 1 — +177Q(1 — 1/r) is Il-varying at infiniry with
auxiliary function by

(b) incasey =20,

i 198201 = 1/(1x)) ~log (1~ 1/1) + ba(t) logx _ (logx)*
e bs(1) 2
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(c) incase y <0, the function t — Ft~¥(Q(1) — Q(1 — 1/t)) is I1-varying at infinity
with auxiliary function by

1

Then, for sequences k = k, — o satisfying k, = o(n/g~"(n)), where g~ is the inverse

of
g(r) = t(zz—g;)z r=0
o (logQ(l) —b:C’(z‘:’)Q(l—l/f))z <0

and additionally in case y =0, ky = o(n/gy ' (n)) where 87 (") is the inverse of g\ (t) =
1(Q(1—1/1)/a(1/1))* with the function a as defined in Lemma 2.3,

VEGH - 7) -2 A(0,02)
2

as n — oo, with N(0, 64) denoting a normal distribution with mean 0 and variance o7
given by
1+ 72 y>0
1-2 5—-11y)(1-2
v ( r)( ﬂ) <0
-3y (1-37)(1-4y)

Again we would like to stress the fact that the sequence &, has to be chosen appropri-
ately, in order to obtain a centred limiting distribution. If one would take k, ~ cn/g~!(n)
for some constant c, then the limiting distribution would have mean 3-/c, where the
sign corresponds with the sign in conditions (a), (b) and (c) in Theorem 2.9. A more
detailed result on the asymptotic bias of the moment estimator under slightly different
conditions, can be found in the final chapter ‘A Simulation Study in Extreme-Value
Estimation’ of the Ph.D.-thesis by A.L.M. Dekkers (DEKKERS (1991)).

o=

(1=7)*(1~27) (4—8

2.6 A kernel type estimator

Another attempt to generalize Hill’s estimator was made in the paper ‘Kernel estimates
of the tail index of a distribution’ (CSORGSO, DEHEUVELS AND MASON (1985)). In
that paper the authors still only considered the case y > 0. They proposed to use a
smoother version of the Hill estimator in the sense that the abrupt cutoff at the threshold
in Hill’s estimator should be replaced by a smoother one.

To define their estimator we need a kernel function K that satisfies the following
conditions:

KCl K(u) > 0for0 < u< e
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KC2 K(-) is non-increasing and right continuous on (0, o)
KC3 [y"K(u)du=1
KC4 7wV 2K (1) du <

Then the estimator is defined as

= ( [ g, 0401 - awxw) /(| " k) a)

where & > 0 is called the bandwidth, @, is the empirical quantile function and log, x =
log(xV 1). Routine manipulations show that }"f,fh can be written in the equivalent form

o i ] 1/
<2 #K (nl_h> (log+ X(n—it1) _lOg+X(ni))) / (/0 K(u) du) (2:22)
i=1

where we define X5 = 1. Note that using the uniform kernel, i.e., K(u) = 1 if u €
(0,1} and K (u) = 0 elsewhere, and putting k = k/n, the estimator coincides with Hill’s
estimator ;"/fk (see (2.20)).

To be able to state the asymptotic normality of the kernel type estimator, we will
need some additional conditions on the kemel K:

KC5 There exists an M| < oo such that K(u) = 0 for u > M,

KC6 There exists an M, < oo such that the kernel K has a derivative k(1) for u > M,
and such that lim, e 1/ %k(u) = 0

as well as some restrictions on the underlying distribution function F:

FC1 1. The function Q(1 —-) is regularly varying at O with index —¥, i.e., the quan-
tile function satisfies the representation

_ U p(u)
O(1—s5)=s5""c(s)exp / — du O<s<1 (2.23)
s u
where c is a function with ¢(s) — ¢ € (0,o0) as s — 0 and b a function with
b(s) >0ass—0.
2. Without loss of generality, Q(0) = 1.
FC2 1. Inthe representation (2.23), one has that either KCS is satisfied and ¢(s) = ¢
(constant) for 0 < s < € for some £ > 0 or ¢(s) = ¢ (constant) for 0 < s < 1.
2. One has either KC6 is satisfied or the function b in (2.23) may be chosen to
be bounded on (0, 1).

For a discussion of these conditions on F we refer to CSORGO, DEHEUVELS AND
MASON (1985). The asymptotic normality result for ?Kh is given by

n
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Theorem 2.10
Let KC1,...,KC4 and FC1 be satisfied. Then, as h = h, — 0 and nh — oo,

~ P
erh —Y
Moreover, if in addition FC2 is satisfied, then, for h — 0 and nh — oo,
~ D
Vah (75— v = Be(h)) — N(0, )

with fc and a,% given by

Be(h) = ( / Y b hu)K () du) / ( / Y e w du>
o,%=/0°°1<2(u) du

A similar estimator was discussed in DE WOLF (1991). In that masters thesis, a bound-
ary kernel was used that was allowed to be negative on parts of its support. Moreover,
a first attempt was made to provide a data-driven method to find the optimal bandwidth
that minimizes the asymptotic mean squared error. In GRUBEL AND DE WOLF (1994)
(see also Chapter 3 of this thesis) some more extensions were presented.

Another way to interpret the kernel type estimator, is to view it as a weighted av-
erage of Hill estimators, averaged over the number of order statistics used in each Hill
estimator. To see this, we will assume FC1, i.e., log, X =logX a.s., and we will disre-

gard the normalizing constant fol hg (1) du in (2.22). (Alternatively, one could absorb
that normalizing constant in the weights of the weighted average.)
Consider the following weighted average of Hill estimators:

n
— ~H
Hy = Z Witn,j
j=1

where the w; are the weights and f/f jasin (2.20). Then observe that this can be rewritten
into

n n .
Hy=Y (2 ﬁ) i(IOgX(n—iH) - logX(,,_,-))
i=1 \j=i J

Compared to the kernel type estimator, we get the relations:

i i i+1 i Lwj
b L D )= = 2.24
wi=— <K (nh> K( — )) and K(nh) nhjZ:i I (2.24)

Note that these relations are indeed satisfied in case of Hill’s estimator itself using &
order statistics, i.e., in case wj =0 for j # k, wy =1, K(u) = 1 if u € (0,1}, K(u) =0
elsewhere and identifying k with k/n.
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In RESNICK AND STARICA (1995) an averaged Hill estimator was proposed as well:

R 1 [kt o
Ynk = mp}h] Yn,p

for some 0 < s < t. In view of the previous remarks this is in some sense equivalent to
a kernel type estimator. Indeed, in their case (2.24) yields the following kernel:

L]
K (—-) = W]y
J=t
0 i> [kt

and continuously extended elsewhere. Moreover, for the asymptotic properties of this
estimator we may approximate this kernel by

!
log(t/s) o< p <
t—35
K()=q loglt/x) . ., (2225)
t—s - =
0 elsewhere

Note that the definition of 2 in Theorem 2.10, using the (approximating) kernel in
case of RESNICK AND STARICA (1995), i.e., the kemnel as given in (2.25), yields the
same asymptotic variance as Resnick and Stiricd derived in their own paper. Le., the
asymptotic variance is then given by

2=y — (1-%&*‘_))

a,
ks t—s t—s

2.7 Sharpness of the lower bounds to the minimax risk

Whence lower bound theorems concerning the minimax risk in estimating the extreme
value index are derived, as in Section 2.1, the question remains whether these bounds are
attainable or not. Usually, after deriving such theorems on lower bounds, an estimator is
defined that attains the lower bound but then in the sense of convergence in distribution.
This type of convergence however, is not strong enough to ensure that the minimax risk
of that estimator converges to zero with the same rate as the lower bound to the minimax
risk. On the other hand, it neither ensures that there exists no estimator of the extreme
value index that converges in distribution with a faster rate than the lower bound to the
minimax risk.

In this section, we will show that, considering a few specific classes of distribution
functions, the rate of convergence in distribution of the Pickands estimator equals the
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rate of the lower bound as stated in Theorem 2.1 for positive index and Corollary 2.1
for negative index. The Pickands estimator was taken because of computational conve-
nience. ’

The first class of distribution functions we will consider, is the class 2y, consisting
of all distribution functions that satisfy

l—F(x)=Cx4%(l+Ax_ﬁ) X2 X

for 7,8 > 0, C,A € R and some suitably chosen x, > 0. Note that the corresponding
quantile function satisfies

QU =)~ 757 (1+7AC_MSM) ass |0
For distribution functions in the class 2, Theorem 2.4 applies, since
t‘r—1Q,(1 -1/t)=—yC" ~ (B - l)yzAC—y(ﬂ—l)t—ﬁy c vaﬂy

The rate of convergence in distribution, as given in Theorem 2.4, is related to 8, =
n/g=1(n) where g!(-) is the inverse of

QU= Y
gty =174 l(t_y—IQ'(l—l/z)—yC’)

For the distribution functions in class P, this function satisfies

cBr 2 )
g(t) ~ —)A 128y ast — o

y(B 1

hence, &, ~ nfY/(1+281) 35 n — oo for these distribution functions. In Theorem 2.4 the
rate is assumed to be 0(,) to obtain a centred limiting normal distribution, whereas the
rate of the lower bound to the minimax risk is O(8,). However, as stated at the end of
Section 2.2, that rate will still yield asymptotic normality of the estimator even though
then an asymptotic bias will be present.

Another class of distribution functions we will consider is the class P, consisting of
all distribution functions satisfying

1—F(x)=Cx7%(1+Ax"ﬂ logx) x>x,

for y,8 >0, A,C € R and some suitably chosen x, > 0. Note that the corresponding
quantile function now satisfies

Ol —s)~C¥s7 (1—72Ac_ﬁ”sp710gs) ass)0
The distribution functions of this class again satisfy the condition of Theorem 2.4:

1771 Q (1= 1/8) = yC7 ~ y2ACTTP U1 PY (1— y(B — 1) logt) RV,




2.7 Sharpness of the lower bounds to the minimax risk 45

As before, the rate of convergence in distribution is hence related to &, = \/n/g~1(n)
where g1(-) in this case is the inverse of

-2
g(r) ~ 117287 (1ogr) 2 (yz(ﬂ - l)AC"”) ast — oo

Allowing for an asymptotic bias then yields the rate

&h=0 asn— oo
logn

which is again the same rate with which the lower bound to the minimax risk tends to
zero for this class of distribution functions.

The third class of distribution functions concerns the negative index equivalent of
Py, 1.e., class Py consists of functions satisfying

1
1—F(x)=c(x°F-x)‘7(1+A(x%—x)'3) Xo S X < X

for some y <0, 8,x% >0, A,C € R and some suitably chosen x, € IR. The correspond-
ing quantile function then satisfies

O(l—s)~xp—CV's77 (1+yAC’ﬂ7s’ﬂ7) ass |0
Again Theorem 2.4 is applicable to the functions in this class:
IR (L= 1/1) = |y|C ~ yH(B + DACTE TP ast — oo

Moreover, similar calculations as in the case of the class P; yield that, allowing for
asymptotic bias in Pickands’ estimator, &, ~ n~#7/(1=287) for n tending to infinity, as
given in Corollary 2.1.

Indeed, defining the negative index equivalent of P, by the class P consisting of
distribution functions satisfying

L= F(®) =Clxp~2)77 (1+A0F -0 P loghg 1)) % <x<ag

forsome y < 0, 8,x3 > 0, A,C € IR and some suitably chosen x, € IR, analogue com-
putations again yield the rate of the lower bound to the minimax risk as the rate of
convergence of Pickands’ estimator when allowing for asymptotic bias:

nABr #ﬁr
Oon=0 as n —» oo
logn
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Chapter 3

A kernel type estimator revisited

In this chapter we will be concerned with the kernel type estimator introduced by
CsORGO, DEHEUVELS AND MASON (1985). This estimator requires the choice of
a bandwidth parameter which, roughly, controls the fraction of upper order statistics
that is used for the estimate. We will provide an alternative and more general proof of
the asymptotic normality of the estimator. As a corollary we will be able to describe
the asymptotic behaviour of a combined estimator, i.e., the estimator of the extreme
value index that arises when a data-dependent bandwidth is used. Moreover, we will
introduce a bootstrap inspired bandwidth selection method in an attempt to provide a
fully data driven estimation procedure.

The results given in this chapter were published as a TU Delft report: ‘Estimation
of the tail index of a distribution’. (GRUBEL AND DE WOLF (1994))

3.1 Introduction

We will be concerned with a sample X, ..., X, of i.i.d random variables with common
distribution function F that is in the domain of attraction of an extreme value distribution
G, for some y > 0. Denote the ascending order statistics of such a sample by X,y <
o S X)- Let h>0and let K : IR* — IR be a fixed function with properties to
be specified. We define the extreme value index estimator 7, , with bandwidth h and
kernel function K by

. o i i
Fnn = ,=21 K (;) (log+ X(n-i+1) —log, X(n~i)) 3.1
where Kj,(x) = K(x/h)/h,log, x =log(1Vx) and X(g) = 1.

This estimator arises quite naturally by rewriting the von Mises condition (see The-
orem 1.3) in terms of the quantile function Q(s) = F~!(s):

.
lim | —s— —9)| =
S‘IB‘[ sg5 10821 s)] Y

47
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Then substitution of a smoothed version of the empirical quantile function of the log-
data, ¥; = logX;, which has jumps of height logX(;) —logX(;_yy at i/n, leads to the
estimator given in (3.1).

Throughout the rest of this chapter we will assume that the quantile function of the
log-data, which equals the logarithm of the quantile function Q, can be written in the
following form:

1
logQ(1—s) = —ylogs+/ @du 0<s<l1 3.2)
3

with b being such that the integrals exist and, moreover, b(s) — 0 as s |, 0. This assump-
tion is slightly stronger than the Karamata representation of regularly varying functions
as given in Theorem 1.6. It amounts to two additional requirements: the support condi-
tion F(1) =0, F(x) > 0 if x > 1 (without loss of generality), and a smoothness condi-
tion, which holds if, for example, F has a positive density that itself is regularly varying
at infinity. We refer to CSORGO, DEHEUVELS AND MASON (1985) for a discussion of
these additional assumptions.

Note that the problem has been rewritten to a situation that can be viewed in the
following two ways:

e a semi-parametric situation, with y the 1-dimensional parameter of interest and b
the infinite dimensional nuisance parameter

e a situation of estimating a curve at one of its boundaries, i.e., estimation of
limgy ¢ (s) with ¢ (s) = —s £ log Q(1 —5) = ¥ + b(s)

As specified before, the kernel estimator (3.1) includes a bandwidth parameter h. It
turns out that this parameter, roughly, determines the amount of order statistics that
is used in the calculation of the estimator. It may not be surprising, especially in the
curve estimation point of view mentioned before, that the choice of this bandwidth also
determines the bias and variance of #,,: h too small will result in a large variance
and A too large will result in a large bias. Hence, like in curve estimation, one would
like to choose 4 in an optimal way, i.e., such that, asymptotically, the squared bias and
the variance are of the same order. This particular choice of A however, depends on
unknown properties of (the tail of) the underlying distribution function. Indeed, this
may even depend on the ¥ one is trying to estimate. One way to avoid this problem, is
to use a data dependent bandwidth: let the data decide which bandwidth is optimal, i.e.,
construct an estimate of the optimal bandwidth based on the sample in question.

In the sequel of this chapter, we will not only derive asymptotic properties for our
estimator using deterministic bandwidths, but we will consider the combined estimator
(i.e., the estimator with use of a data dependent bandwidth) as well. Furthermore, we
will introduce a bootstrap inspired bandwidth selection procedure in an attempt to close
the gap between theory and practice. In this chapter we will discuss the theoretical
properties of this procedure and in Chapter 6 the finite sample size behaviour will be
discussed using a simulation study.
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3.2 Main results

Let X),...,X, be a sample from a distribution function F such that equation (3.2) is
satisfied. Let K : IRT™ — IR be such that

K(x)=0 x&[0,1]
|K(x) = K(y)| <Clx~y| x,y€(0,1) (3.3)
JK(x)dx=1

for some C > 0, and define the kernel type estimator of y as

n o .
Hmhy=Y iKh <£> (mgx(,,_,. ) —logX(,,_i)) (3.4)
i=1
with Ky (x) = K(x/h)/h and h > 0.

Note, using the support condition on K in (3.3) and the definition of 7(n, k), that nh
is, indeed, approximately the number of order statistics used in the calculation of the
estimate.

The asymptotic normality result of Csorgd et al. as given in section 2.6 of this
thesis, shows that slow convergence of the bandwidth 4 to zero yields a fast rate for the
estimator (i.e., small variance), but, unless the bias term B¢ (k) is of smaller order than
v/nh, the estimator will be asymptotically biased.

This brings us back to one of the questions raised in the introduction of this chapter:
how to choose h optimally? Let us define the optimality in the following way: let, with
some abuse of terminology, the asymptotic mean squared error of 7(n,h) be given by

AMSE(n,h) = B (h)* + n—l’;yza,% (3.5)

with B (h) and o7 defined as

B(h) = / K()b(hu) du (3.6)
and

ol = / K2(u) du

and let A, be a value that minimizes the function A — AMSE(n, k). So hZ leads to
a situation in which the squared bias and the variance are asymptotically of the same
order.

Assume that we have a consistent estimate /1, for the optimal bandwidth, in the sense
that &, /h¢ — 1 in probability, as n — co. Then the next question that arrises is, how will
the combined estimator 7(n, i,) behave?

In order to answer that question, we will need a ‘simultaneous’ asymptotic normality
result for a range of h values. That result is given in our first theorem: a functional
central limit theorem.
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Theorem 3.1

Assume that F and K satisfy (3.2) and (3.3) respectively. Let h, — O be such that
nhy, — o and let T be the interval [1,t,], with 0 < t; <t, < co. Define the stochastic
processes Z,, with index set T by

Zn(t) = /nhy (f’(":thn) -y _:B(thn))
with B(-) and 7(-,") as in (3.6) and (3.4) respectively.

D . . . .
Then Z, — Z with Z a Gaussian process with continuous sample paths, mean
Sfunction 0 and covariance structure

cov(Zs,Z) = yZ/K(su)K(tu)du.

Obviously,. substitution of # = 1 yields asymptotic normality, similar to the results in
CSORGG, DEHEUVELS AND MASON (1985). Our Theorem 3.1 does not only cover
the more general situation ¢ € [t,¢,] as well, but the proof also differs from the proof in
the paper by Csorgs et al., who based their proof on the Hungarian Construction. Our
proof is quite short and uses standard central limit theory and a well known property of
the spacings of samples from an exponential distribution.

Theorem 3.1, together with the Skorohod-Dudley representation theorem and an
easy pathwise analysis, will lead us to the following corollary concerning the combined
estimator. A similar idea has been used in CSORGO (1984).

Corollary 3.1
Let F, K and h,, be as in Theorem 3.1. If a sequence h, of random variables satisfies

Ry /hn — 1 in probability, then

\/’Wn(i’(”;ﬁn) -y—8 (iln)) '2) (0, 720'1%) .

Qualitative assumptions on b will imply closeness of 8 (h,) to B (hy).

A similar result was derived by HALL AND WELSH (1985) for a subclass of the class
of distribution functions we consider in this paper, and in case of Hill’s estimator of y,
see HILL (1975). Hill’s estimator can be considered as a special case of our estimator,
using K(x) = 1 on [0, 1].

Note that Corollary 3.1 can be interpreted in the following way: if &, is an estimator
of h2 with the property that ha/ AY tends to 1 in probability, then the combined estimator
J"/(n,ft,,) has the same asymptotic behaviour (up to the order terms considered here) as
the estimator that we would obtain if we knew and used the optimal bandwidth.

However, if we want to use the corollary in practice, we will need to find an estimator
for kg which is consistent in the above sense. Under certain assumptions on b, the
order of the bias term 8 (h) will be known, and a limit result can be obtained for AZ.
Although there might be several minimizers of AMSE(n, k), this is a valid goal, since
the ratio of two such minimizers will tend to 1 as n — . Unfortunately, as can be
deduced from (3.5), this will involve the unknown y and other unknown quantities,
related to the b-function (for an example, see discussion following Theorem 3.2). One
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could try to estimate these quantities and to plug these estimates into the asymptotic
formula. Instead, we propose a different approach: a bootstrap-inspired bandwidth
selection procedure. In its final form it does not involve taking resamples.

The curve estimation point of view mentioned in the introduction, inspired us to
consider the following procedure: first estimate the whole curve ¢ (-), use that to con-
struct an estimator of the quantile function of the log-data. Then resample from the
distribution function (-) derived from that estimate.

To be more specific, following the kernel type approach of non-parametric curve es-
timation, regarding {(i/n, i(logX(,_;11) — logX(,—;))) }}=, as the data points, introduce
the following estimator for the function ¢ :

¢ng (s) = 2 K (——S) 10gX(n—i+1)_10gX(n~i))

for some bandwidth g > 0. Note that q;,,,g (0) =7(n,8).
Then an estimator for the logarithm of the quantile function can be obtained, using
the relation

6(s) = -S% (logQ(1 )

which leads us to the estimate

log Qn,g(l s) = (logQ(l — s) / ¢",g(“)

We can use this estimate of the quantile function of the log-data to generate pseudo-
random samples logX},...,logX?. For each of these resamples we can compute the
estimates 7 (n,h). After a large number of repetitions we could use the mean of the
squared differences 7 (n,k) — 7(n, g) as an estimator of AMSE(n, ). By construction,
the estimate of the associated distribution function has, conditionally on X1,...,X,, a
regularly varying tail with index —1/7(n,g). Hence Theorem 3.1 motivates the follow-
ing estimator for the asymptotic mean squared error (which dispenses with resamples):

AMSEng(1,) = ng W2+ 3 (n, 80 67
with

Bug(h) / K(5) bug(hs) ds
where

Bn,g(s) = ‘zn,g(s) - 77(”,3)

o i i
=& (Kg (; _5> — K, (;)) (logX(n_is1) —logX(, )

The following theorem gives conditions for the above procedure to work in the sense
that it produces an estimator k,, that is sufficiently close to A9.
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Theorem 3.2 _

Let F, K and hy, be as in Theorem 3.1. Assume additionally that b has a non-zero right
derivative at 0, and let g, be such-that gn | 0 and h,/gn, — 0. Let hY be a minimizer
of h — AMSE(n, h) and let h, be a value that minimizes h — AM\SE,,,gn(n,h), with
AM\SE,,,g(n,h) asin(3.7).

Then hp/h2 — 1 in probability.

The additional condition imposed on the b-function of having a non-zero right derivative
at 0, can be translated to the following additional condition on the distribution function
F itself: The second derivative of F exists on some interval (7o) and

L @ tF()\ _C
SeF O d\1-F@) |~ 7°

with C # 0. Then we can write b (s) = C(1+0(1)) as s | 0.

Although this condition on b of having a non-zero right derivative at 0 arises quite
naturally from the curve estimation point of view, it is a rather strict condition in the sit-
uation of extreme value index estimation. As mentioned before, the optimal bandwidth
may depend on characteristics of the function b. For example, consider a shifted version
of the family of Generalized Pareto Distributions (for computational convenience, we
shifted the support of the distributions to [1,e)):

y —-1/y
Fegro(x;7,0) = 1—(1+—(x—1)) x>1
o

withy € R and o > 0.
The associated b-function is then given by

(o —7)s

————  0<s<1
o—(o~7)s °=

b(s)=vy
Hence Theorem 3.2 now only applies to the case y = 1, o # y. (Remember that we
restricted ourselves to positive y.)

So even in this parametric setting our theorem only applies to a small subclass. Ac-
tually our theorem reduces the class of possible distributions to the class in which the
b-function is (approximately) linear near 0. This fixes the rate with which the opti-
mal bandwidth should tend to 0 to n~!/3, though in general this rate depends on the
underlying distribution.

A class of distribution functions with regularly varying tail that is quite frequently
used to study the behaviour of estimators of the tail index , is known as Hall’s model:

1-F(x)=Cpx~ V7 (1+C2x“ﬂ(l+o(l))) asx — oo

with C; > 0, C; # 0, ¥, > 0. Our assumption of linearity of b near O then resembles
Hall’s model with 8 = 1/y. As discussed in HALL AND WELSH (1985), this is the case
e.g., when F is a power of a smooth function with limy_,e. F "(x) # 0, when F itself is an



3.3 Basic decomposition 53

extreme value distribution exp(—x~1/7) with index ¥ > 1 or when F is a (max-)stable
distribution with index y > 1.

Whether or not this bootstrap-inspired bandwidth selection procedure is valid in, or
can be extended to, a more general situation, still remains to be investigated.

The above mentioned estimator for the bias, B,,,g(h), can also be used to construct
bias-corrected confidence intervals. Let p,, denote the «-quantile of the standard normal
distribution. We only give the result for upper confidence bounds, lower bounds and
two-sided intervals can be constructed similarly.

Theorem 3.3
Under the assumptions of Theorem 3.2,

OKPa _1_
’!ll_I)EQIP{Y< 5ngn(hn)+7(”hn)(l+\/m)}—l o4

3.3 Basic decomposition

In the proofs of Theorem 3.1 and Theorem 3.2 we make use of a decomposition of our
estimator 7(n,h) into a weighted sum of i.i.d. random variables and a remainder term.
In this section we will introduce that decomposition and we will derive a bound for the
remainder term.

Enlarging, if necessary, the basic probability space on which the X;’s are defined, we
can write log Xy = log Q(U) with Uyyy < Upyy < ... < Uy the order statistics from
a sample from the uniform distribution on the interval (0,1) and log O(s) satistying
equation (3.2). Hence, we can rewrite our estimator as 7(n,h) = 7()(n,h) + 73 (n, h)
with

PO, h) = y g L, (;) (~tog(1 = Upps1)) +108(1 ~ Upr_y))
@) 1) 22":'1_1 ( )/1 Ugu-i) b(s)ds

i=1 U(n—:+l) s
with the convention that Uy = 0. Note that the variables W, |,...,W, , given by
Wyi=i (— log(L —Upy_i11)) +log(1 - U(n_,-))> (3.8)

are the scaled spacings of a sample from an exponential distribution with mean 1. It
is well known, see e.g., PYKE (1965) p.400, that these normalized spacings are again
independent and exponentially distributed with mean 1. Hence, the first part in the
decomposition of our estimator is just a weighted sum of i.i.d. standard exponential
variables:

i1 (i
P (k) =y Y =K | = ) Way
Y (nv) yi:1n h(n) n,i
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Therefore, standard central limit theory in classical or functional form, applies directly
to this part.

To handle the second part of the decomposition, let V; = 1 — U; and let the empirical
distribution function of Vi,...,V, be denoted by H,,, i.e.,

1"
:;g [Vieo

Note that the V; again form a sample from a uniform (0 1) distribution. As Hy takes the
value i/n on the interval [V;), Viiy1)) = [1 = Un_iy1), 1 — Uin_y) we have

@) (n, ) = /V :)H,,(S)K,,(Hn(s))f’-(? ds 3.9)

Next we will derive a bound for #(2)(n,th,) uniformly in ¢ € 7', with T and h, as in
Theorem 3.1.
It is well known that the uniform empirical process

By(t) = Vn(Hy(t)—t) 0<t<1

converges in distribution to a Brownian bridge. Although this fact is not explicitly used
in the following analysis, it did motivate us to consider the following further decompo-
sition of equation (3.9).

Use

H,(s)Ky(Hn(s)) = sKy(s) + (Hn(s) — 5)Kn(Hy(5)) + 5 (K (Hn(s)) — Kn(s))
to obtain the decomposition

7D (n,k) = B(B) = I (1) + 2 (h) + 3 ()
with B (h) as in (3.6) and

() = / " Kils)p(6) ds

ILio(h) = o \/_B,,(s K, (H_ \/—Bn( )) b(s) 4
La(h) = /V(ll) (Kh (s+ %B,,(s)) _Kh(s)> b(s) ds

It follows from the assumptions (3.3) on K, that ||K||. = sup, |K(x)| < e. From V(}y =
Op(1/n) we obtain for the I, ;-term

Vi
na(ehn)| < sup (o) [ 1Kin, (s)] ds
0<SSV(1) 0

1
< 0r(1) = IKI10p(1/n)
n
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hence,

1
fg?‘ln,l(thn)l =or (n_hn>

To handle the other I, ;-terms, we will need the support condition on K, i.e., that K,
vanishes outside [0, 4]. Then

2rhy 1
lnatehal < [ 18a i, (5+ =8,
/erh,,VH 1(lhn)

L Lm0 Ko (s+ 28,0

Note that the second term in this bound is needed to include the case s + By (s)//n =
Hy(s) > s, in which case we have to integrate upto H,; }(th,). However, the probability
that this second integral differs from zero is bounded from above by P (H, !(t,h,) >
2t,h,), which tends to 0, so that this term is of order op(1/+/nh,). For the first integral
use the crude bound

b5 ds

[b(s)|— ds

Kl sup [bo) [ 2iBa(o)] ds

— — o0 s —

Vntihy 0<s<2trhn o s "
and the fact that

B[ g0l s< [ 67" s
- [T

uhy | 1

< —ds= 2t,.h,
=/ 7 s= 2\/

to deduce, using Markov’s inequality, that

1
Iy 2(ths)| =
splaon) =or ()

Next consider I, 3:
thyAH7 (thy) 1
stem)l < [ i (54 28209)) = Kin )

thyVH, Y (thy) 1
Kin (54 7o) ) = K (9

Use the Lipschitz continuity of K, i.e., |Ky(x) — Kx(y)| < Clx—y|/h* for x,y € (0,h) to
obtain the following bound for the first integral:

C | trhn |
- sup |b(s / —=|Bn(s)| ds
Bz, O[T ZlBie)

(s)| ds

+

d
tha AHT  (thy) ()l ds
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Since

1/2

trhy 1 frhp 1
1E/0 25 Buts )IdsS/O 75 (E(B.()) " ds
t by 1
= /0 —ZVs(i=s)ds

frhn 1 2 3/2
< —_ =
< /0 ZeVids = 372 ()

the first integral is indeed of order op(1/v/nhy).
Note that in the second integral one of the K-functions is identically zero. Hence
we may derive the following bound:

1 _
K]l sup |b(s)| T|Hn V(thn) — thy|
SEA(r) thn

with An(t) = {s: (thy AH; ' (thy)) < s < (thyVV H; }(th,))}. Then use a slightly mod-
ified version of Theorem 6.5 of EINMAHL (1994) to get weak convergence of the tail
empirical quantile process v,(s) = v/nhy(H; 1 (sh,) — shy) /by for s € [0,1] to a Brown-
ian Motion. A simple rescaling then yields

E|H !tha) — thy| = Op(1/+/nhy)

uniformly inz € T
Finally, use that

sup |b(s)| < max{ sup [b(s)|, sup  |b(s)[}

sEA(1) O<s<trhy 0<.\‘<H,,_l(trh,.)
=max{o(1),0p(1)} = op(1)

to obtain op(1/+/nh,)-behaviour of I, 3, uniformly over T.
Hence, we may conclude that

sup Vnhy |y

which is the bound on the remainder term we will need in the next section.

@ (n,thy) — B (thy)| = 0p(1)

3.4 Proofs

3.4.1 Proof of Theorem 3.1

In Theorem 3.1 we stated the convergence of the processes Z, with index set 7 and

Zu(t) = /by (7 (n,thy) — v — B (thy)
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to a Gaussian limit process Z. However, since the previous section resuited in a decom-
position of our estimator in two parts, with the second part satisfying

s o (7

teT
we arrived in the more familiar situation of i.i.d. random variables. Hence, to prove
Theorem 3.1 we now only have to deal with 7(1)(n, th,) and its convergence.
Define the stochastic processes A, : T — IR, n € IN by

An(t) = /by (70, ) ~ B 5O, thy)

t\/WE (nh,,t) Wai=1)

then it suffices for the proof of Theorem 3.1, to show that the A, converge in distri-
bution to the Gaussian process Z mentioned in the theorem and that IE (V) (n,h,) =
¥ +0(1/+/nhy) uniformly int € T.

For the convergence in distribution, note that the A,’s can be considered as the
row sums of an array of random functions, independent within rows. To establish the
desired convergence in distribution, we could use the functional central limit theorem
as formulated in POLLARD (1990). However, as the random functions are continuous
functions on a compact interval of the real line, we do not have to use Pollard’s theorem.
In our, rather simple case we can use the techniques of BILLINGSLEY (1968).

First we will show the convergence of the finite dimensional distributions. Therefore
define

m
Yo=Y ajAn(tj)
j=1

A (n,thy) = B (thn) ) = 0p(1)

with 71,...,4, € T and ay, .. .,a, € IR. Then, interchanging the order of summations,
we may rewrite ¥, into ¥, = Y7, n,; with
7\ 2o ()
Mni = ——=—= —K Woi—1)
wt nhy, (]ZI I nhntj (Wi

By construction, the 7, ;’s are independent, have zero means and variances given by

w2

hence IE Y, = 0 and

m m

Y Yaa

j=lk=1

varY, =v

I
XK

. 2
(nhnt]>)
e i

nhpt;

21 1
lnhntjtk

)< ()
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As K is a Lipschitz continuous function, we have
1 s
K(tjs)K(ys)ds=— [ K K|=)ds
Lty t j i

sl 1 ] i 1
=2——K( ) (i) ()
=1 nh,t jtk nhyt j nh,,tk nh,,

jak/K(IjS)K(tkS) ds

SO

m
var Y, — 2

I Ms

which is the variance of Y7 _, a;Z(t;). Moreover, 7, ; = 0 for i > t,nh, and, for i <t,nh,
] 1%J 7 ’

P A R-X.7 i ) 4
Ent =—— x| —) ] EW,;-1
Mn,i n?h2 FZI t (nhntj) (Wa,i—1)

1
=0 (n2h2)

uniformly in i, so that 3.7 ;IE n,f, ; = O(1/(nhy)). Hence Liapunov’s condition is satis-
fied and the central limit theorem applies. So, for all (a,,...,a,) € R™ we have

m

f:]ajAn(Ij) -2> 2 ajZ(tj)
j=

j=1

and, using the Cramér-Wold device, we may conclude that the finite dimensional distri-
butions converge.

Rests us to prove tightness to obtain the convergence in distribution of the processes
A,. Following BILLINGSLEY (1968), eq. (12.51), it suffices to show that, for some
C<oo

IE (Ax() — An(s))? < C(t —5)?

for all 5,2 € T. Since the variables W, 1, ..., W, 5, as defined in (3.8) are independent, it
follows that

Note that, for all s,z € T the summands vanish for i > nh,t,. On the other hand
1 i 1, [ i
—-K|{—)—--K

t (nh,,t) s (nh,,s)

1 i i i
K (nh,,t) -k (nh,.s) + lK (nh,,s)

< -
<Clt—s

1 1

t N

t
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for all 5, € T, with some constant C’ not depending on n or i. These arguments, put

together, imply the tightness criterion, and A, 2, Z follows.
As stated at the beginning of this section, to complete the proof of Theorem 3.1 we
still have to show that, uniformly inz € T

E (,;(U(n,mn)) = myhn gK <niint) =y +o0(1/\/nhy)

However, again using the Lipschitz continuity of K, we get

n . ltnhy,)
Sk () =7 3 [ o0+ ()~ i (00)

=1 n

ltnhy}/n Lt”th
- y/o K, (4) du+0 <t2n2h%>

=y +0(1/(nh,))

uniformly int € 7.

3.4.2 Proof of Corollary 3.1

Let F, K, h,,, Zn, Z and T = [1;,1,] be as in Theorem 3.1. Assume that the random
sequence h, is such that h,/h, — 1 in probability and define #, = A, /hyn. Theorem 3.1
then gives that the random vector (Z,,,) : (@, 4,IP) = C(1;,t,) x IR converges in dis-
tribution to the vector (Z,1). Then use the Skorohod-Dudley representation theorem,
to deduce that there exists a probability space (,4,1P) carrying the random variables

(Zy,,) and Z, with the property that (Z,,,) 2 (Zn,tn), 227 and (Zn,tn) = (Z,1) as.

Since Z has continuous sample paths, we obtain that Z,(f,) —» Z(1). Finally return to
the original probability space to obtain that

Za(ta) = Z(1) = N(0,7%02)

3.4.3 Proof of Theorem 3.2

Under the assumptions of Theorem 3.2, the bias part of the actual AMSE(n, k) is of the
form

/K b(hs) ds = hb (0)Cy + o(h) (3.10)

with C) = [sK(s) ds. We will first show that the estimate ﬂﬁ,,,g is close to this equation:

Lemma 3.1
Under the assumptions of Theorem 3.2 we have

Bn.g(h) = kb (0)C) + o(h) + 0p(1/v/nh)
with C; = [ sK(s) ds.
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Proof of Lemma 3.1:
Following similar arguments and using the same notation as in the basic decomposi-
tion of 7(n, k), we can decompose b,  into

bnst) = 37 | (=) =5 (5| s
+ Z (In,j(x:8) — I j(0;8))
j=0
where
ho(s8) = [ Kels—2b(s) ds
hatg) == [ Kels = 2)o(s) ds

1 b(s)
Lo (x; B,(s)K, Bu(s)—x)—=d
i) = [} ok (4 (o) -x) &

hateg) = [ :1) (6 (5 o) =) = Ksts ) (5 s

Note that it is sufficient to consider b, z(x) uniformly in x € [0,A].
The weighted sum of i.i.d. random variables can be dealt with using the assump-
tions on the kernel X:

“(iE o) ()]

([ ke-sranro ()] [[ s arro(L)
(@)

both bounds being uniform in x € [0, A].




3.4 Proofs 61

Now we will show that the difference I, o(hs; g) — I,0(0; g) leads to the desired equa-
tion for the bias:

Ino(hsi8) = no(0:8) = [ (Kl hs) = K(09) b(x) d

= /01 K(z) (b(gz+hs) — b(gz)) dz

since i} O and g | 0, hence (1 — hs)/g > 1 for n large enough and all s € [0, 1]. Using
the assumptions on b(-) then yields

/O k() (b’(gz)hs+o(h)) dz=hs /0 k@) (b’ (0)+ 0(1)) dz
= hsb (0) +o(h)
with o(#) uniform in s € [0, 1]. Hence

/01 K(s) (Ino(hs:g) — 1,0(0;8)) ds = hb' (0)C, +o(h)

as required.

The remaining terms I, ;(hs;g) with j = 1,...,3 will give, using similar argu-
ments as we used in finding a bound for the remainder term in the basic decomposition
of ¥(h,n), that I, ;(hs;g) = op(1/v/nh) for j =2,3 and that L1 (hs;g) = op(1/(nh)),
again, uniform in s € [0, 1]. Thus

Bug(h) = BB (0)Cy + o(h) + 0p(1/V/nh)

From equation (3.10) it follows that a minimizing value S of h — AMSE(n, k) is of
the order n~!/3 and the corresponding AMSE(n, %) of the order n=%/3, Thus, as a
consequence of Lemma 3.1 we have that

sup n*3|AMSE,, ,, (n,h) — AMSE(n,h)| - 0 in probability
hed, »8n

with H, = {hplan='/3 < h, < bn='/3} for arbitrary 0 < a < b < oo,

To complete the proof of Theorem 3.2, we will follow the lines of the proof of
Theorem 3 in RICE (1984).

Define

l(z)= Jingonz/3AMSE(n,zn‘l/3)

= (zb'(O)cl)2 + y;cz
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with the constants C} and C; only depending on the kernel K. Then

sup |r12/3 (AMSE(n,zn"1/3) —l(z)); -0

a<z<b

for arbitrary 0 < a < b < . Using that I(z) is strictly convex and infinitely often
differentiable on (0,c0), we obtain that z, = argmin, /(z) is unique. Indeed, n'/3h% — z,
as n — oo, provided that a < z, < b.

Define z, = n'/3h2 and %, = n'/?h,. Fix & > 0 and define the function D(-) by
D(8) = infj,_, |55 ((z) — 1(z0)) and I(z) = n*3AMSE, ;, (n,zn~'/?) with minimizer
Z,. Then

P (|2, — 20| > &)
' <IP(I(2n) — I(z0) > D(5))
<P (I(2n) — [(2n) +[(z0) — 1(z0) > D(8))
<TP(I{z,)—

~

(1(zn) — i(2n) > D(6)/2) + P ({(z5) ~ 1(z0) > D(8)/2)

However, these terms converge to 0 by the remarks following the proof of Lemma 3.1.
Hence

n'3(h,—h%) =0  in probability

or

h
é — 1 in probability

3.4.4 Proof of Theorem 3.3
By Theorem 3.2 we have that /1, /h2 = 1 in probability and hence, by Corollary 3.1
~ 2 » D
\Y nhg (y(n,h,,) -y—8 (hn)) — N(O: 720'1%’)
Moreover 7(n,hy,)/y — 1 in probability.
Since h? € H, for some 0 < a < b < oo, see remarks following the proof of
Lemma 3.1, and h,/h% — 1 in probability, it follows that, Ve > 0

lP(an_l/3(1 —e)<hy< bn-'/3(1+s)) -1

hence, h, € H, with probability tending to 1, where #, = {hs|3an"'/* < h, <
3bn~1/3}. Using Lemma 3.1 we then derive that

sup nl/3 ‘ﬁ (h) = Bug,(h)| =0 i probability
heH,
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and hence, Ve > 0

P (n1/3 ‘ﬂ (ﬁn) - Bn,gn(iln)

> e) -0
So

\/nhy

)A’(";i’n)

which one can use to construct asymptotic (bias-corrected) confidence intervals.

(3 n1n) = 7 = B, n) ) 2 N0, 07)
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Chapter 4

A new type of estimator

In this chapter a new type of estimator of the extreme value index will be introduced and
its asymptotic properties will be discussed. In the calculation of this new estimator two
parameters have to be chosen appropriately. When the proof of the theorems concerning
the introduced estimator is given, we will illustrate the behaviour of the estimator as a
function of these two parameters by means of a small simulation study.

This new estimator is a generalization of the estimator of the previous chapter in
the sense that it is a consistent estimator for both positive and negative extreme value
indices, whereas the estimator of the previous chapter could only be used in case of
a positive extreme value index. In the final section of the present chapter, the new
estimator will be related to other existing estimators.

4.1 Introduction

Throughout this chapter, we will be concerned with a sample X1, ..., X, of i.i.d. random
variables with common distribution function F that is in the domain of attraction of an
extreme value distribution G, for some y # 0. Denote the ascending order statistics of
such a sample by X(;y < -+ < X(,. Consider the function ¢ (+) defined by

d
¢(s)= —sa}log o(l-ys) “.1n

with Q(s) = F~1(s) the quantile function of the variables X;, assuming existence and dif-
ferentiability of log Q(1 — ). In case of a Generalized Pareto Distribution Fpp(-37,0),
as defined in (1.6), the corresponding ¢ -function is given by

Y
1—s7

¢Gpp(s;7) = fory # 0, s€(0,1)
Note that this function does not depend on the parameter ¢ present in the distribution
function Fgpp(-;7,0).

Results in BALKEMA AND DE HAAN (1974) and PICKANDS (1975) indicate that the
tail of a distribution function F € D(G,) can be approximated by a Generalized Pareto
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66 4. A new type of estimator

Distribution with the same y but with a o depending on the threshold above which the
tail is defined to start. (See also (1.3) and (1.5) in this thesis.) Since ¢Gpp(-;) does not
depend on the parameter o, it is appealing to try to approximate, in a neighbourhood
of 0, the ¢ -function corresponding to F by one corresponding to a Generalized Pareto
Distribution with the same y but with arbitrary o > 0. The main idea behind the new
estimator of the extreme value index is based on that observation.

Indeed, we will use a kernel type method to estimate the ¢ -function corresponding
to F on the interval [s,, 1] non-parametrically, with s, a value close to 0 and call that
estimator ¢;(s). Then we will continuously extend that estimator to the interval (0, s,)
using ¢gpp(-; 7). Note that the continuity of the extension yields an estimator of y:
continuity at s, implies

14
1—s}

#n(s0) = dGrp(sory) =

and hence yields an estimator for ¥, since for each fixed s,, ¢cpp(so;7) is a monotone
function of y and is therefore invertible.

Intuitively, the closeness of s, to zero should depend on the sample size n, for s,
is related to the threshold above which the approximation of the tail of the underlying
distribution function by one of a Generalized Pareto Distribution is considered to start to
be effective. In the next section we will see that the rate at which s, tends to 0 depends
on the non-parametric method that is used to estimate ¢ ().

Obviously, if one is only interested in the estimation of the extreme value index,
it suffices to consider the ¢,(-) only at the point s,. Estimating ¢ (-) on a non-empty
subinterval of (0,1) could be used to estimate (extreme) quantiles. Moreover, an esti-
mator of the quantile function can be constructed in a similar way. Such an estimator
could be used to draw bootstrap-samples in order to try to find a mean squared error
optimal smoothing-parameter s,. In the present chapter however, only the estimation of
the extreme value index itself will be considered.

4.2 Main results

Let Xj,...,X, be a sample from a distribution function F in the domain of an extreme
value distribution G, and let ¢ be defined as in (4.1). Let K : IR — IR be such that

[KC1) K(x)=0 x¢(—-1,1)
[KC2] O0<K(x)<e xe(-1,1)
[KC3]  The derivative dK(x)/dx exists and is uniformly bounded on (—1,1)
[KC4] / K(x)dx=1
Define the boundary kernel K, (-) by
K (x) = (or + xB)K(x)1(_1 (%)
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where ¢; and f; are determined by the equations

/tl(aﬁ-uﬁ,)K(u)du:l and /']u(a,+uﬂ,)1<(u)du=o (4.2)

Note that condition [KC2] implies that both ¢, and §; are bounded uniformin € [0, 1],
hence that the boundary kernel is bounded, uniforminz € [0,1] and x € (—1,1).

We will make frequent use of a function that is closely related to this boundary
kernel. Define for ¢t € (0,1) the function ‘¥, (-) as

¥, (1) = uk, (t — u) 4.3)

Note that equations (4.2) imply that

1 1
/ TE st ana / a = u)LW du=0 (4.4)
0 u 0 u

moreover, these equalities can be combined to obtain

41
/0 W, () du =1 4.5)

As stated in the previous section, the closeness to zero of the point s, at which the
transition of a non-parametric estimator to a parametric one is made, should intuitively
depend on the sample size n. Hence it seems reasonable to estimate ¢ (&,) for some
sequence &, — 0 as n — . However, in order to be able to use a boundary kernel, as
implicitly defined in (4.3), the &, should be of the same order as the bandwidth 4 that is
used, i.e., the function ¢ (-) is estimated at the point hz, for some ¢ € (0, 1). Therefore,
define the estimator of ¢ (fit) by

o n i
¢n(ht) = ; ¥, (E) (IOgX(nfm) - lOgX(n—i)> (4.6)

Note that by definition of ¥, (-), approximately the nh(r + 1) largest order statistics
will be used in the calculation of the estimate. However, the start of the parametric
assumption on the underlying distribution function is at the threshold y, where 1 —
F(y;) = ht, hence more than just the nhr values of the sample above the threshold y,
will be used. This differs from the situation of other estimators like e.g., the moment
estimator and the maximum likelihood estimator (for both estimators, see Chapter 2).
For these estimators only the values of the sample above a certain threshold y, are used
in the calculation of the estimator. Consequently, this new estimator depends on the
chosen threshold in a much smoother way as is the case with e.g., the moment estimator
and the maximum likelihood estimator.

As stated in the introduction of this chapter, we will define an estimator of y by
equating the estimated ¢ -function corresponding to the underlying distribution function
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to the ¢ -function corresponding to a Generalized Pareto Distribution. To that end, first
define the function ®y(-) for a fixed y € (0,1) by:

= "yx ifx#0
Dy(x) = 1 4.7
—— ifx=0
logy
Note that, for each fixed y € (0, 1) this function is monotone and continuous in x and
hence has an inverse @ 1(.), although this inverse can not be expressed explicitly.
Therefore, we can define the new estimator of the extreme value index:

Tan = Dy (8n(h)) 4.8)
for some fixed r € (0,1). Le., this estimator is the y that solves the equation

on(ht) = r_‘%"h;)—;

Note that, in case of a positive extreme value index and choosing ¢ = 0, this estimator
coincides with the kernel type estimator discussed in Chapter 3 of this thesis. Indeed,
this is easily seen by equating Wo(u) with uK*(u) where K*(-) is the kernel used in
Chapter 3, and using equations (3.1) and (4.6).

Since first we will be estimating the ¢ -function rather than the underlying distri-
bution function F itself, the conditions needed to derive asymptotic normality will be
expressed in terms of this ¢ (-)-function!:

[pciyy  Ify >0,

¢(s)=r(1+5(s))
with b(s) — 0 as s — 0, uniform on some interval (0, ¢).

[pc2]  Ify <O,
¢ (s) = —ys7TL(s)

with L(-) slowly varying at zero and L(s) — L, > 0 as s — 0, uniform on
some interval (0, ¢).
The conditions arise quite naturally if one considers the expansion of the ¢ -function of
a Generalized Pareto Distribution in the neighbourhood of zero:

y(14+0(s77)) y>0

¢GPD(S;7)={ ass )]0
—ysT7(14+0(s77)) y<0

!Note that the case y = 0 is not covered by these conditions. This type of limiting extreme value distri-
bution is not yet considered, since the corresponding ¢gpp-function —1/logs is not as easily generalized.
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More generaly, we want to consider functions of the following type:
rLis)  v>0
(s) =

—ysTLa(s) ¥<0

ass | O

with L;(-) (i = 1,2) slowly varying functions at zero. The specific choices of the slowly
varying functions in [PC1] and [PC2], stem from the observation that even though the
extreme value index does not change under a translation of the underlying distribution
function, the corresponding ¢ -function does:

o(1-s)
Q(1-s)+a

Hence, since the quantile function Q(1 — ) tends to the (possibly infinite) upper endpoint
xg of the underlying distribution function, this yields

pa(s) ~ ¢ (s) r>0

F,(x)=F(x—a) a>0 = ¢a(s) =0 (s)

X assl0

F
xXp+a
and this is represented in [PC1] and [PC2], by taking L (s) = 1+ b(s) with b(s) — 0 as
s — 0 and L, (s) = L(s) respectively.

The asymptotic behaviour of the estimator of ¢ (Ar), as process in ¢, is stated in the
following theorem:

fa(s) ~ ¢ (s) r <0

Theorem 4.1

Assume that the ¢ -function corresponding to the underlying distribution function F
satisfies either condition [PCI1] or [PC2]. Moreover, assume that the kernel K satisfies
conditions [KC1]-[KC4]. Let h = hy, = H(n) where, in case y > 0, H € RVZ , for some

p €(0,1) and in case y <0, \/nH(n) ¢ (H(n)) = o and H(n) — 0 as n — oo. Define
the stochastic processes Z, with index set (0,1) by

nh
(

B

Zy(r) = (@n(ht) = Dy (1))

©
=
Rl

where
1+1
Dyp(t) = / 1og O(1 — hut) ¥, (1)
1/nh
D .
Then Z,, — Z with
t4-1 -
Z(0) = / W (x) d¥, (x)
0

where 7 =y NO and W(-) is standard Brownian Motion. Moreover,

Dy (1) = éGep(htsy) = /OIH (¢ (hu) — ogpp(ht;y)) \P'iu) du+o (?/E%:)
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REMARK 4.1
Note that Z is a Gaussian process with continuous sample paths, mean function 0 and
covariance structure

cov (Z(1), Z(v))—/ /+ XY (4y) 7 d¥,(y) d¥, (x)

REMARK 4.2
An alternative representation of the limiting process Z(-) is obtained using partial
integration:

20)= bWl - [ Hwa W)
= TR WWE - [ k() d (W)
0
1 -
= _/0 xK, (t—x)d (x 77 'w(x))

t+1 -
- /0 ¥, () d (7w (x))

where the last equality follows from the fact that 7 < 0, W(0) = 0 as., K; (0) is
bounded, K; (t + 1) = 0and W(z + 1) = Op(1).

REMARK 4.3
In case of positive index, the asymptotic covariance function can be rewritten as

(tnv) X (env X
cov(Z(t),Z(v)):/O +1‘Y'T()d‘l’v(x)+/0 )“‘*’()dq,t()

Moreover, applying partial integration, this is equivalent to

cov(Z(t),Z(v)) = /(m LY (x i vx)

REMARK 4.4
In case y = —1, the limiting covariance structure can be written as

(tAv)
cov (Z(1),Z(v)) = /'0 (0¥, () dx

REMARK 4.5
In case of positive index, the conditions on the sequence h,, imply that nh, — o as
n— oo, since H € RVZ,, for some p € (0,1).
In case of negative index, the conditions on the sequence h, also imply that nh, — o
as n— oo, since ¢ (h) > 0as h— 0.

Theorem 4.1 will be the starting point for proving the asymptotic normality of the gen-
eral kernel type estimator of the extreme value index. The presented results of the
asymptotic properties can be applied for any fixed ¢ € [0,1] in (4.8) in case y > 0,
whereas in case y < 0 the chosen ¢ € [0, 1] should satisfy a certain condition.
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Theorem 4.2 (positive index)
Let ¢, F, K and h be as in Theorem 4.1 for some y > 0. Additionally, let t, be any fixed
value in the interval [0,1] and let ?fh be given by (4.8) witht = t,,. Then

NETIR :
;‘T(nh_) ( 'gh - Bn,h(’n)) _’Z) Ztt

where By j(t,) = (D,;al (D p(to)) with Dy y(t,) as in Theorem 4.1 and Z," a normally
distributed random variable with mean 0 and variance

to+1 pto+1 xA
/ / I2Y 4%, () ¥, (%)
0 0 Xy

REMARK 4.6

Note that, using remark 4.3, the variance of the limiting normally distributed variable
Z," can be rewritten as

2/0'"+1 f’—x(x—) a¥,,(x) = /0"’+1 ('*"_("))2 dx

X

Theorem 4.3 (negative index)
Let ¢, F, K and h be as in Theorem 4.1 for some y < 0. Additionally, define

141
K, (1) =/ WY, () du
0

Let t, be a value in the interval [0, 1] that satisfies Loty (t,) > 0 and let 77"6}; be given
by (4.8) witht =1t,. Then -

N Do
Vnhlog(ht,) Ky (o) (y,fh - B,,,h(to)) —Z,

where By h(ts) = @y} (Dnp(to)) with Dyp(t,) as in Theorem 4.1 and Z;, a normally
distributed random variable with mean 0 and variance

fo+1 1(,+1x/\y
—(xy)Va¥ d¥, (x
LT e a0 av )

REMARK 4.7
Note that in case y = —1, the constant k, (r) equals 7 for all z € (0, 1) by (4.5). Hence,
the condition on the chosen 1, is satisfied for all 7, € (0, 1) by [PC2].

REMARK 4.8

As the proof of the theorem will show, log(hto) (B, u(to) — 1) — log(Loth k(1)) as
n—r oo,
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4.3 Proof of Theorem 4.1

We will first present an outline of the proof, before going too much into detail. The
estimator of ¢ can be represented in the following way:

. 141
Pr(hr) = /0 log Qn(1 — hu) d¥, ()

with Q,,(-) the empirical quantile function and ‘¥, (-) as defined by equation (4.4). This
follows by rearranging the terms in the definition of ¢,(-) and noting that Q,(1 — u)
equals X, ) fork/n <u<(k+1)/n.

Since the behaviour of the empirical quantile function near the boundaries of the in-
terval (0, 1] differs from the behaviour on the interior of that interval, we will decompose
the estimator into two parts:

n t+1 1/nh
fulhe) = /1 1y 0B 01— R 0) /0 108 On(1 — hut) d'¥, (u)

Assuming that the empirical quantile function will approximate the underlying quantile
function, the first term is likely to be close to its deterministic equivalent. Therefore we
decompose the estimator further into

- t+1
on(ht) = /1 oy 10BQU ) ¥, (w)+
t+1
+ A/nh (log Qn(l - hu) - IOgQ(l - hu)) d‘I";(u)

1/nh
+ /0 log O (1 — hut) ¥, ()

= Dup(0) + X))+ R(0) 4.9)

i.e., into a deterministic part D, ,(¢) (as given in the theorem) and two random parts

Y,f ;,) (t) and R,(ll)l (¢). The term Rfll,), (¢) turns out to be negligible with respect to the other

terms, while the other random term will, properly scaled, lead to the limiting process
mentioned in the theorem. »

To obtain that limiting process, we use that Q,(1 —x) = Q(T,(1 — x)) where [,(-)

is the empirical quantile function of a 2(0, 1) sample of size n, to rewrite Yn( ]h) (t) into

r+1
[ (108 @(Ta(t — hu) ~ log Q(1 — hu) ) ¥ (u)

1/nh

By the symmetry of a uniform sample we have that [, (1 —x) 2- [n(x), hence Yn(‘lh) ()
is equal in distribution to

/1:+l (logQ(l — Tp(hu)) —log Q(1 - hu)) d¥, ()

/nh
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Using a first order Taylor expansion on the function « — log Q(1 — «) and noting that
dix(log Q(1 —x)) = —¢ (x)/x, yields the further decomposition

v = /l/,, o 022 1y ) 1 RO 0)

o s )

=20 +RO0)
where
Ay(u) =Tp(u) —u (4.10)

and Rf})l(t) is a remainder term.

It is well known that the scaled empirical quantile process of a uniform (0,1) sam-
ple, v/nAn(u), converges in distribution to a Brownian Bridge. Moreover, a sequence
B™ of Brownian Bridges can be constructed, a so called Hungarian Embedding, such
that the weighted difference (\/7A,(1) — B™ (1)) /u'/>=" converges uniformly to 0 in
probability, for any v € [0,1/2). We can make use of that result by rewriting the scaled

Yn(i) (¢) into

Y@ _ /W“) 0 (W) B0 (%)

¢ (h) ™ in ¢ (h) h
h+1) (u) v/ () = B (u) u
aan % (5)
=50 +RO)0) (4.11)

The mentioned result of the Hungarian Embedding indeed yields that R( )( 1) is of neg-
ligible order.

The term Y (t) is completely determined by the behaviour of the sequence of
Brownian Bndges Since a Brownian Bridge B(:) is in distribution equal to W (u) —

uW (1) where W(-) is standard Brownian Motion, we can use W (hu) Z VAW (1) (Brow-

nian scaling), to show that Yn(i) (1) indeed converges to the limiting process mentioned
in the theorem.

The actual proof of Theorem 4.1 is organized as follows: in section 4.3.1 the random
terms will be considered. That section starts with stating some miscellaneous results that
we will be needing when dealing with the random terms. In subsection 4.3.1.1, the first

remainder term Rf’]}),(t) will be shown to be of negligible order. Subsections 4.3.1.2
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and 4.3.1.3 will deal with the other remainder terms R'%) nq(f) and R(3 4(t) respectively. In
subsection 4.3.1.4 the limiting process itself will be derlved for the remaining random

term Yn(3h (7). Finally, in section 4.3.2 the deterministic term D, (¢) will be considered.

4.3.1 The random terms
The following results are taken from WELLNER (1978).

Lemma 4.1
Let Ty(u) be the empirical quantile function of a uniform (0,1) sample of size n and let
An(-) be given by (4.10). Then the following holds:

sup M'=0p(1), sup |=——| = 0p(1) (4.12)
leu<t leu<t T (u)

and
sup | 2ot ‘=o,,(1) 4.13)
bp<u<l| U

where b, is any sequence of positive numbers satisfying nb, — % asn — oo,

Proof of Lemma 4.1:
From Lemma 2 in WELLNER (1978) we have for all A > 1 that
IP{ sup M >A | <ere?
lauct! U
and
IP| sup “ > Al <er!
taTa(@) |7 )7
Hence (4.12) follows.
The second assertion, (4.13), is Theorem 0 in WELLNER (1978). ]

Another result concerning the empirical quantile function I'(-) is presented in the fol-
lowing lemma:

Lemma 4.2
Let An(-) be given by (4.10). Then the following holds with probability 1:
u+rAy(u) >0  forallt€[0,1] and u € [0,1] 4.14)
and
sup |An(u)]—>0 (4.15)

O<u<l
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Proof of Lemma 4.2:
The first statement, (4.14), follows simply by the definition of A, (u).
For the second statement note that this is the quantile equivalent of the Glivenko-
Cantelli result for the empirical distribution function. Indeed, since I', is the inverse
of the empirical distribution function F,, we have that |, (F,(s)) — s| < 1 /n and hence

sup |4y (M)I—OSUP |Ta(Fa(s)) = Fa(s)]

O<u<l

< 0P 1Fa(s) =sl+ sup |Ta(Fa(s)) =
0<s<1 0<

= sup |Fu(s) —s|+0O(1/n)
0<s<
where the first term of the last line tends to 0 almost surely by Glivenko-Cantelli as
n— oo, L

The next result will be stated without proof and concerns the Hungarian Embedding as
mentioned in the outline of the proof of Theorem 4.1 and is reformulated as:

In CSORGO, CSORGO, HORVATH AND MASON (1986) a probability space is con-
structed on which there exists a sequence Uy, Us, ... of i.i.d. U(0,1) variables, and a
sequence of Brownian Bridges {B(") (s)}, which has, among others, the following prop-
erty (cf. Theorem 2.1 in CSORGO, CSORGO, HORVATH AND MASON (1986)):

Lemma 4.3
Forany0<v <1/2

(n)
wp VAW =EOWI_
1/n<u<l-1/n uzi"v

as n — oo, where Ay(u) = Up(u) — u with T'y(+) the quantile function of Uy, ..., Up.

In view of this result, we will assume that any uniform (0, 1) sample and sequence of
Brownian Bridges we will be using, are defined on the above mentioned probability
space.

Finally, the next lemma will be of use in dealing with the first remainder term Rfll,)l(t).

Lemma 4.4
Let v(-) and u(*) be regularly varying at infinity with index A, < 0 and Ay > 0 respec-
tively. Moreover, let u (-) be non-decreasing. Then the following holds:
lim xv (a*™) =0 Va > 1
X—$oc0
Proof of Lemma 4.4:

Recall the following properties of regularly varying functions (see e.g., Chapter 1 of
BINGHAM, GOLDIE AND TEUGELS (1987)):
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@) Suppose f € RV]. Then

0 p<0.

f(x)—>{

o p>0
as x — oo,

(ii) Suppose f is non-decreasing and f € RV, with 0 < p <eo. Then fle
RVT/ 0 where f~! denotes the inverse of f.

(iii) ]SQ;[:E)OSC fi ERVZ, f RV with fo(r) & 0 ast —co. Then fiofr €
p1p2°

Obviously,

i Ay = -1 ¥y
Jim xv (@) = lim 4™ (y) v(@)

= lim g ! (l"ﬂ> v(x)

x—poo loga

where in the first equality we substituted y = u (x) and in the last equality we substi-
tuted x = ¢ for a > 1. Noting that log(-) € RVy we get

#()ERVY =>u e RV,

=u! (%‘%) €ERVy

=" (i) 0<%

1
=u! (lgggg) v(x)—>0 asx — oo (4.16)

where the first implication follows from property (ii), the second from property (iii)
and the last from property (i). Equation (4.16) then yields the assertion. =

1
4.3.1.1 The random term Rf”)l ()

In this subsection we will prove that the remainder term anli). (r) is of negligible order,

i.e., we will prove the following proposition.
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Proposmon 4.1
Let R (t) be defined by (4.9). Then, asn — oo

vk (1)
(h) nh() ( )

uniform int € (0,1).

Proof of Proposition 4.1:
Note that, since Qn(1 —u) =X,y for 0 < u < 1/n,

1/nh 1
( ) IOgX /0 d‘Pl(u) = IOgX(") ‘Ft <%>

using that ¥;(0) = O by assumption. Moreover, using the boundedness assumption
on the kernel K(-) that defined the function ¥,(-) (i.e., condition [KC2]), we obtain

logX
R)) = 0p (—nh‘”’)

uniform in ¢ € (0, 1).
In case y >0
Fix £ > 0 and note that

0<IP (logX(n) >e nhn) =1-F" (eXP(8 \/EZ))
n (1 —-F (exp(e \/nT,I)))

where the latter inequality follows from the fact that 1 — x"* < n(1—x) forall x € [0, 1]
andn>1.

Moreover, since F € D(G,) for y > 0 is equivalent to 1 — F(-) € RVZ, y e
can invoke Lemma 4.4: take a = exp(e), v(x) =1 — F(x), 2, = —1/y, and u (x) =
/xH(x) with H(-) as defined in Theorem 4.1, i.e., 4, = (1+ p)/2. In the result of
Lemma 4.4 replace x by n and define & = h, = H(n) to obtain that log X,y = = op(V/nh)

as n tends to infinity, i.e., R,(lll)l(t) = op(1/vnh), uniform in 7 € (0,1), as n tends to
infinity. Moreover, since ¢ (k) — y as h — 0 we have \/nhRfll})l(t)/qb (h) = op(1)
uniform in ¢ € (0,1), as n tends to infinity.

Incasey <0

The underlying distribution function now has a finite upper endpoint, i.e., since b
is assumed to be positive, log X,y = Op(1) as n tends to infinity. That is, R (t) =
Op(1/(nh)), uniform in ¢ € (0,1) as n tends to infinity. Moreover, by the condmons

on h as given in the theorem, \/ERfll,)l(t)/qb (h) = op(1) uniform in r € (0,1), as n
tends to infinity. u
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4.3.1.2 The random term RSIZ,)l(t)

The term R( )( t) was the remainder term resulting from an application of a first order
Taylor expan51on Using the Lagrange representation of the remainder term, i.e.,

1) = Flo) = =300 () + =30 [ (s € 5= 30) = s
we get, with A, (1) = Tn(u) — u,
—(log @ (1 = n(u)) —log Q(1 —u)) =

-0y ) [ (L L) 800

u+ ¢ Ap(u) u

¢( ) ( ) V7o (u+ ¢ An(u)) u
2 ) + £ )/0 ( ¢ () u+§An(u)—l) @

Integrating the last term over u yields R R )( t). We hence obtain

nh ) . 1) ¢ (1) An(u) u u
¢(h)Rnh()-\/nh/1/n Sl )d‘P,(h) @4.17)
where
0 (ut LA(w)) An()\ 7!
Rn(u)—/o( e (1+§ p ) —1> d¢ (4.18)

Note that by (4.14) both ¢ (u+ ¢ Ay(«)) and (1 + £ An(u)/u) ™" are well defined for all
¢ €[0,1] and u € [1/n,2h)].

In the remainder of this subsection we will show that R( )( t) is of negligible order,
i.e., we will prove the following proposition.

Proposntlon 4.2
Let Rfl (1) be defined by (4.17). Then, as n — oo,
\/_
t =op(1

uniformint € (0, 1).
In the proof of this proposition, the next two lemmas will be needed.
Lemma 4.5
Let ¢ (-) be defined by (4.1), satisfying either condition [PCI] or condition [PC2] and
let Ay(-) be defined by (4.10). Then the following holds:

¢ (u+ {An(u))

¢ (u)

uniformin { € [0,1] and u € [1/n,2h).

= 0p(1)
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Proof of Lemma 4.5:
In case y > 0, we have by (4.15) and condition [PC1] that
¢ (ut {An(w)  1+b(u+{An(n))
= = 0p(1)
¢ (u) 14 b(u)

uniform in £ € [0,1] and u € [1/n,2h], since b(s) = 0 as s — 0 uniform on some
interval (0, ¢).
In case y < 0, by condition [PC2] and results (4.13) and (4.15) we have

o (u+ {Dalu)) (1 N g,A,,(u)) Lk EMW) oy

o) u L{u)

uniform in { € [0,1] and u € {1/n,2h)], since L(s) = L,(1+0(1)) as s — 0 uniform
on some interval (0, ¢). ]

Lemma 4.6
Let Ry(u) be defined by (4.18) and let b, be a sequence of positive numbers satisfying
nb, — o as n — co. Then the following holds:

sup [Ra(u)| = Op(1) (4.19)
1<u<on
and
sup |Rn(u)| = op(1) (4.20)
bp<u<2h

Proof of Lemma 4.6:
Note that, by Lemma 4.5,

[Ra()] < op(l)/o1 (1 + f"—“)—ld; 1

u
U

= Op(l)AnLEu) log (1 + A"i’”) +1

with the Op(1)-term uniform in u € [1/n,2h). Use the definition of A,(-) and the fact
that log x has a monotone derivative to obtain that,

logls (1) — logu

1
Co(u)—u +

|Rn(u)| < Op(1) u

< 0p(1) (1\/%@)) +1
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Applying (4.12) then yields (4.19).
For the second assertion, i.e., (4.20), rewrite R, (u) as

Rn(u)=/01 (M >(1+;A"(“)> ¢ +

¢ (1)
+/01((1+§ <>) l)dg

By similar arguments as with the derivation of the first assertion,

sup 01(1+gA"(“)) d¢ = 0p(1)

by<u<2h
Moreover, by the conditions [PC1] and [PC2] on ¢ and results (4.13) and (4.15),
¢ (u+ {An(u))
sup |[————2= —1| =o0p(1)
bu<u<2h ¢ (u)

and finally, again by (4.13) and using that log(1 +x) = x+ O(x?) as x = 0,

: An(u ))
1 -1} =
bn;lt:IS)Zh/O ( e

(282

and the second assertion follows. ]

sup
bp<u<2h

Now everything is set up for the proof of proposition 4.2.

Proof of Proposition 4.2:
In view of Lemma 4.6 rewrite equation (4.17) into

SR =i [ S g av )+

h(+1) @ (1) An(u u
T e CED)

=RZV(0)+RED (1)

where b, is a sequence of positive numbers satisfying nb, — . Denoting the deriva-
tive of ¥, (u) with respect to u by ‘}/,(u), the first term then satisfies

a(u)| [oulh
Alf ) //,,h Z((”h || du

[RED0] < Vi sup (Ra(u)]  sup

1/n<u<2h 1/n<u<2h

= Vi 05(1) 0p(1) 0(1) 2= 11
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where the last equality follows from (4.19), (4.12) and the boundedness of [, ()]
and ¢ (hu)/¢ (k) on the interval (1/nh,b,/h), uniform in ¢ € [0,1]. If, additionally
to the assumption that nb, — oo as n — oo, we assume that v/nh(b, — 1/n)/h — 0
as n — o, e.g., by taking b, = h(nh)~'/2* for some 0 < 4 < 1/2, we obtain that
IR ()] = op(1).

For REIZ,',Z)(t), we will make use of Lemma 4.3 and equation (4.20). Rewrite
Rflz,'lz) (r) into

2 2) h+1) ¢ () /nda(u) — B™ ()
» (0= Vi b ¢(h) u

h(t+1) ¢ (1) B™ (u) u
+\/fz/bn OB R,.(u)d‘{‘,(z)

Ra(w) ¥, (%) +

R () + Rff,',“) )

Note that by Lemma 4.3, forany 0 < v < 1/2,

|y/nBn(u) — B (u)| —v
b,;lullg)Zh ul/2-v Or(n™)

and that, on the interval (b,/h,t + 1), |¥,(x)| and ¢ (hu)/¢ (k) are bounded and
|Rn(hu)| = Op(1). So, for Rff:) (r) we obtain that

(23) . t+1 i,
R 0] < 0p7) 0 () 0(1)VE | A

1

= 0p(n"")0p(1) 0 (hr%—V) = 0p ((nh)™") = 0p(1)

. 2.4
Now consider Ri’h )(t):

u / ") (
R0 s Rl s S8 qup gy [FECWL,

bu<u<2h bu<u<2h @ () p,<u<on
2h {R(n}
=0p(1)o(1)/0 wdu “21)

where in the last equality we used (4.20). Moreover, by the Markov inequality:

2 B (u)| u)l " JW
IP(/zh—‘B(n)(u)ldu>e) <]E/° /
A >e )<

u £ £
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[T
=20 “ <20
£ - £

1/2
St

hence, the last factor in (4.21) is Op(1) and consequently lR,(f,‘:') ()] = op(1) uniform
int € [0,1]. =

43.1.3 The random term R (1) ;

Again we will show that this remainder term is of negligible order. Since Rf?,)l(t) is
already scaled properly by definition, we will prove the following proposition.

Proposmon 43
Let R®) h(z) be defined by (4.11). Then, as n — o,

RO)0) = on(1)
uniform int € (0,1).

Proof of Proposition 4.3:
For this term we can use similar arguments as for the term R,(‘z,'f)(t) that appeared in
the proof of Proposition 4.2: for any 0 < v < 1/2 we have by Lemma 4.3 that

3) |v/n(u) = B® (u)| "+ ¢ (hu) /
Ra0| < s NS gy w0 o) a |
_ —v t+1 ¢(hu) —3—y !
= 0p(n")Wh 2y H ‘P,(u)]du 4.22)

Again using that both W, () and ¢ (hu)/¢ (h) are bounded on (1/nh,z + 1) uniform
int € [0,1], we get that (4.22) equals

Op(n™) O (17" = 0p ((nh) ™) = 0p(1)

43.14 The random term Yn(? ®)

Finally, the random term Y (t) should lead to the asserted limiting process. Indeed,

since B (i) = (W(u) - uW( )) with W(-) standard Brownian Motion, the behaviour
of Yn( h)( t) is completely determined by the behaviour of Brownian Motion.
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Using that W (hu) 4 VhW (u), rewrite Yn(i) (¢) into

o 2Va [ (- w) e ()

D [ g () W(w) o)
_/l/nh S0 \/_W()//nw)h) 4, (1)

It is easily seen that the last term in the previous equation is Op(v/h) = op(1), by the
boundedness of the integral and the fact that W(1) ~ A((0,1). Since ¢ (hu)/¢ (h) ~u" ¥
with ¥ = y AQ by the assumptions [PC1] and [PC2] on ¢ (-), the other term is first written

as
/0 ! ﬂ@ 4, (u) + /O a ( ";((’Z;) -;ﬂ) Wi“) 4, () +

1k ¢ (hu) W (u)
- ————d¥(u

/0 9 (h) ()
Note that by the boundedness of ¢ (hu)/¢ (k) and the fact that IE(W (x)?) = u, the
Markov inequality yields, for any ¢ > 0,

(4.23)

[ Wy,

H)( /Ol/nh ¢((hhu)) Wl(lu) &, (u )} )S ¢ (h) .
Unh ¢ (hue) VEW @) gy 10
b 5w RAO

- £

1/nh
0(1)/ u 2 du
_ 0

_ofwn )

€
Hence the last term in (4.23) is op(1). The second term is dealt with similarly, using
that the assumptions [PC1] and [PC2] on ¢ (-) imply that

h
00 _ 3| = o)
¢ (h)
The first term of (4.23), denoted by Z(r), is a Gaussian process with expectation zero
and covariance structure satisfying

cov (Z(t),Z(v)) ]E/HA/V+1 a x);V(y) d¥,(x) d¥,(y)

=o0(1)

sup
O<u<2
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_ /x+1/v+1x/\y T d¥,(x) d¥,(y)

4.3.2 The deterministic part

In this section we will consider the deterministic part D,, ,(z) as given in the decompo-
sition of gy, (hr):

t+1
Dan(t) = [ 1y 08Q(1 ) ¥, (0)

= [V (u) log Q(1 — hu)] Ltll/nh+/+l \I’,(u)

_ 1 1 +1 Y, (u)
==Y (E) log Q (l - ;) + s ¢(hu)T d

= D) +D3))
where the third equality follows from the condition that ¥, (t + 1) = 0.
The first term, Dilg (2), is dealt with using the fact that ¥, (1/nhk) = O(1/nh) uniform
inz €[0,1] and
incasey >0

that the quantile function Q(1 — ) is regularly varying at zero, hence logQ(1 —-) is
slowly varying at zero and that ¢ (h) > ¥ >0 as h | 0. Le., since h = H(n) with
H € RVZ, for some p € (0,1),

Vnh (1) logQ(1—1/n)
—D =0 ————=——= ) =0(D(n
¢(h) n,h( ) nH(n) ( ( ))
with D € RV, ) 5. Since p —1 <0, D(n) — 0 as n — oo, see e.g., property (i) in
Lemma 4.4 and the assertion follows.

Incasey <0

the distribution function has a finite positive upper endpoint, i.e., |[logQ(1)| < e and
hence

Vnh 1 3
o) Dole) = (\/fmm))'o(”

by the assumptions on 4.

The second term, D,l h(t) should be close to the ¢ -function of the corresponding Gen-

eralized Pareto Function. Indeed, using
1/nhp, (y
/ ildu S—l—- sup =0<L>
0 u n 0<u<l1/nh nh

A0}
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we obtain

D0 = darlhiir) + [ (0 () daroliir) Y1

[ g ¥ 4,
0

du+

()

= ¢cpp(ht; 7)+/ (¢ (hu) — dgpp(ht;y)) —— du+

+ s 1o ()

0<u<l/n

= ggrp(ht;y) + Df,?,),(f) +Di ()

Note that, incase y > 0, ¢ (1) & y asu | Oand in case y <0, ¢ (1) — Oas u | 0. Hence,
by similar arguments as for DS,I,)I ), \/EDS:’})‘(t)/(b (h) = o(1) as n — . Thus,

D"”’(’)_“’GPD(h’?V)=/OM(¢(hu)—¢cpn(ht;7))‘y'( ) duso (‘f/(:_z)

4.4 Proof of Theorem 4.2

We have that

%(f&—mmk q,“(';_’;( L (Bn(h0)) = 3,1 (Dus(0)))
= Z,(O)%(1)
where
2,6) = L™ (3)~ Do)

©
/-\
v

1 '

Yn(t) = /0 (CD};]) (Dn,h(t) + u(&h(ht) - Dn,h(t))) du

with ((D,;l)’ (u) the derivative of @, ' (u) with respect to u.

From Theorem 4.1 we know that Z,(¢) N Z(t) as n — oo with Z(-) as defined in
that theorem. For Y,,(¢) note that

' 1
AT
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with <I);1 (y) the derivative of ®,(y) with respectto y, i.e.,

/ 1-w+yHlogh
@, (y) = —-pE

Moreover, forany 0 < a < b < oo,

sup q)},(y)—ll—m ashl0
a<y<b

by the continuity of @, (-) on [a, 5] and the fact that &, (y) — 1 for all y € [a, b] as h — 0.
Therefore, since CD;] (u) >0 u>—1/logh,
sup ’((D;') (u)—l‘—)O ashl0 4.24)
agu<b
forany0<a< b < oo

For fixed ¢ € (0,1) define the event A,(¢) as

1 - 3
1) = {0 37 S Dal) +u(h) - Doa(6) < 37, v 011}

Theorem 4.1 yields that D, () — v > 0 and that ¢,(ht) — D, 4(t) = op(1) as n — co.

Hence, IP(A,(t)) — 1 as n — . Moreover, on A,(t), Y,(t) = 1 by (4.24), thus ¥,,(r) N
1 and the assertion follows.

4.5 Proof of Theorem 4.3

Before giving the proof of Theorem 4.3, we will state and prove the following lemma:

Lemma 4.7
For x <0 and h € (0,1), let the function ®,(x) be defined by (4.7) with y = h. For fixed

h, denote its inverse by <D;1 (-). Let Fy(x) be a function that satisfies

Fy(x) = ©y(x) +ch *+o(h*) ash|0 (4.25)
for any x < 0 and some constant ¢ > x. Then the following holds:
(logh) (@, ' (Fu(x)) —x) = —log(1 —c/x) ashl0 (4.26)
Proof of Lemma 4.7:
First note that, for x < 0, ®(x) can be rewritten into
Oy(x) = —xh™*
WY = Tk
Equation (4.25) is then rewritten as,
X —xh™*
xh B ch ™ +o(h™) 427

1-h % 1-h*
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where ¥ =%, = (I);l (Fy(x)). Multiplying (4.27) by h* gives

—i % —x+c+o(l)
1-h%*" 1—-h>

using that ch™* = o(1) as h — 0. Taking logarithms on both sides then yields
log(—%) + (x— %) logh — log(1 — k%) — log(—x+c) + log(1 — A %) = o(1)

provided £ < 0 and ¢ — x > 0. Note that ¥ < 0 follows immediately from (4.27), for
if ¥ > 0 then the left hand side of that equation tends to ¥ whereas the right hand side
tends to 0, i.e., a contradiction and if ¥ — O then the left hand side is of order 1/logh
whereas the right hand side is of order 1%, i.e., again a contradiction.

Rearranging terms and noting that log(1 —h™*) = o(1) we get

(x—x)logh—log(1 —c/x) +log(%/x) —log(1 —h™*) = o(1) (4.28)
Define ¢, = (x— %) logh —log(1 — ¢/x). Then

Substituting this in (4.28) we obtain

log(1—c/x)+¢&,

&y +log [H— “xlogh

] —log [l —h™*(1—c/x)e] = o(1) (4.29)

However, since in (4.29) the second and the third term are of smaller order than the
first term, the left hand side can only tend to zero if ¢, tends to zero. This in turn
implies (4.26). a

Now we can proceed with the proof of Theorem 4.3. Write

Vahlog(ht) (75— Bap(t) ) = Vihlog(ht) (@ (d(h)) — @' (Das(6)))

= Zn(t)Yn(t)
with

Zp(t) = W\/n_}; (on(ht) = Dy 4(2))

1(0)= 6 (W1og(hr) [ (@) (Dae) +(Gu(h)~ Dage)
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where (<I>,;1)I (u) is the derivative of @, (u) with respect to u.
Theorem 4.1 yields that Z,(z) 2z (t) with Z(-) as defined in that theorem. For
Y,(¢) note that

! 1
@) ()= ————
( h ) q)h(q)hl(u))
with @, (x) the derivative of ®j(x) with respect to x, i.e., forx < 0, as h — 0

xh~*logh—h—* 4+ b~ %
(1=h)2

Hence, foranyx <0and 0< 8§ < —x,ash = 0

@, (x) = = 0 (xh™*logh)

xh™*logh  x
Py (x+38) x+6

K (1+0(1)) | (4.30)
From Theorem 4.1 we know that
) = 2w+ [ (om0 - 0 T au o (22)

Substituting ¢ (s) = —ys~"Ly(1 + o(1)) uniform on some interval (0, ¢), we obtain for
fixedz € (0,1)

Dy p(t) — P () =
141 u _ —
[ S 2,08

_ [Lo,r /0 () du— 1] (ht)™" +o ((ht)™7)

==y [Lot" 1y (1) = 1] ()7 +0 () ™)
=c(ht)™" +o((h)77)

with &,(r) = f57 w7 "W, (u)duand c = y [1 - Lot" k(1))
Assuming that we can fix ¢ € (0, 1) such that ¢ > y, Lemma 4.7 then yields that

log(ht) (®}" (Dua(t)) —v) = —log (1 - ;)

as n — oo, Moreover, since from Theorem 4.1 we know that, for fixed ¢,

On(ht) — Dy u(t) = Op (%) =op((ht)7)
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SO

Dy (1) +u ($n(ht) = Dy p(t)) = @pe(v) +c(ht) ™ +op ((h1)7")
uniform in u € [0, 1].
Hence, substituting x =y and § = D, 4(t) + u ((ih(ht) —D,,’h(t)) — v in (4.30) and
noting that, when § — 0,x/(x+8) — 1,
y(e) " log(hr)
@), (Do (t) + 1 (9n(ht) — Dy (1))

= (hr)PesO+u(3(B)-Dup() =7 (1 4 p(1))

and, uniform in u € [0, 1], this converges by Lemma 4.7 in probability to

exp (~ log (1 - %)) = (1 - g)_l = (Lot" Ky (1) ™"

Hence, again using that ¢ (s) = —ys~"L,(1+0(1)), we get for ¥,(¢) the expression

—yh"og(ht)Lo(1+0(1)) /01 (©31) (Da(6) +u (Ba(ht) — Dop(r)))

-1
1

P)_LotV (1_5) = —
14 Ky (r)

Thus,
\/— ~G D —
nhlog(ht)x,(t) (y,,vh - B,,wh(t)) —Z

as asserted.

4.6 Dependence on the smoothing parameters

All the estimators mentioned in this thesis use some kind of a smoothing parameter
that determines the number of order statistics that is to be used in the calculation of the
estimator. It has been common practice to choose that value by plotting the estimator
as a function of the number of used order statistics and taking any value in a region
for which the estimator was more or less on a constant level. Recently, some attempts
to find a data-driven procedure have been made. In HALL (1990) a procedure was
developed for the Hill estimator, using some version of the bootstrap procedure. Hall
proposed to reduce the size of the bootstrap samples as compared to the original sample.
The amount by which it was to be reduced however, depended on (in practice unknown)
parameters of the underlying distribution function.

Another attempt to find a data-adaptive procedure can be found in Chapter 3 of this
thesis, for the kernel type estimator of Csorgd et al. (see also GRUBEL AND DE WOLF
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(1994)) This procedure does not use any unknown parameters, but is limited in its range
of distribution functions it can handle.

The two papers DANIELSSON, DE HAAN, PENG AND DE VRIES (1997) and DE
HAAN, PENG AND PEREIRA (1997) introduce yet another bootstrap-based method to
determine the smoothing parameters in case of the Hill estimator, Pickands’ estimator
and the moment estimator. This method does not use any unknown parameters either.
Even though results of a small simulation for large sample sizes (20000) are given in
DANIELSSON, DE HAAN, PENG AND DE VRIES (1997), additional simulation studies
are needed to show how this procedure performs for moderate sample sizes.

Before being able to develop any method to determine the required smoothing pa-
rameters in the case of the general kernel type estimator introduced in this chapter, equa-
tion (4.8), the dependence of this estimator on the two smoothing parameters should be
investigated. Therefore we will perform a small simulation study that will illustrate that
dependence for moderate sample sizes

The definition of the estimator yn , includes a kernel that is used to estimate the
underlying ¢ -function. In this section we will use the triweight kernel defined by

B1-x%)3 forxe[-1,1]
Ky ={ =
0 elsewhere

Note that this kernel does indeed satisfy the conditions [KC1]-{KC4].
In our simulation we will use two instances of the generalized extreme value distri-
bution GEV(-; 7). This distribution is defined for all y € R by:

GEV(x;7) = exp (—(l+7x)‘1/7) forl4+yx>0

with the convention that GEV(x;0) = exp(—exp(—x)) (see also (1.2) in Chapter 1 of
this thesis). We will use this distribution with extreme value indices +0.2 and —0.1. For
both instances of this distribution, samples of size 1000 and 10000 will be generated.
To show the dependence on the two smoothing parameters 4 and ¢ simultaneously, the
estimator is first plotted as a function of # and 4 in figures 4.6.1 and 4.6.2.

To facilitate comparison of the behaviour of this new estimator and the behaviour
of the moment estimator, both estimators are plotted as a function of the fraction of
order statistics that is used in the calculation of the estimator, i.e., for the moment
estimator as a function of k/n and for the general kernel type estimator as a function of
h(t +1). Moreover, to show the dependence of the latter estimator on the paramter ¢,
this estimator is plotted for several values of ¢.

As can be seen from figures 4.6.1 and 4.6.2, there seems to be a region on which the
estimator is more or less constant. Choosing the values for 4 and ¢ in that region will
yield a quite accurate estimate. Moreover, comparing the general kernel type estimator
with the moment estimator, see figures 4.6.3 and 4.6.4, the major advantage of this new
estimator over the moment estimator is its smooth behaviour: whereas a small change
in the choice of k for the moment estimator can result in a major change of value of the
estimate, a small change in the combination of 4 and ¢ changes the value of the estimate
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Sample size 1000 Sample size 10000

Figure 4.6.1: General kemel type estimator as function of  and ¢ for GEV(-;0.2)

only slightly. This feature of the new estimator ensures that, if a method to approximate
or estimate the optimal smoothing parameters produces values in the neighbourhood of
the true optimal pair of parameters, the resulting estimate will virtually be the same.
In case of the moment estimator, choosing a value of  close to the true optimal value
could still result in a very different estimate.
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1.2
0.8
0.6
Y 0.4
02

02
0.4

01 o3 0.4 ¢
PRSI

Sample size 1000 Sample size 10000

Figure 4.6.2: General kernel type estimator as function of A and ¢ for GEV(-; —0.1)

) 0.1 0.2 03 0.4 0.5 0 0.1 0.2 03 0.4 0.5

Sample size 1000 Sample size 10000

Figure 4.6.3: General kernel type estimator and moment estimator as a function of the
fraction of used order statistics, for GEV(-;0.2)
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Sample size 1000 Sample size 10000

Figure 4.6.4: General kernel type estimator and moment estimator as a function of the
fraction of used order statistics, for GEV(-; —0.1)
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Chapter 5

Alternative kernel type estimators

In this chapter an alternative attempt to extend the applicability of the kernel type esti-
mator discussed in Chapter 3 to the more general situation of estimating any real-valued
extreme value index is taken. A new estimator will be introduced and its asymptotic
properties will be discussed. In Chapter 6 the finite sample properties will be consid-
ered.

5.1 Introduction

Throughout this chapter we will be concerned with a sample X, ..., X, of i.i.d. random
variables with common distribution function F that is in the domain of attraction of an
extreme value distribution G, for some ¥ € IR. Moreover, we will denote the ascending
order statistics of such a sample by X(j) < -+ < X(.

In Chapter 4 the function ¢ (-) was introduced:

d
o (s) =—sZ;logQ(l—s) G0

with Q(s) = F~!(s) the quantile function of the variables X;, assuming existence and
differentiability of logQ(1 —-).

The link between the ¢ -function and the extreme value estimator that was used to
derive the general kernel type estimator as introduced in that chapter, was based on the
(limiting) parametric assumption that the tail of a distribution that is in the domain of
attraction of an extreme value distribution can be approximated by the tail of a Gener-
alized Pareto Distribution. This was represented by defining the new estimator as the
value y that solved the equation

14

Pn(ht) = =)y

(5.2)

where ¢y (ht) was a non-parametric estimate of the ¢ -function corresponding to the
underlying distribution function and the right hand side of (5.2) the ¢ -function of a
Generalized Pareto Distribution. Since for negative y the ¢ -function of a Generalized

95
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Pareto Distribution tends to 0 along with its argument, the function ¢ (-) was estimated
‘near’ 0 instead of ‘at’ 0 and this introduced the extra smoothing-parameter z.

The alternative approach taken in the present chapter, will make use of the same
function ¢ (-). However, we will no longer use the explicit formula of that function in
case of a Generalized Pareto Distribution.

In the following heuristic derivation of the new estimator, we will assume differen-
tiability of any function whenever it is needed. In the final results, the precise conditions
will be formulated.

5.2 Defining the estimator

One form of the well-known von Mises conditions, which are sufficient though not
necessary for a distribution F to belong to the domain of attraction of an extreme value
distribution, is given by

lim d1-F(t)\ _
e \dr F(@) )7
where x§ is the upper endpoint! of F € D(G,). Expanding the argument and replacing

t by Q(1 —5), where O(-) denotes the quantile function corresponding to F, the von
Mises condition can be rewritten into

. sF"(Q(1—5)) _
im (“ - (F'(Qu'—s))ﬂ) -7

Moreover, noting that

¢(s) __d
— =g logQ(1-s)

the limit relation can be translated into

s%logQ(l—s))

3.3
d—dg logQ(1—5)

7=ls1lr(r)1(-l+¢(3)+

The first non-constant term of the argument of this limit, ¢ (s), can be estimated using
the kernel estimator already introduced in Chapter 3. The numerator and the denomi-
nator of the last term in (5.3) can be estimated separately, using kernel type estimators
as well. In defining these estimators, we note that both numerator and denominator can
be multiplied by any power of s, without changing the limit. Simulations showed that
doing so will lead to more stable estimators. Moreover, as known from the literature on
kernel density estimation, in estimating the derivative of a function, using the derivative

!For a definition of an upper endpoint of a distribution, see Chapter 1 of this thesis.
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of the kernel instead of the derivative of the empirical version of the estimable func-
tion, will often result in a more stable estimator as well. As a result, we will define the
following estimator:

£
T =T — 1+ ;‘1) (5.4)
nh

where, with kernel K : [0,1] — IR™ a fixed function with properties to be specified later,
Ky, (u) = K(u/h)/h, Qn(-) the empirical quantile function? and e > 0,

n—1 i
=,=1 E) Kh( ) log X(n_i11) — log X, 1))
§@ = _ "d [ 1K (u)] dlog On(1—u)
n,h 0 du !

4 .
= 2 - [ a+1Kh(u)]u=i/n <logX(,,_i+1) - logX(nv,-))

Note that, by rearranging terms and using that Q,(1 — u) equals X(, ) for k/n < u <
(k+ 1)/n, we can also write

o = / log Qn(1 — hu) d(uK () (5.5)
qs,tf),zhaAl/O log Qn(1 — hu) d(u®K(u)) (5.6)
. a1 [ d "
q(zi):zh 1/0 logQ,,(l—hu)d(E [u'* K(u)]) 7

In the definition of our estimator, the continuous parameter 4 is used. This bandwidth
determines the number of order statistics that is used in the calculation of the estimator.
The continuous nature of the bandwidth ensures that the estimator is a smooth func-
tion of the fraction of used order statistics, as opposed to the more discrete nature of
e.g., the moment estimator as defined in DEKKERS, EINMAHL AND DE HAAN (1989).
However, although the behaviour of our estimator is thus rather smooth, the proofs of
its asymptotic properties become a bit more complicated.

2The empirical quantile function is the generallzed inverse of the empirical distribution function, i.e.,
Qn(u) = inf{x: Fy(x) > u}. Note that hence Qn(u) = Xy for (k=1)/n<u<k/nwithk=1,...,n
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5.3 Main results

Let Xi,...,X, denote a sample from a distribution function F that is in the domain of
attraction of an extreme value distribution G, for some y € IR, denoted by F € D(G,).
This assumption is equivalent to the existence of {a,} and {b,}, n € N, with a, > 0
and b, € IR, such that

; n _ — _ =1/y
Jl_r)r;F {(anx+bp) = G,(x) —exp( (1 +yx) )

for all x with 1+ yx > 0. We will make the convention that Gy(x) = exp(—e™) for
x € IR. For more information on domains of attraction, we refer to Chapter 1 of this
thesis.

We will derive asymptotic properties of the estimator of the extreme value index as
defined in (5.4). In the definition of that estimator, the kernel K is used. In the theorems
that will follow, that kernel will need to satisfy some or all of the following conditions:

Condition 5.1 (Kernel conditions)
[CK1]  K(x) =0 whenever x ¢ [0,1) and K(x) > 0 whenever x € [0,1)

(CK2) K(1)=K'(1)=0

[CK3] [y K(x)dx=1

(CK4] K(),K'() and .K"(-) are bounded
(CKS] g u® 'K (u)du#0

The first asymptotic result concerns the (weak) consistency of the estimator under the
domain of attraction condition. Note that the differentiability of the quantile function is
not needed.

Theorem 5.1 (Consistency)
Assume that F € D(Gy) for some y € R. For arbitrary a > 0, let K be a kernel
satisfying conditions [CK1]-[CK5] and let ¥, j, be defined by (5.4).

If h = hy is such that h | 0 and nh — o as n — =, then ¥, j, = v in probability as n
tends to infiniry.

Using additional conditions on the underlying distribution function, it is possible to de-
rive asymptotic normality of our estimator, as stated in the next theorem. The additional
conditions are similar to the conditions we used in Chapter 4 and we hence refer to that
chapter for a discussion of these conditions.

Condition 5.2 (Additional conditions on F)
Let F be a distribution function that is in the domain of attraction of an extreme value
distribution G, for some y € IR and assume that ¢ (-) as defined in (5.1) exists and is
well defined. Moreover,

[CP1] Incase y > 0, assume that ¢ (s) — y as s | 0.
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[cP2] In case y < 0, assume that, for some constant ¢ > 0, s¥¢ (s) — —cy as
s40.

(cr3] Incase y =0, in addition to [CP1], assume that ¢ (hs)/¢ (s) — 1 as s} O.

The condition that ¢ (-) exists, appears to be rather strict. It is most likely that alter-
native conditions can be found that avoid the differentiability of the quantile function.
However, assuming differentiability, the proof of asymptotic normality will be more
intuitive and less complicated.

The asymptotic normality will be stated using the deterministic equivalent of the
estimator, 1.e.,

o= y}gpos) + % _ (58)
4,
with (cf. equations (5.5)—(5.7))
‘ 1
yisp’“) = /0 log Q(1 — hu)d (uK(u)) (5.9)
; 1 ;
i) =" [ 10g0(1~ ) ak O (w) (5.10)

where K (1) = u® K (u) and K@ (i) = d(uKD (1)) /du for a kemel K(-).

Theorem 5.2 (Asymptotic normality)
Let X1,...,X, be a sample from F with F satisfying Condition 5.2. Moreover, for ar-
bitrary o0 > 1/2, let K be a kernel satisfying conditions [CK1]-{CKS5] and let 7, , be

defined as in (5.4). Then, for any h= hy with h | 0 and (nh)~(#") logn = 0 ((nh)—l/z)
asn— oo,

\/E(f/n,h ) 2 A0, 0'1%)

1
where yy is defined in (5.8) and a,%:/o (aok(u)+a,1€(2)( ) — @R (u )) du with
1
k@)= [ xldekE),  we @1
i 1 :
1<“>(u)=/ 0N gr @) we(0,1]

and

ay=yVO0

a1=1//01 (0 1) (x) dx

ay=(1+(yA0))ay
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Note that a; and K()(-) for i = 1,2 depend on both & and y. Moreover, the functions
K (i)(~) may have a singularity at zero if & < 1. However, they are square integrable for
a >1/2 and all values of v, i.e., o,% is well defined.

The formulation of this theorem on asymptotic normality implies that our estimator
might have an asymptotic bias, defined as v/nh(y, — 7). In DEKKERS AND DE HAAN
(1991) conditions are stated that cover all possible second order behaviour of quantile
functions corresponding to distribution functions that are in the domain of attraction
of an extreme value distribution.3 Under these additional conditions we can derive
asymptotic expressions for the bias. The conditions mentioned in DEKKERS AND DE

HAAN (1991) on the quantile function can be formulated in the following way:

Condition 5.3 (Second order regular variation)
In case y > 0 there exist o > 0 and ¢ > 0 such that
+ (logQ(1 —s5) + ylogs—logc) € RV?,),J

In case ¥ < 0 there exist p > 0 and ¢ > 0 such that (assume without loss of generality
that Q(1) > 0)

+ (s" (logQ(1) — log O(1 — ) — —c—) eRV®,,

o(1)
Note that there is no second order regular variation condition in case of y = 0. More-
over, the & signs are added because of the definition of regular variation. )

Condition 5.4 (Second order IT-variation)
In case ¥ > O there exists a positive function b, (-) such that
+ (log Q(1—5) + ylogs) € I° _blo
TQ(1-3)
In case y = 0, there exist positive functions b,(-) and b3(-) with b3(s) > 0as s |0,
such that
i 108Q(1 — sy) —log O(1 —5) + ba(s)logy _ _ (logy)’
510 b3 (s) 2
In case y < 0 there exists a positive function b, (s) such that (assuming without loss
of generality that O(1) > 0)

+57 (log Q(1) — log Q(1 —5)) € TI’ (ba(s))

where I ( f) stands for the class of I1-varying functions at zero with auxiliary func-
tion f. See Chapter 1 of this thesis for a definition of such a class.

Note that the + signs in case of y 5% 0 are added to ensure the positiveness of the
functions &,() and by4(-). .

Denoting fol x* K(x)dx by «, , the results concerning the asymptotic bias can be formu-
lated in the following way:

31t is most likely that these conditions can be used to replace the conditions of differentiability of the
quantile function in Theorem 5.2.
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Theorem 5.3 (Bias under Condition 5.3)
Let y, be given by (5.8). Assume that K satisfies conditions [CKI]-[CKS] for some
a > 0, that Q satisfies Condition 5.3 and that h = hy, is such that h, | 0 as n tends to
infinity.
Then, as n tends to infinity, in case y > 0,

=¥ = mdi(h) +o(a(h))

where

di(h) =logQ(1—h)+ylogh—logc

K +yp—1
w1 =7p (p%—’(yp>

a—1

and in case y <0

W — ¥ = tadz(h) + p3h™" + O (7 @x(h)) + o(d2(h))
where

dy(h) =" (log Q(1) —log Q(1 — h)) —c/Q(1)

sy = plo+1)Q(1) Ka—y(14p)-1
c Ka—y-1

4
H3 = =5

Q(1)x—y
Combining Theorem 5.3 and Theorem 5.2 then yields the following corollary:

Corollary 5.1
Assume the conditions of Theorem 5.2, additionally assume that Condition 5.3 is satis-
fied and that h = hy, is such that, as n tends to infinity, h | 0 and

nh(a,(h))* = nh(logQ(1 — ) +ylogh—logc)® — 0
incase y > 0 or

nh(ay(h))? = nh' "2 (Iog (1) ~ log Q(1 ~ k) —¢/Q(1))* = 0
and nh'=2" — 0 in case y < 0. Then, as n tends to infinity,

Vith (= 1) = N(0,07)
with of as defined in Theorem 5.2.

Under Condition 5.4, the situation is a little different and we will only state the condi-
tions under which the asymptotic bias vanishes:
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Theorem 5.4 (Bias under Condition 5.4)

Let yy, be given by (5.8). Assume that K satisfies conditions [CK1]-[CKS5] for some
o > 0 and that Q satisfies Condition 5.4.

If h = hy, is such that, when n — oo, h | 0, nh — o« and in case y > 0

i (i) 0

incasey =0

2
nh(by(h))> -0  and nh(ii—&li) -0

and in case y <0

_ ba(h) 2
nh! =2 (logQ(l)—logQ(l -h)) =0

and
nh(logQ(1) —logQ(1 —h))2 =0

then \/nh(y, — v) — 0 as n tends to infinity.

Note that hese conditions on h resemble the corresponding ones on & in case of the
moment estimator as defined in DEKKERS, EINMAHL AND DE HAAN (1989), see also
Theorem 2.9 of this thesis.

5.4 Consistency

In this section we will prove the weak consistency of the newly introduced estimator
under the single condition that the underlying distribution function is in the domain of
attraction of an extreme value distribution. The proof is naturally divided in two: a
positive part, proving that ?,Ef;los) — (y V0) in probability, and a negative part, proving

that 4°)/4.!) — 1+ (y A0) in probability.

5.4.1 Preliminaries

In both parts of the proof of consistency we will make use of several lemmas that will
be stated and proved in this subsection.

The first two lemmas are needed as an alternative to the differentiability of the quan-
tile function.
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Lemma 5.1
Suppose F € D(Gy) with x§. > 0. Denote the corresponding quantile function by Q(s) =
F~1(s). Then, for some positive function a(-),

—logy y=>0
liml()gQ(l —sy) —logQ(1 —5s) _ .
S0 a(s)/Q(l—s) Y’ o
14

for all y > 0. Moreover, for each € > 0 there exists s, such that, for 0 < s < s, and
O0<y<l1,

(1- e)l—e—ys- €< IOgQ(lazsg)Q—(llcing)(l =) _ (0 +£)y-s€_ L.,

provided y > 0, and

log O(1 — sy) —log Q(1 —5)

L=y < = e o) - Tog0(1—3)

<l—(1=g)y "t

provided y < 0.

Proof of Lemma 5.1:
Rewrite Lemma 2.5 from DEKKERS, EINMAHL AND DE HAAN (1989), using that
O(1—5)=U(1/s), where U(-) is the inverse of 1/(1 — F). Essentially, the inequal-
ities of the lemma are properties of regularly varying functions for y < 0 and of
IT-varying functions for y > 0. ]

REMARK 5.1
In case y > 0, we know that Q(1 — ) is regularly varying at O with index —y (see
e.g., Theorem 1.9 of this thesis), i.e.,
.01 —sy) _
lim————=~=y7"
8 o—s)

Taking logarithms on both sides, we obtain
1}13 (log Q(1 —sy) —log Q(1 —s)) = —ylogy

Hence, in case y > 0, we can take a(s)/Q(1 —s) = y in Lemma 5.1.

REMARK 5.2
In case y < 0, we know that Q(1) < o and that Q(1) — O(1 — -) is regularly varying
at 0 with index —y (see e.g., Theorem 1.9 of this thesis), i.e.,
L e-0(-w) _

woM-ol=s °
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For each y > 0, note that since Q(1 — sy)/Q(1) tends to 1 as s tends to 0,
i 108Q(1 —sy) —logO(1) . (Q%T_ﬁﬁ“l) (1+0(1))
50 log@(1—s)—logQ(1) ~ sio (JTYZQQ‘;S —l)(1+o(l))
i Q=)= 0(1)
sio Q(1—s)—0(1)
=y

Hence,
. J0gQ(1 —sy) ~logQ(1—s) _ . logQ(1) ~logQ(1—sy) _1
50 —y(log (1) —log Q(1 —5))  si0 y(logQ(1) —logQ(1—5)) ¥
14
i.e., we can take a(s)/Q(1 — s) = —y(log Q(1) —log @(1 —5)) in Lemma 5.1.
Lemma 5.2
Suppose F € D(Gy) with x5 > 0. Denote the corresponding quantile function by Q(s) =
F~1(s). If for some positive function a(-),
(i 108 Q(1 — s7) — log O(1 — 5)
510 a(s)/Q(1-s)
forally >0, then a(s) = 0(Q(1 —s)) as s | 0.

= —logy (5.11)

Proof of Lemma 5.2:

Several situations may occur which we will discuss separately. In case y = 0, the
upper endpoint of the underlying distribution function can be finite as well as infinite.
In case of a finite upper endpoint, i.e., Q(1) < oo, the assertion follows as a property of
IT-varying functions (see e.g., GELUK AND DE HAAN (1987)). That property yields
that equation (5.11) implies a(s)/Q(1 — s) = o(logQ(1 —s)) as s | 0. This in turn
implies that a(s) = o(Q(1 —s)) as well, since Q(1) < oo.

Now consider the situation that the upper endpoint is infinite, i.e., Q(1 — ) — o
as 5 | 0. If in that case a(s) = 0 as s | O the assertion follows trivially. If a(s) /4 0,
note that using logx = (x—1)(1+0(1)) as x — 1, equation (5.11) yields

log Q(1 —sy) —log Q(1 —)

Tley =T am/el-s)
_ lim 28(Q(1 = 5y)/Q(1 - 5))

20 a(9/0(1—9)
Q1 =)/0(1 —5) — 1)(1 +0(1))
s,l,o a(s)/Q(1—s)
Q0 —sy) - Q(1-5))(1 +0(1))
50 a(s)
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hence, Q(1 —-) is also IT-varying at O with auxiliary function a(-). The assertion then
follows using the aforementioned property of [T-varying functions applied to Q(1 —-)
instead of log Q(1 —-). ]

If we want to make use of the bounds of the inequalities of Lemma 5.1 as arguments of
an integral and take limits with respect to £, we will need a majorant for these bounds.
The following lemma provides that bound.

Lemma 5.3
For any § > 0 there exists €, > 0 such that,

1 —x%logx 0<x<%

(L+¢)
£ —2%logx %§x<1

forall € € (0,¢,).

Proof of Lemma 5.3:
First consider x € (0,1/2). Define

g = (146)——

+x7¢ logx

then we have to show that g, (x) < 0. Note that

26 -1

ge(1/2) = (1+¢) —2%1og2 — (1 -2%)log2

as € } 0, hence g, (1/2) < 0 for & small enough. Moreover,

d
E-gs(x) =1+ 14x %1 5x ogx
X

=x¢! [—(1+£)+xe_5(1—6logx)]
Since for all 0 < & < & and x € (0,1/2) the function x — x* % (1 — & logx) is de-
creasing, we get that
—(1+&)+x 0 (1-6logx) > —(1+¢€)+2°~¢(1+5log2)

and as £ — O this tends to —142% (14 & log2) > 0. Hence, the derivative of g, (x)
is positive for £ small enough, so g (x) is increasing on (0, 1/2) and thus negative.
Next consider x € [1/2,1). Define

. xE -1 s

ge(x)=(1+¢) ~ +2° logx
Then g, (1) =0 and

d 28

—9 = —(1 —&~1 i —e—1|_ 1 Y]
dxgs(x) (14+¢e)x + o= [ ( +€)+x2]
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Since the function x — x¢ is increasing for all £ > 0,
—(1+&)+x2° > —(1+¢)+2°~¢

and this tends to 2° — 1 > 0 as ¢ — 0. Hence, §.(x) < 0 forx € [1/2,1) and ¢ small
enough. ]

The following lemma shows that a properly scaled vector of order statistics of a uniform
(0,1) sample of size n is another vector of uniform order statistics of a sample with
different sample size. This property is needed in the proof of Lemma 5.5.

Lemma 5.4
Let Uy, ..., Uy be i.id. U(0,1) variables. Then, for any integer 1 <k <n-—1,

U U

) R

W B N2y
(U(k+1) U(k+1)) ( M (k))

where V1), ...,V y) are the order statistics of k i.i.d. U(0,1) variables.

Proof of Lemma 5.4:
Note that the density of U = (U[y), ... yUlk41)) is given by
_ n! k-1
Souy,. . uey1) = m(l —tgq1)"

for0<u < <y <L

Define Z; = U(;) /Uy fori=1,...,k and Z | = Uy y). The inverse transfor-
mation is thus given by Uy = ZiZpy fori=1,...,k and Uy 1y = Zi41- The density
of Z = (Zy,...,Z;4+1) is then given by

fz(z1, - s1) = ful@izests - T2 1, 241) 1 (2)]

for0<z; <--- <z £1and 0 <2y <1 and where J(z) is the Jacobian of the
transformation, i.e., |J(z)| = zf, . Hence,

'
fz2(z1, o ze) = (nT::—lY(l —zk+1)”"k”lz’,§+1

for0<z; <--- <z < 1and 0 £ ¢4y < 1. Finally, integrating over z; 1, we get that
the density of (Z;,...,2;) equals k! for 0 < z; < --- < zz < 1 and hence is the (joint)
density of the order statistics of a (0, 1) sample of size k. ]

In the definition of our estimator, the term log Q,(1 — hu) appears frequently. Since this
term is in distribution equal to logQ(1 — I',(hu)) where T'(-) is the empirical quan-
tile function of a uniform (0,1) sample of size n, we would like to use Lemma 5.1
with y replaced by a properly scaled version of I',(hu). The next lemma shows that
the inequalities of Lemma 5.1 with y replaced by I'n(hu)/U( )41y behave like the in-
equalities with y replaced by u, uniformly in . The continuous nature of the bandwidth
h now yields that we will have to act very carefully. However, when we have shown
that T (hu) /U(|np) +1) s close to T'| ) (1) (the empirical quantile function of |nh] i.id.
U(0, 1) variables), the remaining part of the proof of Lemma 5.5 is rather straightfor-
ward.




5.4 Consistency 107

Lemma 5.5

Let T,,(+) denote the empirical quantile function of Uy,...,U, with U; i.i.d. U(0,1), h
be a sequence of positive numbers with h = h, — 0 and nh, — oo as n tends to infinity
and L(-) be an integrable, bounded and positive function on (0,1). Define k = |nh] and
A = (A AO) for A > —1. Then, for each f > (— 1-1),

B

1

/ __Fn(hu) P it L{u)du 20 (5.12)
0 [\ Y

as n — oo,

Proof of Lemma 5.5:
The case B = 0 is trivial, hence consider 8 # 0. First write equation (5.12) as

B B
U (Talt)\" _ (Tallw/m\"| o)
/0 l:(U(bH)) ( Ut ) } Lluydut

+/‘ ( ku/n)) P u)‘L(u)du (5.13)

k+l

For the first term, note that for j = 1,.. .k, by definition
_ )
5 s 0 = <u<k
(Ca(hu))” — (Tu(ku/n))” =

P _yb dcu<i
Yy =Y m<#=t

hence, the first term equals

J/k

ﬂ p)
(k+l E/J/nh G+~ (,))" L(u)du

Le., using that nh — k < 1, that
A A < (A D= y) @ Vi) < (A + D (x -yt

for all 0 < y < x <1 and denoting the supremum of the function L(-) on (0,1) by ||L||,
we get

<

J/k
AT,
k+1 Z/ ,+1) (j))“ L(u)du

@)

B
<7 U(km 2 1Uf+1 U(j)}
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1\*
< |ILl| U(k+1) E ‘U,H"l ’ ( ) (nh)
p . i
-8 B B |_J 1
<Ll U(k+1)j§41 (U(j+1) - U(J')‘ knh (E)

k . i
] AWATE
jZ G (E)

The last equality follows from the fact that either all terms of the summation are
positive (in case 8 > 0) or all terms are negative (in case 8 < 0). Continuing with
the last expression, we obtain

2 ( 5’+1) _U(‘;)) kpjz_h

= ILvg,,

() -
[

k
_ U=l -8 P B _ B
= Uiy | 20— DU, j;fU(f)

-B
izl oz,

(nh)4(1+ﬁ)

_ Ll s BB
= Yury (k+1)Uk+1) U(l)_j_ZIU(j+l)

B B
L U, k U, . _
_ (1_<U (1) ) )+(k_2 (Um) ) (k) 09)
(k+1) j=1 \ Y(k+1)

Note that, for j=1,...,k+1,incase 8 > 0, U(‘;.) zu('-‘;) and in case 8 <0, U(’;) <

(1) I.e., the last expression is bounded by

B B
Uy 1+k Uy (14
- — ) |(nn)~(+2) (5.19)
(U(m) T S <2|Lfif1 (U 0 (nh)

(k+
In case B > 0, we know that with probability 1, 1 — (U(;)/U1))? is bounded be-
tween O and 1, hence (5.14) tends to 0 as n — <. In case 8 < 0, observe that by

Izl
k
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Lemma 5.4, Uqy) /Uy 2 V(1) using the notation of that lemma. Le., for any 6 >0,

p

U - ]

Pl —1f >s0m)'+ :IP(v(l)<(5(nh)1“+1)‘/ﬁ)
Uy

z k
—1- (1 — (5 (nh)+ + 1)1/'3) (5.15)
However, since 1 > —1 and 8 < 0, we have that

klog (1 — (& (nh)"*+* + 1)1/ﬂ) = _k(a(nh)Hj + 1)”’3 (1+0(1))

as n tends to infinity. Le., using that by definition £ ~ n#, (5.15) tends to O as n tends
to infinity, whenever 1+ (144 )/8 < 0 and hence (5.14) tends to 0 in probability as
n — oo whenever —1 -1 < 8 < 0.

Finally consider the second term (5.13). Note that Lemma 5.4 yields that all finite
dimensional distributions of the process u — I's(hu)/U;, 1) equal in distribution the
finite dimensional distributions of the process u — I'y (1), where T (u) is the empirical

quantile function of a 7(0,1) sample V;,...,V;. Le., the two processes themselves
are equal in distribution. Hence, instead of (5.13), consider
i
/ ((rk(u))ﬁ —uﬂ)u'1 L{u)du (5.16)
0
Obviously,

/01 ((Fk(u))ﬂ —up) u? L(u) du

<

sup [u"’(l —u)™

O<u<l1

() |12l [ =1 -

For B > 0 the right hand side has the same distribution as

sup [u"l(l —u)"?
O<uxl

Fyy(u)—Fy! (u)ﬂ [12] /01 W (1 — ) du (5.17)

where Fﬁ‘ L(-) is the quantile function corresponding to the distribution function

Fp(x)=x" for0<x<land F ﬁ‘}((~) denotes the empirical quantile function of
asample Xy, ..., X; drawn from Fg.
Note that, since 0 < |X;| < 1 almost surely,

E|X; A0 =0
whenever v; > 0and 8 > 0 and

E(X;V0)/"2 <o
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whenever v, > 0 and 8 > 0. Theorem 3 in MASON (1982b) then yields that the
supremum in (5.17) tends to 0 almost surely as k — 0. Taking v; < (14+4 ) and v, < 1
gives that the integral in (5.17) is finite. Le., in case 8 > 0 taking 0 < v; < (1+4)
and 0 < v; < 1 yields that (5.16) tends to 0 almost surely as & tends to infinity.

In case f# < O note that

sup [u"l (1—u)*
O<u<l1

(Tu(w)? - || 2

sup [(1 — u)u*? 'G_l u)— G_l(u)”
O<u<1 ﬂ’k( b
where G;’(-) is the quantile function corresponding to the distribution function

Gg(x) =1-x"# forx > 1 and G, () denotes the empirical quantile function of a

sample X, ..., X drawn from Gg. Again use Theorem 3 in MASON (1982b) together
with

E[X,A0|"2=0

whenever v, > 0 and 8 < 0 and
1 /= 1,1
lE(X[VO)l/V‘=—E/ T r < oo
1

whenever v; > —f. Hence, (5.16) tends to 0 almost surely as k tends to infinity,
taking —8 < vi < (l+4)and0< v, < 1. |

5.4.2 The positive part

In this subsection we will prove that, under the conditions of Theorem 5.1, we have that
P

)‘/,Ef;f") — (yV0) as n tends to infinity.

First observe that Oy (f) 2 Q(T'n(t)) and Ty(1 —£) 2 1 — T,(¢) where Ty(t) is the
empirical quantile function of a U(0,1) sample of size n (denoted by Uj,...,U,) and
that conditions [CK2] and [CK4] imply that fol d(uK(u)) = 0. Le., note that we can
write

7»,'55’05) 2 /01 (log Q(1 —Tp(hu)) —log O(1 — U(k+1))) d(u(K(u))

Moreover, by definition, U1y > a(hu) with probability I for all u € (0,1), and
Uk+1) — 0 with probability 1 as h — 0.

Consider the case y > 0. By the just stated remarks, we can apply Lemma 5.1 with
y=TDn(hut)/Ugi1)s s = Ugqry and a(s)/Q(1 — s) = y (see Remark 5.1), to get that, with
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probability 1, for each £ > 0 there exists an n, such that for all n > n,, with probability

l;
1— Tp(hu) £
(l—£)—————([§““)) —£<
log (1 — Tn(hu)) ~log Q(1 — Up1yy) <
Y
() "~
(14 )" +&

forall u € (0,1).

Defining k(u) = d(uK(u))/du we get by the boundedness of both K and K’ that
k(u) = k*(u) — k™ (u) where k*(u) are positive and bounded functions. Hence, for
>0,

()

U+

e <y / (1+¢) +e | K (u)du

)

—7/ (1-e)——"24 (U““

—¢e|k (u)du

However, applying Lemma 5.5 twice (once with 8 = —¢, A =0 and L(x) = k™ (u)
and once with 8 = £, A =0 and L{u) = k~(u)) yields that, for any 0 < ¢ < 1, this
upperbound tends to

7/01 [(H—f)u_l_l-ke] k*(u)du—r/ol [(1 —e)lzué ——e] k™ (w)ydu

in probability, as n — co. Letting ¢ tend to 0, using dominated convergence and the
majorant given in Lemma 5.3 for the first integral, this tends to

y/()l(—logu)k+(u)du—y/ol(—logu)k_(u)du:y/ol(—logu)d(uK(u)) =y

Similar arguments lead to a lower bound for 7 “(” %) that tends to ¥ in probability as well.
Le., for y > 0, we have that y,f h P95 tends to y in probablhty as n— oo,
In case y = 0, the scaling by y in the inequalities used for positive y, should be replaced

by a(U41))/Q(1 = Uy y). Since Uy tends to 0 almost surely, Lemma 5.2 yields
that this factor tends to O with probability 1 as n tends to infinity. This, together with
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similar arguments as in the case of positive ¥, gives that ?,S’,’:’s) tends to 0 in probability

as n tends to infinity.

Finally consider the case y < 0. Lemma 5.1 now yields the inequalities

1—(1+¢) (_I(‘J,.(hu))_ _

(k+1)

log O(1 — T'y(hu)) — log Q(1 — U 1))
IOgQ(l) - lOgQ(l et U(k+1))

—y+e
1= (1—¢) [ Lalh0)
U(k+1)
= (pos)

Yah N ~r+e .
logQ(1) —log Q(1 — Uy 1y) </0 [1 x(l £) (__U(k+1)) }k (u)du

1 TrE
—/ 1-(1+¢) Ln(fur) k™ (u)du
0 Utk+1y
Again by two applications of Lemma 5.5 (once with 8 =~y +¢,4 =0 and L(u) =

k*(u) and once with B = —y — ¢, A = 0 and L(u) = k= (u)) we get that, for any 0 <
£ < 1 -y, the integrals tend to

/01 (1-(1—&)u " kT (u)du  and /01 [1-(1+&)u™" ]k (u)du

respectively. Since these integrals are bounded for 0 < ¢ < 1 — ¥ and logQ(1) —
log O(1 - U(k+|)) tends to 0 with probability 1, we get (with a similar lower bound)

Thus

that f/'f‘,’l‘”) tends to 0 in probability as n tends to infinity.

Le., for ¥ € IR we have that f/,f’;,“) £y (rv0)asn— oo,

5.4.3 The negative part

In this subsection we will show that the quotient qff,’, / qfl‘,), Ry (y AO) as n tends to
infinity.

Since we will consider é,(lz,)l /‘?21)1’ we can scale both numerator and denominator by
the same factor, without changing the quotient. Moreover, by condition [CK2], we have
that, for any o > 0,

[ dte k) = ekl =0
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and

i.e., we can shift both terms in the same way as in we did with the positive part as well
without changing the quotient.
First consider ¥ > 0. By the previous remarks, we can rewrite the denominator as

—a A1
B G
a(U41))/Q(1 = Ugqy)

IS

/1 log Q(1 —Ty(hu)) —log Q(1 — Ujgyyy)
0 a(Us1))/Q(1 = Ugesry)

By similar* arguments as used in the positive part, this will, as » tends to infinity, in
probability tend to

! a ! a—1
/0(—10gu)d(u K(u))=/0 WK () du (5.18)

On the other hand, the numerator can be rewritten as

d(u®K(u))

a2
Hegn o
a(U41))/Q(1 = Ugyy)

1logQ(l—F,,(hu))—logQ(l—U(kH)) _(i_ —
/0 a(Uk1))/Q(1 = Uggiy) d(duu K ))

and this tends in probability to

/01(—logu)d (%ua“K(u)) = /1 ;u( K (u))u' du
= /01 (o + 1)u® 1K (u) +u*K' (u)) du
=/OluaqK(u)du-{-/Old(u”K(u))
=/01u“‘1K(u)du

Le., combining thlS with (5.18), we obtain that q /é ,)1 I as n tends to infinity,
whenever y > 0.

4Note that in Lemma 5.5 we now have A = a — 1
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Next consider y < 0. Similar arguments lead to

—a a(l
Y

log 0(1) — 10g O(1 —

P! _ «
o) —>/0 (1—u"7) d(u¥K(u))

1
= —y/o u® T K (u) du

and
hl-aé(zi)' P 1 d
2 LN 1-u"d —u““Ku)
reom—sot vy b ) (vt

= —y(1+ 7/)/01 7K () du

as n — oo, hence zi,(,z,)l /éfll,), L5 1+ yasntends to infinity.

Le., for y € R we have that qff,{ qf,‘}, R (¥ A0) as n tends to infinity.

5.5 Asymptotic normality

In this section we will prove the asymptotic normality of the new estimator, as stated in
Theorem 5.2.

5.5.1 Preliminaries
The following lemmas will be needed in our proof of the asymptotic normality.

Lemma 5.6

Let F be a distribution function that is in the domain of attraction of an extreme value
distribution G,. Moreover, without loss of generality, assume that its upper endpoint xg
is positive and denote the associated quantile function by Q. Then

w -0 ass 0.
—logs

Proof of Lemma 5.6:
In case y < 0, we have that x} < o and the assertion follows trivially.
In case y > 0, the domain of attraction condition is equivalent to the condition that
o(1-4 € RVQ,, see e.g., Theorem 1.9 of this thesis. Hence, logQ(1 — -) is slowly
varying at zero and the assertion follows by property 1 of Proposition 1.7 in GELUK
AND DE HAAN (1987).
In case y = 0 and x; < o= the assertion again follows trivially. Moreover, F € D(Gy)
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implies that Q(1 — -) € TI° (see e.g., Theorem 1.9 of this thesis). Corollary 1.18 in
GELUK AND DE HAAN (1987) yields that in case x = Q(1) = co the function Q(1 —-)
is then slowly varying at 0. Hence the assertion follows by the same argument as in
case of positive y. [

The next results are taken from WELLNER (1978) and are stated without proof.
Lemma 5.7

Let Tyy(-) denote the empirical quantile function of a uniform (0,1) sample of size n.
Then, as n tends to infinity,

[y(u) u
sup = 0p(1) and sup —-l=0p(1)
Lt M 1<ust | Tn()
and
sup |2 =ml oy (5.19)
ba<u<l u

where b, is any sequence of positive numbers satisfying nb,, — oo as n — oo.

The following result is taken from CSORGS, CSORGO, HORVATH AND MASON (1986)
and is again stated without proof. In CSORGO, CSORGO, HORVATH AND MASON
(1986) a probability space is constructed on which there exists a sequence U;,Us, ...
of i.i.d. uniform (0,1) variables and a sequence of Brownian Bridges {B(")(s)}, which
has, among others, the following property (cf. Theorem 2.1 in CSORGSO, CSORGOE,
HORVATH AND MASON (1986)):

Lemma 5.8
Forany0<v <1/2

l\/ﬁ(rn(“) - “) - B(")(u)| - 0p(n“')

sup -
1/n<u<l-1/n uz

as n — oo, where Uy(-) is the quantile function of Uy, ... ,U,.

In view of this result, we will assume that any uniform (0, 1) sample and sequence of
Brownian Bridges we will be using, are defined on the above mentioned probability
space.

5.5.2 The various parts of the estimator

The estimator consists of three stochastic ingredients: y(p 0s), qil,), and ‘?Ezzi)x' However,

nh
A(Pw) A1)

can be considered to be a special case Gy p With & = 1. In this subsection we will

prove the following proposition:
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Proposition 5.1
Under the assumptions of Theorem 5.2, as n tends to infinity,

Vnhh!'~® (q(")h_qg'?) 2 /0 W(w) ¢ (hu) dK (u) + 0p(1) (5.20)

ny
Sfori=1,2, where W(-) is standard Brownian Motion,

K (u) = u® Ky (u)

K () = = (4 Ky(u)

®

q( )h are defined in Theorem 5.2 and q;” are given in (5.10).

Proof of Proposition 5.1:
We will only present the proof for :jnl,)l (and hence, as a special case, for ;‘/n(f,’:”)), since

the proof for g, ,), is similar.

In view of the lemmas of subsection 5.5.1, the left hand side of (5.20) is decom-
posed into four parts:

pl- (qf:l)z—ql(zl)) _ (5.21)

1—a [1/" (1) 1-a [/ (1)
h /0 log On(1 — 1) dK ) (u) - /0 log (1 — u)dk (u)

+hl-e /]j:log (%"((11 ))) dK(l)(u)+h1 "/:log (%‘((11 ))) dK,Sl)(u)

where b, is a sequence of positive real numbers that at the moment only satisfies the
property that 1/n < b, < h.
For the first part of (5.21) note that Q,(1 — ) is constant for 0 < u < 1/n, i.e.,

1/n 1/nh
h-e /0 log Q(1 —u)dK}" (u) 2 1og Q(1 - Uyy) /0 dKD (1)

with U}y the first order statistic from a uniform (0, 1) sample of size n. By Lemma 5.6
and the fact that U(;) — 0 almost surely as n tends to infinity, we hence have that

—logU(l))

1/n
nt-e /0 log On(1 — ) K" (u) 2 op (W

Using that forany M > 0

IP(—(nh)é*" logU1y > M) =1- (l —exp (—(nh)“_%M))n

< nexp (—(nh)“_%M>
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the conditions on & of Theorem 5.2 then yield that

i@ /01/" log Qn (1 — ) dK " (u) = op ((nh)"‘ﬂ)

For the second part of (5.21) observe that

e [n )
h /0 log O(1 — u)dK') () =

1 1 1/nh
'@ [logQ (1 - ;) KV (;)] + /0 ¢ (h) KD (u) du

The conditions on F of Condition 5.2 yield that ¢ (s) — (y V0) as s tends to 0. Le.,
together with another application of Lemma 5.6 then leads to

hFaAUI%QU—HMK ()= ([ﬁ;)*‘““m_WZO(“mlﬂ)

where the last equality follows from the conditions on #.

The third part of (5.21) is dealt with using Lemma 5.7. First observe that
bn Qn(l—u)) )\ D
| =—— 7 1dK =
Amog<QU—u) v ()
o (1
/1 o 0(1 ~T(w) ~log (1 )] dk{"(w)

where ', (+) is the empirical quantile function of a uniform (0, 1) sample of size n.
Using the mean value theorem, we then get that

b Ou(l=w)\ ) br g (u+ &n ) —dk®
/l/nlog(Q(l— ))dK ()_ i/n u+§n,u (Fn(u) u)th (u)

with &, satisfying |£nu| < [Tn(u) — ul.

Since supge,<;|Tn(#) — u| — 0 almost surely as n tends to infinity (see e.g.,
Lemma 4.2 of this thesis) we get using the conditions on F and Lemma 5.7 that
for all y € IR and n large enough

sup  [¢ (u+ &, u)

1/n<usby

= 0p(1)

+§nu




118 5. Altemative kernel type estimators

and we thus obtain that

Jos (S =) axd)| =| [ ¢£“++§f"u“ (Catu) = )2k @)

dK (u)
du

u)—u

bn dK(l (u)

du

< 0p(1) /

dK(’

= h*10p(1 )/b"/h

where the last inequality follows from another application of Lemma 5.7. Taking
by = h(nh)~(/2+4)/2 for some 0 < A < o — 1/2, we get that

i fomew (G 4847w = 0r (%) =on (1)~12)

as n tends to infinity.

Finally consider the fourth part of the decomposition (5.21). Following the same
arguments as for the third part, we arrive at

' — = u n,u
/f’n e (%((11- :))) K0 2 bn %—l(rn(u)—u)dmsl)(u)

for some | & | < |Tn(ue) — u|. Now use (5.19), together with the conditions on F, to
obtain that, for any sequence b, satisfying nb, — o0 as n — coc and any y € R

¢ (u +&nu) U
: =1 1
bnS;lpSh ¢ (u) U+ én,u + OP( )
This implies that
b (u+Enu) 3 My b Ta(w)—u ()
[ (=K w) = (L op(1) [ (==  akD )

Applying Lemma 5.8, we get that the right hand side then equals

(L or)n 2 [ 602 4D ) 4,
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where the Brownian Bridges B,(-) are defined as in Lemma 5.8 and, for arbitrary
0<v<l1/2,

h
Raal < 0 (172) ["u121g )

n

dK,El)(u)
du

du

<he10p ((nh)—l/Z—v) /b‘/h 1127 () | 2K (u)

n

— ha—lop ((nh)—l/Z—v)

Using that B, (u) Wa(u) + {nu where W, (+) is standard Brownian Motion and ¢, is
a standard normal variable, independent of W,,(-), we obtain as 4 | 0 and nh — oo,

w17 [0 28 4k
bn u
2517 [* 002 a0y #0726, [ 6 a0

-1/2/ o) ()dK Yu)+ ! “/25/ ¢ (hu)dk ™M) (u)

Walu)
u

1
Dol \—1/2 ) a—1 -12
2 a1 (nh) A 9 )= k0w 4 10 (=)

where in the last equality we used the well known scaling property of Brownian

Motion that W (hu) = \/_W(u) Finally, noting that IE|W ()| < /IEW (1)? = /&,
hence

we obtain, taking b, = h(nh)~(1/2+4)/® for some 0 < A < « — 12, that
hl—a/ 10 (Qn( > u
o ) K

2 (nh)=12(1 +0p(1))/01 ¢(hu)@dx<”(u) +op ((nh)'1/2>

Putting the results concerning the four parts of decomposition (5.21) together, we
obtain the assertion of Proposition 5.1. n
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5.5.3 The various parts together
In this subsection we will show that the results for the various parts of the estimator as

given in Proposition 5.1 lead to the assertion of Theorem 5.2
First note that the result of Proposition 5.1 can also be written in the following way

hl——a -( ) =p! “q}li) + (nh)_l/sz(j) +op ((nh)l/z)

where
AD _ / o (h dK(:)()
which implies that
G _ g | (h)PAD () PADR gD (om72)
qs,,z, f:> Woegd  (wegd)T
(¥ v0)| < € uniformly

= 2 (8 (hu) /1) KO () du = O(1).

since hl=%g
Moreover since for each £ > 0 and n large enough |¢ (hu)
for 0 < u < 1 by the conditions on the underlying distribution function F, we have that

( )4
_ 1
/0 6 ()= g(uk yVO)/ ())(1+0p(1))
Hence

(pos) _ o) T _ g
Vi (5 — ) = vk (735 = 7P + vk 0 %

A'(12) A(l pl-a,2)

=y vo)/ (K () + =5 = lqh2+o,,(1)
aqh (h“"‘q}, ))

To deal with the Aﬁ,i), i=1,2,note thatin case y # 0, with ¥y =y A O

sup 9 (hu) _ w50
o<u<li| @ (h)
as h tends to 0, by the conditions on F. Le., by Markov’s inequality, the conditions on
(5.22)

K and the fact that @ > 1/2 we have that
- u-?) W) 1k

/ ( (hu)

o \ ¢(h)

In case y = 0, the ¢ -function is slowly varying. Hence the following inequality from
the proof of the proposition in the appendix of DE HAAN AND PEREIRA (1999) can be

=op(1)
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used to extend the result of (5.22) to all y: for each £, ¢; > O there exists an A, such that

for all A < h, and hu < h,,
¢(h“) |lo
— 11 < geft g ul
¢ (h)

Now use (5.22) to obtain

AP _P_)f] _'_7W( )dK® (u)
hl‘“qﬁll) o u~1-7KD (u) du

= Jo W(w)dk® (u)
B folu—l‘f’K(l)(u)du

and

At g® LN Jouw =T () dK D (u) fo w 7K () du
(hl_aqﬁl))z Jouw TRy du [ w ' -TKD (u) du

fo W{u)dK 1)(u)fo ~1-7 K@) (u) du
(flu‘l Tk (u)du)
where fori=1,2and0<u <1,
. 1 - ;
RO (u) = / 1P kO (x)
u

Hence, by partial integration,

\/E(f'n,h_)’h) —ﬂ-) /01 [aok(u)+a1k(2)(u)—a2[2(1)(u) dW (u)

where
K(u) = /lx_ld(xK(x))

ag=yVvVO0

1 -
a; =1 //0 x Pk (x) dx

1 -
a2=a%/0 x'l‘7K(2)(x)dx=(1+(y/\0))a1

The assertion of Theorem 5.2 then follows.
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5.6 Exploring the bias

In this section we will explore the asymptotic bias of our new estimator, with the asymp-
totic bias defined as

2
mw-mr( o0y By )
Tn

where y , q(l) and q(z) are defined in (5.9) and (5.10). Note that y(” %) is actually a
special case of q,(l ) with & = 1.

5.6.1 Preliminaries

The following lemmas will be needed when exploring the bias of our estimator.

Lemma 5.9

Assume that Condition 5.3 holds with the + sign. For any € > 0 there exists s, > 0 such
that, forall0 < s < s,and 0 <y < 1:

In case y > 0, defining d,(s) = logQ(1 —5) + ylogs — loge,

(1 _8)y7p+£ < a‘.l((s);) <(l+e)yP

In case y < 0, assuming without loss of generality that Q(1) > 0 and defining d,(s) =
s"(log Q(1) —log Q(1 — 5)) — ¢/ Q(1),

(1-eyrote < 2D (g4 gy ovome

a(s)
Proof of Lemma 5.9:
The inequalities are the well known inequalities of regularly varying functions, see
e.g., GELUK AND DE HAAN (1987). n

Similar inequalities can be derived in case of second order IT-variation, as stated in the
next lemma that is a reformulation of Lemma 3.5 in DEKKERS, EINMAHL AND DE
HAAN (1989) in terms of the quantile function.

Lemma 5.10

Assume that Condition 5.4 holds with the + sign for y > 0 and the — sign for y < 0.
For any € > O there exists s, > 0 such that, forall 0 < s < s, and 0 < y < 1:

In case y > 0, defining a;(s) = logQ(1 —s) + ylogs,

1-y* ay(sy) —a(y) o1
(=)=~ < oy Byt oy <+ ——+e
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In case y = 0, defining a(s) = log Q(1 —s),

(1—£)%* (logy)?

2 +2¢elogy—e <

ay(sy) = ax(s) + ba(s)logy _
bs(s)

(1+¢)% “(logy)?
2
In case y < 0, assuming without loss of generality that Q(1) > 0 and defining a3(s) =

57 (log Q(1) —log (1 —s)),
(1_6)1~y‘ as(s) —as(sy)

y -1
—£< ba(s)/0(D) <(1+€)T+e

—2¢elogy+e

Proof of Lemma 5.10:
In case y # O the inequalities are just the well known inequalities for IT-varying func-
tions, see e.g., GELUK AND DE HAAN (1987) page 27. In case y = O the inequalities
follow using OMEY AND WILLEKENS (1987) to obtain an asymptotic expression for
b(+) and applying the inequalities for IT-varying functions to that expression, see
proof of Lemma 3.5 in DEKKERS, EINMAHL AND DE HAAN (1989) [ |

When applying dominated convergence using the inequalities stated in Lemma 5.9 and
Lemma 5.10, a majorant is needed. In case y # 0, Lemma 5.3 can be used. In case
y =0, the next lemma provides a majorant.

Lemma 5.11
For any 6 > O there exists €, such that
1 2
(——;L)x'g (logx)? — 2e logx < x ¥ (logx)? — 28 logx

forall0<x<landall0< ¢ < g,

Proof of Lemma 5.11:
For all 0 < £ < v/2 — 1 we have that
(1+ 5)2 — 2 - 2
— X (logx)® —2¢elogx < x~*(logx)” — 2¢ logx
However, since ¢ + x~(logx)? — 2¢ logx is increasing for all 0 < x < 1, we have
the assertion whenever 0 < ¢ < g, with g, = (V2 - 1) A 8. n

5.6.2 The bias under Condition 5.3

We will only consider the conditions with the + sign. Results under the other conditions
follow by symmetry.
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The case y > 0
To handle both y,fp %) and qf,l), consider

/0 ' log O(1 — hu) d(u® K () =

/0 ' () d (K () — /0 ' (ylog(hu) ~loge) (K (W) (5.23)

where a;(s) = log Q(1 —s) + ylogs — logc, as defined in Lemma 5.9. Note that |, | €
RV‘}‘, for some p > 0 by Condition 5.3 and hence d,(s) — 0 as s = 0.

Since for any & > 0 we have that fy d(u®K(u)) =0, (5.23) equals

a (k) /0 l ‘Z}l((’;")) AW K(u)) -y /0 ' logu d(uK (1))

Using the inequalities of Lemma 5.9 and dominated convergence, we have that

Vg (hu) « 1 a
/0 a‘ll iy LK) = /0 WP d(u® K ()

ashtendsto Q. le,ash |0,
1 1
J} 0801 — ) K(w) = v +n(h) [ w7 d K)o
=yKq_1+ai(h) (_YP Ka+yp-1 +0(1))

Similarly, using that [} d (é’;u" *+1K(u)) = 0 for any & > 0, we get for ‘7512) that

1
l-a (2) _ _ d a+l
W% = y/o logud(d——uu K(u)) +

+a(h) (/01 u®d (%u““K(u)) +o(1))

= yKa—1+a@1(h) (yp (rP — Dkatyp-1+0(1))
as h tends to 0. Combining these two expressions then yields

(2

¢ . K -

Y= ylf”"‘) +—Z{']) —1=y+a(h) (yp (p-—a%)l—l— K,,,) +o(1))
h

asn — oo,
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The case y <0
Again consider

/01 log Q(1 — hu)d (u® K (1)) =

1 c .
- /0 (hu) 7<a2(hu)+m) d (WK (w)) (5.24)

where dy(s) = s”(logQ(l) —logQ(1 —5)) —c/Q(1), as defined in Lemma 5.9. By
Condition 5.3 |d;| € RV_”, for some p > 0 and hence @,(s) — 0 as s — 0.
Obviously, (5.24) equals

—h~ yaz(h)/ - (1)

The inequalities of Lemma 5.9 together with dominated convergence, yield that

1 az(hu a + e
/Ou Ty K(u))—>/ Y(140) 4 (4% K (u))

ashtendsto 0. I.e.,as h | 0,

(12 hu)

d(

'yd(u K(u))

/0l log O(1 — hu)d (u® K (1)) =

ych™?
To() et

Similar arguments yield for quz) that

y(1+0 )17 a@(h) (Kamy(1p)-1 +0(1))

- +1)ch™
pag® o YDk

o(1)

— 1 (140) 1+ 1(+ PV a2(h) (Ka—y(rapy-1 +0(1)
Combining these two expressions, we obtain

@

Yh= (pos)_+_qh -1
(n
a4y
po +1)O(1) Ka—y(1+p)-1 - Ye -
=y+ as(h) — Y+
c Ko—y-1 (k) Q(1)x—y

+0 (h7"az(h)) +o(@(h))
ash]O.
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5.6.3 The bias under Condition 5.4

We will only consider the conditions with a + sign in case ¥ > 0 and with a — sign in
case ¥ < 0. Results under the other conditions follow by symmetry.

The case y >0

For both 7{7**) and gi" consider [ log @(1 — hu)d (u® K (u)). Since f d (u®K(u)) =0
for all & > 0, we can rewrite this as

[ @)~ 09) d () + [ (—ytoga) a(u ) =

ay(hu)—a :
h 7b1 h)/ = ylb(lh )/Q(ll(h) )d(u“K(u))-l"}'/O u® K (u)du

where a;(s) = log Q(l —5) + ylogs, as defined in Lemma 5.10.

Using the inequalities of Lemma 5.10 and dominated convergence with majorant
given in Lemma 5.3, we obtain by similar arguments as in the proof of the consistency,
that

P ay(hu) —ay(h)
o h77by(h)/Q(1-h)

ashtendsto0.le.,ash ] O,

1
d (WK (w)) = /O (= logu)d (u® K ()

! 1
/0 log (1 — hu)d (u*K(u)) = 7/0 K () du+0 (hQ(lbI (h)))
Similarly, using that fo ( u+1 [((u)) 0 for any o > 0, we get for q§12) that

1
h-ogi?) = y/O u* 'K (u)du+0 (h b‘(h))

O(1-h)
as h tends to 0. Combining things then yields that
( ) -
h™"b(h
n=r+ 1= rvo(5ity)

In order to have an asymptotically vanishing bias, i.e., that vnh(y, ~y) — 0, we thus
have to impose the condition on & = h,, that

nh! =2 (%)2 -0

as n tends to infinity. Note that this condition resembles the condition on the parameter
k in case of the moment estimator as defined in DEKKERS, EINMAHL AND DE HAAN
(1989). (See also Theorem 2.9 of this thesis.)
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The case y <0

Again, for both y,f” %) and q}ll) consider f; log Q(1 — hu)d (u*K(u)). Since for any
a > 0 we have [ d (u®K(u)) = 0, we can rewrite this as

40 (s~ d K 00) ~ e [ ) =

h™7by(h) / U _yas(h) —a3(hu)
o) Jo by(h)/Q(1)
where a3(s) = s" (log Q(1) —log Q(1 — )}, as defined in Lemma 5.10. Using the inequal-
ities of that same lemma, dominated convergence with the majorant given in Lemma 5.3
and similar arguments as in the proof of consistency, we obtain that

b oyat) —as(bw) o o . a
o om0 KD = [ lopa (Kt

ashtendsto0.le.,as h O,

/0 ' log0(1 — hu) d (K (u)) =

d (K () + yh~"az(h) /O LT K () du

_ L h™Yby(h)
h"az(h / wr 1Kudu+0(—
Similarly, for q;?) we obtain
_ T d h™Yby(h)
l—a (2) _ _p-v v &.[,a+1 4
h'~%g, h a3(h)/0 u d(du [u K(u)])+0(—Q(l) )
— L h™"by(h)
=y(y+1)h"a h/ a=r 1Kudu+0(—)
v+ Dhax(n) [ w7 K () oy
as h tends to 0. Combining things then yields that
2
0s) | 4 - _ by(h
th= 1" + s = 1=y +0 (K as(k)) + O (h 7b4(h))+0(a‘;§h§>

9
In order to have an asymptotically vanishing bias we thus have to impose the conditions
on h = h, that

ba(h)\? - ba(h) 2
" (a3(h)> =k (logQ(l)—logQ(l—h)> =0 (5:25)

nh!'=% (a3(h))* = nh(log Q(1) — log (1 — h))* — 0
as n tends to infinity. Note that these two conditions imply that \/nhh~"bs(h) — 0 as
n — o as well. Moreover, condition (5.25) resembles the condition on the parameter

k in case of the moment estimator as defined in DEKKERS, EINMAHL AND DE HAAN
(1989). (See also Theorem 2.9 of this thesis.)

and
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The case y =0 .
Similar arguments, using Lemma 5.10 and Lemma 5.11, now yield the asymptotic rela-
tions

[ 108001~ hd (¢ K(w) = bah) [ (~logu)a (uK(w) +O(bs(4)
and
=g = by(h) /O 1(—logu)d (% [u"“K(u)]) + O(bs(h))

as h tends to 0. Combining these expressions we obtain

@
=7 + B 1 = by + O3 (w) + 0 (B
h qﬁll) bZ(h)

In order to have an asymptotically vanishing bias we thus have to impose the conditions
on h = h, that

ba(h))z_)o

nh(by(h))> =0  and nh(m

as n tends to infinity. Note that these two conditions imply that v/nhbs(h) — 0 as n
tends to infinity as well.



Chapter 6

A simulation study

For each of the estimators of the extreme value index as presented in this thesis, the
number of upper order statistics that is used, is in some sense reflected in the behaviour
of the estimator. Using too many observations will result in a bias, since then the
smaller observations, typically not falling in the upper tail of the underlying distribution
function, will be included in the calculation. Using too few order statistics on the other
hand, will obviously result in a substantial variance.

In this chapter, we will present the results of a simulation study, concerning most of
the estimators mentioned in this thesis, in order to describe their finite sample behaviour
as well as the above mentioned dependence on the number of used upper order statistics.
We will apply the estimators on samples generated from several different distributions
with sample sizes 100 and 1000. Moreover, we will present the behaviour of the es-
timators on a data set consisting of 211 measurements on water discharges at Lobith,
The Netherlands, in the period 1901-1991. We will refer to this data set by ‘the Lobith
data’.

6.1 Introduction

We will be concerned with a sample X1, ..., X, of i.i.d. random variables with common
distribution function F that is in the domain of attraction of an extreme value distribution
Gy for some y € IR. The ascending order statistics will be denoted by X1y < ... < X().
Moreover, we will assume that the upper endpoint of the distribution x is not less than
1. This can always be achieved by shifting the support of the distribution function, a
transformation that does not change the extreme value index.

The estimators of the extreme value index y as mentioned in the previous chapters,
are not all applicable to the situation of estimating any real y. E.g., the Hill estimator
will only give a reasonable estimate in case of a positive extreme value index, whereas
Pickands’ estimator can be applied for any real y.

In case one knows the sign of the extreme value index, it might be more appropriate
to choose an estimator best suited for that particular range of extreme value indices. An
alternative approach to using an estimator applicable for all real y, might thus be to first

129
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test for the sign of the index and then use an estimator best suited for that situation. We
will not deal with that approach in this thesis. For more information on tests for the
domain of attraction of extreme value distributions, we refer to HASOFER AND WANG
(1992) and FRAGA ALVES AND GOMES (1996).

In the next section, the estimators of the extreme value index we have introduced in
this thesis, are presented again for easy reference. For more details on these estimators
we refer to the appropriate chapters. In the subsequent sections we will discuss several
distribution functions and show the average behaviour of the estimators. For each of
these distribution functions, we generated samples of size 100 and 1000. A number of
1000 samples was generated for each of these sample sizes, in order to examine the
mean behaviour of the estimators as well as the Mean Squared Error of the estimators.

The Random Number Generator we used was not a linear congruential generator
but a ‘subtract-with-borrow’ generator (see MARSAGLIA AND ZAMAN (1991)) which
has an extremely long period. All the quantile functions of the distribution functions we
will be using are known explicitly, hence the samples can be generated by applying the
quantile functions on a sample of standard uniform variables. To increase computational
speed, the following sequential method to generate an ordered sample was used. Let
Ul,-..,Uy be a standard uniform sample of size n and define T, = U/ and T,_; =
Tn_,-+1Ui¥1("") fori=1,...,n. Then T} £ --- < T, and they are distributed as the order
statistics of a sample of size n from a U(0, 1) distribution.

Moreover, some estimators will be applied to a data set containing 211 measure-
ments on water discharges at Lobith, The Netherlands, in the period 1901-1991. Since
this is a single data set it will reveal the major advantage of the kernel type estimators
as compared to the other estimators.

Finally, in the last section, we will discuss all the results in some more detail.

6.2 Summary of the estimators

Percentile approach

Let M = M, be a sequence of integers with M < |n/4]| and M,/n— 0 as n = . In
case of a Generalized Pareto Distribution, observe that

Ql’(3/4 7/10-) QP 1/2 J/aa) /1
QP(1/2 Y 0
where Qp(-;7,0) is the quantile function of a Generalized Pareto Distribution. De-

fine Pickands’ estimator as the sample analoque of (6.1) assuming that the excesses
X(n—i+1) — X(n_am+1) stem from a Generalized Pareto Distribution, i.e.,

Xn-m+1) = X(n-2m+1)
Py =1lo log2
nm = 08 (X(n*ZM-H) = X(n-am+1) /

y =log 6.1)

This estimator is applicable for all y € IR.
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Maximum Likelihood approach

Define the excesses over threshold u = uy as ¥; = X; —u where j is the index of the
i-th exceedence and u, — xy. Assuming that these excesses come from a Generalized
Pareto Distribution with parameters y and o (1), the estimator is defined by maximizing
the likelihood of Yj,...,Yy based on that parametric assumption and denoted by f/]f,,
where N denotes the number of excesses over threshold u.

Without modification, asymptotic normality of this estimator can be derived for all
y > —1/2. Moreover, the procedure can be extended to include the range (—1,—1/2]
of extreme value indices.

In the simulations, the estimator was not calculated by equating the score func-
tions with zero, but by maximizing the likelihood directly, using a simple maximization
method called ‘amoebe’, as given in Numerical Recipes (PRESS ET AL. (1992)). As
a starting value for this iterative procedure, we used the moment estimator, to be de-
fined shortly. Using this approach, we did not encounter any problems concerning the
convergence of the numerical procedure in calculating the estimator.

Moment approach

Let k be a sequence of integers tending to infinity, with k < n and k/n — 0. Define the
quantities M( ) for r = 1,2 by

and the moment estimator by

(1)y2

M a (1) 1 (Mnk)
yn,k_Mn,k+l_— 1- (2)
2 Mnk

The Hill estimator is applicable only when y > 0, whereas the moment estimator is
applicable for all y € IR.
Kernel type approach

Let K(-) be a kernel with support [0, 1], i.e., K(x) = 0 whenever x ¢ [0, 1], and let & = hy,
be a sequence with # — 0 and nh — o. The first kernel type estimator is then defined
by
n—1 i
ap= Z K ( > (logx(n-i+1) - IOgX(n—i))

i=1

where Kj(x) = K(x/h)/h. This estimator is applicable only for y > 0.
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For a more general kernel type estimator, i.e., a kernel type estimator applicable to any
real valued extreme value index, additionally define the quantities

#1=%(3) 5 (7) (o -t

i=1
and

n—1

. d
=5[]

i=1

(lOgX(n—i+1) - IOgX(n—i))

u=ifn
for any & > 0. Define the general kernel type estimator by

4(2)
N
Ynp = VnK}:+ (1) -1

In the simulations we will use the kernel

315 4
K(x) = (=) xe]] 62)
0 elsewhere

and we will take & = 0.6 in the definitions of tjﬁ‘h and q,(f),, in order to ensure asymptotic

normality of the general kernel type estimator, see Theorem 5.2. Moreover, note that
this kernel satisfies the conditions of Theorem 3.1 as well as those of Theorem 5.2.

6.3 Finite sample behaviour

In this section the finite sample behaviour of the estimators is shown for several dis-
tribution functions. In order to be able to compare the estimators, each will be plotted
as a function of the fraction of order statistics that is used in their calculation. Le.,
if & denotes that fraction, the following estimators will be plotted: 77 (h) = 7f nae
i (h)= j}rﬁnhj’ ?M(h) = ?rt[[nhj’ ?K(h) = ;',fh’ ?G(h) 7,. » and Vs(h) ')’N with thresh-
old uy = X(,_|ns))- Moreover, in the plots each line corresponding to a particular es-
timator is labelled by the character in the superscript of the estimator. E.g., a line
representing the maximum likelihood estimator 75 (k) is indicated by the character S.

In each of the following subsections the mean behaviour of the various estimators
will be shown for a specific type of distribution function by plotting the average of
each estimator over 1000 samples. Following these subsections on artificially generated
samples, we will apply the estimators to a single real-life dataset called the Lobith data.
In Section 6.4 we will discuss the behaviour of the various estimators.
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6.3.1 The Hall model

A whole class of distribution functions with positive extreme value index y that is fre-
quently used when studying extreme value distributions is given in e.g., HALL AND
WELSH (1984) and is sometimes referred to by ‘the Hall model’. The distribution func-
tions of that class are defined to satisfy

Fx)~1=Cx"Y"(14+Dx™P)  asx— oo (6.3)
with C,7,p > 0and D # 0. The quantile function hence satisfies

O(s) ~C"(1—s)~" (14+yDC™P7(1 - 5)P7) ass— 1
and the associated ¢ -function

Y (CPY +y(1 - p)DsP")
CPY + yDsPY

¢ (s) ~y (14 0(s°7)) ass—0

6.3.1.1 Special case: Cauchy
A well known distribution function that is contained in this class, is the Cauchy distri-
bution with the extreme value index y = 1:
1 1/1 1
F(x)=5+%arctanx=l—;(;—g-{-t)(xd)) as x — oo

Its quantile function is given by

0(s) = cot(x(1-5))

= ”(ll_s) (1—%(”(1 —s))2+o((l—s)2)> ass— 1

and the associated ¢ -function by

ms
sin(zs) cos(xs)

¢(s)= = 1+§(7zs)2+o(s2) ass—0

Since the extreme value index of the Cauchy distribution is positive, we can use all the
mentioned estimators.

6.3.1.2 Another case of the Hall model
Taking equality in (6.3) and substituting y = 1/3, p =3,C =2 and D = —1/2 yields

1
F(x)=1-2x"3 (1 - Ex_3> x>1

Q(s) = (1-v5)™""

> =l+is+o(s) ass—0

1
'p(s):E\/ﬁ(l—\/m) 3712
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Le., for these particular choices of the parameters, the quantile function can be calcu-
lated explicitly and hence used to generate samples from this distribution. Moreover,
since y = 1/3, all estimators still apply.

1.8
1.6
1.4
1.2
1.0
0.8
0.6
04
0.2
0.0
(@yn=100 (b) n = 1000
Figure 6.3.1: Cauchy, y =1
0.4 036 H
" 034
02
0.32
0.0 0.30
0.28
02 0.26
j 0.24
04 0.0 01 0.2 " 0.3 0.4 05 0.0 0.1 0.2 " 03 04 0.5
(@) n =100 (b) n = 1000

Figure 6.3.2: Hall model, y = 1/3
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6.3.2 Generalized Extreme Value distributions

The Generalized Extreme Value distribution was introduced in Chapter 1 of this thesis as
a way of describing the three possible limiting types of distribution functions, appearing
in the extreme value setting, in one single formula. The distribution function is given
by

F(x) =exp (—(1+'yx)_1/7) for all xsuch that 1 +yx >0

where ¥ is obviously the extreme value index of the distribution. Its quantile function
is given by

(1—(-logs)™")
14

and the associated ¢ -function is hence given by

o) = -

¢(s)= a —S)lzg(l —s)(1- (—102(1 =s))7)
Moreover, as s — 0,
(14Tl ) 1<y <0
y (145" +o(s")) O<r<l

In practice, often the extreme value index is close to 0. Therefore we will consider three
instances of the Generalized Extreme Value distribution: GEV(—0.1), GEV(0) and
GEV(0.1). Obviously, in case of GEV(—0.1), the Hill estimator 77 (k) and the kernel
estimator 7% (k) are no longer applicable. In the other two instances all estimators can
be applied.

y -0.10
0.2
0.4 0.15
0.6
-0.20
08
1.0 N 0.25
/
121
st 0.30 p
00 01 02 03 04 05 0% 01 02,03 04 05
(a) n =100 (b) n = 1000

Figure 6.3.3: GEV, y = —0.1
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Figure 6.3.4: GEV,y =0
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Figure 6.3.5: GEV, y = 0.1

6.3.3 Uniform distribution

A typical example of a distribution with a finite upper endpoint is the uniform distribu-
tion U(a, b), defined by
X—a
b—a
with extreme value index ¥ = — 1. The quantile function is given by
Q(s)=a+(b—a)s
and the associated ¢ -function by
_ (b—a)s a a) 2, 2
¢(S)—b—_-(;7)s—(l—z)s+<l b S+0(S) ass—0
In the simulations we will use the uniform distribution with a =2 and b =5, i.e,
U(2,5). Again, since y = —1, 7% (h) and 7X(h) are not applicable. Moreover, asymp-
totic normality of the maximum likelihood estimator #5(k) is not covered by Theo-
rem 2.6. However, we did calculate this estimator, just to show its finite sample be-
haviour in this case as well.

F(x)= as<x<b
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Figure 6.3.6: Uniform on (2,5), y = —1
4 0.50 14
-0.6
-0.52
-0.8
-0.54
1.0
-0.56
12 -0.58
1.4 ; 0.60
1.6 s 4 0.62
1.8} i 0.64 “P
0.0 0.1 0.2 B 03 0.4 0.5 0.0 0.1 0.2 N 0.3 0.4 0.5
(a) n=100 (b) n=1000

Figure 6.3.7: Hall type, y = —0.5

6.3.4 Hall type for negative index

The Hall model, as used before for positive extreme value index, can be transformed to a
similar model for negative extreme value indices. Again we will choose the parameters
in such a way that the quantile function is explicitly given and can easily be used to
generate samples. To be more specific, we will use

Fx)=1-2(1-x2+(1-x)* O0<x<1

In this case, the extreme value index y equals —1/2 and the quantile function is given

by
Q(s)=1—4/1-/s

and the associated ¢ -function by
' 2
) 1 s %Sl /2 + 1

=Z\/1———s(\/l—\/1—s) (1-\/1~ l—s) 3*+ol)

¢(s

4

as s — 0.
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6.3.5 Generalized Pareto

The Generalized Pareto Distribution is the limiting form of the properly scaled tale of a
distribution that is in the domain of attraction of an extreme value distribution. See e. g,
Chapter 1 of this thesis for a discussion of the approximation of the tail of a distribution.
The distribution function for y € IR and o > 0 is given by

Fx)=1- (1+§)_W

with x > 0 and 14 yx/o > 0. In case of ¥ = O the distribution is defined as the limit
over y tending to 0, i.e., in that case F(x) = 1 —exp(—x/o) for all x > 0. Note that the
parameter y is the extreme value index of the distribution.

The corresponding quantile function is given by

0(s) =~ ((1=5)77 1)

for y # 0 and by Q(s) = —(log(1 —5))/ o for y = 0. The associated ¢ -function is given
by

Y
1—s7

¢(s)=
for y # 0 and by ¢ (s) = —1/logs in case y = 0. Note that, as s tends to zero,

o )_{ y(14+0(s77)) y>0
"m0y v <0

In the simulations we took ¥y = 0.1 and o = 2.

0.2

(@) n=100 (b) n= 1000
Figure 6.3.8: GPD, y =0.1 and 6 =2
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6.3.6 The Lobith data

The Lobith data were obtained during the period 1901-1991 at a municipality in the
Netherlands, called Lobith. The data represent peaks in the water discharges at that
particular place along the river Rhine. During the mentioned period of time, the max-
imum water discharge at Lobith was measured on a daily basis. These maxima were
plotted against time, and only those maxima above a certain threshold and at least a
fortnight apart were recorded in the Lobith data. Whenever several values appeared
above the threshold but within a fortnight of each other, the maximum of those values
was recorded. This resuited in 211 measurements.

Considering the above mentioned construction of the data set, it seems reasonable
to assume that the measurements represent an i.i.d. sample from a distribution that is
in the domain of attraction of an extreme value distribution. The same assumption was
made in GROENEBOOM (1993) where this data set was analysed as well. The results
from that paper were used by the Dutch government in the ‘evaluation of the underlying
assumptions for river dike enforcements

The moment estimator yn & as well as the general kernel type estimator y n suggest
that the extreme value index of the distribution function underlying the Loblth data
is non-positive. Therefore, only the estimators applicable to estimate negative extreme
value indices as well were applied to this data set. The results are plotted in Figure 6.3.9.
In case of the general kernel type estimator, the parameter o was taken to be 0.6 and
the kernel as defined in (6.2).

Figure 6.3.9: Estimates of the extreme value index of the Lobith data

6.4 Discussion of the results

With exception of the plot concerning the Lobith data, the plots presented in the previous
subsections show for each estimator the average of 1000 estimates. Therefore most
estimators, as a function of the parameter h, behave rather smoothly. However, the plot
based on the Lobith data clearly shows that only the general kernel type estimator 7€ (k)
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is a smooth function of the parameter & when only one sample is considered. This is
due to the fact that the other estimators, the moment estimator, the maximum likelihood
estimator and Pickands’ estimator, all depend on the number of order statistics in a
discrete way. Since we are dealing with (intermediate) order statistics, the addition
of a single order statistic can change the value of these estimates considerably: each
order statistic is equaly weighted in these estimators. In case of the general kernel type
estimator, the order statistics are weighted using a smooth kernel that decreases to 0
with decreasing rank of the order statistics. Le., using an additional intermediate order
statistic does not change the value of the estimate too much since it enters the estimate
with a rather small weight.

The same advantage will be present when comparing the Hill estimator and the
kernel type estimator for positive y on a single sample: the Hill estimator again depends
discretely on the number of used order statistics, whereas the kernel type estimator
smoothes out the effect of adding an extra order statistic.

As discussed before, not all estimators are applicable to each situation: the Hill
estimator and the kernel type estimator can only be used in case of estimating a positive
extreme value index. In case the extreme value index is not too close to zero, the kernel
type estimator behaves quite well as far as the bias is concerned, see Figures 6.3.1
and 6.3.2. However, as soon as the extreme value index is close to zero, both the Hill
estimator and the kernel type estimator get seriously biased as seen in Figures 6.3.5 and
6.3.8.

The generally applicable estimators behave moderately to very well for each of the
considered distributions, as fas as the bias is concerned. However, it is more interesting
to consider the Mean Squared Error. Since we generated 1000 samples for each of the
considered distributions, the bias and the variance can be estimated using the estimates
for these samples along with the knowledge about the parameter that was estimated.
Figures 6.4.10 to 6.4.12 show the estimated Mean Squared Error for the esimators in
case of the Cauchy distribution, the Generalized Pareto Distribution with ¥ = 0.1 and
o =2 and the Uniform (2,5) distribution respectively. Even though Pickands’ esti-
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0.02

(a) n = 100 (b) n = 1000

Figure 6.4.10: Estimated Mean Squared Error in case of Cauchy data
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Figure 6.4.11: Estimated Mean Squared Error in case of GPD(0.1,2) data
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Figure 6.4.12: Estimated Mean Squared Error in case of ¥U(2,5) data

mator behaves quite well considering its bias, in Mean Squared Error sense it behaves
very poorly: the variance of this estimator is quite large. The other estimators behave
moderately to very well in this Mean Squared Error sense in most cases.

Figures 6.4.10 and 6.4.11 however show that the Mean Squared Error behaviour
of the Hill estimator and the kernel type estimator for positive ¥ again depends on the
value of y that is to be estimated: in case of the Generalized Pareto data (y = 0.1), these
estimators behave quite poorly, whereas in case of the Cauchy data they outperform the
other estimators in Mean Squared Error sense. This shows that even in case the extreme
value index that is to be estimated can be assumed to be positive, the use of generally
applicable estimators can yield better estimates, especially if the index is assumed to be
close to zero.

Considering all simulations, it seems that the average behaviour of the general ker-
nel type estimator is comparable to the behaviour of the more often used moment esti-
mator, both in bias and in Mean Squared Error sense. The plots of the Mean Squared
Error indicate that the use of near-optimal bandwidths would still result in a reasonable
estimate. Moreover, the smoothness of the estimator 7C(h) itself then yields that the
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estimate is likely to be close to the estimate that one would have gotten if one had used
the optimal bandwidth. This feature is not apparent in the other generally applicable
estimators: even though in Mean Squared Error sense these estimators also seem to
behave constantly well in a neighbourhood of the optimal bandwidth, the wobbly be-
haviour of these estimators as a function of the fraction of used order statistics, does
not yield comparable estimates in that same neighbourhood. Indeed, the use of a near-
optimal fraction of order statistics for these estimators could lead to an estimate that
differs substantially from the estimate using the optimal fraction of order statistics.

Even though the general kemel type estimator as considered in the present simu-
lation study already behaves very well, the effect of choosing different values of « or
using different kernels still needs to be investigated more thoroughly. Indeed, the gen-
eral kernel type estimator as introduced in Chapter 5 actually represents a whole class
of new estimators.
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Summary

Estimating the extreme value index
— tales of tails —

For many different phenomena it is interesting to study the asymptotics of the average
behaviour. This often leads to an application of some form of the Central Limit The-
orem. In other cases, it is the behaviour of extreme events that is of interest. Indeed,
in many different areas, there is a dire need to describe extreme situations in order to
try to prevent or at least reduce severe damage, financial or otherwise. E.g., accurate
description of extreme wave heights can be used to design better strategies that aim to
protect inhabited areas against flooding.

Extreme value theory provides, among other things, an analogy of the Central Limit
Theorem in case of extreme events. The distribution of the properly scaled and shifted
sample maximum will, in most cases, converge to an Extreme Value Distribution. How-
ever, contrary to the situation of the Central Limit Theorem, where the Normal distribu-
tion always turns up as the limiting ditribution, three different limiting types of Extreme
Value Distributions exist: the Gumbel, the Fréchet and the (inverse) Weibull distribu-
tion. Even though these distributions behave quite differently, they can be combined
into one formula containing a single parameter, called the extreme value index, that
identifies each type. This thesis focuses on the estimation of that extreme value index.
An accurate estimate of the extreme value index is often needed to be able to analyse
extreme events in more detail.

The first chapter of this thesis contains additional general information on extreme
events, extreme value theory and related topics.

Over the years, several attempts have been made to obtain a measure of the difficulty
of estimating the extreme value index. A frequently used approach in assessing the
difficulty of estimation procedures is to consider the minimax risk of such d procedure
over certain classes of distribution functions. At the start of Chapter 2, we provide an
asymptotic lower bound to the minimax risk of estimating the extreme value index over
a large class of distribution functions in a rather straightforward way.

Following on the derivation of that lower bound, several existing estimators of the
extreme value index are discussed, like the Hill estimator, Pickands’ estimator, the Mo-
ment estimator and a kernel type estimator. Moreover, considering that kernel type es-
timator of the extreme value index as a weighted average of Hill estimators, it is argued
that the asymptotic behaviour of a recently introduced estimator could more easily be
derived using results concerning the asymptotic behaviour of that kernel type estimator.

At the end of the chapter it is shown that the lower bound to the minimax risk can
be attained in the sense of convergence in distribution for several classes of distribution
functions. This is explicitly shown in case of Pickands’ estimator, but other estimators
attain the lower bound as well.
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The asymptotic behaviour of the just mentioned kernel type estimator is discussed in
more detail in Chapter 3. Just like any other estimator of the extreme value index,
the calculation of the estimate is done using a certain number of the largest values in
the sample (the upper order statistics). That number of used order statistics, relative
to the sample size, is in case of the kernel type estimator determined by a parameter
called the bandwidth. Considering the estimator as a stochastic process indexed by that
parameter, we derive a limiting Gaussian process. As a special case, taking a fixed
sequence of bandwidths, a limiting normal distribution is obtained.

Choosing the bandwidth in an optimal way by minimizing the (asymptotic) mean
squared error would lead to an optimal estimator. However, the optimal bandwidth de-
pends on characteristics of the underlying distribution function and is hence unknown
in practice. A corollary of our theorem on the limiting process yields that the use of a
consistent estimate of the optimal bandwidth would lead to the same limiting distribu-
tion as would be obtained using the true optimal bandwidth. A first attempt is made to
produce a consistent estimator of that optimal bandwidth.

The kemnel type estimator discussed in detail in Chapter 3 is applicable only in case the
extreme value index is known to be positive. In Chapter 4 this estimator is adjusted in
such a way that an estimator is obtained that is consistent for any (real valued) extreme
value index. To that end, a second parameter is introduced. Asymptotic normality is
derived and, by means of a small simulation study, the dependency of the estimator on
the two parameters is discussed.

A disadvantage of this estimator is given by the fact that both parameters need to be
chosen appropriately or even optimally. As an alternative generalization of the kernel
type estimator of Chapter 3, a whole new class of kernel type estimators is introduced
in Chapter 5. Although this class of estimators is characterized by an additional param-
eter as well, that parameter can (almost arbitrarily) be fixed. Then only the bandwidth
needs to be chosen in an optimal way. Hence, the estimators essentially only have one
parameter. :

Asymptotic properties of these estimators will be derived, including consistency
under very weak conditions and asymptotic normality under slightly more restrictive
conditions. Moreover, the asymptotic bias is discussed in more detail.

A main advantage of kernel type estimators over the more often used Hill estimator
and Moment estimator, is their dependence on the number of used order statistics. Ker-
nel type estimators are smooth functions of the fraction of used order statistics whereas
the other estimators depend rather erratically on that fraction. In fact, adding a small
fraction of order statistics in the calculation of the estimate will not change the point
estimate too much in case of kemnel type estimators, whereas in case of the other es-
timators it can change the point estimate considerably. In several practical situations
that are described in the literature, the extreme value index turns out to be close to
zero. Since the behaviour of the (limiting) distributions differs substantially for positive
and negative index, an estimate of that index that behaves not too erratically is of great
importance.
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Finally, in Chapter 6, a simulation study is performed to show the advantages and dis-
advantages of various estimators in case of small and intermediate size samples from
several theoretical distributions. Moreover, some of the estimators are applied in case
of real data concemning peaks in the water discharges at Lobith, the Netherlands, during
the period 1901-1991.



Samenvatting

Het schatten van de extreme waarde index
- verhalen met een staartje —

In veel situaties is het interessant om de asymptotische eigenschappen van het gemid-
delde gedrag te bestuderen. Vaak leidt dit tot een toepassing van een of andere vorm van
de Centrale Limietstelling. In bepaalde gevallen kan het bestuderen van extreem gedrag
minstens zo interessant en nuttig zijn. Zo kan bijvoorbeeld een nauwkeurige beschrij-
ving van extreme golfhoogtes gebruikt worden bij het bepalen van betere strategieén
om bewoonde gebieden te beschermen tegen overstromingen.

Eén van de resultaten uit de extreme waarde theorie, is een analogon van de Centrale
Limietstelling. De verdeling van het steekproefmaximum, mits op de juiste manier
getransformeerd, convergeert in de meeste gevallen naar een Extreme Waarde Verdeling.
In tegenstelling tot de Centrale Limietstelling, waar de Normale verdeling altijd als
limiet verdeling opduikt, zijn er drie verschillende typen limietverdelingen: de Gumbel,
de Fréchet en de (inverse) Weibull verdeling. Hoewel de drie limietverdelingen totaal
verschillende eigenschappen hebben, is het mogelijk om die drie typen te combineren tot
een functievoorschrift waarin slechts één parameter, de extreme waarde index genaamd,
het onderscheid aangeeft tussen de typen. Dit proefschrift richt zich op het schatten van
die extreme waarde index. Een goede schatting daarvan vormt vaak de basis voor een
verdere analyse van extreme situaties.

In het eerste hoofdstuk van dit proefschrift wordt nog wat extra achtergrond infor-
matie gegeven over extreme gebeurtenissen, extreme waarde theorie en daaraan gerela-
teerde onderwerpen.

De laatste jaren zijn er verschillende pogingen gedaan om de moeilijkheid van het schat-
ten van de extreme waarde index te kwantificeren. Een veel gebruikte methode voor het
bepalen van de moeilijkheid van een schattingsprobleem bestaat uit het bepalen van het
minimax risico daarvan over een bepaalde klasse van verdelingen. Aan het begin van
Hoofdstuk 2 wordt een asymptotische ondergrens bepaald voor het minimax risico in
het geval van het schatten van de extreme waarde index. Die ondergrens wordt op een
inzichtelijke manier bepaald voor een vrij grote klasse van verdelingen.

Volgend op die berekeningen worden verschillende al bestaande schatters van de
extreme waarde index besproken, waaronder de Hill schatter, de Pickands schatter, de
Momenten schatter en een kernschatter. Bovendien wordt aangetoond dat de genoemde
kernschatter te beschouwen is als een gewogen gemiddelde van Hill schatters. Daarmee
wordt aannemelijk gemaakt dat de asymptotische eigenschappen van een recentelijk
geintroduceerde schatter eenvoudiger zouden kunnen worden afgeleid door gebruik te
maken van de asymptotische eigenschappen van die kernschatter.

Aan het einde van het hoofdstuk wordt aangetoond, dat de ondergrens van het mini-
max risico voor het schatten van de extreme waarde index in de zin van convergentie in
verdeling gehaald kan worden voor verschillende klassen van verdelingsfuncties. Dit

150



Samenvatting 151

wordt expliciet aangetoond voor de Pickands schatter, maar ook andere in dit hoofdstuk
besproken schatters halen die ondergrens.

De asymptotische eigenschappen van de zojuist al genoemde kernschatter worden in
Hoofdstuk 3 nog wat gedetailleerder bekeken. Zoals bij iedere schatter van de ex-
treme waarde index, wordt ook in dit geval bij de berekening van de schatting gebruik
gemaakt van een bepaald aantal grootste waarnemingen uit de steekproef. De fractie
van gebruikte grootste waarnemingen wordt in het geval van de kernschatter bepaald
door één parameter: de bandbreedte. Door de kernschatter als een stochastisch proces
te beschouwen, geindexeerd door die bandbreedte, wordt een Gaussisch limietproces
afgeleid. Door vervolgens een vaste rij van getallen als bandbreedte te nemen wordt als
speciaal geval de normale verdeling als limietverdeling van de schatter gevonden.

Door geschikte keuze van de bandbreedte kan de best mogelijke kernschatter wor-
den gedefinieerd. Die optimale bandbreedte, gedefinieerd als de bandbreedte die de
verwachte kwadratische fout van de schatter minimaliseert, hangt echter af van eigen-
schappen van de onderliggende verdeling en is in de praktijk dus niet te bepalen.
Als gevolg Vvan onze stelling betreffende het Gaussische limietproces, kan wel wor-
den afgeleid dat de kernschatter, gebaseerd op een consistente schatter van de optimale
bandbreedte, dezelfde asymptotische verdeling heeft als de kernschatter gebaseerd op
de echte optimale bandbreedte. In Hoofdstuk 3 wordt dan ook een eerste aanzet gegeven
tot een consistente schatter voor de optimale bandbreedte.

De kernschatter uit Hoofdstuk 3 is alleen een consistente schatter in het geval dat de te
schatten extreme waarde index positief is. In Hoofdstuk 4 wordt deze schatter zodanig
aangepast, dat een schatter ontstaat die ook consistent is voor niet positieve waarden
van de extreme waarde index. Daartoe wordt, naast de bandbreedte, een extra parameter
geintroduceerd. De asymptotische normaliteit van deze schatter wordt aangetoond en
aan het einde van het hoofdstuk wordt met behulp van een simulatiestudie bestudeerd
op welke manier de schatter afhangt van de twee parameters.

Een nadeel van deze schatter is dat er nu twee parameters zijn die geschikt, of zelfs
optimaal, moeten worden gekozen. Als alternatief wordt in Hoofdstuk 5 een nieuwe
klasse van kernschatters geintroduceerd die ook als een generalisatie van de kernschatter
uit Hoofdstuk 3 kan worden gezien. Hoewel deze nieuwe schatters nog steeds van twee
parameters afhangen, kan nu één van de parameters (vrij willekeurig) vastgezet worden,
waarna de andere parameter (de bandbreedte) optimaal gekozen kan worden.

Ook van deze kernschatters worden asymtotische eigenschappen afgeleid, waaron-
der de consistentie onder zeer zwakke voorwaarden en de asymptotische normaliteit
onder strengere voorwaarden. Tevens wordt nader ingegaan op de mogelijke vormen
van de asymptotische onzuiverheid van deze schatters.

Een groot voordeel dat kernschatters hebben boven de meer bekende Hill schatter
en Momenten schatter, ligt in de manier waarop die schatters afhangen van het aan-
tal gebruikte grootste waarden uit de steekproef. Kernschatters hangen op een gladde
manier af van de fractie gebruikte grootste waarden, terwijl de andere schatters daar op
een zeer grillige manier van afhangen. Door een kleine fractie van grootste waarden
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toe te voegen aan de berekening, zal bij het gebruik van kerschatters de puntschatting
niet veel veranderen, terwijl bij het gebruik van de Hill schatter en de Momenten schat-
ter de puntschatting totaal anders uit kan vallen. In veel praktische situaties die in de
literatuur zijn beschreven, blijkt dat de extreme waarde index vaak in de buurt van nul
ligt. Gezien het totaal verschillende karakter van de (limiet)verdelingen bij positieve en
negatieve index, is een niet al te grillig gedrag van een schatter van die index dan ook
zeer gewenst.

In Hoofdstuk 6 is een simulatiestudie opgenomen, waarin naar de voor- en nadelen
van de verschillende schatters wordt gekeken voor kleine en middelgrote steekproeven
uit verschillende (kunstmatige) verdelingen. Een aantal schatters is ook toegepast op
echte waarnemingen, die betrekking hebben op pieken in de waterlozing bij Lobith,
gedurende de periode 1901-1991.
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